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Abstract

We show the following unconditional results on quantum commitments in two related yet different
models:

1. We revisit the notion of quantum auxiliary-input commitments introduced by Chailloux, Kerenidis,
and Rosgen (Comput. Complex. 2016) where both the committer and receiver take the same
quantum state, which is determined by the security parameter, as quantum auxiliary inputs. We
show that computationally-hiding and statistically-binding quantum auxiliary-input commitments
exist unconditionally, i.e., without relying on any unproven assumption, while Chailloux et al.
assumed a complexity-theoretic assumption, QIP ̸⊆ QMA. On the other hand, we observe
that achieving both statistical hiding and statistical binding at the same time is impossible even
in the quantum auxiliary-input setting. To the best of our knowledge, this is the first example of
unconditionally proving computational security of any form of (classical or quantum) commitments
for which statistical security is impossible. As intermediate steps toward our construction, we
introduce and unconditionally construct post-quantum sparse pseudorandom distributions and
quantum auxiliary-input EFI pairs which may be of independent interest.

2. We introduce a new model which we call the common reference quantum state (CRQS) model
where both the committer and receiver take the same quantum state that is randomly sampled
by an efficient setup algorithm. We unconditionally prove that there exist statistically hiding and
statistically binding commitments in the CRQS model, circumventing the impossibility in the plain
model.

We also discuss their applications to zero-knowledge proofs, oblivious transfers, and multi-party computa-
tions.
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1 Introduction

Commitments are one of the most fundamental primitives in cryptography. A committer commits a bit string
to a receiver, and later it is opened. The receiver cannot learn the committed message until it is opened
(hiding), and the committer cannot change the message once it is committed (binding). It is easy to see that in
classical cryptography, it is impossible to achieve both statistical hiding and statistical binding at the same
time (i.e., hiding and binding hold against computationally unbounded adversaries).1 It is well-known that
the no-go holds even in quantum cryptography where quantum computing and quantum communication are
possible [LC97, May97]. Thus, there have been many researches on quantum commitments with computational
hiding or binding where the computational power of the adversary is assumed to be quantum polynomial-time
(QPT) [DMS00, CLS01, KO09, KO11, YWLQ15, MY22b, AQY22, HMY23]. A natural question is what
is the minimal assumption that implies quantum commitments. In the classical setting, the existence of
commitments is known to be equivalent to the existence of one-way functions [HILL99, Nao91]. In the
quantum setting, Brakerski, Canetti, and Qian [BCQ23] (based on an earlier work by Yan [Yan22]) recently
showed that the existence of quantum commitments is equivalent to the existence of EFI pairs, which are pairs
of two efficiently generatable quantum states that are statistically far but computationally indistinguishable.
Some useful quantum cryptographic primitives such as oblivious transfers (OTs) and multiparty computations
(MPCs) can be constructed from EFI pairs [BCKM21, GLSV21, MY22b, AQY22]. Moreover, various
quantum cryptographic primitives imply EFI pairs including pseudorandom states generators [JLS18],
private-key quantum money with pure banknotes [JLS18, KT23], one-way states generators with pure output
states [MY22b, KT23], and one-time-secure secret-key encryption [MY22a]. The ultimate goal would be to
prove the existence of EFI pairs unconditionally, i.e., without relying on any unproven assumption, which leads
to the unconditional existence of commitments (and, consequently, OTs and MPCs).2 However, despite recent
progress in understanding the computational complexity of EFI pairs (their complexity cannot be captured
within traditional complexity classes of classical inputs and outputs [LMW23], and instead requires the study
of unitary complexity classes [BEM+23]), this yet seems to be far from the reach of current knowledge of
quantum complexity theory.

(Quantum) auxiliary-input commitments. Chailloux, Kerenidis, and Rosgen [CKR16] studied
computationally-secure quantum commitments in an auxiliary-input setting where the honest committer and
receiver can take classical or quantum auxiliary inputs (which are not necessarily efficiently generatable) for
executing the protocol.3 Such auxiliary-input versions of cryptographic primitives have often been studied
when we only assume worst-case assumptions that do not imply conventional notions of cryptographic
primitives [OW93, Vad06, Nan21]. The paper [CKR16] obtained feasibility results on classical and quantum
auxiliary-input quantum commitments based on some worst-case complexity assumptions. Specifically, they
showed that:

• if QSZK ⊈ QMA, then there are classical auxiliary-input quantum commitments (that are statistically
binding and computationally hiding), and

1Let Comm(b, x) be the commitment of the bit b with the decommitment x. Because it is statistically hiding, there should be
another x′ such that Comm(b⊕ 1, x′) = Comm(b, x). However, then, an unbounded malicious committer can compute x′ to break
the binding.

2One might (wrongly) think that because EFI pairs are equivalent to commitments, and statistically-secure commitments are
impossible, EFI pairs may not exist unconditionally. However, this is not correct. The unconditional existence of a cryptographic
primitive and its statistical security are not the same and should not be confused. Here, we mean unconditional existence (i.e.,
existence without any assumption) of computationally-secure commitments (i.e., hiding or binding is computational).

3Quantum auxiliary inputs are called quantum advice in [CKR16]. We use “auxiliary input” and “advice” interchangeably.
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• if QIP ⊈ QMA, then there are quantum auxiliary-input commitments4 (both statistically hiding and
computationally binding as well as statistically binding and computationally hiding).

Brakerski, Canetti, and Qian [BCQ23] gave an alternative construction of classical auxiliary-input quantum
commitments assuming QCZK ⊈ BQP. However, it seems still out of reach of the current knowledge of
quantum complexity theory to unconditionally prove any of these complexity-theoretic assumptions.

1.1 Our Results

Quantum auxiliary-input commitments. Perhaps surprisingly, we show that quantum auxiliary-input
commitments exist unconditionally, i,e., without relying on any unproven assumption.

Theorem 1.1. There exist quantum auxiliary-input commitments that satisfy computational hiding and
statistical binding.

We stress that the unconditional construction does not mean that our construction satisfies statistical
hiding and statistical binding. Rather, we prove that our construction satisfies computational hiding and
statistical binding without relying on any unproven assumption. Indeed, we show that it is impossible to
achieve both statistical hiding and statistical binding simultaneously even in the quantum auxiliary-input
setting by extending the impossibility result in the plain model [LC97, May97]. To the best of our knowledge,
this is the first example of any form of (classical or quantum) commitments for which statistical security is
impossible but computational security is proven unconditionally.

Post-quantum sparse pseudorandom distributions and quantum auxiliary-input EFI. As intermediate
steps to show the above theorem, we introduce two new primitives, namely, a post-quantum version of sparse
pseudorandom distributions defined in [GK92] and a quantum auxiliary-input version of EFI pairs,5 and show
their existence unconditionally.

Theorem 1.2. There exist post-quantum sparse pseudorandom distributions and quantum auxiliary-input EFI
pairs.

A sparse pseudorandom distribution is a (not necessarily efficiently samplable) classical distribution
supported by a sparse subset but indistinguishable from the uniform distribution against classical non-uniform
polynomial-time distinguishers. Goldreich and Krawczyk [GK92] showed the existence of such distributions
unconditionally. We extend sparse pseudorandom distributions to the post-quantum setting where the
distinguishers are QPT with quantum advice, and construct them unconditionally. Quantum auxiliary-input
EFI pairs are the same as the EFI pairs except that the two states are not necessarily efficiently generatable.
We construct quantum auxiliary-input EFI pairs from post-quantum sparse pseudorandom distributions,
which shows the unconditional existence of quantum auxiliary-input EFI pairs. Interestingly, in the classical
case, it is not known how to construct (even auxiliary-input) classical commitments from classical sparse
pseudorandom distributions.

4When we consider the quantum auxiliary-input setting, we omit “quantum” before “commitments” since it is clear that they must
be quantum commitments given that the auxiliary input is quantum.

5Quantum auxiliary-input EFI pairs are mentioned in [BCQ23] without a formal definition.
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Application to zero-knowledge. As an application of our quantum auxiliary-input commitments, we plug
them into Blum’s Hamiltonicity protocol [Blu87] to obtain the following theorem.

Theorem 1.3. There exist zero-knowledge proofs for NP in the quantum auxiliary-input setting with
non-uniform simulation (with quantum advice) and soundness error 1/2.

We can also use our quantum auxiliary-input commitments to instantiate the 3-coloring protocol of
[GMR89] and the quantum Σ-protocol for QMA of [BG22]. On the other hand, unfortunately, we do not know
how to instantiate the construction of OTs of [BCKM21] using our quantum auxiliary-input commitments.
This is due to the fact that there may not be an efficient way to generate the quantum auxiliary-input, which
prevents us from applying Watrous’ rewinding lemma [Wat09] that is used in the security proof in [BCKM21].6

Commitments in the CRQS model. Our result on quantum auxiliary-input commitments is interesting
theoretically, but it does not have any real-world applications since there is no efficient way to generate the
quantum auxiliary input. Thus, we consider an alternative model that involves only efficiently generatable
states. Specifically, we introduce a new notion that we call the common reference quantum state (CRQS)
model,7 where an efficient setup algorithm randomly samples a classical key k and then distributes many
copies of a (pure) quantum state |ψk⟩ associated with the key k. It is a natural quantum analog of the common
reference string model in classical cryptography.

At first glance, the CRQS model may look similar to the quantum auxiliary-input setting since in both
settings, the committer and receiver receive some quantum state as a resource for executing the protocol.
However, the crucial differences are that:

1. quantum auxiliary input may not be efficiently generatable, but CRQS must be efficiently generated by
the setup algorithm, and

2. quantum auxiliary input must be a fixed quantum state that is determined by the security parameter
whereas the CRQS is associated with some classical random key k that should be hidden from the
adversary.8

Thus, the two settings are incomparable. Nonetheless, we can use a similar idea to construct commitments in
the CRQS model unconditionally:

Theorem 1.4. There exist commitments in the CRQS model that satisfy statistical hiding against adversaries
that are given bounded polynomial number of copies of the CRQS |ψk⟩ and statistical binding against
adversaries that are given the classical key k.9

We remark that our scheme in the CRQS model satisfies both statistical hiding and statistical binding
simultaneously unlike the quantum auxiliary-input one where the hiding is only computational. This is made

6A knowledgeable reader may wonder why we could prove quantum zero-knowledge even though the original proof in the plain
model also uses Watrous’ rewinding lemma. This is because we can avoid using Watrous’ rewinding lemma in the fully non-uniform
simulation setting (see Section 1.2).

7[DLS22] also introduced a model which they call the CRQS model, but their model is different from ours. In their CRQS model,
parties may take arbitrarily entangled quantum states as setup. In our opinion, this is a quantum analog of the correlated randomness
model [IKM+13] rather than the common reference string model.

8Later we will see that this property enables the CRQS model to realize statistically-secure commitments.
9The honest receiver gets only a single copy of CRQS |ψk⟩, but we consider a malicous receiver that collects many copies of |ψk⟩.

Similarly, the honest committer gets only a single copy of CRQS |ψk⟩, but we consider a malicious committer that takes the secret
key k. These relaxations just make the theorem stronger.
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possible by the assumption that the number of copies of the CRQS given to the hiding adversary (malicious
receiver) is bounded. We explain why the no-go result of [LC97, May97] does not extend to this setting in
Section 1.2. It is worth noting that the no-go result does extend to quantum commitments in the (classical)
common reference string (CRS) model10, which demonstrates a fundamental difference between the CRQS
and CRS models. More generally, we show that the no-go result extends to the correlated randomness
model,11 if the correlation of the strings sent to the committer and the receiver is too strong or too weak. See
Appendix A for details.

Applications to OTs and MPCs. As an application of our quantum commitments in the CRQS model, we
can plug them into the compiler of [BCKM21] to obtain the following theorem:

Theorem 1.5. There exist maliciously simulation-secure OTs in the CRQS model that is statistically secure
against adversaries that are given bounded number of copies of CRQS.

We note that we can apply the compiler of [BCKM21] unlike in the quantum auxiliary-input setting since
the CRQS |ψk⟩ can be efficiently generated given the classical key k, which can be sampled by the simulator
itself.12 Moreover it is known that OTs imply MPCs for classical functionalities [IPS08] or even for quantum
functionalities [DGJ+20] in a black-box manner. Thus, we believe that similar constructions work in the
CRQS model, which would lead to statistically maliciously simulation-secure MPCs in the CRQS model.
However, for formally showing them, we have to carefully reexamine these constructions to make sure that
they work in the CRQS model as well. This is out of the scope of this work, and we leave it to future work.

1.2 Technical Overview

Post-quantum sparse pseudorandom distributions. We start from recalling the notion of sparse pseu-
dorandom distributions introduced by Goldreich and Krawczyk [GK92]. We say that a family {Dλ}λ∈N of
distributions Dλ over {0, 1}λ is a sparse pseudorandom distribution if it satisfies the following:

Sparseness: The support of Dλ is sparse, i.e., |Supp(Dλ)|
2λ = negl(λ), where Supp(Dλ) denotes the support

of Dλ;

Pseudorandomness: A string sampled from Dλ is computationally indistinguishable from a uniformly
random λ-bit string against non-uniform classical polynomial-time distinguishers.

We stress that Dλ is not assumed to be efficiently samplable. Goldreich and Krawczyk [GK92] gave an
unconditional proof for the existence of sparse pseudorandom distributions. Their proof is based on a simple
counting argument where they rely on the fact that the number of possible classical circuits of size s is at
most 2s2 .

We consider the post-quantum version of sparse pseudorandom distributions where we require pseudoran-
domness against non-uniform QPT distinguishers. If we only consider QPT distinguishers with classical
advice, then a similar counting argument works. However, when we consider QPT distinguishers with
quantum advice, then such a simple counting argument no longer works since the number of possible s-qubit
states is double exponential rather than exponential in s even if we consider the ϵ-net with sufficiently small

10In the CRS model, a bit string x is sampled by the setup algorithm, and the same x is sent to both the committer and receiver.
11In the correlated randomness model, a pair of bit strings (x, y) is sampled by the setup algorithm, x is sent to the committer, and

y is sent to the receiver.
12Note that we allow the simulator to “program” the CRQS similarly to conventional simulation-based security in the classical

CRS model. See Appendix B for the precise definition of the simulation-based security for OTs in the CRQS model.
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ϵ. Looking ahead, we need pseudorandomness against QPT distinguishers with quantum advice for our
construction of quantum auxiliary-input commitments, and thus we first need to resolve this problem.

