
A Simple and Efficient Framework of Proof
Systems for NP

Yuyu Wang1 , Chuanjie Su1 , Jiaxin Pan2,3 , and Yu Chen4,5,6 (�)

1 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn, chuanjie.su@hotmail.com

2 University of Kassel, Kassel, Germany
3 Department of Mathematical Sciences,

NTNU - Norwegian University of Science and Technology, Trondheim, Norway
jiaxin.pan@ntnu.no

4 School of Cyber Science and Technology,
Shandong University, Qingdao 266237, China

5 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
6 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao 266237, China

yuchen@sdu.edu.cn

Abstract. In this work, we propose a simple framework of constructing
efficient non-interactive zero-knowledge proof (NIZK) systems for all NP.
Compared to the state-of-the-art construction by Groth, Ostrovsky, and
Sahai (J. ACM, 2012), our resulting NIZK system reduces the proof
size and proving and verification cost without any trade-off, i.e., nei-
ther increasing computation cost, CRS size nor resorting to stronger
assumptions.
Furthermore, we extend our framework to construct a batch argument
(BARG) system for all NP. Our construction remarkably improves the
efficiency of BARG by Waters and Wu (Crypto 2022) without any trade-
off.
Keywords. Non-interactive zero-knowledge, batch argument, NP lan-
guage, pairing-based cryptography.

1 Introduction

1.1 Motivation

Zero-knowledge proof systems introduced by Goldwasser, Micali, and Rackoff [26]
allow a prover to convince a verifier for the validity of an NP statement, without
revealing anything beyond that. As its round-optimal variant, non-interactive
zero-knowledge proof (NIZK) allows a prover to convince the verifier by sending
out a single message. Due to this nice property, NIZK is a very interesting topic in
both practical and theoretical cryptography, and it has been used as an important
building block for countless cryptographic primitives and protocols.

https://orcid.org/0000-0002-1198-1903
https://orcid.org/0009-0008-2296-8510
https://orcid.org/0000-0002-7459-6850
https://orcid.org/0000-0003-2553-1281
mailto:wangyuyu@uestc.edu.cn,jiaxin.pan@ntnu.no
mailto:wangyuyu@uestc.edu.cn
mailto:chuanjie.su@hotmail.com
mailto:wangyuyu@uestc.edu.cn,jiaxin.pan@ntnu.no
mailto:jiaxin.pan@ntnu.no
mailto:wangyuyu@uestc.edu.cn,jiaxin.pan@ntnu.no
mailto:yuchen@sdu.edu.cn

2 Y. Wang, C. Su, and J. Pan, Y. Chen

NIZKs for all NP were firstly proposed in [7,20] based on the quadratic
residuosity assumption and the existence of trapdoor permutation. While these
results demonstrate the feasibility of NIZKs for NP under standard assumptions,
they are not very efficient.

For better efficiency, Groth, Ostrovsky, and Sahai [30] proposed a framework
of efficient pairing-based constructions (GOS-NIZK). It provides constructions
with prime-order and composite-order pairings. Their security is based on the
Decisional Linear (DLIN) assumption and the subgroup decision assumption,
depending on which pairing group they are constructed in. Their constructions
have tight security and compact common reference strings (CRS), namely, a CRS
contains a constant number of group elements. Moreover, they achieve perfect
soundness and computationally zero-knowledge, or computational soundness
and perfect zero-knowledge, depending on the CRS. This is referred to as the
dual-mode property. Perfect soundness and perfect zero-knowledge can provide
“everlasting security” and are interesting for certain applications. For instance,
a NIZK with perfect soundness always rejects an invalid proof and can protect
messages that are valuable for a limited time and can be published or deleted later.
Additionally, the dual mode with perfect zero-knowledge continuously protects
secrets and prevents adversaries from breaking soundness at the time where an
honest proof is generated, thereby ensuring security by letting the system reject
users who have timed out when attempting to generate proofs.

To further improve the efficiency of GOS-NIZK, a sequence of works have been
proposed. These works either restrict to algebraic languages (e.g., [31,35,34,40,16])
or base their security on non-falsifiable assumptions (e.g., [27,41,24,18,29]). In
this paper, we are interested in constructions based on standard assumptions
in pairing groups. By “standard assumptions”, we refer to static and falsifiable
assumptions, such as the (Matrix) Diffie-Hellman assumption [19]. The reason of
using standard assumptions is that they are well-studied and provide more reliable
security guarantee. Recently, a notable work by Katsumata et al. [38,39] (KNYY)
shortened the proof size of pairing-based NIZKs for all NP based on standard
assumptions. Their proof size is additive, e.g., s+ poly(λ) rather than s · poly(λ)
as in GOS-NIZK, where s is the number of gates. However, its security is based on
a particular computational Diffie-Hellman assumption, CDH∗, which is the CDH
assumption in a subgroup of Z∗p (where prime p is the group order). 7 As noted by
the authors themselves, it is unclear how to instantiate their construction under
the standard CDH assumption in a pairing group. Also, their construction suffers
from non-compact CRSs and significant security loss, and lacks both perfect
zero-knowledge and perfect soundness.

Summing up the above discussion, we ask the following question:

Is it possible to improve the efficiency of GOS-NIZK without any trade-
off?

7 This particular assumption was not included in their proceeding version [38], but in
their later full version [39].

A Simple and Efficient Framework of Proof Systems for NP 3

Scheme Sound. ZK CRS Size Proof Size Prov. Cost Ver. Cost Assump.
GOS12 [30] comp. perf. 5|G| (9t + 6s)|G| 15t + 12s 18(s + t) DLIN(sym. pair.) perf. comp.
GOS12∗ comp. perf. 4|G1|+ 4|G2|

(6t + 4s)|G1|+
(6t + 6s)|G2|

18t + 16s 12(s + t) SXDH(asym. pair.) perf. comp.

Ours comp. perf. 4|G1|+ 4|G2|
(2t + 8s)|G1|+
10s|G2|

2t + 30s 24s SXDHperf. comp.

Table 1. Comparison of pairing-based NIZKs for all NP under standard assumptions.
GOS12 is the original GOS-NIZK which is only with symmetric pairings, and GOS12∗
is its variant with asymmetric pairings (see Appendix A). t and s are the number of
wires and gates in the statement circuit respectively. In column “Sound.” (respec-
tively, “ZK”), comp. and perf. mean computation and perfect soundness (respectively,
zero-knowledge) respectively. In columns “Prov. Cost”, “Ver. Cost” we measure
the numbers of exponentiations and pairings for the proving and verification cost
respectively (since they dominate the overall performance of proving and verification).
“Assump.” means the underlying assumption.

Non-interactive batch arguments. Another line of research focuses on non-
interactive batch arguments (BARG), which are sound proof systems amortizing
the cost of verification across multiple statements. Specifically, a BARG allows a
prover to generate a proof of the validity of multiple statements where the proof
size scales sublinearly with the number of statements.

Up until now most works are devoted to constructions in idealized models
[43,29,2,13,12,47] or non-standard assumptions [37,28,4,17,42,45,24,6,5,9,3]. Re-
cently, Choudhuri et al. [14,15] proposed a construction under both quadratic
residue and the subexponentially hard Diffie-Hellman assumption and a construc-
tion under the learning with errors assumption. Subsequently, a breakthrough
work by Waters and Wu [49] proposed the first BARG (WW-BARG) for all NP
over prime-order bilinear maps under the matrix Diffie-Hellman (MDDH) assump-
tion [19]. They also gave a composite-order group version under the subgroup
decision assumption. The proof sizes of both constructions are independent of
the number of statements. As applications of WW-BARG, they proposed the
first succinct non-interactive argument (SNARG) for P with sublinear-sized CRS
and the first aggregated signature from standard assumptions over bilinear maps.
A recent work by Kalai et al. [36] shows a bootstrapping technique that can
generally convert BARGs into ones where CRSs grow polylogarithmically with
the number of statements. As a trade-off, the proof sizes grow polylogarithmically
as well.

Due to the versatility of BARGs over bilinear maps, it is natural to ask the
same question on GOS-NIZK mentioned above for the state-of-the-art BARG by
Waters and Wu, i.e. whether we can improve its efficiency without any trade-off.
Such an improvement will immediately yields a more efficient BARGs with short
CRSs via the bootstrapping technique by Kalai et al. [36].

4 Y. Wang, C. Su, and J. Pan, Y. Chen

1.2 Our Contributions

Improvement on GOS-NIZK without Trade-Off. In this work, we improve
the efficiency of GOS-NIZK with asymmetric Type-3 pairings by proposing a new
and simple framework of constructing efficient NIZKs for NP. We consider Type-3
pairings, since it is the most efficient one among all different types of pairings
[21]. Moreover, cryptanalysis [32,33] against symmetric pairing groups with small
characteristic curves motivate cryptographic schemes in Type-3 pairings (for
instance, [11,1]).

We note that the original GOS-NIZK was proposed with symmetric pairings
under the decisional linear (DLIN) assumption. For a fair comparison with our
scheme, we give its variant in the asymmetric pairing explicitly in Appendix A. In
the rest of this section, we refer GOS-NIZK to be the one in the Type-3 setting,
unless stated otherwise.

By instantiating our scheme based on the SXDH assumption, our resulting
NIZK proofs consist of 2t + 8s group elements in G1 and 10s elements in G2,
where t and s respectively denote the numbers of wires and gates of the statement
circuit (the statement represented by fan-in-2 and unbounded fan-out NAND
gates). We denote this as (2t + 8s, 10s). Notice that for each multiple fan-out
gate, we only increment the count of wires t by 1 for its output wires, since
all output wires of the gate are assigned the same value and serves as input
wires for multiple other gates. For proving and verification, we use 2t + 30s
exponentiations and 24s pairings respectively. We note that any circuit can be
converted to one with only NAND gates. 8 For GOS-NIZK, its proof size, proving
cost, and verification cost are (6t+ 4s, 6t+ 6s), 18t+ 16s exponentiations, and
12(t+ s) pairings respectively, which are strictly larger than ours. This is because
t is larger (or even much larger in many cases) than s, since each gate has at
least 1 output wire. Indeed, t− s corresponds to the number of input wires (with
no gates outputting them) and it cannot be very small. Otherwise, the witness
will be very short and an adversary can guess it with large probability. As an
instance, for a statement circuit consisting only of fan-in-2 and fan-out-1 gates,
we have t = 2s (without counting the final ouput wire) since each time when
adding a gate from the bottom to the top in a circuit, s and t increase by 1 and
2 respectively. In this case, our scheme uses (12s, 10s) group elements in the
proof, 34s exponentiations for proving, and 24s pairings for verification, which is
much more efficient than GOS-NIZK using (16s, 18s) elements in a proof, 52s
exponentiations for proving, and 36s pairings for verification.

8 Notice that this conversion does not affect the fairness of the comparison. The reason
is that in an original statement circuit consisting of AND, OR, and NOT gates, each
AND or OR gate can be represented as the combination of one NAND gate and several
NOT gates, while NOT gates are “free” in the sense that they do not increase the
proof size in both the GOS-NIZK and ours. Indeed, converting the statement circuits
into ones consisting only of NAND gates is unnecessary in practice. This conversion
is just used for conceptual simplicity, as we will discuss at the end of Section 3. The
same arguments can be made for the BARGs mentioned later.

A Simple and Efficient Framework of Proof Systems for NP 5

In Table 1, we give comparison of the security quality, CRS size, proof size,
proving and verification cost, and the underlying assumptions of our NIZK and the
ones by GOS. For being general, we present the schemes and proofs in the technical
part with the MDDH assumption [19], which is an algebraic generalization of the
DLIN and SXDH assumptions. The security of all the instantiations are tight. For
the experimental results on the cost and proof size, which are consistent with
our comparison in Table 1, we refer the reader to Section 5.

Scheme CRS Size Proof Size Prov. Cost Ver. Cost Assump.
WW22 [49] (4 + 2m2)|G1|+ (4t + 4s)|G1|+

(4t + 4s)|G2| 4m2t + 4m(m− 1)s 24t + 32s SXDH(asym. pair.) (4 + 2m2)|G2|
WW22∗ [49] (1 + m2)|G| (2t + s)|G| m2t + m(m−1)

2 s 2t + 3s Subgroup
(sym. pair.) decision
Ours (4 + 2m2)|G1|+ (2t + 6s)|G1|+

(2t + 6s)|G2|
4mt + 6m(m− 1)s 40s SXDH(asym. pair.) (4 + 2m2)|G2|

Ours (1 + m2)|G| (t + 2s)|G| mt + m(m− 1)s 4s Subgroup
(sym. pair.) decision

Table 2. Comparison of pairing-based BARGs for all NP. WW22 is WW-BARG in
the asymmetric pairing, and WW22∗ is its symmetric pairing version. m denotes the
number of statement instances. t and s denote the number of wires and gates in the
relation circuit respectively. We assume that all provers take as input m statements. All
the instantiations satisfy somewhere argument of knowledge. In columns “Prov. Cost”,
“Ver. Cost”, we measure the numbers of multiplications and pairings for the proving
and verification cost respectively (since they dominate the overall performance of
proving and verification). “Assump.” means the underlying assumption.

