
Decentralized Private Stream Aggregation from
Lattices

Uddipana Dowerah1 and Aikaterini Mitrokotsa2

1 Chalmers University of Technology, Sweden
dowerahuddipana@gmail.com

2 University of St. Gallen, Switzerland
katerina.mitrokotsa@unisg.ch

Abstract. As various industries and government agencies increasingly
seek to build quantum computers, the development of post-quantum con-
structions for different primitives becomes crucial. Lattice-based cryp-
tography is one of the top candidates for constructing quantum-resistant
primitives. In this paper, we propose a decentralized Private Stream
Aggregation (PSA) protocol based on the Learning with Errors (LWE)
problem. PSA allows secure aggregation of time-series data over multiple
users without compromising the privacy of the individual data. In almost
all previous constructions, a trusted entity is used for the generation of
keys. We consider a scenario where the users do not want to rely on a
trusted authority. We, therefore, propose a decentralized PSA (DPSA)
scheme where each user generates their own keys without the need for a
trusted setup. We give a concrete construction based on the hardness of
the LWE problem both in the random oracle model and in the standard
model.

Keywords: Private Stream Aggregation · Learning with Errors ·
Post-quantum cryptography · Decentralized

1 Introduction

The growing interest in building quantum computers has led to a widespread
need for the development of post-quantum cryptographic protocols. Lattice-
based cryptography is among the best candidates for post-quantum cryptog-
raphy due to its versatility and resistance to quantum attacks. The hardness of
lattice-based cryptographic algorithms is based on the assumed worst-case hard-
ness of lattice problems. A well-known computational problem based on lattices
is the Learning with Errors (LWE) problem introduced in [19]. In this paper, we
focus on constructing a Private Stream Aggregation (PSA) protocol based on
the LWE problem.

In various real-world scenarios, a data aggregator may seek to collect data
from multiple organizations or individuals to compute various statistics over the
data. However, a significant challenge in such applications is to ensure the pri-
vacy of the participants, particularly when the aggregator is not trusted. Certain

2 Uddipana Dowerah and Aikaterini Mitrokotsa

examples of such applications include personal identifiable information such as
social security numbers, financial data such as credit card details, medical data
such as health records, or educational data such as transcripts, etc. This mo-
tivated the construction of private stream aggregation protocols that preserves
individual data privacy and enables secure aggregation of time-series data across
multiple users.

In a PSA protocol, there are multiple clients and one untrusted aggregator.
Each client sends an encrypted message over a time period, usually called a
timestamp (also called a label in some papers [15]), to the aggregator and the
aggregator decrypts the sum of the messages over that time period without the
knowledge of the individual messages. Timestamps are used to prevent the aggre-
gator from mixing ciphertexts with different timestamps which in turn prevents
the leakage of information about the values of individual clients. The security
of a PSA protocol is captured by the notion of aggregator obliviousness which
requires that the aggregator learns nothing more than the aggregated sum. A
PSA protocol remains secure even in situations where the aggregator colludes
with a subset of clients. In this case, the aggregator can only learn the sum of
the messages from the non-colluding clients. A possible application scenario for
PSA is Smart Grids where PSA can be used to collect and analyze real-time
energy consumption data from different households or businesses for load bal-
ancing, energy management, or renewable energy integration, while maintaining
the privacy of the customers. Another possible application is Traffic Management
where it can be used to collect and analyze real-time traffic data from different
sensors or vehicles for traffic prediction, route optimization, or accident preven-
tion, while preserving the privacy of individuals. Private stream aggregation can
also be applied in federated learning to enable the aggregation of locally trained
models from multiple devices, while preserving privacy. In federated learning,
each device trains a model on its local data and sends the updated model to a
centralized server for aggregation. However, the privacy of local data is a major
concern in this process.

Furthermore, to provide an additional layer of privacy protection, differential
privacy can be used with PSA [21]. Private stream aggregation with differential
privacy involves the addition of noise to the data prior to aggregation. The
amount of noise added is defined by a privacy budget that limits the amount
of information that can be revealed about an individual. Various PSA construc-
tions consider the distributed model of differential privacy, where the clients add
differentially private noise to their data [21,24] before encryption. In this paper,
we do not explicitly consider differential privacy in our construction. However,
similar procedures can be adopted as in previous works [21] to add differentially
private noise to the inputs.

A closely related notion to private stream aggregation is Multi-Client Func-
tional Encryption (MCFE) for inner products. In contrast to traditional public
key encryption that either decrypts the entire message or nothing, Functional
Encryption (FE) allows a user to learn specific functions of the encrypted data
without disclosing any other information. More specifically, in FE, a secret key

Decentralized Private Stream Aggregation from Lattices 3

skf is associated to a function f and the ciphertext ctx encrypts a message x and
decrypting ctx with skf reveals f(x) and nothing else. In Inner Product Func-
tional Encryption (IPFE), the ciphertext ctx is associated to a message vector
x and the secret keys sky can be generated with respect to some vector y, while
the decryption of ctx with sky recovers the inner product ⟨x, y⟩. In inner prod-
uct MCFE, there are multiple clients and one or more aggregators. Each user
encrypts their input xi using a secret key ski and sends the ciphertext ctxi

to
the aggregator. Using the functional key sky, the aggregator recovers the inner
product ⟨x, y⟩ =

∑
i xiyi where x := (x1, x2, . . .) and y := (y1, y2, . . .). Observe

that for the all ones vector y = (1, . . . , 1), this is exactly a PSA scheme. There-
fore, PSA can be seen as a specific case of MCFE for the evaluation of inner
products where only a single key corresponding to the vector y = (1, . . . , 1) is
revealed to the aggregator.

1.1 Our Contributions

Almost all known PSA schemes [4,7,13,15,21,23,24,27] use a trusted authority
for key generation that generates the client keys for encryption and aggrega-
tor key for decryption. However, since the main goal of PSA is to allow an
untrusted aggregator to perform aggregate statistics without compromising in-
dividual data, the use of a trusted authority is not aligned with the objectives of
PSA. The use of a trusted authority can be avoided by decentralizing the setup
and key generation procedure.

In this paper, we propose a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We take
inspiration from the decentralized multi-client functional encryption scheme pro-
posed in [12]. In the DPSA scheme, the clients generate their own keys and share
it with the aggregator in a secure way such that the aggregator does not learn
the individual client keys and only learns the aggregator decryption key which
is equal to the sum of the client keys. We first give a construction in the ran-
dom oracle model using a hash function modeled as a random oracle. We then
show how to modify it into a construction in the standard model using a weak
pseudorandom function (PRF). For the standard model we modify the ideas
from [26] to achieve a construction with unbounded timestamps. Our scheme
achieves aggregator oblivious security with static corruptions based on the LWE
problem. If instantiated with a trusted setup, the protocol achieves aggregator
obliviousness with adaptive corruptions. We also discuss possible solutions for
practical deployments such as clients joining and leaving the system. Further, we
provide example parameter choices for the proposed scheme based on the LWE
assumption and show that our scheme achieves competitive ciphertext sizes to
that of SLAP [24] for equivalent plaintext spaces.

1.2 Related Work

The notion of PSA was introduced by Shi et al. in [21]. They proposed a construc-
tion based on the Decisional Diffie-Hellman (DDH) assumption. The decryption

4 Uddipana Dowerah and Aikaterini Mitrokotsa

procedure is inefficient due to its requirement for computing a discrete logarithm.
Subsequent works [7, 14, 17] focused on constructing PSA with better efficiency
and larger plaintext space. Leontiadis et al. introduced PSA with verifiability of
the aggregated sum [18] followed by a construction by Emura [13]. These works
are not post-quantum secure and can be broken easily by a quantum computer
using Shor’s algorithm [22].