Our key observation is that we can rely on recent progress on quantum random oracle model with
quantum auxiliary-input [HXY19, CLQ20, CGLQ20, Liu23] to resolve the issue. In particular, Liu proved
that a length doubling random function H : {0, 1}⌊λ/2⌋ → {0, 1}λ is a PRG against adversaries that take
polynomial-size quantum advice ρH that depends on H and make polynomially many quantum queries to H ,
i.e., the adversary cannot distinguish H(x) for uniformly random x← {0, 1}⌊λ/2⌋ from a uniformly random
string y ← {0, 1}λ. In particular, we will only need the result in the setting where the adversary does not
make any query to H . By an averaging argument, this implies that for any fixed (possibly unbounded-time)
adversary A, there exists H∗ such that H∗(x) for uniformly random x ← {0, 1}⌊λ/2⌋ is indistinguishable
from a uniformly random string y ← {0, 1}λ for A with any polynomial-size quantum advice. In particular,
if A is a quantum universal Turing machine, we can encode any non-uniform QPT computation into the
quantum advice of A. Thus, by using the corresponding function H∗, we can see that the distribution of
H∗(x) for x← {0, 1}⌊λ/2⌋ is computationally indistinguishable from the uniformly random distribution over
{0, 1}λ against any non-uniform QPT distinguishers with quantum advice. Moreover, it is clear that the
distribution is sparse since the size of the support of the distribution is at most 2⌊λ/2⌋ whereas the size of the
whole space is 2λ. This means that the distribution is a post-quantum sparse pseudorandom distribution.

Quantum auxiliary-input EFI pairs. Our next step is rather conceptual: We regard post-quantum sparse
pseudorandom distributions as giving us an instance of quantum auxiliary-input EFI pairs. Here, quantum
auxiliary-input EFI pairs are defined similarly to EFI pairs except that we do not require the states to be
efficiently generatable but only require that the states are polynomial-size.13 That is, they are pairs of
two (not necessarily efficiently generatable) quantum states that are statistically far but computationally
indistinguishable. If {Dλ}λ∈N is a post-quantum sparse pseudorandom distribution, then the following two
states form a quantum auxiliary-input EFI pair:

ξλ,0 :=
∑

y∈{0,1}λ

Dλ(y) |y⟩ ⟨y| , ξλ,1 := 1
2λ

∑
y∈{0,1}λ

|y⟩ ⟨y| .

Indeed, they are statistically far by the sparseness and computationally indistinguishable by the post-quantum
pseudorandomness.

Quantum auxiliary-input commitments. We then convert quantum auxiliary-input EFI pairs into quantum
auxiliary-input commitments. In the plain model (where there is no auxiliary input), it is known that EFI
pairs imply quantum commitments (and in fact, they are equivalent) as folllows [BCQ23]. Let (ξ0, ξ1) be
an EFI pair. We can assume that the fidelity between ξ0 and ξ1 is negl(λ) without loss of generality since
otherwise we can exponentially decrease the fidelity by taking many copies of the state. For b ∈ {0, 1}, let
|ψb⟩ be a purification of ξb over registers X and Y where X is the original register for ξb and Y is the register
for purification. Then, a quantum commitment scheme is constructed as follows: to commit to a bit b, the
committer generates |ψb⟩ and sends register X to the receiver as a commitment. In the reveal phase, the
committer sends the corresponding purificaton register Y along with the revealed bit b. Then the receiver
applies a projective measurement (|ψb⟩ ⟨ψb| , I − |ψb⟩ ⟨ψb|) on the state in registers (X,Y) and accepts if the

13This is equivalent to requiring that the states can be generated by a non-uniform QPT algorithm with quantum advice since any
polynomial-size quantum state can be generated by the trivial algorithm that takes the state itself as quantum advice and simply
outputs it.
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first outcome is obtained, i.e., the state is projected onto |ψb⟩. Then the hiding and binding of the protocol
follows from computational indistinguishability and statistical farness of the EFI pair, respectively.

Our idea is to apply a similar construction in the quantum auxiliary-input setting. However, it does
not directly work. First, if (ξ0, ξ1) is a quantum auxiliary-input EFI pair, then |ψb⟩ may not be efficiently
generatable, and thus the committing procedure may not be efficiently done.14 To resolve this, we can include
(|ψ0⟩ , |ψ1⟩) in the quantum auxiliary input of the commitment scheme so that the committer can make use of
it.

The second issue is that the projective measurement (|ψb⟩ ⟨ψb| , I − |ψb⟩ ⟨ψb|) may not be efficiently
realized because again, |ψb⟩ may not be efficiently generatable. To resolve this issue, our idea is to let the
receiver perform the SWAP test between the state sent from the committer and another fresh copy of |ψb⟩
given as the receiver’s quantum auxiliary input and accept if the test accepts. Note that the SWAP test between
two states ρ and σ is accepted with probability 1+Tr(ρσ)

2 . Thus, the SWAP test by the receiver somewhat
checks if the state sent from the committer is close to |ψb⟩ or not. However, this is not sufficient: malicious
committers who sent other states can be accepted with probability at least 1/2, which breaks any meaningful
notion of binding. Nevertheless, we can amplify this by running the above protocol m = ω(log λ) times in
parallel by including m copies of (|ψ0⟩ , |ψ1⟩) in the quantum auxiliary input. We can expect the binding
error to be reduced to 2−m = negl(λ) while preserving the hiding property by a standard hybrid argument.

On definition of binding. While the proof of computational hiding is straightforward, proving binding
is technically not as straightforward as one would expect. In the beginning, it is already unclear how
we should define binding in the quantum auxiliary-input setting. The previous work [CKR16] adopted
the notion that is often called sum-binding and has been traditionally used in many works on quantum
commitments [DMS00, CLS01, KO09, KO11, MY22b].15 Sum-binding requires that after finishing the
commit phase, if we let pb be the probability that the committer can reveal the commitment to b and that
is accepted by the receiver for b ∈ {0, 1}, then we have p0 + p1 ≤ 1 + negl(λ). While this ensures some
non-trivial security, Unruh [Unr16] pointed out that it is not sufficient if we want to use the quantum
commitment as a building block of other cryptographic primitives such as zero-knowledge proofs and
OTs.16 For this reason, we adopt an extractor-based definition of binding introduced in [AQY22]. It
very roughly requires that there is a possibly inefficient extractor that extracts the committed bit from a
commitment. This definition enables us to define a classical bit committed in a quantum commitment, which
is quite useful in security proofs of other protocols. In Section 5, we show that our construction satisfies
the extractor-based binding by using an analysis of parallelly repeated SWAP tests [HM13] along with
a similar template to those used in the proof of the extractor-based binding in the plain model [AQY22, Yan22].

Application to zero-knowledge proofs. To demonstrate applicability of our quantum auxiliary-input
commitments, we use them to instantiate Blum’s Hamiltonicity protocol [Blu87]. This yields an unconditional
construction of computational zero-knowledge proofs for NP with soundness error 1/2 in the quantum
auxiliary-input setting, i.e., the honest prover and honest verifier are allowed to take a common quantum
auxiliary input. The proof of soundness is straightforward once we assume the extractor-based binding for the
commitment: It ensures that we can “extract” the classical committed bits from commitments, after which the

14In our particular construction of quantum auxiliary-input EFI pairs, |ψ1⟩ is efficiently generatable, but |ψ0⟩ is not. We consider a
more general setting where neither of them is efficiently generatable.

15To our knowledge, the term “sum-binding” was used in [Unr16] for the first time.
16In the plain model (where there is no quantum auxiliary-input), it is known that any (possibly interactive) quantum commitments

can be compiled into a non-interactive “canonical form” [Yan22] and sum-binding for canonical form quantum commitments is
sufficient for those applications [Yan22, AQY22, DS23]. However, this does not seem to work in the quantum auxiliary-input setting.
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analysis is identical to the classical case. Note that we are proving statistical soundness and thus it does not
matter that the extractor is inefficient. On the other hand, there is some subtlety in the proof, and actually
also in the definition, of the zero-knowledge property. Recall that the standard quantum zero-knowledge
property [Wat09] requires that there is a simulator that efficiently simulates the malicious verifier’s view by
using the same (possibly quantum) auxiliary-input as the verifier. We argue that this is unlikely to hold if
we instantiate Blum’s protocol using our quantum auxiliary-input commitments. In the protocol, the prover
sends commitments to bits derived from the witness of the statement being proven and later reveals some of
them. In our quantum auxiliary-input commitment scheme, after sending a commitment and then revealing
the committed bit, the receiver gets m copies of state |ψb⟩ that is included in the quantum auxiliary input.
Since |ψb⟩ is not necessarily efficiently generatable, this already gives some “knowledge” to the verifier, i.e.,
the simulator cannot efficiently simulate |ψb⟩. We believe that the above is just a definitional issue: Since the
honest prover and receiver use the quantum auxiliary input, it is reasonable to allow the simulator to use them
too. In particular, we define the zero-knowledge property by using a non-uniform simulator whose quantum
auxiliary input can depend on the malicious verifier’s quantum auxiliary input.17 While this is weaker than
the conventional definition of zero-knowledge, it still ensures meaningful security, in particular, it implies
witness indistinguishability.

Once we define the zero-knowledge property as above, its proof is rather straightforward. Remark that
the simulator’s quantum advice can include arbitrarily many copies of the quantum auxiliary input of the
malicious verifier and the honest prover. In this setting, rewinding is straightforward since the simulator can
use fresh quantum auxiliary input whenever it runs the prover and verifier. Thus, by a similar argument to the
classical case, we can prove the zero-knowledge property.

Commitments in the CRQS model. Next, we explain how to modify our construction to one in the
CRQS model. If we concretely write down our quantum auxiliary-input commitment scheme, its quantum
auxiliary-input consists of m copies of |ψ0⟩ =

∑
x∈{0,1}λ |H(x)⟩ |x||0λ⟩ and |ψ1⟩ =

∑
y∈{0,1}2λ |y⟩ |y⟩

where H : {0, 1}λ → {0, 1}2λ is an appropriately chosen function. Since H may not be efficiently
computable, the quantum auxiliary input may not be efficiently generatable. However, we observe that we
could actually use uniformly random H if we allow the quantum auxiliary input to be randomized. Thus, our
idea is to use many copies of |ψ0⟩ and |ψ1⟩ for a uniformly random H as a CRQS.18 Since the CRQS must be
efficiently generatable, we have to make sure that H is efficiently computable. While this is not possible if H
is a completely random function, it is known that a 2q-wise independent function is perfectly indistinguishable
from a uniformly random function if the function is given as an oracle and the distinguisher is allowed to
make at most q quantum queries [Zha12]. Therefore, as long as the number of copies of the CRQS that is
given to the adversary is at most t, then we can simulate the random function in quantum polynomial-time by
using a 2m(t+ 1)-wise independent function, which is computable in polynomial-time for any polynomial
t.19 This is the idea for our construction in the CRQS model. Remarkably, we can achieve statistical hiding
instead of computational hiding unlike the quantum auxiliary-input setting. This crucially relies on the fact
that the random classical key k is hidden from the adversary, in particular, the malicious receiver (see also the
next paragraph). So we can achieve both statistical hiding and statistical binding simultaneously in the CRQS
model.

17In this definition, the simulator is fully non-uniform, i.e., it can take arbitrary polynomial-size quantum auxiliary input. A more
conservative definition would be to allow the simulator to only take the quantum auxiliary inputs of the malicious verifier and the
honest prover, but we do not know how to prove such a variant.

18Though |ψ1⟩ is efficiently generatable, we include it in the CRQS for the ease of presentation.
19Note that we should use 2m(t+ 1)-wise independent function instead of 2mt since we need to also consider one copy of the

CRQS that is used by the honest committer.
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Why the standard no-go does not apply in the CRQS model. In the plain model, it is well-known that it
is impossible to simultaneously satisfy both statistical hiding and statistical binding [LC97, May97], and such
a result can also be extended to the quantum auxiliary-input setting. However, in the CRQS model, this no-go
theorem does not apply.

To see why this is the case, consider an attempt to apply the argument of the no-go theorem to the CRQS
model. In the CRQS model, the setup algorithm samples a hidden key k ← Kλ and sends |ψk⟩ to the
committer and receiver. Assume that the honest committer wants to commit a bit b ∈ {0, 1}. On input the
CRQS, |ψk⟩, the committer generates a state |Ψ(ψk, b)⟩R,C over two registers R and C, and sends C to the
receiver. The receiver’s state is then

σb := 1
|Kλ|

∑
k∈Kλ

TrR[|Ψ(ψk, b)⟩ ⟨Ψ(ψk, b)|R,C1
]⊗ |ψk⟩ ⟨ψk|C2

. (1)

Assume that the commitment scheme satisfies statistical hiding. Then TD(σ0, σ1) = negl(λ). However, due
to Uhlmann’s theorem [Uhl76], there exists a unitary on the registers that purify σb (in this case, the registers
S ∪ R of the setup algorithm and the committer) that transforms the purified version of σ0

1√
|Kλ|

∑
k∈Kλ

|k⟩S ⊗ |Ψ(ψk, 0)⟩R,C1
⊗ |ψk⟩C2

(2)

to a state that is negligibly close to a purified version of σ1. However, notice that unlike in the plain model,
this does not necessarily mean that the unbounded committer can break binding, because the committer
does not have access to the register S. In other words, the committer does not have the ability to modify the
classical key sampled by the setup algorithm. It is for this reason that the prohibition against statistically
binding, statistically hiding commitments fails to hold in this setting.

Applications in the CRQS model. Finally, we argue applications of our quantum commitments in the
CRQS model. We observe that we can simply plug our scheme into the compiler of [BCKM21] to obtain an
OT in the CRQS model. We remark that we can apply this compiler unlike in the quantum auxiliary-input
setting because the CRQS |ψk⟩ is efficiently generatable given the classical key k, which can be generated by
the simulator itself.

1.3 Concurrent Work

Qian [Qia23] concurrently and independently shows similar results to ours. In particular, he also gives
unconditionally secure quantum auxiliary-input commitments and quantum commitments in the CRQS model
(with stateful setup) using our terminology. As additional results that are not present in our work, he also
discusses how to generate the quantum auxiliary-input by exponential-time preprocessing and shows a barrier
for constructing a classical analog.

