All papers in 2023 (Page 2 of 1971 results)

Last updated:  2023-12-06
SoK: Post-Quantum TLS Handshake
Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier
Transport Layer Security (TLS) is the backbone security protocol of the Internet. As this fundamental protocol is at risk from future quantum attackers, many proposals have been made to protect TLS against this threat by implementing post-quantum cryptography (PQC). The widespread interest in post-quantum TLS has given rise to a large number of solutions over the last decade. These proposals differ in many aspects, including the security properties they seek to protect, the efficiency and trustworthiness of their post-quantum building blocks, and the application scenarios they consider, to name a few. Based on an extensive literature review, we classify existing solutions according to their general approaches, analyze their individual contributions, and present the results of our extensive performance experiments. Based on these insights, we identify the most reasonable candidates for post-quantum TLS, which research problems in this area have already been solved, and which are still open. Overall, our work provides a well-founded reference point for researching post-quantum TLS and preparing TLS in practice for the quantum age.
Last updated:  2023-12-06
Integral Multiset: A Novel Framework for Integral Attacks over Finite Fields
Weizhe Wang and Deng Tang
In recent years, symmetric primitives that focus on arithmetic metrics over large finite fields, characterized as arithmetization-oriented (\texttt{AO}) ciphers, are widely used in advanced protocols such as secure multi-party computations (MPC), fully homomorphic encryption (FHE) and zero-knowledge proof systems (ZK). To ensure good performance in protocols, these \texttt{AO} ciphers are commonly designed with a small number of multiplications over finite fields and low multiplicative depths. This feature makes \texttt{AO} ciphers vulnerable to algebraic attacks, especially integral attacks. While a far-developed analysis for integral attacks on traditional block ciphers defined over $\mathbb{F}_2$ exists, there is still a lack of research on this kind of attacks over large finite fields. Previous integral attacks over large finite fields are primarily higher-order differential attacks, which construct distinguishers by simply utilizing algebraic degrees without fully exploiting other algebraic properties of finite fields. In this paper, we propose a new concept called \textit{integral multiset}, which provides a clear characterization of the integral property of multiset over the finite field $\mathbb{F}_{p^n}$. Based on multiplicative subgroups of finite fields, we present a new class of integral multisets that exhibits completely different integral property compared to the previously studied multisets based on vector subspaces over the finite field $\mathbb{F}_2$. In addition, we also present a method for merging existing integral multisets to create a new one with better integral property. Furthermore, combining with monomial detection techniques, we propose a framework for searching for integral distinguishers based on integral multisets. We apply our new framework to some competitive \texttt{AO} ciphers, including \textsf{MiMC} and \textsf{Chaghri}. For all these ciphers, we successfully find integral distinguishers with lower time and data complexity. Especially for \textsf{MiMC}, the complexity of some distinguishers we find is only a half or a quarter of the previous best one. Due to the specific algebraic structure, all of our results could not be obtained by higher-order differential attacks. Furthermore, our framework perfectly adapts to various monomial detection techniques like general monomial prediction proposed by Cui et al. at ASIACRYPT 2022 and coefficient grouping invented by Liu et al. at EUROCRYPT 2023. We believe that our work will provide new insight into integral attacks over large finite fields.
Last updated:  2023-12-06
B2T: The Third Logical Value of a Bit
Dipesh, Vishesh Mishra, and Urbi chatterjee
Modern computing systems predominantly operate on the binary number system that accepts only ‘0’ or ‘1’ as logical values leading to computational homogeneity. But this helps in creating leakage patterns that can be exploited by adversaries to carry out hardware and software-level attacks. Recent research has shown that ternary systems, operating on three logical values (‘0′, ‘1', and ‘z') can surpass binary systems in terms of performance and security. In this paper, we first propose a novel approach that assigns logical values based on the direction of current flow within a conducting element, rather than relying on the voltage scale. Furthermore, we also present the mathematical models for each ternary gate.
Last updated:  2023-12-06
An Improved Method for Evaluating Secret Variables and Its Application to WAGE
Weizhe Wang, Haoyang Wang, and Deng Tang
The cube attack is a powerful cryptanalysis technique against symmetric ciphers, especially stream ciphers. The adversary aims to recover secret key bits by solving equations that involve the key. To simplify the equations, a set of plaintexts called a cube is summed up together. Traditional cube attacks use only linear or quadratic superpolies, and the size of cube is limited to an experimental range, typically around 40. However, cube attack based on division property, proposed by Todo et al. at CRYPTO 2017, overcomes these limitations and enables theoretical cube attacks on many lightweight stream ciphers. For a given cube $I$, they evaluate the set $J$ of secret key bits involved in the superpoly and require $2^{|I|+|J|}$ encryptions to recover the superpoly. However, the secret variables evaluation method proposed by Todo et al. sometimes becomes unresponsive and fails to solve within a reasonable time. In this paper, we propose an improvement to Todo's method by breaking down difficult-to-solve problems into several smaller sub-problems. Our method retains the efficiency of Todo's method while effectively avoiding unresponsive situations. We apply our method to the WAGE cipher, an NLFSR-based authenticated encryption algorithm and one of the second round candidates in the NIST LWC competition. Specifically, we successfully mount cube attacks on 29-round WAGE, as well as on 24-round WAGE with a sponge constraint. To the best of our knowledge, this is the first cube attack against the WAGE cipher, which provides a more accurate characterization of the WAGE's resistance against algebraic attacks.
Last updated:  2023-12-05
Accountable Bulletin Boards: Definition and Provably Secure Implementation
Mike Graf, Ralf Küsters, Daniel Rausch, Simon Egger, Marvin Bechtold, and Marcel Flinspach
Bulletin boards (BB) are important cryptographic building blocks that, at their core, provide a broadcast channel with memory. BBs are widely used within many security protocols, including secure multi-party computation protocols, e-voting systems, and electronic auctions. Even though the security of protocols crucially depends on the underlying BB, as also highlighted by recent works, the literature on constructing secure BBs is sparse. The so-far only provably secure BBs require trusted components and sometimes also networks without message loss, which makes them unsuitable for applications with particularly high security needs where these assumptions might not always be met. In this work, we fill this gap by leveraging the concepts of accountability and universal composability (UC). More specifically, we propose the first ideal functionality for accountable BBs that formalizes the security requirements of such BBs in UC. We then propose Fabric$^\ast_\text{BB}$ as a slight extension designed on top of Fabric$^\ast$, which is a variant of the prominent Hyperledger Fabric distributed ledger protocol, and show that Fabric$^\ast_\text{BB}$ UC-realizes our ideal BB functionality. This result makes Fabric$^\ast_\text{BB}$ the first provably accountable BB, an often desired, but so far not formally proven property for BBs, and also the first BB that has been proven to be secure based only on standard cryptographic assumptions and without requiring trusted BB components or network assumptions. Through an implementation and performance evaluation we show that Fabric$^\ast_\text{BB}$ is practical for many applications of BBs.
Last updated:  2023-12-05
COMMON: Order Book with Privacy
Albert Garreta, Adam Gągol, Aikaterini-Panagiota Stouka, Damian Straszak, and Michal Zajac
Decentralized Finance (DeFi) has witnessed remarkable growth and innovation, with Decentralized Exchanges (DEXes) playing a pivotal role in shaping this ecosystem. As numerous DEX designs emerge, challenges such as price inefficiency and lack of user privacy continue to prevail. This paper introduces a novel DEX design, termed COMMON, that addresses these two predominant challenges. COMMON operates as an order book, natively integrated with a shielded token pool, thus providing anonymity to its users. Through the integration of zk-SNARKs, order batching, and Multiparty Computation (MPC) COMMON allows to conceal also the values in orders. This feature, paired with users never leaving the shielded pool when utilizing COMMON, provides a high level of privacy. To enhance price efficiency, we introduce a two-stage order matching process: initially, orders are internally matched, followed by an open, permissionless Dutch Auction to present the assets to Market Makers. This design effectively enables aggregating multiple sources of liquidity as well as helps reducing the adverse effects of Maximal Extractable Value (MEV), by redirecting most of the MEV profits back to the users.
Last updated:  2023-12-05
Different Flavours of HILL Pseudoentropy and Yao Incompressibility Entropy
Pihla Karanko
There are two popular ways to measure computational entropy in cryptography: (HILL) pseudoentropy and (Yao) incompressibility entropy. Both of these computational entropy notions are based on a natural intuition. - A random variable $X$ has $k$ bits of pseudoentropy if there exists a random variable $Y$ that has $k$ bits 'real' entropy and $Y$ is computationally indistinguishable from $X$. - A random variable $X$ has $k$ bits of incompressibility entropy if $X$ cannot be efficiently compressed to less than $k$ bits. It is also intuitive, that if a random variable has high pseudoentropy, then it should also have high incompressibility entropy, because a high-entropy distribution cannot be compressed. However, the above intuitions are not precise. Does 'real entropy' refer to Shannon entropy or min-entropy? What kind of correctness do we require from the compressor algorithm? Different papers use slightly different variations of both pseudoentropy and incompressibility entropy. In this note we study these subtle differences and see how they affect the parameters in the implication that pseudoentropy implies incompressibility.
Last updated:  2023-12-05
When NTT Meets SIS: Efficient Side-channel Attacks on Dilithium and Kyber
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, and Shuo Sun
In 2022, NIST selected Kyber and Dilithium as post-quantum cryptographic standard algorithms. The Number Theoretic Transformation (NTT) algorithm, which facilitates polynomial multiplication, has become a primary target for side-channel attacks. Among these, Correlation Power Analysis (CPA) attacks against NTT have received much attention, which aims to recover all the coefficients of the private key in NTT domain. The necessity to recover all these coefficients not only limits efficiency but also directly impacts the feasibility of such attacks. Thus, a crucial question emerges: can the remaining coefficients be recovered using only a subset of known ones? In this work, we respond affirmatively by introducing overdetermined system-based and SIS-assisted key recovery methods for both Dilithium and Kyber, tailored for scenarios with incomplete NTT domain private keys. The SIS-assisted method, by embedding NTT transform matrix into the SIS search problem, offers a complete key recovery with the minimum known coefficients in NTT domain. For Kyber512 and Dilithium2, only 64 and 32 coefficients are enough to recover a subset of the private key with 256 coefficients, respectively. Furthermore, we propose a parameter-adjustable CPA scheme to expedite the recovery of a single coefficient in NTT domain. Combining this CPA scheme with the SIS-assisted approach, we executed practical attacks on both unprotected and masked implementations of Kyber and Dilithium on an ARM Cortex-M4. The results demonstrate that we can recover a subset of 256 private key coefficients for Dilithium2 using 2,000 power traces in 0.5 minutes, while Kyber512 requires 0.4 minutes and 500 power traces. These attacks achieve a 400$\times$ speedup compared to the best-known attacks against Dilithium. Moreover, we successfully break the first-order mask implementations and explore the potential applicable to higher-order implementations.
Last updated:  2023-12-05
Projective Space Stern Decoding and Application to SDitH
Uncategorized
Kevin Carrier, Valérian Hatey, and Jean-Pierre Tillich
Show abstract
Uncategorized
We show that here standard decoding algorithms for generic linear codes over a finite field can speeded up by a factor which is essentially the size of the finite field by reducing it to a low weight codeword problem and working in the relevant projective space. We apply this technique to SDitH and show that the parameters of both the original submission and the updated version fall short of meeting the security requirements asked by the NIST.
Last updated:  2024-01-16
Cache Side-Channel Attacks Through Electromagnetic Emanations of DRAM Accesses
Julien Maillard, Thomas Hiscock, Maxime Lecomte, and Christophe Clavier
Remote side-channel attacks on processors exploit hardware and micro-architectural effects observable from software measurements. So far, the analysis of micro-architectural leakages over physical side-channels (power consumption, electromagnetic field) received little treatment. In this paper, we argue that those attacks are a serious threat, especially against systems such as smartphones and Internet-of-Things (IoT) devices which are physically exposed to the end-user. Namely, we show that the observation of Dynamic Random Access Memory (DRAM) accesses with an electromagnetic (EM) probe constitutes a reliable alternative to time measurements in cache side-channel attacks. We describe the EVICT+EM attack, that allows recovering a full AES key on a T-Tables implementation with similar number of encryptions than state-of-the-art EVICT+RELOAD attacks on the studied ARM platforms. This new attack paradigm removes the need for shared memory and exploits EM radiations instead of high precision timers. Then, we introduce PRIME+EM, which goal is to reverse-engineer cache usage patterns. This attack allows to recover the layout of lookup tables within the cache. Finally, we present COLLISION+EM, a collision-based attack on a System-on-chip (SoC) that does not require malicious code execution, and show its practical efficiency in recovering key material on an ARM TrustZone application. Those results show that physical observation of the micro-architecture can lead to improved attacks.
Last updated:  2024-04-17
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its Application in Privacy-Preserving Biometric Identification
Dongyu Wu, Bei Liang, Zijie Lu, and Jintai Ding
Over years of the development of secure multi-party computation (MPC), many sophisticated functionalities have been made pratical and multi-dimensional operations occur more and more frequently in MPC protocols, especially in protocols involving datasets of vector elements, such as privacy-preserving biometric identification and privacy-preserving machine learning. In this paper, we introduce a new kind of correlation, called tensor triples, which is designed to make multi-dimensional MPC protocols more efficient. We will discuss the generation process, the usage, as well as the applications of tensor triples and show that it can accelerate privacy-preserving biometric identification protocols, such as FingerCode, Eigenfaces and FaceNet, by more than 1000 times, with reasonable offline costs.
Last updated:  2023-12-16
Analyzing UTXO-Based Blockchain Privacy Threats
Simin Ghesmati, Walid Fdhila, and Edgar Weippl
While blockchain technologies leverage compelling characteristics in terms of decentralization, immutability, and transparency, user privacy in public blockchains remains a fundamental challenge that requires particular attention. This is mainly due to the history of all transactions being accessible and available to anyone, thus making it possible for an attacker to infer data about users that is supposed to remain private. In this paper, we provide a threat model of possible privacy attacks on users utilizing the Bitcoin blockchain. To this end, we followed the LINDDUN GO methodology to identify threats and suggest possible mitigation.
Last updated:  2023-12-04
Automatic Verification of Cryptographic Block Function Implementations with Logical Equivalence Checking
Li-Chang Lai, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang
Given a fixed-size block, cryptographic block functions gen- erate outputs by a sequence of bitwise operations. Block functions are widely used in the design of hash functions and stream ciphers. Their correct implementations hence are crucial to computer security. We pro- pose a method that leverages logic equivalence checking to verify assem- bly implementations of cryptographic block functions. Logic equivalence checking is a well-established technique from hardware verification. Using our proposed method, we verify two dozen assembly implementations of ChaCha20, SHA-256, and SHA-3 block functions from OpenSSL and XKCP automatically. We also compare the performance of our technique with the conventional SMT-based technique in experiments.