Given that our construction improves the proving and verification costs of
state-of-the-art constructions without any trade-off, it is recommended that any
applications of GOS-NIZK utilize our construction as a drop-in replacement.
Shorter proofs are always better, particularly in distributed settings. In such
scenarios, proofs may need to be stored permanently and can significantly impact
bandwidth usage. Therefore, even a constant rate of communication cost holds
significant importance. This is exemplified by ZKB++ [10], which successfully
reduces the proof size of ZKBoo [25] in the random oracle model by a factor of
2. Also, similar to GOS-NIZK, via the generic construction in [30], our NIZK
can be converted into a (more efficient) non-interactive zap, which has witness-
indistinguishability and uses no CRS. As far as we know, this is the most efficient
non-interactive zap based on standard assumptions by now. It provides perfect
subversion-resistance and is important for distributed systems where trusted CRS
is not desirable. Moreover, it can be converted into a leakage-resilient NIZK via
the generic construction by Garg-Jain-Sahai [22], which in turn implies a (more
efficient) fully leakage-resilient signature.

Extension to BARG. We further extend our framework to improve the effi-
ciency of WW-BARG without making compromises. Similar to our NIZK, we

6 Y. Wang, C. Su, and J. Pan, Y. Chen

present our BARG with the MDDH assumptions. Under the SXDH assumption,
we obtain a BARG with each proof consisting of (6s+ 2t, 6s+ 2t) elements. It is
shorter than that in WW-BARG with (4s+ 4t, 4s+ 4t) elements. Transplanting
our BARG into composite-order bilinear groups derives a BARG with the proof
size 2s+ t, while the proof size of the composite-order construction by Waters and
Wu is 2t+ s. Moreover, our proving and verifying costs are less than WW-BARG
in both the prime-order and composite-order groups.

In Table 2, we give comparison of our constructions and the ones by Waters and
Wu. All the instantiations in the table satisfy the (tight) security of somewhere
extractability argument of knowledge (see Definition 7), which in turn implies
non-adaptive soundness, namely, soundness for statements independent of the
CRS. For the experimental results on the cost and proof size, which are consistent
with our comparison in Table 2, we refer the reader to Section 5.

Similar to our NIZK construction, we recommend using our BARG construc-
tion as a drop-in replacement for WW-BARG in any of its applications. For
instance, it provides the most efficient SNARG for P with optimal succinctness
on CRS and proof sizes, through conversions by Waters-Wu and Kalai et al. [36].

1.3 Technical Overview

Let C(x, ·) be a statement circuit represented by NAND gates, where x is the
statement hardwired in C. We briefly recall that, in the GOS-NIZK, to prove the
existence of a witness w such that C(x,w) = 1, a prover first extends the witness
to contain the bits for all wires of C(x, ·). Then it hides all bits in w with an
additively homomorphic commitment and makes the commitment for the final
output wire a fixed one corresponding to 1. In this way anyone can check it. Since
for each gate G` = (d1, d2, d3), ((wd1 ,wd2),wd3) is a valid input/output tuple if
and only if

wd1 + wd2 + 2wd3 − 2 ∈ {0, 1}. (1)

Here by G` = (d1, d2, d3) we mean that the left and right input wires of the gate
G` are indexed as d1 and d2 respectively, while the output wire of G` is indexed
as d3. The prover can use an OR-proof system to prove that the plaintexts of all
the commitments satisfy such a relation. Additionally, the prover has to prove
the validity of each wire, namely, each commitment commits to a bit (rather
than some other value).
Our approach of NIZK for all NP. In our construction, we also commit to
the value of each wire and prove that the committed values are valid for each
gate. Different to the GOS-NIZK, we adopt the following consistency relation to
improve the efficiency:

(−1 + wd1 + wd3 = 0 ∧ −1 + wd2 = 0) ∨ (−1 + wd3 = 0 ∧ wd2 = 0). (2)

One can check that when the computations are over GF (2), Relation (2) holds
if and only if the input/output pair is binary. Only proving this relation of
committed values for each gate can be done by using a simple OR-proof, and

A Simple and Efficient Framework of Proof Systems for NP 7

this indeed yields shorter proof size in total, compared with the GOS-NIZK.
However, when considering a large field, only satisfying this relation may seem
meaningless. Specifically, when wd2 = 1, wd1 and wd3 might be large numbers
with sum “happening to be” 1, and when wd2 = 0, the situation seems worse:
there is no restriction on wd1 at all. Hence, without proving the wires are binary,
a valid proof for such a relation does not necessarily mean the validity of a
statement. A natural approach is to additionally generate proofs of wire validity
for wd1 ,wd3 ∈ {0, 1}. However, this results in longer proofs than the GOS-NIZK.
To overcome this, we develop a new method for soundness without additional
wire validity checking procedure.

A new witness-extraction strategy. To maintain both security and efficiency,
we propose a new witness-extraction strategy for proving soundness, which does
not require additional wire validity checks when adopting Relation (2). Specifically,
this strategy helps us extract a witness from any valid proof only proving that
committed values satisfy Relation (2) for each gate. The strategy uses two phases.

In the first phase, given a valid proof, we use a trapdoor to decrypt all
commitments. The decryption result for the final output wire must be 1, and
those for other wires could be any value (not necessarily in {0, 1}). The soundness
of the underlying OR-proof system only guarantees that all the decryption results
satisfy Relation (2) for each gate.

In the next phase, we start to pick up useful values from the decryption
results. This procedure starts from the final output wire to the input wires. Let
((wd1 ,wd2),wd3) be the decryption results for the final gate Gt. We must have
wd3 = 1, and wd2 ∈ {0, 1} according to Relation (2). If wd2 = 1, wd1 = 0 must
hold, and we set ((wd1 ,wd2),wd3) as the input/output values for Gt. The problem
is that when wd2 = 0, wd1 could be any large value. Our trick is not to assign
any number to this wire and leave it blank for now. The point is that no matter
which in {0, 1} will be assigned to the left-input wire, as long as wd2 = 0 and
wd3 = 1, ((wd1 ,wd2),wd3) will be a valid pair for Gt. Next, for each gate where
we have previously assigned a value in {0, 1} to its output wire, we assign values
to its input-wire(s) in a similar way. By doing this recursively from the bottom to
the top of the circuit, we eventually obtain values for part of the input wires of
the whole statement circuit. Now notice that these values will lead the circuit to
output 1 anyway, no matter what the rest of the input wires (left as blank) will
be. By setting these rest of the input wires as, say 0, we obtain a value witness.

For better understanding, we give an example of the witness-extraction
procedure for the statement circuit in Figure 1. In the decryption result of a
valid proof, the final output must be 1, and the right inputs of all gates must be
in {0, 1} according to Relation (2). Without loss of generality, we assume that
the right inputs of (G1, G2, G4, G5) are (0, 1, 1, 0) respectively. Here we do not
care about the right input of G3 since it does not affect the final output as we
will see. Then we extract the witness from the bottom to the top. For G5, we
leave its left input as blank. Then for G4, its left input must be 1 according to
Relation (2). Next, according to the same rule, we leave the left input of G1 as
blank and set the left input of G2 as 0. One can see that by now, we have found

8 Y. Wang, C. Su, and J. Pan, Y. Chen

a path (remarked as red wires in Figure 1) leading the whole circuit to output 1.
By setting the rest of the input wires assigned ⊥ as 0, we immediately obtain a
valid witness, which is 000001. One can check that it leads the circuit to output
1. For the full details, we refer the reader to Section 3.

Fig. 1. An instance of the witness-extraction procedure. Without loss of generality,
all the gates {Gi}i∈[5] in the statement circuit are set as NAND gates. The procedure
starts from the bottom to the top. By setting the (blue) input wires assigned ⊥ as 0,
we extract a valid witness 000001 leading the circuit to output 1.

Extension to batch argument for all NP. We now explain how to combine
our witness-extraction strategy with the WW-BARG proposed by Waters and
Wu in [49] to achieve a BARG with shorter proofs.

To prove the existence of witnesses (wi)i∈[m] such that C(xi,wi) = 1 for m
statements xi, WW-BARG first extends each (xi,wi) to (wi,j)j∈[t] containing bits
of all wires in the circuit C. Then it commits to (wi,j)i∈[m] with an additively
homomorphic (de-randomized) vector commitment for each wire. Next it generates
succinct proofs of wire validity and gate consistency, i.e., for all i ∈ [m], it proves
that wi,j ∈ {0, 1} for each j ∈ [t] and 1 − wi,d1wi,d2 = wi,d3 for each gate
G` = (d1, d2, d3). The final proof size is independent of m.

Alternatively, if we can prove gate consistency with respect to Relation (2) as
in the case of NIZK, then we can adopt our aforementioned witness-extraction
strategy to avoid generating proofs of wire validity and achieve soundness with
shorter proofs. However, we do not have an explicit “batch OR-proof” for doing
this. To overcome this, we observe that WW-BARG essentially provides us with a
way to prove wi,1wi,2 = 0 for all i ∈ [m] given two commitments to (wi,1)i∈[m] and
(wi,2)i∈[m] respectively. Then for each gate G` = (d1, d2, d3), we let the prover
homomorphically evaluate commitments to (1−wi,d1−wi,d3)i∈[m], (1−wi,d3)i∈[m],
and (1− wi,d2)i∈[m] respectively, and extend WW-BARG to adopt the following
relation for consistency checks:

(1− wi,d1 − wi,d3)wi,d2 = 0 ∧ (1− wi,d3)(1− wi,d2) = 0. (3)

One can check that Relation (3) implies

(1− wi,d3 = 0 ∧ wi,d2 = 0) ∨ (1− wi,d1 − wi,d3 = 0 ∧ 1− wi,d2 = 0),

A Simple and Efficient Framework of Proof Systems for NP 9

which is equivalent to Relation (2), or

wi,d1 = 0 ∧ 1− wi,d3 = 0.

Then for any valid proof, we can extract the extended witness from the bottom to
the top of the circuit in a similar way to the witness-extraction strategy for our
NIZK. Here, a main difference is that there is a new case wi,d1 = 0∧ 1−wi,d3 = 0
captured by Relation (3) but not captured by Relation (2). When this happens,
we just leave wi,d2 blank and continue to extract values for the gate outputting
wi,d1 . We refer the readers to Section 4 for the detailed construction and security
analysis, which reflects a bulk of our main technical contribution.

2 Preliminaries

Notations. We use x $← S to denote the process of sampling an element x
from set S uniformly at random. All our algorithms are probabilistic polynomial
time unless we stated otherwise. If A is a probabilistic algorithm, then we write
a $← A(b) to denote the random variable that outputted by A on input b. By
negl(·) we mean an unspecified negligible function.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ
returns a description G := (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order p for a λ-bit prime p, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 × G2 → GT is an efficiently
computable (non-degenerate) bilinear map. Define PT := e(P1, P2), which is a
generator in GT . Unless stated otherwise, we consider Type III pairings, where
G1 6= G2 and there is no efficient homomorphism between them.

We use implicit representation of group elements as in [19]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zmp } ⊂ Znp denotes the linear
span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zmp } ⊂ Gns . Note that it is
efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions.
We define [A]1◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
[19] and related assumptions [44].

Definition 1 (Matrix distribution). Let k, ` ∈ N with ` > k. We call D`,k
a matrix distribution if it outputs matrices in Z`×kp of full rank k in polynomial
time. By Dk we denote Dk+1,k.

For a matrix A $← D`,k, we define the set of kernel matrices of A as

ker(A) := {A⊥ ∈ Z`×(`−k)
p | (A⊥)> ·A = 0 ∈ Z(`−k)×k

p and A has rank (`− k)}.

10 Y. Wang, C. Su, and J. Pan, Y. Chen

Given a matrix A over Z`×kp , it is efficient to sample an A⊥ from ker(A).
The D`,k-Matrix Diffie-Hellman problem is to distinguish the two distributions

([A], [Aw]) and ([A], [u]) where A $← D`,k, w $← Zkp and u $← Z`p.

Definition 2 (D`,k-matrix decisional Diffie-Hellman assumption [19]).
Let D`,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D`,k-Matrix
Diffie-Hellman (D`,k-MDDH) is hard relative to GGen in group Gs if for all PPT
adversaries A, it holds that

|Pr[1 $← A(G, [A]s,[Aw]s)]− Pr[1 $← A(G, [A]s, [u]s)]| ≤ negl(λ),

where G $← GGen(par), A $← D`,k,w $← Zkp and u $← Z`p.

2.2 Non-Interactive Zero-Knowledge Proof

Let λ ∈ N be the security parameter determining a public parameter par. We
define NIZK as follows.

Definition 3 (Non-interactive zero-knowledge proof [31]). A non-inter-
active zero-knowledge proof (NIZK) for a family of languages {Lpar} consists of
three PPT algorithms NIZK = (NGen,NProve,NVer) such that:
– NGen(1λ, par) returns a common reference string crs.
– NProve(crs,C, x,w) returns a proof π.
– NVer(crs,C, x, π) returns 1 (accept) or 0 (reject). Here, NVer is deterministic.
Completeness is satisfied if for all (C, x) ∈ Lpar and all w such that C(x,w) = 1,

all crs ∈ NGen(1λ, par), and all π ∈ NProve(crs, x,w), we have NVer(crs, x, π) = 1.