A number of post-quantum PSA constructions have been proposed in previ-
ous works. Valovich proposed a PSA scheme from key homomorphic weak PRFs
and gave an instantiation based on the LWE problem [26]. Their construction
achieves a weaker variant of aggregator obliviousness (AO) called non-adaptive
AO in the standard model. Further, the set of timestamps needs to be fixed
at the setup and therefore their scheme only supports a bounded number of
timestamps. Our scheme in the standard model follows a similar design policy
as Valovich but we show how to get unbounded number of timestamps using
a PRF. Becker et al. proposed a generic PSA scheme called LaPS [4] based on
the LWE problem. Their construction can be instantiated using any additively
homomorphic encryption scheme. However, their scheme uses two layers of en-
cryption where the homomorphically encrypted input is encoded again using an
Augmented-LWE (A-LWE) term. Further, their construction does not rely on
timestamps directly and they only give a brief description on how to extend the
scheme to work with timestamps. Takeshita et al. proposed two PSA schemes
called SLAP [24] using two different fully homomorphic encryption schemes.
Their schemes achieve aggregator obliviousness based on the RLWE problem in
the random oracle model. The authors also implement their scheme and show
their improvements over the LaPS protocol. In a subsequent work [23], Takeshita
et al. proposed a variant of their SLAP protocol with better efficiency.

Other post-quantum secure works that do not use the RLWE problem include
[15, 27]. Ernst et al. proposed a PSA scheme using key-homomorphic PRFs [15]
based on the Learning with Rounding (LWR) problem. Currently, this is one of
the most efficient schemes that achieve smaller ciphertexts compared to previous
works. Another efficient PSA scheme using labeled secret sharing schemes (LaSS)
was proposed in [27]. However, it is not efficient for a large number of users due
to multiple rounds of communication to generate shared keys among the users
which leads to key sizes quadratic in the number of users.

All of these schemes rely on a trusted setup for key generation. There are
brief discussions in [15, 27] on how to modify their schemes to avoid a central
authority. Recently, Brorsson et al. proposed a distributed setup PSA protocol
called DIPSAUCE [10] that does not rely on a trusted party. Their protocol is
a distributed setup variant of the protocol in [27]. In contrast to the other PSA
schemes, no key is required for aggregating the sum of the inputs. However,
their distributed key generation procedure relies on a Public Key Infrastructure
(PKI) to provide the keys to each user which in turn is usually implemented as
a central authority. Further DIPSAUCE relies on a randomness beacon and care
should be taken not to introduce a trusted party to realize the beacon.

Decentralized Private Stream Aggregation from Lattices 5

Another line of work focuses on constructing secure aggregation protocols for
the aggregation of model updates in distributed machine learning [5,6,8,16,25].
These works are not directly comparable to ours as their work has a distinct fo-
cus, specifically designed to meet the requirements of distributed machine learn-
ing.

We give a comparison of the various PSA schemes described in this section
with respect to different characteristics in Table 1.

Table 1: Comparison of different PSA schemes with respect to different char-
acteristics

Scheme Decentralized
Setup

Timestamps Assumption Post-
quantum
security

Shi et al. [21] ✗ unbounded DDH ✗

Valovich [26] ✗ bounded LWE ✓

LaPS [4] ✗ none (R)LWE ✓

SLAP [24] ✗ unbounded RLWE ✓

Ernst et al. [15] ✗ unbounded LWR ✓

Waldner et
al. [27]

✗ unbounded security of LaSS ✓

DIPSAUCE [10] ✓ unbounded security of LaSS ✓

Our Scheme ✓ unbounded LWE ✓

1.3 Organization

We organize the paper as follows. Section 2 contains some necessary background
and definitions. In Section 3, we formally define the DPSA protocol and give a
concrete construction based on the LWE problem in the ROM. In Section 4, we
give a construction in the standard model based on LWE.

2 Preliminaries

Notation: λ denotes the security parameter. For a set S, a←$ S means that a
is sampled uniformly at random from S. For a probability distribution X over a
set S, x← X means that x is sampled from S according to the distribution X . A
distribution X over the set of integers is said to be B-bounded if it is supported
on [−B, B]. For a number x, ⌈x⌉, ⌊x⌋ and ⌊x⌉ denotes the rounding x up, down
and to the closest integer respectively. We use ‘log’ to denote a logarithm to the
base 2. For a prime q, Zq denotes the set of integers in the interval (−q/2, q/2]∩Z.
For some a ∈ Z, we use (a mod q) and [a]q interchangeably to denote the modular

6 Uddipana Dowerah and Aikaterini Mitrokotsa

reduction of a by q into the interval (−q/2, q/2] ∩ Z. We use lowercase boldface
letters (e.g., a) to denote row vectors and uppercase boldface letters (e.g., A)
to denote matrices. The notation [n] denotes the set of integers {1, 2, . . . , n}. An
arbitrary negligible function is denoted by negl(·) where the function negl(x) :
N→ R is called negligible if for every c ∈ N, there exists an integer ηc such that
|negl(x)| < 1

xc for all x > ηc.

2.1 Lattices

A k dimensional lattice Λ is a discrete additive subgroup of Rk given by the set
of all integer linear combinations of l ≤ k linearly independent vectors in Rk

where l is called the rank of Λ. We are interested in q-ary integer lattices. A
q-ary lattice can be thought of as a discrete additive subgroup of Zk

q . A vector
v is in the lattice Λ if v mod q ∈ Λ. Given a matrix B ∈ Zl×k

q , the following are
two k dimensional q-ary lattices.

Λq(B) =
{

v ∈ Zk
q | v = w ·B mod q for some w ∈ Zl

q

}
Λ⊥q (B) =

{
v ∈ Zk

q | v ·BT = 0 mod q
}

2.2 Learning with Errors

Learning with Errors is the problem of solving a system of noisy linear equations
over Zq [19]. It can be defined as follows.

Definition 1 (Learning with errors). Let X be a probability distribution on
Z and s be a secret vector chosen uniformly at random from Zn

q for some n, q ∈ N.
Let As,X be the distribution that generates a pair (a, b = ⟨a, s⟩ + e) ∈ Zn

q × Zq

obtained by choosing a vector a←$ Zn
q and an error e← X . Given polynomially

many samples from As,X , the learning with errors problem is to output the vector
s ∈ Zn

q with overwhelming probability.
The decisional LWE problem is to distinguish the distribution As,X from the

uniform distribution over Zn
q ×Zq. We use LWEn,q,X to denote the LWE problem

with parameters n, q,X .

The decisional LWE problem has been shown to be at least as hard as the
LWE search problem [19,20]. There are known quantum and classical reductions
of LWE to approximating short vector problems in lattices [9,20]. In these reduc-
tions, the noise distribution X is usually considered to be a discretized Gaussian
distribution that is indistinguishable from a B-bounded distribution for some
appropriate B.

The security of our protocol is based on a variant of the decisional LWE
problem where along with the noise, the secret s is chosen from the distribution
X .

Definition 2 (LWE problem with short secrets). Let X be a probability
distribution on Z and s be a secret vector chosen from the distribution X over

Decentralized Private Stream Aggregation from Lattices 7

Zn
q for some n, q ∈ N. Let As,X be the distribution defined in Definition 1. Then,

the decision LWE problem with short secrets is to distinguish the distribution
As,X from the uniform distribution over Zn

q ×Zq. We use ss-LWEn,q,X to denote
the LWE problem with short secrets.

A reduction from the short secret variant exists to the decisional LWE prob-
lem as shown in [2].

Lemma 1 ([2]). Let n, q,X be as described above. If there exists a distinguish-
ing algorithm A for the decision LWE problem with short secrets, then there
exists a distinguishing algorithm B for the decision LWE problem that runs in
roughly the same time as A, with B making O(n2) calls to its oracle and satis-
fying AdvLWE

B (λ) = Advss-LWE
A (λ).

In this paper, we consider an extended form of the problem where the secret
is a matrix. We consider the LWE distribution with N ≥ 1 secrets s1, . . . , sN

for some N = poly(n). Then AS,X is defined as the distribution that generates
a pair (a, b := a · S⊤ + e) obtained by choosing a ←$ Zn

q and an error vector
e ←$ XN where the i-th row of S ∈ ZN×n

q is the secret si. Using a standard
hybrid argument, it can be shown that distinguishing S from uniformly random
is as hard as the LWEn,q,X problem.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) is an efficiently computable deterministic func-
tion that is computationally indistinguishable from a truly random function.