Last updated:  2023-12-04
EstraNet: An Efficient Shift-Invariant Transformer Network for Side-Channel Analysis
Suvadeep Hajra, Siddhartha Chowdhury, and Debdeep Mukhopadhyay
Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter, and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced for SCA. Though the previously introduced TN-based model is successful against implementations jointly protected by masking and random delay countermeasures, it is not scalable to long traces (having a length greater than a few thousand) due to its quadratic time and memory complexity. This work proposes a novel shift-invariant TN-based model with linear time and memory complexity. The contributions of the work are two-fold. First, we introduce a novel TN-based model called EstraNet for SCA. EstraNet has linear time and memory complexity in trace length, significantly improving over the previously proposed TN-based model’s quadratic time and memory cost. EstraNet is also shift-invariant, making it highly effective against countermeasures like random delay and clock jitter. Secondly, we evaluated EstraNet on three SCA datasets of masked implementations with random delay and clock jitter effects. Our experimental results show that EstraNet significantly outperforms several benchmark models, demonstrating up to an order of magnitude reduction in the number of attack traces required to reach guessing entropy 1.
Last updated:  2023-12-04
XorSHAP: Privacy-Preserving Explainable AI for Decision Tree Models
Dimitar Jetchev and Marius Vuille
Explainable AI (XAI) refers to the development of AI systems and machine learning models in a way that humans can understand, interpret and trust the predictions, decisions and outputs of these models. A common approach to explainability is feature importance, that is, determining which input features of the model have the most significant impact on the model prediction. Two major techniques for computing feature importance are LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations). While very generic, these methods are computationally expensive even in plaintext. Applying them in the privacy-preserving setting when part or all of the input data is private is therefore a major computational challenge. In this paper, we present $\texttt{XorSHAP}$ - the first practical privacy-preserving algorithm for computing Shapley values for decision tree ensemble models in the semi-honest Secure Multiparty Computation (SMPC) setting with full threshold. Our algorithm has complexity $O(T \widetilde{M} D 2^D)$, where $T$ is the number of decision trees in the ensemble, $D$ is the depth of the decision trees and $\widetilde{M}$ is the maximum of the number of features $M$ and $2^D$ (the number of leaf nodes of a tree), and scales to real-world datasets. Our implementation is based on Inpher's $\texttt{Manticore}$ framework and simultaneously computes (in the SMPC setting) the Shapley values for 100 samples for an ensemble of $T = 60$ trees of depth $D = 4$ and $M = 100$ features in just 7.5 minutes, meaning that the Shapley values for a single prediction are computed in just 4.5 seconds for the same decision tree ensemble model. Additionally, it is parallelization-friendly, thus, enabling future work on massive hardware acceleration with GPUs.
Last updated:  2023-12-04
A Novel Power-Sum PRG with Applications to Lattice-Based zkSNARKs
Charanjit S Jutla, Eamonn W. Postlethwaite, and Arnab Roy
zkSNARK is a cryptographic primitive that allows a prover to prove to a resource constrained verifier, that it has indeed performed a specified non-deterministic computation correctly, while hiding private witnesses. In this work we focus on lattice based zkSNARK, as this serves two important design goals. Firstly, we get post-quantum zkSNARK schemes with $O(\log (\mbox{Circuit size}))$ sized proofs (without random oracles) and secondly, the easy verifier circuit allows further bootstrapping by arbitrary (zk)SNARK schemes that offer additional or complementary properties. However, this goal comes with considerable challenges. The only known lattice-based bilinear maps are obtained using multi-linear maps of Garg, Gentry, and Halevi 2013 (GGH13), which have undergone considerable cryptanalytic attacks, in particular annihilation attacks. In this work, we propose a (level-2) GGH13-encoding based zkSNARK which we show to be secure in the weak-multilinear map model of Miles-Sahai-Zhandry assuming a novel pseudo-random generator (PRG). We argue that the new PRG assumption is plausible based on the well-studied Newton's identity on power-sum polynomials, as well as an analysis of hardness of computing Grobner bases for these polynomials. The particular PRG is designed for efficient implementation of the zkSNARK. Technically, we leverage the 2-linear instantiation of the GGH13 graded encoding scheme to provide us with an analogue of bilinear maps and adapt the Groth16 (Groth, Eurocrypt 2016) protocol, although with considerable technical advances in design and proof. The protocol is non-interactive in the CRS model.
Last updated:  2023-12-04
A Simple and Efficient Framework of Proof Systems for NP
Yuyu Wang, Chuanjie Su, Jiaxin Pan, and Yu Chen
In this work, we propose a simple framework of constructing efficient non-interactive zero-knowledge proof (NIZK) systems for all NP. Compared to the state-of-the-art construction by Groth, Ostrovsky, and Sahai (J. ACM, 2012), our resulting NIZK system reduces the proof size and proving and verification cost without any trade-off, i.e., neither increasing computation cost, CRS size nor resorting to stronger assumptions. Furthermore, we extend our framework to construct a batch argument (BARG) system for all NP. Our construction remarkably improves the efficiency of BARG by Waters and Wu (Crypto 2022) without any trade-off.
Last updated:  2023-12-03
Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model
Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou, and Limin Fan
Threshold Implementation (TI) is a well-known Boolean masking technique that provides provable security against side-channel attacks. In the presence of glitches, the probing model was replaced by the so-called glitch-extended probing model which specifies a broader security framework. In CHES 2021, Shahmirzadi et al. introduced a general search method for finding first-order 2-share TI schemes without fresh randomness (under the presence of glitches) for a given encryption algorithm. Although it handles well single-output Boolean functions, this method has to store output shares in registers when extended to vector Boolean functions, which results in more chip area and increased latency. Therefore, the design of TI schemes that have low implementation cost under the glitch-extended probing model appears to be an important research challenge. In this paper, we propose an approach to design the first-order glitch-extended probing secure TI schemes when quadratic functions are employed in the substitution layer. This method only requires a small amount of fresh random bits and a single clock cycle for its implementation. In particular, the random bits in our approach are reusable and compatible with the changing of the guards technique. Our dedicated TI scheme for the AES cipher gives 20.23% smaller implementation area and 4.2% faster encryption compared to the TI scheme of AES (without using fresh randomness) proposed in CHES 2021. Additionally, we propose a parallel implementation of two S-boxes that further reduces latency (about 39.83%) at the expense of increasing the chip area by 9%. We have positively confirmed the security of AES under the glitch-extended probing model using the verification tool - SILVER and the side-channel leakage assessment method - TVLA.
Last updated:  2023-12-03
Demystifying DeFi MEV Activities in Flashbots Bundle
Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze Ni, Wenwu Yang, Xi Chen, and Ting Chen
Decentralized Finance, mushrooming in permissionless blockchains, has attracted a recent surge in popularity. Due to the transparency of permissionless blockchains, opportunistic traders can compete to earn revenue by extracting Miner Extractable Value (MEV), which undermines both the consensus security and efficiency of blockchain systems. The Flashbots bundle mechanism further aggravates the MEV competition because it empowers opportunistic traders with the capability of designing more sophisticated MEV extraction. In this paper, we conduct the first systematic study on DeFi MEV activities in Flashbots bundle by developing ActLifter, a novel automated tool for accurately identifying DeFi actions in transactions of each bundle, and ActCluster, a new approach that leverages iterative clustering to facilitate us to discover known/unknown DeFi MEV activities. Extensive experimental results show that ActLifter can achieve nearly 100% precision and recall in DeFi action identification, significantly outperforming state-of-the-art techniques. Moreover, with the help of ActCluster, we obtain many new observations and discover 17 new kinds of DeFi MEV activities, which occur in 53.12% of bundles but have not been reported in existing studies.
Last updated:  2023-12-03
A note on quantum approximate optimization algorithm
Zhengjun Cao
The general quantum approximate optimization algorithm (QAOA) produces approximate solutions for combinatorial optimization problems. The algorithm depends on a positive integer $p$ and the quality of approximation improves as $p$ is increased. In this note, we put some questions about the general QAOA. We also find the recursive QAOA for MaxCut problem is flawed because all quantum gates involved in the algorithm are single qubit gates. No any entangling gate is used, which results in that the quantum computing power cannot be certified for the problem.
Last updated:  2023-12-02
Report on evaluation of KpqC candidates
Jolijn Cottaar, Kathrin Hövelmanns, Andreas Hülsing, Tanja Lange, Mohammad Mahzoun, Alex Pellegrini, Alberto Ravagnani, Sven Schäge, Monika Trimoska, and Benne de Weger
This report analyzes the 16 submissions to the Korean post-quantum cryptography (KpqC) competition.
Last updated:  2023-12-01
Reduction from sparse LPN to LPN, Dual Attack 3.0
Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich
The security of code-based cryptography relies primarily on the hardness of decoding generic linear codes. Until very recently, all the best algorithms for solving the decoding problem were information set decoders ($\mathsf{ISD}$). However, recently a new algorithm called RLPN-decoding which relies on a completely different approach was introduced and it has been shown that RLPN outperforms significantly $\mathsf{ISD}$ decoders for a rather large range of rates. This RLPN decoder relies on two ingredients, first reducing decoding to some underlying LPN problem, and then computing efficiently many parity-checks of small weight when restricted to some positions. We revisit RLPN-decoding by noticing that, in this algorithm, decoding is in fact reduced to a sparse-LPN problem, namely with a secret whose Hamming weight is small. Our new approach consists this time in making an additional reduction from sparse-LPN to plain-LPN with a coding approach inspired by $\mathsf{coded}$-$\mathsf{BKW}$. It outperforms significantly the $\mathsf{ISD}$'s and RLPN for code rates smaller than $0.42$. This algorithm can be viewed as the code-based cryptography cousin of recent dual attacks in lattice-based cryptography. We depart completely from the traditional analysis of this kind of algorithm which uses a certain number of independence assumptions that have been strongly questioned recently in the latter domain. We give instead a formula for the LPN noise relying on duality which allows to analyze the behavior of the algorithm by relying only on the analysis of a certain weight distribution. By using only a minimal assumption whose validity has been verified experimentally we are able to justify the correctness of our algorithm. This key tool, namely the duality formula, can be readily adapted to the lattice setting and is shown to give a simple explanation for some phenomena observed on dual attacks in lattices in [DP23].
Last updated:  2023-12-01
Quantum Security of the UMTS-AKA Protocol and its Primitives, Milenage and TUAK
Paul Frixons, Sébastien Canard, and Loïc Ferreira
The existence of a quantum computer is one of the most significant threats cryptography has ever faced. However, it seems that real world protocols received little attention so far with respect to their future security. Indeed merely relying upon post-quantum primitives may not suffice in order for a security protocol to be resistant in a full quantum world. In this paper, we consider the fundamental UMTS key agreement used in 3G but also in 4G (LTE), and in the (recently deployed) 5G technology. We analyze the protocol in a quantum setting, with quantum communications (allowing superposition queries by the involved parties), and where quantum computation is granted to the adversary. We prove that, assuming the underlying symmetric-key primitive is quantum-secure, the UMTS key agreement is also quantum-secure. We also give a quantum security analysis of the underlying primitives, namely Milenage and TUAK. To the best of our knowledge this paper provides the first rigorous proof of the UMTS key agreement in a strong quantum setting. Our result shows that in the quantum world to come, the UMTS technology remains a valid scheme in order to secure the communications of billions of users.
Last updated:  2023-12-01
Accurate Score Prediction for Dual-Sieve Attacks
Léo Ducas and Ludo N. Pulles
The Dual-Sieve Attack on Learning with Errors (LWE), or more generally Bounded Distance Decoding (BDD), has seen many improvements in the recent years, and ultimately led to claims that it outperforms the primal attack against certain lattice-based schemes in the PQC standardization process organised by NIST. However, the work of Ducas--Pulles (Crypto '23) revealed that the so-called "Independence Heuristic", which all recent dual attacks used, leads to wrong predictions in a contradictory regime, which is relevant for the security of cryptoschemes. More specifically, the stated distributions of scores for the actual solution and for incorrect candidates were both incorrect. In this work, we propose to use the weaker heuristic that the output vectors of a lattice sieve are uniformly distributed in a ball. Under this heuristic, we give an analysis of the score distribution in the case of an error of fixed length. Integrating over this length, we extend this analysis to any radially distributed error, in particular the gaussian as a fix for the score distribution of the actual solution. This approach also provides a prediction for the score of incorrect candidates, using a ball as an approximation of the Voronoi cell of a lattice. We compare the predicted score distributions to extensive experiments, and observe them to be qualitatively and quantitatively quite accurate. This constitutes a first step towards fixing the analysis of the dual-sieve attack: we can now accurately estimate false-positives and false-negatives. Now that the analysis is fixed, one may consider how to fix the attack itself, namely exploring the opportunities to mitigate a large number of false-positives.
Last updated:  2023-12-01
Lattice-based Programmable Hash Functions and Applications
Jiang Zhang, Yu Chen, and Zhenfeng Zhang
Driven by the open problem raised by Hofheinz and Kiltz (Journal of Cryptology, 2012), we study the formalization of lattice-based programmable hash function (PHF), and give three types of concrete constructions by using several techniques such as a novel combination of cover-free sets and lattice trapdoors. Under the Inhomogeneous Small Integer Solution (ISIS) assumption, we show that any (non-trivial) lattice-based PHF is a collision-resistant hash function, which gives a direct application of this new primitive. We further demonstrate the power of lattice-based PHF by giving generic constructions of signature and identity-based encryption (IBE) in the standard model, which not only provide a way to unify several previous lattice-based schemes using the partitioning proof techniques, but also allow us to obtain new short signature schemes and IBE schemes from (ideal) lattices. Specifically, by instantiating the generic constructions with our Type-II and Type-III PHF constructions, we immediately obtain two short signatures and two IBE schemes with asymptotically much shorter keys. A major downside which inherits from our Type-II and Type-III PHF constructions is that we can only prove the security of the new signatures and IBEs in the bounded security model that the number Q of the adversary’s queries is required to be known in advance. Another downside is that the computational time of our new signatures and IBEs is a linear function of Q, which is large for typical parameters. To overcome the above limitations, we also give a refined way of using Type-II and Type-III PHFs to construct lattice-based short signatures with short verification keys in the full security model. In particular, our methods depart from the confined guessing technique of B¨ohl et al. (Eurocrypt’13) that was used to construct previous standard model short signature schemes with short verification keys by Ducas and Micciancio (Crypto’14) and by Alperin-Sheriff (PKC’15), and allow us to achieve much tighter security from weaker hardness assumptions.
Last updated:  2023-12-01
Breach Extraction Attacks: Exposing and Addressing the Leakage in Second Generation Compromised Credential Checking Services
Dario Pasquini, Danilo Francati, Giuseppe Ateniese, and Evgenios M. Kornaropoulos
Credential tweaking attacks use breached passwords to generate semantically similar passwords and gain access to victims' services. These attacks sidestep the first generation of compromised credential checking (C3) services. The second generation of compromised credential checking services, called "Might I Get Pwned" (MIGP), is a privacy-preserving protocol that defends against credential tweaking attacks by allowing clients to query whether a password or a semantically similar variation is present in the server's compromised credentials dataset. The desired privacy requirements include not revealing the user's entered password to the server and ensuring that no compromised credentials are disclosed to the client. In this work, we formalize the cryptographic leakage of the MIGP protocol and perform a security analysis to assess its impact on the credentials held by the server. We focus on how this leakage aids breach extraction attacks, where an honest-but-curious client interacts with the server to extract information about the stored credentials. Furthermore, we discover additional leakage that arises from the implementation of Cloudflare's deployment of MIGP. We evaluate how the discovered leakage affects the guessing capability of an attacker in relation to breach extraction attacks. Finally, we propose MIGP 2.0, a new iteration of the MIGP protocol designed to minimize data leakage and prevent the introduced attacks.