Definition 4 (Composable zero-knowledge). A NIZK NIZK = (NGen,
NProve,NVer) is said to satsify composable zero-knowledge if there exist a simu-
lator consisting of two PPT algorithms (NTGen,NSim) such that
– NTGen(1λ, par) returns crs and a trapdoor td,
– NSim(crs, td,C, x) returns a proof π,

and for any PPT adversary A, we have

|Pr[1 $← A(crs)|crs $← NGen(1λ, par)]
− Pr[1 $← A(crs)|(crs, td) $← NTGen(1λ, par)]| ≤ negl(λ),

and for all (x,w) such that C(x,w) = 1, the following distributions are identical.

π $← NProve(crs,C, x,w) and π $← NSim(crs, td,C, x),

where (crs, td) $← NTGen(1λ, par).

Definition 5 (Perfect soundness). A NIZK NIZK = (NGen, NProve, NVer)
is said to satisfy perfect soundness if for all x /∈ Lpar, all crs ∈ NGen(1λ, par),
and all π, we have NVer(crs,C, x, π) = 0.

A Simple and Efficient Framework of Proof Systems for NP 11

Witness-extractor. One can easily see that for any statement, if there exists a
(possibly inefficient) witness-extractor that can extract a valid witness from any
valid proof passing the verification, then perfect soundness is satisfied.
Dual mode. A NIZK defined as above satisfies computational zero-knowledge
and perfect soundness. By generating CRSs with NTGen instead of NGen, we
immediately achieve its dual mode with perfect zero-knowledge but computational
soundness.

2.3 Batch Argument
Let λ ∈ N be the security parameter determining a public parameter par. We
define batch argument as follows.
Definition 6 (Batch argument). A batch argument (BARG) for a family of
languages {Lpar} consists of three PPT algorithms BARG = (BGen,BProve,BVer)
such that
– BGen(1λ, par, 1m) returns a common reference string crs.
– BProve(crs,C, (xi)i∈[m], (wi)i∈[m]) returns a proof π.
– BVer(crs,C, (xi)i∈[m], π) returns 1 (accept) or 0 (reject). Here, BVer is deter-
ministic.
Completeness is satisfied if for all λ,m ∈ N, all (C, (xi)i∈[m]) ∈ Lpar, all

(wi)i∈[m]) such that C(xi,wi) = 1 for all i ∈ [m], all crs ∈ BGen(1λ, par, 1m), and
all π ∈ BProve(crs,C, (xi)i∈[m], (wi)i∈[m]), we have BVer(crs,C, (xi)i∈[m], π) = 1.
Definition 7 (Somewhere argument of knowledge). A BARG BARG =
(BGen,BProve,BVer) for {Lpar} is said to be a somewhere argument of knowledge
if there exist two PPT algorithms (BTGen,BExt) such that
– BTGen(1λ, par, 1m, i∗) returns a common reference string crs and a trapdoor

td,
– BExt(td,C, (xi)i∈[m], π) returns a witness w∗. Here, BExt is deterministic,

and (BTGen,BExt) satisfy the following two properties.
CRS indistinguishability: for all λ,m ∈ N, all i∗ ∈ [m], and all PPT adversary

A, we have

|Pr[1 $← A(crs)|crs $← BGen(1λ, par, 1m)]
− Pr[1 $← A(crs)|(crs, td) $← BTGen(1λ, par, 1m, i∗)]| ≤ negl(λ).

Somewhere extractability in trapdoor mode: for all polynomial m = m(λ),
all i∗ ∈ [m], and all adversary A, we have

Pr[BVer(crs∗,C, (xi)i∈[m], π) = 1 ∧ C(xi∗ ,wi∗) 6= 1|
(crs∗, td) $← BTGen(1λ, par, 1m, i∗), (C, (xi)i∈[m], π) $← A(crs∗),

wi∗ $← BExt(td,C, (xi)i∈[m], π)] ≤ negl(λ).

As noted in [49], somewhere extractability implies non-adaptive soundness, i.e.,
soundness for statements independent of the CRS (see [49] for the formal defini-
tion), by a standard hybrid argument. 9

9 A security loss of O(m) occurs in the hybrid argument.

12 Y. Wang, C. Su, and J. Pan, Y. Chen

Definition 8 (Succinctness). A batch argument BARG = (BGen,BProve,
BVer) for {Lpar} is said to satisfy succinctness if there exists a fixed polynomial
poly(·, ·, ·) such that for all λ,m ∈ N, all crs ∈ BGen(1λ, par, 1m), and all (C :
{0, 1}n × {0, 1}h → {0, 1}, (xi)i∈[m]) ∈ Lpar, the following properties hold:

Succinct proofs: all π ∈ BProve(crs,C, (xi)i∈[m], (wi)i∈[m]) where C(xi,wi) = 1
for all i ∈ [m] satisfies |π| ≤ poly(λ, logm, s).

Succinct CRS: all crs ∈ Gen(1λ, par, 1m) satisfies |crs| ≤ poly(λ,m, n) +
poly(λ, logm, s).

Succinct verification: BVer runs in time poly(λ,m, n) + poly(λ, logm, s).
Above by s we denote the number of gates in C.

3 Simple NIZK from OR-Proof

In this section, we recall an efficient instantiation of OR-proof and give a new
framework for converting an OR-proof into an efficient NIZK for circuit satisfia-
bility in NP.

3.1 NIZK for OR-Language

We now recall the OR-proof system based on the MDDH assumptions presented
in [46,40] and implicitly given in [30]. As far as we know, this is the most efficient
OR-proof by now in the standard model.

For the language

Lor
[A]1

= {(C[A]1 , ([x0]1, [x1]1))|∃w ∈ Ztp : C[A]1([x0,x1]1,w) = 1},

where [A]1 ∈ Gn×t1 is public and C[A]1 is a Boolean circuit on input ([x0,x1]1,w)
outputting 1 iff [x0]1 = [A]1w ∨ [x1]1 = [A]1w, the OR-proof system ORNIZK
with each public parameter containing par = (G $← GGen(1λ)) is defined as in
Figure 2.

Lemma 1. If the Dk-MDDH assumption holds in the group G2, then the proof
system ORNIZK = (NGenor,NTGenor,NProveor, NVeror,NSimor) is a NIZK with
perfect completeness, perfect soundness, and composable zero-knowledge. For
any adversary A against the composable zero-knowledge of ORNIZK, there exists
a tight reduction algorithm breaking the MDDH assumption by using A in a
black-box way with security loss O(1).

We refer the reader to [46,40] for the detailed proof.

3.2 Our NIZK for NP

Before giving our NIZK for NP, we first introduce the notion of circuit satisfiability.

A Simple and Efficient Framework of Proof Systems for NP 13

NGenor(1λ, par):
D $← Dk, z $← Zk+1

p \Span(D)
Return crs = (par, [D]2, [z]2)

NProveor(crs,C[A]1 , ([x0]1, [x1]1), r):
let j ∈ {0, 1} s.t. [xj]1 = [A]1 · r
v $← Zkp, [z1−j]2 = [D]2 · v, [zj]2 = [z]2 − [z1−j]2, S0,S1

$← Zt×kp

[Cj]2 = Sj · [D]>2 + r · [zj]>2 ∈ Gt×(k+1)
2 , [πj]1 = [A]1 · Sj ∈ Gn×k1

[C1−j]2 = S1−j · [D]>2 , [π1−j]1 = [A]1 · S1−j − [x1−j]1 · v>
Return π = ([z0]2, ([Ci]2, [πi]1)i∈{0,1})

NVeror(crs,C[A]1 , [x]1, π):
[z1]2 = [z]2 − [z0]2
If for all i ∈ {0, 1} it holds [A]1 ◦ [Ci]2=[πi]1 ◦ [D>]2 + [xi]1 ◦ [z>i]2, return 1
Else return 0

NTGenor(1λ, par):
D $← Dk, u $← Zkp, z = D · u
Return (crs = (par, [D]2, [z]2), td = u

NSimor(crs, td,C[A]1 , ([x0]1, [x1]1)):
v $← Zkp, [z0]2 = [D]2 · v, [z1]2 = [z]2 − [z0]2
S0,S1

$← Zt×kp , [C0]2 = S0 · [D]>2 , [π0]1 = [A0]1 · S0 − [x0]1 · v>
[C1]2 = S1 · [D]>2 , [π1]1 = [A]1 · S1 − [x1]1 · (u− v)>
Return π = ([z0]2, ([Ci]2, [πi]1)i∈{0,1})

Fig. 2. Construction of ORNIZK = (NGenor,NProveor,NVeror) with the simulator
(NTGenor,NSimor).

Definition 9 (Circuit satisfiability). Let λ be the security parameter. The
circuit satisfiability language is defined as

LCSAT
λ = {(C, x)|∃w ∈ {0, 1}h : C(x,w) = 1},

where C : {0, 1}n × {0, 1}h → {0, 1} is any Boolean circuit with polynomial size
in λ and x ∈ {0, 1}n is the instance. Without loss of generality, we assume that
C consists only of fan-in-2 NAND gates.

Let λ be the security parameter and par = G be the public parameter, where
G = (G1,G2,GT , p, [1]1, [1]2, e) $← GGen(1λ). Let ORNIZK = (NGenor,NProveor,
NVeror) be an OR-proof with the simulator (NTGenor,NSimor), where each public
parameter is comprised of G. Let Lor

[M′]1
be the following language it supports.

Lor
[M′]1

= {(C[M′]1 , ([x0]1, [x1]1))|∃w ∈ Z2k
p : C[M′]1(([x0]1, [x1]1),w) = 1},

14 Y. Wang, C. Su, and J. Pan, Y. Chen

where C[M′]1 : G2k+2
1 × G2k+2

1 × Z2k
p → {0, 1} is a Boolean circuit on input

((x0,x1),w) outputting 1 iff [x0]1 = [M′]1w∨ [x1]1 = [M′]1w for M′ =
(

M 0
0 M

)
and M ∈ Dk. We give our NIZK for LCSAT

λ in Figure 3. Roughly, we first extend
the witness to all wires, commit to all the values, and use the OR-proof to prove
that committed values satisfy Relation (2) (see Section 1.3) for each gate. 10

NGen(1λ, par):
M $← Dk, z $← Zk+1

p \Span(M), crsor
$← NGenor(1λ, par)

Return CRS = (crsor, [M]1, [z]1)

NProve(CRS,C, x,w):
Hardwire x in C to obtain the circuit C(x, ·) : {0, 1}h → {0, 1}
Define s and t to be the numbers of gates and wires of C(x, ·) respectively
Extend w to (wi)i∈[t] containing the bits of all wires in C(x, ·)
Compute ri $← Zkp and cmi = [M]1ri + [z]1wi for all i ∈ [t− 1]
Set rt = 0 and cmt = [z]1 for the output wire
For each NAND gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], run

– x`,1 =
(
−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
, r′`,1 =

(
rd1 + rd3

rd2

)
– x`,2 =

(
−[z]1 + cmd3

cmd2

)
, r′`,2 =

(
rd3

rd2

)
– π`

$← NProveor(crsor,C[M′]1 , (x`,1, x`,2), r′b) if x`,b = [M′]1r′`,b for b ∈ {1, 2}
and abort otherwise

Return Π = ((cmi)i∈[t], (π`)`∈[s])

NVer(CRS,C, x, Π):
Hardwire x in C to obtain C(x, ·) in the same way as NProve does
Check that all wires in C(x, ·) have a corresponding commitment and cmt = [z]1
Check that all NAND gates have a valid OR-proof of compliance
Return 1 iff all checks pass

Fig. 3. Definition of NIZK = (NGen,NProve,NVer). By G` = (d1, d2, d3) we mean that
the left and right input wires of the gate G` are indexed as d1 and d2 respectively, while
the output wire of G` is indexed as d3. Notice that for each multiple fan-out gate, we
only increment the count of wires t by 1 for its output wires and generate only one
commitment for these wires, since all output wires of the gate are assigned the same
value and serves as input wires for multiple other gates. The same argument is also
made for all other proof systems given later.

Theorem 1 (Completeness). If ORNIZK is complete, then NIZK is complete.
10 Notice that we do not define the commitment and its properties in advance since we

use a concrete construction based on the MDDH assumption in a non-black-box way.

A Simple and Efficient Framework of Proof Systems for NP 15

Proof. Let wd1 and wd2 be the input bits of a NAND gate, and wd3 be the true
output. We must have

(−1 + wd1 + wd3 = 0 ∧ −1 + wd2 = 0) or (−1 + wd3 = 0 ∧ wd2 = 0).