Definition 3 (PRF). A pseudorandom function family F = {FK}K∈Kλ
with

keyspace Kλ is a family of functions FK : X → Y such that FK can be computed
in poly(λ) time and for any x ∈ X , FK(x) cannot be distinguished from a random
function (RF) in polynomial time. For all PPT adversaries A, the advantage of
A in distinguishing a PRF from a RF is given by

AdvPRF
A (λ) =

∣∣∣Pr[AFK (·)(λ) = 1]− Pr[ARF(·)(λ) = 1]
∣∣∣ ≤ negl(λ)

3 Decentralized Private Stream Aggregation

In this section, we formally define a decentralized PSA (DPSA) scheme and give
a concrete construction based on the LWE problem. Consider a scenario with ℓ
users for some ℓ ∈ N and an untrusted aggregator. We consider the users to be
semi honest, i.e., honest but curious. Each user generates private data xi,t with
respect to some time stamp t and wishes to compute the sum

∑ℓ
i=1 xi,t securely

and privately. In Private Stream Aggregation (PSA) the sum can be computed by
the aggregator given only the encrypted values of the user’s data while preserving
the user’s privacy. The users encrypt their data xi,t using a user specific secret
key ski before sending it to the aggregator. The aggregator then performs the

8 Uddipana Dowerah and Aikaterini Mitrokotsa

aggregating function on the encrypted data and recovers the sum of the input
data using an aggregator decryption key dk0. In a centralized PSA scheme, the
encryption and decryption keys are generated by a trusted setup. Since the setup
in DPSA is decentralized, the users need to generate the aggregator decryption
key themselves apart from their own encryption keys. Each user generates a share
of the aggregator key and sends it to the aggregator in a secure way without
revealing their individual keys. Upon receiving the partial keys from all the users,
the aggregator can recover its decryption key for aggregation.

Definition 4 (Decentralized Private Stream Aggregation). A decentral-
ized private stream aggregation scheme over a message space M consists of the
following PPT algorithms:

Setup(1λ, 1ℓ): This is a procedure between the users. It takes the security param-
eter λ and the number of users ℓ and generates the public parameters pp and
their own secret keys ski for i ∈ [ℓ]. The public parameters pp is an implicit
input to the rest of the algorithms.

AggKeyGenShare(i, ski): It takes user index i and secret key ski and outputs the
partial aggregator key dki.

AggKeyGen({dki}i∈[ℓ]): It takes the partial aggregator keys dki for i ∈ [ℓ] and
computes aggregator decryption key dk0 =

∑ℓ
i=1 dki.

Enc(i, ski, xi,t, t): It takes as input the user index i, the secret key ski, timestamp
t and input data xi,t ∈M and outputs a ciphertext cti,t.

AggDec(dk0, {cti,t}i∈[ℓ], t): It outputs the aggregated sum xt =
∑ℓ

i=1 xi,t from
the ciphertexts {cti,t}i∈[ℓ] using dk0 for the time period t.

Here, the Setup algorithm is run between the users to generate the public
parameters pp and their secret keys ski. The users compute partial aggregator
keys dki using AggKeyGenShare and sends dki to the aggregator. The aggregator
computes its decryption key dk0 using dk0 ← AggKeyGen({dki}i∈[ℓ]). Each user i
then encrypts their input xi,t at timestamp t such that cti,t ← Enc(i, ski, xi,t, t).
The aggregator outputs xt ← AggDec(dk0, {cti,t}i∈[ℓ], t). The algorithms Setup,
AggKeyGenShare and AggKeyGen are run only once in the beginning of the pro-
tocol.

Correctness: The above DPSA scheme DPSA=(Setup, AggKeyGenShare, Ag-
gKeyGen, Enc, AggDec) is said to be correct if for any λ, ℓ ∈ N, any message
xi,t ∈M, it holds that

Pr

AggDec(dk0, {cti,t}i∈[ℓ], t) =
ℓ∑

i=1

xi,t :

(pp, {ski}i∈[ℓ])← Setup(1λ, 1ℓ)
{dki}i∈[ℓ] ← AggKeyGenShare(i, ski)
dk0 ← AggKeyGen({dki}i∈[ℓ])
cti,t ← Enc(i, ski, xi,t, t)

 = 1

Decentralized Private Stream Aggregation from Lattices 9

Security: The security of a private stream aggregation scheme is captured by
the notion of aggregator obliviousness. It requires that the aggregator does not
learn anything more than the aggregated value of their input values at each
time period. If some parties collude with the aggregator then it requires that
the aggregator only learns the aggregated value of the honest users and nothing
more. Further, each user encrypts their data only once every time period.

Definition 5 (Aggregator Obliviousness for DPSA). The aggregator obliv-
iousness security for a DPSA scheme can be defined in terms of the security ex-
periment AOβ(λ, ℓ,A) given in Figure 1. No adversary A should be able to win
this game with non-negligible advantage.

AOβ(λ, ℓ,A)
1: (pp, {ski}i∈[ℓ])← Setup(1λ, 1ℓ)
2: β ← AQCorr(·),QEnc(·,·,·,·),QChallenge(·,·,·,·)(pp)
3: if condition (∗) is satisfied then
4: output β
5: else
6: output 0

Fig. 1: Aggregator Obliviousness experiment for DPSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:

• Corruption oracle QCorr(i): The adversary submits an integer i ∈
{1, . . . , ℓ} and gets back the i-th user’s secret key ski. If the adversary submits
i = 0, then it gets dkj ← AggKeyGenShare(j, skj) for all j ∈ [ℓ].

• Encryption oracle QEnc(i, xi,t, t): The adversary submits (i, xi,t, t) and
receives cti,t,← Enc(i, ski, xi,t, t) from the challenger.

• Challenge oracle QChallenge(U , {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t∗ and for each i ∈ U , the adversary chooses two sets of
inputs x0

i,t∗ , x1
i,t∗ . The challenger randomly samples b← {0, 1} and returns

cti,t∗ ← Enc(ski, x0
i,t∗ , t∗) for all i ∈ U if b = 0 and cti,t∗ ← Enc(ski, x1

i,t∗ , t∗)
for all i ∈ U if b = 1.

Finally, the adversary outputs a guess b′ for the value of b and the experiment
outputs β depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let Et∗ be the set of users for which an encryption query
has been made at time t∗. Let Qt∗ := U ∪ Et∗ be the set of users for which A

10 Uddipana Dowerah and Aikaterini Mitrokotsa

receives an encryption or a challenge ciphertext at timestamp t∗. The condition
(∗) is satisfied if all of the following conditions hold:

– U ∩ CS = ∅: The set of users specified duirng the Challenge phase must be
uncorrupted at the end of the game.

– Adversary A has not queried QEnc(i, xi,t, t∗) for the same i and t∗. Other-
wise, this would violate the encrypt-once policy.

– U ∩ Et∗ = ∅: The adversary cannot query challenge ciphertexts to the users
in Et∗ . In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t∗.

– If the adversary has compromised the aggregator and Qt∗ ∪ CS = [ℓ], then
the following condition must be satisfied.∑

i∈U
x0

i,t∗ =
∑
i∈U

x1
i,t∗

We set β ← b′ if the above conditions are satisfied, otherwise we set β = 0.
A DPSA scheme is said to be aggregator oblivious if for any PPT adversary

A, there exists a negligible function negl such that

AdvAO
A,DPSA(λ, ℓ) = |Pr[AO0(λ, ℓ,A) = 1]− Pr[AO1(λ, ℓ,A) = 1]| ≤ negl(λ)

If an adversary can corrupt the parties only at the beginning of the protocol,
then we say that the scheme is secure against static corruptions. On the other
hand, if an adversary can corrupt the parties dynamically during the execution
of the protocol, then we say that the scheme is secure against adaptive corrup-
tions. For static security, the corruption queries are sent by the adversary before
obtaining the public parameters.

3.1 Our Construction

Our concrete DPSA scheme over the plaintext spaceM := Zn
p can be described

in terms of the following PPT algorithms.

