On the Feasibility of Unleveled Fully-Homomorphic Signatures

Romain Gay¹, Bogdan Ursu²

¹ IBM Research, Zurich
rga@zurich.ibm.com
² Consensys⋆⋆
bogdan.ursu@consensys.net

Abstract. We build the first unleveled fully homomorphic signature scheme in the standard model. Our scheme is not constrained by any a-priori bound on the depth of the functions that can be homomorphically evaluated, and relies on subexponentially-secure indistinguishability obfuscation, fully-homomorphic encryption and a non-interactive zero-knowledge (NIZK) proof system with composable zero-knowledge. Our scheme is also the first to satisfy the strong security notion of context-hiding for an unbounded number of levels, ensuring that signatures computed homomorphically do not leak the original messages from which they were computed. All building blocks are instantiable from falsifiable assumptions in the standard model, avoiding the need for knowledge assumptions.

The main difficulty we overcome stems from the fact that bootstrapping, which is a crucial tool for obtaining unleveled fully homomorphic encryption (FHE), has no equivalent for homomorphic signatures, requiring us to use novel techniques.

1 Introduction

Fully Homomorphic Signatures. A signature scheme is said to be homomorphic when given signatures $\sigma_1, \ldots, \sigma_n$ of messages m_1, \ldots, m_n, it is possible to publicly compute a signature σ_f of the message $f(m_1, \ldots, m_n)$ for any function f. This evaluated signature σ_f is verified with respect to the verification key of the scheme, the message $m = f(m_1, \ldots, m_n)$ and the function f.

Given a set of signatures $\sigma_1, \ldots, \sigma_n$, unforgeability prevents an adversary from deriving a signature σ_f that verifies with respect to a function f and a message $y \neq f(m_1, \ldots, m_n)$. In other words, the signature certifies that the message corresponds to the proper evaluation of the function f on the original messages.

Akin to homomorphic encryption, the signing algorithm is a homomorphism from the message space to the signature space. Computing the addition of signatures $\sigma_1 \oplus \sigma_2$ results in the signature of the message $m_1 + m_2$, where \oplus and $+$ denote the addition in the signature and message space, respectively. The same goes for multiplication. Schemes equipped with a ring homomorphism (with both addition and multiplication) are referred to as fully homomorphic, since these operations are sufficient to capture all possible Boolean functions.

Applications of FHS. Homomorphic signatures are applicable in a wide range of scenarios, such as:

- Integrity for Network Coding. Network performances can be improved by encoding ongoing messages into vectors and letting each node perform linear operations on these encodings, instead of simply forwarding them. Unfortunately, because these encodings are modified by every node, the integrity property is lost when using traditional signatures. Homomorphic signatures (or their secret-key counterpart, as in [AB09]) that support linear operations can be used to preserve integrity throughout the network. In particular, each node updates not only the encoded messages, but also the homomorphic signatures associated with them.

⋆⋆ Work carried out during the author’s time at ETH Zurich.
– Verifying Delegated Computations. A client that wishes to delegate some computation on his data to a cloud provider could authenticate it via homomorphic signatures, then send it away to the cloud. The cloud performs the computation and updates the signatures accordingly, then sends the result back to the client, who can then verify the evaluated signature. If verification is successful, then the client is guaranteed that the cloud computed the intended function on the data. It is the perfect complement to fully homomorphic encryption (FHE), which preserves the confidentiality of the data in use, but not its integrity.

– Anonymous Credentials. Consider the scenario where a user obtains signatures $\sigma_1, \ldots, \sigma_n$ of her credentials m_1, \ldots, m_n, produced by some authority (the authority is associated to the vk of the signature scheme). Later on, the user is asked by a service provider (say, an insurance company) to prove that her credentials satisfy a policy expressed by a predicate P. The user can compute the signature σ_P and send it to the provider. If this signature verifies successfully with respect to vk and the message 1 (the output of the predicate should be 1), then it proves the user’s credentials fulfill the policy. Assuming the homomorphic signatures satisfy some mild re-randomizability property (so that evaluated signatures look fresh), this does not reveal the underlying credentials to the provider (only that they satisfy the policy). Giving the policy explicitly to the user provides some transparency (for instance, the predicate P can be signed by a trusted regulator, ensuring the insurance company is not performing some discriminatory screening). We can even evaluate a function f on the signatures that not only indicates whether the user is eligible to an insurance scheme, but also outputs the price to be paid based on the credentials.

State of the Art. The first construction of homomorphic signatures [AB09] was limited to additive homomorphism in the secret-key setting i.e. it is a message authentication (MAC) scheme. Later on, [BF11a] built the first homomorphic signature for constant-degree polynomials, subsequently improved by [CFW14]. In [GW13], the authors built the first fully homomorphic MAC from FHE, while [CF13] built an homomorphic MAC with better efficiency for a restricted class of functions. Then, [GVW15] built the first leveled fully homomorphic signature (FHS) scheme.