Last updated:  2023-11-30
Cycle Structure and Observability of Two Types of Galois NFSRs
Xianghan Wang, Jianghua Zhong, and Dongdai Lin
Nonlinear feedback shift registers (NFSRs) are used in many stream ciphers as their main building blocks. One security criterion for the design of a stream cipher is to assure its keystream has a long period. To meet this criterion, the NFSR used in a stream cipher must have a long state cycle. Further, to simultaneously avoid equivalent keys, the keystream's period is not compressed compared to the NFSR's state cycle length, which can be guaranteed if the NFSR is observable in the sense that any two distinct initial states are distinguishable from their resulting output sequences. The cycle structure of a general NFSR remains an open hard problem. Constructing Fibonacci NFSRs with maximum state cycles has therefore attracted much attention, but so far such Fibonacci NFSRs with known feedback functions have been found only for their stage numbers no greater than 33. Considering that Galois NFSRs may decrease the area and increase the throughput compared to Fibonacci NFSRs, this paper studies two types of $n$-stage Galois NFSRs, whose state transition matrices are circulant matrices with only one nonzero element of 1 in each column. The cycle structure and observability of both types are disclosed using the semi-tensor product based Boolean network approach. In the first type, each Galois NFSR has the state transition matrix, in which the position of the element 1 in the first column is even. It has the maximum state cycle with an arbitrary stage number and an explicit feedback functions. It is observable if and only if its output function is dependent on the first state bit. In the second type, each Galois NFSR has the state transition matrix, in which the position of the element 1 in the first column is $2^m+1$ with positive integer $m\leq n-1$ for the NFSR's stage number $n$. It has $2^m$ cycles of length $2^{n-m}$, and it is observable if its output function is dependent on all the state bits whose indices are no smaller than $n-m+1$.
Last updated:  2023-12-22
New Security Proofs and Complexity Records for Advanced Encryption Standard
Orhun Kara
Common block ciphers like AES specified by the NIST or KASUMI (A5/3) of GSM are extensively utilized by billions of individuals globally to protect their privacy and maintain confidentiality in daily communications. However, these ciphers lack comprehensive security proofs against the vast majority of known attacks. Currently, security proofs are limited to differential and linear attacks for both AES and KASUMI. For instance, the consensus on the security of AES is not based on formal mathematical proofs but on intensive cryptanalysis over its reduced rounds spanning several decades. In this work, we introduce new security proofs for AES against another attack method: impossible differential (ID) attacks. We classify ID attacks as reciprocal and nonreciprocal ID attacks. We show that sharp and generic lower bounds can be imposed on the data complexities of reciprocal ID attacks on substitution permutation networks. We prove that the minimum data required for a reciprocal ID attack on AES using a conventional ID characteristic is $2^{66}$ chosen plaintexts whereas a nonreciprocal ID attack involves at least $2^{88}$ computational steps. We mount a nonreciprocal ID attack on 6-round AES for 192-bit and 256-bit keys, which requires only $2^{18}$ chosen plaintexts and outperforms the data complexity of any attack. Given its marginal time complexity, this attack does not pose a substantial threat to the security of AES. However, we have made enhancements to the integral attack on 6-round AES, thereby surpassing the longstanding record for the most efficient attack after a period of 23 years.
Last updated:  2023-12-04
Efficient Issuer-Hiding Authentication, Application to Anonymous Credential
Olivier Sanders and Jacques Traoré
Anonymous credentials are cryptographic mechanisms enabling users to authenticate themselves with a fine-grained control on the information they leak in the process. They have been the topic of countless papers which have improved the performance of such mechanisms or proposed new schemes able to prove ever-more complex statements about the attributes certified by those credentials. However, whereas these papers have studied in depth the problem of the information leaked by the credential and/or the attributes, almost all of them have surprisingly overlooked the information one may infer from the knowledge of the credential issuer. In this paper we address this problem by showing how one can efficiently hide the actual issuer of a credential within a set of potential issuers. The novelty of our work is that we do not resort to zero-knowledge proofs but instead we show how one can tweak Pointcheval-Sanders signatures to achieve this issuer-hiding property at a very low cost. This results in an efficient anonymous credential system that indeed provide a complete control of the information leaked in the authentication process. Our construction is moreover modular and can then fit a wide spectrum of applications, notably for Self-Sovereign Identity (SSI) systems.
Last updated:  2023-11-30
Unconditionally Secure Commitments with Quantum Auxiliary Inputs
Tomoyuki Morimae, Barak Nehoran, and Takashi Yamakawa
We show the following unconditional results on quantum commitments in two related yet different models: 1. We revisit the notion of quantum auxiliary-input commitments introduced by Chailloux, Kerenidis, and Rosgen (Comput. Complex. 2016) where both the committer and receiver take the same quantum state, which is determined by the security parameter, as quantum auxiliary inputs. We show that computationally-hiding and statistically-binding quantum auxiliary-input commitments exist unconditionally, i.e., without relying on any unproven assumption, while Chailloux et al. assumed a complexity-theoretic assumption, ${\bf QIP}\not\subseteq{\bf QMA}$. On the other hand, we observe that achieving both statistical hiding and statistical binding at the same time is impossible even in the quantum auxiliary-input setting. To the best of our knowledge, this is the first example of unconditionally proving computational security of any form of (classical or quantum) commitments for which statistical security is impossible. As intermediate steps toward our construction, we introduce and unconditionally construct post-quantum sparse pseudorandom distributions and quantum auxiliary-input EFI pairs which may be of independent interest. 2. We introduce a new model which we call the common reference quantum state (CRQS) model where both the committer and receiver take the same quantum state that is randomly sampled by an efficient setup algorithm. We unconditionally prove that there exist statistically hiding and statistically binding commitments in the CRQS model, circumventing the impossibility in the plain model. We also discuss their applications to zero-knowledge proofs, oblivious transfers, and multi-party computations.
Last updated:  2023-11-30
Zero-day vulnerability prevention with recursive feature elimination and ensemble learning
Mike Nkongolo Wa Nkongolo
This study focuses on spotting and stopping new types of online threats by improving the UGRansome dataset to detect unusual activity in real-time. By blending different machine learning methods, like naïve tree-based ensemble learning and recursive feature elimination (RFE), the research achieves a high accuracy rate of 97%. Naïve Bayes (NB) stands out as the most effective classifier. The suggested setup, combining gradient boosting (GB) and random forest (RF) with NB, effectively identifies and prevents unknown vulnerabilities in computer systems. UGRansome successfully blocks over 100 kilobits per second (kbps) of harmful online traffic by using details pinpointed by the RFE method, specifically uniform resource locators (URLs). This outperforms existing Intrusion Detection System (IDS) datasets. It's particularly good at stopping secure shell attacks, proving the dataset's usefulness in making networks safer. This research marks significant progress in detecting intrusions. The NB model excels in accuracy, precision, and remembering patterns, especially in identifying new threats. Moreover, the suggested naïve tree-based ensemble model shows outstanding accuracy, standing out as the best-performing technique among all models studied. Applying the UGRansome properties-based rule noticeably changes how traffic is sorted, decreasing unknown traffic while increasing unclassified traffic, which requires more investigation.
Last updated:  2024-01-14
Leverage Staking with Liquid Staking Derivatives (LSDs): Opportunities and Risks
Xihan Xiong, Zhipeng Wang, Xi Chen, William Knottenbelt, and Michael Huth
Lido, the leading Liquidity Staking Derivative (LSD) provider on Ethereum, allows users to stake an arbitrary amount of ETH to receive stETH, which can be integrated with Decentralized Finance (DeFi) protocols such as Aave. The composability between Lido and Aave enables a novel strategy called “leverage staking”, where users stake ETH on Lido to acquire stETH, utilize stETH as collateral on Aave to borrow ETH, and then restake the borrowed ETH on Lido. Users can iteratively execute this process to optimize potential returns based on their risk profile. This paper systematically studies the opportunities and risks associated with leverage staking. We are the first to formalize the stETH-ETH leverage staking strategy within the Lido-Aave ecosystem. Our empirical study identifies 262 leverage staking positions on Ethereum, with an aggregated staking amount of 295,243 ETH (482M USD). We discover that 90.13% of leverage staking positions have achieved higher returns than conventional staking. Furthermore, we perform stress tests to evaluate the risk introduced by leverage staking under extreme conditions. We find that leverage staking significantly amplifies the risk of cascading liquidations. We hope this paper can inform and encourage the development of robust risk management approaches to protect the Lido-Aave LSD ecosystem.
Last updated:  2023-11-30
Unclonable Cryptography with Unbounded Collusions
Alper Çakan and Vipul Goyal
Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy protection where we encode a program in a quantum state such that a user in possession of $k$ such states cannot create $k+1$ working copies. Introduced by Aaronson (CCC'09) over a decade ago, copy protection has proven to be notoriously hard to achieve. In this work, we construct public-key encryption and functional encryption schemes whose secret keys are copy-protected against unbounded collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum) subexponentially secure $\mathcal{iO}$, one-way functions and LWE. This resolves a long-standing open question of constructing fully collusion-resistant copy-protected functionalities raised by multiple previous works. Prior to our work, copy-protected functionalities were known only in restricted collusion models where either an a-priori bound on the collusion size was needed, in the plain model with the same assumptions as ours (Liu, Liu, Qian, Zhandry [TCC'22]), or adversary was only prevented from doubling their number of working programs, in a structured quantum oracle model (Aaronson [CCC'09]). We obtain our results through a novel technique which uses identity-based encryption to construct unbounded collusion resistant copy-protection schemes from $1\to2$ secure schemes. This is analogous to the technique of using digital signatures to construct full-fledged quantum money from single banknote schemes (Lutomirski et al. [ICS'09], Farhi et al. [ITCS'12], Aaronson and Christiano [STOC'12]). We believe our technique is of independent interest. Along the way, we also construct a puncturable functional encryption scheme whose master secret key can be punctured at all functions $f$ such that $f(m_0) \neq f(m_1)$. This might also be of independent interest.
Last updated:  2023-11-30
Unconditionally secure quantum commitments with preprocessing
Luowen Qian
We demonstrate how to build computationally secure commitment schemes with the aid of quantum auxiliary inputs without unproven complexity assumptions. Furthermore, the quantum auxiliary input can be prepared either (1) efficiently through a trusted setup similar to the classical common random string model, or (2) strictly between the two involved parties in uniform exponential time. Classically this remains impossible without first proving $\mathsf{P} \neq \mathsf{NP}$.
Last updated:  2023-12-09
Ring-LWE Hardness Based on Non-invertible Ideals
Charanjit S. Jutla and Chengyu Lin
We extend the known pseudorandomness of Ring-LWE to be based on lattices that do not correspond to any ideal of any order in the underlying number field. In earlier works of Lyubashevsky et al (EUROCRYPT 2010) and Peikert et al (STOC 2017), the hardness of RLWE was based on ideal lattices of ring of integers of number fields, which are known to be Dedekind domains. While these works extended Regev's (STOC 2005) quantum polynomial-time reduction for LWE, thus allowing more efficient and more structured cryptosystems, the additional algebraic structure of ideals of Dedekind domains leaves open the possibility that such ideal lattices are not as hard as general lattices. In this work we show that hardness of $q$-Ring-LWE can be based on worst-case hardness of ideal lattices in arbitrary orders $O$, as long as the order $O$ satisfies the property that $\frac{1}{m}\cdot O$ contains the ring of integers, for some $m$ co-prime to $q$. The reduction requires that the noise be a factor $m$ more than the original Ring-LWE reduction. We also show that for the power-of-two cyclotomic number fields, there exist orders with $m=4$ such that non-trivial ideals of the order, which are not contained in the conductor, are non-invertible. Since the conductor itself is non-invertible, this gives a non-trivial multiplicative set that lies outside the ideal class group. Another reduction shows that hardness of $q$-Ring-LWE can be based on worst-case hardness of lattices that correspond to sum of ideal-lattices in arbitrary and different orders in the number field, as long as the (set of) orders $\{O_i\}$ satisfy the property that $\frac{1}{m}\cdot O_i$ contains the ring of integers, for some $m$ co-prime to $q$. We also show that for the power-of-two cyclotomic number fields, there exist orders $O_1, O_2$ with $m=8$ such that there are ideals $I_1, I_2$ of $O_1, O_2$ resp. with $I_1+ I_2$ not an ideal of any order in the number field.
Last updated:  2023-12-02
Quantifying risks in cryptographic selection processes
Daniel J. Bernstein
There appears to be a widespread belief that some processes of selecting cryptosystems are less risky than other processes. As a case study of quantifying the difference in risks, this paper compares the currently-known-failure rates of three large groups of cryptosystems: (1) the round-1 submissions to the NIST Post-Quantum Cryptography Standardization Project, (2) the round-1 submissions not broken by the end of round 1, and (3) the round-1 submissions selected by NIST for round 2 of the same project. These groups of cryptosystems turn out to have currently-known-failure rates that are strikingly high, and that include statistically significant differences across the groups, not matching the pattern of differences that one might expect. Readers are cautioned that the actual failure rates could be much higher than the currently-known-failure rates.
Last updated:  2023-12-21
More forging (and patching) of tropical signatures
Daniel R. L. Brown and Chris Monico
Panny [3] described how to forge the “tropical signatures” proposed by Chen, Grigoriev and Shpilrain [1]. (These signatures are loosely related to the NP-complete problem of factoring tropical polynomials). We describe more methods to forge these tropical signatures. We also describe some patches that thwart all but one of these forgery methods (which we summarize as re-hashing an honest signature).
Last updated:  2023-11-29
An Incremental PoSW for General Weight Distributions
Hamza Abusalah and Valerio Cini
A proof of sequential work (PoSW) scheme allows the prover to convince a verifier that it computed a certain number of computational steps sequentially. Very recently, graph-labeling PoSW schemes, found applications in light-client blockchain protocols, most notably bootstrapping. A bootstrapping protocol allows a light client, with minimal information about the blockchain, to hold a commitment to its stable prefix. An incremental PoSW (iPoSW) scheme allows the prover to non-trivially increment proofs: given $\chi,\pi_1$ and integers $N_1,N_2$ such that $\pi_1$ is a valid proof for $N_1$, it generates a valid proof $\pi$ for $N_1+N_2$. In this work, we construct an iPoSW scheme based on the skiplist-based PoSW scheme of Abusalah et al. and prove its security in the random oracle model by employing the powerful on-the-fly sampling technique of Döttling et al. Moreover, unlike the iPoSW scheme of Döttling et al., ours is the first iPoSW scheme which is suitable for constructing incremental non-interactive arguments of chain knowledge (SNACK) schemes, which are at the heart of space and time efficient blockchain light-client protocols. In particular, our scheme works for general weight distributions, which we characterize as incrementally sampleable distributions. Our general treatment recovers the distribution underlying the scheme of Döttling et al. as well as the distribution underlying SNACK-enabled bootstrapping application as special cases. In realizing our general construction, we develop a new on-the-fly sampling technique.