Setup(1λ, 1ℓ): This is a protocol between the users. Let H be a hash function
mapping from the domain of all timestamps onto Zn

q . Let X be a B-bounded
distribution over Z. Each user generates a matrix Si←$Xn×n and interactively
generates secret shares Vi ← Zn×n

q of 0 such that
∑ℓ

i=1 Vi = 0 mod q. Output
public parameters pp = (p, q, n, ℓ, H,X) and user secret keys ski = (Si, Vi) for
i ∈ [ℓ]. The public parameters pp is an implicit input to all the algorithms.

AggKeyGenShare(i, ski): Given user index i and secret key ski = (Si, Vi), com-
pute partial aggregator key dki = Si + Vi (mod q).

AggKeygen({dki}i∈[ℓ]): Given {dki}i∈[ℓ], compute aggregator decryption key

dk0 :=
ℓ∑

i=1
dki =

ℓ∑
i=1

(Si + Vi) =
ℓ∑

i=1
Si (mod q) = S0 (1)

Decentralized Private Stream Aggregation from Lattices 11

Enc(i, ski, xi,t, t): Given input xi,t ∈ Zn
p and timestamp t, sample ei,t ← Xn.

Set yt := H(t) ∈ Zn
q and compute the ciphertext cti,t as

cti,t = xi,t + yt · S⊤i + p · ei,t (mod q) (2)

AggDec
(
dk0, {cti,t}i∈[ℓ], t

)
: Compute yt = H(t) and output the aggregated sum

xt =
[(

ℓ∑
i=1

cti,t − yt · S⊤0 (mod q)
)]

p

(3)

Correctness: The correctness of the sum can be verified as follows:
ℓ∑

i=1
cti,t − yt · S⊤0 (mod q) =

ℓ∑
i=1

xi,t + p ·
ℓ∑

i=1
ei,t (mod q) (4)

The magnitude of the sum of the errors is bounded by ℓ · p · B where B is
the maximum bound on the error distribution X . The magnitude of the sum
of the inputs is bounded by ℓ · p

2 . If ℓ·p
2 (1 + 2B) < q

2 , then
∑ℓ

i=1 xi,t + p ·∑ℓ
i=1 ei,t (mod q) =

∑ℓ
i=1 xi,t + p ·

∑ℓ
i=1 ei,t and reducing it modulo p removes

the error and recovers the sum
∑ℓ

i=1 xi,t.

3.2 Aggregator Obliviousness

We show that the proposed construction achieves aggregator obliviousness with
static corruptions in the encrypt-once security model under the hardness of the
LWE problem.

Theorem 1. For any PPT adversary A against the aggregator obliviousness
game, there exists a PPT adversary B against the LWE problem such that

AdvAO
A (λ, ℓ) ≤ (8ℓ3 + 4ℓ2) · AdvLWE

B (λ)

Proof. We use similar ideas from [15] to prove this Theorem. WLOG, we assume
that the adversary queries the QChallenge oracle only at one timestamp t∗ that
has not been queried to the QEnc oracle.

We proceed via a series of Games Gi for i ∈ {0, 1, 2, 3} described in Fig 4 of
Appendix B. A summary of the transitions is provided in Table 2. We denote
the advantage of A in game Gi using AdvA(Gi). Similar to [15], we consider two
cases. I) When the adversary corrupts the aggregator : The adversary can decrypt
the sum in this case and therefore, we need to make sure that the sum remains
unchanged throughout the games. II) When the adversary does not corrupt the
aggregator : In this case we can directly go from game G0 to G3 using a hybrid
argument over all the users.

Game G0: This is the AO0 game where the challenge query is answered with
the encryption of x0

i,t.

12 Uddipana Dowerah and Aikaterini Mitrokotsa

Table 2: A summary of the games used in the proof of Theorem 1. Change in
each game is highlighted with a square box

Game cti,t Justification

G0
ci,t ← yt · Si + p · ei,t

cti,t ← x0
i,t + ci,t

AO0 game

G1

c′
i,t ← yt · Si + p · ei,t

ci,t ← c′
i,t + ri , ri ← SS(0)

cti,t ← x0
i,t + ci,t

LWE assumption

G2

c′
i,t ← yt · Si + p · ei,t

ci,t ← c′
i,t + ri, ri ← SS(0)

cti,t ← x1
i,t + ci,t

information-
theoretic

G3
ci,t ← yt · Si + p · ei,t

cti,t ← x1
i,t + ci,t

LWE assumption

Game G1: In Game G1, we change the way the vectors ci,t in QChallenge are
generated. The challenge query is still answered with encryptions of x0

i,t but we
add a share of a perfect µ-out-of-µ secret sharing of zero denoted by ri ← SS(0)
to ci,ts where µ is the number of users in the challenge query. We need to make
this change in such a way that the aggregate sum on decryption remains the
same. The transition from G0 to G1 can be proved via a hybrid argument over
the ℓ users relying on the LWE assumption.

Lemma 2 (Transition from G0 to G1). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|AdvA(G0)− AdvA(G1)| ≤ 2ℓh(h− 1) · AdvLWE
B (λ)

Proof. To prove this transition, we use a sequence of hybrid games G0.l for l ∈ [ℓ]
defined in Fig 5 of Appendix B. Note that, G0 := G0.1 and G1 := G0.ℓ. The goal
in each hybrid game is to add a perfect secret share of 0 to the LWE mask
ci,t := yt · S⊤i + p · ei,t of one more user. Let µ := |U| where U := {i1, . . . , iµ} is
the set of users specified by A during QChallenge. Let K := min(µ, l). If K ≥ 2
in hybrid step l, then a share of a perfect K-out-of-K secret sharing of 0 is added
to the LWE masks of the first K users in U . This can be done using two users at
a time and the condition K ≥ 2 is needed to go from one hybrid to another. To
prove the indistinguishability of G1 from G0, it suffices to show that the adjacent
games G0.l−1 and G0.l are computationally indistinguishable. Precisely, we have

|AdvA(G0)− AdvA(G1)| =
ℓ∑

l=1
|AdvA(G0.l−1)− AdvA(G0.l)|

If there is an adversary A that can distinguish G0.l−1 from G0.l, then there
exists an adversary B against the LWEn,q,X assumption. We consider the case

Decentralized Private Stream Aggregation from Lattices 13

K ≥ 2. In G0.l−1, we have secret shares added to ci,t = yt · S⊤i + p · ei,t of the
first K − 1 users in U . To add a share of a perfect K-out-of-K secret sharing of
0 to the K-th user in U , B first guesses the first and the K-th users of U such
that i∗1 ←$ [HS], i∗K ←$ [HS] \ {i∗1} where HS = [ℓ] \ CS is the set of honest
users. B then samples Si ←$ Xn×n and Vi ←$ Zn×n

q for i ∈ [ℓ] \ {i∗1, i∗K}. It
can therefore set ski := (Si, Vi) for i ∈ CS and send them to A. It also samples
aggregator key S0 ← Xn×n uniformly at random. If the guess is incorrect, the
simulation aborts the game and outputs 0. If the guess is correct then it replaces
ci∗

1 ,t with a random vector bt ←$ Zn
q using the LWE assumption on Si∗

1
. To

make sure that the sum S0 =
∑ℓ

i=1 Si is satisfied, we need to modify ci∗
K

,t as
ci∗

K
,t := H(t) · S0 − H(t)

∑
j∈[ℓ]\{i∗

1 ,i∗
K
} Sj − bt. Then ci∗

1 ,t and ci∗
1 ,t + uK are

indistinguishable where uK ←$ Zn
q . Then, replace ci∗

1 ,t back with yt ·S⊤i∗
1
+p·ei∗

1 ,t

using the LWE assumption on Si∗
1
.