All existing works suffer from the fact that the depth of the functions that can be homomorphically evaluated is bounded at setup. In other words, these are leveled FHS. This stands in contrast with FHE, where unleveled schemes can be obtained via bootstrapping [Gen09] and circular security. Bootstrapping requires an FHE encryption of the secret decryption key, and relies on evaluating homomorphically the (shallow) decryption algorithm to "refresh" ciphertexts. This idea is not straightforwardly transferable to the signature case, and unleveled FHS have so far been elusive.

Another approach to building FHS is to use Succinct Arguments of Knowledge (SNARKs) for NP, but this requires the use of strong knowledge assumptions, as we explain more in details in Appendix D.

Given this state of affair, a natural question comes up:

\textit{Can we build unleveled FHS from falsifiable assumptions?}

This was left as an open problem in [GVW15], and has remained unsolved until our construction.

Our Result. We answer the question positively. Namely, we build the first unleveled FHS from falsifiable assumptions, in the standard model. Our feasibility result relies on indistinguishability obfuscation (iO), of which promising constructions appeared recently in [BDGM20a, JLS21, GP21, WW21, AP20, BDGM20b, DQV21, JLS22], unleveled fully homomorphic encryption and a non-interactive zero-knowledge proof system (NIZK). While iO is not a falsifiable assumption itself\(^3\), most of the iO candidates rely on falsifiable assumptions. The second building block, fully-homomorphic encryption, can be instantiated using circularly-secure LWE [GSW13], and alternatively using indistinguishability obfuscation [CLTV15]. Instantiating the FHE scheme using [CLTV15] yields a fully homomorphic signature construction that does not require any circular security assumption.

Building Blocks. We give more details on the building blocks, and the assumptions over which they can be instantiated. To build our FHS, we use an unleveled Fully-Homomorphic Encryption (FHE) scheme, which can be chosen to be either:

\(^3\) Formally, the iO security game does not fulfill falsifiability because the challenger cannot efficiently check that the circuits submitted by the adversary are functionally equivalent.
To produce signatures, we rely on the NIZK proof system. To sign a message m, the FHE encryptions σ setting, where the adversary first sends messages m, f, y and a proof π on the FHE encryptions f. The simulated CRS is generated together with a simulation trapdoor td. Creating these simulated proofs requires the trapdoor, which can be used to extract efficiently a witness from any valid proof (thereby ensuring that the statement proved is indeed true). The simulated CRS is generated together with a simulation trapdoor. In this case, the simulation trapdoor can be used to generate proofs on any statement (without requiring a witness). The two modes (real or simulated) are computationally indistinguishable.

Technical Overview

Overview of Our Construction. The verification key vk of our scheme contains several FHE encryptions of an arbitrary message (for example the message equals to 0). The number of such encryptions, N, determines the arity of the functions that can be homomorphically evaluated. We require that the FHE is unleveled. This differs from the FHS scheme from [GVW15] which uses homomorphic commitments instead of FHE encryptions. They crucially rely on the fact that these commitments are non-binding, which prevents from bootstrapping and only yields leveled FHS. To produce signatures, we rely on the NIZK proof system. To sign a message m_i for $i = 1, \ldots, N$, the signer produces a simulated proof stating (falsely) that the i'th encryption from vk, which we denote by ct_i, is an FHE encryption of m_i. This can be done since the NIZK common reference string CRS is simulated with an associated simulation trapdoor td_{sim}. Creating these simulated proofs requires the trapdoor, which is set to be the signing key. A signature is simply the ZK proof π_i stating that the ciphertext ct_i is an encryption of m_i. To homomorphically evaluate a function f on signatures $\sigma_1, \ldots, \sigma_N$ of the messages m_1, \ldots, m_N, we use an obfuscated circuit containing the simulation trapdoor td_{sim} that, given as input the tuple $(\sigma_1, m_1, \ldots, \sigma_n, m_n, f)$, first checks that the signatures σ_i are valid ZK proofs (of false statements), by running the verification algorithm of the NIZK proof system. If the check is successful, then it homomorphically evaluates the function f on the FHE encryptions $ct_{1, \ldots, N}$ that are part of vk, which yields an FHE ciphertext ct_f. It also generates a proof π that ct_f is an FHE encryption of $f(m_1, \ldots, m_n)$, using td_{sim}. The signature σ_f is set to be the proof π, which ensures that the execution circuit outputs. To verify a signature σ_f with respect to a function f and a value y, the verifier algorithm computes ct_f by evaluating f on the FHE encryptions $ct_{1, \ldots, N}$ from vk and verifies that σ is a valid proof stating that ct_f is an FHE encryption of y.