Last updated:  2023-12-03
ID-CAKE: Identity-based Cluster Authentication and Key Exchange Scheme for Message Broadcasting and Batch Verification in VANETs
Apurva K Vangujar, Alia Umrani, and Paolo Palmieri
Vehicle Ad Hoc Networks (VANETs) play a pivotal role in intelligent transportation systems, offering dynamic communication between vehicles, Road Side Units (RSUs), and the internet. Given the open-access nature of VANETs and the associated threats, such as impersonation and privacy violations, ensuring the security of these communications is of utmost importance. This paper presents the Identity-based Cluster Authentication and Key Exchange (ID-CAKE) scheme, a new approach to address security challenges in VANETs. The ID-CAKE scheme integrates the Cluster Consensus Identity-based Identification (CCIBI) with Zero-Knowledge (ZK) proofs and the Identity-based Multireceiver Key Exchange Mechanism (ID-mKEM) signature scheme. This integration provides robust authorization via CCIBI, while ID-mKEM signatures ensure message integrity, and guarantee both non-repudiation and unforgeability through mKEM for message broadcasting. The scheme employs a novel three-party ZK proof for batch verification using mKEM, which significantly reduces computational burdens. Our scheme also ensures anonymity and unlinkability by introducing pseudo-identities to all users in the cluster. The rigorous security proofs provided confirm the resilience of the ID-CAKE scheme against potential attacks, adhering to the different scenarios, against the hardness of the elliptic curve computational Diffie-Hellman under the random oracle model. The ID-CAKE scheme establishes a robust security framework for VANETs, and its introduction highlights potential pathways for future exploration in the realm of VANET security.
Last updated:  2023-11-29
BBB PRP Security of the Lai-Massey Mode
Ritam Bhaumik and Mohammad Amin Raeisi
In spite of being a popular technique for designing block ciphers, Lai-Massey networks have received considerably less attention from a security analysis point-of-view than Feistel networks and Substitution-Permutation networks. In this paper we study the beyond-birthday-bound (BBB) security of Lai-Massey networks with independent random round functions against chosen-plaintext adversaries. Concretely, we show that five rounds are necessary and sufficient to achieve BBB security.
Last updated:  2024-04-04
Cryptanalysis of QARMAv2
Hosein Hadipour and Yosuke Todo
QARMAv2 is a general-purpose and hardware-oriented family of lightweight tweakable block ciphers (TBCs) introduced in ToSC 2023. QARMAv2, as a redesign of QARMAv1 with a longer tweak and tighter security margins, is also designed to be suitable for cryptographic memory protection and control flow integrity. The designers of QARMAv2 provided a relatively comprehensive security analysis in the design specification, e.g., some bounds for the number of attacked rounds in differential and boomerang analysis, together with some concrete impossible differential, zero-correlation, and integral distinguishers. As one of the first third-party cryptanalysis of QARMAv2, Hadipour et al. significantly improved the integral distinguishers of QARMAv2, and provided the longest concrete distinguishers of QARMAv2 up to now. However, they provided no key recovery attack based on their distinguishers. This paper delves into the cryptanalysis of QARMAv2 to enhance our understanding of its security. Given that the integral distinguishers of QARMAv2 are the longest concrete distinguishers for this cipher so far, we focus on integral attack. To this end, we first further improve the automatic tool introduced by Hadipour et al. for finding integral distinguishers of TBCs following the TWEAKEY framework. This new tool exploits the MixColumns property of QARMAv2 to find integral distinguishers more suitable for key recovery attacks. Then, we combine several techniques for integral key recovery attacks, e.g., Meet-in-the-middle and partial-sum techniques to build a fine-grained integral key recovery attack on QARMAv2. Notably, we demonstrate how to leverage the low data complexity of the integral distinguishers of QARMAv2 to reduce the memory complexity of the meet-in-the-middle technique. As a result, we successfully present the first concrete key recovery attacks on reduced-round versions of QARMAv2. This includes attacking 13 rounds of QARMAv2-64-128 with a single tweak block ($\mathscr{T} = 1$), 14 rounds of QARMAv2-64-128 with two independent tweak blocks ($\mathscr{T} = 2$), and 16 rounds of QARMAv2-128-256 with two independent tweak blocks ($\mathscr{T} = 2$), all in an unbalanced setting. Our attacks do not compromise the claimed security of QARMAv2, but they shed more light on the cryptanalysis of this cipher.
Last updated:  2023-11-29
A Note On the Universality of Black-box MKtP Solvers
Uncategorized
Noam Mazor and Rafael Pass
Show abstract
Uncategorized
The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the ``threshold", and how the hardness of different meta complexity problems relate to one another, and to the task of function inversion. In this note, we present resolutions to some of these questions with respect to the \emph{black-box} analog of these problems. In more detail, let $MK^t_MP[s]$ denote the language consisting of strings $x$ with $K_{M}^t(x) < s(|x|)$, where $K_M^t(x)$ denotes the $t$-bounded Kolmogorov complexity of $x$ with $M$ as the underlying (Universal) Turing machine, and let $search-MK^t_MP[s]$ denote the search version of the same problem. We show that if there for every Universal Turing machine $U$ there exists a $2^{\alpha n}poly(n)$-size $U$-oracle aided circuit deciding $MK^t_UP [n-O(1)]$, then for every function $s$, and every not necessarily universal Turing machine $M$, there exists a $2^{\alpha s(n)}poly(n)$ size $M$-oracle aided circuit solving $search-MK^t_MP[s(n)]$; this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be thought of as instantiating $MK^t_MP$ with particular choices of (a non universal) TMs $M$ (the circuit emulator for the case of MCSP, and the function evaluation in the case of function inversion). As a corollary of independent interest, we get that the complexity of black-box function inversion is (roughly) the same as the complexity of black-box deciding $MK^t_UP[n-O(1)]$ for any universal TM $U$; that is, also in the worst-case regime, black-box function inversion is ``equivalent" to black-box deciding $MKtUP$.
Last updated:  2023-11-29
A CP-based Automatic Tool for Instantiating Truncated Differential Characteristics - Extended Version
François Delobel, Patrick Derbez, Arthur Gontier, Loïc Rouquette, and Christine Solnon
An important criteria to assert the security of a cryptographic primitive is its resistance against differential cryptanalysis. For word-oriented primitives, a common technique to determine the number of rounds required to ensure the immunity against differential distinguishers is to consider truncated differential characteristics and to count the number of active S-boxes. Doing so allows one to provide an upper bound on the probability of the best differential characteristic with a reduced computational cost. However, in order to design very efficient primitives, it might be needed to evaluate the probability more accurately. This is usually done in a second step, during which one tries to instantiate truncated differential characteristics with actual values and computes its corresponding probability. This step is usually done either with ad-hoc algorithms or with CP, SAT or MILP models that are solved by generic solvers. In this paper, we present a generic tool for automatically generating these models to handle all word-oriented ciphers. Furthermore the running times to solve these models are very competitive with all the previous dedicated approaches.
Last updated:  2023-11-28
Vector Commitments with Efficient Updates
Ertem Nusret Tas and Dan Boneh
Dynamic vector commitments that enable local updates of opening proofs have applications ranging from verifiable databases with membership changes to stateless clients on blockchains. In these applications, each user maintains a relevant subset of the committed messages and the corresponding opening proofs with the goal of ensuring a succinct global state. When the messages are updated, users are given some global update information and update their opening proofs to match the new vector commitment. We investigate the relation between the size of the update information and the runtime complexity needed to update an individual opening proof. Existing vector commitment schemes require that either the information size or the runtime scale linearly in the number $k$ of updated state elements. We construct a vector commitment scheme that asymptotically achieves both length and runtime that is sublinear in $k$, namely $k^\nu$ and $k^{1-\nu}$ for any $\nu \in (0,1)$. We prove an information-theoretic lower bound on the relation between the update information size and runtime complexity that shows the asymptotic optimality of our scheme. For $\nu = 1/2$, our constructions outperform Verkle commitments by about a factor of $2$ in terms of both the update information size and runtime, but makes use of larger public parameters.
Last updated:  2023-12-01
End-to-End Encrypted Zoom Meetings: Proving Security and Strengthening Liveness
Yevgeniy Dodis, Daniel Jost, Balachandar Kesavan, and Antonio Marcedone
In May 2020, Zoom Video Communications, Inc. (Zoom) announced a multi-step plan to comprehensively support end-to-end encrypted (E2EE) group video calls and subsequently rolled out basic E2EE support to customers in October 2020. In this work we provide the first formal security analysis of Zoom's E2EE protocol, and also lay foundation to the general problem of E2EE group video communication. We observe that the vast security literature analyzing asynchronous messaging does not translate well to synchronous video calls. Namely, while strong forms of forward secrecy and post compromise security are less important for (typically short-lived) video calls, various liveness properties become crucial. For example, mandating that participants quickly learn of updates to the meeting roster and key, media streams being displayed are recent, and banned participants promptly lose any access to the meeting. Our main results are as follows: 1. Propose a new notion of leader-based continuous group key agreement with liveness, which accurately captures the E2EE properties specific to the synchronous communication scenario. 2. Prove security of the core of Zoom's E2EE meetings protocol in the above well-defined model. 3. Propose ways to strengthen Zoom's liveness properties by simple modifications to the original protocol, which subsequently influenced updates implemented in production.
Last updated:  2023-11-28
Sender-Anamorphic Encryption Reformulated: Achieving Robust and Generic Constructions
Yi Wang, Rongmao Chen, Xinyi Huang, and Moti Yung
Motivated by the violation of two fundamental assumptions in secure communication - receiver-privacy and sender-freedom - by a certain entity referred to as ``the dictator'', Persiano et al. introduced the concept of Anamorphic Encryption (AME) for public key cryptosystems (EUROCRYPT 2022). Specifically, they presented receiver/sender-AME, directly tailored to scenarios where receiver privacy and sender freedom assumptions are compromised, respectively. In receiver-AME, entities share a double key to communicate in anamorphic fashion, raising concerns about the online distribution of the double key without detection by the dictator. The sender-AME with no shared secret is a potential candidate for key distribution. However, the only such known schemes (i.e., LWE and Dual LWE encryptions) suffer from an intrinsic limitation and cannot achieve reliable distribution. Here, we reformulate the sender-AME, present the notion of $\ell$-sender-AME and formalize the properties of (strong) security and robustness. Robustness refers to guaranteed delivery of duplicate messages to the intended receiver, ensuring that decrypting normal ciphertexts in an anamorphic way or decrypting anamorphic ciphertexts with an incorrect duplicate secret key results in an explicit abort signal. We first present a simple construction for pseudo-random and robust public key encryption that shares the similar idea of public-key stegosystem by von Ahn and Hopper (EUROCRYPT 2004). Then, inspired by Chen et al.'s malicious algorithm-substitution attack (ASA) on key encapsulation mechanisms (KEM) (ASIACRYPT 2020), we give a generic construction for hybrid PKE with special KEM that encompasses well-known schemes, including ElGamal and Cramer-Shoup cryptosystems. The constructions of $\ell$-sender-AME motivate us to explore the relations between AME, ASA on PKE, and public-key stegosystem. The results show that a strongly secure $\ell$-sender-AME is such a strong primitive that implies reformulated receiver-AME, public-key stegosystem, and generalized ASA on PKE. By expanding the scope of sender-anamorphic encryption and establishing its robustness, as well as exploring the connections among existing notions, we advance secure communication protocols under challenging conditions.
Last updated:  2023-11-28
Key Exchange in the Post-Snowden Era: UC Secure Subversion-Resilient PAKE
Suvradip Chakraborty, Lorenzo Magliocco, Bernardo Magri, and Daniele Venturi
Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the first PAKE protocol with subversion resilience in the framework of universal composability (UC), where the latter roughly means that UC security still holds even if one of the two parties is malicious and the honest party's code has been subverted (in an undetectable manner). We achieve this result by sanitizing the PAKE protocol from oblivious transfer (OT) due to Canetti et al. (PKC'12) via cryptographic reverse firewalls in the UC framework (Chakraborty et al., EUROCRYPT'22). This requires new techniques, which help us uncover new cryptographic primitives with sanitation-friendly properties along the way (such as OT, dual-mode cryptosystems, and signature schemes). As an additional contribution, we delve deeper in the backbone of communication required in the subversion-resilient UC framework, extending it to the unauthenticated setting, in line with the work of Barak et al. (CRYPTO'05).
Last updated:  2023-11-28
Load-Balanced Server-Aided MPC in Heterogeneous Computing
Yibiao Lu, Bingsheng Zhang, and Kui Ren
Most existing MPC protocols consider the homogeneous setting, where all the MPC players are assumed to have identical communication and computation resources. In practice, the weakest player often becomes the bottleneck of the entire MPC protocol execution. In this work, we initiate the study of so-called load-balanced MPC in the heterogeneous computing. A load-balanced MPC protocol can adjust the workload of each player accordingly to maximize the overall resource utilization. In particular, we propose new notions called composite circuit and composite garbling scheme, and construct two efficient server-aided protocols with malicious security and semi-honest security, respectively. Our maliciously secure protocol is over 400$\times$ faster than the authenticated garbling protocol (CCS'17); our semi-honest protocol is up to 173$\times$ faster than the optimized BMR protocol (CCS'16).
Last updated:  2024-04-16
Towards Unclonable Cryptography in the Plain Model
Céline Chevalier, Paul Hermouet, and Quoc-Huy Vu
By leveraging the no-cloning principle of quantum mechanics, unclonable cryptography enables us to achieve novel cryptographic protocols that are otherwise impossible classically. Two most notable examples of unclonable cryptography are quantum copy-protection and unclonable encryption. Most known constructions rely on the quantum random oracle model (as opposed to the plain model), in which all parties have access in superposition to a powerful random oracle. Despite receiving a lot of attention in recent years, two important open questions still remain: copy-protection for point functions in the plain model, which is usually considered as feasibility demonstration, and unclonable encryption with unclonable indistinguishability security in the plain model. A core ingredient of these protocols is the so-called monogamy-of-entanglement property. Such games allow quantifying the correlations between the outcomes of multiple non-communicating parties sharing entanglement in a particular context. Specifically, we define the games between a challenger and three players in which the first player is asked to split and share a quantum state between the two others, who are then simultaneously asked a question and need to output the correct answer. In this work, by relying on previous works of Coladangelo, Liu, Liu, and Zhandry (Crypto'21) and Culf and Vidick (Quantum'22), we establish a new monogamy-of-entanglement property for subspace coset states, which allows us to progress towards the aforementioned goals. However, it is not sufficient on its own, and we present two conjectures that would allow first to show that copy-protection of point functions exists in the plain model, with different challenge distributions (including arguably the most natural ones), and then that unclonable encryption with unclonable indistinguishability security exists in the plain model. We believe that our new monogamy-of-entanglement to be of independent interest, and it could be useful in other applications as well.