The guessing of the users i∗1 and i∗K incurs a security loss of h(h−1) where h
is the number of users in HS. Therefore for all l ∈ {2, . . . , ℓ] there exists a PPT
adversary B such that

|AdvA(G0.l−1)− AdvA(G0.l)| ≤ h(h− 1) · AdvLWE
B

Summing up for all the hybrid games, it leads to a security loss of ℓh(h − 1).
Since the reduction is applied twice, total loss is 2ℓh(h−1). Therefore, we obtain
a PPT adversary B such that

|AdvA(G0)− AdvA(G1)| ≤ 2ℓh(h− 1) · AdvLWE
B

Now, we are in game G1 and QChallenge(U , {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗) in G1
is answered with x0

i,t∗ + ci,t∗ +
∑

j∈U\{i1} uj for i = i1 and x0
i,t∗ + ci,t∗ − ui for

i ∈ U \ {i1}. This is clear that these shares form a perfect µ out of µ secret
sharing of 0. Further, the corruption queries in G1 are answered as follows.
On input i ∈ [CS], B returns the key ski to A. If the adversary corrupts the
aggregator, then QCorr queries are answered with partial decryption keys for
the honest users because the keys for the corrupted users can be generated by
the adversary itself. To answer QCorr(0), B first generates secret shares of 0 for
all the honest users, Ri ← SS(0) and computes

dki = Si + Vi + Ri for i ∈ HS \ {i∗1, i∗K}

dki∗
1

= S0 −
∑

j∈[CS]

(Sj + Vj) + Ri1∗

dki∗
K

= −
∑

j∈HS\{i∗
1 ,i∗

K
}

(Sj + Vj) + Ri∗
K

Game G2: In this game, all the challenge queries are answered with encryptions
of x1

i,t instead of x0
i,t. This is possible because the secret shares hide all the

information on the individual ciphertexts.

Lemma 3 (Transition from G1 to G2). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

14 Uddipana Dowerah and Aikaterini Mitrokotsa

|AdvA(G1)− AdvA(G2)| ≤ 2 · AdvLWE
B (λ)

Proof. Let Qt∗ be the set of users for which A has a ciphertext at timestamp t∗

and let HS be the set of honest users. We consider the following two cases here.

Case 1 (Qt∗ = HS): In this case, the adversary receives a ciphertext for all
the honest users at timestamp t∗ either from the encryption oracle or from the
challenge oracle. Then Qt∗ ∪CS = [ℓ] and the condition

∑
i∈U x0

i,t∗ =
∑

i∈U x1
i,t∗

must be satisfied. Let ri be the pads added to the ciphertexts of the users in U
at the end of game G1, where

ri =

∑

i∈U\{i1}
ui if i = i1

−ui if i ∈ U \ {i1}
(5)

These ri’s are perfect secret shares of 0. Therefore {x0
i,t +ci,t +ri}i∈U and {x1

i,t +
ci,t + ri}i∈U are perfect secret shares of

∑
i∈U (x0

i,t + ci,t) and
∑

i∈U (x1
i,t + ci,t)

respectively. Since,
∑

i∈U x0
i,t∗ =

∑
i∈U x1

i,t∗ , {x0
i,t +ci,t +ri}i∈U and {x1

i,t +ci,t +
ri}i∈U are perfect secret shares of the same secret and are therefore perfectly
indistinguishable from each other.

Case 2 (Qt∗ ̸= HS): In this case, there exists an honest user from which the
adversary does not get a ciphertext at timestamp t∗. Therefore the condition∑

i∈U x0
i,t∗ =

∑
i∈U x1

i,t∗ does not hold in this case. Since HS is known in ad-
vance, it is possible to identify an user in HS \ Qt∗ that is not in U . B then
chooses two such users ih ∈ HS \ Qt∗ and iu ∈ U and simulates the ciphertexts
as follows. For i = iu, B sets ci,t = bt where bt is a random vector in Zn

q . For
i = ih, B sets ci,t = H(t) · S0 −

∑
i∈[ℓ]\ih

H(t) · Si + ei,t. Next, we change the
challenge queries from encryption of x0

i,t to encryptions of x1
i,t. For b ∈ {0, 1},

we have
∑

i∈U (xb
i,t + ci,t) =

∑
i∈U\iu

(xb
i,t + ci,t) + xb

iu,t + ciu,t. Since ciu,t is a
random vector in Zn

q , {x0
i,t + ci,t + ri}i∈U and {x1

i,t + ci,t + ri}i∈U are secret
shares of a random value. Therefore, they are indistinguishable from each other.
Finally, we change the random vector with an LWE mask again.

Game G3: In this game we remove the secret shares from the challenge cipher-
texts. Therefore, this game is identical to AO1 where the challenge queries are
answered with encryptions of x1

i,t.

Lemma 4 (Transition from G2 to G3). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|AdvA(G2)− AdvA(G3)| ≤ 2ℓh(h− 1) · AdvLWE
B (λ)

Proof. This is symmetric to the transition from G0 to G1 applying the changes
backwards.

For the case when the adversary does not corrupt the aggregator, we can
directly go from G0 to G3.

Decentralized Private Stream Aggregation from Lattices 15

Lemma 5 (Transition from G0 to G3). For all PPT adversaries A, that do
not corrupt the aggregator, there exists a PPT adversary B such that

|AdvA(G0)− AdvA(G3)| ≤ 2ℓh · AdvLWE
B (λ)

Proof. In this case, the adversary does not corrupt the aggregator and we can
directly go from G0 to G3 using a hybrid argument over all the users. Let U :=
{i1, . . . , iµ} be the set of users specified in the challenge phase. The hybrid game
Hl is given by

Hl : ci,t∗ =
{

Enc(i, x0
i,t∗ , t∗) if i = iτ for τ > l

Enc(i, x1
i,t∗ , t∗) if i = iτ for τ ≤ l

In other words, in Hl, the challenge query is answered with encryptions of x1
i,t∗

for i ∈ {i1, . . . , il} and with encryptions of x0
i,t∗ for the rest of the users. Note

that G0 = H0 and G3 = Hℓ. It suffices to show that the adjacent games Hl−1
and Hl are computationally indistinguishable. Let A be an adversary that can
distinguish Hl−1 and Hl. Then there exists an adversary B against the LWE
problem. In Hl−1, the challenge query for users iτ with τ ≤ l − 1 is answered
with encryptions of x1

iτ ,t∗ and for users iτ with τ > l − 1, it is answered with
encryptions of x0

iτ ,t∗ . The simulation B first guesses the user il ←$ [HS] and
replaces ci,t∗ = H(t∗) ·S⊤i +p ·ei,t∗ for i = il with a random vector bt∗ using the
LWE assumption on Si. Then x0

i,t∗ + ci,t∗ is computationally indistinguishable
from x1

i,t∗ +ci,t∗ for i = il. Then, change ci,t∗ back to ci,t∗ = H(t∗) ·S⊤i +p ·ei,t∗

for i = il.
The guessing of the user il incurs a loss of h where h is the number of

uncompromised users and this leads to ℓh for ℓ hybrid games. Total loss in this
case is 2ℓh. Therefore, there is a PPT adversary B such that

|AdvA(G0)− AdvA(G3)| ≤ 2ℓh · AdvLWE
B (λ)

3.3 Parameters

In this section, we describe how to choose parameters for the proposed scheme
for correctness and security. The LWE problem is parameterised by n, q,X where
X is a discrete Gaussian distribution with mean 0 and standard deviation σ. The
choice of n, q, σ determines the security level of the scheme. For correctness, we
need ℓ·p

2 (1 + 2B) < q
2 .

We use the the LWE estimator [1] and the condition for correctness to deter-
mine parameters for a security level of 128 bits. Given n, modulus q is determined
for an error distribution with standard deviation σ = 3.2. We give example pa-
rameters for 128 bit security level in Table 3 when the secret is sampled from
the error distribution.

Further, we compare the size of the ciphertexts between our DPSA scheme
and the noise scaled version of SLAP as shown in Table 4. For a smaller number

16 Uddipana Dowerah and Aikaterini Mitrokotsa

of users, the ciphertext size of the proposed DPSA scheme is either the same as
or smaller than that of the SLAP scheme. However, for a larger number of users,
the SLAP scheme has a slightly better ciphertext size compared to the proposed
DPSA scheme.