Let us now have a look at the proof of unforgeability. For simplicity, we consider the selective setting, where the adversary first sends messages m_1^*, \ldots, m_n^*, then receives vk and the signatures $\sigma_1^*, \ldots, \sigma_f^*$. Finally, the adversary sends a forgery (σ_f, f, y). It wins if the signature σ_f verifies successfully with respect to vk, f, y and $y \neq f(m_1^*, \ldots, m_n^*)$. The first step of the proof is to switch the FHE encryptions $ct_{1, \ldots, N}$ of 0 in the vk to FHE encryptions of m_1^*, \ldots, m_n^*, respectively. This way, we can change the signatures σ_f^* to proofs that are computed using a witness (where
the witness is the randomness used to compute the FHE encryptions in \(\mathsf{vk} \). The main implication is that we do not need to simulate proofs using \(\mathsf{td}_{\text{sim}} \) altogether and switch to an honestly computed \(\mathsf{CRS} \) so that we can use the soundness of the NIZK to prevent forgeries. Unfortunately it is not clear at this point how to remove \(\mathsf{td}_{\text{sim}} \) from \(\mathsf{Eval} \), the obfuscated circuit that performs the homomorphic evaluations. What if we use proofs of knowledge? This way, if the signatures input to the \(\mathsf{Eval} \) algorithm are valid ZK proofs, then \(\mathsf{Eval} \) can efficiently extract witnesses (i.e. randomness of the corresponding FHE ciphertexts), which can be used to compute the randomness of the evaluated FHE ciphertext. This requires a so-called randomness homomorphism of the FHE scheme. Namely, given the secret key of the FHE \(\mathsf{sk} \), randomness \(r_1, r_2 \) and messages \(m_1, m_2 \) such that \(\mathsf{ct}_1 = \mathsf{FHE.Enc} (\mathsf{pk}, m_1; r_1) \) and \(\mathsf{ct}_2 = \mathsf{FHE.Enc} (\mathsf{pk}, m_2; r_2) \), one can compute a randomness \(r \) such that \(\mathsf{FHE EvalNAND} (\mathsf{ct}_1, \mathsf{ct}_2) = \mathsf{FHE.Enc} (\mathsf{pk}, \mathsf{NAND}; r) \). A stronger property where a randomness \(r \) can be computed only using the \(\mathsf{pk} \) is satisfied by most lattice-based FHE schemes (e.g. [GSW13]) and the secret-key variant is satisfied by the FHE scheme from [CLTV15]. Then, \(\mathsf{Eval} \) can use this randomness \(r \) as a witness to produce the ZK proof that constitutes the evaluated signature \(\sigma_f \).

This approach runs into a circular issue: while it is true that the \(\sigma^*_f \) are proofs that are computed without \(\mathsf{td}_{\text{sim}} \), to use the proof of knowledge property and extract witnesses, we need to first remove \(\mathsf{td}_{\text{sim}} \) and switch to an honestly generated \(\mathsf{CRS} \). To do so, we need \(\mathsf{Eval} \) to produce the signatures \(\sigma_f \) without \(\mathsf{td}_{\text{sim}} \), but using witnesses instead, which already requires the proof of knowledge property and an honest \(\mathsf{CRS} \).

To solve this circular issue, our scheme uses a different NIZK proof system for each depth level of the circuit that is homomorphically evaluated. That is, to evaluate a function \(f \), represented as a depth \(d \) circuit, we evaluate the circuit gate by gate. Starting at the level 0, signatures \(\sigma_1, \ldots, \sigma_n \) of messages \(m_1, \ldots, m_n \) are ZK proofs stating (falsely) that the FHE ciphertexts \(\mathsf{ct}_1, \ldots, \mathsf{ct}_N \) from \(\mathsf{vk} \) are encryptions of \(m_1, \ldots, m_n \), respectively, computed using \(\mathsf{crs}_0 \), a simulated \(\mathsf{CRS} \), together with a simulation trapdoor \(\mathsf{td}_{\text{sim}}^0 \). Then \(\mathsf{Eval} \) takes as input these level 0 signatures \(\sigma_1, \ldots, \sigma_n \), the messages \(m_1, \ldots, m_n \) and a \(n \)-ary gate \(g \), verifies that the \(\sigma_i \) are valid proofs, computes the gate \(g \) on the messages which yields the value \(y = g(m_1, \ldots, m_n) \), homomorphically evaluates \(g \) on the ciphertexts \(\mathsf{ct}_1, \ldots, \mathsf{ct}_N \) which yields \(\mathsf{ct}_g \), and computes a ZK proof \(\pi \) stating that \(\mathsf{ct}_g \) is an FHE encryption of \(y \) using \(\mathsf{crs}_1 \), a simulated \(\mathsf{CRS} \), together with a simulation trapdoor \(\mathsf{td}_{\text{sim}}^1 \). The \(\mathsf{Eval} \) algorithm performs just one more level of the homomorphic computation. It is repeated many times to obtain the final signature \(\sigma_f \) for the function \(f \). To keep track of the gate-by-gate evaluation of the circuit, each signature will be of the form \(\sigma = (\pi, i, \mathsf{ct}) \), where \(i \in \mathbb{N} \) indicates the level of the signature, \(\pi \) is a proof computed using \((\mathsf{crs}_i, \mathsf{td}_{\text{sim}}^i) \), and \(\mathsf{ct} \) is an homomorphically evaluated ciphertext (if \(i = 0 \) it is one ciphertext from \(\mathsf{vk} \)). This way, \(\mathsf{Eval} \) takes as input signatures of level \(i \), and outputs signatures of level \(i + 1 \).