After exchanging our manuscripts and having some discussions, he came up with an idea of achieving
ϵ-simulation security using the compiler of [BCKM21]. This is presented in [Qia23, Appendix B].

2 Preliminaries

2.1 Basic notations

We use standard notations of quantum computing and cryptography. λ is the security parameter. negl is a
negligible function. poly is a polynomial. For any set A, x← A means that an element x of A is sampled
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fromA uniformly at random. For any algorithmA, y ← A(x) means that the algorithmA outputs y on input x.
For sets X and Y , Func(X ,Y) is the set consisting of the all functions from X to Y . |±⟩means 1√

2(|0⟩+ |1⟩).
For the notational simplicity, we often omit the normalization factor of quantum states. (For example, we
often denote 1√

2(|0⟩+ |1⟩) by |0⟩+ |1⟩.) For any quantum state ρA,B over the registers A and B, TrA(ρA,B)

is the partial trace over the register A. For any quantum states ρ and σ, F (ρ, σ) :=
(
Tr
√√

σρ
√
σ
)2

is the
fidelity, and TD(ρ, σ) := 1

2∥ρ− σ∥1 is the trace distance. For a pure state |ψ⟩, we write ∥ |ψ⟩ ∥ to mean the
Eucledian norm of |ψ⟩. I := |0⟩ ⟨0|+ |1⟩ ⟨1| is the two-dimensional identity operator. For simplicity, we
often write I⊗m just as I when the dimension is clear from the context. We write QPT to mean quantum
polynomial time. A non-uniform QPT algorithm A is specified by a family {Aλ, ρλ}λ∈N where Aλ and ρλ

are a quantum circuit of size poly(λ) and quantum advice of size poly(λ) that are used when the input length
is λ, respectively.

2.2 Lemmas

We review several lemmas that are proven in existing works.
It is known that random oracles work as pseudorandom generators (PRGs) against adversaries that make

quantum queries and take quantum advice.

Lemma 2.1 ([Liu23]). Let N , M , T , and S be positive integers. Let {σH}H be a family of S-qubit states
indexed by H : [N ]→ [M ]. For any oracle-aided algorithm A that makes at most T quantum queries to H ,
it holds that

∣∣∣Pr[1← AH(σH , y0)]− Pr[1← AH(σH , y1)]
∣∣∣ ≤ 8

√
2 ·min

γ>0


(
S(T + 1)
γN

+ T 2

N

) 1
2

+ γ


where H ← Func([N ], [M ]), x← [N ], y0 := H(x), and y1 ← [M ].

Corollary 2.2. Let N , M , and S be positive integers. Let {σH}H be a family of S-qubit states indexed by
H : [N ]→ [M ]. For any algorithm A that does not make any query, it holds that

|Pr[1← A(σH , y0)]− Pr[1← A(σH , y1)]| ≤ 16
√

2 ·
(
S

N

) 1
3

where H ← Func([N ], [M ]), x← [N ], y0 := H(x), and y1 ← [M ].

Proof. Set T := 0 and γ :=
(

S
N

) 1
3 in Lemma 2.1.

It is known that 2q-wise independent functions are indistinguishable from random functions by at most q
quantum queries.

Lemma 2.3 ([Zha12]). For any sets X and Y of classical strings and q-quantum-query algorithmA, we have

Pr[1← AH : H ← Func(X ,Y)] = Pr[1← AH : H ← H2q]

whereH2q is a family of 2q-wise independent functions from X to Y .

Lemma 2.4 ([HM13, Lemma 2]). Let ρ be a quantum state over m registers A1, ...,Am. Let σ be a quantum
state over m registers B1, ...,Bm. Let us consider the following test.

10



1. For each i ∈ [m], do the SWAP test20 between Ai and Bi.

2. Accept if all SWAP tests are successful.

Then the probability that the above test accepts is 1
2m

∑
S⊆[m] Tr[ρSσS ], where ρS is the state obtained by

tracing out all Ai of ρ such that i /∈ S, and σS is the state obtained by tracing out all Bi of σ such that i /∈ S.

Lemma 2.5 ([Yan20, Lemma 31]). Let |ψ0⟩X,Y and |ψ1⟩X,Y be pure states over registers (X,Y) such that

F (TrY(|ψ0⟩ ⟨ψ0|X,Y),TrY(|ψ1⟩ ⟨ψ1|X,Y)) = ϵ.

Then there is a projective measurement {Π0,Π1,Π⊥ := I − Π0 − Π1} over register X such that for each
b ∈ {0, 1}, ∥∥∥(ΠbX ⊗ IY) |ψb⟩X,Y

∥∥∥2
≥ 1−

√
2ϵ.

Lemma 2.6 ([Ras07, Lemma 4]). Let ρ and σ be any possibly subnormalized density operators. Then it
holds that

TD(ρ, σ) = max
Π

Tr(Π(ρ− σ))− Tr(ρ− σ)
2

where the maximum is taken over all projections Π.

3 Post-Quantum Sparse Pseudorandom Distributions

Goldreich and Krawczyk [GK92] introduced the notion of sparse pseudorandom distributions. A sparse
pseudorandom distribution is a distribution supported by a sparse subset but looks uniformly random against
non-uniform classical polynomial-time distinguishers. They showed that sparse pseudorandom distributions
unconditionally exist. Here, we introduce its post-quantum version where the distribution looks uniformly
random even against non-uniform QPT distinguishers. Then we show that post-quantum sparse pseudorandom
distributions also exist unconditionally.

Definition 3.1 (Post-quantum sparse pseudorandom distributions). We say that an ensemble {Dλ}λ∈N of
probabilistic distributions where Dλ is a distribution on {0, 1}λ is a post-quantum sparse pseudorandom
distribution if the following hold:

Sparseness: Dλ is sparse, i.e., |supp(Dλ)|
2λ = negl(λ).

(Non-uniform) post-quantum pseudorandomness: {Dλ}n∈N is computationally indistinguishable from
the uniform distribution for non-uniform QPT distinguishers. That is, for any non-uniform QPT
distinguisher {Aλ, ρλ}λ∈N,∣∣∣∣∣ Pr

yλ←Dλ

[Aλ(ρλ, yλ) = 1]− Pr
y′

λ
←{0,1}λ

[Aλ(ρλ, y
′
λ) = 1]

∣∣∣∣∣ = negl(λ).

Theorem 3.2. There exist post-quantum sparse pseudorandom distributions.
20The SWAP test for two states ρ0 and ρ1 is the following algorithm: On input |+⟩ ⟨+| ⊗ ρ0 ⊗ ρ1, apply the controlled-SWAP

gate so that the first qubit is the controlled qubit, and then measure the first qubit in the Hadamard basis. If the output is |+⟩, the test
is successful.
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Proof. For any ensembleH := {Hλ}λ∈N of functions Hλ : {0, 1}⌊λ/2⌋ → {0, 1}λ, let DH := {DH,λ}λ∈N
where DH,λ is the distribution of Hλ(x) for x← {0, 1}⌊λ/2⌋. Since the image size of Hλ is at most 2⌊λ/2⌋,
DH is an ensemble of sparse distributions for allH. For completing the proof, it suffices to prove that there
exists H such that DH is pseudorandom. For each λ ∈ N, function Hλ : {0, 1}⌊λ/2⌋ → {0, 1}λ, and a
quantum distinguisher Aλ with quantum advice ρλ, let Adv[Hλ,Aλ, ρλ] be the distinguisher’s advantage, i.e.,

Adv[Hλ,Aλ, ρλ] :=
∣∣∣∣∣ Pr
xλ←{0,1}⌊λ/2⌋

[Aλ(ρλ, Hλ(xλ)) = 1]− Pr
yλ←{0,1}λ

[Aλ(ρλ, yλ) = 1]
∣∣∣∣∣ .

For each λ ∈ N, let Sλ be the set consisting of all tuples (Aλ, ρλ) of a distinguisher and its quantum advice
such that the sum of the description size of Aλ (as a bit string) and the length of ρλ is at most 2λ/4. For each
λ ∈ N, let H∗λ be the “most pseudorandom” function against distinguishers in Sλ, i.e.,

H∗λ := argmin
Hλ

max
(Aλ,ρλ)∈Sλ

Adv[Hλ,Aλ, ρλ],

where argmin is taken over Hλ ∈ Func({0, 1}⌊λ/2⌋, {0, 1}λ) and let

ϵ∗(λ) := max
(Aλ,ρλ)∈Sλ

Adv[H∗λ,Aλ, ρλ].

Below, we prove that ϵ∗(λ) = negl(λ). If this is proven, it is easy to see that DH∗ for H∗ := {H∗λ}λ∈N is
pseudorandom noting that for any non-uniform QPT distinguisher {Aλ, ρλ}λ∈N, we have (Aλ, ρλ) ∈ Sλ for
sufficiently large λ. Thus, we are left to prove ϵ∗(λ) = negl(λ).

By the definitions of H∗λ and ϵ∗(λ), for any function Hλ ∈ Func({0, 1}⌊λ/2⌋, {0, 1}λ), there is
(AHλ

, ρHλ
) ∈ Sλ such that

Adv[Hλ,AHλ
, ρHλ

] ≥ ϵ∗(λ). (3)

For each λ, we consider an algorithm Bλ and a family {σHλ
}Hλ

of quantum advice indexed by functions
Hλ : {0, 1}⌊λ/2⌋ → {0, 1}λ that tries to break the inequality of Corollary 2.2 for N = 2⌊λ/2⌋ and M = 2λ as
follows.21

• The advice σHλ
is defined to be a tuple of (AHλ

, ρHλ
) and an additional bit b that takes 0 if

Prxλ←{0,1}⌊λ/2⌋ [Aλ(ρλ, Hλ(xλ)) = 1] − Pryλ←{0,1}λ [Aλ(ρλ, yλ) = 1] ≥ 0 and otherwise takes 1.
Note that the size S of σHλ

is at most 2λ/4 + 1 since (AHλ
, ρHλ

) ∈ Sλ.

• Bλ takes the advice σHλ
= (AHλ

, ρHλ
) and an input y ∈ {0, 1}λ, which is y = Hλ(x) for

x ← {0, 1}⌊λ/2⌋ or uniformly sampled from {0, 1}λ, and runs AHλ
on advice ρHλ

and input y.
If b = 0, Bλ outputs whatever AHλ

outputs and if b = 1, Bλ flips the output of AHλ
and outputs it.

It is easy to see that Bλ’s distinguishing advantage between the two cases is

E
Hλ

[Adv[Hλ,AHλ
, ρHλ

]] ≥ ϵ∗(λ)

where the inequality holds because Equation (3) holds for all Hλ. On the other hand, Corollary 2.2 implies
that the distinguishing advantage is at most 16

√
2
(

S
N

)
, which is negligible in λ. This implies that ϵ∗(λ) is

negligible in λ.

Remark 3.3. It was pointed out by Fermi Ma that an alternative conceptually simpler proof of Theorem 3.2
with a better bound is possible using the matrix Chernoff bound based on a similar idea to that used in
[LMW23, Section 2.2].

21We identify [N ] (resp. [M ]) with {0, 1}⌊λ/2⌋ (resp. {0, 1}λ) in a natural way.
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4 Quantum Auxiliary-Input EFI Pairs

Brakerski, Canetti, and Qian [BCQ23] introduced the notion of EFI pairs as a pair of two mixed states that are
efficiently generatable, statistically far, and computationally indistinguishable. Here, we consider its quantum
auxiliary-input version where the efficiently generatable requirement is omitted. We show that post-quantum
sparse pseudorandom distributions imply quantum auxiliary-input EFI pairs. From Theorem 3.2, it means
that quantum auxiliary-input EFI pairs unconditionally exist.

Definition 4.1 (Quantum auxiliary-input EFI pairs). A quantum auxiliary-input EFI pair is a family
{ξλ,b}λ∈N,b∈{0,1} of (mixed) states that satisfies the following:

Polynomial size: For each b ∈ {0, 1}, ξλ,b is a poly(λ)-qubit state.

Statistically far: TD(ξλ,0, ξλ,1) = 1− negl(λ).

Computational indistinguishability: ξλ,0 and ξλ,1 are computationally indistinguishable against non-
uniform QPT distinguishers. That is, for any non-uniform QPT distinguisher {Aλ, ρλ}λ∈N,

|Pr[Aλ(ρλ, ξλ,0) = 1]− Pr[Aλ(ρλ, ξλ,1) = 1]| = negl(λ).

Remark 4.2. In the original definition of EFI pairs in [BCQ23], the statistically far property only requires
that TD(ξλ,0, ξλ,1) = 1/poly(λ). However, this can be generically amplified to 1 − negl(λ) by parallel
repetition while preserving the computational indistinguishability. We note that we can use a hybrid argument
to show that parallel repetition preserves computational indistinguishability even though ξλ,b is not efficiently
generatable since we require computational indistinguishability against non-uniform distinguishes with
quantum advice.

Theorem 4.3. Quantum auxiliary-input EFI pairs exist.

Proof. Let {Dλ}λ∈N be a post-quantum sparse pseudorandom distribution, which exists by Theorem 3.2. We
define

ξλ,0 :=
∑

y∈{0,1}λ

Dλ(y) |y⟩ ⟨y|

ξλ,1 :=
∑

y∈{0,1}λ

2−λ |y⟩ ⟨y| .

They satisfy the polynomial size property since they are λ-qubit states. To see the statistically far property,
consider the following unbounded-size distinguisher: Given ξλ,0 or ξλ,1, measure the state in the computational
basis and output 0 if the measurement outcome belongs to |supp(Dλ)| and otherwise outputs 1. We can
see that its distinguishing advantage is 1 − |supp(Dλ)|

2λ = 1 − negl(λ) by the sparseness of {Dλ}λ∈N. This
implies TD(ξλ,0, ξλ,1) = 1− negl(λ). Finally, computational indistinguishability immediately follows from
post-quantum pseudorandomness of {Dλ}λ∈N.

5 Quantum Auxiliary-Input Commitments

In this section, we define quantum auxiliary-input commitments following [CKR16], and construct it without
relying on any assumption.
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5.1 Definition

We define quantum auxiliary-input commitments following [CKR16].