Table 3: Example parameters for the DPSA scheme with LWE dimension n,
modulus q and noise distribution with standard deviation σ = 3.2 for 128-bit
security level for varying number of users ℓ and plaintext modulus p

No. of users log p n log q Ciphertext
bytes

100 16 1200 29 4350
1000 16 1400 31 5425
10000 32 2510 51 16001
1013 32 4892 80 48920
1015 128 13800 183 315675
1021 128 17300 203 438987

Table 4: Comparison of ciphertext size between SLAP and our DPSA scheme

No. of
users

log p log q Ciphertext bytes

SLAPNS DPSA SLAPNS DPSA
1000 16 28 31 16384 5425
10000 32 48 51 16384 16001
1015 128 184 183 196608 315675
1021 128 204 203 262144 438987

3.4 Decentralized Setup

In the proposed DPSA construction, the setup is an interactive protocol between
the users who generate their own keys and share it with the aggregator in a secure
way. The aggregator then recovers the aggregate key for decryption which is the
sum of the user keys. The users can generate their keys by sampling Si uniformly
at random from Xn×n(Zq) and setting ski = Si for i ∈ [ℓ]. To share the key
with the aggregator, each user adds a random pad to their key which when
added sums to zero. These random pads can be generated using a secret sharing
protocol among the users. Each user Ui generates secret shares {Vi,1, . . . , Vi,ℓ}

Decentralized Private Stream Aggregation from Lattices 17

of 0 and shares Vi,j with user Uj for j ∈ [ℓ] \ {i}. User Ui then generates its pad
as Vi =

∑ℓ
j=1 Vj,i for i ∈ [ℓ] which is added to its secret key and the partial key

Si + Vi is sent to the aggregator. When these partial keys are added together,
the Vis sum to zero and the aggregator recovers S0 =

∑ℓ
i=1 Si.

The communication cost per client during setup is sending one share to every
other user and sending the partial key to the aggregator. The computational cost
involves generating its share Vi and computing the partial aggregator key dki.
The setup is executed only once in the beginning of the protocol and does not
affect the overall performance of the scheme.

3.5 Client Failures

If a client fails to submit its input message, then the aggregator cannot evaluate
the sum because the equation S0 =

∑ℓ
i=1 Si does not satisfy (because of the

missing ciphertext) and the decryption outputs a random value. Chan et al. [11]
proposed a generic solution to deal with this problem and it is applicable to all
PSA schemes. They use differential privacy and allow the aggregator to learn
partial sums of the user’s inputs such that the total sum can always be computed
for the non-failing clients.

Their idea is to use a binary tree where the leaf nodes represent the clients
and the intermediate nodes represent the partial sums of the clients beneath
that node. Technically, the aggregator and the clients run an instance of the
PSA protocol for each intermediate node. Therefore, each client generates log ℓ
ciphertexts using log ℓ secret keys corresponding to the number of nodes from
the client to the root of the binary tree. The aggregator is given an aggregator
key for each intermediate node. The aggregator will always be able to compute
the sum for the non-failing clients, albeit with an increase in noise in the overall
sum. For example, consider the binary tree in Figure 2 [11] for ℓ = 8. The
notation [i, j] denotes the sum of the inputs of clients {i, . . . , j}. If client 4 fails,
the aggregator fails to obtain the sums [4, 4], [3, 4] and [1, 4]. The aggregator
then uses the blocks corresponding to the black nodes in the tree to compute
the sum of the remaining clients.

3.6 Optimizing Peer-to-Peer Communication

As a byproduct of the fault tolerance technique, we can also use the binary
tree to reduce peer-to-peer communication among the clients during the setup
phase. Instead of generating secret shares for all the ℓ−1 clients, each client can
now generate shares only for those clients with whom they share an intermediate
node. This will reduce the communication cost per client during the setup phase.

3.7 Dynamic Join and Leave

Dynamic Join: Chan et al. [11] proposed the idea to create a tree with more
leaf nodes than the number of clients to accommodate future client joining. In a
centralized scheme, the trusted setup generates secret keys for every leaf node.

18 Uddipana Dowerah and Aikaterini Mitrokotsa

Fig. 2: When client 4 fails, the aggregator uses the partial sums corresponding
to the black nodes

The additional clients that have not joined the protocol yet are considered as
failed until they join. Once a new client joins it receives a secret key from the
setup. However, the trusted party needs to be present when a new client joins.
In our DPSA scheme, we can use this technique as follows. When a new client
Uℓ+1 joins the protocol before the computation of a new sum, the client first
generates a uniformly random Sℓ+1 ∈ Xn×n and sets Sℓ+1 as its secret key. The
client can broadcast its joining to the other clients through a bulletin board.
Then each client that shares an intermediate node with the new client, chooses
a new secret key and generates secret shares of zero and send these shares to the
other clients that they share a node with. Using these shares, the clients then
generate new aggregator keys and shares them with the aggregator. This is done
for all the log ℓ nodes.

Dynamic Leave: If some clients leave the protocol before the evaluation of a new
sum, we can consider them as permanently failed. For the remaining clients, one
possible solution is to run the Setup again. This will update their pads Vi, which
now consist of shares from the remaining users. Similarly, the aggregator receives
a new key consisting of partial keys from the remaining users. Since the setup is
decentralized, the users do not need to depend on a trusted entity to generate
the updated pads or the updated aggregator key which makes it more practical
than having a centralized setup.

4 DPSA in the Standard Model

In this section, we give a possible construction of a DPSA scheme in the standard
model. We use similar ideas from [26] that uses a weak PRF to construct a PSA
scheme based on the LWE problem. However, in [26], the number of timestamps
is bounded as it needs to be fixed in the setup phase. We show how to get
unbounded timestamps using a PRF. Let F1 := {FS | FS : Zn

q → Zn
q , S ∈ Zn×n

q }

Decentralized Private Stream Aggregation from Lattices 19

such that FS(t) = t · S⊤ + e. Here F1 is a randomized weak pseudorandom
function family as described in [2,3]. Let F2 = {FK | FK : Z→ Zn

q , K ∈ Kλ} be
a PRF family such that FK(i) = ti ∈ Zn

q . Then, a DPSA scheme in the standard
model can be described in terms of the following algorithms.

Setup(1λ, 1ℓ): This is a protocol between the users. Each user generates a
matrix Si ←$ Zn×n

q and interactively generates Vi ← Zn×n
q such that∑ℓ

i=1 Vi = 0 mod q. Choose PRF key K ← Kλ and output public parame-
ters pp = (p, q, n, ℓ, K,X) and each user’s secret key ski = (Si, Vi). Since the
PRF key is a public information, one of the clients can choose this key and
broadcast it to the other clients.

AggKeyGenShare(i, ski): Given user index i and secret key ski = (Si, Vi), com-
pute partial aggregator key dki = Si + Vi (mod q).

AggKeygen({dki}i∈[ℓ]): Given {dki}i∈[ℓ], compute aggregator decryption key

dk0 :=
ℓ∑

i=1
dki =

ℓ∑
i=1

(Si + Vi) =
ℓ∑

i=1
Si (mod q) = S0 (6)

Enc(i, ski, xi,t, t): Given input xi,t ∈ Zn
p and a timestamp t = tj , generate a

vector tj = FK(j) ∈ Zn
q . Sample ei,t ← Xn and compute the ciphertext cti,t as

cti,t =
⌊

q

p

⌋
· xi,t + tj · S⊤i + ei,t (mod q) (7)

AggDec
(
dk0, {cti,t}i∈[ℓ], t

)
: Given timestamp t = tj , generate the vector tj =

FK(j) ∈ Zn
q and compute the aggregated sum as

xt =
[⌊

p

q

(
ℓ∑

i=1
cti,t − tj · S⊤0 (mod q)

)⌉]
p

(8)

Correctness: Correctness follows similarly as described in Section 3.1. At
timestamp t = tj , we have

ℓ∑
i=1

cti,t − tj · S⊤0 (mod q) =
ℓ∑

i=1

⌊
q

p

⌋
· xi,t +

ℓ∑
i=1

ei,t (mod q) (9)

Observe that for an odd prime q,

ℓ∑
i=1

⌊
q

p

⌋
· xi,t =

⌊
q

p

⌋
·

ℓ∑
i=1

[xi,t]p −
1
2

(
ℓ∑

i=1
xi,t −

ℓ∑
i=1

[xi,t]p

)
(10)

20 Uddipana Dowerah and Aikaterini Mitrokotsa

To make sure that
⌊

q
p

⌋
·
∑ℓ

i=1 xi,t +
∑ℓ

i=1 ei,t does not flow over the modulus q,
we need to ensure that∣∣∣∣∣

∣∣∣∣∣
ℓ∑

i=1
ei,t −

1
2

(
ℓ∑

i=1
xi,t −

ℓ∑
i=1

[xi,t]p

)∣∣∣∣∣
∣∣∣∣∣
∞

<
q

2 (11)

This is satisfied when ℓ
2 (p + 2B) < q

2 .