To prove the unforgeability of this scheme, as before, we start by replacing the FHE ciphertexts \(\mathsf{ct}_1, \ldots, \mathsf{ct}_N \) from \(\mathsf{vk} \) to encryptions of the messages \(m_1^\star, \ldots, m_n^\star \) chosen by the adversary, using the semantic security of FHE. Then, we generate level 0 signatures using witnesses (the randomness used to compute the \(\mathsf{ct}_i \)) instead of \(\mathsf{td}_{\text{sim}}^0 \). At this point, we can switch \(\mathsf{crs}_i \) to a real \(\mathsf{CRS} \), generated along with an extraction trapdoor, since \(\mathsf{td}_{\text{sim}}^0 \) is not used anymore. The rest of the proof proceeds using a hybrid argument over all the levels \(i = 1, \ldots, d \) where \(d \) is the (unbounded) depth of the circuit chosen by the adversary. By induction, we assume \(\mathsf{crs}_i \) is generated honestly along with an extraction trapdoor \(\mathsf{td}_{\text{ext}}^i \). Therefore, we can switch the way \(\mathsf{Eval} \) computes the ZK proof for the level \(i + 1 \). Instead of using a simulation trapdoor \(\mathsf{td}_{\text{sim}}^{i+1} \) with respect to \(\mathsf{crs}_{i+1} \) and computing simulated proofs, it instead extracts witnesses from the level \(i \) signatures using \(\mathsf{td}_{\text{ext}}^i \), and uses them to compute the proofs without the trapdoor \(\mathsf{td}_{\text{sim}}^{i+1} \). At this point \(\mathsf{td}_{\text{sim}}^{i+1} \) is not used anymore so we can also switch \(\mathsf{crs}_{i+1} \) to a real \(\mathsf{CRS} \), and go to the next step until we reach the depth of the function \(f \) chosen by the adversary.

While using a different \(\mathsf{CRS} \) for each level seems to solve the circularity issue, this approach creates another problem: if we simply generate all \(\mathsf{crs}_i \) for all levels in advance and put them in \(\mathsf{vk} \), we necessarily have to bound the maximum depth of the functions that can be homomorphically evaluated. In other words, we have a leveled \(\mathsf{FHE} \). To avoid that, \(\mathsf{Eval} \) samples the \(\mathsf{crs}_i \) on the fly using a pseudo-random function (the key of the PRF is hard-coded in the obfuscated circuit
This complicates the security proof, but it can be made to work using puncturing techniques. Namely, to switch crs_i from a simulated to real CRS and use the proof of knowledge property of the proof system associated to crs_i, we need crs_i to be generated with truly random coins, as opposed to a PRF. We simply hard-code the PRF value on i, puncture the PRF key, and switch the value to random (this is a standard technique for security proofs using IO, see for instance [SW14]). The crucial fact that makes these techniques applicable is that at any point in our security proof, we only require the CRS of one specific level to be generated with truly random coins. That is, we only need to hard-code the value of one CRS to perform the hybrid argument that goes over each level one by one. Ultimately, we show that the CRS for the last level, which corresponds to the depth of f chosen by the adversary, is generated honestly, and the soundness of the proof system directly prevents any successful FHS forgery.

High-Level Description of our FHS Scheme. In this description, SimSetup generates a simulated CRS with an associated simulation trapdoor td_{sim}. In the unforgeability proof, we will use the honest variant Setup that generates a real CRS along with an extraction trapdoor td_{ext}. For simplicity, we consider an algorithm Eval that only evaluates binary NAND gates (this is without loss of generality). Our scheme is as follows:

- $vk = (\text{FHE.Enc}(0), \ldots, \text{FHE.Enc}(0), crs_0)$, where $(crs_0, td_{\text{sim}}^0) \leftarrow \text{SimSetup}(1^\lambda)$, where $\lambda \in \mathbb{N}$ denotes the security parameter. The verification key vk contains N FHE encryptions of 0, namely $ct_1 \ldots ct_N$.
- $sk = K$, where K is a PRF key.
- $\text{Eval.NAND}((\sigma_0, m_0), (\sigma_1, m_1)) = C[td_{\text{sim}}^0, K](\sigma_0, m_0, \sigma_1, m_1)$, where $C[td_{\text{sim}}^0, K]$ denotes an obfuscation of the circuit $C[td_{\text{sim}}^0, K]$ that has the values td_{sim}^0 and K hard-coded, described in Figure 1 below, σ_0 and σ_1 are signatures of level i of these messages m_0 and m_1 respectively, and a binary NAND gate is homomorphically evaluated.
- $\text{Verify}(\sigma_f, f, y)$: parses σ_f as (ct, π, d). Proof π is a ZK proof with respect to crs_d where d is the depth of f and $(crs_d, td_d) = \text{SimSetup}(1^\lambda; \text{PRF}_K(i))$, i.e. SimSetup is run on the pseudorandom coins $\text{PRF}_K(d)$. Then, it homomorphically evaluates f on the ciphertexts $ct = \text{FHE.Enc}(0)$ from vk to obtain ct_f. It checks that π is a valid proof stating that ct_f is an encryption of y, with respect to crs_d (it outputs 1 if the check passes, 0 otherwise). Note that the ciphertext ct that is part of the signature is not used by Verify. It is only useful if extra homomorphically evaluation are to be performed on the evaluated signature.