Last updated:  2023-12-01
Learning with Errors over Group Rings Constructed by Semi-direct Product
Jiaqi Liu and Fang-Wei Fu
The Learning with Errors (LWE) problem has been widely utilized as a foundation for numerous cryptographic tools over the years. In this study, we focus on an algebraic variant of the LWE problem called Group ring LWE (GR-LWE). We select group rings (or their direct summands) that underlie specific families of finite groups constructed by taking the semi-direct product of two cyclic groups. Unlike the Ring-LWE problem described in \cite{lyubashevsky2010ideal}, the multiplication operation in the group rings considered here is non-commutative. As an extension of Ring-LWE, it maintains computational hardness and can be potentially applied in many cryptographic scenarios. In this paper, we present two polynomial-time quantum reductions. Firstly, we provide a quantum reduction from the worst-case shortest independent vectors problem (SIVP) in ideal lattices with polynomial approximate factor to the search version of GR-LWE. This reduction requires that the underlying group ring possesses certain mild properties; Secondly, we present another quantum reduction for two types of group rings, where the worst-case SIVP problem is directly reduced to the (average-case) decision GR-LWE problem. The pseudorandomness of GR-LWE samples guaranteed by this reduction can be consequently leveraged to construct semantically secure public-key cryptosystems.
Last updated:  2023-11-27
PQC-NN: Post-Quantum Cryptography Neural Network
Abel C. H. Chen
In recent years, quantum computers and Shor’s quantum algorithm have been able to effectively solve NP (Non-deterministic Polynomial-time) problems such as prime factorization and discrete logarithm problems, posing a threat to current mainstream asymmetric cryptography, including RSA and Elliptic Curve Cryptography (ECC). As a result, the National Institute of Standards and Technology (NIST) in the United States call for Post-Quantum Cryptography (PQC) methods that include lattice-based cryptography methods, code-based cryptography methods, multivariate cryptography methods, and hash-based cryptography methods for resisting quantum computing attacks. Therefore, this study proposes a PQC neural network (PQC-NN) that maps a code-based PQC method to a neural network structure and enhances the security of ciphertexts with non-linear activation functions, random perturbation of ciphertexts, and uniform distribution of ciphertexts. The main innovations of this study include: (1) constructing a neural network structure that complies with code-based PQC, where the weight sets between the input layer and the ciphertext layer can be used as a public key for encryption, and the weight sets between the ciphertext layer and the output layer can be used as a private key for decryption; (2) adding random perturbations to the ciphertext layer, which can be removed during the decryption phase to restore the original plaintext; (3) constraining the output values of the ciphertext layer to follow a uniform distribution with a significant similarity by adding the cumulative distribution function (CDF) values of the chi-square distribution to the loss function, ensuring that the neural network produces sufficiently uniform distribution for the output values of the ciphertext layer. In practical experiments, this study uses cellular network signals as a case study to demonstrate that encryption and decryption can be performed by the proposed PQC neural network with the uniform distribution of ciphertexts. In the future, the proposed PQC neural network could be applied to various applications.
Last updated:  2023-12-02
Rectangular Attack on VOX
Gilles Macario-Rat, Jacques Patarin, Benoit Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque, Louis Gouin, Robin Larrieu, and Brice Minaud
VOX has been submitted to the NIST Round 1 Additional Signature of the Post-Quantum Signature Competition in June 2023. VOX is a strengthened variant of UOV which uses the Quotient-Ring (QR) setting to reduce the public-key size. At the end of August 2023, Furue and Ikamatsu posted on the NIST mailing-list a post, indicating that the parameters of VOX can be attacked efficiently using the rectangular attack in the QR setting. In this note, we explain the attack in the specific case of VOX, we detail the complexity, and show that as Furue and Ikematsu indicated, the attack can be completely avoided by adding one more constraint on the parameter selection. Finally, we show that this constraint does not increase the sizes of the public keys or signature.
Last updated:  2023-11-26
Cryptanalysis of TS-Hash
Aleksei Udovenko
This note presents attacks on the lightweight hash function TS-Hash proposed by Tsaban, including a polynomial-time preimage attack for short messages (at most n/2 bits), high-probability differentials, a general subexponential-time preimage attack, and linearization techniques.
Last updated:  2023-11-27
Chipmunk: Better Synchronized Multi-Signatures from Lattices
Nils Fleischhacker, Gottfried Herold, Mark Simkin, and Zhenfei Zhang
Multi-signatures allow for compressing many signatures for the same message that were generated under independent keys into one small aggregated signature. This primitive is particularly useful for proof-of-stake blockchains, like Ethereum, where the same block is signed by many signers, who vouch for the block's validity. Being able to compress all signatures for the same block into a short string significantly reduces the on-chain storage costs, which is an important efficiency metric for blockchains. In this work, we consider multi-signatures in the synchronized setting, where the signing algorithm takes an additional time parameter as input and it is only required that signatures for the same time step are aggregatable. The synchronized setting is simpler than the general multi-signature setting, but is sufficient for most blockchain related applications, as signers are naturally synchronized by the length of the chain. We present Chipmunk, a concretely efficient lattice-based multi-signature scheme in the synchronized setting that allows for signing an a-priori bounded number of messages. Chipmunk allows for non-interactive aggregation of signatures and is secure against rogue-key attacks. The construction is plausibly secure against quantum adversaries as our security relies on the assumed hardness of the short integer solution problem. We significantly improve upon the previously best known construction in this setting by Fleischhacker, Simkin, and Zhang (CCS 2022). Our aggregate signature size is $5.6 \times$ smaller and for $112$ bits of security our construction allows for compressing 8192 individual signatures into a multi-signature of size around $136$ KB. We provide a full implementation of Chipmunk and provide extensive benchmarks studying our construction's efficiency.
Last updated:  2024-02-18
Beyond MPC-in-the-Head: Black-Box Constructions of Short Zero-Knowledge Proofs
Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss
In their seminal work, Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC`07) presented the MPC-in-the-Head paradigm, which shows how to design Zero-Knowledge Proofs (ZKPs) from secure Multi-Party Computation (MPC) protocols. This paradigm has since then revolutionized and modularized the design of efficient ZKP systems, with far-reaching applications beyond ZKPs. However, to the best of our knowledge, all previous instantiations relied on fully-secure MPC protocols, and have not been able to leverage the fact that the paradigm only imposes relatively weak privacy and correctness requirements on the underlying MPC. In this work, we extend the MPC-in-the-Head paradigm to game-based cryptographic primitives supporting homomorphic computations (e.g., fully-homomorphic encryption, functional encryption, randomized encodings, homomorphic secret sharing, and more). Specifically, we present a simple yet generic compiler from these primitives to ZKPs which use the underlying primitive as a black box. We also generalize our paradigm to capture commit-and-prove protocols, and use it to devise tight black-box compilers from Interactive (Oracle) Proofs to ZKPs, assuming One-Way Functions (OWFs). We use our paradigm to obtain several new ZKP constructions: 1. The first ZKPs for NP relations $\mathcal{R}$ computable in (polynomial-time uniform) $NC^1$, whose round complexity is bounded by a fixed constant (independent of the depth of $\mathcal{R}$'s verification circuit), with communication approaching witness length (specifically, $n\cdot poly\left(\kappa\right)$, where $n$ is the witness length, and $\kappa$ is a security parameter), assuming DCR. Alternatively, if we allow the round complexity to scale with the depth of the verification circuit, our ZKPs can make black-box use of OWFs. 2. Constant-round ZKPs for NP relations computable in bounded polynomial space, with $O\left(n\right)+o\left(m\right)\cdot poly\left(\kappa\right)$ communication assuming OWFs, where $m$ is the instance length. This gives a black-box alternative to a recent non-black-box construction of Nassar and Rothblum (CRYPTO`22). 3. ZKPs for NP relations computable by a logspace-uniform family of depth-$d\left(m\right)$ circuits, with $n\cdot poly\left(\kappa,d\left(m\right)\right)$ communication assuming OWFs. This gives a black-box alternative to a result of Goldwasser, Kalai and Rothblum (JACM).
Last updated:  2024-01-23
On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions
Romain Gay and Bogdan Ursu
We build the first unleveled fully homomorphic signature scheme in the standard model. Our scheme is not constrained by any a-priori bound on the depth of the functions that can be homomorphically evaluated, and relies on subexponentially-secure indistinguishability obfuscation, fully-homomorphic encryption and a non-interactive zero-knowledge (NIZK) proof system with composable zero-knowledge. Our scheme is also the first to satisfy the strong security notion of context-hiding for an unbounded number of levels, ensuring that signatures computed homomorphically do not leak the original messages from which they were computed. All building blocks are instantiable from falsifiable assumptions in the standard model, avoiding the need for knowledge assumptions. The main difficulty we overcome stems from the fact that bootstrapping, which is a crucial tool for obtaining unleveled fully homomorphic encryption (FHE), has no equivalent for homomorphic signatures, requiring us to use novel techniques.
Last updated:  2023-11-24
Authenticating Medications with QR-Codes and Compact Digital Signatures
Julien Jainsky, David Naccache, Bassem Ouni, and Ofer Yifrach-Stav
This paper describes a way to protect medications against falsification, a long-standing problem in the world. We combine several existing technologies to achieve the stated goal. The building-blocks used are inherent physical randomness generated during the packaging process, artificial vision, short digital signatures and QR-codes.
Last updated:  2024-01-07
ASOZ: a decentralized payment system with privacy preserving and auditing on public blockchain
Uncategorized
Tianjian Liu, Dawei Zhang, Wei Wang, and Chang Chen
Show abstract
Uncategorized
Decentralized payment systems have gradually gotten more attention in recent years. Removing the trusted third party used for accounting ledgers, fundamentally empowers users to control their assets. As privacy concerns grow, some cryptocurrencies are proposed to preserve the privacy of users. However, those cryptocurrencies cause illegal transactions such as money laundering, fraudulent trading, etc. So it is necessary to design an auditing scheme. To solve this problem, many privacy-preserving and audit scheme was proposed. But there exists no scheme that effectively solves the issue of privacy-preserving and auditing on both user identity and transaction content. In this paper, we propose a design for a decentralized payment system with privacy-preserving and auditing. We use cryptographic accumulators based on Merkle trees for accounting and use a combination of Twist ElGamal, NIZK (Non-Interactive Zero-Knowledge), Bulletproofs, and zk-SNARKs for privacy-preserving and auditing.
Last updated:  2023-11-24
Accelerating Polynomial Multiplication for RLWE using Pipelined FFT
Neil Thanawala, Hamid Nejatollahi, and Nikil Dutt
The evolution of quantum algorithms threatens to break public key cryptography in polynomial time. The development of quantum-resistant algorithms for the post-quantum era has seen a significant growth in the field of post quantum cryptography (PQC). Polynomial multiplication is the core of Ring Learning with Error (RLWE) lattice based cryptography (LBC) which is one of the most promising PQC candidates. In this work, we present the design of fast and energy-efficient pipelined Number Theoretic Transform (NTT) based polynomial multipliers and present synthesis results on a Field Programmable Gate Array (FPGA) to evaluate their efficacy. NTT is performed using the pipelined R2SDF and R22SDF Fast Fourier Transform (FFT) architectures. In addition, we propose an energy efficient modified architecture (Modr2). The NTT-based designed polynomial multipliers employs the Modr2 architecture that achieve on average 2× better performance over the R2SDF FFT and 2.4× over the R22SDF FFT with similar levels of energy consumption. The proposed polynomial multiplier with Modr2 architecture reaches 12.5× energy efficiency over the state-ofthe-art convolution-based polynomial multiplier and 4× speedup over the systolic array NTT based polynomial multiplier for polynomial degrees of 1024, demonstrating its potential for practical deployment in future designs.
Last updated:  2024-02-15
Easy-ABE: An Easy Ciphertext-Policy Attribute-Based Encryption
Ahmad Khoureich Ka
Attribute-Based Encryption is widely recognized as a leap forward in the field of public key encryption. It allows to enforce an access control on encrypted data. Decryption time in ABE schemes can be long depending on the number of attributes and pairing operations. This drawback hinders their adoption on a broader scale. In this paper, we propose a non-monotone CP-ABE scheme that has no restrictions on the size of attribute sets and policies, allows fast decryption and is adaptively secure under the CBDH-3 assumption. To achieve this, we approached the problem from a new angle, namely using a set membership relation for access structure. We have implemented our scheme using the Charm framework and the source code is available on GitHub. Easy-ABE performs better than FAME an FABEO.
Last updated:  2024-02-28
Early Stopping for Any Number of Corruptions
Julian Loss and Jesper Buus Nielsen
Minimizing the round complexity of byzantine broadcast is a fundamental question in distributed computing and cryptography. In this work, we present the first early stopping byzantine broadcast protocol that tolerates up to $t=n-1$ malicious corruptions and terminates in $O(\min\{f^2,t+1\})$ rounds for any execution with $f\leq t$ actual corruptions. Our protocol is deterministic, adaptively secure, and works assuming a plain public key infrastructure. Prior early-stopping protocols all either require honest majority or tolerate only up to $t=(1-\epsilon)n$ malicious corruptions while requiring either trusted setup or strong number theoretic hardness assumptions. As our key contribution, we show a novel tool called a polariser that allows us to transfer certificate-based strategies from the honest majority setting to settings with a dishonest majority.
Last updated:  2023-11-23
The NTT and residues of a polynomial modulo factors of $X^{2^d} + 1$
Sahil Sharma
The Number Theoretic Transform (NTT) plays a central role in efficient implementations of cryptographic primitives selected for Post Quantum Cryptography. Although it certainly exists, academic papers that cite the NTT omit the connection between the NTT and residues of a polynomial modulo factors of $X^{2^d} + 1$ and mention only the final expressions of what the NTT computes. This short paper establishes that connection and, in doing so, elucidates key aspects of computing the NTT. Based on this, the specific instantiations of the NTT function used in CRYSTALS-Kyber and CRYSTALS-Dilithium are derived.
Last updated:  2023-11-23
A note on Failing gracefully: Completing the picture for explicitly rejecting Fujisaki-Okamoto transforms using worst-case correctness
Kathrin Hövelmanns and Christian Majenz
The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are rejected by reporting decryption failure explicitly or implicitly (by returning pseudorandom values). The proof in [HHM22] involves a new correctness notion for the encryption scheme that is used to encapsulate the keys. This allows in principle for a smaller additive security related to decryption failures, but requires to analyze this new notion for the encryption scheme on which a concrete KEM at hand is based. This note offers a trade-off between [HHM22] and its predecessors: it offers a bound for both rejection variants, being mostly based on [HHM22], but uses a more established correctness notion.
