Succinct Arguments over Towers of Binary Fields

Benjamin E. DIAMOND Jim POSEN
Ulvetanna Ulvetanna
bdiamondQulvetanna.io jposenC@ulvetanna.io
Abstract

We introduce an efficient SNARK for towers of binary fields. Adapting Brakedown (CRYPTO ’23),
we construct a multilinear polynomial commitment scheme suitable for polynomials over tiny fields, in-
cluding that with 2 elements. Our commitment scheme, unlike those of previous works, treats small-field
polynomials with zero embedding overhead. We further introduce binary-field adaptations of Hyper-
Plonk’s (EUROCRYPT ’23) product and permutation checks, as well as of Lasso’s lookup. Our scheme’s
binary PLONKish variant captures standard hash functions—like Keccak-256 and Grgstl—extremely
efficiently. With recourse to thorough performance benchmarks, we argue that our scheme can efficiently
generate precisely those Keccak-256-proofs which critically underlie modern efforts to scale Ethereum.

1 Introduction

Succinct non-interactive arguments of knowledge, or SNARKSs, have witnessed a recent surge in interest,
driven largely by their application to blockchain protocols. Though long hindered by poor prover perfor-
mance, SNARKSs now represent a viable solution to the issue of blockchain scalability, thanks to a renewed
focus on improving their concrete efficiency.

Many modern SNARK constructions follow a framework that compiles polynomial interactive oracle
proofs into succinct arguments of knowledge using polynomial commitment schemes. This framework’s
formalization appears in Biinz, Fisch and Szepieniec [BFS20] and Chiesa et al. [Chi420]. The latter work—
along with several previous works, like Maller, Bowe, Kohlweiss, and Meiklejohn’s Sonic [MBKM19] and
Gabizon, Williamson, and Ciobotaru’s PlonKC [GWC19], in which the polynomial IOP framework is implicit—
uses the celebrated polynomial commitment scheme of Kate, Zaverucha, and Goldberg (KZG) [KZG10|,
which relies on the hardness of the discrete logarithm problem in elliptic curve groups.

Ben-Sasson et al.’s highly influential Fast Reed-Solomon IOP of Prozimity (FRI) |[BBHRI18a] has
reénergized an alternative approach—dating originally to Killian |Kil92]—which, in contrast with that based
on elliptic curves, instead achieves succinct arguments with the aid of linear error-correcting codes and
collision-resistant hash functions. The most popular exemplar of this approach is the Scalable Transpar-
ent Arguments of Knowledge (STARK) protocol of Ben-Sasson, Bentov, Horesh, and Riabzev [BBHR18b].
Subsequent expositions of this line of work have reinterpreted STARKS in the polynomial IOP framework dis-
cussed above (see for example Habock [Hab22|); in this light, we freely refer henceforth to the FRI polynomial
commitment scheme, or FRI-PCS.

FRI-PCS is not the sole polynomial commitment scheme that leverages linear codes and hash functions.
Golovnev et al.’s Brakedown polynomial commitment scheme [Gol+23], which distills ideas from Bootle,
Chiesa, and Groth [BCG20] and Ames, Hazay, Ishai, and Venkitasubramaniam |[AHIV23], also uses linear
error-correcting codes, and operates within the IOP model. Asymptotically, Brakedown’s verifier and proof
size both grow on the order of the square root of the size of the polynomial being committed. (We use
terminology somewhat expansively in this work, by classifying as “SNARKSs” those protocols whose verifier
complexity is merely sublinear, as opposed to strictly polylogarithmic, in the witness size.) Diamond and
Posen [DP23] improve the concrete efficiency of Brakedown by a factor of roughly two. While Brakedown’s
asymptotic verifier complexity is inferior to that of FRI, in many settings of practical interest, the difference
in concrete efficiency is minimal, so that Brakedown’s highly efficient prover yields a compelling tradeoff.

mailto:bdiamond@ulvetanna.io
mailto:jposen@ulvetanna.io

The technique of recursive proof composition further mitigates the impact of Brakedown’s less-efficient
verifier. Instead of proving an entire statement or virtual machine execution in a single SNARK, one can
often split up the statement in such a manner that it may be verified incrementally. Valiant [Val0§| shows
that incrementally verifiable computation can be realized through recursive SNARK composition, so that a
long virtual machine execution, say, might be proven using only SNARKs for circuits of bounded size. By
composing a series of inner SNARKSs with large proof sizes but fast proving times with an outer SNARK
with a small proof and a relatively slower proving time, one obtains a hybrid system featuring both a small
proof and a fast proving time.

Three major factors account for the performance advantage enjoyed by FRI-PCS and Brakedown-based
SNARKSs over those based on elliptic curve assumptions.

e Operation over small fields. Elliptic curve groups must be large—on the order of 256 bits—to attain
standard security levels. The ethSTARK [Sta2l] and Plonky2 |Pol22| systems pioneer an alternative
design, characterized by the use of smaller fields (specifically, of prime fields on the order of 64 bits).
By leveraging the relative efficiency of small-field arithmetic, these systems achieve state-of-the-art
proving performance. Moreover, these protocols’ use only of small-field elements reduces their storage
requirements, which in turn leads to better cache-efficiency on CPUs.

e Flexibility in field selection. These schemes tend to use fields that are not just small, but are,
moreover, computationally structured. Plonky2 [Pol22|, for example, highlights the Goldilocks field
Fp,, where p = 204 9232 4 1. This prime modulus is a Solinas prime—that is, a prime of the form
¢% — ¢ + 1, where here ¢ = 232—and so admits an especially efficient modular reduction algorithm.

e Cheaper cryptographic primitives. Standard-issue collision-resistant hash functions are much
faster than elliptic curve primitives.

As a rough comparison, committing 1 MiB of data with the FRI-based polynomial commitment scheme
in the Goldilocks field using Keccak-256 is about 7-fold faster than committing with KZG [KZG10] over the
BN254 bilinear group. We note that polynomial commitment accounts for the majority of the prover’s cost
in most SNARKs.

Given the performance gains that smaller finite fields stand to unlock, in this work, we extend this trend
to its logical conclusion: SNARKS over the smallest field, Fs.

Binary fields. Finite fields of characteristic 2, or binary fields, have a rich history in cryptography. The
AES block cipher and the GMAC message authentication code, standardized for use alongside AES, famously
use the binary fields Fos and Foi2s, respectively. A further important line of research pertains to crypto-
graphically secure elliptic curves over binary fields; these curves feature highly efficient circuit instantiations.
We recall some basic properties of binary fields which account for their applicability in cryptography. The
elements of the field Fox can be unambiguously represented in k bits; for example, there is a bijection between
bytes of data and the finite field Fos. Field addition corresponds to the logical exclusive or (XOR) operation
on these bit representations. Also, squaring elements of a binary field is significantly less expensive than
multiplying two distinct elements, thanks to the fact that (z +y)? = 22 + y? for each pair of elements x and
y in these fields (an identity sometimes called the “freshman’s dream”).

In this work, we present a SNARK construction over the field Fo that competes favorably with state-of-
the-art systems built with prime fields. Moreover, we argue that when proving computations that depend
heavily on bitwise operations, such as the SHA-256 and Keccak-256 hash functions, our system outperforms
prime field-based alternatives. We must acknowledge that ours is not the first work to consider SNARKSs
over characteristic-2 fields; it is the first we are aware of, however, to give an implementation-oriented
SNARK construction over o specifically, and which moreover avoids embedding overhead, a phenomenon
we now explain. While the work [BBHRI8b| does present a STARK construction over characteristic-2
fields, naively applying small field techniques cannot yield superior concrete efficiency over Fo, for a simple
reason: the alphabet of each Reed—Solomon code must be at least as large as its block length. Aside from
this limitation, which pertains to the FRI IOP of proximity, the ALI protocol in STARK—as well as the
DEEP-ALI protocol of the successor work of Ben-Sasson, Goldberg, Kopparty, and Saraf [BGKS19]—uses
fast polynomial multiplication techniques. Fast multiplication techniques for polynomials over Fs entail

embedding the polynomials’ Fao-coefficients into an extension field, effectively mandating the use of a field at
least as large as the witness.

An influential line of recent works—which includes Spartan [Set20], HyperPlonk |CBBZ23|, and CCS
[STW23a]—holds the promise of overcoming these limitations. These works develop a toolkit that yields
SNARKSs that bypass polynomial multiplication; instead, they leverage the classical multivariate sumcheck
protocol of Lund, Fortnow, Karloff, and Nisan [LFKN92|. These protocols use multilinear polynomial IOPs
and multilinear polynomial commitment schemes, rather than these objects’ univariate analogues. We see
that, equipped with the polynomial commitment schemes of [Gol+23| and [DP23]—which do not mandate
the use of Reed—Solomon codes, and in fact work for general linear codes—the multilinear regime stands to
deliver efficient SNARKs over Fy with no embedding overhead.

While Reed—Solomon codes are far from the only choice available, they nonetheless remain attrac-
tive. They are efficiently encodable and maximum-distance separable, and, moreover, admit a strengthened
proximity-gap result—due to Ben-Sasson, Carmon, Ishai, Kopparty, and Saraf [Ben+23]—which improves
upon the best currently-available analogues proven for general linear codes.

We propose two concrete polynomial commitment schemes over Fy, both based on Brakedown. We
recall that Brakedown works at a high level by shaping the committed polynomial’s coefficients into a two-
dimensional matrix, encoding it row-wise, and then randomly sampling and testing matrix columns for
proximity to the code and consistency with prover-supplied messages. One option for an Fo-multilinear
polynomial commitment is to instantiate Brakedown with a concatenated code, itself constructed using a
Reed-Solomon outer code and an ad-hoc inner code (whose small message and block lengths, we emphasize,
make ad-hoc code construction techniques highly effective). Targeting prover efficiency and implementation
simplicity, we propose a second option, which generalizes Brakedown but permits the use of Reed—Solomon
codes alone, using a technique we call block-level encoding. This second proposal draws inspiration from the
concatenated code-based approach, but simplifies its proving and verification procedures by omitting the
inner code. The idea is to pack the elements of each message into extension field elements, to encode each
resulting message using a Reed—Solomon code, and finally to randomly sample and test blocks of contiguous
columns from the encoded matrix—which themselves correspond to Reed—Solomon symbols in the extension
field—as opposed to sampling and testing individual columns. Though this approach yields slightly larger
proofs than does the concatenated code-based method in certain cases, we argue that its simplicity and its
implementation advantages make the tradeoff worthwhile.

Using this block-level encoding technique, our protocol attains the remarkable property that its com-
mitment phase imposes zero embedding overhead. That is, the cost of committing a v-variate multilinear
polynomial ¢(Xy,..., X, 1) over Fy is nearly identical—aside from small data transposes—to that of com-
mitting a v — k-variate polynomial ¢'(Xg, ..., X, _,) over the extension field Fy2x (which contains the same
quantity of information). On the other hand, ’s evaluation proofs are still more expensive than ¢'’s are, for
both the prover and the verifier. Finally, the sumcheck protocol also runs less efficiently on ¢ than it does
on t', a consequence of the fact that its challenges come from a cryptographically-sized extension field (like
Fsi2s). This latter issue is ameliorated in part by certain optimizations to the sumcheck protocol available
only in the small-field setting, which we discuss in Subsection

For these reasons, we do not end our investigation of SNARKSs over binary fields at Fy. Rather, we
push this approach further by utilizing a full tower of extensions over Fy, of the form Fy C Fo2 C Fos C
Fos C --- C Faoi2s. In this way, we introduce a new sort of flexibility into our scheme’s arithmetization
procedure, whereby it may use finite fields that appropriately capture the respective data types used within
the high-level program it is arithmetizing.

One key example that clearly illustrates the utility of tower fields at the constraint system level is the
arithmetization of the hash function Grgstl |[Gau+11]. Gregstl has undergone extensive cryptanalysis and was
a finalist candidate in the SHA-3 competition. The hash function’s design is based on AES’s and uses the
same Rijndael S-box as AES does. Like AES, Grgstl is, in a sense, natively defined over Fos, and so admits
an efficient arithmetization in any constraint system which features native Fos-operations. We believe that
this fact makes Grgstl an attractive candidate hash function for the SNARK system presented here. This
observation resembles one made by Ben-Sasson, Bentov, Horesh, and Riabzev [BBHRI18b, § E], who note
that hash functions based on the Rijndael-160 cipher possess simple arithmetic descriptions. Accordingly,
we expect low recursion overheads for SNARKSs that use this work’s techniques and are instantiated with
Grgstl. This fact marks a notable benefit over prime field-based SNARKSs, which rely, for the sake of efficient

recursive verification, on more recent—and less battle-tested—arithmetization-optimized hash functions like
Poseidon |Gra+19.

Our use of binary field towers confers several further advantages beyond the arithmetization layer. In
Subsection [2:3] below, we resurface an explicit, iterated construction of binary tower fields introduced origi-
nally by Wiedemann [Wie88|. This tower construction features certain remarkable computational properties,
which were observed by Fan and Paar [FP97]; namely, the multiplication, and even the inversion, of ele-
ments in the tower field Fyr can be carried out with asymptotic complexity O(k1°g23), a consequence of
Karatsuba-based techniques. The multiplication of field elements with subfield elements has even better
computational complexity, as we explain in Subsection Chen et al. [Che+18] have exploited precisely
this property of tower fields to improve the performance of polynomial multiplication in binary fields. In our
performance evaluation in Section[6] below, we discuss the implications of the recently introduced Intel Galois
Field New Instructions (GFNI) instruction set extension on software implementations of Wiedemann’s tower
that target capable processors.

Our contributions. We summarize our contributions in this work as follows.

1. A formal definition of small-field polynomial commitment schemes. While small field tech-
niques appear in several existing SNARKs—such as Plonky2 [Pol22] and RISC Zero |BGT23|—the
security of these schemes depends on a certain undocumented soundness property, whereby the com-
mitted polynomial’s coefficients actually reside in the required ground field, as opposed to in the
extension field from which the polynomial’s evaluation query is drawn. (See Definition)

2. A proof that [DP23] achieves a small-field polynomial commitment scheme. Indeed, we
prove that the construction [DP23| Cons. 4.6]—with appropriate minor modifications—actually yields
a small-field scheme in the strong sense outlined above, and so provides “better-than-advertised”

security. (See Theorem)

3. A generalization of [DP23], which uses block-level encoding. Our generalized construction
yields an efficient small-field polynomial commitment scheme, for Fa-polynomials, which uses Reed—
Solomon codes, and which imposes zero embedding overhead during the commitment phase. (See

Subsection [3.4])

4. An adaptation of PLONKish to the binary tower setting, and a SNARK for it. We adapt
the PLONKish arithmetization relation of HyperPlonk |[CBBZ23| Def. 4.1] to our setting, and introduce
several modifications (most importantly, a generalized constraint system, defined over a tower of fields,
as opposed to just one). (See Subsection [5.1])

5. An adaptation of the Lasso lookup argument [STW23b| to the binary tower setting.
Setty, Thaler and Wahby’s Lasso [STW23b| differs from prior lookup arguments—including that given
in HyperPlonk [CBBZ23| § 3.7]—in that it explicitly exploits the relative cheapness of committing
to small-valued elements. While the authors of [STW23b| highlight this benefit only in the setting of
elliptic curve-based polynomial commitments, we show how to capture it moreover in our tower setting.

(See Subsection [4.4])

6. An efficient shift argument for polynomials over the boolean hypercube. That is, we define
an operator, which, on input a multivariate polynomial f, maps f to the multilinear extension of that
polynomial which takes the values of f on the hypercube at arbitrarily rotated points. This answers
an open problem posed in HyperPlonk (see [CBBZ23| p. 52] of the full version). (See Subsection [4.3])

7. A performance evaluation of field arithmetic, the polynomial commitment scheme, and
the sumcheck protocol, in the tower setting. We moreover compare our software implementation
to those of state-of-the-art prime field SNARKs. Our multilinear polynomial commitment scheme can
commit a 22%-coefficient Fo-polynomial about 50-fold faster than can plonky?2’s [Pol22] Goldilocks-based
implementation of FRI-PCS, and about 150-fold faster than Hyrax [Wah+18|. (See Section [6])

8. An arithmetization of the Keccak-f[1600] permutation. This permutation resides at the core of
the Keccak-256 hash function enshrined in the Ethereum protocol, and represents a key a bottleneck
facing attempts to prove statements about the Ethereum blockchain. (See Appendix)

Prior works. We discuss various relevant previous works. We have already mentioned above the eth-
STARK |Sta2l] and Plonky2 [Pol22] systems, which introduce the use of 64-bit prime fields (and extensions
thereof). The ALI [BBHR18b| and DEEP-ALI [BGKS19| protocols—also discussed above—appear to work
even over binary fields, albeit with embedding overhead.