![Circuit C[td_{sim}, K](\cdot, \cdot) used by Eval.](image)

We summarize the unforgeability proof using the list of hybrid games presented in Figure 2. Note that $G_{3,0} = G_2$, and in the last game $G_{3,d}$, where d denotes the depth of the function f chosen by the adversary, security simply follows from the soundness of the level d NIZK.

Complexity Leveraging and Adaptive Security. In the overview above, we skipped over some technical details. In the unforgeability proof of our FHS scheme, the challenger that interacts with the adversary does not know in advance the depth d of the function f chosen. To solve this problem, the challenger chooses a super-polynomial e.g. $2^{o(\log \lambda)}$ number of levels to perform the
• \(G_0 \): \(\text{vk} = \{ \text{FHE.Enc}(0) \}_i, (\text{crs}_0, \text{td}_{\text{sim}}^0) \leftarrow \text{SimSetup}(1^\lambda), \sigma_i^* \text{ simulated with } \text{td}_{\text{sim}}^0. \) // original security game.

• \(G_1 \): \(\text{vk} = \{ \text{FHE.Enc}(m_i^*) \}_i, (\text{crs}_0, \text{td}_{\text{sim}}^0) \leftarrow \text{SimSetup}(1^\lambda), \sigma_i^* \text{ simulated with } \text{td}_{\text{sim}}^0. \) // security of FHE

• \(G_2 \): \(\text{vk} = \{ \text{FHE.Enc}(m_i^*; r_i) \}_i, (\text{crs}_0, \text{td}_{\text{ext}}^0) \leftarrow \text{Setup}(1^\lambda), \sigma_i^* \text{ proved with } r_i. \) // real CRS

• \(G_{3,\ell} \): // games defined for all \(\ell = 0, \ldots, d \), where \(d \) is the depth of \(f \)

Eval uses the obfuscation of the following circuit which has
the pair \((\text{crs}, \text{td}_{\text{ext}}^0) \leftarrow \text{Setup}(1^\lambda) \) and the PRF key \(K \) hard-coded:
\[
c_{[\text{crs}, \text{td}_{\text{ext}}^0, K]}((\sigma_0, m_0), (\sigma_1, m_1)):
\]
- Parse \(\sigma_b = (\text{ct}_b, \pi_b, j) \), for \(b \in \{0, 1\} \)
- Compute \(\text{ct} = \text{FHE.Eval}(\text{NAND}, \text{ct}_0, \text{ct}_1) \)
- If \(j < \ell \), then compute \((\text{crs}_j, \text{td}_{\text{ext}}^j) = \text{Setup}(1^\lambda; \text{PRF}_K(j)) \).
 - extract witnesses \((r_0, r_1) \) from \((\pi_0, \pi_1)\) using \(\text{td}_{\text{ext}}^j \).
 - compute \(r \) such that \(\text{ct} = \text{FHE.Enc}(\text{NAND}(m_0, m_1); r) \) using \(r_0, r_1, m_0, m_1 \).
 - compute a proof \(\pi \) that \(\text{ct} \) encrypts \(\text{NAND}(m_0, m_1) \) using \(r \).
- If \(j \geq \ell \), then compute \((\text{crs}_{j+1}, \text{td}_{\text{ext}}^{j+1}) = \text{SimSetup}(1^\lambda; \text{PRF}_K(j+1)) \)
 and compute the proof \(\pi \) with \(\text{td}_{\text{ext}}^{j+1} \) instead.
- Output \(\sigma = (\pi, \text{ct}, j + 1) \).

Fig. 2. Hybrid games for the selective unforgeability proof of our FHS. We denote by \(m_i^* \) the message sent by the adversary, by \(\sigma_i^* \) the signatures it receives, by \(\text{SimSetup} \) the algorithm that generates a simulated CRS with a trapdoor \(\text{td}_{\text{sim}} \), by \(\text{Setup}(1^\lambda) \) the honest variant that generates a real CRS together with an extraction trapdoor and by \(K \) a puncturable PRF key. We denote by \(\text{Setup}(1^\lambda; r) \) the algorithm \(\text{Setup} \) run with coins \(r \) (which can be truly random or pseudo random). When omitted, truly random coins are implicitly used. We use the same notations when writing \(\text{SimSetup}(1^\lambda; r) \) or \(\text{FHE.Enc}(m; r) \).

hybrid argument sketched above. This gives a super-polynomial security loss, which is why we require subexponential security of the underlying assumptions. A similar complexity leveraging argument can be used to obtain adaptive security, where the adversary is not restricted to choose the messages \(m_1^*, \ldots, m_N \) before seeing the verification key of the scheme. The challenger guesses in advance the messages and acts as though the adversary were selective. The security loss due to the guessing argument is \(2^N \), which we can accommodate by choosing appropriately large parameters, relying again on the subexponential security of the underlying building blocks.