Let cmd1 = [Mrd1 +zwd1]1 and cmd2 = [Mrd2 +zwd2]1 be the input commitments
and cmd3 = [Mrd3 + zwd3]1 be the output commitment. We have

x`,1 =
(
−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
= [M′]1

(
rd1 + rd3

rd2

)
+
(

[z]1(−1 + wd1 + wd3)
[z]1(−1 + wd2)

)
= [M′]1

(
rd1 + rd3

rd2

)

or x`,2 =
(
−[z]1 + cmd3

cmd2

)
= [M′]1

(
rd3

rd2

)
+
(

[z]1(−1 + wd3)
[z]1wd2

)
= [M′]1

(
rd3

rd2

)
.

Therefore, we have x`,1 ∈ Span([M′]1) if wd2 = 1 and x`,2 ∈ Span([M′]1) other-
wise. Then the completeness of NIZK follows from the completeness of ORNIZK,
completing the proof of Theorem 1. ut

Theorem 2 (Composable zero-knowledge). Under the Dk-MDDH assump-
tion, if ORNIZK satisfies composable zero-knowledge, then NIZK satisfies compos-
able zero-knowledge.

Proof. We define the simulator (NTGen,NSim) as in Figure 4.

NTGen(1λ, par):
M $← Dk, u $← Zkp, z = M · u, (crsor, tdor) $← NTGenor(1λ, par)
Return CRS = (crsor, [M]1, [z]1) and TD = tdor

NSim(CRS,TD,C, x):
Hardwire x in C to obtain C(x, ·) in the same way as NProve does
Define s and t to be the numbers of gates and wires of C(x, ·) respectively
Compute ri $← Zkp and cmi = [Mri]1 for all i ∈ [t− 1]
Set cmt = [z]1 for the output wire
For each NAND gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], run

– x`,1 =
(
−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
, x`,2 =

(
−[z]1 + cmd3

cmd2

)
– π`

$← NSimor(crsor, tdor,C[M′]1 , (x`,1, x`,2))
Return Π = ((cmi)i∈[t], (π`)`∈[s])

Fig. 4. Definition of the simulator (NTGen,NSim).

First we note that the distribution of z $← Zk+1
p \Span(M) is 1/p-statistically

close to the uniform distribution over Zk+1
p . Then the indistinguishability of CRSs

16 Y. Wang, C. Su, and J. Pan, Y. Chen

generated by NGen(1λ, par) and NTGen(1λ, par) follows immediately from the
Dk-MDDH assumption and the composable zero-knowledge of ORNIZK (which
says that crsor generated by NGenor and NTGenor are computationally close).

Next we define a modified prover NProve′, which is exactly the same as NProve
except that for each NAND gate, π` is generated as

π`
$← NSimor(crsor, tdor,C[M′]1 , (x`,1, x`,2)).

The following distributions are identical due to the composable zero-knowledge
of ORNIZK.

Π $← NProve(CRS,C, x,w) and Π $← NProve′(CRS,C, x,w)

for (CRS,TD) $← NTGen(1λ, par) and any (x,w) such that C(x,w) = 1.
Moreover, since the distribution of cmi = [Mri]1 is identical to that of

cmi = [Mri + zwi]1 for ri $← Zλp when z ∈ Span(M), the distributions of

Π $← NProve′(CRS,C, x,w) and Π $← NSim(CRS,TD,C, x),

where (CRS,TD) $← NTGen(1λ, par) and C(x,w) = 1, are identical as well, com-
pleting the proof of Theorem 2. ut

Theorem 3 (Soundness). If ORNIZK is perfectly sound, then NIZK is perfectly
sound.

Proof. To prove perfect soundness, we just have to show that we can extract a
valid witness from any proof passing the verification. Let k be the vector in the
kernel of M such that k>z = 1, which must exist when z /∈ Span(M). We define
an extractor as in Figure 5. For any valid statement/proof pair (x, Π), we argue
that the extractor must be able to extract a valid witness w for x as below.

ExtNIZK(C(x, ·), Π):
Initialize the values for all wires in C(x, ·) as ⊥.
Run FNIZK(k,C, Gt, Π), where Gt is the gate for the final output, to assign
values for each wire in the circuit C(x, ·)
For each input wire with index i assigned ⊥, set wi = 0
Return the witness w = (wi)i∈[h] (containing all the bits for input values)

Fig. 5. Definition of ExtNIZK. FNIZK is the recursion algorithm defined as in Figure 6.

Due to the perfect soundness of ORNIZK, for each NAND gate with input
commitments (cmd1 , cmd2) and an output commitment cmd3 in a valid proof, we
have

x`,1 =
(
−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
∈ Span([M′]1)

A Simple and Efficient Framework of Proof Systems for NP 17

FNIZK(k,C, G` = (d1, d2, d3), Π):
Compute tempi = k>cmi for i = 1, 2, 3
If temp2 = [0]1 and temp3 = [1]1:
– set (wd1 ,wd2) = (⊥, 0)
– stop if Parentr(G`) = ⊥
– run FNIZK(k,C,Parentr(G`), Π)

If temp2 = [1]1 and [temp1 + temp3]1 = [1]1:
– if temp3 /∈ {[0]1, [1]1}, abort ExtNIZK
– set (wd1 ,wd2) = (b, 1) where [b]1 = temp1 and b ∈ {0, 1}
– stop if Parentl(G`) = ⊥ and Parentr(G`) = ⊥
– run FNIZK(k,C,Parentl(G`), Π) and FNIZK(k,C,Parentr(G`), Π)

Otherwise, abort ExtNIZK

Fig. 6. Definition of FNIZK. Parentl (repsectively, Parentr) denotes the gate whose output
is the left (respectively, right) input to G`.

or x`,2 =
(
−[z]1 + cmd3

cmd2

)
∈ Span([M′]1).

Then we have

k>(−[z]1 + cmd1 + cmd3) = −[1]1 + k>cmd1 + k>cmd3 = [0]1
∧k>(−[z]1 + cmd2) = −[1]1 + k>cmd2 = [0]1

or k>(−[z]1 + cmd3) = −[1]1 + k>cmd3 = [0]1 ∧ k>cmd2 = [0]1.

Moreover, we must have k>cmt = k>[z]1 = [1]1 for the output wire. As a result,
for a valid proof, FNIZK (see Figure 6) will never abort during the execution of
ExtNIZK, and running FNIZK recursively will result in bits for input wires leading
the statement circuit to output 1. Notice that after running FNIZK(k,C, Gt, Π),
there might be some input wires assigned ⊥. However, these wires do not affect
the final output and we can just assign 0 to them.

As a result, we can extract the bits for all wires consisting of valid input/output
pairs for all NAND gates and leading the statement circuit to output 1. Therefore,
for all proofs passing the verification, there must exist a valid witness for the
statement x, i.e., x ∈ LCSAT

λ , completing the proof of Theorem 3. 11 ut
Remark on the representation of circuits. We represent the circuits by
NAND gates only for conceptual simplicity. In practice, this conversion is unnec-
essary. For any original circuit represented as AND, OR, NOT gates, the NOT
gates are free, and by slightly changing Relation 2 on Page 6, we can directly
adopt the OR-proof for AND and OR gates. Concretely, for AND gates, we prove
(wd1 − wd3 = 0 ∧ −1 + wd2 = 0) ∨ (wd3 = 0 ∧ wd2 = 0), and for OR gates, we
11 One can see that our construction is also a NIZK proof of knowledge, i.e., we can

generate the extraction key k along with a binding CRS and use it to extract a valid
witness from any valid proof.

18 Y. Wang, C. Su, and J. Pan, Y. Chen

prove (wd1 −wd3 = 0∧wd2 = 0) ∨ (wd3 = 1∧wd2 = 1). Then our new technique
saves overhead for AND and OR gates with our witness-extraction strategy in
the same way as for NAND-gates. The same argument can also be made for our
BARG given later.

Instantiation of our NIZK. By instantiating the OR-proof system as in Section
3.1 under the SXDH assumption, each proof of our NIZK consists of (2t + 8s)
elements in G1 and 10s elements in G2, where t and s are the number of wires and
gates in the statement circuit respectively. Compared to the GOS-NIZK given in
Appendix A, which requires (6t+ 4s) elements in G1 and (6t+ 6s) elements in
G2 for each proof, our proof size is strictly smaller since t must be larger than s
in any circuit. Moreover, the numbers of exponentiations and pairing products
required in our proving and verification procedures are only 2t + 30s and 24s
respectively, while those in the GOS-NIZK are 18t+16s and 12(s+t). Notice that
when adopting the OR-proof in our construction, the statement M′ determining
the language has half of the entries being [0]1. We do not count exponentiations
of these entries and pairing products between these entries and other elements in
verification, since the computing results can always be fixed as [0]1 or [0]T .

More instantiations. By instantiating the underlying OR-proof system based
on the Extended-Kernel Matrix Diffie-Hellman assumption, which holds uncon-
ditionally in the generic group model and implied by the discrete logarithm
assumption in the algebraic group model, as in Figure 6 of [16], we can further
reduce the OR-proof size used by our construction by 5 elements in G2, compared
to our SXDH based instantiation (see Table 1). While this also works for the
GOS-NIZK in Appendix A, its OR-proof size can only be reduced by 3 elements
in G2.

Extension to non-interactive zaps. In [30], Groth, Sahai, and Ostrovsky gave
a generic conversion from any NIZK with verifiable correlated key generation
into a non-interactive zap, i.e., non-interactive witness-indistinguishability proof
systems in the plain model. To date, this is the only known non-interactive zap
for NP based on standard assumptions. Here, verifiable correlated key generation
refers to the ability to efficiently generate two correlated common reference strings
(CRSs) along with one trapdoor. One CRS is binding, meaning it provides perfect
soundness, while the other CRS is hiding, meaning it offers perfect zero-knowledge
and corresponds to the trapdoor. It is crucial that a PPT adversary cannot distin-
guish which CRS is hiding when given both of them. Additionally, it is required
that a verification algorithm exist such that honestly sampled CRS pairs always
pass verification, and for any CRS pair that passes verification, one of them must
be binding. We refer the reader to [30] for a detailed description of the conversion
method, while we argue that our NIZK proof system satisfies the requirements
for verifiable correlated key generation as outlined above. Consequently, it can
be converted into a non-interactive zap, thereby improve the construction in
[30] without any trade-offs. As far as we know, this results in the most efficient
non-interactive zap based on standard assumptions.

A Simple and Efficient Framework of Proof Systems for NP 19

To show that our NIZK has verifiable correlated key generation, we first recall
that in both our NIZK and the GOS-NIZK, each CRS essentially consists of
a CRS from the underlying NIZK and a key for a homomorphic commitment.
Since both parts have the same distribution, we can combine them into a single
tuple (par, [M]1, [zbind]1), where par = (G $← GGen(1λ)), M $← Dk, and zbind

$←
Zk+1
p \Span(M), without compromising security. In the hiding mode, we replace

zbind with zhide = Mu where u $← Zkp. We can further change the distribution
of zbind to that of zhide + f , where f is some fixed vector outside Span(M). One
can easily see that changed zbind remains binding due to non-linearility and
composable zero-knowledge still holds due to the MDDH assumption. Then we
can set the correlated CRSs as (par, [M, zbind]1) and (par, [M, zhide = zbind − f]1)
and set u as the trapdoor. Due to the MDDH assumption, any PPT adversary
cannot tell which one is hiding. The verification algorithm given the two CRSs
checks the validity of par and [M]1 and whether zbind + zhide = f holds. For
any two CRS (par, [M, z0]1) and (par, [M, z1]1) passing the verification, we must
have either [z0]1 /∈ Span([M]1) or [z1]1 /∈ Span([M]1), i.e., one of them must be
binding. Therefore, our NIZK proof system, as well as the GOS-NIZK in the
asymmetric pairing setting, has verifiable correlated key generation.

4 Batch Argument for NP

In this section, we extend our framework for NIZK to give an efficient construction
of BARG for batch circuit satisfiability in NP.

Definition 10 (Batch circuit satisfiability). Let λ be the security parameter.
The batch circuit satisfiability language for an integer m ∈ N is defined as follows.

LBatchCSAT
λ ={(C, (xi)i∈[m])|∀i ∈ [m] : ∃wi ∈ {0, 1}h : C(xi,wi) = 1},

where C : {0, 1}n × {0, 1}h → {0, 1} is any Boolean circuit with polynomial size
in λ and x1, · · · , xm ∈ {0, 1}n are the statements. Without loss of generality, we
assume that C consists only of fan-in-2 NAND gates.

Let par = G be the public parameter, where G = (G1,G2,GT , p, [1]1, [1]2, e) $←
GGen(1λ). We give our BARG for LBatchCSAT

λ in Figure 7.

Theorem 4 (Completeness). BARG is complete.