The ECFFT sequence of works of Ben-Sasson, Carmon, Kopparty and Levit [BCKL23} BCKL22| presents
an alternative to ALI and DEEP-ALI which makes applicable DEEP-ALI’s cyclic-group-based approach in
arbitrary fields (i.e., as opposed to merely in FFT-friendly prime fields). We note that ECFFT entails a form
of embedding overhead twice as burdensome as that which DEEP-ALI imposes, as we now explain. Indeed,
for a characteristic p (say, 2) and a witness size parameter k fixed, that work [BCKL22| Prop. 1] guarantees
the existence of an acceptably sized elliptic curve F—that is, one whose group of F,-rational points contains
an order-2K cyclic subgroup—only over a doubly large field extension of F,, of size ¢ > Q(2%%). In other
words, it requires that the curve’s field of definition F, be roughly as large as the square of the witness.
(This fact relates to the Hasse-Weil bound; we refer to the proof of [BCKL22, Cor. 1].) Moreover, the
work’s Reed—Solomon codewords (in the sense of [BCKL22, Thm. 12]) have F,-entries, in general. We see
that those messages with entries in the alphabet Fs, say, yield codewords that are 2 - k-fold larger than rate
considerations alone demand. For this reason, we find that work unlikely to be competitive with ours.

An interesting work of Cascudo and Giunta |[CG22] directly targets the use of Ligero on witnesses valued
in Fo. We briefly recall the approach of that work. Key to that work is the idea of a reverse multiplication-
friendly embedding, a notion which originates with Cascudo, Cramer, Xing and Yuan |[CCXY18|. In short
(we restrict our discussion to the case of characteristic p := 2), a (k, e)2-RMFFE is a pair of Fa-linear maps
@ : F5 — Foe and ¢ : Foe — F5 for which, for each pair of elements z and y of F&, xxy = ¢ (¢(z) - (y)) holds
(here, we denote by * componentwise multiplication, or bitwise AND). The insight of |[CG22] is that RMFEs
serve to “export” R1CSs relations defined over Fs to related ones defined over Foc; here, crucially, e is
sufficiently large that Ligero can be applied off-the-shelf. Specifically, that work replaces each R1CS relation
A-w*B-w=C-w+b, where w € F} say, with a related relation defined on the image w := ®(w) €]F;Lék
(here, ® denotes the block-wise extension of). On the one hand, Ligero can be used to decide this latter
relation. On the other, the latter relation moreover implies the former, provided that w is indeed in the
image of ®; |[CG22| describes further “lincheck” protocols which serve to convince the verifier of this fact.

The first key question is how e relates to k. Cascudo and Giunta [CG22, § 2.2] note, first of all, the lower
bound e > 2k — 1, so that a blowup of at least twofold is inevitable. On the positive side, using sophisticated
techniques, [CCXY18, Thm. 5] shows that asymptotically, e = ©(k) can be achieved; moreover, when p := 2,
the implicit constant can be taken to be less than 5 |[CCXY18| Cor. 2]. Finally, [CG22, § A.1] presents
practical constructions which show that, in essentially all parameter regimes of practical interest, ¢/k can be
taken to be less than 4.

In any case, we find that [CG22| stands to induce a factor-of-4 blowup in the size of the statement upon
which Ligero is run, as well as to impose further computational costs associated with its linchecks. Our
work, on the other hand, adapts Ligero so as to make that work operate “natively” over Fs-elements, and
induces no blowup. For these reasons, we find that work unlikely to compare favorably with ours.

We finally note various works which build zero-knowledge proofs specifically for the boolean circuit model
of computation, and which moreover feature asymptotically linear-time provers. Ron-Zewi and Rothblum
[RR22] and Holmgren and Rothblum [HR22| develop an interesting approach based on tensor codes and
“code switching”; their approach, moreover, internally invokes a sequence of Spielman codes respectively de-
fined over successive extension fields of characteristic 2. A further line of work applies techniques from MPC;
we refer for example to Weng, Yang, Katz and Wang’s Wolverine [WYKW21|, as well as to the survey of
Baum, Dittmer, Scholl and Wang [BDSW23]. These works, while interesting, face limited practical usability
for various reasons. They feature either private-coin verifiers [WYKW21; [RR22; BDSW23|, linearly-sized
proofs [WYKW21; RR22; BDSW23|, non-negligible soundness error [RR22|, or else unspecified large con-
stants [HR22]. We note finally that our PLONKish arithmetization (see Subsection below) exposes a
computational model significantly richer than that made available by boolean circuits. Indeed, our arith-
metization features native F,,x-operations (for arbitrary k), as well as custom gates, copy constraints, and
lookups. For these reasons, our computational model can capture with much less overhead those statements
of practical interest in blockchains.

Acknowledgements. This work would not have been possible without the support of our colleagues at
Ulvetanna. Their perspectives and insights regarding computational efficiency, as well as the thorough
hardware prototypes they built, guided our investigation. We would like to gratefully acknowledge the
contributions of Justin Thaler to this work, which arose throughout the course of many fruitful discussions.
We would finally like to thank Eli Ben-Sasson for answering several questions pertaining to zk-STARKS over
binary fields.

2 Background and Notation

We write N for the set of nonnegative integers. For sets S and T, we write S” for the set of maps 7' — S.
Below, we require that all fields be finite. We fix an arbitrary finite field K (though do focus on the case when
K is of characteristic 2). For each v € N, we write B, for the v-dimensional boolean hypercube {0,1}" C K".
We occasionally identify B, with the integer range {0,...2" — 1} lexicographically; that is, we identify each
v = (vg,...,0,—1) in B, with the integer ZZ:_OI 2% . v;, and moreover write {v} for this latter integer.

2.1 Polynomials

We recall certain basic facts pertaining to multivariate polynomials, referring throughout to Thaler [Tha22,
§ 3.5]. We recall the ring K[Xo,..., X, 1] of v-variate polynomials over K. We write K[Xo,...,X,_1]¢
for the set of v-variate polynomials over K of individual degree at most d in each variable. Multilinear poly-
nomials are multivariate polynomials of individual degree at most 1 in each variable (see [Tha22, Def. 3.4]);
the set of all such polynomials is K[Xo, ..., X,_1]=!. A degree-d multivariate extension of a map f € KB
is a polynomial f € K[Xo, ..., X,_1]=¢ for which f(z) = f(«) holds for each z € B,.

Each map f € KB admits a unique degree-1 multivariate extension]?6 K[Xo,...,X,_1]7! (see [Tha22,
Fact 3.5]). We thus refer freely to the degree-1 multivariate extension of f; we write ffor this polynomial and
call it f’s multilinear extension (MLE). We recall the equality indicator function eq : B, x B, — B, (x,y) —

r = y, as well as its MLE, the equality indicator polynomial (see [Tha22 Lem. 3.6)):

v—1
eq(Xo,.. ., Xpo1, Yo, .., Yoo) = [[X Vi+ (1= X3) - (1= Y)).
i=0

For each f € KB, we have the following explicit representation of f’s multilinear extension f €
K[Xo, RN ,XV,1]512
f(X()a v 7XV71) = Z f('l}) : é\q(v(h) 7UV717X07 S 7Xl/71)'
veEB,

The proof that f is f’s multilinear extension is straightforward (see [Tha22, Lem. 3.6], for example).
For each fixed (ro,...,7,-1) € K", the vector (eq(vo,...,Vu—1,70;---,Tv—1)),cp, takes the form

v—1
(Hvi i (1—w)-(1 —ri)> =((1=70) (L =Ty 1),eeesrg--on- Tu_1).
=0

vEB,

We call this vector the tensor product expansion of the point (rg,...,r,_1) € K”, and denote it by ®;:01(1 —
ri,7:). We note the recursive description @ (1 —7i,7:) = (1 —70) - @Y, (1 —r4,73) | 70- @7} (1 —74,74).
This description yields a ©(v)-time algorithm which computes ®;:01(1 —7i,r;) (see e.g. [Tha22, Lem. 3.8]).

2.2 Error-Correcting Codes

We adapt the notation of Diamond and Posen [DP23| § 2]. A code of block length n over the alphabet ¥
is a subset of ¥™. In X", we write d for the Hamming distance between two vectors (i.e., the number of
components at which they differ). We again fix a field K. A linear [n, k, d]-code over K is a k-dimensional
linear subspace C' C K™ for which d(vg,v1) > d holds for each unequal pair of elements vy and vy of C.

Given a linear code C' C K™ and an integer m > 1, we have C’s m-fold interleaved code, defined as the
subset C™ C (K™)™ = (K™)". We understand this latter set as a length-n block code over the alphabet
K™, In particular, its elements are naturally identified with those matrices in K™*"™ each of whose rows is
a C-element. We write matrices (u,):r;_ol € K™*™ row-wise. By definition of C™, two matrices in K™*"
differ at a column if they differ at any of that column’s components. That a matrix (ui)ﬁgl e Kmxm ig
within distance e to the code C"™—in which event we write d™ ((ui)zn:f)l, Cm) < e—thus entails precisely

that there exists a subset D = Am((ui);igl,Cm), say, of {0,...,n — 1}, of size at most e, for which, for
each i € {0,...,m—1}, the row u; admits a codeword v; € C for which “i|{o,...,n—1}\D = Ui|{0,...,n—1}\D' We
emphasize that the subset D C {0,...,n—1} is fized, and does not vary as the row-index ¢ € {0,...,m —1}
varies. In this circumstance, following the terminology of [Ben+23|, we say that the vectors (ul);lgl feature
correlated agreement outside of the set D, or that they feature e-correlated agreement. We note that the
condition whereby the vectors (ul)zlal feature e-correlated agreement with C™ implies a fortiori that every
element in (ui)?lgl’s row-span is itself within distance at most e from C.

We recall Reed—Solomon codes. For K again fixed, S = {sg,...,8n,—1} a subset of K, and a mes-
sage length k£ < n, the Reed-Solomon code RSk s[n, k| is defined as the subset C = RSg s[n, k] =
{(p(50),---,p(sn-1)) | p(X) € K[X]<*}. In words, RSk s[n,k] is the set of n-tuples which arise as the
evaluations, over the n points of S, of some polynomial p(X) € K[X] of degree less than k. Here, we
identify K[X]<* with K* using the monomial K-basis 1, X,..., X*~1 of K[X]<¥. The code RSk s[n, k] is
of distance d = n — k + 1 (see e.g. Guruswami [Gur06, Def. 2.3]). Lin, Chung, and Han show in recent
work [LCH14] that, for K a binary field, and S C K an appropriately chosen Fo-affine linear subspace, the
encoding function of RSk g[n, k]—or at least of a code isomorphic to it—can be computed in ©(n - log k)
time. (The code C C K" of [LCH14] differs from RSk g[n, k] by precomposition with a K-isomorphism on
K*, and so inherits RSk s[n, k]’s properties in full.)

2.3 Binary Towers

In this subsection, we review towers of field extensions. The following explicit construction is due to Wiede-
mann [Wie88], and appears also in Cohen [Coh92] and Fan and Paar [FP97|, for example; we refer the
reader to Blake, Gao, Mullin, Vanstone and Yaghoobian [Bla+93, § 3.4] for further historical remarks. We
define a sequence of rings inductively, by setting 7y := Fo, T1 := Fq [XO]/(Xg + Xo + 1), and, for each ¢ > 1,
T =T1[Xo-1)/ (X2, + Xi—2- X,—1 + 1). It is shown in [Wie88, Thm. 1] that, for each ¢ > 1, the polyno-
mial Xf_l + X, 9-X, 1+ 1isirreducible in 7,_1[X,—1]. We conclude by induction that, for each ¢ > 0, the
ring 7, is a field, isomorphic precisely to Fyz: .

For each ¢ > 0, we naturally realize 7,1 as a subfield of 7, corresponding to (the equivalence classes of)
the constant polynomials. Applying induction, we obtain a natural tower construction 7o C 71 C --- C 7,.
Moreover, for each ¢ > 0, we have a straightforward identification of rings:

T, =F2[Xo,.... X, 1]/(X§+ Xo+1,..., X2 1+ X, X, o1 +1).

This identification respects the tower structure in the obvious way; indeed, 7,_1 C 7, is precisely the subring
consisting of the equivalence classes of those polynomials in which only the variables Xg,..., X, o appear.
It holds—say, by Grobner basis considerations—that, for each ¢ > 0, each equivalence class in 7, has a
unique multilinear representative. We conclude that the set of monomials 1, Xg, X1, Xo- X1,..., X0+ X, 1
gives a basis of 7, as an Fa-vector space; we call this basis the multilinear basis. For each v € B,, with
boolean components (vg,...,v,—1), say, we write [, = H;;é(vz - X, + (1 —v;)); that is, B, is that basis
vector corresponding to the product of precisely those indeterminates among the list X, ..., X, 1 indexed
by v’s components. Slightly abusing notation, we occasionally write By, ..., 82._1 for this latter basis; in
other words, we define (.} = f,, where we again identify {v} = Ei;é 2¢.v;. More generally, for each pair of
integers ¢t > 0 and k > 0, theset 1, X,, X, 11, X,- X,41,..., X, -+ X, 4,—1 likewise gives a 7T,-basis of T, 4,; we
again write (83,),cs, for this latter basis. That is, for each v € By, we write 3, = Hf;ol(vl- X+ (1 —wy)).
We briefly survey the efficiency of tower-field arithmetic. In practice, we represent all 7T -elements in
coordinates with respect to the multilinear F»-basis, which we moreover sort in lexicographic order. In
particular, each 7,-element o admits a length-2* coordinate vector (ag,...,as._1), with components in Fy;

0" and 15% halves respectively define

we note, in light of our lexicographic basis-ordering, that this vector’s
T,_1-elements ag and «y for which o = a1 - X,_1 4+ ap in fact holds.

Throughout, addition amounts to bitwise XOR. We multiply 7,-elements in the following way. To multiply
the elements a1 - X,_1 +ap and of - X,_1 +af, of T,, say, we first use the Karatsuba technique—that is, we use
three recursive multiplications in 7,_1—to obtain the expression a;-a - X2 |+ (ag- o) +ay-af)-X,_1+ag-af.
We then reduce this latter polynomial by subtracting a; - o] - (X?,l + X, 2-X,-1+ 1) from it; this step
itself entails computing the product a; - o} - X, o in 7,_1.

It is shown by Fan and Paar [FP97, § III] that, in the Wiedemann tower, each such “constant
multiplication”—that is, each multiplication of a 7,-element by the constant X, ;—can be carried out
in linear time O(2%). In light of this fact, and using the “master theorem” for recurrence relations (see e.g.
Cormen, Leiserson, Rivest, and Stein [CLRS22, Thm. 4.1]), we conclude that this recursive, Karatsuba-based
approach features complexity @(21035 3*) (we refer also to [FP97, § IV] for a thorough analysis).

We finally record a further key property, whereby field-elements may be multiplied by subfield-elements
especially efficiently. In slightly more detail, the complexity of multiplying a 7,-element by a 7, -element
grows just linearly in the extension degree of 7,,, over 7,. We express this precisely as follows. For each
element « € T, ,, with coordinate representation (av)veBN with respect to the multilinear 7,-basis of 7,1,
say, and each scalar b € 7T,, the representation of b- a with respect to this basis is (b - av)veB,i' We conclude
that the multiplication of a 7T, .-element by a 7,-element can be carried out in 2 - @(21°g3'b) time. This
property—that is, that whereby elements of differently-sized fields can be efficiently multiplied—has been
noted by previous authors; we refer for example to Bernstein and Chou [BC14, § 2.4].

Comparison with classical binary fields. We contrast this work’s tower-based approach with the
classical, univariate treatment of binary fields. Informally, towers feature both efficient embeddings and
efficient small-by-large multiplications; classical binary fields lack both of these properties. We record the
details. For f,(X) € Fy[X] irreducible of degree 2¢, the quotient ring Fo[X]/(f,(X)) is isomorphic to Faer,
and admits the Fo-basis 1, X, ..., X2~ which we call the (univariate) monomial basis. We again fix ¢ and
& in N. Clearly, on the level of abstract fields, we have an embedding Fy2r < F,..4x (in fact, we have 2*
choices, by Galois-theoretic considerations). Identifying these objects with IF% and F%LM, respectively—
by means of their monomial bases—we obtain a mapping IE‘% — IF%LH of Fy-vector spaces. What is the
bit-complexity of this mapping? When Fy2>: and F,..+~ are constructed as univariate quotients, the answer
is, “it’s complicated”. (Informally, given ag + --- + az_; - X> ~*, how do we determine the coefficients of
its image in F,,+x?) Obviously, using binary matrix multiplication, we cannot do worse than O(2%+*)
bit-operations. Given irreducible polynomials f,(X) and f,4,.(X) sufficiently carefully chosen, one may be
able to do better; we refer to Bosma, Cannon and Steel [BCS97] for a thorough treatment of this issue.

In our tower setting, the embedding 7, — 7,1, of fields again induces—via these fields’ respective
multilinear bases—a mapping]F% —]F%LM of Fo-vector spaces. This latter mapping, on the other hand, is
free! Indeed, it amounts to a trivial zero-padding operation.