Last updated:  2023-11-23
Pairing-Free Blind Signatures from Standard Assumptions in the ROM
Julia Kastner, Ky Nguyen, and Michael Reichle
Blind Signatures are a useful primitive for privacy preserving applications such as electronic payments, e-voting, anonymous credentials, and more. However, existing practical blind signature schemes based on standard assumptions require either pairings or lattices. We present the first construction of a round-optimal blind signature in the random oracle model based on standard assumptions without resorting to pairings or lattices. In particular, our construction is secure under the strong RSA assumption and DDH (in pairing-free groups). For our construction, we provide a NIZK-friendly signature based on strong RSA, and efficiently instantiate Fischlin's generic framework (CRYPTO'06). Our Blind Signature scheme has signatures of size 4.28 KB and communication cost 62.19 KB. On the way, we develop techniques that might be of independent interest. In particular, we provide efficient relaxed range-proofs with subversion zero-knowledge and compact commitments to elements of arbitrary groups.
Last updated:  2023-11-23
PURED: A unified framework for resource-hard functions
Alex Biryukov and Marius Lombard-Platet
Algorithm hardness can be described by 5 categories: hardness in computation, in sequential computation, in memory, in energy consumption (or bandwidth), in code size. Similarly, hardness can be a concern for solving or for verifying, depending on the context, and can depend on a secret trapdoor or be universally hard. Two main lines of research investigated such problems: cryptographic puzzles, that gained popularity thanks to blockchain consensus systems (where solving must be moderately hard, and verification either public or private), and white box cryptography (where solving must be hard without knowledge of the secret key). In this work, we improve upon the classification framework proposed by Biryukov and Perrin in Asiacypt 2017 and offer a united hardness framework, PURED, that can be used for measuring all these kinds of hardness, both in solving and verifying. We also propose three new constructions that fill gaps previously uncovered by the literature (namely, trapdoor proof of CMC, trapdoor proof of code, and a hard challenge in sequential time trapdoored in verification), and analyse their hardness in the PURED framework.
Last updated:  2024-02-06
Small Stretch Problem of the DCT Scheme and How to Fix it
Yuchao Chen, Tingting Guo, Lei Hu, Lina Shang, Shuping Mao, and Peng Wang
DCT is a beyond-birthday-bound~(BBB) deterministic authenticated encryption~(DAE) mode proposed by Forler et al. in ACISP 2016, ensuring integrity by redundancy. The instantiation of DCT employs the BRW polynomial, which is more efficient than the usual polynomial in GCM by reducing half of the multiplication operations. However, we show that DCT suffers from a small stretch problem similar to GCM. When the stretch length $\tau$ is small, choosing a special $m$-block message, we can reduce the number of queries required by a successful forgery to $\mathcal{O}(2^{\tau}/m)$. We emphasize that this attack efficiently balances space and time complexity but does not contradict the security bounds of DCT. Finally, we propose an improved scheme named Robust DCT~(RDCT) with a minor change to DCT, which improves the security when $\tau$ is small and makes it resist the above attack.
Last updated:  2023-11-23
Entrada to Secure Graph Convolutional Networks
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal
Graph convolutional networks (GCNs) are gaining popularity due to their powerful modelling capabilities. However, guaranteeing privacy is an issue when evaluating on inputs that contain users’ sensitive information such as financial transactions, medical records, etc. To address such privacy concerns, we design Entrada, a framework for securely evaluating GCNs that relies on the technique of secure multiparty computation (MPC). For efficiency and accuracy reasons, Entrada builds over the MPC framework of Tetrad (NDSS’22) and enhances the same by providing the necessary primitives. Moreover, Entrada leverages the GraphSC paradigm of Araki et al. (CCS’21) to further enhance efficiency. This entails designing a secure and efficient shuffle protocol specifically in the 4-party setting, which to the best of our knowledge, is done for the first time and may be of independent interest. Through extensive experiments, we showcase that the accuracy of secure GCN evaluated via Entrada is on par with its cleartext counterpart. We also benchmark efficiency of Entrada with respect to the included primitives as well as the framework as a whole. Finally, we showcase Entrada’s practicality by benchmarking GCN-based fraud detection application.
Last updated:  2024-01-23
Fast and Designated-verifier Friendly zkSNARKs in the BPK Model
Xudong Zhu, Xuyang Song, and Yi Deng
After the pioneering results proposed by Bellare et al in ASIACRYPT 2016, there have been lots of efforts to construct zero-knowledge succinct non-interactive arguments of knowledge protocols (zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and standard soundness from the zk-SNARK in the common reference string (CRS) model. The various constructions could be regarded secure in the bare public key (BPK) model because of the equivalence between S-ZK in the CRS model, and uniform non-black-box zero knowledge in the BPK model has been proved by Abdolmaleki et al. in PKC 2020. In this study, by leveraging the power of random oracle (RO) model, we proposed the first publicly verifiable non-uniform ZK zk-SNARK scheme in the BPK model maintaining comparable efficiency with its conventional counterpart, which can also be compatible with the well-known transformation proposed by Bitansky et al. in TCC 2013 to obtain an efficient designated-verifier zk-SNARK. We achieve this goal by only adding a constant number of elements into the CRS, and using an unconventional but natural method to transform Groth’s zk-SNARK in EUROCRYPT 2016. In addition, we propose a new speed-up technique that provides a trade-off. Specifically, if a logarithmic number of elements are added into the CRS, according to different circuits, the CRS verification time in our construction could be approximately $9\%-23\%$ shorter than that in the conventional counterpart.
Last updated:  2023-11-24
On the Security of Rate-limited Privacy Pass
Hien Chu, Khue Do, and Lucjan Hanzlik
The privacy pass protocol allows users to redeem anonymously issued cryptographic tokens instead of solving annoying CAPTCHAs. The issuing authority verifies the credibility of the user, who can later use the pass while browsing the web using an anonymous or virtual private network. Hendrickson et al. proposed an IETF draft (privacypass-rate-limit-tokens-00) for a rate-limiting version of the privacy pass protocol, also called rate-limited Privacy Pass (RlP). Introducing a new actor called a mediator makes both versions inherently different. The mediator applies access policies to rate-limit users’ access to the service while, at the same time, should be oblivious to the website/origin the user is trying to access. In this paper, we formally define the rate-limited Privacy Pass protocol and propose a game-based security model to capture the informal security notions introduced by Hendrickson et al.. We show a construction from simple building blocks that fulfills our security definitions and even allows for a post-quantum secure instantiation. Interestingly, the instantiation proposed in the IETF draft is a specific case of our construction. Thus, we can reuse the security arguments for the generic construction and show that the version used in practice is secure.
Last updated:  2024-02-27
Fully Malicious Authenticated PIR
Marian Dietz and Stefano Tessaro
Authenticated PIR enables a server to initially commit to a database of $N$ items, for which a client can later privately obtain individual items with complexity sublinear in $N$, with the added guarantee that the retrieved item is consistent with the committed database. A crucial requirement is privacy with abort, i.e., the server should not learn anything about a query even if it learns whether the client aborts. This problem was recently considered by Colombo et al. (USENIX '23), who proposed solutions secure under the assumption that the database is committed to honestly. Here, we close this gap for their DDH-based scheme, and present a solution that tolerates fully malicious servers that provide potentially malformed commitments. Our scheme has communication and client computational complexity $\mathcal{O}_{\lambda}(\sqrt{N})$, does not require any additional assumptions, and does not introduce heavy machinery (e.g., generic succinct proofs). We do so by introducing validation queries, which, from the server's perspective, are computationally indistinguishable from regular PIR queries. Provided that the server succeeds in correctly answering $\kappa$ such validation queries, the client is convinced with probability $1-\frac{1}{2^\kappa}$ that the server is unable to break privacy with abort.
Last updated:  2023-11-22
Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation
Gaëtan Leurent and Clara Pernot
The linear layer of block ciphers plays an important role in their security. In particular, ciphers designed following the wide-trail strategy use the branch number of the linear layer to derive bounds on the probability of linear and differential trails. At FSE 2014, the LS-design construction was introduced as a simple and regular structure to design bitsliced block ciphers. It considers the internal state as a bit matrix, and applies alternatively an identical S-Box on all the columns, and an identical L-Box on all the lines. Security bounds are derived from the branch number of the L-Box. In this paper, we focus on bitsliced linear layers inspired by the LS-design construction and the Spook AEAD algorithm. We study the construction of bitsliced linear transformations with efficient implementations using XORs and rotations (optimized for bitsliced ciphers implemented on 32-bit processors), and a high branch number. In order to increase the density of the activity patterns, the linear layer is designed on the whole state, rather than using multiple parallel copies of an L-Box. Our main result is a linear layer for 128-bit ciphers with branch number 21, improving upon the best 32-bit transformation with branch number 12, and the one of Spook with branch number 16.
Last updated:  2023-11-22
Sublinear-Communication Secure Multiparty Computation does not require FHE
Elette Boyle, Geoffroy Couteau, and Pierre Meyer
Secure computation enables mutually distrusting parties to jointly compute a function on their secret inputs, while revealing nothing beyond the function output. A long-running challenge is understanding the required communication complexity of such protocols---in particular, when communication can be sublinear in the circuit representation size of the desired function. Significant advances have been made affirmatively answering this question within the two-party setting, based on a variety of structures and hardness assumptions. In contrast, in the multi-party setting, only one general approach is known: using Fully Homomorphic Encryption (FHE). This remains the state of affairs even for just three parties, with two corruptions. We present a framework for achieving secure sublinear-communication $(N+1)$-party computation, building from a particular form of Function Secret Sharing for only $N$ parties. In turn, we demonstrate implications to sublinear secure computation for various function classes in the 3-party and 5-party settings based on an assortment of assumptions not known to imply FHE.
Last updated:  2023-11-22
ForgedAttributes: An Existential Forgery Vulnerability of CMS and PKCS#7 Signatures
Falko Strenzke
This work describes an existential signature forgery vulnerability of the current CMS and PKCS#7 signature standards. The vulnerability results from an ambiguity of how to process the signed message in the signature verification process. Specifically, the absence or presence of the so called SignedAttributes field determines whether the signature message digest receives as input the message directly or the SignedAttributes, a DER-encoded structure which contains a digest of the message. If an attacker takes a CMS or PKCS#7 signed message M which was originally signed with SignedAttributes present, then he can craft a new message M 0 that was never signed by the signer and has the DER-encoded SignedAttributes of the original message as its content and verifies correctly against the original signature of M . Due to the limited flexibility of the forged message and the limited control the attacker has over it, the fraction of vulnerable systems must be assumed to be small but due to the wide deployment of the affected protocols, such instances cannot be excluded. We propose a countermeasure based on attack-detection that prevents the attack reliably.
Last updated:  2024-02-16
Algebraic Attack on FHE-Friendly Cipher HERA Using Multiple Collisions
Fukang Liu, Abul Kalam, Santanu Sarkar, and Willi Meier
Fully homomorphic encryption (FHE) is an advanced cryptography technique to allow computations (i.e., addition and multiplication) over encrypted data. After years of effort, the performance of FHE has been significantly improved and it has moved from theory to practice. The transciphering framework is another important technique in FHE to address the issue of ciphertext expansion and reduce the client-side computational overhead. To apply the transciphering framework to the CKKS FHE scheme, a new transciphering framework called the Real-to-Finite-Field (RtF) framework and a corresponding FHE-friendly symmetric-key primitive called HERA were proposed at ASIACRYPT 2021. Although HERA has a very similar structure to \aes, it is considerably different in the following aspects: 1) the power map $x\mapsto x^3$ is used as the S-box; 2) a randomized key schedule is used; 3) it is over a prime field $\mathbb F_p$ with $p>2^{16}$. In this work, we perform the first third-party cryptanalysis of HERA, by showing how to mount new algebraic attacks with multiple collisions in the round keys. Specifically, according to the special way to randomize the round keys in HERA, we find it possible to peel off the last nonlinear layer by using collisions in the last-round key and a simple property of the power map. In this way, we could construct an overdefined system of equations of a much lower degree in the key, and efficiently solve the system via the linearization technique. As a result, for HERA with 192 and 256 bits of security, respectively, we could break some parameters under the same assumption made by designers that the algebra constant $\omega$ for Gaussian elimination is $\omega=2$, i.e., Gaussian elimination on an $n\times n$ matrix takes $\mathcal{O}(n^{\omega})$ field operations. If using more conservative choices like $\omega\in\{2.8,3\}$, our attacks can also successfully reduce the security margins of some variants of HERA to only 1 round. However, the security of HERA with 80 and 128 bits of security is not affected by our attacks due to the high cost to find multiple collisions. In any case, our attacks reveal a weakness of HERA caused by the randomized key schedule and its small state size.
Last updated:  2023-11-22
BabySpartan: Lasso-based SNARK for non-uniform computation
Srinath Setty and Justin Thaler
Lasso (Setty, Thaler, Wahby, ePrint 2023/1216) is a recent lookup argument that ensures that the prover cryptographically commits to only "small" values. This note describes BabySpartan, a SNARK for a large class of constraint systems that achieves the same property. The SNARK is a simple combination of SuperSpartan and Lasso. The specific class of constraint systems supported is a generalization of so-called Plonkish constraint systems (and a special case of customizable constraint systems (CCS)). Whereas a recent work called Jolt (Arun, Setty, and Thaler, ePrint 2023/1217) can be viewed as an application of Lasso to uniform computation, BabySpartan can be viewed as applying Lasso to non-uniform computation.
Last updated:  2023-11-21
Somewhat Homomorphic Encryption based on Random Codes
Carlos Aguilar-Melchor, Victor Dyseryn, and Philippe Gaborit
We present a secret-key encryption scheme based on random rank metric ideal linear codes with a simple decryption circuit. It supports unlimited homomorphic additions and plaintext absorptions as well as a fixed arbitrary number of homomorphic multiplications. We study a candidate bootstrapping algorithm that requires no multiplication but additions and plaintext absorptions only. This latter operation is therefore very efficient in our scheme, whereas bootstrapping is usually the main reason which penalizes the performance of other fully homomorphic encryption schemes. However, the security reduction of our scheme restricts the number of independent ciphertexts that can be published. In particular, this prevents to securely evaluate the bootstrapping algorithm as the number of ciphertexts in the key switching material is too large. Our scheme is nonetheless the first somewhat homomorphic encryption scheme based on random ideal codes and a first step towards full homomorphism. Random ideal codes give stronger security guarantees as opposed to existing constructions based on highly structured codes. We give concrete parameters for our scheme that shows that it achieves competitive sizes and performance, with a key size of 3.7 kB and a ciphertext size of 0.9 kB when a single multiplication is allowed.
Last updated:  2024-03-04
A Modular Approach to Unclonable Cryptography
Prabhanjan Ananth and Amit Behera
We explore a new pathway to designing unclonable cryptographic primitives. We propose a new notion called unclonable puncturable obfuscation (UPO) and study its implications for unclonable cryptography. Using UPO, we present modular (and in some cases, arguably, simple) constructions of many primitives in unclonable cryptography, including, public-key quantum money, quantum copy-protection for many classes of functionalities, unclonable encryption, and single-decryption encryption. Notably, we obtain the following new results assuming the existence of UPO: - We show that any cryptographic functionality can be copy-protected as long as this functionality satisfies a notion of security, which we term as puncturable security. Prior feasibility results focused on copy-protecting specific cryptographic functionalities. - We show that copy-protection exists for any class of evasive functions as long as the associated distribution satisfies a preimage-sampleability condition. Prior works demonstrated copy-protection for point functions, which follows as a special case of our result. - We show that unclonable encryption exists in the plain model. Prior works demonstrated feasibility results in the quantum random oracle model. We put forward a candidate construction of UPO and prove two notions of security, each based on the existence of (post-quantum) sub-exponentially secure indistinguishability obfuscation and one-way functions, the quantum hardness of learning with errors, and a new conjecture called simultaneous inner product conjecture.