Proof. Validity of statement. Since the first n wires corresponds to the
statement, for honestly generated ([ud]1 =

∑
i∈[m]

wi,d[ai]1)d∈[t] and ([u∗d]1 =∑
i∈[m]

xi,d[ai]1)d∈[n], we must have xi,d = wi,d for all i ∈ [m] and d ∈ [n]. Hence,

we have [ud]1 = [u∗d]1 for all d ∈ [n]. Similarly, we have [ûd]2 = [û∗d]2 for all
d ∈ [n]. Moreover, when the witnesses are valid, we must have wi,t = 1 for

20 Y. Wang, C. Su, and J. Pan, Y. Chen

BGen(1λ, par, 1m):
Sample M, M̂ $← Dk and αi, α̂i $← Zkp for all i ∈ [m]
Set ai = Mαi and âi = M̂α̂i for all i ∈ [m], a =

∑
i∈[m]

ai, and â =
∑
i∈[m]

âi

For each i, j ∈ [m] such that i 6= j, sample Ri,j
$← Zk×kp , and set

Bi,j = M(αiα̂>j + Ri,j) and B̂i,j = −M̂R>i,j
Return crs = (par, [M]1, [M̂]2, [a]1, [â]2, ([ai]1, [âi]2)i∈[m], {[Bi,j]1, [B̂i,j]2}i6=j)

BProve(crs,C : {0, 1}n × {0, 1}h → {0, 1}, (xi)i∈[m], (wi)i∈[m]):
Define s and t to be the numbers of gates and wires of C respectively
For all i ∈ [m], extend (xi,wi) to (wi,j)j∈[t] containing the bits of all wires in C
For each d ∈ [t], set [ud]1 =

∑
i∈[m]

wi,d[ai]1 and [ûd]2 =
∑
i∈[m]

wi,d[âi]2

For each gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], set
– [V`,1]1 =

∑
i6=j

(1− wi,d1 − wi,d3)wj,d2 [Bi,j]1

– [V̂`,1]2 =
∑
i6=j

(1− wi,d1 − wi,d3)wj,d2 [B̂i,j]2

– [V`,2]1 =
∑
i6=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
[Bi,j]1

– [V̂`,2]2 =
∑
i6=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
[B̂i,j]2

– [W`]1 =
∑
i 6=j

(1− wi,d3)(1− wj,d2)[Bi,j]1

– [Ŵ`]2 =
∑
i 6=j

(1− wi,d3)(1− wj,d2)[B̂i,j]2

Return Π = (([ud]1, [ûd]2)d∈[t], ([V`,i]1, [V̂`,i]2)`∈[s],i∈[2], ([W`]1, [Ŵ`]2)`∈[s])

BVer(crs,C, (xi)i∈[m], Π):

– GenVK(crs, (xi)i∈[m]):
Parse xi = (xi,1, · · · , xi,n) for all i ∈ [m]
For each d ∈ [n], set [u∗d]1 =

∑
i∈[m]

xi,d[ai]1 and [û∗d]2 =
∑
i∈[m]

xi,d[âi]2

Output vk = ([u∗d]1, [û∗d]2)d∈[n]

– OnlineVer(vk,C, Π):
Check that [ud]1 = [u∗d]1 and [ûd]2 = [û∗d]2 for all d ∈ [n]
Check that [ut]1 = [a]1 and [ût]2 = [â]2
For all ` ∈ [s], check that
• [a − ud1 − ud3]1 ◦ [û>d2]2 = [M]1 ◦ [V̂>`,1]2 + [V`,1]1 ◦ [M̂>]2
• [ud2]1 ◦ [â>]2− [ud1 + ud3]1 ◦ [û>d2]2 = [M]1 ◦ [V̂>`,2]2 + [V`,2]1 ◦ [M̂>]2
• [a − ud3]1 ◦ [â> − û>d2]2 = [M]1 ◦ [Ŵ>

`]2 + [W`]1 ◦ [M̂>]2
Return 1 iff all checks pass

Fig. 7. Definition of BARG = (BGen,BProve,BVer).

A Simple and Efficient Framework of Proof Systems for NP 21

all i ∈ [m] for the output wire. Hence, we have [ut]1 = [
∑
i∈[m]

ai]1 = [a]1 and

[ût]2 = [
∑
i∈[m]

âi]2 = [â]2.

Validity of gate computation. For witnesses (wi)i∈[m], for each gate G` =
(d1, d2, d3), we have (−1 + wi,d1 + wi,d3 = 0 ∧ −1 + wi,d2 = 0) or (−1 + wi,d3 =
0 ∧ wi,d2 = 0) for all i ∈ [m], which in turn implies

(−1 + wi,d1 + wi,d3)wi,d2 = 0 and (−1 + wi,d3)(−1 + wi,d2) = 0.

Moreover, for the CRS, we have

Bi,jM̂> + MB̂>i,j = M(αiα̂>j + Ri,j)M̂> −MRi,jM̂> = Mαiα̂
>
j M̂> = aiâ>j .

Then for ((ud, ûd)d∈[t], ([V`,i,W`]1, [V̂`,i,Ŵ`]2)`∈[s],i∈[2]) in a valid proof, we
have

(a − ud1 − ud3)û>d2
=
∑
i∈[m]

(1− wi,d1 − wi,d3)ai
∑
i∈[m]

wi,d2 â>i

=
(∑
i∈[m]

(1− wi,d1 − wi,d3)wi,d2aiâ>i︸ ︷︷ ︸
=0

+
∑
i 6=j

(1− wi,d1 − wi,d3)wj,d2aiâ>j
)

=
∑
i 6=j

(1− wi,d1 − wi,d3)wj,d2 (Bi,jM̂> + MB̂>i,j)︸ ︷︷ ︸
=aiâ>

j

= MV̂>`,1 + V`,1M̂>,

ud2 â> − (ud1 + ud3)û>d2

=
∑
i∈[m]

wi,d2ai
∑
i∈[m]

â>i −
∑
i∈[m]

(wi,d1 + wi,d3)ai
∑
i∈[m]

wi,d2 â>i

=
(∑
i∈[m]

(1− wi,d1 − wi,d3)wi,d2aiâ>i︸ ︷︷ ︸
=0

+
∑
i 6=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
aiâ>j

)

=
∑
i 6=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
(Bi,jM̂> + MB̂>i,j)︸ ︷︷ ︸

=aiâ>
j

= MV̂>`,2 + V`,2M̂>,

(a − ud3)(â> − û>d2
)

=
∑
i∈[m]

(1− wi,d3)ai
∑
i∈[m]

(1− wi,d2)â>i

=
(∑
i∈[m]

(1− wi,d3)(1− wi,d2)aiâ>i︸ ︷︷ ︸
=0

+
∑
i 6=j

(1− wi,d3)(1− wj,d2)aiâ>j
)

=
∑
i 6=j

(1− wi,d3)(1− wj,d2) (Bi,jM̂> + MB̂>i,j)︸ ︷︷ ︸
=aiâ>

j

= MŴ>
` + W`M̂>.

22 Y. Wang, C. Su, and J. Pan, Y. Chen

This completes the proof of completeness. ut

Theorem 5 (Succinctness). BARG is succinct.

Proof. For our BARG in Figure 7, we check the succinctness as follows.
Proof size. Each proof π consists of t(k + 1) + 3s(k + 1)k group elements in
each of G1 and G2, where each group element can be represented in poly(λ) bits
and k is constant. Since t = poly(s), we have |π| = poly(λ, s).
CRS size. Each CRS crs consists of the group description and (k + 1)k + (m+
1)(k + 1) + m(m − 1)/2 · (k + 1)k = O(k2m2) elements in each of G1 and G2.
Thus we have |crs| = m2 · poly(λ).
Verification key. Each verification key vk output by GenVK consists of n(k+ 1)
elements in each of G1 and G2. Thus we have |vk| = n · poly(λ).
Verification key generation time. GenVK performs 2mn(k + 1) group opera-
tions, which requires poly(λ,m, n) time.
Online verification time. The OnlineVer consists of 3 steps in total, where the
running time of each step is bounded by nk · poly(λ), k · poly(λ), and sk3 · poly(λ)
respectively. Since n = poly(s), the total running time is bounded by poly(s, λ)

Putting all the above together, Theorem 5 immediately follows. ut

Theorem 6 (Somewhere argument of knowledge). Under the Dk-MDDH
assumption, BARG is a somewhere argument of knowledge.

Proof. We define the trapdoor setup and extraction algorithms as in Figure 8.
CRS indistinguishability. We prove the CRS indistinguishability by defining
a sequence of intermediate games.

Let A be any PPT adversary against the CRS indistinguishability of BARG
for some index i∗ ∈ [m]. It receives a CRS crs generated by the challenger CH in
each game as defined in Figure 10.
Game G0 and G1. Game G0 is the game where CH on receiving the index i∗
from the adversary returns crs generated as crs $← BGen(1λ, par, 1m) to A. Game
G1 is exactly the same as G0 except that Bi,j and B̂i,j are generated in a different
way.

Lemma 2. Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

Proof. For j 6= i∗, the distributions of Bi,j in Games G0 and G1 are identical,
since

M(αiα̂>j + Ri,j) = (Mαi)α̂>j + MRi,j = aiα̂>j + MRi,j .

For j = i∗, in G0, we have Bi,j = M(αiα̂>j + Ri,j) and

B̂i,j = −M̂R>i,j = M̂(αiα̂>j)> − M̂(Ri,j + αiα̂
>
j)> = âjα>i − M̂(Ri,j + αiα̂

>
j).

Since the distribution of Ri,j +αiα̂
>
j is uniformly distributed, the distribution of

Bi,j and B̂i,j is identical to that in G1, completing this part of proof. ut

A Simple and Efficient Framework of Proof Systems for NP 23

BTGen(1λ, par, 1m, i∗):
Sample M, M̂ $← Dk and αi, α̂i $← Zkp for all i 6= i∗

Sample ai∗ $← Zk+1
p \Span(M) and âi∗ $← Zk+1

p \Span(M̂)
Set ai = Mαi and âi = M̂α̂i for all i 6= i∗, a =

∑
i∈[m]

ai, and â =
∑
i∈[m]

âi

For each i, j ∈ [m] such that i 6= j,
– sample Ri,j

$← Zk×kp

– set Bi,j = aiα̂>j + MRi,j and B̂i,j = −M̂R>i,j for all i, j ∈ [m] and j 6= i∗

– set Bi,j = MRi,j and B̂i,j = âjα>i − M̂R>i,j for all i ∈ [m] and j = i∗

Compute a non-zero vector τ ∈ Zk+1
p such that τ>M = 0 and τ>ai∗ = 1, which

must exist and can be efficiently computed since M is of rank k
Return crs = (par, [M]1, [M̂]2, [a]1, [â]2, ([ai]1, [âi]2)i∈[m], {[Bi,j]1, [B̂i,j]2}i6=j) and
td = τ

ExtBARG(td,C, (xi)i∈[m], Π):
Initialize the values for all wires in C(xi∗ , ·) as ⊥.
Run FBARG(td,C, Gt, Π), where Gt is the gate for the final output, to assign values
for each wire in the circuit C(xi∗ , ·)
For each input wire d ∈ [t] assigned with ⊥, set wi∗,d = 0
Return the witness wi∗ = (wi∗,i)i∈[h] containing all bits for input values of C(xi∗ , ·)

Fig. 8. Definition of (BTGen,ExtBARG). FBARG is the recursion algorithm defined as in
Figure 9.

FBARG(td,C, G` = (d1, d2, d3), Π):
Compute tempi = τ>[udi]1 for all i = 1, 2, 3
If temp2 = [0]1 and temp3 = [1]1:
– set (wi∗,d1 ,wi∗,d2) = (⊥, 0)
– stop if Parentr(G`) = ⊥, and run FBARG(td,C,Parentr(G`), Π) otherwise

If temp2 = [1]1 and temp1 + temp3 = [1]1:
– if temp3 /∈ {[0]1, [1]1}, abort ExtBARG
– set (wi∗,d1 ,wi∗,d2) = (b, 1) where [b]1 = temp1 and b ∈ {0, 1}
– stop if Parentl(G`) = ⊥ and Parentr(G`) = ⊥
– run FBARG(td,C,Parentl(G`), Π) and FBARG(td,C,Parentr(G`), Π)

If temp1 = [0]1 and temp3 = [1]1:
– set (wi∗,d1 ,wi∗,d2) = (0,⊥)
– stop if Parentl(G`) = ⊥
– run FBARG(td,C,Parentl(G`), Π) otherwise

Otherwise, abort ExtBARG

Fig. 9. Definition of FBARG. Parentl (repsectively, Parentr) denotes the gate whose output
is the left (respectively, right) input to G`.

Game G2. G2 is the same as G1 except that ai∗ is randomly sampled outside
the span of M.

24 Y. Wang, C. Su, and J. Pan, Y. Chen

CH(par, 1m, i∗): G0, G1 , G2 , G3

Sample M, M̂ $← Dk and αi, α̂i $← for all i ∈ [m]
Set ai = Mαi for all i ∈ [m]
Set ai = Mαi for all i 6= i∗ and sample ai∗ $← Zk+1

p \Span(M)

Set âi = M̂α̂i for all i ∈ [m]
Set âi = M̂α̂i for all i 6= i∗ and sample âi∗ $← Zk+1

p \Span(M̂)
Set a =

∑
i∈[m]

ai and â =
∑
i∈[m]

âi

For each i, j ∈ [m] such that i 6= j,
– sample Ri,j

$← Zk×kp

– set Bi,j = M(αiα̂>j + Ri,j) and B̂i,j = −M̂R>i,j
– set Bi,j = aiα̂>j + MRi,j and B̂i,j = −M̂R>i,j for all j 6= i∗

– set Bi,j = MRi,j and B̂i,j = âjα>i − M̂R>i,j for j = i∗

Return crs = (par, [M]1, [M̂]2, [a]1, [â]2, ([ai]1, [âi]2)i∈[m], {[Bi,j]1, [B̂i,j]2}i6=j)

Fig. 10. Challenger CH in the intermediate games.