A similar issue affects the multiplication of F,,.+«-elements by Fy2:-elements. Indeed, to multiply an
element a € Foox by b € Fozr, say (and in fact, even to give sense to this operation), we could fix a
particular embedding Fo2e — Foyitx, and multiply « by b’s image under this embedding. The cost of
this operation, however, would be—beyond that of embedding b—the same as that of a standard Fo.+x-
multiplication; in other words, it would fail to exploit the fact that b comes from the subfield Fo2r C Fopitx.
Alternatively, we could pick an arbitrary Foe:-basis of Fo,itx, express a = (ag,...,a2<_1) in coordinates
with respect to this basis, multiply a by b componentwise, and finally convert the result back, let’s say.
This approach, however, would require two conversion operations, which could each cost as many as £2(22%)
(i.e., quadratically many) Fqz.-operations in the worst case. In fact, our tower approach, arguably, begins
with precisely the insight whereby, by representing F,..+~-elements continually in coordinates with respect
to some Fy2: -basis, we might avoid these conversions.

A family of bases at multiple scales. To illustrate this point, we fix quantities ¢ and x as above, as

well as an element o € T,1,. Of course, @ = (ap,...,a<_1) admits some representation with respect to
the multilinear 7,-basis of 7,4,; on the other hand, both 7, and 7,4, have their own respective multilinear
Fs-bases, so that both « and its components (ag,...,as-~_1) in 7, have corresponding representations as

2¢FR_bit and 2“-bit strings (respectively). We phrase the key compatibility property at hand as follows.
Indeed, the respective Fao-basis representations of « itself and of its components (ag,...,as-_1) are related
by concatenation, so that the equality o = ag || -+ || age_1 of 27%-bit strings holds (here, we interpret
each symbol as a string of bits, using in each case the appropriate multilinear Fa-basis). In other words, we
may express any « € T, .—given by its Fa-coordinates—in coordinates with respect to 7,.’s multilinear
T.-basis simply by splitting its coordinate representation into 2‘-bit substrings (with no linear algebra or
computation necessary).

3 Small-Field Polynomial Commitments

In this section, we introduce small-field polynomial commitment schemes, and moreover supply several instan-
tiations based on binary tower fields. In Subsection [3:2] below, we define the basic cryptographic abstraction.
We then instantiate this abstraction in two different ways. In Subsection below, we outline a “simple”
instantiation, suitable for polynomials whose coefficient field coincides with the alphabet of an available
code. In Subsection below, we introduce a further variant, designed to support the commitment of
polynomials over fields even smaller than the alphabet of the code selected for use. Both schemes follow the
Brakedown-inspired scheme of Diamond and Posen [DP23| § 4], with appropriate adaptations.

We are motivated in Subsection [3.4] by the goal of committing to polynomials over very small fields
(like Fo) while, simultaneously, making use of the Reed—Solomon code over larger alphabets (like Fais). In
Subsection we attain this goal, in a way, no less, which imposes essentially no overhead beyond that
inherent to, say, the commitment of an Fyis-polynomial of equal size in bits. In other words, we pay only
for the size, in bits, of our polynomial at hand, regardless of the size of its field of definition.

3.1 The Extension Code

Before proceeding, we pause to record a certain key coding-theoretic construction, which figures prominently
in what follows. Informally, given some fixed code, with symbols in a field, our construction “lifts” the
code to one with symbols in a vector space over that field. The resulting object inherits many of the same
properties—most essentially, the distance—of the original code.

Definition 3.1. We fix a [n, k, d]-code C' C K", with generator matrix M € K"** say, as well as a K-vector
space V over K. The extension code C C V™ of C' is the image of the map V¥ — V™ which sends ¢ — M - t.

In other words, the code Ccvr simply reuses C’s generator matrix; we note that the action of a
K-matrix on a V-vector is well-defined.

The object €' C V™ isn’t, strictly speaking, a linear code; indeed, its symbols take values in V', which is
not (in general) a field. On the other hand, C inherits C’s distance, as the following theorem shows:

Theorem 3.2. The extension code C C V™ has distance d.

Proof. We write n for the dimension of V' over K, and fix a K-basis (ag,...,a,-1) of V, as well as two
unequal messages to and ¢; in V*. Expressing these messages’ components in coordinates with respect to
the this basis, we obtain corresponding vectors toj, and t1 , in K*, for each index h € {0,...,n7 —1}. Our
hypothesis o # ¢1 implies that, for at least one index h* € {0,...,n — 1}, the slices to~ and t; p» are
unequal as elements of K*. Since C’s generator matrix consists of K-elements, the encodings ug := Enc(ty)
and u; = Enc(t1) of tg and t; are themselves given, slice-wise, by the respective encodings of the slices
(t(),h)z;é and (tLh)Z;(l). We conclude that the slices ug p+ and uq p+, viewed as elements of K", differ at at
least d positions, and thus finally that the elements ug and u; of V™ also do. We see that the distance of C
is at least d. Conversely, we may easily construct unequal codewords in V" of distance exactly d. Indeed,
given unequal messages tq and ¢; in K* whose encodings differ at exactly d positions, we embed both ¢, and
t1 componentwise into V along the basis vector ay. We see that the resulting messages’ encodings ug and
wy in V™ differ at exactly d positions; indeed, their discrepancies all arise from their respective 0'-indexed
slices, since these codewords’ positive-indexed slices are all identically zero. This completes the proof. O

As V isn’t necessarily itself a field, C’s “dimension” over V is of course not well-defined in general; we
note, however, that C C V" is a V-linear [n, k, d]-code whenever V' / K is a degree-n field extension.

3.2 Definition of Small-Field Polynomial Commitment Schemes

We now define small-field polynomial commitment schemes, adapting the definitions [DP23| Defs. 4.1-4.3],
which themselves closely follow Setty [Set20] § 2.4]. Our adaptation requires that each multilinear polynomial
t(Xo,...,Xp—1) at hand reside in K[Xy,...,X,_1], for a user-specified field K, allowed to be arbitrarily
small. On the other hand, we allow each evaluation query point (rg,...,7rp—1) € L?, as well as each claimed
evaluation result s € L, to be defined over an extension L / K of K. Thus, in short, Definition below
furnishes a commitment scheme for polynomials over small fields, which can nonetheless be queried at points
over large extension fields of the polynomial’s field of definition.

Definition 3.3. A small-field multilinear polynomial commitment scheme is a tuple of algorithms II =
(Setup, Commit, Open, Prove, Verify), with the following syntax:

e params < II.Setup(1*,/, K). On input the security parameter \, a size parameter ¢, and a field K,
I1.Setup samples params, which includes (possibly among other things) a field extension L / K.

o (c,u) <+ II.Commit(params,t). On input a multilinear polynomial ¢(Xy,...,Xp—1) €
K[Xo,..., Xy 1]3!, II.Commit returns a commitment c to t, together with an opening hint u.

e b + II.Open(params,¢;t,u). On input a commitment ¢, a multilinear polynomial ¢(Xo,...,X,—1) €
K|[Xy,..., Xy 1)3!, and an opening hint u, IT.Open verifies the claimed decommitment ¢ of ¢, using u.

e 7« II.Prove(params, ¢, s, (ro,...,re—1); t,u). On input a commitment ¢, a purported evaluation s € L,
an evaluation point (rg, ...,r,_1) € L*, amultilinear polynomial ¢(Xo, ..., X, 1) € K[Xo, ..., X¢_1]7!,
and an opening hint u, II.Prove generates an evaluation proof 7.

e b + II.Verify(params, ¢, s, (19,...,7¢—1),7). On input a commitment ¢, a purported evaluation s, an
evaluation point (rg,...,7_1) € L%, and a proof 7, I1.Verify outputs a success bit b € {0, 1}.

We note that, for II to be efficiently computable, it’s necessary that £ = O(log \), as well as that the
sizes log(|K|) and log(|L|) grow at most polynomially in A\. We assume as much throughout what follows.

We define the security properties binding and extractability, for small-field multilinear polynomial commit-
ment schemes, following [DP23, Def. 4.2] and [DP23| Def. 4.3], respectively, with various minor modifications.

Definition 3.4. For each small-field multilinear polynomial commitment scheme II, size parameter ¢, input
field K, and PPT adversary A, we define the binding experiment Bindingg’e’K(A) as follows:

1. The experimenter samples params < I1.Setup(1*, ¢, K), and gives params to A.

2. The adversary outputs (c, to, t1, ug, u1) < A(params), where ¢ is a commitment, ¢o(X, ..., X,—1) and
t1(Xo, ..., X¢_1) are multilinear polynomials in K[Xo,..., X, 1]=!, and ug and u; are opening hints.

3. The output of the experiment is defined to be 1 if ¢, # t;, II.Open(params,c;tg,ug), and
I1.Open(params, ¢; t1,u1) all hold; otherwise, it is defined to be 0.

The small-field multilinear polynomial commitment scheme II is binding if, for each PPT adversary A, there
is a negligible function negl(A) for which, for each security parameter A € N and each choice of ¢ and K, it

holds that Pr[Bindingiva(A)} < negl(\).
Definition 3.5. For each small-field multilinear polynomial commitment scheme II, security parameter A,
values £ and K, PPT query sampler Q, PPT adversary A, expected PPT emulator £, and PPT distinguisher

D, we define two random variables Realg”%(g’p()\) and Emulglaf;’p()\), each valued in {0, 1}, as follows:

1. The experimenter samples params < I1.Setup(1*, ¢, K), and gives params to A, Q and &.
2. The adversary outputs a commitment ¢ « A(params).
3. The query sampler outputs (rg,...,r,—1) < Q(params).

4. The experimenter proceeds in one of two separate ways:

10

. Realg”aﬁ’p(}\): Run (s, 7) < A(ro,...,r—1). Output the single bit D(c, s, 7).

. Emulg”%{g’p()\): Run (s,mt,u) < EA(ro,...,7—1). Output the single bit D(c,s,7) A

(I1.Verify(params, ¢, s, (ro, . ..,7¢—1), ™) = (IL.Open(params,c;t,u) At(rg,...,7¢—1) = $)).

The small-field multilinear polynomial commitment scheme II is extractable with respect to the query sampler
Q if, for each PPT adversary A, there is an expected PPT emulator £ such that, for each PPT distinguisher

D, the distributions {ReaIH’Z’K A } and {EmuIH’Z’K A } are statistically close.
Q,A,g,p() Q,A,e,p() (LK) AEN y

(0,K),AeN
We note that, critically, the polynomial ¢(Xo, ..., Xy_1) extracted by & must reside in K[Xo,..., Xp_1],
by definition of I1.Open.
The following definition is analogous to [DP23| Def. 4.4]; we refer to [DP23, Rem. 4.5] for further discus-
sion of this definition.

Definition 3.6. The query sampler Q is admissible if, for each A, £ and K, and each parameter set params
I1.Setup(1*, 4, K), containing L / K, say, the evaluation point (rq,...,7¢_1) + Q(params) is uniform over L*.

3.3 Basic Small-Field Construction

We now give our simple small-field construction. This construction generalizes [DP23 Cons. 4.6], so as to
make that scheme instantiate the small-field abstraction of Definition In our generalization, we allow
the polynomial’s coefficient field and the code’s alphabet to be small, though we require that these fields
be equal to each other (cf. Subsection below). We obtain security by the means of a cryptographically
sized field extension. Our construction closely follows [DP23, Cons. 4.6], making only minor modifications
throughout.

Construction 3.7 (Simple small-field polynomial commitment scheme).
We define IT = (Setup, Commit, Open, Prove, Verify) as follows.

e params « IL1.Setup(1*, ¢, K). On input 1*, ¢, and K, choose integers £y and ¢; for which £o+¢; = ¢,
and write mg = 2% and m; = 2. Return an extension field L / K for which |L| > 2«(°82) an
[n,m1,d]-code C C K™ for which n = 29 and d = Q(n), and a repetition parameter p = O(\).

e (c,u) + IL.Commit(params,t). On input t(Xo,...,X—1) € K[Xo,..., X, 1]}, express t =

(to,...,tae_1) in coordinates with respect to the Lagrange basis on {0,1}’, collate the result-
ing vector into an mg X m; matrix (ti);zoofl, and encode (ti);zoofl row-wise, so obtaining a further

mo— mofl

o1 Output a Merkle commitment ¢ to (wi);— ! and the opening hint u := (wi);i—

matrix (u;);

e b < Il.Open(params,c;t,u). On input t(Xo,..., X, 1) € K[Xo,...,X,_1]Z', opening hint
mo—l

(ui);ioo_l, and commitment c, verify that (u;),_(, Merkle-hashes to c¢. Collate ¢ into a matrix

?
()", encode the resulting matrix row-wise, and verify that d° ((En(:(tl-))zz’(fl7 (ui)?l(’o*l) <4
We define II.Prove and II.Verify by applying the Fiat—Shamir heuristic to the following interactive
protocol, where P has t(Xo, ..., X¢—1) and (ui)z’oﬁl, and P and V have ¢, s € L, and (ro, ...,7_1) € L'

e P sends V the matrix—vector product ¢ := ®f;l}1 (1 —ry,m)- (ti)?fo_l in the clear.

e For each i€ {0,...,p—1}, V samples j; <~ {0,...,n —1}. V sends P the set J = {jo,...,jp—1}

e P sends V the columns {(ul j)?ioo_l} , each featuring an accompanying Merkle path against c.
a jeJ

mofl

e)V computes Er?:(t’). For each j € J, V verifies the Merkle path attesting to (u;;),

moreover checks ®f;l}1 (I—r;, ri)~(ui,j):i°071 L ErE(t’)j. Finally, V requires s = t'-®51:61(1—ri, Ti)-

, and

In the last step, we write Enc for the encoding function of the extension code CcrLr (see Subsection .

11

Though Construction [3.7]is both binding and extractable, we refrain from proving as much; instead, we
defer our proofs of securlty to Subsection [3.:4] below. The proof of security of Construction [3.7] above can be
obtained by specializing that subsection’s scheme’s proof to the case k := 0.

3.4 Block-Level Encoding

In this subsection, we describe a further variant of the polynomial commitment scheme given in Subsection
above, suitable for polynomials over fields smaller than the alphabet of the linear block code selected for
use. We refer throughout to Guruswami [Gur06].

The simple scheme given in Construction mandates the internal use of a code C' C K" over the
same field K as that passed into IL.Setup(1*, ¢, K). In other words, it requires that IT.Setup return a code
V' whose alphabet K is identical to the coefficient field K of the commitment scheme’s message space
K|[Xo,...,Xe_1]7!. This restriction presents no obstacle in theory, since constant-distance, constant-rate
families of codes exist even over arbitrarily small, fixed-size fields (this fact follows from the Gilbert—
Varshamov bound; see [Gur06, § 2.1]). Moreover, concretely good codes over small alphabets may be
obtained constructively using concatenated codes (see |Gur06l § 2.3]).

On the other hand, this restriction precludes the use of “plain” Reed-Solomon codes in Construction [3.7}
at least for certain combinations ¢ and K; indeed, a Reed—Solomon [n, k, d]-code over K can exist only when
|K| > n. Reed—Solomon codes remain attractive, however, for various practical reasons. They attain the
Singleton bound, and so maximally favorably negotiate the tension between distance and rate. Separately,
they admit efficient encoding algorithms. Specifically, each code RSk s[n, k]’s encoding function K* — K™
may be computed in O(n-log k) time, at least for certain alphabets K and evaluation sets S C K. Crucially,
we may number among these favorable alphabets the fields K of characteristic 2, due to relatively recent
work of Lin, Chung and Han [LCH14] (in that work, the evaluation sets S C K are certain Fy-affine linear
subspaces of K). We specialize from this point onwards to the binary tower setting (see Subsection .

Concatenated codes. In order to develop certain intuitions essential to our packing scheme, we first
examine the effect of instantiating Construction as written, on a concatenated code. A concatenated
code C C 7" is defined in terms of an outer [nout, Kouts dout)-code Couy C T,1%", say, where x € N, and an
inner [Nin, kin, din]-code Ci, C T,™~, where here we require ki, = 27. The resulting concatenated code is
an [n, k,d]-code over C C T,”, where here we write n = nout * Rin, k& = kout * kin, and d = doyt - din (we
refer to |[Gur06, § 2.3] for further details). For example, upon concatenating the outer [2%,214 214 4 1]-code
RS, [215, 214] over T3 with the inner [2°,2%,23]-code RM 7, [2, 5] over Ty, we would obtain a [220,218 217 4 23]
code over Ty (here, RM7;[2,5] denotes a Reed—Muller code).

The concatenated code construction requires that the inner code’s message space coincide with the outer
code’s alphabet. On the other hand, above, we leverage the natural identification ’7:2K' > 7,4, of T,-vector
spaces (see Subsection . In different words, we may interpret blocks of adjacent tower-field elements
as elements of a larger tower field. That is, given integers ¢ and in N, we may “pack” each block of 2%
T.-elements into a single 7T, .-element.

We recall that the concatenated code C' C 7,"’s encoding procedure entails the following steps:

e pack the initial message in 7,* into a vector in 7,5,

e encode the resulting vector using the outer code Coyt’s encoder, so obtaining a codeword in 7,53,
e unpack each individual symbol of the resulting codeword into a message, in 7,%», and finally
e encode each such message, using the inner code Cj,, into a codeword in 7,», and concatenate them.