Last updated:  2023-11-21
Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification
Andersson Calle Viera, Alexandre Berzati, and Karine Heydemann
This paper presents a comprehensive analysis of the verification algorithm of the CRYSTALS-Dilithium, focusing on a C reference implementation. Limited research has been conducted on its susceptibility to fault attacks, despite its critical role in ensuring the scheme’s security. To fill this gap, we investigate three distinct fault models - randomizing faults, zeroizing faults, and skipping faults - to identify vulnerabilities within the verification process. Based on our analysis, we propose a methodology for forging CRYSTALS-Dilithium signatures without knowledge of the secret key. Instead, we leverage specific types of faults during the verification phase and some properties about public parameters to make these signatures accepted. Additionally, we compared different attack scenarios after identifying sensitive operations within the verification algorithm. The most effective requires potentially fewer fault injections than targeting the verification check itself. Finally, we introduce a set of countermeasures designed to thwart all the identified scenarios rendering the verification algorithm intrinsically resistant to the presented attacks.
Last updated:  2024-03-15
Efficiently Testable Circuits without Conductivity
Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak
The notion of ``efficiently testable circuits'' (ETC) was recently put forward by Baig et al.~(ITCS'23). Informally, an ETC compiler takes as input any Boolean circuit $C$ and outputs a circuit/inputs tuple $(C',\mathbb{T})$ where (completeness) $C'$ is functionally equivalent to $C$ and (security) if $C'$ is tampered in some restricted way, then this can be detected as $C'$ will err on at least one input in the small test set $\mathbb{T}$. The compiler of Baig et al. detects tampering even if the adversary can tamper with \emph{all} wires in the compiled circuit. Unfortunately, the model requires a strong ``conductivity'' restriction: the compiled circuit has gates with fan-out up to 3, but wires can only be tampered in one way even if they have fan-out greater than one. In this paper, we solve the main open question from their work and construct an ETC compiler without this conductivity restriction. While Baig et al. use gadgets computing the AND and OR of particular subsets of the wires, our compiler computes inner products with random vectors. We slightly relax their security notion and only require that tampering is detected with high probability over the choice of the randomness. Our compiler increases the size of the circuit by only a small constant factor. For a parameter $\lambda$ (think $\lambda\le 5$), the number of additional input and output wires is $|C|^{1/\lambda}$, while the number of test queries to detect an error with constant probability is around $2^{2\lambda}$.
Last updated:  2023-11-30
Secret-Shared Shuffle with Malicious Security
Xiangfu Song, Dong Yin, Jianli Bai, Changyu Dong, and Ee-Chien Chang
A secret-shared shuffle (SSS) protocol permutes a secret-shared vector using a random secret permutation. It has found numerous applications, however, it is also an expensive operation and often a performance bottleneck. Chase et al. (Asiacrypt'20) recently proposed a highly efficient semi-honest two-party SSS protocol known as the CGP protocol. It utilizes purposely designed pseudorandom correlations that facilitate a communication-efficient online shuffle phase. That said, semi-honest security is insufficient in many real-world application scenarios since shuffle is usually used for highly sensitive applications. Considering this, recent works (CANS'21, NDSS'22) attempted to enhance the CGP protocol with malicious security over authenticated secret sharings. However, we find that these attempts are flawed, and malicious adversaries can still learn private information via malicious deviations. This is demonstrated with concrete attacks proposed in this paper. Then the question is how to fill the gap and design a maliciously secure CGP shuffle protocol. We answer this question by introducing a set of lightweight correlation checks and a leakage reduction mechanism. Then we apply our techniques with authenticated secret sharings to achieve malicious security. Notably, our protocol, while increasing security, is also efficient. In the two-party setting, experiment results show that our maliciously secure protocol introduces an acceptable overhead compared to its semi-honest version and is more efficient than the state-of-the-art maliciously secure SSS protocol from the MP-SPDZ library.
Last updated:  2024-04-05
Accountable Multi-Signatures with Constant Size Public Keys
Dan Boneh, Aditi Partap, and Brent Waters
A multisignature scheme is used to aggregate signatures by multiple parties on a common message $m$ into a single short signature on $m$. Multisignatures are used widely in practice, most notably, in proof-of-stake consensus protocols. In existing multisignature schemes, the verifier needs the public keys of all the signers in order to verify a multisignature issued by some subset of signers. We construct new practical multisignature schemes with three properties: (i) the verifier only needs to store a constant size public key in order to verify a multisignature by an arbitrary subset of parties, (ii) signature size is constant beyond the description of the signing set, and (iii) signers generate their secret signing keys locally, that is, without a distributed key generation protocol. Existing schemes satisfy properties (ii) and (iii). The new capability is property (i) which dramatically reduces the verifier's memory requirements from linear in the number of signers to constant. We give two pairing-based constructions: one in the random oracle model and one in the plain model. We also show that by relaxing property (iii), that is, allowing for a simple distributed key generation protocol, we can further improve efficiency while continuing to satisfy properties (i) and (ii). We give a pairing-based scheme and a lattice-based scheme in this relaxed model. Our pairing based constructions are closely related to a multisignature scheme due to Boneh, Drijvers, and Neven (Asiacrypt 2018), but with several key differences.
Last updated:  2023-11-29
Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones
Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford
Traditional key stretching lacks a strict time guarantee due to the ease of parallelized password guessing by attackers. This paper introduces Sloth, a key stretching method leveraging the Secure Element (SE) commonly found in modern smartphones to provide a strict rate limit on password guessing. While this would be straightforward with full access to the SE, Android and iOS only provide a very limited API. Sloth utilizes the existing developer SE API and novel cryptographic constructions to build an effective rate-limit for password guessing on recent Android and iOS devices. Our approach ensures robust security even for short, randomly-generated, six-character alpha-numeric passwords against adversaries with virtually unlimited computing resources. Our solution is compatible with approximately 96% of iPhones and 45% of Android phones and Sloth seamlessly integrates without device or OS modifications, making it immediately usable by app developers today. We formally define the security of Sloth and evaluate its performance on various devices. Finally, we present HiddenSloth, a deniable encryption scheme, leveraging Sloth and the SE to withstand multi-snapshot adversaries.
Last updated:  2023-11-20
Decentralized Compromise-Tolerant Public Key Management Ecosystem with Threshold Validation
Jamal Mosakheil and Kan Yang
This paper examines the vulnerabilities inherent in prevailing Public Key Infrastructure (PKI) systems reliant on centralized Certificate Authorities (CAs), wherein a compromise of the CA introduces risks to the integrity of public key management. We present PKChain, a decentralized and compromise-tolerant public key management system built on blockchain technology, offering transparent, tamper-resistant, and verifiable services for key operations such as registration, update, query, validation, and revocation. Our innovative approach involves a novel threshold block validation scheme that combines a novel threshold cryptographic scheme with blockchain consensus. This scheme allows each validator to validate each public key record partially and proactively secures it before inclusion in a block. Additionally, to further validate and verify each block and to facilitate public verification of the public key records, we introduce an aggregate commitment signature scheme. Our contribution extends to the development of a new, efficient, and practical Byzantine Compromise-Tolerant and Verifiable (pBCTV) consensus model, integrating the proposed validation and signature schemes with practical Byzantine Fault Tolerance (pBFT). Through a comprehensive examination encompassing security analysis, performance evaluation, and a prototype implementation, we substantiate that PKChain is a secure, efficient, and robust solution for public key management.
Last updated:  2023-11-20
Compromising sensitive information through Padding Oracle and Known Plaintext attacks in Encrypt-then-TLS scenarios
Daniel Espinoza Figueroa
Let's consider a scenario where the server encrypts data using AES-CBC without authentication and then sends only the encrypted ciphertext through TLS (without IV). Then, having a padding oracle, we managed to recover the initialization vector and the sensitive data, doing a cybersecurity audit for a Chilean company.
Last updated:  2023-11-20
Fast and Secure Oblivious Stable Matching over Arithmetic Circuits
Arup Mondal, Priyam Panda, Shivam Agarwal, Abdelrahaman Aly, and Debayan Gupta
The classic stable matching algorithm of Gale and Shapley (American Mathematical Monthly '69) and subsequent variants such as those by Roth (Mathematics of Operations Research '82) and Abdulkadiroglu et al. (American Economic Review '05) have been used successfully in a number of real-world scenarios, including the assignment of medical-school graduates to residency programs, New York City teenagers to high schools, and Norwegian and Singaporean students to schools and universities. However, all of these suffer from one shortcoming: in order to avoid strategic manipulation, they require all participants to submit their preferences to a trusted third party who performs the computation. In some sensitive application scenarios, there is no appropriate (or cost-effective) trusted party. This makes stable matching a natural candidate for secure computation. Several approaches have been proposed to overcome this, based on secure multiparty computation (MPC), fully homomorphic encryption, etc.; many of these protocols are slow and impractical for real-world use. We propose a novel primitive for privacy-preserving stable matching using MPC (i.e., arithmetic circuits, for any number of parties). Specifically, we discuss two variants of oblivious stable matching and describe an improved oblivious stable matching on the random memory access model based on lookup tables. To explore and showcase the practicality of our proposed primitive, we present detailed benchmarks (at various problem sizes) of our constructions using two popular frameworks: SCALE-MAMBA and MP-SPDZ.
Last updated:  2023-11-20
Homomorphic Multiple Precision Multiplication for CKKS and Reduced Modulus Consumption
Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé
Homomorphic Encryption (HE) schemes such as BGV, BFV, and CKKS consume some ciphertext modulus for each multiplication. Bootstrapping (BTS) restores the modulus and allows homomorphic computation to continue, but it is time-consuming and requires a significant amount of modulus. For these reasons, decreasing modulus consumption is crucial topic for BGV, BFV and CKKS, on which numerous studies have been conducted. We propose a novel method, called $\mathsf{mult}^2$, to perform ciphertext multiplication in the CKKS scheme with lower modulus consumption. $\mathsf{mult}^2$ relies an a new decomposition of a ciphertext into a pair of ciphertexts that homomorphically performs a weak form of Euclidean division. It multiplies two ciphertexts in decomposed formats with homomorphic double precision multiplication, and its result approximately decrypts to the same value as does the ordinary CKKS multiplication. $\mathsf{mult}^2$ can perform homomorphic multiplication by consuming almost half of the modulus. We extend it to $\mathsf{mult}^t$ for any $t\geq 2$, which relies on the decomposition of a ciphertext into $t$ components. All other CKKS operations can be equally performed on pair/tuple formats, leading to the double-CKKS (resp. tuple-CKKS) scheme enabling homomorphic double (resp. multiple) precision arithmetic. As a result, when the ciphertext modulus and dimension are fixed, the proposed algorithms enable the evaluation of deeper circuits without bootstrapping, or allow to reduce the number of bootstrappings required for the evaluation of the same circuits. Furthermore, they can be used to increase the precision without increasing the parameters. For example, $\mathsf{mult}^2$ enables 8 sequential multiplications with 100 bit scaling factor with a ciphertext modulus of only 680 bits, which is impossible with the ordinary CKKS multiplication algorithm.
Last updated:  2023-11-19
Updatable Privacy-Preserving Blueprints
Bernardo David, Felix Engelmann, Tore Frederiksen, Markulf Kohlweiss, Elena Pagnin, and Mikhail Volkhov
Privacy-preserving blueprints enable users to create escrows using the auditor's public key. An escrow encrypts the evaluation of a function $P(t,x)$, where $t$ is a secret input used to generate the auditor's key and $x$ is the user's private input to escrow generation. Nothing but $P(t,x)$ is revealed even to a fully corrupted auditor. The original definition and construction (Kohlweiss et al., EUROCRYPT'23) only support the evaluation of functions on an input $x$ provided by a single user. We address this limitation by introducing updatable privacy-preserving blueprint schemes (UPPB), which enhance the original notion with the ability for multiple parties to non-interactively update the private value $x$ in a blueprint. Moreover, a UPPB scheme allows for verifying that a blueprint is the result of a sequence of valid updates while revealing nothing else. We present uBlu, an efficient instantiation of UPPB for computing a comparison between private user values and a private threshold $t$ set by the auditor, where the current value $x$ is the cumulative sum of private inputs, which enables applications such as privacy-preserving anti-money laundering and location tracking. Additionally, we show the feasibility of the notion generically for all value update functions and (binary) predicates from FHE and NIZKs. Our main technical contribution is a technique to keep the size of primary blueprint components independent of the number of updates and reasonable for practical applications. This is achieved by elegantly extending an algebraic NIZK by Couteau and Hartmann (CRYPTO'20) with an update function and making it compatible with our additive updates. This result is of independent interest and may find additional applications thanks to the concise size of our proofs.
Last updated:  2023-11-27
CASE: A New Frontier in Public-Key Authenticated Encryption
Shashank Agrawal, Shweta Agrawal, Manoj Prabhakaran, Rajeev Raghunath, and Jayesh Singla
We introduce a new cryptographic primitive, called Completely Anonymous Signed Encryption (CASE). CASE is a public-key authenticated encryption primitive, that offers anonymity for senders as well as receivers. A "case-packet" should appear, without a (decryption) key for opening it, to be a blackbox that reveals no information at all about its contents. To decase a case-packet fully - so that the message is retrieved and authenticated - a verifcation key is also required. Defining security for this primitive is subtle. We present a relatively simple Chosen Objects Attack (COA) security definition. Validating this definition, we show that it implies a comprehensive indistinguishability-preservation definition in the real-ideal paradigm. To obtain the latter definition, we extend the Cryptographic Agents framework of [2, 3] to allow maliciously created objects. We also provide a novel and practical construction for COA-secure CASE under standard assumptions in public-key cryptography, and in the standard model. We believe CASE can be a staple in future cryptographic libraries, thanks to its robust security guarantees and efficient instantiations based on standard assumptions.