Lemma 3. There exists an adversary B1 breaking the Dk-MDDH assumption in
G1 with probability at least |Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]| − 1/p.

Proof. We build B1 as follows.
B1 runs in exactly the same way as the challenger of G1 except that instead

of generating [ai∗]1 by itself, it takes as input [ai∗]1 generated as ai∗ $← Zk+1
p or

ai∗ = Mαi∗ where αi∗ $← Zkp from its own challenger. When A outputs β ∈ {0, 1},
B1 outputs β as well.

If ai∗ is generated as ai∗ = Mαi∗ where αi∗ $← Zkp, the view of A is the same
as its view in G1. Otherwise, the view of A is 1/p-statistically close to its view in
G2. Hence, the probability that B1 breaks the Dk-MDDH assumption is at least
|Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]| − 1/p, completing this part of proof. ut
Game G3. G3 is the game CH returns crs generated by BTGen(1λ, par, 1m, i∗).
It is exactly the same as G2 except that âi∗ is randomly sampled outside the
span of M̂.

Lemma 4. There exists an adversary B2 breaking the Dk-MDDH assumption in
G2 with probability at least |Pr[GA3 ⇒ 1]− Pr[GA2 ⇒ 1]| − 1/p.

Proof. We build B2 as follows.
B2 runs in exactly the same way as the challenger of G2 except that instead

of generating [âi∗]2 by itself, it takes as input [âi∗]2 generated as âi∗ $← Zk+1
p or

âi∗ = M̂α̂i∗ where α̂i∗ $← Zkp from its own challenger. When A outputs β ∈ {0, 1},
B2 outputs β as well.

A Simple and Efficient Framework of Proof Systems for NP 25

If âi∗ is generated as âi∗ = M̂α̂i∗ where α̂i∗ $← Zkp, the view of A is the
same as its view in G2. Otherwise, the view of A is 1/p-statistically close to G3.
Hence, the probability that B2 breaks the k-MDDH assumption is |Pr[GA3 ⇒
1]− Pr[GA2 ⇒ 1]| − 1/p, completing this part of proof. ut

Putting all the above together, the CRS indistinguishability of BARG imme-
diately follows.
Somewhere extractability in the trapdoor mode. We now argue that for
any valid statement/proof pair ((xi)i∈[m], Π), the extractor must be able to
extract a valid witness wi∗ for xi∗ .

For each NAND gate G` with commitments (udi
, ûdi

)i∈[3] and proof (([V`,i]1,
[V̂`,i]2)i∈[2], [W`,Ŵ`]1), we have

[a − ud1 − ud3]1 ◦ [û>d2
]2 = [M]1 ◦ [V̂>`,1]2 + [V`,1]1 ◦ [M̂>]2,

[ud2]1 ◦ [â>]2 − [ud1 + ud3]1 ◦ [û>d2
]2 = [M]1 ◦ [V̂>`,2]2 + [V`,2]1 ◦ [M̂>]2,

[a − ud3]1 ◦ [â> − û>d2
]2 = [M]1 ◦ [Ŵ>

`,1]2 + [W`,1]1 ◦ [M̂>]2.

Recall that τ is the trapdoor in Figure 8, and let τ̂ be the vector in the
kernel of M̂ such that τ̂>âi∗ = 1, which must exist when âi∗ /∈ Span(M̂). Since
τ>a = τ̂>â = 1 and τ>M = τ̂>M̂, where τ is the trapdoor in Figure 8, the
above equations imply

[1− τ>ud1 − τ>ud3]1 ◦ [û>d2
τ̂]2 = [0]T (4)

[τ>ud2]1 ◦ [1]2 − [τ>ud1 + τ>ud3]1 ◦ [û>d2
τ̂]2 = [0]T , (5)

[1− τ>ud3]1 ◦ [1− û>d2
τ̂]2 = [0]T . (6)

The quotient of the Equations (4) and (5) yields [τ>ud2]T = [û>d2
τ̂]T . Then,

combining Equations (4) and (6) yields 1− τ>ud1 − τ>ud3 = 0 ∧ 1− τ>ud2 = 0
or 1− τ>ud3 = 0 ∧ τ>ud2 = 0 or 1− τ>ud1 − τ>ud3 = 0 ∧ 1− τ>ud3 = 0, i.e.,
1− τ>ud3 = 0 ∧ τ>ud1 = 0. Moreover, we must have τ>udt = τ>[a]1 = [1]1 for
the output wire. As a result, for a valid proof, FBARG (see Figure 9) will never
abort during the execution of ExtBARG, and running FBARG recursively will result
in bits for input wires leading the statement circuit to output 1. Notice that after
running FBARG(td,C, Gt, Π), there might be some input wires assigned with ⊥.
However, these wires do not affect the final output and can be assigned with 0.

As a result, we can extract the bits for all wires consisting of valid input/output
pairs for all NAND gates and leading the statement circuit to output 1, completing
the proof of perfect soundness.

Putting all the above together, Theorem 6 immediately follows. ut
Proof size and proving and online verification cost. By instantiating our
construction under the SXDH assumption, each proof of our BARG consists of
(2t+ 6s) elements in both G1 and G2, where t and s are the numbers of wires and
gates in the statement circuit respectively. The proof size is strictly smaller than
that of WW-BARG, which require (4t+4s) elements in both G1 and G2. Moreover,

26 Y. Wang, C. Su, and J. Pan, Y. Chen

the proving and online verification procedures in our construction require only
4mt + 6m(m − 1)s multiplications and 40s pairing products respectively. In
contrast, those in WW-BARG require 4m2t+ 4m(m− 1)s multiplications and
24t+ 32s pairing products (after merging items with multiplication in G1 and
G2).
Construction in the symmetric pairing. Transplanting our construction to
the setting of symmetric composite-order pairing groups yields a BARG under
the subgroup decision assumption. Compared to the WW-BARG, we reduce
the proof size by (2t + s) − (t + 2s) = t − s group elements in G. Also, the
number of multiplications and pairing products required in the proving and
online verification procedures are reduced by m(m− 1)t− (m(m− 1)/2)s and
(2t+ 3s)− 4s = 2t− s respectively. We refer the reader to Appendix B for the
construction and security proof.
Bootstrapping to reduce CRS size. Similar to WW-BARG, by using the
bootstrapping technique in [49], we can reduce the CRS size of our BARG to mc ·
poly(λ, s) for any c > 0. As a trade-off, the proof size will be dependent on log(m).
A recent work by Kalai et al. [36] shows a general construction to convert BARGs
into ones having both CRSs and proofs of size poly(λ, logm, s). Instantiating
the underlying BARG with ours immediately an efficient construction with both
succinct CRSs and succinct proofs.

5 Experimental Performance

In this section, we experimentally evaluate the proving cost, verification cost,
and the proof size of our NIZK and BARG for NP and compare them with GOS-
NIZK and WW-BARG respectively. We focus on SXDH based implementations in
asymmetric Type-3 pairings, since it is the most efficient one amongst all different
types of pairings as mentioned in the introduction. The GOS-NIZK and WW-
BARG are implemented by ourselves since the open sourced implementations
are not available.

We implement NIZK and BARG schemes in C++ atop pairing-friendly curve
bls12-381 in the mcl library [48]. Parameters of all schemes are set to achieve
128-bit security level. All experiments are carried on a Macbook Pro with Intel
i5-7360U CPU (2.30GHz) and 16GB, where a single exponentiation and pairing
respectively take about 0.08ms and 0.8ms.

In Tables 3 and 4, we present experimental results regarding the proving
and verification costs and the proof sizes of our NIZK and GOS-NIZK. The
comparisons are carried out for both schemes under different ratios between the
number of gates and wires, namely 2.00, 1.50, and 1.06. We also evaluated their
performance across statement circuit sizes ranging from 28 to 212. Our prover is
1.52×, 1.32×, and 1.11× faster than GOS-NIZK when the ratios are 2.00, 1.50,
and 1.06 respectively. For the same ratios, our verifier is 1.44×, 1.21×, and 1.02×
faster. Additionally, our proof sizes are 1.62×, 1.38×, and 1.16× smaller. One can
see that our scheme outperforms GOS-NIZK in every aspect, and the significance

A Simple and Efficient Framework of Proof Systems for NP 27

Scheme Ratio Proving Cost (seconds) Verification Cost (seconds)
28 29 210 211 212 28 29 210 211 212

GOS12 [30]
2.00

1.38 2.69 5.39 10.81 21.72 12.55 25.80 50.57 101.11 201.95
Ours 0.87 1.82 3.51 6.99 14.37 8.68 17.38 37.23 70.04 138.70

GOS12 [30]
1.50

1.17 2.23 4.55 9.27 17.87 10.61 21.15 42.28 84.91 168.13
Ours 0.85 1.69 3.49 6.74 13.75 8.61 17.27 34.74 68.60 141.79

GOS12 [30]
1.06

0.91 1.83 3.65 7.32 14.65 8.61 17.25 34.49 69.01 138.28
Ours 0.83 1.65 3.30 6.64 13.25 8.58 17.12 34.81 68.53 137.28

Table 3. Comparison of the proving and verification cost (in seconds) between
GOS-NIZK and our NIZK.

Scheme
Proof Size (MB) Proof Size (MB) Proof Size (MB)
(Ratio: 2.00) (Ratio: 1.50) (Ratio: 1.06)

28 29 210 211 212 28 29 210 211 212 28 29 210 211 212

GOS12 [30] 0.61 1.22 2.44 4.87 9.75 0.50 1.01 2.01 4.03 8.06 0.41 0.82 1.64 3.29 6.58

Ours 0.37 0.75 1.50 3.00 6.00 0.36 0.73 1.45 2.90 5.81 0.35 0.70 1.41 2.82 5.65

Table 4. Comparison of the proof size (in MB) between GOS-NIZK and our NIZK.

of our improvement increases as the ratio becomes larger. Additionally, we note
that the ratio tends to be 2 (i.e., its upper bound) when most gates do not share
common input wires, and the ratio tends to be close to 1 (i.e., its lower bound)
when most gates share common input wires, which may happen when most gates
have multiple fan-out and the witness size is very small. Similar same argument
can also be made for our BARG.

In Tables 5 and 6, we present experimental results regarding the proving
and verification costs and the proof sizes of our BARG and WW-BARG when
proving 50 and 100 statements. The comparisons are carried out for both schemes
under different ratios between the number of gates and wires, namely 2.00, 1.50,
and 1.06. We also evaluated their performance across statement circuit sizes
ranging from 28 to 212. For proving 100 statement instances, our prover is 2.27×,
1.63×, and 1.35× faster than WW-BARG when the ratios are 2.00, 1.50, and 1.06
respectively. For the same ratios, the verifier is 2.70×, 2.35×, and 1.92× faster.
For proving 50 statement instances with respect to these ratios, our prover is
2.13×, 1.51×, and 1.28× faster, and our verifier is 2.63×, 2.27×, and 1.94× faster.
Additionally, our proof sizes are 1.20×, 1.11×, and 1.02× smaller, regardless of the
number of statement instances. As a result, our scheme outperforms WW-BARG
in every aspect.

28 Y. Wang, C. Su, and J. Pan, Y. Chen

Scheme Ratio Proving Cost (seconds) Verification Cost (seconds)
28 29 210 211 212 28 29 210 211 212

WW22 [49]
2.00

2.50 4.64 9.93 18.36 37.44 15.69 30.23 65.45 123.66 255.95(100 stats.)
Ours 1.07 2.02 4.10 8.00 16.91 5.90 11.61 23.38 46.41 94.46(100 stats.)
WW22 [49]

2.00
0.61 1.22 2.46 4.71 9.74 16.43 31.16 62.21 118.37 253.20(50 stats.)

Ours 0.29 0.55 1.20 2.05 4.67 5.68 11.44 23.40 46.56 95.28(50 stats.)
WW22 [49]

1.50
1.51 3.11 6.06 12.61 25.43 13.38 26.69 52.00 108.68 212.98(100 stats.)

Ours 1.02 1.87 4.09 7.56 16.57 5.95 11.20 22.94 44.92 92.28(100 stats.)
WW22 [49]

1.50
0.39 0.82 1.56 3.39 6.49 12.56 26.17 52.23 108.45 211.41(50 stats.)

Ours 0.26 0.57 1.03 2.23 4.30 6.25 11.90 23.27 46.47 93.22(50 stats.)
WW22 [49]

1.06
1.84 3.80 7.67 14.80 30.73 15.27 30.21 62.68 119.36 248.12(100 stats.)

Ours 1.00 1.99 3.82 8.53 15.95 5.81 12.19 23.11 46.63 96.11(100 stats.)
WW22 [49]

1.06
0.42 0.67 1.30 2.61 5.40 11.51 22.91 43.82 94.81 182.75(50 stats.)