Construction 3.7, upon being instantiated with a concatenated code C' C 7", and with the extension field
T/ T., say, would stipulate that the verifier perform the encoding operation attached to the corresponding
extension code C' C 7. This code is clearly well-defined (we recall Subsection , on the other hand, its
encoding procedure is significantly more complicated than C’s is. We have already discussed above how one
might pack blocks of 2% 7T, -elements into 7T, -elements; in contrast, the corresponding packing operation on
blocks of 2% T, -elements is more subtle.

12

The subtlety arises from the interplay of the three fields 7,, 7,44, and 7T;. In a sense, the packing
operation operates over a different “dimension” than does the field extension 7, / T;; that is, it acts across
T.-elements, instead of extending them. For the sake of intuition, we suggest imagining the parameterization
t:=0, k=4, and 7 := 7, as well as the concatenated code sketched above, throughout what follows.

Sketch of our approach. We explain the encoding procedure of a concatenated code’s extended code
in the following way. We define a certain data structure, which “packs” a number of 7, -elements into a
rectangular array. This data structure is depicted in Figure [1| below.

7 ™

(1) (Yo) (Yo ----- Yi—1)

(7] 7o (7]

T—1
2 AL7I€,T

7]

Figure 1: A depiction of our “tower algebra” data structure.

J

Figure 1| depicts an array of 277* rows and 2" columns (where, again, each cell is a T,-element). The
extended concatenated code’s encoding procedure stipulates that we first pack each block of 2% consecutive
T--elements into exactly such an array, that we then apply the outer code—whose alphabet is 7, ,—row-wise,
and that, finally, we then apply the inner code, again row-wise, to each resulting array.

In pursuit of an even simpler construction, we simply omit the inner code—equivalently, we use the
identity inner code—and use the Reed—Solomon outer code. Were we to apply Construction naively
to this latter code, we would encounter a relatively inefficient verifier; indeed, this particular concatenated
code features a relative distance kj,-fold worse than the simple Reed—Solomon code’s. Instead, though
we do omit the inner code, we compensate by decreeing that the verifier test entire packed blocks of the
prover’s committed matrix, instead of testing individual columns. Crucially, we no longer view our code’s
encoding procedure as a 7,-linear one; rather, our code’s “symbols” are, now, packed vectors of 7,-elements.
To resuscitate our security analysis—which itself depends fundamentally on the proximity gap phenomenon
exhibited by error-correcting codes—we must investigate in what sense the rows of our committed matrix
are, in fact, codewords of some different code. As it turns out, the array of Figure [I] can be endowed with a
certain algebraic structure—which we describe thoroughly throughout what follows—which, serving in the
capacity of the alphabet of a certain extension code, makes possible our adaptation of [DP23|’s security
analysis.

Interestingly, our block-level testing scheme achieves a proof size profile close to that which Construction
can attain even on a nontrivial concatenated code. (Comparing these approaches is of course difficult—
and in the limit, impossible—since the latter approach mandates the selection of an ad-hoc inner code for
each statement size. We opt simply to select the highest-distance known inner code for each statement size
we benchmark, and to avoid asymptotic comparisons.) At the same time, it’s significantly simpler, as well
as more efficient for the prover. These observations affirm our contention that, taken in full, this section’s
construction represents a compelling tradeoff. Indeed, we seek first of all to deliver a highly efficient prover;
on the other hand, this measure imposes only a limited cost on the verifier. We thoroughly benchmark these
schemes’ proof sizes in Table [1| below.

13

The tower algebra. We discuss, first informally and then precisely, two distinct multiplication operations,
defined on 277* x 2"-sized arrays over 7, like that in Figure|l} To multiply the entire array by a 7,-element,
we may simply proceed cell-wise. We may moreover coherently define multiplication operations involving
elements of certain larger fields. For example, to multiply the entire array by a T.-element r € T, we
may interpret the array’s columns as T,-elements—respectively called 7p,...,v2=_1, say—and overwrite
vi X=r for each column index ¢ € {0,...,2% —1}. On the other hand, we may moreover interpret each
of the array’s rows as a 7,1 .-element. We thus further define multiplication by 7, .-elements; that is, to
multiply the entire matrix by an element s € 7,1 ., we interpret the array’s rows as 7,1 ,-elements—called
(Coy---5Car—u_1), say—and overwrite (; x=s for each 7 € {0,...,277* — 1}.

This “dual view” of the array—that is, either as an array of 2" T -elements, with a 7, -vector space struc-
ture or as an array of 277* T, .-elements, with a 7T, ,-vector space structure—will prove crucial throughout
our exposition of the packing scheme. Essentially, our packing scheme entails packing 7,-elements “horizon-
tally”, into 7,4 .-elements, in order to encode them; in order to obtain cryptographic security, on the other
hand, we moreover extend them “vertically”, into 7, -elements.

To make precise our packing scheme, we introduce a certain polynomial ring.

Definition 3.8. For parameters ¢, s, and 7 in N, where 7 > ¢, we define the tower algebra A, .. - as:
AL,N,T = 7;'[}/0; LRI Yrm—l]/(}/o2 + XL—l : YO + 1a }/12 + YO : Yl + 1a te. 7YK;2—1 + YK—2 : Ym—l + 1)3
where we understand X, _; as a T,-element (and slightly abuse notation by letting X_; := 1 in case ¢« = 0).

We note that A, ., admits a natural description as a 2"-dimensional vector space over 7T, via the basis
1,Y0, Y1,y - Ya,..., Yo - -+ - Y1 (cf. the 7,-basis (BU)UGBN of 7,4, from Subsection . This basis gives
rise to an isomorphism a, 4 - : ’TTQK — A, r of Tr-vector spaces, which we call the natural embedding. The
restriction of this embedding to its domain’s 0*" factor 7, C 72" maps 7, isomorphically to the subring

A, 0+ CA, k- consisting of the constant polynomials in the indeterminates Yy, ..., Y, 1.
We understand the tower algebra in the following way. The formal variables Yy, ..., Y,_1 define “syn-
thetic analogues” of the variables X, ..., X,1,_1, which would—upon being adjoined to 7,—yield the field

extension 7, C 7T, y.; moreover, these synthetic variables are designed to behave like their genuine analogues
(by means of the relations defining A, .). In fact, this design gives rise to a certain key property of the
tower algebra, whereby the subring A, ., C A, . . consisting of those polynomials whose coefficients reside
exclusively in the subfield T, C 7T, is precisely 7T,1.. We restate this essential property as follows:

Theorem 3.9. The restriction aL7,€,T|T2~ : 7:2N — A, .+ of the natural embedding to the subset 7:2N C TTQN
is an injection of T,-vector spaces, whose image, the subring A, .., C A, -, is tsomorphic as a ring to T, .

Proof. Indeed, the subring A, ., C A, . . is easily seen to be identical to 7,4, albeit with the variables
X, ..., X, +r—1 respectively renamed to Yp,..., Y, 1. O]

We implicitly, and unambiguously, understand A, , - as a 7,-vector space in the first part of the statement
of Theorem @; indeed, this action arises from the subring 7, C A, .. - consisting of those constant polyno-
mials in the indeterminates Yy, ..., Y,._1 whose constant—i.e., only—term resides in the subfield 7, C 7.

On the other hand, Theorem shows that, over certain fields strictly larger than 7,, the ring A, . -
admits multiple—and incompatible—vector space structures, a fact which we now take pains to explain
carefully. Of course, 4, . r has an obvious 7 -action—already noted above—coming from the subring 7, =
A, o0+ C A, - consisting of constant polynomials in the indeterminates Yp,...,Y,_;. To distinguish this
subring from Theorem [3.9[s, we call it the constant subring throughout what follows. On the other hand,
Theoremfurther realizes the field 7,1, = A, ., C A, . - as the subring consisting of those arbitrary-degree
polynomials in the indeterminates Y, ..., Y._1 whose coefficients, on the other hand, reside in 7, C 7,. We
refer to Theorem [3.9]s subring, throughout what follows, as the synthetic subring. We take care below,
whenever we understand A, . ; as an algebra or as a vector space, to carefully specify the particular field,
and the particular vector space structure, that we intend. As a rule, whenever we speak of 4, . as a
T--algebra, we understand the constant subring; whenever we speak of it as a 7,4 ,-algebra, we understand
the synthetic subring. (The constant and synthetic subrings appear in Figure [l as the vertical and horizontal
shaded regions, respectively.)

14

We write (8y)ves,_, for the multilinear 7,-basis of T, (i.e., for the basis 1, X,, X, 11, X, - X, 41,..., X, -~
X, _1; we refer again to Subsection . We finally note that (8,)ven,_, simultaneously yields a T, -basis
of A, ,, -—where we of course endow the latter ring with the synthetic 7,4,-vector space structure—provided
that we identify each (3, € T, with the constant polynomial 3, in the indeterminates Yp, ..., Y, 1.

For each ¢, k, and 7 in N, each tower algebra A, , ., and each standard [n,k,d]-code C' C T/, over
the alphabet 7T, 4., we recall the extension code construction of Definition [3.1] That is, in view of the

synthetic T,1-vector space structure—i.e., that of Theorem on A, -, C’s generator matrix induces a

map Enc : Af”;,{ﬁ — A} + of T,y -vector spaces; we write Cc A}, , for this map’s image. (Equivalently,

we may simply embed C’s generator matrix entry-wise along the subring 7,4, C A, . - of Theorem and

view it as an A, . ,-matrix.) It is shown in Theorem above that C' C A7, | has distance d.
Importantly, we note that Enc is simultaneously T,-linear, where now we understand both Aﬁﬁﬁ and

AP, as T,-vector spaces (via the constant embedding on each factor). To show this, we observe first

LK, T
that Enc amounts to a matrix-vector product over the ring A, ., (where we again synthetically embed
Titr C A, k7). On the other hand, any 7;-linear combination of Aﬁ,w—vectors can itself be expressed as
a scalar—vector combination over the ring A, . , (where we now embed 7; C A, ;). The T;-linearity of

Enc thus amounts to a distributive matrix identity over A, , -; on the other hand, matrix multiplication is
certainly distributive for arbitrary commutative rings.

We finally prepare the ground for our packing construction by recording a prozimity gap result—that
is, an analogue of [DP23| Thm. 3.1]—for tower algebras. In the below theorem, we give meaning to the
row-combination ®f:€11 (I —riyrg)- (ui)yi"ofl by means of the constant T;-vector space structure on A, ,; -.
The key difference between [DP23, Thm. 3.1] and Theorem below, then, is that the code at hand has
symbols in the T -vector space A, . -, though the combination vector ®f:zll (1 — r;,7;) nonetheless still has
entries in the ground field 7.

Theorem 3.10 (Diamond-Posen [DP23, Thm. 3.1]). Fiz an arbitrary [n, k,d]-code C C T}, with extended

code C' C A}, -, and a prozimity parameter e € {1, ..., L%J} If elements ug, ..., um,—1 of A7, , satisfy
P — .
Pr d { ®f;g}(1—7“iﬂ“i) } ,C| <e| >2-logmg - ,
(Tegseeesme—1)ETHO ! |77

J— umo—l J—
then d™o ((ui)ZiBl, émo) <e.

Proof. The proof goes through almost exactly as does that of [DP23, Thm. 3.1], with select modifications.
Indeed, we require only a substitute for the Schwartz—Zippel-based argument given in [DP23, Lem. 3.4]. In
our setting, each locus C, ; C T*~1is, now, the vanishing locus in 7.%>~! of a certain polynomial expression
in the variables (r¢,,...,r¢e—1), whose coefficients, on the other hand, reside in A, , . (and moreover are
not all zero). Decomposing each such coefficient into a 2*-tuple of T,-elements, using the natural 7T, -basis
LYy, Y1,..., Y - -+ Yo of A, . r, we see that the vanishing locus Cj; is the intersection in ’Tf‘]*l of
2% vanishing loci, each itself the vanishing locus of a certain combination of the ¢y — 1-variate, multilinear
Lagrange basis polynomials in the standard polynomial ring 7[Ry, ..., Re—2]. Moreover, at least one among
these latter combinations features a nonzero combination vector. Applying Schwartz—Zippel to all 2% loci,
then, we see that at least one among these loci is bounded from above in mass by (¢p— 1) - ﬁ, so that their

intersection also is. This completes the argument that p(Cj ;) < Zl"T—*‘l. We note that a identical adaptation,

in the univariate setting, must also be made to the proof of [DP23, Thm. 2.1]. Up to these adjustments, the
proof of [DP23, Thm. 3.1] otherwise goes through in our setting without change. O

Our construction. We now define our packing-based construction, which adapts and extends Construc-
tion above. Slightly restricting that construction’s signature, we require that K take the form 7,, for
some ¢ (and that I1.Setup directly accept the parameter ¢, instead of K).

15

Construction 3.11 (Block-level encoding-based polynomial commitment scheme).
We define IT = (Setup, Commit, Open, Prove, Verify) as follows.

e params < I1.Setup(1*,£,:). On input 1%, £, and ¢, choose integers £y and ¢; for which £y + ¢, = £,
and write mg = 2% and m; := 2. Return an integer x > 0, a tower height 7 > log(w(log \)), an
[n, 2, d]|-code C' C T, for which n = 200 and d = Q(n), and a repetition parameter p = O(\).

e (c,u) «+ IL.Commit(params,t). On input t(Xo,...,Xs—1) € T.[Xo,...,Xs—1]7!, express t =

(toy ..., tae_y1) in coordinates with respect to the multilinear Lagrange basis and collate the result
row-wise into an mg X m; matrix (ti);’ioofl. By grouping the column indices {0,...,m; — 1} into
m,()—l

2%-sized chunks and, for each row, applying the natural embedding chunk-wise, realize (t;),
my

as an mg X G- matrix, with entries in A, ,, C A4, . Apply C’s encoding function row-wise to

1 . . Lo

, again with entries in
mo—l
i=0

-1 .. :
each of (;); ’s rows, so obtaining a further, mo x n matrix (u;)
mo—l
i=0

mo—
=0

A,k CA, k. Output a Merkle commitment ¢ to (u;) and the opening hint u = (u;)

e b « II.Open(params,c;t,u). On input t(Xo,...,Xe—1) € T,[Xo,...,X¢—1]=}, opening hint

(uﬁﬁ}fl7 and commitment ¢, verify that (ui)z’o*l Merkle-hashes to ¢. Collate ¢ into a matrix

?
(ti)?l"o_l, encode the resulting matrix as above, and verify that d™° ((Enc(ti));ioo_l, (ui);ioo_l) < ¢
We define II.Prove and II.Verify by applying the Fiat—Shamir heuristic to the following interactive
protocol, where P has ¢(Xo, ..., X,—1) and (ui)go_l, and P and V have ¢, s, and (rq,...,70_1) € T..

-1

e P computes the matrix—vector product ¢’ == @, (1 — 7i,7;) - (ti);ioo_l, here interpreting the

matrix (ti)goo_l as an unpacked, mg X m; matrix with entries in 7,. P sends V t’ in the clear.

e For each i€ {0,...,p—1}, V samples j; < {0,...,n —1}. V sends P the set J = {jo,...,jp—1}

e For each j € J, P sends V the column (ui7j)g00_1, interpreted as a vector with entries in the

subring A, ., C A, .., as well as an accompanying Merkle authentication path against c.

e First, V requires s Ly, ®f;61(1 —ry,1;) (i.e., a simple dot-product over 7). V then applies the
natural embedding to the T -vector ', chunk-wise, so realizing it as a length- X vector with entries
in A, . -, and finally encodes this latter vector, writing u’ := Enc(¢'), say. For each j € J, V verifies
the Merkle path attesting to (ui’j)goo_l, and moreover checks ®f:£11(1 — T, Ti) (ui’j)?;‘)o_l z ul;,
where we use the constant T--action on A, ,; - on the left, and the equality is one of A, , r-elements.

We again require that ¢ € O(log()\)), lest the scheme fail to be efficiently computable; we moreover assume
that 7 >+, so that the tower algebra A, . , is well-defined. We note that the growth requirement 7 >
log(w(log A)) captures precisely the condition whereby ‘?17' is negligible in A. Indeed, while requiring 7 >
Q(log A), say, would more-than-guarantee our scheme’s asymptotic security, the more delicate allowance
7 > log(w(log A)) in fact suffices, and moreover figures centrally in our sharp asymptotic efficiency analysis
below (see Theorem [3.14).

We emphasize that Construction s setup routine II.Setup returns a code C' over the alphabet 7,4,
which—in general—is larger than the coefficient field 7, at hand. On the other hand, the efficiency of
Construction [3.11] is identical to that which Construction [3.7] above would feature if it were run on a 7,y .-
matrix of size mg x 5. In other words, Construction makes possible the use of a code over an alphabet
2%-fold larger, say, than 7,, and yet simultaneously “compensates” for this expense by shrinking the prover’s
matrix.

Construction s completeness amounts to the “commutativity” of a certain sequence of actions on the
T,-matrix (¢;); " ; that is, (ti)g’ofl either is combined, packed, and then encoded, or else is packed, encoded,
and then combined. Since the natural embedding is 7,-linear, the first pathway’s combination and packing
operations can be interchanged. On the other hand, the interchangability of the combination and encoding
operations entails exactly the 7T.-linearity of Er;:, which we have already established above.