Unique Randomness. For technical reasons, we require additionally that the FHE has unique randomness: given a message \(m \) and a ciphertext \(\text{ct} = \text{Enc}(\text{pk}, m; r) \) there cannot be another randomness \(r' \neq r \) such that \(\text{Enc}(\text{pk}, m; r') = \text{ct} \). In Appendix A, we show that a slight modification of the GSW FHE scheme [GSW13] directly achieves such a property. We also show that the FHE from [CLTV15] can be adapted straightforwardly to obtain unique randomness. Simply put, their scheme relies on iO and a re-randomizable encryption scheme (such as Goldwasser Micali, ElGamal, Paillier or Damgard-Jurik). If the latter has unique randomness, then the resulting FHE also has this property.

Related Works. The work of [JMSW02] introduced a similar notion of homomorphic signature but where the verification algorithm does not take the function \(f \) as an input. That is, signatures can be manipulated homomorphically, thereby changing the underlying message being signed, but the verification does not track which function was applied. In that case, the notion of unforgeability only makes sense when the homomorphism property is limited, so that from a set of signatures, one can only get a signature on some but not all messages. Typically, the messages are vectors, and given signatures on vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \), only signatures on the linear combinations of the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) can be obtained. In particular if \(n \) is less than the dimension of the vectors, then there are some vectors for which signatures cannot be generated (those outside the span of \(\mathbf{v}_1, \ldots, \mathbf{v}_n \)) and the unforgeability property is meaningless. These are referred to as linearly homomorphic within a given equivalence class, but forgeries outside the class are
prohibited. The notion also requires a re-randomizability property, and is used in particular for anonymous credentials.

Other works [LTWC18, FP18, AP19, SBB19] consider the multi-key extension of homomorphic signatures, where the signatures to be homomorphically evaluated come from different users with different signing keys.

In [BFS14], the authors provide a fully-homomorphic signature from lattices that has the advantage of being adaptively secure (where the adversary can send the messages of her choice after receiving the verification key in the security game). In [CFN18], the authors study the security notions of homomorphic signatures in the adaptive setting, provide a simpler and stronger definition, and a compiler that generically strengthens the security of a scheme. The work of [Tsa17] establishes an equivalence between homomorphic signatures and the related notion of attribute-based signatures, and provides new constructions for both.

As we mentioned already earlier, [CLTV15] builds an unleveled FHE scheme from subexponentially secure iO and re-randomizable encryption. Remarkably, their FHE does not require any circular security assumption, since it does not rely on the bootstrapping technique. Although we use a similar technical complexity leveraging argument to handle unbounded depth, the technical similarities end here.

Fully-Homomorphic Signatures from SNARKs. It was claimed in previous works [GW13, GVW15] that FHS can be built using succinct arguments of knowledge (SNARKs) for NP. This comes at a cost: in the FHS regime, that would mean using unfalsifiable assumptions (even in the random oracle model), as we explain in further details in Appendix D. This stands in contrast with our scheme that can be instantiated from falsifiable assumptions, since general indistinguishability obfuscation itself can be built from falsifiable assumptions [JLS21, GP21, JLS22].

Full Context-Hiding. Our FHS scheme is also the first to achieve a strong notion of context hiding, more powerful than the one achieved by [GVW15]. Consider a signature \(\sigma \) for \(m = f(m_1 \ldots m_N) \), which was obtained by homomorphically evaluating a function \(f \) for signature-message pairs \((\sigma_1, m_1) \ldots (\sigma_N, m_N) \). Full context-hiding\(^4\) guarantees that the signature \(\sigma \) only certifies \(m \) and does not leak any information on messages \(m_1 \ldots m_N \). A signature \(\sigma \) in [GVW15] is not context-hiding, but can be post-processed into another signature \(\sigma' \) that achieves context-hiding, at the cost that the homomorphism property is broken: no homomorphic operations can be applied on \(\sigma' \).

In contrast, our FHS construction achieves full context hiding for signatures at all levels out-of-the-box, and context-hiding signatures can be homomorphically combined for an unbounded number of times. Our construction is the first to achieve this stronger notion of context-hiding in the standard model. More details can be found in Appendix C.

Roadmap. In Section 2 we define the building blocks used in our construction, then we describe our scheme in Section 3 and prove its security in Section 4. Appendix A covers unique randomness, a property needed from the FHE building block in the proof. In Appendix B we showcase a variation of the scheme that supports datasets of unbounded length and in Appendix C we describe the context-hiding property of our scheme. In Appendix D, we discuss how SNARKs can be used to build FHS, and the drawbacks associated with this approach. Finally, in Appendix E we briefly explain how our scheme can be compiled to achieve a version that supports labels.