Definition 5.1 (Quantum auxiliary-input commitments [CKR16]). A (non-interactive) quantum auxiliary-
input commitment scheme is given by a tuple of QPT algorithms C (a committer), R (a receiver), and a family
{|ψλ⟩}λ∈N of poly(λ)-qubit states (referred to as quantum auxiliary inputs). The scheme is divided into the
following three phases, the quantum auxiliary-input phase, the commit phase, and the reveal phase.

• Quantum auxiliary-input phase: For the security parameter λ, a single copy of |ψλ⟩ is sent to C, and
a single copy of |ψλ⟩ is sent to R.

• Commit phase: C takes a bit b ∈ {0, 1} to commit (and |ψλ⟩ given in the first phase) as input,
generates a quantum state on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R takes (b,C,R) given by C (and |ψλ⟩ given in the
first phase) as input, and outputs b if it accepts and otherwise outputs ⊥.

As correctness, we require that R accepts with probability 1 if the protocol is run honestly.

Below, we define security of quantum auxiliary-input commitments. First, we define hiding and
sum-binding following [CKR16].

Definition 5.2 (Hiding). A quantum auxiliary-input commitment scheme (C,R, {|ψλ⟩}λ∈N) satisfies statistical
(resp. computational) hiding if for any non-uniform unbounded-time (resp. QPT) algorithm {Aλ, ρλ}λ∈N,

|Pr[1← Aλ(ρλ,TrR(σC,R)) : σC,R ← Ccom(|ψλ⟩ , 0)]−
Pr[1← Aλ(ρλ,TrR(σC,R)) : σC,R ← Ccom(|ψλ⟩ , 1)]| ≤ negl(λ)

where Ccom is the commit phase of C.

Remark 5.3. In the above definition, we do not explicitly include |ψλ⟩ as input toAλ. However, it holds even if
Aλ is given polynomially many copies of |ψλ⟩ since they could have been included in the quantum advice ρλ.

Definition 5.4 (Sum-binding). A quantum auxiliary-input commitment scheme (C,R, {|ψλ⟩}λ∈N) satisfies
statistical (resp. computational) sum-binding if the following holds. For any pair of non-uniform unbounded-
time (resp. QPT) malicious committers C∗0 and C∗1 that take |ψλ⟩ as a quantum auxiliary input and work in
the same way in the commit phase, if we let pb to be the probability that R accepts the revealed bit b in the
interaction with C∗b for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).

While the sum-binding is the notion used in the previous work [CKR16], we introduce a stronger definition
which we call extractor-based binding inspired by [AQY22]. The motivation of introducing this definition is
that it is more suitable for applications like zero-knowledge proofs.

Definition 5.5 (Extractor-based binding). A quantum auxiliary-input commitment scheme (C,R, {|ψλ⟩}λ∈N)
satisfies statistical (computational) extractor-based binding if there is a non-uniform unbounded-time algorithm
E = {Eλ}λ∈N (called the extractor) such that for any non-uniform unbounded-time (resp. QPT) malicious
committer C∗, RealC∗

λ and IdealC
∗,E

λ are indistinguishable against non-uniform unbounded-time (resp. QPT)
distinguishers where the experiments RealC∗

λ and IdealC
∗,E

λ are defined as follows.
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• RealC∗
λ : The malicious committer C∗ takes |ψλ⟩ as input, and interacts with the honest receiver R in

the commit and reveal phases. Let b ∈ {0, 1,⊥} be the output of R and τC∗ be the final state of C∗.
The experiment outputs a tuple (τC∗ , b).

• IdealC
∗,E

λ : C∗ takes |ψλ⟩ as input, and runs its commit phase to generate a commitment σC where C∗
may keep a state that is entangled with σC. Eλ takes the register C as input, outputs an extracted bit
b∗ ∈ {0, 1}, and sends a post-execution state on C (that may be different from the original one) to R as
a commitment. Then C∗ and R run the reveal phase. Let b be the output of R and τC∗ be the final
state of C∗. If b /∈ {⊥, b∗}, then the experiment outputs a special symbol fail and otherwise outputs a
tuple (τC∗ , b).

We can easily see the following lemma.

Lemma 5.6. Statistical (resp. computational) extractor-based binding implies statistical (resp. computational)
sum-binding.

Proof. Suppose that there are non-uniform unbounded-time (resp. QPT) malicious committers C∗0 and C∗1
that break statistical (resp. computational) sum-binding. This implies that

Pr[b0 = 0 : (τC∗
0
, b0)← RealC

∗
0

λ ] + Pr[b1 = 1 : (τC∗
1
, b1)← RealC

∗
1

λ ]− 1

is non-negligible. Here, C∗0 and C∗1 work in the same way in the commit phase. By statistical (resp.
computational) extractor-based binding, the above implies that

Pr[b0 = 0 : (τC∗
0
, b0)← IdealC

∗
0 ,E

λ ] + Pr[b1 = 1 : (τC∗
1
, b1)← IdealC

∗
1 ,E

λ ]− 1 (4)

is non-negligible. However, since C∗0 and C∗1 share the same commit phase and the extracted bit b∗ only
depends on the commit phase, we clearly have

Pr[b0 = 0 : (τC∗
0
, b0)← IdealC

∗
0 ,E

λ ] + Pr[b1 = 1 : (τC∗
1
, b1)← IdealC

∗
1 ,E

λ ] ≤ 1.

This contradicts the fact that Equation (4) is non-neglibible. Thus, statistical (resp. computational) sum-binding
is satisfied.

5.2 Construction

We show that quantum auxiliary-input commitments can be constructed without any assumption.
Let {ξλ,b}λ∈N,b∈{0,1} be a quantum auxiliary-input EFI pair, which exists unconditionally. Let |ψλ,b⟩X,Y

be a purification of ξλ,b such that TrY(|ψλ,b⟩ ⟨ψλ,b|X,Y) = ξλ,b. Then we construct a quantum auxiliary-input
commitment scheme as follows where m = λ.22

• Quantum auxiliary-input phase: For security parameter λ ∈ N, define the quantum auxiliary input
|ψλ⟩ := |ψλ,0⟩⊗m ⊗ |ψλ,1⟩⊗m. One single copy of |ψλ⟩ is sent to C and the other single copy of |ψλ⟩
is sent to R.

• Commit phase: C takes a bit b ∈ {0, 1} to commit (and the quantum auxiliary input |ψλ⟩ given
in the first phase) as input. C sends the register C of |ψλ,b⟩⊗m

C,R to R, where C := (X1, ...,Xm) and
R := (Y1, ...,Ym).23

22In fact, it suffices to set m = ω(log λ).
23Here, the X (Y) register of the ith |ψλ,b⟩ of |ψλ,b⟩⊗m is set to Xi (Yi).
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• Reveal phase: C sends b and the register R to R. In the first phase, R received |ψλ⟩. R uses only
|ψλ,b⟩⊗m

C′,R′ , where C′ := (X′1, ...,X′m) and R′ := (Y′1, ...,Y′m). For each i ∈ [m], R runs the SWAP
test between registers (Xi,Yi) and (X′i ,Y′i). If all of the tests accept, R accepts by outputting b and
otherwise rejects by outputting ⊥.

If the protocol is run honestly, the registers (Xi,Yi) and (X′i ,Y′i) take exactly the same state |ψλ,b⟩ for all
i ∈ [m]. Thus, R accepts with probability 1 and thus correctness holds.

Theorem 5.7. The above protocol satisfies computational hiding and statistical extractor-based binding.

Proof.

Computational hiding. It immediately follows from computational indistinguishability of the quantum
auxiliary-input EFI pair.

Statistical extractor-based binding. Since TD(ξλ,0, ξλ,1) = 1− negl(λ) we have F (ξλ,0, ξλ,1) = negl(λ).
Let ϵ := F (ξλ,0, ξλ,1). Then Lemma 2.5 implies that there is a projective measuremt {Π0,Π1,Π⊥ =
I −Π0 −Π1} on register X such that for each b ∈ {0, 1}, it holds that

∥(I −Πb) |ψλ,b⟩∥2 ≤
√

2ϵ. (5)

Here, we simply write Πb to mean ΠbX ⊗ IY for simplicity.
The extractor Eλ is described as follows: Upon receiving the commitment register C = (X1, ...,Xm), for

each i ∈ [m], it applies the projective measurement {Π0,Π1,Π⊥} on Xi to obtain an outcome bi ∈ {0, 1,⊥}.

• If |{i ∈ [m] : bi = 0}| > 2m/3, it outputs b∗ = 0.

• If |{i ∈ [m] : bi = 1}| > 2m/3, it outputs b∗ = 1.

• Otherwise, it outputs b∗ = ⊥.

By using an additional ancilla register E, we can describe the extractor Eλ as a projective measurement
{Π̃0, Π̃1, Π̃⊥} over registers C and E, i.e., they are defined in such a way that running Eλ on ρC is equivalent
to applying the projective measurement {Π̃0, Π̃1, Π̃⊥} on ρC ⊗ |0...0⟩ ⟨0...0|E for any state ρC.

For b ∈ {0, 1}, let Pb be the projector corresponding to the purified verification procedure by the receiver
R. That is, it is defined so that R is described as follows: Upon receiving the quantum auxiliary input
|ψλ,b⟩⊗m

Aux′ where Aux′ := {X′i ,Y′i}i∈[m] and (b,C,R) from the committer, R initializes its ancilla register V
to |0...0⟩V, applies the projective measurement (Pb, I − Pb) on registers (Aux′,C,R,V), and accepts (i.e.,
outputs b) if the measurement outcome is Pb (i.e., the state is projected onto the image of Pb) and otherwise
rejects (i.e., outputs ⊥).

Let C∗ be an unbounded-time malicious committer. By using the above notations, we can describe the
experiments RealC∗

λ and IdealC
∗,E

λ in the following form where we highlight the differences in red bold texts:

RealC∗
λ :

1. C∗ takes the quantum auxiliary input |ψλ⟩ as input and generates a state |ϕb⟩ over registers
(C,R,W) along with a bit b ∈ {0, 1} where W is the internal register of C∗.24

24It may be possible that C∗ generates b after applying some unitary in the reveal phase. However, since it does not receive
anything between the commit and reveal phases, we can assume that C∗ does not apply any unitary between the two phases without
loss of generality.
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2. C∗ sends C to R.
3. C∗ sends (b,R) to R.
4. R runs the verification in the reveal phase. That is,R takes the quantum auxiliary input |ψλ,b⟩⊗m

Aux′ ,
(b,C,R) sent from C∗, and the ancilla qubits |0...0⟩V, applies the projective measurement
(Pb, I − Pb) on registers (Aux′,C,R,V).

5. If R rejects (i.e., the measurement results in projection onto the image of I −Pb), b is replaced by
⊥.

6. The experiment outputs (b,W).

IdealC
∗,E

λ :

1. C∗ takes the quantum auxiliary input |ψλ⟩ as input and generates a state |ϕb⟩ over registers
(C,R,W) along with a bit b ∈ {0, 1} where W is the internal register of C∗.

2. C∗ sends C to R.
3. The extractor Eλ prepares the ancilla qubits |0...0⟩E, applies the projective measurement
{Π̃0, Π̃1, Π̃⊥} on registers C and E, lets b∗ ∈ {0, 1,⊥} be the outcome, and sends C to R.

4. C∗ sends (b,R) to R.
5. R runs the verification in the reveal phase. That is,R takes the quantum auxiliary input |ψλ,b⟩⊗m

Aux′ ,
(b,C,R) sent from C∗ and E , and the ancilla qubits |0...0⟩V, applies the projective measurement
(Pb, I − Pb) on registers (Aux′,C,R,V).

6. If R accepts (i.e., the measurement results in projection onto the image of Pb) and b ̸= b∗,
the experiment outputs the special symbol fail and halts.

7. If R rejects (i.e., the measurement results in projection onto the image of I −Pb), b is replaced by
⊥.

8. The experiment outputs (b,W).

The rest of the proof is similar to [Yan20, Appendix B] where it is proven that canonical quantum bit
commitments satisfy the extractor-based binding property defined in [AQY22]. We define density operators
ρreal(b) and ρideal(b) that correspond to the outputs of RealC∗

λ and IdealC
∗,E

λ conditioned on the bit sent from
C∗ being b, respectively. That is, we let

ρreal(b) := TrAux′,C,R,V,E(Pb |ϕ̃b⟩ ⟨ϕ̃b|)⊗ |b⟩ ⟨b|+ TrAux′,C,R,V,E((I − Pb) |ϕ̃b⟩ ⟨ϕ̃b|)⊗ |⊥⟩ ⟨⊥|

and

ρideal(b) :=TrAux′,C,R,V,E(Nb |ϕ̃b⟩ ⟨ϕ̃b|)⊗ |b⟩ ⟨b|+ TrAux′,C,R,V,E(N⊥ |ϕ̃b⟩ ⟨ϕ̃b|)⊗ |⊥⟩ ⟨⊥|
+ TrAux′,C,R,V,E(Nfail |ϕ̃b⟩ ⟨ϕ̃b|)⊗ |fail⟩ ⟨fail|

where

|ϕ̃b⟩ := |ϕb⟩C,R,W ⊗ |ψλ,b⟩⊗m
Aux′ ⊗ |0...0⟩V ⊗ |0...0⟩E

and

Nb := Π̃bPbΠ̃b, Nfail := (I − Π̃b)Pb(I − Π̃b), N⊥ := I −Nb −Nfail.
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We note that Nfail and N⊥ depend on b, but we omit the dependence for simplicity. Noting that the
distribution of b is identical in the both experiments, it suffices to prove

TD(ρreal(b), ρideal(b)) = negl(λ)

for b ∈ {0, 1}. We show the following lemma.

Lemma 5.8. For each b ∈ {0, 1}, it holds that

∥Pb(I − Π̃b) |ϕ̃b⟩ ∥2 = negl(λ).