16

We note that the security results below draw significantly from |[DP23| § 4], and repeat certain swathes
of that work verbatim.

Theorem 3.12. The scheme of Construction 1s binding.
Proof. Deferred to Appendix O
Theorem 3.13. If the query sampler Q is admissible, then the scheme of Construction[3.11]is extractable.

Proof. Deferred to Appendix O

3.5 Efficiency

In this subsection, we discuss the efficiency of Construction [3.11} with a view towards attaining certain
concrete soundness thresholds. We note that a somewhat more rudimentary treatment of this section’s
material appears in [DP23].

Verifier cost. Departing slightly from standard efficiency analyses, we analyze both proof size and verifier
runtime under one banner; indeed, we view both metrics as disparate aspects of a unified verifier cost. (This
approach comports well with the cost structure of Ethereum, say, in which each transaction’s calldata size
and verification complexity contribute jointly to its gas cost.) We define the relevant variables as follows:

e b: The cost, to the verifier, of each bit transmitted to it.
e T,: The cost, to the verifier, of multiplying two 7 -elements.

e T: The cost, to the verifier, of multiplying two 7T -elements.

o &nc: The cost, to the verifier, of encoding a message in fiz/w

e $Hash. The cost, to the verifier, of hashing a single 7, ,-element.

We recall that a 7, -element and a 7T,-element can be multiplied together with cost 277 - ¥,. Finally, we
ignore throughout the cost of addition (which amounts to bitwise XOR).

We reckon the verifier’s costs as follows. The prover must transmit to the verifier the message ¢, which
consists of m; T,-elements, as well as the p mg-element columns (ui,j)?;"o_l, for j € J, each valued in T4 .
The total proof size is thus 27 - my + 2°7% - myq - p bits. Computationally, the verifier must first compute
the tensor-expansions ®51:61(1 —ri,1;) and ®f;l}l(1 —14,7;). Using the algorithm [Tha22, Lem. 3.8], the
verifier can compute these using m; and mg 7, -multiplications, respectively. To encode the message t’, the
verifier must perform C' C 7% ,.’s encoding operation 27~* times. In addition, the verifier must perform
p - 2% T -by-T, dot products, each of length mg. The total cost of these latter dot-products equals that of
mg - p-2%- 2774 T -multiplications. Finally, the verifier must perform p Merkle-path verifications. Each such
verification entails hashing a column of mg 7,4 .-elements (as well as performing I; further hash evaluations,
which we ignore).

Adding all of these components, we obtain the following total verifier costs:
o b: 27 .my 4+ 2°TF .myg - p.
o T,img-p 2R,
e T : mg—+my.
e Cnc: 2774
e Hash. p-myg.
We pause to record to the following fundamental asymptotic guarantee:

Theorem 3.14. For each fized 1 € N, and arbitrary ¢ and X\ in N, Construction [3.11] can be instantiated in
such a way as to impose verifier cost 5(\/)\ . 25), counting both bits transferred and bit-operations performed.

17

Proof. Deferred to Appendix O

We note that the analyses of both Brakedown |Gol+23, Thm. 1] and of Diamond and Posen [DP23| § 4]
measure only field-elements transferred and field-operations. Theorem performs a sharper asymptotic
analysis; it shows that—provided that it chooses 7 sufficiently carefully—Construction in fact attains
square-root verifier efficiency, in both in the security parameter and the polynomial’s size, even at the level
of bits.

Concrete soundness. We identify and discuss, in concrete terms, the various sources of soundness error
which arise throughout Theorem We refer throughout to the parameters d, n, p, ¢, k, 7, mg and my,
recalling their roles in I1.Setup.

e Tensor batching error Eg. This is the probability, taken over the query sampler’s choice of
(ro,...,me_1) + TF, that, though d™° ((ui)g’ofl7 5’”0) > %7 we nonetheless have d(u’, 6’) < %7 where

we write v’ = ®f:éll (I—=rsr)- (ui)?;"ofl. By Theorem (see also Lemma , Ep<2-4y- %.
e Non-proximal per-query error =p. This is the probability, taken over the verifier’s choice of a
single index j «+ {0,...,n — 1}, that, though d(u’,a) > %, nonetheless v, = Enc(#); holds. The

j
analysis of Lemma shows that =y <1 — ﬁ.

e Proximal per-query error Ep. This is the probability, taken over the verifier’s choice of a single

index j « {0,...,n—1}, that, in the case d(u’, 6) < g but the message ¢’ # ®f;€11 (I—7r;,) (ti)?;"o_l

is wrong, nonetheless u} = Enc(t’); holds. The analysis of Lemma shows that Zp <1 — g—g

Putting these three sources of error together, and following the analyses of Lemmas and B2 we
define the protocol’s total soundness error as follows:

E:=E2(d,n,p, 7,0y, l1) = max(Zp + 24, ER).

We justify this definition in the following way (in fact, this is a very rough summary of the proof of Theorem

3.13). We note that either the prover’s committed matrix (ui)?;()ofl satisfies d™° ((ui)ﬁoofl,ém“) < % or

it doesn’t. If it doesn’t, then the analysis of Lemma bounds the verifier’s acceptance probability from
above by Zp + ER. If it does, then the message list (ti)?;“(;l is well-defined, so that ¢’ is either correct or
it’s not; in the latter case, Lemma bounds the verifier’s probability of acceptance by Zf. Barring all of
these failure events, we indeed have that s = ¢(rg,...,r,—1). We note that we slightly simplify our treatment
here by analyzing Construction as an TOP, and ignoring the runtime of the emulator £, as well as the
probability that £ aborts on a successful proof (say, because it fails to extract (ui)ﬁoo_l). This simplification,
in the setting of concrete analysis, is justified in Brakedown [Gol+23|, p. 211], for example.

We define the bits of security obtained by Construction as A = —log(E).

Case studies. In order to concretely assess the performance characteristics of Construction we study
various instantiations of that scheme. For comparison, we also explore various approaches based on the
use of concatenated codes in Construction In each the following examples, we set ¢ := 0 (that is, we
commit to Fo-polynomials), as well as £ := 32, so that the total size of the polynomial at hand is 512 MiB.
Throughout each example, we attain 100 bits of security. To standardize the case studies’ respective prover
complexities, we consider only codes with the fixed relative rate v := i.

Example 3.15 (Reed—Solomon code with block-level testing). We begin with the efficiency of Construction

We first remark that the alphabet size parameter x := 4 makes available only those width parameters
¢1 at most 18; indeed, the Reed-Solomon requirement |K| > n demands that |T;| = 22" > % . 22%1, so that
28 > 2441 — k. In fact, we set k := 4, £y := 14 and ¢; = 18 (these choices yield the smallest possible proofs).
We thus have m; = 2'8, k = 2'4, and n = 2'6. Setting 7 :=7—and usingd =n—k+1 =210 _-214 41 =
49,153 —we compute Zp < 2+ 14+ ;e ~ 27109193 Moreover, we compute the non-proximal per-query error

18

ZEy <1—-3% =0.75 and the proxunal per-query error Z=p <1 - 3— ~ 0.5. Using a direct computation, we
see that the total soundness error = of equation (3.5)) drops below 27190 just when the number of queries p
becomes 241 or greater. Using the expression for b given above, we compute directly the proof size of 11.531
MiB, or about 226-527 bits.

Example 3.16 (Concatenated code with trivial inner code). For reference, we compare Example to the
construction whereby a trivial concatenated code—i.e., with Reed—Solomon outer code and identity inner
code—is used in Construction (i.e., without block-level testing). We again set k := 4, o = 15 and
¢1 == 21. In this setting, the resulting binary code has distance d = 49,153 identical to the code of the above
construction; on the other hand, its message length & = 2'® and block length n = 229 are both 2*-fold higher.
We thus obtain the identical batching error Eg Az 27109-193, our non—proxnnal and proximal per-query errors,
on the other hand, are =y =1 — ,— ~ 0984 and =p =1 — 7 ~ 0.969. Again calculating directly, we see
that 4,402 queries are required to obtain 100 bits of soundness. This scheme’s queries, however, are each
16-fold cheaper than Example s are; we obtain a total proof size of 12.598 MiB, or about 226:6%% bits.

Example 3.17 (Nontrivial concatenated code). We finally examine the efficiency of Construction [3.7]s
instantiation on a nontrivial concatenated code (i.e., with nonidentity inner code). In order to run an
apples-to-apples comparison—i.e., between schemes whose prover costs are comparable—we set both our
inner code and outer code’s rates to be 1 5, 50 that our concatenated code has rate i Specifically, we set

k = 4, and set Couy C T, to be the Reed-Solomon code RSt [2°,214]; for Cy, C 'Tk”‘, we use the
Reed—Muller [32, 16, 8]-code RM; [2,5]. (We note that 8 is actually the best possible distance that a binary
[32,16]-code can attain; we refer to the database of Grassl |Gra].) We see that our concatenated code
satisfies k = 218 and n = 22° and has distance d =8 - (2% +1) =131 080 We accordingly compute
Ep<2-14- 2710778 aswellas By = 1— =% ~ 0.958 and Ep = 1 — 24 ~ 0.917. We calculate that

3o A g
1,629 queries suffice to deliver 100 bits of soundness, and obtain a proof size of 7.182 MiB, or 225844 bits.

Remark 3.18. We find it plausible that, in the setting of Example[3.15] the stronger proximity gap result of
Ben-Sasson, Carmon, Ishai, Kopparty, and Saraf [Ben+23, Thm. 1.4] could be brought to bear. Indeed, that
result guarantees that, in the Reed—Solomon setting, even for those proximity parameters e € {0, ..., Ldglj}
allowed to range as high as the unique decoding radius, we nonetheless obtain a proximity gap, albeit with

the false witness probability = 7= slightly worse than that of £ |T| guaranteed by [DP23, Thm. 2.1] (we refer

to [DP23, Rem. 3.7] for further comparison of these results). Of course, to apply that result to Example
we would need an analogue of Theorem above; that is, we would need a result in the algebra
setting which adapts [Ben+23| Thm. 1.4], precisely as Theorem [3.10]adapts [DP23, Thm. 3.1]. While we feel
confident that such an adaptation should be possible, we have not undertaken it. If that adaptation were
available, then, in Example we would obtain the rather better proof size of 8.625 MiB, or 226-199 bits.

We record selected proof size benchmarks in the below table. We record the benchmarks derived above,
which pertain to the case ¢ = 32 (so that the total data size is 512 MiB), as well as benchmarks for the
further case ¢ = 36 (corresponding to 8 GiB of total data).

Construction Used Num. Variables ¢ Parameters (¢, ¢1,x) Proof Size (MiB)
Reed—Solomon with block-level testing. 32 (14, 18, 4) 11.531
(See Example 3.15l) 36 (15, 21, 5) 66.527
Reed—Solomon, assum. prox-gap L%J 32 (14, 18, 4) 8.625
(See Remark 3.181) 36 (15, 21, 5) 50.500
Concatenated code w/ ad-hoc inner code. 32 (14, 18, 4) 7.182
(See Example 3.171) 36 (16, 20, 5) 33.063
Table 1: Proof size benchmarks.
In the final benchmark—that describing a concatenated code with k := 5—we use the ad-hoc inner

[64, 32, 12]-code of Grassl |Gra+19| (this code is a subcode of an extended BCH code). As Grassl’s database

19

indicates, we are able neither to construct nor to rule out the existence of a binary [64,32,16]-code. The
existence of just such a code would further improve the benchmark given in the last row.
We present comprehensive benchmarks in Section [6] below.

4 Polynomial IOPs for Binary Tower Fields

In this section, we review and develop several interactive protocols and polynomial IOPs, which we more-
over specialize to the setting of binary tower fields. Certain among these protocols adapt already-known
techniques, but surface further performance improvements made possible by the tower setting. We refer
throughout to Chen, Biinz, Boneh and Zhang’s HyperPlonk |[CBBZ23|, Def. 4.1], though we modify rather
significantly that work’s formalisms.

4.1 Definitions and Notions

We fix throughout what follows a maximal tower height 7 € N; we understand 7 := 7(\) as depending on an
available security parameter.

Definition 4.1. A polynomial IOP 11 = (Z,P,V) is an interactive protocol in which the parties may freely
use a certain multilinear polynomial oracle, which operates as follows, on the security parameter A € N:

FUNCTIONALITY 4.2 (polynomial oracle).
A tower height 7 := 7(\) and a binary tower 7o C 73 C --- C 7T, are fixed.

e On input (submit,t,v,t) from Z or P, where ¢ € {0,...,7}, v € N, and t € T,[Xo, ..., X, 1|7},
output (receipt,t, v, [t]) to Z, P and V, where [t] is some unique handle onto the polynomial ¢.

e On input (query, [t],7) from V, where r € T, send V (evaluation, t(rg,...,7,—1)).

Definition 4.3. The polynomial IOP II = (Z,P,V) for the indexed relation R is secure if, for each PPT
adversary A, there exists an expected PPT emulator £ and a negligible function negl, such that, for each
security parameter A € N and each pair (i,x), provided that the protocol is run on the security parameter
A, writing vp = Z(i) and w < £4(i,x), we have |Pr[(A(i, x), V(vp,x)) = 1] — Pr[R(i,x, w) = 1]| < negl()).

We note that we grant £ full internal access to A. In particular, £ may intercept all outbound messages
sent by A, including those messages (submit,t,v,t) A sends directly to the polynomial oracle, as well as, of
course, those it sends to V. We note that, in practice, our emulator £ will be straight-line (i.e., non-rewinding)
and strict polynomial-time, though these latter properties aren’t required by Definition

It is shown in [BFS20, § E] that, by inlining an extractable polynomial commitment scheme (in the sense
of Deﬁnition into a secure polynomial IOP (in the sense of Deﬁnition, one obtains a secure argument
of knowledge for the relation R.

Definition 4.4. For parameters ¢, v, and p in N, v-variate, u-ary polynomial predicate over 7, is a boolean-
valued function @, , : 7,[Xo,...,X,—1]* — {0,1}.

Example 4.5. We record certain key polynomial predicates, roughly following HyperPlonk [CBBZ23].
1. Query. OnparameterscandvinN, s € 7, and r € T, sends Query(r,s),, : T — T(ro,...,Ty—1) = S.
2. Sum. On parameters ¢ and v in N and e € 7;, sends Sum(e),, : T'+— > 5 T(v) = e.
3. Zero. On parameters ¢ and v in N, sends Zero, , : T+ A,z T(v) = 0.

4. Product. On parameters ¢ and v in N, the binary product predicate sends Product,, : (T,U) —
[Les, T(w) =1len, UW) A Nyep, (T(v) =0 <= U(v) = 0).

5. Multiset. On parameters ¢, v, and p in N, the 2 - y-ary multiset predicate sends Multiset(u),,, :
(To, .. Ty 1, Uoy s Uy 1) = {(To(0), s Ty 1 (0) [0 E By} = {(Us(v),-..,Up1(v)) | v € By},
where we understand both objects on the right-hand side as multisets (counted with multiplicity).

20

6. Permutation. On parameters ¢, v, and g in N, and a bijection o : {0,...,u0 — 1} x B, —
{0,...,u — 1} x B,, the p-ary permutation predicate sends Permutation(c),, : (To,...,Tu—1) —
Niiwyeqo,...u—11xs, T (v) = Ti(v), where we write (i',v") == o(i,v) for each (i,v) € {0,...,u—1} xB,.

7. Lookup. On parameters ¢ and v in N, sends Lookup, ,, : (T,U) = A,cp V' € B, : U(v) = T(v).

We note that each predicate Query(r, s), . can be evaluated directly by the verifier, on any handle [t], by
means of a single query to the polynomial oracle.

Our product predicate diverges from HyperPlonk’s [CBBZ23, § 3.3] in various respects. Their predi-
cate requires that the “denominator” U be everywhere-nonzero on the cube, as well as that the product
Il.c B, % equal a prescribed value. We simplify that predicate by specializing this prescribed value to 1;
on the other hand, we also more correctly handle the case of “division by zero” (their protocol actually fails
to assert that U is everywhere-nonvanishing on the cube). Though our product predicate indeed admits
a generalization which more closely follows [CBBZ23, § 3.3]—i.e., where the product [],c; 522% can be
arbitrary, and where we moreover correctly handle those denominators U which vanish—this generalization
is complicated, and we have opted not to present it. We discuss this matter further in Remark [1.18] below.
Finally, we present a permutation predicate slightly more sophisticated than HyperPlonk’s [CBBZ23| § 3.5];
specifically, ours supports permutations which act across multiple “columns”.

The following notational abstraction figures extensively in what follows.

Definition 4.6. A v-variate virtual polynomial over 7T, is a list of handles [to], ..., [t,—1], each representing
a polynomial defined over 7,, together with an arithmetic circuit, whose leaves are either indeterminates in
the list Xg,... X, _1 or else constants in 7,, and in which we permit not just the binary gates + and x, but
moreover, for each i € {0,...,u — 1}, the y;-ary gate ¢;(Xo, ..., X,,—1) (assuming that ¢, is v;-variate). We
write T' € 7,[Xq, ..., X,_1] for the polynomial represented by the circuit, and [T'] for the virtual polynomial.