2 Preliminaries

Notation. Throughout this paper, \(\lambda \) denotes the security parameter. For all \(n \in \mathbb{N} \), \([n]\) denotes the set \(\{1, \ldots, n\} \). An algorithm is said to be efficient if it is a probabilistic polynomial time (PPT) algorithm. A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is negligible if for any polynomial \(p \) there exists a bound \(B > 0 \) such that, for any integer \(k \geq B \), \(f(k) \leq 1/|p(k)| \). An event depending on \(\lambda \) occurs with overwhelming probability when its probability is at least \(1 - \negl(\lambda) \) for a negligible function \(\negl \). Given a finite set \(S \), the notation \(x \leftarrow \pi S \) means a uniformly random assignment of an element.

\(^4\) Previous work [GVW15] refers to this notion as context hiding. We use the modifier “full” to differentiate from its weak context hiding counterpart.
of S to the variable x. For all probabilistic algorithms A, all inputs x, we denote by $y \leftarrow A(x)$ the process of running A on x and assigning the output to y. The notation A^O indicates that the algorithm A is given an oracle access to O. For all algorithm A, B, \ldots, all inputs x, y, \ldots and all predicates P, we denote by $\Pr[a \leftarrow A(x); b \leftarrow B(a); \ldots; P(a, b, \ldots)]$ the probability that the predicate P holds on the values a, b, \ldots computed by first running A on x, then B on y and a, and so forth. For two distributions D_1, D_2, we denote by $\Delta(D_1, D_2)$ their statistical distance. We denote by $D_1 \approx_c D_2$ two computationally indistinguishable distribution ensembles D_1 and D_2. We denote by $D_1 \approx_s D_2$ two statistically close ensembles.

Subexponential Security. The security definitions we consider will require that for every efficient algorithm A, there exists some negligible function \negl such that for all $\lambda \in \mathbb{N}$, A succeeds in “breaking security” w.r.t. the security parameter λ with probability at most $\negl(\lambda)$. All the definitions that we consider can be extended to consider subexponential security; this is done by requiring the existence of a constant $\varepsilon > 0$, such that for every PPT algorithm A, A succeeds in “breaking security” w.r.t. the security parameter λ with probability at most $2^{-\lambda^\varepsilon}$. The security notion of obfuscation (Section 2.3) and NIZK (Section 2.4) are traditionally defined for non-uniform adversaries. We write our security definitions for uniform adversaries for simplicity, but they can be easily adapted to non-uniform adversaries.

2.1 Puncturable Pseudorandom Functions

A pseudorandom function (PRF) is a tuple of PPT algorithms $(\text{PRF.KeyGen}, \text{PRF.Eval})$ where PRF.KeyGen generates a key which is used by PRF.Eval to evaluate outputs. The core property of PRFs states that for a random choice of key, the outputs of PRF.Eval are pseudo-random. Puncturable PRFs (pPRFs) have the additional property that keys can be generated punctured at any input x in the domain. As a result, the punctured key can be used to evaluate the PRF at all inputs but x. Moreover, revealing the punctured key does not violate the pseudorandomness of the image of x. This notion can be generalized to allow they key to be punctured at multiple points.

As observed in [BW13, BGI14, KPTZ13], it is possible to construct such punctured PRFs for the original PRF construction of [GGM84], which can be based on any one-way functions [HILL99]. While this PRFs support puncturing for a polynomial number of times, in this paper we only to puncture at sets that contain at most two points.

Definition 1 (Puncturable Pseudorandom Function). A puncturable pseudorandom function (pPRF) is a tuple of $\text{PRF.KeyGen, PRF.Puncture, PRF.Eval}$ such that:

- $\text{PRF.KeyGen}(1^\lambda)$: on input the security parameter, it outputs a key K in the key space K_λ. It also defines a domain \mathcal{X}_λ, a range \mathcal{Y}_λ and a punctured key space K^*_λ.
- $\text{PRF.Puncture}(K, S)$: on input a key $K \in K_\lambda$, a set $S \subseteq \mathcal{X}_\lambda$, it outputs a punctured key $K[S] \in K^*_\lambda$.
- $\text{PRF.Eval}(K, x)$: on input a key K (punctured or not, i.e. $K \in K_\lambda \cup K^*_\lambda$), and a point $x \in \mathcal{X}_\lambda$, it outputs a value in \mathcal{Y}_λ.

We require the PPR algorithms to meet the following conditions:

Functionality Preserved under Puncturing. For all $\lambda \in \mathbb{N}$, for all subsets $S \subseteq \mathcal{X}_\lambda$,

$$\Pr[K \leftarrow \text{PRF.KeyGen}(1^\lambda), K[S] \leftarrow \text{PRF.Puncture}(K, S), \forall x' \in \mathcal{X}_\lambda \setminus S : \text{PRF.Eval}(K, x') = \text{PRF.Eval}(K[S], x')] = 1.$$

Pseudorandom at Punctured Points. For every stateful PPT adversary A and every security parameter $\lambda \in \mathbb{N}$, the advantage of A in Exp-pPRF (described in Figure 3) is negligible, namely:

$$\text{Adv}_{\text{Exp-pPRF}}(\lambda, A) := \left| \Pr[\text{Exp-pPRF}(1^\lambda, A) = 1] - \frac{1}{2} \right| \leq \negl(\lambda).$$
2.2 Fully Homomorphic Encryption

We recall the definition of unleveled FHE here, where there is no a-priori bound on the depth of circuits that can be homomorphically evaluated. For simplicity we consider messages to be bits.