Ours 0.25 0.50 1.13 2.08 4.13 6.16 11.86 23.97 47.32 93.92(50 stats.)

Table 5. Comparison of the proving and verification costs (in seconds) between
WW-BARG and our BARG. “stats.” means statement instances.

Scheme
Proof Size (MB) Proof Size (MB) Proof Size (MB)
(Ratio: 2.00) (Ratio: 1.50) (Ratio: 1.06)

28 29 210 211 212 28 29 210 211 212 28 29 210 211 212

WW22 [49] 0.42 0.84 1.69 3.37 6.75 0.35 0.70 1.41 2.81 5.62 0.29 0.58 1.16 2.32 4.64(100 stats.)
Ours 0.35 0.70 1.41 2.81 5.62 0.32 0.63 1.26 2.53 5.06 0.28 0.57 1.14 2.28 4.57(100 stats.)
WW22 [49] 0.42 0.84 1.69 3.37 6.75 0.35 0.70 1.41 2.81 5.62 0.29 0.58 1.16 2.32 4.64(50 stats.)
Ours 0.35 0.70 1.41 2.81 5.62 0.32 0.63 1.26 2.53 5.06 0.28 0.57 1.14 2.28 4.57(50 stats.)

Table 6. Comparison of the proof size (in MB) between WW-BARG and our BARG.
“stats.” means statement instances.

Acknowledgements

Parts of Yuyu Wang’s work was supported by the National Natural Science
Foundation for Young Scientists of China under Grant Number 62002049, the
Natural Science Foundation of Sichuan under Grant Number 2023NSFSC0472,
the Sichuan Science and Technology Program under Grant Number 2022YFG0037,
and the National Key Research and Development Program of China under Grant
Number 2022YFB3104600. Parts of Jiaxin Pan’s work was supported by the
Research Council of Norway under Project No. 324235. Parts of Yu Chen’s work

A Simple and Efficient Framework of Proof Systems for NP 29

was supported by the National Key Research and Development Program of China
under Grant Number 2021YFA1000600, the National Natural Science Foundation
of China under Grant Numbers 62272269 and 61932019, Taishan Scholar Program
of Shandong Province.

References

1. Abe, M., Hoshino, F., Ohkubo, M.: Design in type-I, run in type-III: Fast and
scalable bilinear-type conversion using integer programming. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 387–415. Springer,
Heidelberg (Aug 2016) 4

2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018) 3

3. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017) 3

4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM (Jan 2012) 3

5. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 505–514. ACM
Press (May / Jun 2014) 3

6. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (Mar 2013) 3

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: STOC. pp. 103–112. ACM (1988) 2

8. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (Feb
2005) 36

9. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their ap-
plication to more efficient obfuscation. In: Coron, J.S., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 247–277. Springer, Heidelberg
(Apr / May 2017) 3

10. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017. pp. 1825–1842. ACM Press (Oct / Nov 2017) 5

11. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revisited.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
286–310. Springer, Heidelberg (Nov / Dec 2015) 4

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020) 3

13. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Heidelberg (May 2020) 3

30 Y. Wang, C. Su, and J. Pan, Y. Chen

14. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828, pp. 394–423. Springer, Heidelberg, Virtual Event (Aug 2021) 3

15. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for \mathcal{P} from LWE. In: FOCS.
pp. 68–79. IEEE (2021) 3

16. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments
and ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 768–798. Springer, Heidelberg (Aug
2020) 2, 18

17. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low commu-
nication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (Mar 2012) 3

18. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (Dec
2014) 2

19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013) 2, 3, 5, 9,
10

20. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999) 2

21. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006), https://eprint.iacr.org/2006/165 4

22. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (Aug 2011) 5

23. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly se-
cure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Heidelberg
(Apr / May 2018) 33, 35

24. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013) 2,
3

25. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association (Aug 2016) 5

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989) 1

27. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (Dec 2010)
2

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010) 3

29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016) 2, 3

30. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012) 2, 3, 5, 12, 18, 27, 33

https://eprint.iacr.org/2006/165

A Simple and Efficient Framework of Proof Systems for NP 31

31. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012) 2, 10

32. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (May 2013) 4

33. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. Cryptology ePrint Archive, Report 2013/095 (2013), https:
//eprint.iacr.org/2013/095 4

34. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (Aug 2014) 2

35. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2017) 2

36. Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments
and RAM delegation. In: STOC. pp. 1545–1552. ACM (2023) 3, 6, 26

37. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1115–1124. ACM Press (Jun
2019) 3

38. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Compact NIZKs from
standard assumptions on bilinear maps. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 379–409. Springer, Heidelberg (May
2020) 2

39. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Compact NIZKs from
standard assumptions on bilinear maps. Cryptology ePrint Archive, Report 2020/223
(2020), https://eprint.iacr.org/2020/223 2

40. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (Apr 2015) 2, 12

41. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189.
Springer, Heidelberg (Mar 2012) 2

42. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (Dec 2013) 3

43. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000) 3

44. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (Dec 2016) 9

45. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable
computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013) 3

46. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (Mar 2015) 12, 33, 35

47. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg (Aug 2020) 3

48. Shigeo, M.: A portable and fast pairing-based cryptography library. https://
github.com/herumi/mcl 26

https://eprint.iacr.org/2013/095
https://eprint.iacr.org/2013/095
https://eprint.iacr.org/2020/223
https://github.com/herumi/mcl
https://github.com/herumi/mcl

32 Y. Wang, C. Su, and J. Pan, Y. Chen

49. Waters, B., Wu, D.J.: Batch arguments for sfNP and more from standard bilinear
group assumptions. In: CRYPTO 2022, Part II. pp. 433–463. LNCS, Springer,
Heidelberg (Aug 2022) 3, 5, 8, 11, 26, 28

A Simple and Efficient Framework of Proof Systems for NP 33

Appendix

A GOS-NIZK in the Asymmetric Pairing Setting

The original GOS-NIZK [30] was proposed in the symmetric pairing setting. In
this section, we give the GOS-NIZK in the asymmetric pairing setting. It was
previously indicated by [46,23] but has never been treated explicitly.

Let λ be the security parameter and par = G be the public parameter, where
G = (G1,G2,GT , p, [1]1, [1]2, e) $← GGen(1λ), and ORNIZK = (NGenor,NProveor,
NVeror) be a NIZK with the simulator (NTGenor,NSimor). Let Lor

[M]1
be the

following language it supports.

Lor
[M]1

= {(C[M]1 , ([x0]1, [x1]1))|∃w ∈ Z2k
p : C[M]1(([x0]1, [x1]1),w) = 1},

where C[M]1 : Gk+1
1 ×Gk+1

1 ×Zkp → {0, 1} is a Boolean circuit on input ((x0,x1),w)
outputting 1 iff [x0]1 = [M]1w ∨ [x1]1 = [M]1w for M ∈ Dk. We give the NIZK
NIZK∗ in Figure 11.

NGen∗(1λ, par):
M $← Dk, crsor

$← NTGenor(par,C[M]1), z $← Zk+1
p \Span(M)

Return CRS = (crsor, [M]1, [z]1)

NProve∗(CRS,C, x,w):
Hardwire x in C to obtain the circuit C(x, ·) : {0, 1}h → {0, 1}
Define s and t to be the numbers of gates and wires of C(x, ·) respectively
Extend w to (wi)i∈[t] containing the bits of all wires in C(x, ·)
Compute ri $← Zk+1

p and cmi = [M]1ri + [z]1wi for all i ∈ [t− 1]
Set rt = 0 and cmt = [z]1 for the output wire
Compute π̂i $← NProveor(crsor,C[M]1 , (cmi, cmi − [z]1), ri) for all i ∈ [t]
For each NAND gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], run
– x` = cmd1 + cmd2 + 2cmd3 − [z · 2]1, r` = rd1 + rd2 + 2rd3

– π`
$← NProveor(crsor,C[M]1 , (x`, x` − [z]1), r`)

Return Π = ((cmi, π̂i)i∈[t], (π`)`∈[s])

NVer∗(CRS,C, x, Π):
Hardwire x in C to obtain C(x, ·) in the same way as NProve∗ does
Check that all wires in C(x, ·) have a corresponding commitment and cmt = [z]1
Check that all NAND gates have a valid NIZK proof of compliance
Return 1 iff all checks pass

Fig. 11. Definition of NIZK∗ = (NGen∗,NProve∗,NVer∗).

Theorem 7 (Completeness). If ORNIZK is complete, then NIZK∗ is complete.

34 Y. Wang, C. Su, and J. Pan, Y. Chen

Proof. Let wd1 and wd2 be the input bits of a NAND gate, and wd3 be the true
output. We must have wd1 + wd2 + 2wd3 − 2 ∈ {0, 1}. Let cmd1 = [Mrd1 + zwd1]1
and cmd2 = [Mrd2 +zwd2]1 be the input commitments and cmd3 = [Mrd3 +zwd3]1
be the output commitment. We have

x` = cmd1 + cmd2 + 2cmd3 − [z · 2]1
= [M]1(rd1 + rd2 + 2rd3) + [z]1(wd1 + wd2 + 2wd3 − 2).

Therefore, for all ` ∈ [s], we must have x` ∈ Span([M]1) or x`− [z]1 ∈ Span([M]1).
Moreover, for all i ∈ [t], we have cmi ∈ Span([M]1) or cmi − [z]1 ∈ Span([M]1).
Then the completeness of NIZK follows from the completeness of ORNIZK, com-
pleting the proof of Theorem 7. ut

Theorem 8 (Composable zero-knowledge). Under the Dk-MDDH assump-
tion, if ORNIZK is a NIZK with composable zero-knowledge, then NIZK is a NIZK
with composable zero-knowledge.

Proof. We define the simulator (NTGen∗,NSim∗) as in Figure 12.

NTGen∗(1λ, par):
(crsor, tdor) $← NTGenor(par), M $← Dk, u $← Zkp, z = M · u
Return CRS = (crsor,M, [z]1) and TD = tdor

NSim∗(CRS,TD,C, x):
Hardwire x in C to obtain C(x, ·) in the same way as NProve∗ does
Define s and t to be the numbers of gates and wires of C(x, ·) respectively
Compute ri $← Zλp and cmi = [Mri]1 for all i ∈ [t− 1]
Set cmt = [z]1 for the output wire
Compute π̂i $← NSimor(crsor, tdor, [M]1, (cmi, cmi − [z]1)) for i ∈ [t]
For each NAND gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], run
– x` = cmd1 + cmd2 + 2cmd3 − [z · 2]1
– π`

$← NSimor(crsor, tdor, [M]1, (x`, x` − [z]1))
Return Π = ((cmi, π̂i)i∈[t], (π`)`∈[s])

Fig. 12. Definition of the simulator (NTGen∗,NSim∗).

First we note that the distribution of z $← Zk+1
p \Span(M) is 1/p-statistically

close to the uniform distribution over Zk+1
p . Then the indistinguishability of

CRSs generated by NGen∗ and NTGen∗ follows immediately from the Dk-MDDH
assumption and the composable zero-knowledge of ORNIZK (which says that crsor
generated by NGenor(1λ, par) and NTGenor(1λ, par) are computationally close).

Next we define a modified prover NProve∗′, which is exactly the same as
NProve∗ except that π̂i is generated as

π̂i
$← NSimor(crsor, tdor,C[M]1 , (cmi, cmi − [z]1))

A Simple and Efficient Framework of Proof Systems for NP 35

for i ∈ [t], and for each NAND gate π` is generated as

π`
$← NSimor(crsor, tdor,C[M]1 , (x`, x` − [z]1)).

The following distributions are identical due to the composable zero-knowledge
of ORNIZK.

Π $← NProve∗(CRS,C, x,w) and Π $← NProve∗′(CRS,C, x,w)

for (CRS,TD) $← NTGen∗(1λ, par) and any (x,w) such that C(x,w) = 1.
Moreover, since the distribution of cmi = [Mri]1 is identical to that of

cmi = [Mri + zwi]1 for ri $← Zλp when z ∈ Span(M), the distributions of

Π $← NProve∗′(CRS,C, x,w) and Π $← NSim∗(CRS,TD,C, x),

where (CRS,TD) $← NTGen∗(1λ, par) and C(x,w) = 1, are identical as well,
completing the proof of Theorem 8. ut

Theorem 9 (Soundness). If ORNIZK is perfectly sound, then NIZK∗ is per-
fectly sound.

Proof. Due to the perfect soundness of ORNIZK, for each NAND gate with input
commitments (cmd1 , cmd2) and an output commitment cmd3 in a valid proof, we
have cmd ∈ Span([M]1) or cmd − [z]1 ∈ Span([M]1) for d ∈ {d1, d2, d3}, and

x` = (cmd1 + cmd2 + cmd3 − [z · 2]1) ∈ Span([M]1)

or x` = (cmd1 + cmd2 + cmd3 − [z · 2]1)− [z]1 ∈ Span([M]1).

Let k be the vector in the kernel of M such that k>z = 1, which must exist
when z /∈ Span(M). We have k>cmd1 ,k>cmd2 ,k>cmd3 ∈ {[0]1, [1]1} and

k>cmd1 + k>cmd2 + k>cmd3 − [2]1 ∈ {[0]1, [1]1}.