Security: The security of the above DPSA scheme can be proved using the
same proof strategy as described in Section 3.2. It can be proved using a hybrid
argument consisting of the games outlined in Table 5. Here G0 corresponds to
the AO0 game where QChallenge queries are answered with an encryption of x0

i,t

and G3 corresponds to the AO1 game where the challenge queries are answered
with an encryption of x1

i,t.
The transition from G0 to G1 consists of adding perfect secret shares of 0

denoted by ri ← SS(0) to the challenge ciphertexts. It can be achieved by
replacing the PRF FSi(tj) with a random function (RF) and using a sequence
of hybrid games as described in Lemma 2. Transition from G1 to G2 can be done
similarly by changing the PRF with an RF for the two users as described in
Case 2 of Lemma 3. Case 1 follows directly from Lemma 3. Finally, transition
from G2 to G3 consists of making the changes backwards.

Table 5: Hybrid games for the AO security of the DPSA scheme in the standard
model. Change in each games is highlighted with a square box

Game cti,t Justification

G0
ci,t ← FSi (tj)
cti,t ← ci,t + ⌊q/p⌋ · x0

i,t
AO0 game

G1

c′
i,t ← FSi (tj)
ci,t ← c′

i,t + ri , ri ← SS(0)
cti,t ← ci,t + ⌊q/p⌋ · x0

i,t

ci,t indistinguishable
from random

G2

c′
i,t ← FSi (tj)

ci,t ← c′
i,t + ri, ri ← SS(0)

cti,t ← ci,t + ⌊q/p⌋ · x1
i,t

information-
theoretic

G3
ci,t ← FSi (tj)

cti,t ← ci,t + ⌊q/p⌋ · x1
i,t

ci,t indistinguishable
from random

5 Conclusion

In this paper, we presented a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We gave a

Decentralized Private Stream Aggregation from Lattices 21

formal definition of a DPSA scheme and presented a concrete construction based
on the LWE problem both in the random oracle model as well as the standard
model. We proved the security of the DPSA scheme under the aggregator obliv-
iousness notion with static corruptions. Further, we discussed possible solutions
for practical deployments such as clients joining and leaving the system. In ad-
dition, we provided sample parameters for the concrete construction based on
the LWE assumption, and demonstrated that our scheme achieves comparable
ciphertext sizes to that of SLAP [24] for equivalent plaintext spaces.

Acknowledgements. This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Advances
in Cryptology-CRYPTO 2009: 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. pp. 595–618. Springer
(2009)

3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Ad-
vances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings 31. pp. 719–737. Springer (2012)

4. Becker, D., Guajardo, J., Zimmermann, K.H.: Revisiting private stream aggrega-
tion: Lattice-based psa. In: In NDSS 2018. The Internet Society, 2018. vol. 2, p. 5
(2018)

5. Bell, J., Gascón, A., Lepoint, T., Li, B., Meiklejohn, S., Raykova, M., Yun, C.:
{ACORN}: Input validation for secure aggregation. In: 32nd USENIX Security
Symposium (USENIX Security 23). pp. 4805–4822 (2023)

6. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly) logarithmic overhead. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 1253–
1269 (2020)

7. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Transactions on Information and System
Security (TISSEC) 18(3), 1–21 (2016)

8. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191 (2017)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Proceedings of the forty-fifth annual ACM symposium
on Theory of computing. pp. 575–584 (2013)

22 Uddipana Dowerah and Aikaterini Mitrokotsa

10. Brorsson, J., Gunnarsson, M.: Dipsauce: Efficient private stream aggre-
gation without trusted parties. IACR Cryptology ePrint Archive (2023),
https://eprint.iacr.org/2023/214

11. Chan, T.H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault
tolerance. In: Financial Cryptography and Data Security: 16th International Con-
ference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Se-
lected Papers 16. pp. 200–214. Springer (2012)

12. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part II 24. pp. 703–732. Springer (2018)

13. Emura, K.: Privacy-preserving aggregation of time-series data with public ver-
ifiability from simple assumptions. In: Information Security and Privacy: 22nd
Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3–5, 2017,
Proceedings, Part II 22. pp. 193–213. Springer (2017)

14. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power con-
sumption with smart meters. In: Applied Cryptography and Network Security:
10th International Conference, ACNS 2012, Singapore, June 26-29, 2012. Proceed-
ings 10. pp. 561–577. Springer (2012)

15. Ernst, J., Koch, A.: Private stream aggregation with labels in the standard model.
Proc. Priv. Enhancing Technol. 2021(4), 117–138 (2021)

16. Fereidooni, H., Marchal, S., Miettinen, M., Mirhoseini, A., Möllering, H., Nguyen,
T.D., Rieger, P., Sadeghi, A.R., Schneider, T., Yalame, H., et al.: Safelearn: Secure
aggregation for private federated learning. In: 2021 IEEE Security and Privacy
Workshops (SPW). pp. 56–62. IEEE (2021)

17. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Financial Cryptography and Data Security: 17th International Con-
ference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17.
pp. 111–125. Springer (2013)

18. Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: Puda–privacy and unforgeabil-
ity for data aggregation. In: International Conference on Cryptology and Network
Security. pp. 3–18. Springer (2015)

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. 37th Annual ACM Symposium on Theory of Computing pp. 84–93 (2005)

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

21. Shi, E., Chan, H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation
of time-series data. In: Annual Network & Distributed System Security Symposium
(NDSS). Internet Society. (2011)

22. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994)

23. Takeshita, J., Carmichael, Z., Karl, R., Jung, T.: Terse: Tiny encryptions and re-
ally speedy execution for post-quantum private stream aggregation. In: Security
and Privacy in Communication Networks: 18th EAI International Conference, Se-
cureComm 2022, Virtual Event, October 2022, Proceedings. pp. 331–352. Springer
(2023)

24. Takeshita, J., Karl, R., Gong, T., Jung, T.: Slap: Simpler, improved private stream
aggregation from ring learning with errors. Journal of Cryptology 36(2), 8 (2023)

Decentralized Private Stream Aggregation from Lattices 23

25. Tsaloli, G., Liang, B., Brunetta, C., Banegas, G., Mitrokotsa, A.: Deva: Decentral-
ized, verifiable secure aggregation for privacy-preserving learning. In: International
Conference on Information Security. pp. 296–319. Springer (2021)

26. Valovich, F.: Aggregation of time-series data under differential privacy. In: Progress
in Cryptology–LATINCRYPT 2017: 5th International Conference on Cryptology
and Information Security in Latin America, Havana, Cuba, September 20–22, 2017,
Revised Selected Papers. pp. 249–270. Springer (2019)

27. Waldner, H., Marc, T., Stopar, M., Abdalla, M.: Private stream aggregation from
labeled secret sharing schemes. IACR Cryptology ePrint Archive 2021, 81 (2021),
https://eprint.iacr.org/2021/081

Appendix

A Private Stream Aggregation

Definition 6 (Private Stream Aggregation [21]). A private stream aggre-
gation scheme over an input space M consists of the following PPT algorithms:

Setup(1λ, 1ℓ): Takes as input the security parameter λ and number of users ℓ and
generates public parameters pp, user secret keys ski and aggregator decryption
key dk0. Each user gets the corresponding secret key ski for i ∈ [ℓ] and the
aggregator receives the decrption key dk0. The public parameters pp is implicitly
an input to all the algorithms.