We note that each virtual polynomial [T] may be evaluated at any input (zo,...,2,—1) € 7,”—albeit in
general, not efficiently—by any machine which can query the handles [to], ..., [t,—1]. We now treat efficient
protocols for virtual polynomials.

Definition 4.7. A virtual polynomial protocol for the p-ary polynomial predicate ®,, is an interactive
protocol ¥ = (P, V) which takes as common input a list ([To], ..., [T,—1]) of v-variate virtual polynomials.
The protocol ¥ is secure with respect to @, if, for each PPT adversary A, there is a negligible function
negl for which, for each A € N and each input list ([Tp], ..., [T,—1]), if the protocol is run on the security
parameter A, then we have Pr[(A(Ty,...,Tu—1), V([Tol,. .., [Tu-1])) = 1A P, (T, ..., Tu—1) = 0] < negl(X).

We note that, in the cases we treat below, a single negligible function negl suffices for all adversaries A,
though this state of affairs is not mandated by Definition [£.7]
We highlight, in particular, the special case of Definition in which ®, , takes the form Query(r,s), .

Definition 4.8. An evaluation protocol for the v-variate virtual polynomial [T] over 7, is a family of virtual
polynomial protocols, parameterized by r € 7. and s € T, for the predicates Query(r, s), ., on the input [77].

In practice, we often attach to each virtual polynomial T" an appropriate evaluation protocol, and refer
to the resulting bundle as an evaluable virtual polynomial.

Example 4.9 (Compositions). A certain particularly simple sort of virtual polynomial consists of a list
of v-variate handles [to], ..., [t,—1], together with a p-variate composition polynomial g € T,[Xo, ..., X,—1],
and represents the composition T := g(to(Xo,..., Xv-1),. .., tu—1(Xo,..., Xp—1)). We note that [T] admits
an efficient evaluation protocol, at least if g is succinct; indeed, to decide the predicate Query(r,s),,,, V may
directly query each of the handles at r, evaluate g itself on the results, and finally compare the result to s.

Example 4.10 (Piecewise multilinears). A further sort of virtual polynomial arises in the following way. For
integers ¢, v, and p in N, where p = 2% is a power of 2, say, and v-variate handles [to],. .., [t,—1] over T,, we

introduce a piecewise function 7' € 7]8”“’, defined so that, for each v € B, and u € By, T'(u || v) = ty,3(v)

holds (we recall the identification {u} = Z?:_()l 2t . ;). We finally identify T with its multilinear extension
T(Xoy--s Xvra-1) € T[Xo0s-- -, Xora—1]"!. We note that T defines a valid virtual polynomial in the

21

handles [to], ..., [t,—1]; moreover, T' is evaluable, provided p is small. Indeed, to decide Query(r, s), 11, say,
V may destructure (7o, ...,7y4a—1) =7, query the polynomials [to], ..., [t,—1] at (ra,...,"v4a—1), Obtaining

the results so, ..., s,—1, say, and finally output s Z ®f:_01(1—ri, ri)~(si)§:01 (here, ®?:_01(1—7"i, r;) i a tensor

product expansion in the sense of Subsection and can be computed in ©(u) time). The correctness of
this procedure is essentially [Tha22, Lem. 3.6]. We write [T] := merge([to],. .., [t,—1]) for this construction.

We finally note that virtual polynomials can be composed. Indeed, upon replacing some among the
handles [to],. .., [t,—1] of some virtual polynomial [T'| with further virtual polynomials, we may nonetheless
“unroll” the resulting object into a proper virtual polynomial [T”] in its own right. Finally, if [T] and all of
the sub-virtual polynomials are efficiently evaluable, then the composed virtual polynomial [7”] also is.

4.2 Prior Virtual Polynomial Protocols

By way of background, we briefly recall various well-known virtual protocols, for use below. We refer
primarily to Thaler [Tha22| and HyperPlonk |[CBBZ23| § 3].

Sumcheck. The sumcheck protocol is a virtual polynomial protocol for the predicate Sum(e),, : T +—
> ven, T(v) = e. Internally, on input an evaluable, v-variate virtual polynomial [T], sumcheck invokes
[T)’s implicit Query(r,s),, protocol, on parameters r € TV and s € T, derived during the course of the
sumcheck. The definition of the sumcheck protocol, as well as a proof that it securely evaluates Sum(e), , in
the sense of Definition appear in Thaler [Tha22, § 4.1]. The protocol’s soundness error is at most %,
where d is the maximum individual degree exhibited by any of T’s variables (plus the error inherent to [T]’s
evaluation protocol). We emphasize that the known, highly-efficient algorithms for the sumcheck protocol’s
prover require that [T] take the particular form given in Example (i.e., that [T] be a composition of
multilinears); we refer to [Tha22, Lem. 4.5] for a discussion of these algorithms.

Zerocheck. We recall the predicate Zero,, : T'— A,z T(v) = 0, as well as the zerocheck protocol of
HyperPlonk |[CBBZ23, § 3.2] (see also Spartan [Set20]).

PROTOCOL 4.11 (Zerocheck).
Parameters ¢, v, and 7 in N and a v-variate virtual polynomials [T] over 7, is fixed.

e V samples r < 7,7, and sends r to P.

e P and V run the sumcheck protocol, with statement 0, on the virtual polynomial [T"] :=
/e‘(-i(r()a s aru—laXOa s 7XV—1) . T(XOa cee 7Xu—1)~

We note first of all that [T”] is a valid virtual polynomial, which moreover admits its own evaluation protocol.
Indeed, to decide Query(r’,s"),,(T"), say, V may, after first locally evaluating a := eq(r,r’)—which takes

O(v) work—immediately return s’ 2 0in case a = 0, and otherwise proceed with the appropriate protocol
(i.e., that attached to [T]) deciding Query(r’, sE>W(T).

Theorem 4.12. Protocol securely decides the predicate Zero,, on T'.

Proof. Assuming that Zero, ,(T') = 0, we show that Sum(0),,(T") = 1 holds with negligible prob-
ability over V’s random coins. Our hypothesis implies precisely that 7’s MLE T = > ves, T'(v) -
eq(vo, .-, Uy—1,X0,...,Xp—1) is not identically zero. By the Schwartz—Zippel lemma, the probability,
over V’s choice of < T, that T(r) = 0 is thus at most %;. On the other hand, if T(r) # 0, then

7]
>ven, T(v) -eq(vo, ... vu—1,70,--.,7u—1) # 0, so that Sum(0), ,(T") = 0, as required. O
The soundness error of the zerocheck protocol thus ﬁ + %, where d, again, is the maximum

individual degree exhibited by any of T’s variables (plus, again, the error inherent to [T]’s implicit evaluation
(d+1)-v

arises from
[T+

protocol). The first of these two terms is a zerocheck-specific soundness error; the term

zerocheck’s internal use of the sumcheck on [1”].

22

Product check. We now record a protocol for the product predicate Product, , : (T, U) = [[,cz T(v) =
[Loes, U) A Nyep, (T(v) =0 <= U(v) = 0) above, roughly following Setty and Lee’s Quarks [SL20, § 5]
and HyperPlonk [CBBZ23, § 3.3].

PROTOCOL 4.13 (Product check).
Parameters ¢ and v in N, and v-variate virtual polynomials [T'] and [U] over 7,, are fixed.

e P defines the function f € 7,5~ as follows. For each v € B, P sets f(v) = 5%2% if U(v) # 0, and

f(v) =1 otherwise. P submits (submit,t,v + 1, f’) to the oracle, where f’ € 7,[Xo,..., X, |7 is
such that, for each v € B, 41, both f'(v] 0) = f(v) and f'(v | 1) = f/(0 || v)- /(1]| v) hold.

e Upon receiving (receipt,t, v+ 1,[f']) from the oracle, V submits (query, [f'],(0,1,...,1)) to the
?

oracle; V requires that the response (evaluation, f/(0,1,...,1)) satisfy f/(0,1,...,1) = 1.

e P and V define a v + 1-variate virtual polynomial [T”] as follows:

[T'] := merge([T], [f'](- || 1)) — merge([U], [f](0 || -)) - merge([f')(- [| 0), [f'I(L]| -))-

P and V run a zerocheck on the virtual polynomial [T”].

Above, the expression [f’](- || 0) denotes the v-variate virtual polynomial which one obtains from the v + 1-
variate handle [f'] upon fixing that function’s last argument to be 0; its variants are analogous.

We modify the protocol given in |[CBBZ23| § 3.3] in two distinct ways. On the one hand, our prover
constructs the auxiliary function f in such a way as to appropriately handle the vanishing of the “de-
nominator” U within the cube; we discuss this issue further in Remark [£.I8] Separately, we define
the virtual polynomial [T’] above—that is, the target of the zerocheck reduction—differently than does
[CBBZ23| § 3.3|, as we presently explain. The work [CBBZ23, § 3.3] sets (adapting their notation to ours)
[T'] == merge([T] — [U]- [f'1¢ |1 0), [F1C 11 1) = [f10 || -) - [f1(1 || -)). While this construction is correct—
and in fact agrees with our [T”] identically on B,41—it suffers from the defect whereby [T"] is not a com-
position of multilinears in the sense of Example [£.9] even if T and U are themselves multilinear, and so
fails to admit an (obvious) efficient sumcheck. Our construction remedies this issue, in that our [1”] is a
composition of multilinears, at least if 7" and U are themselves multilinear. We emphasize that our protocol
is correct and secure regardless of T' and U; on the other hand, the efficiency of its implementation may
require that T and U be multilinear (as they will be in our applications below).

Theorem 4.14. Protocol [{.13 securely decides the predicate Product, , on [T] and [U].

Proof. Assuming that V accepts and that Zero, , .1 (T") = 1, where T” is the virtual polynomial constructed
during Protocol we show that Product, ,(T,U) = 1 holds with probability 1. It follows directly from
the definition of merge that, under our hypothesis Zero, ,+1(7”) = 1 we have, for each v € B,, that both
Tw)=U@)- f'(v| 0)and f'(v | 1) = f/(0| v)-f(1] v) hold. This latter equality, in light of [SL20\
Lem 5.1], implies that [,c5 f'(v | 0) = f'(0,1,...,1), which itself equals 1 whenever } accepts. Taking the
product of the former equality over all v € B,,, we thus conclude immediately that [[5 T(v) = [[,cp, U(v).
Separately, from the relation [[,cz f'(v || 0) = 1, we conclude that, for each v € B,, f'(v || 0) is individually
nonzero, so that the guarantee T'(v) = U(v) - f'(v || 0) in particular implies T'(v) = 0 < U(v) = 0. O

The product check protocol—once fully unrolled—makes just one query each to [T] and [U]. Its soundness
error is thus that of the zerocheck protocol, when run on [T”], together with whatever error arises from [T
[U]’s respective implicit query protocols.

Remark 4.15. Were we to remove the conjunct A sz (T(v) =0 <= U(v) =0) from the predicate
Product,, above, Protocol .13 would cease to be complete. Indeed, upon initiating Protocol E.13] on
polynomials 7' and U for which, at the point v* € B, let’s say, U(v*) # 0 and T'(v*) = 0 both held—and
for which [[,c5, T(v) = [[,ep, U(v) moreover held, let’s say (so that U(v) = 0 for some v € B, \ {v*})—P
would find itself unable to generate a passing proof. Indeed, to pass, P would have to set f'(v* || 0) = 0;
this would necessitate, in turn, that [[,cz f'(v [0) = f'(0,1,...,1) = 0. Separately, assuming U(v*) = 0
and T'(v*) # 0, P would become unable to select f'(v* || 0) so as to cause T'(v*) = U(v*) - f/'(v* || 0) to hold.

23

Multiset check. We recall the 2 - py-ary multiset predicate Multiset(u), ., : (To, . .. v Tu-1,Uo, ..., U#,l) —
{(To(v), ..., Ty—1(v)) v e B,} = {(Up(v),...,Uu-1(v)) | v € B, }, where the equality is of multisets. Hyper-
Plonk |[CBBZ23, § 3.4] defines a protocol for Multiset(y), ,, in two steps, first by reducing Multiset(1), , to
Product, ., and then by reducing Multiset(), ., for £ > 1, to Multiset(1), ,. Though our treatment is similar
to HyperPlonk’s, we reproduce the details for self-containedness.

PROTOCOL 4.16 (1-dimensional multiset check |[CBBZ23| § 3.4]).
Parameters ¢, v and 7 in N, and v-variate virtual polynomials [Ty] and [Uy] over 7,, are fixed.

e V samples r < 7, and sends r to P.

e P and V run a product check on the virtual polynomials [T”] .= r — [Tp] and [U’] :=r — [Uy].

Theorem 4.17. Protocol [{.16] securely decides the predicate Multiset(1), ,, on [To] and [Uy).

Proof. We follow [CBBZ23, Thm. 3.4], with appropriate adaptations. Assuming Multiset(1), , (7o, Uy) = 0,
we argue that Product.,(T”,U’) = 1 holds with negligible probability over the verifier’s random coins.

Our hypothesis entails directly that the degree-2”, univariate polynomials f(Y) = [loen, (Y — To(v)) and
Uy) = [I,e5, (Y — Uo(v)), which we now view as elements of 7;[Y], are unequal. We see that the difference

-~

f(Y) — U(Y) is not identically zero, and moreover of degree at most 2¥; we write R C 7, for its roots. If
r & R, then [[,cp (r—To(v)) # [L,ep, (7 — Uo(v)), so that Product,, (1",U’) = 0 necessarily holds. O

Remark 4.18. We compare our treatment of the product and multiset predicates to HyperPlonk’s [CBBZ23,
§§ 3.3-3.4]. HyperPlonk’s product protocol [CBBZ23, § 3.3] purports to securely decide the predicate
(T,U) = Nyep, U) # 0N]1ep, 58; = e, where e € 7, is a statement. In words, HyperPlonk’s stated
predicate requires that the denominator U be nowhere-vanishing on the cube, as well as that the product,
over the cube, of the pointwise quotient between 7" and U equal e. In actuality, that protocol decides a
significantly-more-complicated predicate, as we presently explain. The predicate actually decided by that
protocol allows U to vanish on the cube, albeit with caveats. Indeed, it requires in this case merely that
the numerator T" also vanish wherever U does, and moreover stipulates that, if U vanishes anywhere on the
cube, then T and U fulfill a weaker variant of the product relationship whereby, if e # 0, then T is nonzero
wherever U is. In simple terms, by setting 7" and U both equal to 0 at v* € B,,, say, the prover may cause
the verifier to accept for arbitrary e (provided, again, that T is nonzero wherever U is, a circumstance which
the prover can easily arrange). This breaks the security guarantees of [CBBZ23, § 3.3] as stated. We note
that, in this situation, our relation [[,.5 T(v) = [[,ep, U(v) does hold, while HyperPlonk’s does not; the
issue is an illegal “division by 0”. In fact, our relation Product, , above is precisely the specialization of the
“complicated” relation just described to the case e := 1 (where significant simplifications emerge). We note
that the £ = 1 multiset check of Protocol above—which is identical to [CBBZ23, § 3.4]—is nonetheless
still secure, and with a simpler proof of security no less. Indeed, if HyperPlonk’s product protocol actually
decided the stated relation of [CBBZ23| § 3.3], then its multiset protocol would fail to be perfectly complete.

We now present the protocol for 2 - py-ary multiset check; our treatment of this protocol is identical to
HyperPlonk’s [CBBZ23| § 3.4].

PROTOCOL 4.19 (u-dimensional multiset check [CBBZ23| § 3.4]).
Parameters ¢, v, and 7 in N, as well as v-variate virtual polynomials [To], ..., [T,—1] and [Uo],. .., [Uu—1]
over T,, where pu > 1, are fixed.

e V samples random scalars rq,...,r,_; from 77, and sends them to P.

e P and V run a l-dimensional multiset check on the virtual polynomials [T'] := [Tp] + 71 - [Th] +
ot D] and [U] = [Uo] + 71 - [Uh] + - + 71 - [Upa].

Theorem 4.20. Protocol|4.19 securely decides the predicate Multiset(i), , on ([Ti])fz_ol and ([Ui])fz_ol.