Proof of Lemma 5.8. By the definitions of Pb and |ϕ̃b⟩, ∥Pb(I − Π̃b) |ϕ̃b⟩ ∥2 is the probability that ρ :=
TrW,E

(
(I − Π̃b)C,E |ϕb⟩C,R,W |0...0⟩E

)
passes the verification by R with respect to the committed bit b.25

By Lemma 2.4, it is equal to

1
2m

∑
S⊆[m]

Tr(ρSσS)

where σ :=
⊗

i∈[m] |ψλ,b⟩ ⟨ψλ,b|Xi,Yi
. Here, ρS and σS are the states obtained by tracing out all (Xi,Yi) such

that i /∈ S.26 By the definition of Π̃b, we can write27

ρ =
∑

T⊆[m]:|T |≤2m/3
TrWΠ̂(T )

b |ϕb⟩ ⟨ϕb| Π̂
(T )
b (6)

where

Π̂(T )
b :=

(⊗
i∈T

ΠbXi

)
⊗

 ⊗
i∈[m]\T

(I −Πb)Xi

 .
Thus, we have

1
2m

∑
S⊆[m]

Tr(ρSσS) = 1
2m

∑
S⊆[m]

∑
T⊆[m]:|T |≤2m/3

Tr
((

Tr{Xi,Yi}i/∈S ,WΠ̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b

)(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

))
.

25Precisely speaking, it is not correct because ρ is not a state (it is not normalized). However, we believe the abuse of terminology
will not cause any confusion.

26Again, ρS is not a state because it is not normalized.
27The purified extractor is assumed to work as follows. It “coherently measures” {Π0,Π1,Π⊥} on each Xi and writes the result

b1∥...∥bm on an ancilla register. Depending on the value on the ancilla register, 0, 1, or ⊥ is written in another ancilla register.
Finally the second register is measured in the computational basis. If we trace out those two registers, we get Equation (6) as the
(sub-normalized) post-measurement state.
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For any S and T , we have

Tr
((

Tr{Xi,Yi}i/∈S ,WΠ̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b

)(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

))

=Tr
(

(I −Πb)
⊗|S\T |
{Xi}i∈S\T

(
Tr{Xi,Yi}i/∈S ,WΠ̂(T )

b |ϕb⟩ ⟨ϕb| Π̂
(T )
b

)
(I −Πb)

⊗|S\T |
{Xi}i∈S\T

(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

))

=Tr
((

Tr{Xi,Yi}i/∈S ,WΠ̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b

)
(I −Πb)

⊗|S\T |
{Xi}i∈S\T

(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

)
(I −Πb)

⊗|S\T |
{Xi}i∈S\T

)

≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
· Tr

(
(I −Πb)

⊗|S\T |
{Xi}i∈S\T

(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

)
(I −Πb)

⊗|S\T |
{Xi}i∈S\T

)

≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
· ∥(I −Πb) |ψλ,b⟩∥2|S\T |

≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
· (2ϵ)|S\T |

where the first inequality follows from Tr{Xi,Yi}i/∈S ,WΠ̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b ≤

∥∥∥Π̂(T )
b |ϕb⟩

∥∥∥2
· I and the final

inequality follows from Equation (5).
Thus, for any T such that |T | ≤ 2m/3, we have

1
2m

∑
S⊆[m]

Tr
((

Tr{Xi,Yi}i/∈S ,WΠ̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b

)(⊗
i∈S

|ψλ,b⟩ ⟨ψλ,b|Xi,Yi

))

≤ 1
2m

∑
S⊆[m]

∥∥∥Π̂(T )
b |ϕb⟩

∥∥∥2
· (2ϵ)|S\T |

≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
· 1

2m

 ∑
S⊆[m]:S⊆T

1 +
∑

S⊆[m]:S⊈T

2ϵ


≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
·
(
2−m/3 + 2ϵ

)
where the final inequality follows from |{S ⊆ [m] : S ⊆ T}| = 2|T | ≤ 22m/3 and |{S ⊆ [m] : S ⊈ T}| ≤
2m.

Therefore, we have

1
2m

∑
S⊆[m]

Tr(ρSσS) ≤
∑

T⊆[m]:|T |≤2m/3

∥∥∥Π̂(T )
b |ϕb⟩

∥∥∥2
·
(
2−m/3 + 2ϵ

)
≤ 2−m/3 + 2ϵ ≤ negl(λ)

where the final inequality follows from m = ω(log λ) and ϵ = negl(λ). This completes the proof of
Lemma 5.8.

19



We define

τ
(b)
real := TrAux′,C,R,V,E(Pb |ϕ̃b⟩ ⟨ϕ̃b|), τ

(⊥)
real := TrAux′,C,R,V,E((I − Pb) |ϕ̃b⟩ ⟨ϕ̃b|),

τ
(b)
ideal := TrAux′,C,R,V,E(Nb |ϕ̃b⟩ ⟨ϕ̃b|), τ

(⊥)
ideal := TrAux′,C,R,V,E(N⊥ |ϕ̃b⟩ ⟨ϕ̃b|),

τ
(fail)
ideal := TrAux′,C,R,V,E(Nfail |ϕ̃b⟩ ⟨ϕ̃b|)

so that we can write

ρreal(b) = τ
(b)
real ⊗ |b⟩ ⟨b|+ τ

(⊥)
real ⊗ |⊥⟩ ⟨⊥| (7)

and

ρideal(b) = τ
(b)
ideal ⊗ |b⟩ ⟨b|+ τ

(⊥)
ideal ⊗ |⊥⟩ ⟨⊥|+ τ

(fail)
ideal ⊗ |fail⟩ ⟨fail| . (8)

Then we use Lemma 5.8 to show the following lemma.

Lemma 5.9. For each b ∈ {0, 1}, the following hold:

1. Tr(τ (fail)
ideal ) = negl(λ).

2. TD(τ (b)
real, τ

(b)
ideal) = negl(λ).

3. TD(τ (⊥)
real , τ

(⊥)
ideal) = negl(λ).

Proof of Lemma 5.9.

First item. We have

Tr(τ (fail)
ideal ) = Tr(Nfail |ϕ̃b⟩ ⟨ϕ̃b|) = ⟨ϕ̃b| (I − Π̃b)Pb(I − Π̃b) |ϕ̃b⟩ = ∥Pb(I − Π̃b) |ϕ̃b⟩ ∥2 = negl(λ)

where the final equality follows from Lemma 5.8.
Second item. We have

TD(τ (b)
real, τ

(b)
ideal) ≤ TD(Pb |ϕ̃b⟩ , PbΠ̃b |ϕ̃b⟩)

= max
Q

Tr
(
Q
(
Pb |ϕ̃b⟩ ⟨ϕ̃b|Pb − PbΠ̃b |ϕ̃b⟩ ⟨ϕ̃b| Π̃bPb

))
− 1

2
(
Tr(Pb |ϕ̃b⟩ ⟨ϕ̃b|Pb)− Tr(PbΠ̃b |ϕ̃b⟩ ⟨ϕ̃b| Π̃bPb)

)
= max

Q

(
∥QPb |ϕ̃b⟩ ∥2 − ∥QPbΠ̃b |ϕ̃b⟩ ∥2

)
− 1

2
(
∥Pb |ϕ̃b⟩ ∥2 − ∥PbΠ̃b |ϕ̃b⟩ ∥2

)
,

where the maximum is taken over all projectors Q on (W,Aux′,C,R,V,E), the first inequality follows from
the monotonicity of the trace norm, and the first equality follows from Lemma 2.6. For any projector Q, we
have∣∣∣∥QPb |ϕ̃b⟩ ∥2 − ∥QPbΠ̃b |ϕ̃b⟩ ∥2

∣∣∣ =
∣∣∣∥QPb(Π̃b + (I − Π̃b)) |ϕ̃b⟩ ∥2 − ∥QPbΠ̃b |ϕ̃b⟩ ∥2

∣∣∣
= | ⟨ϕ̃b| (I − Π̃b)PbQPb(Π̃b + (I − Π̃b)) |ϕ̃b⟩+ ⟨ϕ̃b| Π̃bPbQPb(I − Π̃b) |ϕ̃b⟩ |
≤ ∥Pb(I − Π̃b) |ϕ̃b⟩ ∥ · ∥QPb(Π̃b + (I − Π̃b)) |ϕ̃b⟩ ∥

+ ∥QPbΠ̃b |ϕ̃b⟩ ∥ · ∥Pb(I − Π̃b) |ϕ̃b⟩ ∥
≤ 2∥Pb(I − Π̃b) |ϕ̃b⟩ ∥ = negl(λ)
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where the final equality follows from Lemma 5.8. In particular, the above also holds for the case of Q = I .
Combining the above, we have TD(τ (b)

real, τ
(b)
ideal) = negl(λ).

Third item.

TD(τ (⊥)
real , τ

(⊥)
ideal) = TD

(
TrAux′,C,R,V,E((I − Pb) |ϕ̃b⟩ ⟨ϕ̃b|),TrAux′,C,R,V,E((I −Nb −Nfail) |ϕ̃b⟩ ⟨ϕ̃b|)

)
= TD

(
TrAux′,C,R,V,E(Pb |ϕ̃b⟩ ⟨ϕ̃b|),TrAux′,C,R,V,E((Nb +Nfail) |ϕ̃b⟩ ⟨ϕ̃b|)

)
≤ TD

(
TrAux′,C,R,V,E(Pb |ϕ̃b⟩ ⟨ϕ̃b|),TrAux′,C,R,V,E(Nb |ϕ̃b⟩ ⟨ϕ̃b|)

)
+ 1

2Tr(Nfail |ϕ̃b⟩ ⟨ϕ̃b|)

= negl(λ)

where we have used the triangle inequality in the third line, and the first and second items of this lemma in the
final line. This completes the proof of Lemma 5.9.

By Equations (7) and (8), we have

TD(ρreal(b), ρideal(b)) = TD(τ (b)
real, τ

(b)
real) + TD(τ (⊥)

real , τ
(⊥)
ideal) + 1

2Tr(τ (fail)
ideal ) = negl(λ)

where the final equality follows from Lemma 5.9. This implies statistical binding and completes the proof of
Theorem 5.7.

5.3 Impossibility of Statistical Security

It is easy to prove that achieving both statistical hiding and statistical (sum)-binding is impossible even in the
quantum auxiliary-input setting based on the similar impossibility result in the plain model [LC97, May97].

Theorem 5.10. There do not exist statistically hiding and statistically sum-binding quantum auxiliary-input
commitments.

Proof sketch. Given a quantum auxiliary-input commitment scheme, we can regard the classical description
of the quantum auxiliary-input as a classical auxiliary-input if we allow the sender and receiver to be
unbounded-time. Since the impossibility of [LC97, May97] is applicable to classical auxiliary-input quantum
commitments with unbounded-time sender and receiver, the theorem follows. More concretely, assume that
the honest committer generates |Ψ(ψλ, b)⟩R,C over two registers R and C to commit to b ∈ {0, 1} given the
quantum auxiliary input |ψλ⟩. Due to the statistical hiding, TrR(|Ψ(ψλ, 0)⟩R,C) should be negligibly close
to TrR(|Ψ(ψλ, 1)⟩R,C). However, it means, from the Uhlmann’s theorem, that there exists a unitary U on
R that maps |Ψ(ψλ, 0)⟩R,C to a state that is negligibly close to |Ψ(ψλ, 1)⟩R,C, which breaks the statistical
binding.

Thus, it is necessary to relax either of hiding or binding to the computational one. In Theorem 5.7,
we unconditionally construct a computationally hiding and statistically binding construction. On the other
hand, we do not know how to construct statistically hiding and computationally binding one without
assuming any assumption. We remark that it is unclear if the flavor conversion theorems in the plain
model [CLS01, Yan22, HMY23] work in the quantum auxiliary-input setting.
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6 Application to Zero-Knowledge Proofs

To demonstrate the applicability of our quantum auxiliary-input commitments, we show an application to
zero-knowledge proofs. Though it works for both NP and QMA, we focus on the case of NP here for
simplicity.

6.1 Definition

Notation. For an NP language L and x ∈ L,RL(x) is the set that consists of all (classical) witnesses w
such that the verification machine for L accepts (x,w). For an interactive protocol between a prover P and
a verifier V , we denote by ⟨P (xP ), V (xV )⟩ an execution of the protocol where xP is P ’s input and xV is
V ’s input. We denote by OUTV ⟨P (xP ), V (xV )⟩ the final output of V in the execution. An honest verifier’s
output is ⊤ indicating acceptance or ⊥ indicating rejection, and a quantum malicious verifier’s output may be
an arbitrary quantum state.

Definition 6.1 (Quantum Auxiliary-Input Zero-Knowledge Proofs for NP). A quantum auxiliary-input
zero-knowledge proof for an NP language L is given by a tuple of QPT algorithms P (a prover) and V (a
verifier) and a family {|ψλ⟩}λ∈N of poly(λ)-qubit states (referred to as quantum auxiliary inputs). P and V
take a statement x of L as a common input and P takes a witness w for x as its private input. In addition,
each of P and V takes a copy of the quantum auxiliary input |ψ|x|⟩. Then P and V interact with each other
through a quantum channel, and V finally outputs ⊤ indicating acceptance or ⊥ indicating rejection.

We require the following properties:

• Perfect completeness. For any x ∈ L and w ∈ RL(x), we have

Pr[OUTV ⟨P (|ψ|x|⟩ , x, w), V (|ψ|x|⟩ , x)⟩ = ⊤] = 1.

• Statistical s-soundness. For any non-uniform unbounded-time cheating prover P ∗, there exists a
negligible function negl such that for any λ ∈ N and any x ∈ {0, 1}λ \ L, we have

Pr[OUTV ⟨P ∗(|ψλ⟩ , x), V (|ψλ⟩ , x)⟩ = ⊤] ≤ s(λ) + negl(λ).

• Non-uniform computational quantum zero-knowledge. For any non-uniform QPT malicious verifier
V ∗ = {V ∗λ , ρλ}λ∈N, there is a non-uniform QPT simulator Sim = {Simλ, σλ}λ∈N and a negligible
function negl such that for any λ ∈ N, x ∈ L∪{0, 1}λ,w ∈ RL(x), and non-uniform QPT distinguisher
A = {Aλ, τλ}λ∈N, it holds that

|Pr[Aλ(τλ,OUTV ∗
λ
⟨P (|ψλ⟩ , x, w), V ∗λ (ρλ, x)⟩) = 1]− Pr[Aλ(τλ, Simλ(σλ, x)) = 1]| ≤ negl(λ).