Last updated:  2023-12-02
There Is Always a Way Out! Destruction-Resistant Key Management: Formal Definition and Practical Instantiation
Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang
A central advantage of deploying cryptosystems is that the security of large high-sensitive data sets can be reduced to the security of a very small key. The most popular way to manage keys is to use a $(t,n)-$threshold secret sharing scheme: a user splits her/his key into $n$ shares, distributes them among $n$ key servers, and can recover the key with the aid of any $t$ of them. However, it is vulnerable to device destruction: if all key servers and user's devices break down, the key will be permanently lost. We propose a $\mathrm{\underline{D}}$estruction-$\mathrm{\underline{R}}$esistant $\mathrm{\underline{K}}$ey $\mathrm{\underline{M}}$anagement scheme, dubbed DRKM, which ensures the key availability even if destruction occurs. In DRKM, a user utilizes her/his $n^{*}$ personal identification factors (PIFs) to derive a cryptographic key but can retrieve the key using any $t^{*}$ of the $n^{*}$ PIFs. As most PIFs can be retrieved by the user $\textit{per se}$ without requiring $\textit{stateful}$ devices, destruction resistance is achieved. With the integration of a $(t,n)-$threshold secret sharing scheme, DRKM also provides $\textit{portable}$ key access for the user (with the aid of any $t$ of $n$ key servers) before destruction occurs. DRKM can be utilized to construct a destruction-resistant cryptosystem (DRC) in tandem with any backup system. We formally prove the security of DRKM, implement a DRKM prototype, and conduct a comprehensive performance evaluation to demonstrate its high efficiency. We further utilize Cramer's Rule to reduce the required buffer to retrieve a key from 25 MB to 40 KB (for 256-bit security).
Last updated:  2023-12-01
Succinct Arguments over Towers of Binary Fields
Benjamin E. Diamond and Jim Posen
We introduce an efficient SNARK for towers of binary fields. Adapting Brakedown (CRYPTO '23), we construct a multilinear polynomial commitment scheme suitable for polynomials over tiny fields, including that with 2 elements. Our commitment scheme, unlike those of previous works, treats small-field polynomials with zero embedding overhead. We further introduce binary-field adaptations of HyperPlonk's (EUROCRYPT '23) product and permutation checks, as well as of Lasso's lookup. Our scheme's binary PLONKish variant captures standard hash functions—like Keccak-256 and Grøstl—extremely efficiently. With recourse to thorough performance benchmarks, we argue that our scheme can efficiently generate precisely those Keccak-256-proofs which critically underlie modern efforts to scale Ethereum.
Last updated:  2024-04-16
An efficient quantum parallel repetition theorem and applications
John Bostanci, Luowen Qian, Nicholas Spooner, and Henry Yuen
We prove a tight parallel repetition theorem for $3$-message computationally-secure quantum interactive protocols between an efficient challenger and an efficient adversary. We also prove under plausible assumptions that the security of $4$-message computationally secure protocols does not generally decrease under parallel repetition. These mirror the classical results of Bellare, Impagliazzo, and Naor [BIN97]. Finally, we prove that all quantum argument systems can be generically compiled to an equivalent $3$-message argument system, mirroring the transformation for quantum proof systems [KW00, KKMV07]. As immediate applications, we show how to derive hardness amplification theorems for quantum bit commitment schemes (answering a question of Yan [Yan22]), EFI pairs (answering a question of Brakerski, Canetti, and Qian [BCQ23]), public-key quantum money schemes (answering a question of Aaronson and Christiano [AC13]), and quantum zero-knowledge argument systems. We also derive an XOR lemma [Yao82] for quantum predicates as a corollary.
Last updated:  2023-11-17
A Solution to a Conjecture on the Maps $\chi_n^{(k)}$
Kamil Otal
The Boolean map $\chi_n^{(k)}:\mathbb{F}_{2^k}^n\rightarrow \mathbb{F}_{2^k}^n$, $x\mapsto u$ given by $u_i=x_i+(x_{(i+1)\ \mathrm{mod}\ n}+1)x_{(i+2)\ \mathrm{mod}\ n}$ appears in various permutations as a part of cryptographic schemes such as KECCAK-f, ASCON, Xoodoo, Rasta, and Subterranean (2.0). Schoone and Daemen investigated some important algebraic properties of $\chi_n^{(k)}$ in [IACR Cryptology ePrint Archive 2023/1708]. In particular, they showed that $\chi_n^{(k)}$ is not bijective when $n$ is even, when $n$ is odd and $k$ is even, and when $n$ is odd and $k$ is a multiple of $3$. They left the remaining cases as a conjecture. In this paper, we examine this conjecture by taking some smaller sub-cases into account by reinterpreting the problem via the Gröbner basis approach. As a result, we prove that $\chi_n^{(k)}$ is not bijective when $n$ is a multiple of 3 or 5, and $k$ is a multiple of 5 or 7. We then present an algorithmic method that solves the problem for any given arbitrary $n$ and $k$ by generalizing our approach. We also discuss the systematization of our proof and computational boundaries.
Last updated:  2023-11-25
A Lattice Attack on CRYSTALS-Kyber with Correlation Power Analysis
Yen-Ting Kuo and Atsushi Takayasu
CRYSTALS-Kyber is a key-encapsulation mechanism, whose security is based on the hardness of solving the learning-with-errors (LWE) problem over module lattices. As in its specification, Kyber prescribes the usage of the Number Theoretic Transform (NTT) for efficient polynomial multiplication. Side-channel assisted attacks against Post-Quantum Cryptography (PQC) algorithms like Kyber remain a concern in the ongoing standardization process of quantum-computer-resistant cryptosystems. Among the attacks, correlation power analysis (CPA) is emerging as a popular option because it does not require detailed knowledge about the attacked device and can reveal the secret key even if the recorded power traces are extremely noisy. In this paper, we present a two-step attack to achieve a full-key recovery on lattice-based cryptosystems that utilize NTT for efficient polynomial multiplication. First, we use CPA to recover a portion of the secret key from the power consumption of these polynomial multiplications in the decryption process. Then, using the information, we are able to fully recover the secret key by constructing an LWE problem with a smaller lattice rank and solving it with lattice reduction algorithms. Our attack can be expanded to other cryptosystems using NTT-based polynomial multiplication, including Saber. It can be further parallelized and experiments on simulated traces show that the whole process can be done within 20 minutes on a 16-core machine with 200 traces. Compared to other CPA attacks targeting NTT in the cryptosystems, our attack achieves lower runtime in practice. Furthermore, we can theoretically decrease the number of traces needed by using lattice reduction if the same measurement is used. Our lattice attack also outperforms the state-of-the-art result on integrating side-channel hints into lattices, however, the improvement heavily depends on the implementation of the NTT chosen by the users.
Last updated:  2024-03-05
Pairing-Free Blind Signatures from CDH Assumptions
Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu
We present the first concurrently-secure blind signatures making black-box use of a pairing-free group for which unforgeability, in the random oracle model, can be proved {\em without} relying on the algebraic group model (AGM), thus resolving a long-standing open question. Prior pairing-free blind signatures without AGM proofs have only been proved secure for bounded concurrency or relied on computationally expensive non-black-box use of NIZKs. Our most efficient constructions rely on the chosen-target CDH assumption and can be seen as blind versions of signatures by Goh and Jarecki (EUROCRYPT '03) and Chevallier-Mames (CRYPTO '05). We also give a less efficient scheme with security based on (plain) CDH. The underlying signing protocols consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability). All schemes are proved statistically blind in the random oracle model.
Last updated:  2023-12-04
Privacy-Preserving Cross-Facility Early Warning for Unknown Epidemics
Shiyu Li, Yuan Zhang, Yaqing Song, Fan Wu, Feng Lyu, Kan Yang, and Qiang Tang
Syndrome-based early epidemic warning plays a vital role in preventing and controlling unknown epidemic outbreaks. It monitors the frequency of each syndrome, issues a warning if some frequency is aberrant, identifies potential epidemic outbreaks, and alerts governments as early as possible. Existing systems adopt a cloud-assisted paradigm to achieve cross-facility statistics on the syndrome frequencies. However, in these systems, all symptom data would be directly leaked to the cloud, which causes critical security and privacy issues. In this paper, we first analyze syndrome-based early epidemic warning systems and formalize two security notions, i.e., symptom confidentiality and frequency confidentiality, according to the inherent security requirements. We propose EpiOracle, a cross-facility early warning scheme for unknown epidemics. EpiOracle ensures that the contents and frequencies of syndromes will not be leaked to any unrelated parties; moreover, our construction uses only a symmetric-key encryption algorithm and cryptographic hash functions (e.g., [CBC]AES and SHA-3), making it highly efficient. We formally prove the security of EpiOracle in the random oracle model. We also implement an EpiOracle prototype and evaluate its performance using a set of real-world symptom lists. The evaluation results demonstrate its practical efficiency.
Last updated:  2023-11-16
Immunizing Backdoored PRGs
Marshall Ball, Yevgeniy Dodis, and Eli Goldin
A backdoored Pseudorandom Generator (PRG) is a PRG which looks pseudorandom to the outside world, but a saboteur can break PRG security by planting a backdoor into a seemingly honest choice of public parameters, $pk$, for the system. Backdoored PRGs became increasingly important due to revelations about NIST’s backdoored Dual EC PRG, and later results about its practical exploitability. Motivated by this, at Eurocrypt'15 Dodis et al. [21] initiated the question of immunizing backdoored PRGs. A $k$-immunization scheme repeatedly applies a post-processing function to the output of $k$ backdoored PRGs, to render any (unknown) backdoors provably useless. For $k=1$, [21] showed that no deterministic immunization is possible, but then constructed "seeded" $1$-immunizer either in the random oracle model, or under strong non-falsifiable assumptions. As our first result, we show that no seeded $1$-immunization scheme can be black-box reduced to any efficiently falsifiable assumption. This motivates studying $k$-immunizers for $k\ge 2$, which have an additional advantage of being deterministic (i.e., "seedless"). Indeed, prior work at CCS'17 [37] and CRYPTO'18 [7] gave supporting evidence that simple $k$-immunizers might exist, albeit in slightly different settings. Unfortunately, we show that simple standard model proposals of [37, 7] (including the XOR function [7]) provably do not work in our setting. On a positive, we confirm the intuition of [37] that a (seedless) random oracle is a provably secure $2$-immunizer. On a negative, no (seedless) $2$-immunization scheme can be black-box reduced to any efficiently falsifiable assumption, at least for a large class of natural $2$-immunizers which includes all "cryptographic hash functions." In summary, our results show that $k$-immunizers occupy a peculiar place in the cryptographic world. While they likely exist, and can be made practical and efficient, it is unlikely one can reduce their security to a "clean" standard-model assumption.
Last updated:  2023-11-16
SoK: Collusion-resistant Multi-party Private Set Intersections in the Semi-honest Model
Jelle Vos, Mauro Conti, and Zekeriya Erkin
Private set intersection protocols allow two parties with private sets of data to compute the intersection between them without leaking other information about their sets. These protocols have been studied for almost 20 years, and have been significantly improved over time, reducing both their computation and communication costs. However, when more than two parties want to compute a private set intersection, these protocols are no longer applicable. While extensions exist to the multi-party case, these protocols are significantly less efficient than the two-party case. It remains an open question to design collusion-resistant multi-party private set intersection (MPSI) protocols that come close to the efficiency of two-party protocols. This work is made more difficult by the immense variety in the proposed schemes and the lack of systematization. Moreover, each new work only considers a small subset of previously proposed protocols, leaving out important developments from older works. Finally, MPSI protocols rely on many possible constructions and building blocks that have not been summarized. This work aims to point protocol designers to gaps in research and promising directions, pointing out common security flaws and sketching a frame of reference. To this end, we focus on the semi-honest model. We conclude that current MPSI protocols are not a one-size-fits-all solution, and instead there exist many protocols that each prevail in their own application setting.
Last updated:  2023-11-16
Watermarks in the Sand: Impossibility of Strong Watermarking for Generative Models
Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz Barak
Watermarking generative models consists of planting a statistical signal (watermark) in a model’s output so that it can be later verified that the output was generated by the given model. A strong watermarking scheme satisfies the property that a computationally bounded attacker cannot erase the watermark without causing significant quality degradation. In this paper, we study the (im)possibility of strong watermarking schemes. We prove that, under well-specified and natural assumptions, strong watermarking is impossible to achieve. This holds even in the private detection algorithm setting, where the watermark insertion and detection algorithms share a secret key, unknown to the attacker. To prove this result, we introduce a generic efficient watermark attack; the attacker is not required to know the private key of the scheme or even which scheme is used. Our attack is based on two assumptions: (1) The attacker has access to a “quality oracle” that can evaluate whether a candidate output is a high-quality response to a prompt, and (2) The attacker has access to a “perturbation oracle” which can modify an output with a nontrivial probability of maintaining quality, and which induces an efficiently mixing random walk on high-quality outputs. We argue that both assumptions can be satisfied in practice by an attacker with weaker computational capabilities than the watermarked model itself, to which the attacker has only black-box access. Furthermore, our assumptions will likely only be easier to satisfy over time as models grow in capabilities and modalities. We demonstrate the feasibility of our attack by instantiating it to attack three existing watermarking schemes for large language models: Kirchenbauer et al. (2023), Kuditipudi et al. (2023), and Zhao et al. (2023). The same attack successfully removes the watermarks planted by all three schemes, with only minor quality degradation.
Last updated:  2024-03-06
Beyond Security: Achieving Fairness in Mailmen-Assisted Timed Data Delivery
Shiyu Li, Yuan Zhang, Yaqing Song, Hongbo Liu, Nan Cheng, Hongwei Li, Dahai Tao, and Kan Yang
Timed data delivery is a critical service for time-sensitive applications that allows a sender to deliver data to a recipient, but only be accessible at a specific future time. This service is typically accomplished by employing a set of mailmen to complete the delivery mission. While this approach is commonly used, it is vulnerable to attacks from realistic adversaries, such as a greedy sender (who accesses the delivery service without paying the service charge) and malicious mailmen (who release the data prematurely without being detected). Although some research works have been done to address these adversaries, most of them fail to achieve fairness. In this paper, we formally define the fairness requirement for mailmen-assisted timed data delivery and propose a practical scheme, dubbed DataUber, to achieve fairness. DataUber ensures that honest mailmen receive the service charge, lazy mailmen do not receive the service charge, and malicious mailmen are punished. Specifically, DataUber consists of two key techniques: 1) a new cryptographic primitive, i.e., Oblivious and Verifiable Threshold Secret Sharing (OVTSS), enabling a dealer to distribute a secret among multiple participants in a threshold and verifiable way without knowing any one of the shares, and 2) a smart-contract-based complaint mechanism, allowing anyone to become a reporter to complain about a mailman's misbehavior to a smart contract and receive a reward. Furthermore, we formally prove the security of DataUber and demonstrate its practicality through a prototype implementation.
Last updated:  2023-11-16
Decentralized Private Steam Aggregation from Lattices
Uddipana Dowerah and Aikaterini Mitrokotsa
As various industries and government agencies increasingly seek to build quantum computers, the development of post-quantum constructions for different primitives becomes crucial. Lattice-based cryptography is one of the top candidates for constructing quantum-resistant primitives. In this paper, we propose a decentralized Private Stream Aggregation (PSA) protocol based on the Learning with Errors (LWE) problem. PSA allows secure aggregation of time-series data over multiple users without compromising the privacy of the individual data. In almost all previous constructions, a trusted entity is used for the generation of keys. We consider a scenario where the users do not want to rely on a trusted authority. We, therefore, propose a decentralized PSA (DPSA) scheme where each user generates their own keys without the need for a trusted setup. We give a concrete construction based on the hardness of the LWE problem both in the random oracle model and in the standard model.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.