24

Proof. Assuming that Multiset(p),,, (To, . .., Tpu—1,Uo, ..., Uu—1) = 0, we show that Multiset(1), ,(T",U’) = 1
holds with negligible probability over V’s random coins. We follow the proof strategy of [CBBZ23, Thm. 3.5].
We write T == {(To(v), ..., Ty—1(v)) |v € B,} and U = {(Up(v),...,U,—1(v)) | v € B,} for the multisets
at hand, as well as T =T \ U and U=1U \ T, where we understand all set-differences as multi-
set operations. Since T' and U are equally sized as multisets, T and U necessarily also are; moreover,

our hypothesis entails precisely that T and U are nonempty. We fix an element t* € T. We write

R = {(1,r,...,7u-1) ’ (ri,...,ru—1) € TF~'}; moreover, for each r € R, we write ¢, : TH — T;
for the map ¢, : (ao,...,au,l) = ay+ 71 -a1+ -+ 741 -a,—1. Finally, for each v € U, we set
R, = {r € R| pr(t%) L Lpr(u)}. If the verifier’s challenge r ¢ |J, 5 Ru, then Multiset(1),,(7",U’) = 0

certainly holds; indeed, in this case, the count of the element ¢,.(¢*) in the multiset {¢,(¢) | t € T'} necessarily
exceeds by at least 1 the count of this element in {¢,(u) | u € U}, so that {¢,(t) |t € T} # {or(u) |u € U}.
On the other hand, each R,, is precisely the intersection in 7* between the affine hyperplane R and the nor-
mal hyperplane {r € T# |r - (t* —u) = 0} (which is necessarily non-degenerate, by our choice of t*). Each
R, is thus a proper affine subspace of R, and so covers a proportion consisting of at most ﬁ of R’s points.

The union (J, .5 Ry thus covers at most U - |71? P < % among R’s points (where |U| here is a multiset
cardinality). This completes the proof. O
Permutation check. We finally describe a protocol for the predicate Permutation(o), , : (To,...,Tu—1) —

Niiweqo,...u—11xs, Lir(v') = T;(v) above; here, as before, we fix a bijection o : {0,...,p — 1} x B, —
{0,...,p—1}xB,. Though we follow HyperPlonk [CBBZ23| § 3.5], our protocol decides a more sophisticated
variant of that work’s predicate, which, in particular, allows multiple inputs, as well as permutations which
act across these inputs.

Our protocol takes as common input a list [Tp], ..., [T,—1] of virtual polynomials. It also—unlike the
protocols already given above—makes use of the indexer; specifically, the protocol takes as common input
further handles [siq] and [sy], which jointly capture the permutation o : {0,...,u — 1} x B, = {0,...,u —
1} x B,. We argue first that we may freely assume that p = 2% is a power of 2; indeed, we may always
extend o by the identity map, as well as pad the list [Ty], ..., [T,,—1] with further virtual polynomials (set to
be identically zero, say). Clearly, the padded predicate holds if and only if the unpadded one does.

We fix an arbitrary injection s : {0,...,u — 1} x B, < T, (we assume without further comment that
7 is sufficiently large). For each i € {0,...,u — 1}, we define mappings id; : B, — 7T, and 0; : B, — T,
by setting id; : v — s(i,v) and o; : v = s(o(i,v)). We finally write siq = merge(ido,...,id,—1) and
5, = merge(oy,...,0,—1), following Example We stipulate that the indexer output [sig] and [s,]
directly as v + a-variate handles (though this latter measure is not necessary, it improves efficiency).

PROTOCOL 4.21 (Permutation check [CBBZ23| § 3.4]).
Parameters ¢, v, and 7 in N, a bijection ¢ : {0,...,u — 1} x B, — {0,...,u — 1} x B,, v-variate
polynomials [Tp], ..., [T,—1], and finally the further handles [siq] and [s,]| constructed above, are fixed.

e P and V construct the virtual polynomial [T] := merge(Tp,...,T,—1).

e P and V run a 4-ary multiset check on the v + a-variate pairs ([sig], [T]) and ([s5], [T])-

Theorem 4.22. Protocol securely decides the predicate Permutation(o), ., on [To], ..., [Tu—1].

Proof. Assuming that Multiset(2), . (sia,T, ss,T) = 1, we show that Permutation(o), ., (To,...,Tu—1) = 1
holds with probability 1. We write Tiq == {(sia(u), T(w)) | u € Byia} and Ty == {(so(u), T(w)) | u € Byya}
(both viewed as multisubsets of 7.2). We let (i,v) € {0,...,u — 1} x B, be arbitrary, and write (i’,v’) :=
o(i,v). We note that the multisets fid and fg each admit precisely one element whose 0*" component equals
s(i',v"); indeed, these elements are exactly (s(i',v"), T (v")) and (s(i’,v"), T;(v)), respectively, by construction
of siq, S5, and T. By the assumed equality of fid and f, of multisets, we conclude that Tj (v') = T;(v). O

25

4.3 New Virtual Polynomials

We now introduce a handful of new virtual polynomial constructions. Each of these constructions—on input
a handle, or even a further virtual polynomial—materializes a virtual polynomial, which relates to its input
in a specified way.

Packed virtual polynomials. We fix integers ¢, x, 7, and v in N. We recall from Subsection the
multilinear 7,-basis (ﬁU)UEBR of T, 1. We finally fix a vector f € T,5v.

We define the packing operator pack,, : 7,57 — ’7: "~* in the following way:

whm:<2ﬂﬂwﬂ0
ueB

vEB,

vV—K

Intuitively, pack,, iteratively processes “chunks” consisting of 2" lexicographically adjacent 7,-elements; it
assembles the constituents of each such chunk into a single 7,4 .-element.

We now record a virtual polynomial materialization of pack, (f). For f € TBv again as above, we write
fe T.[Xo, ..., X,_1]=! for the MLE of f; we moreover write ;;\J(H(f) € Toww[Xos -+, Xy_r1)=t for the
MLE of pack,(f). We finally note the following explicit expression for I;\C/kn (f):

PaCkK(f)(X07~~~ vV—K— 1 Z fU07~'~7UH717X07'~ V—K— 1) ﬁvv
vEB,
where we destructure (vg,...,v4—1) = v for each v € B,;. Indeed, for each (ug,...,Up—x—1) = u € By_4,
pack, (f)(uo, ..., up—x—1) = pack, (f)(u) necessarily holds; moreover, the polynomial above is multilinear.

When f is given as a handle [f], the expression Ez_;ci: (f) above defines a v — k-variate virtual polynomial,
in the sense of Definition [£.6] In fact, this virtual polynomial moreover admits an evaluation protocol, as
we now argue. We fix a query Query(r 8)v—k,+x- We note that the evaluation pack (N =2 ves, Bo-

f(vg, ey V15T« - s Th_ 1) 18 itself the sum, over the cube By, of the s-variate polynomial:

I;A\J{n(f7 T/)(}/b7 R Ym—l) = fN(Yf)) s ;Yﬁ—hrév s DTZ/—H—]_) : 5(YO7 s 7YK—1)7

where we write E € T.in[Xos- -, X 1)t for the MLE of (Bu)uGBK,' It thus suffices for the verifier to decide
Sum(s’),—x,r o0 ;;;cf{ﬁ (f,7"). Using the sumcheck protocol, the verifier may in turn reduce this predicate to
Query(r, 8)y—g,r, say, on }Te?cf{ﬁ(f, 1"). To decide this latter predicate, V may simply check 3(r)- f(r || /) <.
We assume that x is sufficiently small that V may evaluate B (r) itself; on the other hand, V may ascertain
f(r ||) by means of one query to [f].

Shifted virtual polynomials. We again write 7, C 7, for an arbitrary tower subfield, and fix an integer
v € N. We recall the identification introduced in Section [2| which, for each k € {0,...,v}, maps v € By, to
{v} =25 2 v,

For each block size parameter b € {0,...,v} and each shift offset o € By, the shift operator, on input
fe 723", partitions f’s index set B, into b-dimensional subcubes, and then circularly rotates each resulting
sub-array by o steps (where we, implicitly, flatten each sub-array lexicographically). We make this precise
in the following way. For b € {0,...,v} and o € By, and above, we define the shift mapping sp, : B, — B,
by declaring, for each input v = (vg,...,v,—1) € By, that sp,(v) == u, where u = (ug,...,u,—1) is such
that the most-significant substrings (up,...,u,_1) and (vy...,v,_1) agree, and {u} + {o} = {v} (mod 2°)
moreover holds. We define the shift operator shifty, : 7,5 — 7,5» by mapping each f € 7,5~ to the vector
shiftyo(f) = (f(sb,0(v))),ep, - We note that, provided that we write down the mappings f and shift ,(f)

as flattened vectors—that is, using the lexicographic identification v — Z;:()l v;-2%—we find that shifty ,(f)
has precisely the effect of circularly rotating each contiguous 2°-sized block of f downward by {o} steps. We
sometimes abuse notation, below, by writing shift, (f) and shift, () (f) interchangeably.

26

We initiate an arithmetic characterization of the shift operator, which expresses each shifted vector
shift, ,(f) as a virtual polynomial on its input f. In fact, our construction moreover admits a linear-
time—that is, a ©(b)-time—evaluation algorithm, as we explain below. Our approach is inspired by, and
generalizes, the “adding 1 in binary” multilinear indicator of Setty, Thaler, and Wahby [STW23a, Sec. 5.1].

We first define the length-b, o-step shift indicator function s-indy,, : By x By — {0,1}, in the following
way:

0 otherwise.

5=indy (2, 1) 1> {1 if {y} = {e} + {0} (mod 2")

For b and (oo, ...,0p—1) = 0 € By, again fixed, we realize the shift indicator function s-indy , inductively,
by means of a sequence of functions s-indy, , and s-indy, ,, each mapping By, x By, — {0, 1}, for k € {0, ..., b}.
That is, for each k € {0,.. b} on argumentb z and y in By, we define the function s-ind; ,(v,y) so as
to detect the condition {y} = {z} + {0}, and define s-ind} ,(z,y) so as to detect the condition {y} =
{x} +{o} — 2%, where, in both expressions, we interpret o0 = (0, . ..,0r_1) as an element of B, by truncating
its bits. In words, s-ind}, , detects the condition whereby the k-bit strings x and y differ exactly by the binary
addition of o’s least- significant k bits, and without overflow no less; s-ind}, , detects the analogous condition,

modulo an overflow into the k*'-indexed bit position. We finally note that s-indy, = s~ 1ndb V s-ind}
We now supply an inductive—and arithmetically friendly—description of the functions s-ind), nd
s-ind} _, for k € {0,...,b}. For typographical convenience, we give meaning to expressions of the form
s 1ndk7170(33 y) and s- 1nd%71’o(x,y), for arguments = and y in By—i.e., rather than in the domain of
definition By_1—by stipulating that the functions simply ignore their arguments’ respective most-significant

(that is, k— 1-indexed) bits. Finally, below, we understand the expression xj_1 - 0k_1+Yyr_1 and its variants
over the integers (i.e., as integer expressions over the arguments x;_1, yx—1, and ox_1 in {0,1} C Z).

case k = 0.
_ingl —
s-indy, =

case k > 0.

. 2
s-ind} ,(z,y) if zp-1 +0k—1 = Yr1
s-ind}, ,(z,y) = { s-ind}_ 1o(@y) g1 +or—1+1=yk

0 otherwise.

. ?
s-indj_y ,(z,y) if Tp—1 +0p—1 =yp-1+2
?
s-ind} ,(z,y) = { s-ind}_ 1o@y) ifap1+top—1+1=yr1+2

0 otherwise.

The correctness of this inductive description may be explicitly checked. We note that certain among the

case-expressions above can only hold in particular settings; for example, xp_1 + 0 _1 . yYr—1 + 2 holds if and
only if zx_1 and og_1 both equal 1 and y;_1 is 0. Finally, we note that s-ind;.(x,y) = s—indg,o(x,y) +
s-indj ,(z,y) holds for each (x,y) € By x By.

Explomng the inductive description just given, we now arithmetically characterize the MLEs in

T.[Xo, .-+, Xk-1,Y0,. .., Yi1]=! of the shift-indicator functions s-indj , and s-ind} ,
case k = 0.

s-ind; , = 1.
"
s-ind, , = 0.

case k > 0. , .
—~ ey ey ?
el (X,Y) = {eq(Xkl,Ykl) sindy (X, V) + (1= Xe1) Yior - 5700y 1,(X,Y) ok -0,
(1 — Xk—l) -Yi_1- S_indk—l,o(va) op_1 = 1.

27

— ?

— Xp—1-(1=Yr_1) -s-ind XY op—1 = 0.

S-indk’o(X, Y) = { k=t (k 1) /—T_/lcil’O() N — 1 ol 2
Xp_1- (1 — kal) . S-lndkfl,o(Xv Y) + eq(kal,kal) . S-lndkfl,o(Xay) Op—1 =

Above, we denote by eq : B — {0,1} the boolean equality function (Xj_ 1,Yk 1) = Xk_1 - Yi_1, and

—_—— "
by eq its 7,-multilinear extension. We again stipulate that the functions s-ind;_; , and s-ind;_, ,, upon

being fed k-variate arguments, simply ignore these arguments’ respective last variables.

—— —_—

Finally, we define s-ind, , = s-ind, , + s-ind; .

Theorem 4.23. The polynomial s/—?'r;ibvo € T.[Xo,. .., Xp—1,Y0,...,Yp_1] just given is the MLE of s-indp ,.

Proof. The function s/—T_/lndbp’s pointwise agreement with s-indy , over By X By is self-evident. Its multilin-
—/ ——

earity holds by induction; indeed, for each k € {1,...,b}, we note that both s- 1ndk o and s-ind, , are sums
—~/ //

of products between some multilinear function of Xj;_; and Yj,_; and either s- 1nd,C 1,0 Or s=ind;_, ,, func-

tions which themselves are—by induction—multilinear in the variables (Xo, ..., Xx_2,Y0,..., Y 2) Each
such product expression is necessarily multilinear in the variables (Xo, ..., Xx_1,Y0,. .. ,Yk—1)~ O

We finally note that the polynomial s/—IEibp admits a ©(b)-sized, layered arithmetic circuit; this circuit’s
description arises straightforwardly from the function’s inductive characterization just given above.

We return to the shift operator shifty, : TBv — TBr already introduced. Leveraging the arithmetized
shift-indicator functions just treated, we now present an arithmetical description of shift;,. Indeed, for
each f € 7,5~ and each v € B,, we have the equality:

shift, o(f)(v) = Z fluo, - Up—1,Vp, ..., Uy—1) - s=indp o (U, - - -, Up—1,V0, - - - , Vb—1)-
u€By

—_~—

Finally, we write shift,o(f) € 7.[Xo,...,X,_1)=! for the MLE of shift,,(f). We note the explicit
expression:

Shiftb’o(f)(Xo, ey Xufl) = Z f('LLO, e, Up—1, Xp, ... 7)(1,71) . s—indbyo(uo, ce, Up—1, Xo, ... ,bel).
u€eBy

Indeed, the polynomial above is clearly multilinear, and agrees pointwise with shift, ,(f) over B,.
When [f] is a handle, the expression shift, ,(f) defines a virtual polynomial, which we again claim is

efficiently evaluable. We fix a query Query(r’, s’), ... We note that the evaluation s/h_:'\LFcbm(f)(r') is stself the
sum, over the cube By, of the b-variate polynomial:

shifty o(f,7")(Yos- oo Yoo1) = F(Yor- oy Y1, 7oy _q) - 5=i0dp o (Yo, ooy Yor1, 7y oy 1)

It thus suffices for V to decide Sum(s’),; on 5135:,,70(10, r’); using a sumcheck, V may in turn reduce this
predicate to Query(r, s),, on shift, o(f, '), for values r € TTb and s € T, derived during the sumcheck. As
before, V may decide this latter predicate itself, by locally evaluating s-indy o(70, ..., 7p—1,70;---,_,) and
querying f(ro,...,Tp—1,7p, .-, Th_1)-

We will occasionally find reason to insist on the nonexistence or the existence of an overflow. In these
cases, respectively, we may simply replace the shift-indicator function s-ind,, with its simpler analogues
s- 1nd’ , and s—ind} _, in the expression for shift; , above. We write Shlftb , and shlft ,, for the resulting
overflow -free and overflow mandated shift operators.

Example 4.24. We set ¢ :== 0 and b := 5, and fix ¥ > 5 and 0 := (0g,...,04) € Bs arbitrarily. For each
vector f € TB”—Which we view as a length-2¥ column of bits, by means of the lexicographic flattening
v = Zlfl 2% . v;—the operator shifty ,(f) breaks f into 32-elements chunks, and then circularly rotates
each chunk downwards by {o} steps (or equivalently, upward by 32 — {o} Steps) On the other hand, the
overflow-free shift operator shlftbp(f) rotates each chunk downwards by {0} steps, without rotation; that
is, it O-fills the first {o} components of each chunk. Finally, the operator shift; (f) acts by upwardly
shifting f by 32 — {0} steps, O-filling the bottom 32 — {0} elements of each chunk.

28

Remark 4.25. Our shift construction answers in the affirmative an open problem posed by HyperPlonk
ICBBZ23| p. 52]. Indeed, the construction |[CBBZ23| Lem. 3.13] (that is, Lemma 3.9 of the full version)
yields a virtual polynomial which does something like a one-step circular shift; specifically, that construction’s
permutation leaves the origin fixed, and rotates the rest of the vector in some—mnot lexicographic—order
(determined by the action of a multiplicative generator). Though that construction can be iterated, the
complexity of the iterated virtual polynomial grows exponentially in the number of iterations (i.e., the
number of rotation steps). Our shift construction, on the other hand, performs a true circular rotation—that
is, without a degenerate orbit at the origin—and moreover operates in lexicographic order. Interestingly, our
shift construction’s complexity is moreover completely independent of the rotation offset. Rather, our virtual
polynomial grows linearly in the block size; critically, however, it admits an evaluation protocol—which itself
leverages the sumcheck—whose complexity grows only logarithmically in the block size.