Remark 6.2. Unlike the standard definition of zero-knowledge, the above definition allows the simulator to
take quantum advice that may depend on the malicious verifier’s advice. In particular, this is crucial in our
security proof since the simulator’s quantum advice contains many copies of the malicious verifier’s advice.
A caveat of this definition is that it is not closed under polynomially many sequential compositions because
the size of simulator’s quantum advice may exponentially blow up. But it still ensures a meaningful notion of
security. For example, a simple hybrid argument shows that it implies witness indistinguishability defined
below:
Computational witness indistinguishability. For any λ ∈ N, x ∈ L ∪ {0, 1}λ, two witnesses w0, w1 ∈
RL(x), and non-uniform QPT malicious verifier V = {Vλ, ρλ}λ∈N, it holds that

|Pr[OUTV ∗
λ
⟨P (|ψλ⟩ , x, w0), V ∗λ (ρλ, x)⟩ = 1]− Pr[OUTV ∗

λ
⟨P (|ψλ⟩ , x, w1), V ∗λ (ρλ, x)⟩ = 1]| ≤ negl(λ).
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6.2 Construction

We simply plug our quantum auxiliary-input commitment scheme into Blum’s Hamiltonicity protocol [Blu87].
Here, we briefly recall basic notations for graphs and the graph Hamiltonicity problem. A graph G with
vertices W is represented as a set of its edges, i.e., for (i, j) ∈W 2, (i, j) ∈ G if and only if G has an edge
between vertices i and j. An instance of the graph Hamiltonicity problem is an (undirected) graph G. A
graph G is an Yes instance (i.e., belongs to the corresponding language) if it has a Hamiltonian cycle, i.e., a
path that goes through all the vertices of G exactly once. The Hamiltonian cycle is the corresponding witness.

We describe the protocol below: Let Πcom be a quantum auxiliary-input commitment scheme. Let
{|ψλ⟩}λ∈N be the family of quantum auxiliary input for Πcom. Let G be a graph (instance) with vertices W
and H be its Hamiltonian cycle (witness).

• Inputs. P takes |ψλ⟩⊗p(λ), G, and H as input. V takes |ψλ⟩⊗p(λ) and G as input. Here, λ denotes
the bit-length of the description of G, and p(λ) is the number of total bits that are committed by P
throughout the protocol.

• First round. P picks a random permutation π on W . Then P commits to the adjency matrix of
π(G) := {(π(i), π(j)) : (i, j) ∈ G} using Πcom in a bit-wise manner and sends the commitment
registers to V

• Second round. V sends a random bit c ∈ {0, 1} to P .

• Third round.

– If c = 0, then P sends π and the reveal registers of the all commitments.
– If c = 1, then P sends the reveal registers to the commitments that correspond to π(H) :=
{(π(i), π(j)) : (i, j) ∈ H}.

• Decision.

– If c = 0, V verifies all the revealed commitments. If any of verification fails, V outputs ⊥.
Otherwise, V recovers a graph G′ from the revealed bits. If G′ = π(G), then V outputs ⊤ and
otherwise outputs ⊥.

– If c = 1, V verifies all the revealed commitments. If any of verification fails, V outputs ⊥.
Otherwise, V recovers a graph H ′ from the revealed bits. If H is a Hamiltonian cycle, V outputs
⊥.

Theorem 6.3. The above protocol satisfies perfect completeness, 1/2-soundness, and quantum auxiliary-input
computational zero-knowledge.

Remark 6.4. Unfortunately, we do not know how to reduce the soundness error while keeping quantum
auxiliary-input computational zero-knowledge since it is not preserved even under sequential composition as
remarked in Remark 6.2. On the other hand, since it implies witness indistinguishability that is preserved
under parallel composition, we can obtain a protocol that satisfies perfect completeness, negl(λ)-soundness,
and computational witness indistinguishability.

Proof of Theorem 6.3. The perfect completeness is clear from the description of the protocol. Below, we
prove 1/2-soundness and quantum auxiliary-input computational zero-knowledge.
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Soundness. Suppose that a graphG does not have a Hamiltonian cycle. Suppose that there is a non-uniform
unbounded prover P ∗ that makes V accept with 1/2 + non-negl(λ) for a false instance G that does not
have a Hamiltonian cycle where non-negl(λ) is some non-negligible function. Let Ṽ be a non-uniform
unbounded-time verifier that works similarly to V except for the following differences:

• It runs the extractor of Πcom after receiving the commitments in the first round, and recovers a graph G̃
from the extracted bits.

• If the revealed bits in the third round is inconsistent to G̃, then it immediately rejects.

By the statistical extractor-based binding of Πcom and a standard hybrid argument, we can see that P ∗ also
makes Ṽ accept with 1/2 + non-negl(λ). However, we can see that the probability must be at most 1/2
because if P ∗ can pass the verification for c = 0, then G̃ is isomorphic to G, in which case G̃ does not have a
Hamiltonian cycle and thus P cannot pass the verification for c = 1. Thus, the protocol satisfies statistical
1/2-soundness.

Zero-knowledge. Let V ∗ = {V ∗λ , ρλ}λ∈N be a non-uniform QPT malicious verifier. Then we construct a
simulator Sim = {Simλ, σλ}λ∈N as follows;

Simλ(σλ, G): The quantum auxiliary input σλ is defined as ρ⊗λ
λ ⊗ (|ψλ⟩ ⟨ψλ|)⊗λ.

Repeat the following λ times:

1. Randomly pick c̃← {0, 1}.
2. If c̃ = 0, do the following:

(a) Randomly pick a permutation π on W .
(b) Commit to the adjacency matrix of π(G) := {(π(i), π(j)) : (i, j) ∈ G} using Πcom in a

bit-wise manner.
(c) Invoke the second round message generation by V ∗λ by giving the quantum auxiliary input ρλ

and the commitments generated in the previous step as the first round message. Let c be the
second round message sent from V ∗λ .

(d) If c = 1, skip the rest of steps in the loop.
(e) If c = 0, send the reveal registers corresponding to the commitments sent in the first round

and the permutation π to V ∗λ .
(f) Run the post-processing of V ∗λ , output what it outputs, and immediately halt.

3. If c̃ = 1, do the following:
(a) Generate a random matrix G̃ that has a Hamiltonian cycle.
(b) Commit to the adjacency matrix of G̃ : using Πcom in a bit-wise manner.
(c) Invoke the second round message generation by V ∗λ by giving the quantum auxiliary input ρλ

and the commitments generated in the previous step as the first round message. Let c be the
second round message sent from V ∗λ .

(d) If c = 0, skip the rest of steps in the loop.
(e) If c = 1, send the reveal registers corresponding to the commitments corresponding to the

Hamiltonian cycle of G̃ sent in the first round to V ∗λ .
(f) Run the post-processing of V ∗λ , output what it outputs, and immediately halt.
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If it does not halts within λ times repetitions, abort by outputting a failure symbol fail.

By the computational hiding of com, c̃ looks uniformly random from the view of the malicous verifier
V ∗λ , and thus the probability that it halts in each loop is 1/2± negl(λ). Thus, the probability that it does not
halt within λ times repetitions is negl(λ). Moreover, by the computational hiding of com, it is immediate to
see that the output of Sim conditioned on that it does not fail is computationally indistinguishable from the
output of V ∗λ in the real experiment against non-uniform QPT distinguishers. This implies that the protocol
satisfies non-uniform computational quantum zero-knowledge.

7 Commitments in the Common Reference Quantum State Model

In this section, we introduce quantum commitments in the common reference quanutm state (CRQS) model
and construct them unconditionally. Unlike the quantum auxiliary-input setting, our construction in the CRQS
model satisfies both statistical hiding and statistical binding as long as the number of copies of the CRQS
given to the malicious receiver is bounded.

7.1 Definition

Definition 7.1 (Quantum commitments in the CRQS model). A (non-interactive) quantum commitment
scheme in the CRQS model is given by a tuple of the setup algorithm Setup, committer C, and receiver R, all
of which are uniform QPT algorithms. The scheme is divided into three phases, the setup phase, commit
phase, and reveal phase as follows:

• Setup phase: Setup takes 1λ as input, uniformly samples a classical key k ← Kλ, generates two
copies of the same pure state |ψk⟩ and sends one copy each to C and R.

• Commit phase: C takes |ψk⟩ given by the setup algorithm and a bit b ∈ {0, 1} to commit as input,
generates a quantum state on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R takes |ψk⟩ given by the setup algorithm and
(b,C,R) given by C as input, and outputs b if it accepts and otherwise outputs ⊥.

As correctness, we require that R accepts with probability 1 if the protocol is run honestly.

Below, we define security of commitments in the CRQS model. For the definition of hiding, even though
the honest receiver takes only one copy of the CRQS, we consider hiding against adversaries that take many
copies of the CRQS. This is to capture the scenario where an authority distributes many copies of the CRQS
and the adversary collects some of them.

Definition 7.2 (t-copy statistical hiding). A quantum commitment scheme (Setup, C,R) in the CQRS model
satisfies t-copy statistical hiding if for any non-uniform unbounded-time algorithm A,∣∣∣Pr[1← A(1λ, |ψk⟩⊗t ,TrR(σC,R)) : k ← Kλ, σC,R ← Ccom(|ψk⟩ , 0)]−

Pr[1← A(1λ, |ψk⟩⊗t ,TrR(σC,R)) : k ← Kλ, σC,R ← Ccom(|ψk⟩ , 1)]
∣∣∣ ≤ negl(λ)

where Ccom is the commit phase of C.
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Similarly to the quantum auxiliary-input setting, we define two notions of binding, sum-binding and
extractor-based binding. We stress that we require those to hold against adversaries who know the classical
key k instead of having copies of |ψk⟩ unlike the hiding property. This only makes the security stronger.

Definition 7.3 (Statistical sum-binding). A quantum commitment scheme (Setup, C,R) in the CQRS model
satisfies statistical sum-binding if the following holds. For any pair of non-uniform unbounded-time malicious
committers C∗0 and C∗1 that take the classical key k, which is sampled by the setup algorithm, as input and
work in the same way in the commit phase, if we let pb to be the probability that R accepts the revealed bit b
in the interaction with C∗b for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).

Definition 7.4 (Extractor-based binding). A quantum commitment scheme (Setup, C,R) in the CQRS model
satisfies statistical (computational) extractor-based binding if there is a (uniform) unbounded-time algorithm
E (called the extractor) such that for any non-uniform unbounded-time (resp. QPT) malicious committer C∗,
RealC∗

λ and IdealC
∗,E

λ are indistinguishable against non-uniform unbounded-time (resp. QPT) distinguishers
where the experiments RealC∗

λ and IdealC
∗,E

λ are defined as follows.

• RealC∗
λ : The experiment chooses k ← Kλ and sends k and |ψk⟩ to C∗ and R, respectively. The

malicious committer C∗ interacts with the honest receiver R in the commit and reveal phases. Let
b ∈ {0, 1,⊥} be the output of R and τC∗ be the final state of C∗. The experiment outputs a tuple
(τC∗ , b).

• IdealC
∗,E

λ : The experiment chooses k ← Kλ and sends k and |ψk⟩ to C∗ and R, respectively. The
experiment also sends k to the extractor E The malicious committer C∗ runs its commit phase to
generate a commitment σC where C∗ may keep a state that is entangled with σC. E takes the register C,
outputs an extracted bit b∗ ∈ {0, 1}, and sends a post-execution state on C (that may be different from
the original one) to R as a commitment. Then C∗ and R run the reveal phase. Let b be the output of R
and τC∗ be the final state of C∗. If b /∈ {⊥, b∗}, then the experiment outputs a special symbol fail
and otherwise outputs a tuple (τC∗ , b).

Remark 7.5. Differently from the definition for quantum auxiliary-input commitments, we require the extractor
to be uniform unbounded-time algorithm that takes the classical key k as input. This is useful for constructing
uniform simulators in the applications.

Lemma 7.6. Statistical (resp. computational) extractor-based binding implies statistical (resp. computational)
sum-binding.

Since the above lemma can be proven similarly to that in the quantum auxiliary-input setting (Lemma 5.6),
we omit the proof.

7.2 Construction

We construct a commitment scheme in the CRQS model as follows. Let m := λ28 and Hλ := {Hk :
{0, 1}λ → {0, 1}2λ}k∈Kλ

be a family of 2m(t+ 1)-wise independent functions. Then our construction is
described below.

28In fact, it suffices to set m = ω(log λ).
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• Setup phase: Setup takes 1λ as input and does the following. It samples k ← Kλ and generates 2m
copies of the following states:29

|ψk,0⟩ := 1
2λ/2

∑
x∈{0,1}λ

|Hk(x)⟩ |x∥0λ⟩ , |ψk,1⟩ := 1
2λ

∑
y∈{0,1}2λ

|y⟩ |y⟩ .

Then it defines |ψk⟩ := |ψk,0⟩⊗m ⊗ |ψk,1⟩⊗m. A single copy of |ψk⟩ is sent to C, and a single copy of
|ψk⟩ is sent to R.

• Commit phase: C takes quantum auxiliary input |ψk⟩ = |ψk,0⟩⊗m ⊗ |ψk,1⟩⊗m and a bit b ∈ {0, 1} to
commit as input. For each i ∈ [m], let Xi and Yi be the first and second registers of the i-th copy of
|ψk,b⟩, respectively. Set C := (X1, ...,Xm) and R := (Y1, ...,Ym) and sends the register C to R.

• Reveal phase: C sends b and the register R := (Y1, ...,Ym) to R. For each i ∈ [m], let X′i and Y′i
be the first and second registers of the i-th copy of |ψk,b⟩, respectively. For each i ∈ [m], R runs the
SWAP test between registers (Xi,Yi) and (X′i ,Y′i). If all of the tests accept, R accepts by outputting b
and otherwise rejects by outputting ⊥.

If the protocol is run honestly, the registers (Xi,Yi) and (X′i ,Y′i) take exactly the same state |ψk,b⟩. Thus, R
accepts with probability 1 and thus correctness holds.

Theorem 7.7. The above protocol satisfies t-copy statistical hiding and statistical extractor-based binding.

Proof of Theorem 7.7.

t-copy statistical hiding. Note that we can generate |ψk,0⟩ by a single quantum oracle access to Hk and
|ψk,1⟩ does not depend on Hk. Thus, we can generate |ψk⟩ = |ψk,0⟩⊗m ⊗ |ψk,1⟩⊗m by m quantum oracle
access to Hk. In the t-copy hiding experiment, (t+ 1) copies of |ψk⟩ (including the one used by the honest
committer) are used. Since (t+ 1) copies of |ψk⟩ can be generated by m(t+ 1) quantum oracle access to
Hk, and Hk is chosen from a family of 2m(t+ 1)-wise independent functions, Lemma 2.3 implies that the
adversary’s advantage in the t-copy hiding experiment does not change even if we replaceHk with a uniformly
random function H . After this replacement, the t-copy statistical hiding is shown by a direct reduction to
Corollary 2.2 via a hybrid argument where t copies of the quantum auxiliary input given to the adversary are
regarded as σH in Corollary 2.2.