As a result, we can extract the bits for all wires consisting of valid input/output
pairs for all NAND gates and leading the statement circuit to output 1, completing
the proof of Theorem 9. ut

Instantiation of the OR-proof system. The underlying OR-proof system
can be instantiated as in [46,23] (see Section 3.1 for the instantiation). Under
the SXDH assumption, each CRS consists of 4 elements in G2 and each proof
consists of 4 and 6 elements in G1 and G2 respectively. In this case, the proof
size of the resulting NIZK consists of 6t+ 4s elements in G1 and 6t+ 6s elements
in G2, where t and s are the number of wires and gates in the statement circuit
respectively.

36 Y. Wang, C. Su, and J. Pan, Y. Chen

B Batch Argument in Composite-Order Bilinear Groups

In this section, we give a new framework for constructing BARG for all NP in
the composite-order bilinear groups.

In this section, we denote a (symmetric) composite-order bilinear group gen-
erator by GGenco which on input the security parameter 1λ outputs a description
G = (G,GT , p, q, g, e), where p and q are distinct primes, G and GT are cyclic
groups of order N = pq, and e : G × G → GT is an efficiently computable
(non-degenerate) bilinear map.

Definition 11 (Subgroup decision [8]). The subgroup decision is hard relative
to Gco if for all PPT adversary A, it holds that

|Pr[1 $← A((G,GT ,N, gp, e), gr)]− Pr[1 $← A((G,GT , N, gp, e), grp)]| ≤ negl(λ)

where the probability is taken over G = (G,GT , p, q, g, e) $← GGenco(1λ), N = pq,
gp = gq, and r $← ZN .

We now give our BARG for LBatchCSAT
λ (see Definition 10) in Figure 13.

Theorem 10 (Completeness). BARGco in Figure 13 is complete.

Proof. Validity of statement. Since the first n wires corresponds to the state-
ment, for honestly generated (Ud =

∏
i∈[m]

Ai
wi,d)

d∈[t], we must have xi,d = wi,d for all i ∈ [m] and d ∈ [n]. Hence, we have Ud = U∗d
for all d ∈ [n].

Moreover, when the witnesses are valid, we must have wi,t = 1 for all i ∈ [m]
for the output wire. Hence, we have Ut =

∏
i∈[m]

Ai = A.

Validity of gate computation. For witnesses (wi)i∈[m], for each gate G` =
(d1, d2, d3), we have (−1 + wi,d1 + wi,d3 = 0 ∧ −1 + wi,d2 = 0) or (−1 + wi,d3 =
0 ∧ wi,d2 = 0) for all i ∈ [m], which in turn implies

(−1 + wi,d1 + wi,d3)wi,d2 = 0 and (−1 + wi,d3)(−1 + wi,d2) = 0.

Then for ((Ud)d∈[t], (V`,W`)`∈[s]) in a valid proof, we have

e(A/(Ud1Ud3), Ud2) =e(
∏
i∈[m]

A
(1−wi,d1−wi,d3)
i ,

∏
i∈[m]

A
wi,d2
i)

=e
(
gp, g

∑
i∈[m]

α2
i (1−wi,d1−wi,d3)wi,d2 +

∑
i6=j

αiαj(1−wi,d1−wi,d3)wj,d2

p

)
=e(gp,

∏
i 6=j

Bi,j
(1−wi,d1−wi,d3)wj,d2) = e(gp, V`),

A Simple and Efficient Framework of Proof Systems for NP 37

BGenco(1λ, par = (G,GT , p, q, g, e), 1m):
Compute gp = gq which generates a subgroup of order p in G
Set N = pq and G = (G,GT , N, gp, e).
Sample αi $← ZN and set Ai = gαi

p for all i ∈ [m] and A =
∏
i∈[m]

Ai

For each i, j ∈ [m] such that i 6= j, set Bi,j = g
αiαj
p

Return crs = (G, A, (Ai)i∈[m], {Bi,j}i6=j)

BProveco(crs,C : {0, 1}n × {0, 1}h → {0, 1}, (xi)i∈[m], (wi)i∈[m]):
Define s and t to be the numbers of gates and wires of C respectively
For all i ∈ [m], extend (xi,wi) to (wi,j)j∈[t] containing the bits of all wires in C
For each d ∈ [t], set Ud =

∏
i∈[m]

Ai
wi,d

For each gate G` = (d1, d2, d3) ∈ [t]3 where ` ∈ [s], set
– V` =

∏
i6=j

Bi,j
(1−wi,d1−wi,d3)wj,d2 , W` =

∏
i 6=j

Bi,j
(1−wi,d3)(1−wj,d2)

Return Π = ((Ud)d∈[t], (V`,W`)`∈[s])

BVerco(crs,C, (xi)i∈[m], Π):

– GenVKco(crs, (xi)i∈[m]):
Parse xi = (xi,1, · · · , xi,n) for all i ∈ [m]
For each d ∈ [n], set U∗d =

∏
i∈[m]

A
xi,d

i

Output vk = (U∗d)d∈[n]

– OnlineVerco(vk,C, Π):
Check that Ud = U∗d for all d ∈ [n] and Ut = A
For all ` ∈ [s], check that
• e(A/(Ud1Ud3), Ud2) = e(gp, V`), e(A/Ud3 , A/Ud2) = e(gp,W`)

Return 1 iff all checks pass

Fig. 13. Definition of BARGco = (BGenco,BProveco,BVerco).

e(A/Ud3 , A/Ud2) =e(
∏
i∈[m]

A
(1−wi,d3)
i ,

∏
i∈[m]

A
(1−wi,d2)
i)

=e
(
gp, g

∑
i∈[m]

α2
i (1−wi,d3)(1−wi,d2)+

∑
i6=j

αiαj(1−wi,d3)(1−wj,d2)

p

)
=e(gp,

∏
i 6=j

Bi,j
(1−wi,d3)(1−wj,d2)) = e(gp,W`).

This completes the proof of Theorem 10. ut

Theorem 11 (Succinctness). BARGco is succinct.

Proof. For our BARG in Figure 13, we check the succinctness as follows.

38 Y. Wang, C. Su, and J. Pan, Y. Chen

Proof size. Each proof π consists of t+2s group elements in G, where each group
element can be represented in poly(λ) bits and k is constant. Since t = poly(s),
we have |π| = poly(λ, s).
CRS size. Each CRS crs consists of the group description andm+1+m(m−1)/2
elements in G. Thus we have |crs| = m2 · poly(λ).
Verification key. Each verification key vk output by GenVKco consists of n
elements in G. Thus we have |vk| = n · poly(λ).
Verification key generation time. GenVK performs mn group operations,
which requires poly(λ,m, n) time.
Online verification time. The OnlineVerco consists of 3 steps in total, where
the running time of each step is bounded by n · poly(λ), poly(λ), and s · poly(λ)
respectively. Since n = poly(s), the total running time is bounded by poly(s, λ).

Putting all the above together, Theorem 11 immediately follows. ut

Theorem 12 (Somewhere argument of knowledge). Under the subgroup
decision assumption, BARGco is a somewhere argument of knowledge.

Proof. We define the trapdoor setup and extraction algorithms as in Figure 14.

BTGenco(1λ, par, 1m, i∗):
Compute gp = gq which generates a subgroup of order p in G
Set N = pq and G = (G,GT , N, gp, e).
Sample αi $← ZN for all i ∈ [m] and set Ai = gαi

p for all i 6= i∗ and Ai∗ = gαi∗

For each i, j ∈ [m] such that i 6= j and i, j 6= i∗, set Bi,j = g
αiαj
p

For all i, j 6= i∗ set Bi∗,j = A
αj

i∗ and Bi,i∗ = Aαi
i∗

Return crs = (G, A, (Ai)i∈[m], {Bi,j}i6=j) and td = (p,Ai∗)

Extco(td,C, (xi)i∈[m], Π):
Initialize the values for all wires in C(xi∗ , ·) as ⊥.
Run Fco(td,C, Gt, Π), where Gt is the gate for the final output, to assign values
for each wire in the circuit C(xi∗ , ·)
For each input wire d ∈ [t] assigned with ⊥, set wi∗,d = 0
Return the witness wi∗ = (wi∗,i)i∈[h] (containing all bits for input values)

Fig. 14. Definition of (BTGenco,Extco). Fco is the recursion algorithm defined as in
Figure 15.

CRS indistinguishability. Let A be any PPT adversary breaking the CRS
indistinguishability of BARG with probability ε for some i∗ ∈ [m]. We build an
adversary B breaking the subgroup decision assumption with probability ε as
follows.
B generates crs in exactly the same way as BTGenco(1λ, par, 1m, i∗) does

except that instead of generating Ai∗ by itself, it takes as input Ai∗ generated

A Simple and Efficient Framework of Proof Systems for NP 39

Fco(td,C, G` = (d1, d2, d3), Π):
For all i = 1, 2, 3:
– set tempi = 0 if Upi = 1
– set tempi = 1 if Upi = Api∗
– set tempi = ⊥ otherwise

If temp2 = 0 and temp3 = 1:
– set (wi∗,d1 ,wi∗,d2) = (⊥, 0)
– stop if Parentr(G`) = ⊥ and run Fco(td,C,Parentr(G`), Π) otherwise

If temp2 = 1 and temp1 + temp3 = 1:
– if temp3 /∈ {0, 1}, abort Extco
– set (wi∗,d1 ,wi∗,d2) = (1− temp3, 1)
– stop if Parentl(G`) = ⊥ and Parentr(G`) = ⊥
– run Fco(td,C,Parentl(G`), Π) and Fco(td,C,Parentr(G`), Π)

If temp1 = 0 and temp3 = 1:
– set (wi∗,d1 ,wi∗,d2) = (0,⊥)
– stop if Parentl(G`) = ⊥
– run Fco(td,C,Parentl(G`), Π)

Otherwise abort Extco.

Fig. 15. Definition of Fco. Parentl (repsectively, Parentr) denotes the gate whose output
is the left (respectively, right) input to G`.

as Ai∗ = gαi∗ or Ai∗ = gαi∗
p where αi∗ $← ZN from its own challenger. When A

outputs β ∈ {0, 1}, B outputs β as well.
For Ai∗ = gαi∗

p , we have Bi∗,j = A
αj

i∗ = g
αi∗αj
p and Bi,i∗ = Aαi

i∗ = gαi∗αi
p .

Hence, if Ai∗ is generated as Ai∗ = gαi∗
p (respectively, Ai∗ = gαi∗), the distribu-

tion of the CRS received by A is exactly the same as the one generated by BGenco
(respectively, BTGenco), i.e., the probability that B breaks the subgroup decision
assumption is ε. Then the CRS indistinguishability of BARG immediately follows.
Somewhere extractability in the trapdoor mode. We now argue that for
any valid statement/proof pair ((xi)i∈[m], Π), the extractor is able to extract a
valid witness wi∗ for xi∗ with overwhelming probability.

For each NAND gate G` with commitments (Udi
)i∈[3] and proof (V`,W`), we

have
e(A/(Ud1Ud3), Ud2) = e(gp, V`) (7)

e(A/Ud3 , A/Ud2) = e(gp,W`). (8)

We now write Ai∗ as Ai∗ = gαi∗ = g
αp,i∗
p g

αq,i∗
q for some αp,i∗ ∈ Zp and

αq,i∗ ∈ Zq and Udi = g
udi

αq,i∗
q g

ûdi
p for some udi ∈ Zq and ûdi ∈ Zp for i ∈ [3].

One can see that udi = 1 if Updi
= g

pαq,i∗
q = Api∗ and udi = 0 if Updi

= 1.
Considering the projection in the order-q group of G, Equations (7) and (8) imply

α2
q,i∗(1− ud1 − ud3)ud2 = 0,

α2
q,i∗(1− ud3)(1− ud2) = 0.

40 Y. Wang, C. Su, and J. Pan, Y. Chen

Since αq,i∗ is uniformly distributed in ZN , with overwhelming probability we
have αq,i∗ 6= 0. Then combining the above two equations yields

1− ud1 − ud3 = 0 ∧ ud2 = 0,

1− ud3 ∧ ud2 = 0,

1− ud1 − ud3 = 0 ∧ 1− ud3 = 0, i.e., 1− ud3 = 0 ∧ ud1 = 0.

Moreover, we must have Udt
= A = g

αq,i∗
q g

ûdt
p for some ûdt

∈ Zp, i.e., udt
= 1

for the output wire. As a result, for a valid proof, Fco (see Figure 6) will never
abort during the execution of Extco, and running Fco recursively will result in bits
for input wires leading the statement circuit to output 1. While after running
Fco(td,C, Gt, Π), there might be some input wires assigned with ⊥, these wires
can be assigned with 0 since they do not affect the final output.

As a result, we can extract the bits for all wires consisting of valid input/output
pairs for all NAND gates and leading the statement circuit to output 1, completing
the proof of perfect soundness.

Putting all the above together, Theorem 12 immediately follows. ut

	 A Simple and Efficient Framework of Proof Systems for NP