The saturation operator. We record a final, and very simple, virtual polynomial construction, which we
use in our multiplication gadget below (see Subsection . For v > 0 fixed, and given block size and offset
parameters b € {0,...,v} and o € By as above, the saturation operator, on input f € 7,5, partitions f’s
index set B, into b-dimensional subcubes, and “saturates” each resulting block with a single value (i.e., that
which f takes at the block’s o' position). More precisely, we define the saturation mapping 1, : B, — B,

by setting rp o(vo, ..., vv—1) = (00, -, 0b—1, Vb, - .., Vy_1), for each v = (vo, ..., v,_1) € B,; finally, we define
the saturation operator saty,, : T,P» — T,5* by setting saty o(f) == (f(r5,0(v))) e, -
We record a virtual polynomial realization of the saturation operator. Indeed, for b € {0,...,v} and

0 € By as above, and for each f € T,%» and v € B,, we have that:

Satb70(f)(v) = f(007 «e 3, 0p—1,Vp,y ... 7/Ul/71);

writing gavtb’o(f) € T.[Xo, ..., X,_1]7! for the MLE of sat ,(f), we conclude that:

gg-Eb,o(f)()(()v ce 7XI/—1) = f(007 s 70b—1;Xb7 ce 7XI/—1)'

The polynomial above is clearly multilinear, and agrees pointwise with saty o(f) over B,.
When f is a virtual polynomial, sat; .(f) clearly also is, and can be evaluated as efficiently as f can.

4.4 Binary-Field Lasso

In this subsection, we discuss the work Lasso of Setty, Thaler and Wahby [STW23b| and adapt that work
to our binary tower setting.

We develop a distilled, conceptually minimal approach to Lasso, by teasing apart its various components.
Indeed, we contend that Lasso ultimately amounts to a combination of the following components:

e A virtual polynomial abstraction, which materializes large tables. Indeed, Lasso’s “SOS
tables” |STW23b| § 3.2] can be viewed as composition virtual polynomials in the sense of Example
above, which, operating over subtables, virtually materialize large tables.

e A small-table lookup procedure. Lasso’s core contribution is, arguably, its single-table lookup
procedure [STW23al, Claim. 3], a virtual polynomial protocol which—using offline memory-checking
in the sense of Blum, Evans, Gemmell, Kannan, and Naor |[Blu+91]—proves that the values taken over
the cube by one virtual polynomial represent a subset of the values taken over the cube by another
virtual polynomial. More precisely, Lasso’s lookup procedure reduces precisely this predicate to a
multiset predicate on certain further virtual polynomials.

e A multiset-check. Finally, Lasso employs a virtual protocol which securely decides the multiset
predicate [STW23a, Claim. 4], in the sense already developed in Subsections and above.

Leveraging our abstractions, already developed above, for virtual polynomials and multisets, we thus

record a minimal rendition of Lasso, which, in particular, isolates its memory-checking component. Im-
portantly, we excise the table-virtualization process from the jurisdiction of the lookup itself, and subsume

29

it into the constraint-satisfaction apparatus already furnished by the higher-level SNARK (see Section
below). This separation of concerns yields a conceptually simpler framework.

Separately, we adapt Lasso to the setting of binary fields. We note first of all that the key technical result
[STW23a), Claim. 2] assumes that the field at hand is prime, with large characteristic (i.e., larger than the
length of the looked-up column). Moreover, this restriction is essential, in the sense that [STW23a, Fig. 3] as
written is actually insecure in the small-characteristic setting. We adapt that work by introducing a multi-
plicative version of it; that is, we stipulate that the prover and verifier jointly increment the protocol’s various
“memory counts” not by adding 1 to them, but rather by multiplying them by a multiplicative generator
of an appropriate binary field. Our multiplicative adaptation, however, introduces further complications.
Indeed, unlike the incrementation operation, the multiply-by-generator operation on a field induces an action
which is not transitive, but rather features a singleton orbit (at 0, of course). Since this fact too can be used
to attack the protocol, we must further require that the prover submit an everywhere-nonzero vector of read
counts. We achieve this guarantee in our treatment below, at the cost of requiring that the prover commit
to an additional polynomial (we discuss our remedy further in Remark below).

We now record our protocol for the lookup predicate Lookup, , : (T,U) = A cp, F' € B, : U(v) =T(v').

PROTOCOL 4.26 (Lasso-based lookup [STW23a]).
Parameters ¢ and v in N, and v-variate virtual polynomials [T] and [U] over T, are fixed.

e P and V set (> 0 minimally so that |T;| —1 > 2" holds (equivalently, they set ¢ := [log(v + 1)]);
P and V moreover fix a generator o € 7. of 7¢’s multiplicative group of units 7.

and then executes:

o P defines arrays R and F' in 728 v as follows. P initializes F' := (1),cp ,

1: for each v € B,, in any order, do

2: pick an arbitrary v’ € B, for which U(v) = T'(v") holds.
3: assign R[v] := F[v'].

4: overwrite F[v'] Xx= a.

P sets R/ == (%) 5 to be the pointwise reciprocal of the vector R. P submits the multilinear
veb,

extensions (submit,C,V7 E), (submi‘g(,u7 ﬁ), and (submit,Cﬂ/, ﬁ) to the oracle.

e P and V run a zerocheck on the v-variate virtual polynomial R - R’ — 1 over 7¢.

e P and V define further v-variate virtual polynomials as follows. They set O : (Xo,...,X,-1) — 1
to be the identically-1 polynomial, and set W := «- R. P and V finally run a 4-ary multiset check
on the v + 1-variate pairs (merge(7,U),merge(O,W)) and (merge(T,U),merge(F, R)).

Above, our F' corresponds to Lasso’s array of “final counts”, R correspond to its array of inline read counts,
and W corresponds to its array of inline write counts. We refer to [STW23a, Claim 3|. Protocol S
completeness amounts to a more-or-less straightforward, albeit slightly subtle exercise, and essentially follows
from [STW23a), Claim 2]. We suggest the following inductive proof. Indeed, assuming that R is initialized

to the all-zero array (0),. 5, we argue that the the equality

{(T(),1) [veB,}U{(U(v),a- R(v)) |v € By} = {(T(v), F(v)) |v e B, } U{(U(v), R(v)) |v € B} (1)

of multisets is an algorithmic invariant of the main loop above (that is, it holds as of the beginning of each
iteration). The base case is clear (both multisets at hand equal {(T'(v),1) |v € B,} U{(U(v),0) |v € B,}).
We fix an iteration index v € B, of the above loop. The assignment [3| entails removing (U(v),0) from both
multisets, as well as adding (U(v), « - F[v']) to the left multiset and (U (v), F[v']) to the right. On the other
hand, the update [4] entails removing (T'(v'), F[v']) from the right multiset and adding (T'(v'), - F[v']) to
the right multiset. Since T'(v') = U(v), these changes balance; assuming that the equality held at the loop’s
beginning, we conclude that it likewise holds as of the loop’s end. This completes the proof of completeness.

30

Theorem 4.27. Protocol[[.20 securely decides the lookup predicate on T and U.

Proof. We adapt Setty, Thaler, and Wahby [STW23a, Claim 3] to the multiplicative setting. Assuming that
Zero¢ ,(R- R —1) =1 and Multiset(4), 11 (merge(T,U),merge(O, W),merge(T,U),merge(F, R)) = 1 both
hold, we show that Lookup, ,(T,U) = 1 holds with probability 1. Our assumption Zero¢ ,(R- R —1) =1
immediately implies that, for each v € B,, R(v) - R'(v) = 1, so that R(v) # 0. Our second assumption is
precisely the equality of multisets. From it, we conclude a fortior: that

{(U(), R(v)) [veB,} C{(T(v),1)|veB,;U{(U(v),a-R(v))|veB,} (2)

as multisets. We suppose, for contradiction, that vy € B,, say, were such that, for each v’ € B,,, U(vg) # T(v")
held. Our hypothesis on vy implies that (U(vg), R(vo)) € {(T(v),1) | v € B, }; we thus conclude from (2)) that
(U(vo), R(vg)) € {(U(v), - R(v)) | v € By}, so that vy € B,, say, is such that (U(vg), R(vo)) = (U(v1), -
R(v1)). Since U(v1) = U(v2), applying again to the pair (U(v1), R(v1)), we find as before an element
vy € B,, say, for which (U(vy1), R(v1)) = (U(v2), - R(v2)). Proceeding in this way, we obtain a sequence of
elements v; € B, for i € {0,...,2"}, for which, for each i € {0,...,2¥ — 1}, we have R(v;y1) - & = R(v;).
Since |B,| = 2¥, by the pidgeonhole principle, we must have a collision v; = v;, for unequal indices i < j,
say, in {0,...,2"}. We conclude that R(v;) = o/~ R(v;) = a?~% - R(v;); using our guarantee whereby
R(v;) # 0, we finally conclude that a/~% = 1. Since j —i € {1,...,2"}, and a’s multiplicative order is
exactly |T¢| — 1> 2", we obtain a contradiction. We conclude that Lookup, ,(T,U) = 1, as desired. O

Remark 4.28. The naive multiplicative adaptation of Spark [STW23aj, Fig. 3] would neglect to include the
pointwise reciprocal R’ in Protocol above. We argue that this reciprocal is necessary by exhibiting an
attack on this simpler variant of Protocol (i.e., that which omits R’). (In other words, the everywhere-
nonvanishing of R—used in our proof of Theorem above—is essential.) Indeed, to attack that protocol,
P may, on an arbitrarily chosen statement U, simply set R identically zero and F' identically 1. Having
begun in this way, and otherwise proceeding honestly (i.e., in the multiset check), P will convince the verifier.
Indeed, we see directly that, in this setting, W will likewise be identically zero, and that the equality of
multisets will hold. This attack’s root cause is that the element 0 € 7 constitutes a degenerate orbit—of size
1—under the multiplicative a-action on 7¢. The pairs (U(v),0) and (U(v), e - 0) thus balance the right and
left multisets, respectively, regardless of U(v) (i.e., regardless of whether it equals T'(v') for some v’ € B,).

5 A SNARK over Binary Tower Fields

We now present a practical SNARK, suitable for general statements over binary tower fields. Its arithme-
tization scheme—that is, the method by which it algebraically captures general computations—refines the
PLONKish scheme of Grigg, Bowe, Hopwood and Lai [GBHL22], and in particular its adaptation, due to
Chen, Biinz, Boneh and Zhang’s HyperPlonk |[CBBZ23| Def. 4.1], to the multivariate setting. The PLONKish
arithmetization arranges its witness data into a computational trace, called a trace matriz, of field elements.
The scheme moreover makes use of a plurality of gate constraints; these are multivariate polynomials, to be
evaluated over certain subsets of the trace matrix.

Our treatment differs from HyperPlonk’s primarily in that we do not confine ourselves to a single finite
field. Rather, we partition our trace matrix’s column set into regions, each in turn corresponding to different
subfields in the tower. For example, our trace matrix might feature certain columns defined over Fo, others
over Fys, and still others over Fos2, say. Our gate constraints, moreover, may express polynomial relations
defined over particular subfields of the tower. In fact, even a single gate constraint may freely act on
columns which themselves belong to unequally sized subfields; indeed, each among the tower’s subfields
embeds unambiguously into each of its larger fields.

We pause to emphasize the utility of the virtual polynomial abstraction constructions in our SNARK.
Indeed, the “virtual polynomial-centric” approach we pursue serves to vastly reduce the number of trace
columns which the prover must explicitly commit to. That is, instead of requiring that the prover commit
to certain auxiliary columns, and only then ensuring that they relate as prescribed to the trace columns,
the verifier may instead directly materialize the needed auxiliary columns virtually. The verifier may then,
finally, check that the relevant polynomial relations—each defined over a collection consisting of both explicit
and virtual columns—hold.

31

5.1 The PLONK relation

We define the indexed relation RpLonk on tuples of the form (i,x; w), where the index i captures the public
parameters of the constraint system, the statement x represents the circuit’s public inputs, and the witness
w includes further inputs to the circuit.

The index is defined to be a tuple of the form 1 = (7,7, &, ny,, ny, ¢, a, g,0), where:

e 7 € N is the height of the maximally-indexed tower step 7. in use,

e v € N is the base-2 logarithm of the number of trace rows (we require v < 27),

¢ €{0,...,v} is the base-2 logarithm of the statement length,

n, € N is the number of fized columns,

e ny € N is the number of witness columns,

¢:{0,...,ny—1} = {0,..., 7} is a mapping, which assigns to each witness column a tower field index,
e a€ (’TTB")% is the array of fized columns,
® (go,-..,9u—1) is a list of v-variate virtual polynomials, each of which operates over n, + n, handles,

e 0:{0,...,np +ny} x B, = {0,...,n, +ny} x B, defines a plurality of global copy constraints.

The statement is x '= x € TTBé, a vector of input values. The witness is w := w € (TTB”)W, an array of
witness columns.

We record several remarks. We assume throughout that 7 is sufficiently large that an injection s :
{0,...,ny + ny} X B, — T, exists. Above, we slightly abuse notation by calling the objects (go, ..., gu—1)
“virtual polynomials”; more properly, these are circuits which operates over “placeholder” handles (i.e.,
handles which don’t exist yet). Once the relevant handles become available—i.e., after the indexer and prover
commit to the fixed and witness columns, respectively—the verifier may, by “plugging in” the appropriate
handles, create from each of these circuits a genuine virtual polynomial. On the other hand, upon being fed
real polynomials (as opposed to handles), these virtual polynomials of course become standard polynomials.

For convenience, we write pad, () € T~ for the zero-extension of the vector = € T2 to the domain B,;

we moreover write ¢ € (TTB”)n“’JrW for the concatenation of columns ¢ := a || w || pad,(r). The indexed
relation RpLonk holds, by definition, if and only if:

1. For each i € {0,...,u — 1}, the polynomial g; (co, e ,canrnw,l) is identically zero over B,,.
2. For each (i,v) € {0,...,n, +ny}t X By, it holds that ¢;(v) = ¢/ (v'), where we write (i',v) := o (i, v).
3. For each (i,v) € {0,...,ny — 1} x B,, it holds that w;(v) € T,y C T-.

These three conditions capture, respectively, the witness’s satisfaction of all gate constraints, its satis-
faction of all global copy constraints, and finally its satisfaction of all subfield constraints. The first two
conditions are standard across PLONKish variants (see e.g. [CBBZ23| Def. 4.1]); the third condition is new,
and pertains specifically to our tower setting. We note that we do not isolate so-called selector columns, as
prior formalizations do (see e.g. [CBBZ23| Sec. 4.1] and [STW23a, Sec. 2.2]); instead, we subsume these into
our fixed columns a.

5.2 Our Protocol

We now present a tower field multilinear polynomial IOP for the indexed relation RpLonk- On the input i,
the indexer Z, for each i € {0,...,n,—1}, submits (submit, 7, v, a;) to the oracle, where @; is the MLE of the
fixed column a; € TBv, and receives (receipt, T, v, [a;]). Moreover, Z performs the permutation check’s setup
procedure—already described in detail in advance of Protocol above—with respect to the permutation
o:40,...,n, +ny} x B, = {0,...,n, + ny} x By; in this way, Z obtains further handles [siq] and [s,].
Finally, Z outputs the list of handles vp := ([ac), .. ., [an,—1], [sia], [S5])-

32

PROTOCOL 5.1 (main polynomial IOP for Rpionk)-
On the security parameter A\, and common input 1 and x, P and V proceed as follows.

e Both P and V compute the zero-extension pad,(c,), as well as its MLE pad,,(c,).

e For each i € {0,...,ny — 1}, P sends (submit, ¢(3), v, w;) to the polynomial oracle.

e Foreachi € {0,...,ny,—1}, upon receiving (receipt, ¢;, v, [w;]) from the oracle, V checks ¢, £ (7).
We abbreviate ([co, ..., [cn,1n,—1]) = ([ac,- .-, [an,-1]; [wol, . .., [wn,—1])-

e For each i € {0,...,p— 1}, P and V zerocheck the virtual polynomial g;([co], - - -, [cny4ny—1])-

e P and V run a permutation check, with statement o, on the input ([co], ..., [cn,+n,])-

Theorem 5.2. Pmtocol@ securely computes the relation RpLonK -
Proof. We construct an emulator £. Our emulator £ operates as follows, given access to A, and to i and x:
1. & independently runs vp := Z(i), internally simulating the existence of the polynomial oracle.

2. Using vp, and playing the role of V, £ runs A internally, and in particular intercepts its submissions
(submit, ¢;, v, w;) intended for the polynomial oracle. As V would, £ aborts if, for any index ¢ €
{0,...,ny —1}, either A fails to submit the expected witness w; or the tower height ¢; # ¢(¢) is wrong.

3. & continues to simulate the role of V internally to A, during the course of the virtual protocols prescribed
by Protocol