29The state |ψk,1⟩ does not depend on k, but we use this notation for convenience of the presentation.
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Statistical extractor-based binding. Fix k, and for y ∈ {0, 1}2λ, let Ny be the number of x ∈ {0, 1}λ
such that Hk(x) = y. Then we have

F (TrY(|ψk,0⟩ ⟨ψk,0|X,Y),TrY(|ψk,1⟩ ⟨ψk,1|X,Y)) =

 ∑
y∈{0,1}2λ

√
Ny

23λ

2

=

 ∑
y∈Im(Hk)

√
Ny

23λ

2

≤ |Im(Hk)| ·
∑

y∈Im(Hk)

Ny

23λ

≤ 1
2λ

where Im(Hk) donotes the image of Hk, the first inequality follows from Cauchy–Schwarz inequality, and the
second inequality follows from |Im(Hk)| ≤ 2λ and

∑
y∈Im(Hk)Ny = 2λ. We observe that TrY(|ψk,0⟩ ⟨ψk,0|)

and TrY(|ψk,1⟩ ⟨ψk,1|) play the roles of ξλ,0 and ξλ,1 in the construction in Section 5.2 and the only assumption
needed for proving statistical extractor-based binding there was F (ξλ,0, ξλ,1) = negl(λ). Thus, the rest of
the proof is almost identical to that in the quantum auxiliary-input setting (Theorem 5.7) noting that we can
implement the extractor E by a uniform unbounded-time algorithm given k. Thus, we omit the details.

7.3 Impossibility of Unbounded-Copy Security

In Section 7.2, we construct a quantum commitment scheme in the CRQS model that satisfies t-copy statistical
hiding and statistical extractor-based binding for any bounded polynomial t. A natural question is if we can
achieve it for unbounded polynomials t. Unfortunately, it turns out this is impossible even if we relax the
security of binding to the sum-binding against adversaries that receive t copies of the CRQS (instead of
receiving the classical key k as in Definition 7.3).

Theorem 7.8. There is no quantum commitment scheme in the CRQS model that satisfies statistical hiding
against adversaries that get unbounded poly-copies of CRQS, and statistical sum-binding against adversaries
that get unbounded poly-copies of CRQS.

Proof. Assume that after receiving |ψk⟩ from the setup, the honest committer applies a unitary U on
|b⟩ |ψk⟩ |0...0⟩ to generate |Ψ(ψk, b)⟩C,R := U(|b⟩ |ψk⟩ |0...0⟩) over two registers R and C, where b ∈ {0, 1}
is the bit to be committed. Define σb,k

C := TrR(|Ψ(ψk, b)⟩C,R). We can show the following lemma:

Lemma 7.9. If |⟨ψk|ψk′⟩|2 ≥ 1− ϵ, then TD(σb,k, σb,k′) ≤
√
ϵ.

Proof of Lemma 7.9.

TD(σb,k, σb,k′) ≤ TD(|Ψ(ψk, b)⟩ , |Ψ(ψk′ , b)⟩) (9)
= TD(U |b⟩ |ψk⟩ |0...0⟩ , U |b⟩ |ψk′⟩ |0...0⟩) (10)
= TD(|ψk⟩ , |ψk′⟩) (11)
≤
√
ϵ. (12)
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We also use the following lemma:

Lemma 7.10. There is a polynomial p such that

1
|Kλ|

∑
k∈Kλ

TD(σ0,k, σ1,k) ≥ 1
p(λ) (13)

for infinitely-many λ ∈ N.

Proof of Lemma 7.10. Assume that 1
|Kλ|

∑
k∈Kλ

TD(σ0,k, σ1,k) = negl(λ). This means that except for a
negligible fraction of k, TD(σ0,k, σ1,k) = negl(λ). Then we can construct the following unbounded malicious
committer that breaks statistical sum-binding given unbounded-poly copies of |ψk⟩:

1. Do the shadow tomography on |ψk⟩⊗t to compute ηk′ for all k′ ∈ Kλ such that |ηk′ − |⟨ψk′ |ψk⟩|2| ≤ 1
r ,

where r is a polynomial specified later.

2. Pick up the lexicographically first k∗ such that ηk∗ ≥ 1− 1
r .

3. Generate |Ψ(ψk∗ , 0)⟩R,C, and sends the register C to the receiver. It is the end of the commit phase.

4. In the reveal phase, to open b = 0, send R to the receiver. To open b = 1, apply V k∗ on the R register
and send R to the receiver.

Here, V k∗ is the unitary such that F (σ0,k∗

C , σ1,k∗

C ) = |⟨Ψ(ψk∗ , 1)|(V k∗
R ⊗ IC)|Ψ(ψk∗ , 0)⟩R,C|2. Let Πb,k be

the POVM element that corresponds to the acceptance of b by the receiver. The probability that the receiver
opens b = 0 is

p0 := 1
|Kλ|

∑
k∈Kλ

⟨Ψ(ψk∗ , 0)|Π0,k|Ψ(ψk∗ , 0)⟩ (14)

≥ 1
|Kλ|

∑
k∈Kλ

⟨Ψ(ψk, 0)|Π0,k|Ψ(ψk, 0)⟩ −
√

2
r

(15)

≥ 1−
√

2
r
. (16)
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The probability that the receiver opens b = 1 is

p1 := 1
|Kλ|

∑
k

⟨Ψ(ψk∗ , 0)|(V k∗,†
R ⊗ IC)Π1,k(V k∗

R ⊗ IC)|Ψ(ψk∗ , 0)⟩ (17)

≥ 1
|Kλ|

∑
k

⟨Ψ(ψk∗ , 1)|Π1,k|Ψ(ψk∗ , 1)⟩ (18)

− 1
|Kλ|

∑
k

TD
(
(V k∗

R ⊗ IC) |Ψ(ψk∗ , 0)⟩ , |Ψ(ψk∗ , 1)⟩
)

(19)

≥ 1
|Kλ|

∑
k

⟨Ψ(ψk, 1)|Π1,k|Ψ(ψk, 1)⟩ −
√

2
r

(20)

− 1
|Kλ|

∑
k

√
1− |⟨Ψ(ψk∗ , 1)|(V k∗

R ⊗ IC) |Ψ(ψk∗ , 0)⟩ |2 (21)

≥ 1−
√

2
r
− 1
|Kλ|

∑
k

√
1− F (σ0,k∗ , σ1,k∗) (22)

≥ 1−
√

2
r
− 1
|Kλ|

∑
k

√
1− [1− TD(σ0,k∗ , σ1,k∗)]2 (23)

≥ 1−
√

2
r
− 1
|Kλ|

∑
k

√√√√1−
[
1− TD(σ0,k, σ1,k)− 2

√
2
r

]2

(24)

≥ 1−
√

2
r
− (1− negl(λ))

√√√√1−
[
1− negl(λ)− 2

√
2
r

]2

(25)

≥ 1−
√

2
r
− 2

(2
r

) 1
4
− negl(λ). (26)

Hence if we take r ≫ 1, we have

p0 + p1 ≥ 1−
√

2
r

+ 1−
√

2
r
− 2

(2
r

) 1
4

(27)

≥ 1 + 1
2 , (28)

which breaks the sum binding.

For each k ∈ Kλ, define a POVM measurement {Λk, I −Λk} such that TD(σ0,k, σ1,k) = Tr(Λkσ
0,k)−

Tr(Λkσ
1,k). Let us consider the following unbounded adversary A that breaks the statistical hiding:

1. Do the shadow tomography on |ψk⟩⊗t to compute ηk′ for all k′ ∈ Kλ such that |ηk′ − |⟨ψk′ |ψk⟩|2| ≤ 1
u ,

where u is a polynomial specified later.

2. Pick up the lexicographically first k∗ such that ηk∗ ≥ 1− 1
u .

3. Measure σb,k
C , which is committed by the committer, with {Λk∗ , I − Λk∗}.

4. If the result Λk∗ is obtained, output 0. Otherwise, output 1.
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Then,

Pr[0← A|b = 0]− Pr[0← A|b = 1] (29)

= 1
|Kλ|

∑
k∈Kλ

Tr(Λk∗σ0,k)− 1
|Kλ|

∑
k∈Kλ

Tr(Λk∗σ1,k) (30)

≥ 1
|Kλ|

∑
k∈Kλ

Tr(Λk∗σ0,k∗)− 1
|Kλ|

∑
k∈Kλ

Tr(Λk∗σ1,k∗)− 2
√

2
u(λ) (31)

= 1
|Kλ|

∑
k∈Kλ

TD(σ0,k∗
, σ1,k∗)− 2

√
2

u(λ) (32)

≥ 1
|Kλ|

∑
k∈Kλ

TD(σ0,k, σ1,k)− 4
√

2
u(λ) (33)

≥ 1
poly(λ) , (34)

where in the last inequality, we have used Lemma 7.10 and taken u ≫ p. Hence the statistical hiding is
broken.

Circumventing the impossibility using stateful setup. Interestingly, we can circumvent the above
impossibility if we allow the setup algorithm to be stateful.30 To see this, we first observe that if Hk is
replaced with a uniformly random function from {0, 1}λ to {0, 1}2λ in the construction in Section 7.2, then it
satisfies t-copy statistical hiding for all polynomials (or even subexponential) t. However, such a modified
protocol has inefficient setup algorithm since a random function cannot be computed efficiently. A common
solution in such a situation is to use pseudorandom functions, but then the hiding becomes computational
one. This is not useful for our purpose since if we can use pseudorandom functions, we could directly
construct computationally hiding and statistically binding quantum commitments in the plain model. Another
common method to efficiently simulating a random function is to rely on lazy-sampling, i.e., instead of
sampling the whole function at the beginning, we assign the function values only on queried inputs. Recently,
Zhandry [Zha20] proposed a technique called the compressed oracle that enables us to perfectly and efficiently
simulate a quantumly-accessible random oracle. Thus, if the setup algorithm uses the compressed oracle
technique to simulate the random function, we can achieve t-copy statistical hiding for all polynomials t and
statistical extractor-based binding simultaneously,31 at the cost of making the setup algorithm stateful so that
it can keep the quantum “database” needed for the simulation of the random oracle.

7.4 Applications

In the plain model (where there is no CRQS), [BCKM21] constructed oblivious transfers (OTs) from any
post-quantum classical commitments. [AQY22] observed that the construction works based on any quantum
commitments that satisfy a binding property they introduced.32 Since our definition of the extractor-based

30We thank Fermi Ma for suggesting it.
31In the stateful setup setting, we have to slightly modify the definition of statistical extractor-based binding since the classical key

k no longer appears. We allow the malicious committer and extractor to receive arbitrarily many (possibly exponential number of)
copies of the CRQS. The proof still works in this setting essentially in the same way.

32Later, Yan [Yan22] showed that any canonical quantum bit commitment scheme satisfies the binding property defined in
[AQY22].
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binding closely follows the definition of binding in [AQY22], we observe that we can similarly plug our
commitments in the CRQS model into the compiler of [BCKM21] to obtain a statistically secure oblivious
transfer in the CRQS model. Thus, we obtain the following corollary.

Corollary 7.11. For any polynomial t, there exist t-copy statistically maliciously simulation-secure OTs in
the CRQS model.

For clarity, we describe our definition of OTs in the CRQS model in Appendix B.

Remark 7.12. One may wonder why the compiler of [BCKM21] works in the CRQS model but does not work
in the quantum auxiliary-input setting as considered in Section 5. Roughly, this is because the CRQS can
be efficiently computed given the classical key k, but there is no way to efficiently compute the quantum
auxiliary input. The lack of efficient generation of the quantum auxiliary input prevents us from applying
Watrous’ rewinding lemma [Wat09], which is a crucial tool in the compiler in [BCKM21].

Moreover it is known that OTs imply MPCs for classical functionalities [IPS08] or even for quantum
functionalities [DGJ+20] in a black-box manner. Thus, we believe that similar constructions work in the
CRQS model, which would lead to statistically maliciously simulation-secure MPCs in the CRQS model.
However, for formally stating it, we have to carefully reexamine these constructions to make sure that they
work in the CRQS model as well. This is out of the scope of this work, and we leave it to future work.
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A No-go in Classical Setup Models

Definition A.1 (Commitments in the correlated randomness model). A (non-interactive) commitment
scheme in the correlated randomness model is given by a tuple of the setup algorithm Setup, committer
C, and receiver R, all of which are uniform QPT algorithms, and a family {Dλ}λ∈N of distributions over
classical bit strings. The scheme is divided into three phases, the setup phase, commit phase, and reveal
phase as follows:

• Setup phase: Setup takes 1λ as input and samples (x, y)← Dλ. It sends x to C and y to R.

• Commit phase: C takes x given by the setup algorithm and a bit b ∈ {0, 1} to commit as input,
generates a quantum state |Ψx,b⟩C,R on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R does a verification POVM measurement
{Λy,b, I − Λy,b} on the state over C and R. If Λy,b is obtained, R outputs b. Otherwise, R outputs ⊥.

The correctness, statistical hiding, and statistical binding are defined in similar ways as those of
commitments in the CRQS model (Definition 7.1).

Remark A.2. The collapsing theorem [Yan22] will not hold in general in the correlated randomness model,
because, for example, the committer cannot know the value of y and therefore the entire commitment phase
cannot be delegated to the committer. In the CRS model, on the other hand, we can show the collapsing
theorem in a similar way as [Yan22].

Definition A.3. We say that a family of distributions {Dλ}λ∈N is ϵ-correlated if there is a (not necessarily
efficient) algorithm A such that

Pr[x← A(y) : (x, y)← Dλ] ≥ ϵ. (35)
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Theorem A.4. If {Dλ}λ∈N is ϵ-correlated with ϵ ≥ 1
2 + 1

poly(λ) , statistically-hiding and statistically-binding
(non-interactive) commitments in the correlated randomness model is impossible.