Enc(i, ski, xi,t, t): Takes as input the user index i, the secret key ski, the input
xi,t ∈ M and generates an encryption of xi,t using ski. Outputs the ciphertext
cti,t.

AggDec(dk0, {cti,t}i∈[ℓ], t): Takes the aggregator decryption key dk0 and cipher-
texts {cti,t}i∈[ℓ] for the time period t and outputs the aggregated sum xt =∑ℓ

i=1 xi,t.

Correctness: The above PSA scheme PSA=(Setup, Enc, AggDec) is said to be
correct if for any λ, ℓ ∈ N, any message xi,t ∈M, it holds that

Pr
[

AggDec(dk0, {cti,t}i∈[ℓ], t) =
ℓ∑

i=1
xi,t :

(pp, {ski}i∈[ℓ], dk0)← Setup(1λ, 1ℓ)
cti,t ← Enc(i, ski, xi,t, t)

]
= 1

Definition 7 (Aggregator Obliviousness for PSA). The aggregator obliv-
iousness security for a PSA scheme can be defined in terms of the security ex-
periment AOβ(λ, ℓ,A) given in Figure 3. No adversary A should be able to win
this game with non-negligible advantage.

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:

24 Uddipana Dowerah and Aikaterini Mitrokotsa

AOβ(λ, ℓ,A)
1: (pp, {ski}i∈[ℓ], dk0)← Setup(1λ, 1ℓ).
2: β ← AQCorr(·),QEnc(·,·,·,·),QChallenge(·,·,·,·)(pp)
3: if condition (∗) is satisfied then
4: output β
5: else
6: output 0

Fig. 3: Aggregator Obliviousness experiment for PSA

• Corruption oracle QCorr(i): The adversary submits an integer i ∈
{1, . . . , ℓ} and gets back the i-th user’s secret key ski. If the adversary submits
i = 0, then it gets the aggregator decryption key dk0.

• Encryption oracle QEnc(i, xi,t, t): The adversary submits (i, xi,t, t) and
receives cti,t,← Enc(i, ski, xi,t, t) from the challenger.

• Challenge oracle QChallenge(U , {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t∗ and for each i ∈ U , the adversary chooses two sets of
inputs x0

i,t∗ , x1
i,t∗ . The challenger randomly samples b← {0, 1} and returns

cti,t∗ ← Enc(ski, x0
i,t∗ , t∗) for all i ∈ U if b = 0 and cti,t∗ ← Enc(ski, x1

i,t∗ , t∗)
for all i ∈ U if b = 1.

Finally, the adversary outputs a guess b′ for the value of b and the experiment
outputs β depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let Et∗ be the set of users for which an encryption query
has been made at time t∗. Let Qt∗ := U ∪ Et∗ be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t∗. The condition
(∗) is satisfied if all of the following conditions hold:

– U ∩ CS = ∅: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

– Adversary A has not queried QEnc(i, xi,t, t∗) for the same i and t∗. Other-
wise, this would violate the encrypt-once policy.

– U ∩ Et∗ = ∅: The adversary cannot query challenge ciphertexts to the users
in Et∗ . In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t∗.

– If the adversary has compromised the aggregator and Qt∗ ∪ CS = [ℓ], then
the following condition must be satisfied.∑

i∈U
x0

i,t∗ =
∑
i∈U

x1
i,t∗

Decentralized Private Stream Aggregation from Lattices 25

We set β ← b′ if the above conditions are satisfied, otherwise we set β = 0.
A PSA scheme is said to be aggregator oblivious if for any PPT adversary

A, there exists a negligible function negl such that

AdvAO
A,PSA(λ, ℓ) = |Pr[AO0(λ, ℓ,A) = 1]− Pr[AO1(λ, ℓ,A) = 1]| ≤ negl(λ)

B Games for the proof of Theorem 1

26 Uddipana Dowerah and Aikaterini Mitrokotsa

G0 G1 G2 G3

CS ← A(1λ, 1ℓ)
(pp, {ski}i∈[ℓ])← Setup(1λ, 1ℓ).
β ← AQCor(·),QEnc(·,·,·,·),QChallenge(·,·,·,·)(pp, {ski}i∈CS)
Output β if condition (∗) is satisfied; otherwise output 0

QCorr(i)

if i ∈ [CS] then
return ski

if i = 0 then
dkj ← AggKeyGenShare(j, skj) ∀j ∈ HS
for all j ∈ [HS] do Rj ←$ Zn×n

q s.t.
∑

j∈[HS]
Rj = 0

if j = i1, dkj = S0 −
∑

i∈CS
(Si + Vi) + Rj

if j = iK , dkj = −
∑

i∈HS\{i1,iK }
(Si + Vi) + Rj

if j = iτ for τ ∈ HS \ {i1, iK}, dkj = Sj + Vj + Rj

return {dkj}j∈HS

QEnc(i, xi,t, t)

cti,t ← Enc(pp, ski, xi,t, t)
return cti,t

QChallenge(U, {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗)

Let U := {i1, . . . , iµ}
for all τ ∈ {2, . . . , µ} do uτ ←$ Zn

q
for all i ∈ U do

ci,t∗ := yt∗ · S⊤
i + p · ei,t∗ ∈ Zn

q ; ei,t∗ ← Xn

if µ ≥ 2 then
if i = i1, ci,t∗ = ci,t∗ +

∑µ

τ=2
uτ

if i = iτ for τ ∈ {2, . . . , µ}, ci,t∗ = ci,t∗ − uτ

cti,t := x0
i,t∗ + ci,t∗ (mod q)

cti,t := x1
i,t∗ + ci,t∗ (mod q)

return cti,t

Fig. 4: Games for the proof of Theorem 1. Here HS := [ℓ] \ CS. Condition (∗)
is given in Definition 5.

Decentralized Private Stream Aggregation from Lattices 27

G0.l−1 for l ∈ {1, . . . , ℓ}:

CS ← A(1λ, 1ℓ)
i∗

1 ←$ [HS], i∗
K ←$ [HS] \ {i∗

1}
(pp, {ski}i∈[ℓ])← Setup(1λ, 1ℓ)
β ← AQCor(·),QEnc(·,·,·,·),QChallenge(·,·,·,·)(pp, {ski}i∈CS)
Output β if condition (∗) is satisfied AND the game was not aborted; otherwise
output 0

QCorr(i)

if i ∈ [CS] then
return ski

if i = 0 then
dkj ← AggKeyGenShare(j, skj) ∀j ∈ HS
for all j ∈ [HS] do Rj ←$ Zn×n

q s.t.
∑

j∈[HS]
Rj = 0

if j = i1, dkj = S0 −
∑

i∈CS
(Si + Vi) + Rj

if j = iK , dkj = −
∑

i∈HS\{i1,iK }
(Si + Vi) + Rj

if j = iτ for τ ∈ HS \ {i1, iK}, dkj = Sj + Vj + Rj

return {dkj}j∈HS

QEnc(i, xi,t, t)

ci,t = yt · S
⊤
i + p · ei,t

If i = i∗
1 , ci,t = bt, bt ←$ Zn

q

If i = i∗
K , ci,t = H(t) · S0 −H(t)

∑
j∈[ℓ]\{i∗

1 ,i∗
K

}
Sj − bt

cti,t = xi,t + ci,t

return cti,t

QChallenge(U, {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗)

Let U := {i1, . . . , iµ} and K = min(µ, l)
for all τ ∈ {2, . . . , K} do uτ ←$ Zn

q

for all i ∈ U do
ci,t∗ := yt∗ · S⊤

i + p · ei,t∗

if K ≥ 2 then
if i1 ̸= i∗

1 and iK ̸= i∗
K then abort game

if i = i1, ci,t∗ = ci,t∗ +
∑K

τ=2
uτ

if i = iτ for τ ∈ {2, . . . , K}, ci,t∗ = ci,t∗ − uτ

cti,t∗ := x0
i,t∗ + ci,t∗ (modq)

return cti,t

Fig. 5: Games for the proof of Lemma 2