Remark A.5. This in particular means that statistically-hiding and statistically-binding commitments in the
common reference string (CRS) model is impossible. Here, the CRS model is a special case of the correlated
randomness model where a setup algorithm samples a bit string x from a distribution, and sends the same x
to both the committer and the receiver.

Remark A.6. The result is optimal, because statistically-hiding and statistically-binding commitments is
possible (even completely classically) if the setup algorithm samples two bit strings x0, x1 and a single bit c
uniformly at random, and sends (c, xc) to the committer and (x0, x1) to the receiver. Such a distribution is
1
2 -correlated.

Remark A.7. The following setup (which is a classical analogue of the CRQS model) is a special case of
the correlated randomness model. Therefore, statistically-secure commitments is also impossible with the
following setup if it is ϵ-correlated with ϵ ≥ 1

2 + 1
poly(λ) .

1. Sample k ← Kλ.

2. Sample x← Ek. Sample y ← Ek. Here {Ek}k∈Kλ
is a family of certain distributions.

3. Output (x, y).

Proof of Theorem A.4. For each x, define ρx,b := TrR(|Ψx,b⟩R,C). For each x, let {Πx, I −Πx} be a POVM
measurement such that

TD(ρx,0, ρx,1) = Tr[Πx(ρx,0 − ρx,1)]. (36)

By assumption, there exists an algorithm A and a polynomial p such that

Pr[x← A(y) : (x, y)← Dλ] ≥ 1
2 + 1

p(λ) . (37)

Let us consider the following adversary for the statistical hiding.

1. Get y and the register C as input.

2. Run x′ ← A(y).

3. Measure the register C with the POVM measurement {Πx′ , I − Πx′}. If Πx′ is obtained, output 0.
Otherwise, output 1.

Let px,y be the probability that (x, y) is sampled from Dλ. The probability that the adversary correctly
answers 0 when b = 0 is at least ∑

x,y

px,y Pr[x← A(y)]Tr[Πxρx,0] (38)

and the probability that the adversary correctly answers 1 when b = 1 is at least∑
x,y

px,y Pr[x← A(y)]Tr[(I −Πx)ρx,1]. (39)
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Because of the statistical hiding,∑
x,y

px,y Pr[x← A(y)]Tr[Πxρx,0] +
∑
x,y

px,y Pr[x← A(y)]Tr[(I −Πx)ρx,1] ≤ 1 + negl(λ), (40)

which means∑
x,y

px,y Pr[x← A(y)]Tr[Πx(ρx,0 − ρx,1)] ≤ 1−
∑
x,y

px,y Pr[x← A(y)] + negl(λ). (41)

Therefore∑
x,y

px,y Pr[x← A(y)]
(

1−
√
F (ρx,0, ρx,1)

)
≤
∑
x,y

px,y Pr[x← A(y)]TD(ρx,0, ρx,1) (42)

≤ 1−
∑
x,y

px,y Pr[x← A(y)] + negl(λ), (43)

where we have used the relation 1−
√
F (ρ, σ) ≤ TD(ρ, σ), Equation (36), and Equation (41). This means∑

x,y

px,y

√
F (ρx,0, ρx,1) ≥

∑
x,y

px,y Pr[x← A(y)]
√
F (ρx,0, ρx,1) (44)

≥ 2
∑
x,y

px,y Pr[x← A(y)]− 1− negl(λ) (45)

≥ 2
p(λ) − negl(λ) (46)

≥ 1
p(λ) . (47)

Here we have used Equation (43) and Equation (37). Define

G :=
{

(x, y) :
√
F (ρx,0, ρx,1) ≥ 1

2p

}
. (48)

Then the standard average argument shows that
∑

(x,y)∈G px,y ≥ 1
2p .

Due to the correctness, ∑
x,y

px,y ⟨Ψx,1|Λy,1 |Ψx,1⟩ ≥ 1− negl(λ). (49)

If we define

T :=
{

(x, y) : ⟨Ψx,1|Λy,1 |Ψx,1⟩ ≥
√

1− 1
5p2

}
, (50)

the standard average argument shows that
∑

(x,y)∈T px,y ≥ 1− negl(λ). Moreover, from the union bound,

∑
(x,y)∈G∩T

px,y ≥
1
2p − negl(λ). (51)

Let Ux be a unitary such that F (ρx,0, ρx,1) = | ⟨Ψx,1| (Ux
R ⊗ IC) |Ψx,0⟩ |2. Let us consider the following

adversary B for the statistical binding.
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1. Receive x from the setup algorithm.

2. Commit b = 0 honestly.

3. To open b = 0, just send R.

4. To open b = 1, apply Ux on R and send R.

Due to the correctness, the probability thatR opens 0 is at least 1− negl(λ). The probability thatR opens 1 is∑
x,y

px,y ⟨Ψx,0|Ux†Λy,1U
x |Ψx,0⟩ ≥

∑
(x,y)∈G∩T

px,y ⟨Ψx,0|Ux†Λy,1U
x |Ψx,0⟩ (52)

≥
∑

(x,y)∈G∩T

px,y

[
⟨Ψx,1|Λy,1 |Ψx,1⟩ −

√
1− 1

4p2

]
(53)

≥
∑

(x,y)∈G∩T

px,y

[√
1− 1

5p2 −
√

1− 1
4p2

]
(54)

≥
( 1

2p − negl(λ)
)[√

1− 1
5p2 −

√
1− 1

4p2

]
(55)

≥ 1
poly(λ) . (56)

Here we have used Equation (50) and Equation (51). Also, in the second inequality, we have used the fact that

| ⟨Ψx,0|Ux†Λy,1U
x |Ψx,0⟩ − ⟨Ψx,1|Λy,1 |Ψx,1⟩ | ≤ TD(Ux |Ψx,0⟩ ⟨Ψx,0|Ux†, |Ψx,1⟩ ⟨Ψx,1|) (57)

≤
√

1− F (Ux |Ψx,0⟩ , |Ψx,1⟩) (58)

=
√

1− F (ρx,0, ρx,1) (59)

≤
√

1− 1
4p2 . (60)

for any (x, y) ∈ G. In conclusion, the sum-binding is broken by B.

Theorem A.8. Statistically-hiding and statistically-binding (non-interactive) commitments in the correlated
randomness model with {Dλ}λ∈N is impossible if {Dλ}λ∈N satisfies ∥Dλ−Eλ×Fλ∥1 < 5−2

√
2

17 = 0.1277...
for some families of distributions {Eλ}λ∈N and {Fλ}λ∈N.

Proof. Assume that there is a statistically-hiding and statistically-binding (non-interactive) commitment
scheme in the correlated randomness model with {Dλ}λ∈N such that ∥Dλ−Eλ×Fλ∥1 ≤ ϵ for some families
of distributions {Eλ}λ∈N and {Fλ}λ∈N, where ϵ = 5−2

√
2

17 .
Let px,y be the probability that (x, y) is sampled from Dλ. Let ex be the probability that x is sampled

from Eλ. Let fy be the probability that y is sampled from Fλ. The assumption ∥Dλ−Eλ×Fλ∥1 ≤ ϵ means
that ∑

x,y

|px,y − exfy| ≤ ϵ. (61)
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Let ρx,b := TrR(|Ψx,b⟩R,C), where |Ψx,b⟩R,C is the state that the honest committer generates to commit b.
Due to the statistical hiding,

1−

√√√√F (∑
x

exρx,0,
∑

x

exρx,1

)
≤ 1

2

∥∥∥∥∥∑
x

exρx,0 −
∑

x

exρx,1

∥∥∥∥∥
1

(62)

= 1
2

∥∥∥∥∥(∑
x

exρx,0)⊗ (
∑

y

fy |y⟩ ⟨y|)− (
∑

x

exρx,1)⊗ (
∑

y

fy |y⟩ ⟨y|)
∥∥∥∥∥

1
(63)

= 1
2

∥∥∥∥∥∑
x,y

exfyρx,0 ⊗ |y⟩ ⟨y| −
∑
x,y

exfyρx,1 ⊗ |y⟩ ⟨y|
∥∥∥∥∥

1

(64)

≤
∑
x,y

|px,y − exfy| (65)

+ 1
2

∥∥∥∥∥∑
x,y

px,yρx,0 ⊗ |y⟩ ⟨y| −
∑
x,y

px,yρx,1 ⊗ |y⟩ ⟨y|
∥∥∥∥∥

1

(66)

≤ ϵ+ negl(λ), (67)

which means

F

(∑
x

exρx,0,
∑

x

exρx,1

)
≥ (1− ϵ)2 − negl(λ). (68)

Define the state

|Φb⟩A,R,C :=
∑

x

√
ex |x⟩A ⊗ |Ψx,b⟩R,C . (69)

Due to the Uhlmann’s theorem and Equation (68), there exists a unitary U acting on registers A and R such
that

| ⟨Φ1|UA,R |Φ0⟩A,R,C |
2 ≥ (1− ϵ)2 − negl(λ). (70)

Let us consider the following malicious committer:

1. Get x as input (and ignore it).

2. Generate the state |Φ0⟩A,R,C, and send the register C to the receiver as the commitment.

3. To open b = 0, just send the register R to the receiver.

4. To open b = 1, apply U on the registers A and R, and send the register R to the receiver.

The probability that the receiver opens b = 0 is∑
x,y

px,y

∑
x′

ex′ ⟨Ψx′,0|Λy,0 |Ψx′,0⟩ ≥
∑
x,y

exfy

∑
x′

ex′ ⟨Ψx′,0|Λy,0 |Ψx′,0⟩ − ϵ (71)

=
∑
x,y

exfy ⟨Ψx,0|Λy,0 |Ψx,0⟩ − ϵ (72)

≥
∑
x,y

px,y ⟨Ψx,0|Λy,0 |Ψx,0⟩ − 2ϵ (73)

≥ 1− negl(λ)− 2ϵ, (74)
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where we have used the correctness and Equation (61). The probability that the receiver opens b = 1 is∑
x,y

px,y ⟨Φ0|U †Λy,1U |Φ0⟩ ≥
∑
x,y

px,y ⟨Φ1|Λy,1 |Φ1⟩ −
√

2ϵ− ϵ2 (75)

≥
∑
x,y

exfy ⟨Φ1|Λy,1 |Φ1⟩ −
√

2ϵ− ϵ2 − ϵ (76)

=
∑

y

fy ⟨Φ1|Λy,1 |Φ1⟩ −
√

2ϵ− ϵ2 − ϵ (77)

=
∑

y

fy

∑
x

ex ⟨Ψx,1|Λy,1 |Ψx,1⟩ −
√

2ϵ− ϵ2 − ϵ (78)

≥
∑
x,y

px,y ⟨Ψx,1|Λy,1 |Ψx,1⟩ −
√

2ϵ− ϵ2 − 2ϵ (79)

≥ 1− negl(λ)−
√

2ϵ− ϵ2 − 2ϵ, (80)

where we have used the correctness, Equation (61), and Equation (70). Therefore if ϵ < 5−2
√

2
17 , the statistical

sum-binding is broken.

B Definition of OTs in the CRQS model

We define OTs in the CRQS model.
Definition B.1 (OTs in the CRQS model). An oblivious transfer (OT) in the CRQS model is given by a
tuple of the setup algorithm Setup, sender S, and receiver R, all of which are uniform QPT algorithms. The
scheme is divided into two phases, the setup phase and execution phase as follows:

• Setup phase: Setup takes 1λ as input, uniformly samples a classical key k ← Kλ, generates two
copies of the same pure state |ψk⟩ and sends one copy each to S and R.

• Execution phase: In addition to |ψk⟩ sent from the setup algorithm, S takes a pair of classical
messages (m0,m1) and R takes a bit b as their private inputs, respectively. S and R interact through
quantum channel, after which S outputs ⊤ or ⊥ and R outputs a classical message m′ or ⊥.

As correctness, we require that S outputs⊤ andR outputsmb with probability 1 if the protocol is run honestly.
Definition B.2 (Security of OTs in the CRQS model). We say that an OT in the CRQS model (Setup, S,R)
is t-copy statistically maliciously simulation-secure if it satisfies the following.

t-copy statistical receiver security: There is a uniform QPT algorithm Sim (called the simulator) such that
for any non-uniform unbounded-time sender S∗ = {S∗λ, ρλ}λ∈N and any bit b,

TD(Real-RS∗,b,t
λ , Ideal-RS∗,Sim,b,t

λ ) ≤ negl(λ)

where the experiments Real-RS∗,b,t
λ and Ideal-RS∗,Sim,b,t

λ are defined as follows.

• Real-RS∗,b,t
λ : The experiment chooses k ← Kλ and sends t copies of |ψk⟩ to both S∗ and R. The

malicious sender S∗ interacts with the honest receiver R with the private input b in the execution phase.
Let m′ be the output of R and τS∗ be the final state of S∗. The experiment outputs a tuple (τS∗ ,m′).

• Ideal-RS∗,Sim,b,t
λ : Sim takes (S∗λ, ρλ) as input and outputs a state τ̃S∗ along with a pair of messages

(m0,m1) or abort. In the case of abort, then the experiment outputs a tuple (τ̃S∗ ,⊥) and otherwise
outputs (τ̃S∗ ,mb).
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t-copy statistical sender security: There is a uniform QPT algorithm Sim (called the simulator) such
that for any non-uniform unbounded-time malicious receiver R∗ = {R∗λ, ρλ}λ∈N and any pair of messages
(m0,m1),

TD(Real-SR∗,(m0,m1),t
λ , Ideal-SSim,(m0,m1),t

λ ) ≤ negl(λ)

where the experiments Real-SR∗,(m0,m1),t
λ and Ideal-SR∗,Sim,(m0,m1),t

λ are defined as follows.

• Real-SR∗,(m0,m1),t
λ : The experiment chooses k ← Kλ and sends t copies of |ψk⟩ to both S and R∗.

The malicious sender R∗ interacts with the honest sender S with the private input (m0,m1) in the
execution phase. Let d ∈ {⊤,⊥} be the output of S and τR∗ be the final state of R∗. The experiment
outputs a tuple (τS∗ , d).

• Ideal-SR∗,Sim,(m0,m1),t
λ : Sim takes (R∗λ, ρλ) as input and outputs a state τ̃R∗ and d̃ ∈ {⊤,⊥} The

experiment outputs a tuple (τ̃R∗ , d̃).
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