Theorem 2. [GGM84,BW13,BGI14,KPTZ13] Consider a fixed polynomial $p(\lambda)$, and two arbitrary polynomials $n(\lambda), m(\lambda)$ in the security parameter λ. If one-way functions exist, then there exists a puncturable PRF family that maps $n(\lambda)$ bits to $m(\lambda)$ bits and which supports punctured sets S of $p(\lambda)$ size.

As explained at the beginning of this section, in this paper we use puncturing for sets that contain at most two elements.

Definition 3 (Fully Homomorphic Encryption). A fully homomorphic encryption scheme FHE is a tuple of PPT algorithms $(\mathsf{FHE.KeyGen}, \mathsf{FHE.Enc}, \mathsf{FHE.Dec}, \mathsf{FHE.Eval})$, where:

- $\mathsf{FHE.KeyGen}(1^\lambda)$: outputs a public encryption/evaluation key pk and a secret key sk.
- $\mathsf{FHE.Enc}(pk, m)$: outputs an encryption ct of message $m \in \{0, 1\}$. We denote by \mathcal{R} the randomness space of $\mathsf{FHE.Enc}$.
- $\mathsf{FHE.Dec}(sk, ct)$: uses sk to decrypt ct. It outputs a message.
- $\mathsf{FHE.Eval}(pk, f, ct_1 \ldots ct_N)$: it is a deterministic algorithm that takes as input a circuit f of arity N, and employs pk to compute an evaluated ciphertext ct_f.

An FHE scheme must satisfy the following requirements:

Encryption Correctness. For all $\lambda \in \mathbb{N}$, all messages $m \in \{0, 1\}$, all (pk, sk) in the support of $\mathsf{FHE.KeyGen}(1^\lambda)$, all ciphertexts ct in the support of $\mathsf{FHE.Enc}(pk, m)$, we have $\mathsf{FHE.Dec}(sk, ct) = m$.

Evaluation Correctness. For all $\lambda \in \mathbb{N}$, all (pk, sk) in the support of $\mathsf{FHE.KeyGen}(1^\lambda)$, all messages $m_1, \ldots, m_N \in \{0, 1\}$, all ciphertexts $(ct_1 \ldots ct_N)$ such that $\mathsf{FHE.Dec}(sk, ct_i) = m_i$ for all $i \in [N]$, all circuits f of arity N, it holds that:

$$\mathsf{FHE.Dec}(sk, \mathsf{FHE.Eval}(pk, f, ct_1 \ldots ct_N)) = f(m_1, \ldots, m_N).$$
Randomness Homomorphism. There exists an efficient deterministic algorithm FHE.EvalRand such that for all $\lambda \in \mathbb{N}$, all (pk, sk) in the support of $\text{Setup}(1^\lambda)$, all messages $m_1, \ldots, m_N \in \{0, 1\}$ and randomness $r_1, \ldots, r_N \in \mathcal{R}$, all circuits f of arity N, writing $r_f = \text{FHE.EvalRand}(sk, pk, r_1, \ldots, r_N, m_1, \ldots, m_N, f)$ and $ct_i = \text{FHE.Enc}(pk, m_i; r_i)$ for all $i \in [N]$, we have:

$$\text{FHE.Enc}(pk, f(m_1, \ldots, m_N); r_f) = \text{FHE.Eval}(pk, f, ct_1, \ldots, ct_N).$$

For most lattice-based FHE schemes, such as $[GSW13]$, a stronger property holds: EvalRand can be publicly evaluated from the initial randomness and messages, and does not require sk (only pk). Nevertheless, the FHE scheme based on iO from $[CLTV15]$ does require the use of the secret key to compute the evaluated randomness (which will consist of the key of a puncturable PRF). Both variants can be used as a building block in our construction.

Unique Randomness. For all $\lambda \in \mathbb{N}$, all (pk, sk) in the support of $\text{FHE.KeyGen}(1^\lambda)$, all messages $m \in \{0, 1\}$, all $r \in \mathcal{R}$ where \mathcal{R} denotes the randomness space, there is no $r' \in \mathcal{R}$ such that $r' \neq r$ and $\text{Enc}(pk, m; r) = \text{Enc}(pk, m; r')$.

Selective IND-CPA Security. For any PPT adversary \mathcal{A}, we require that $\text{Adv}_{\text{IND-CPA}}^{\text{FHE}}(\lambda, \mathcal{A})$ in the experiment Exp-IND-CPA from Figure 4 is negligible, namely:

$$\text{Adv}_{\text{IND-CPA}}^{\text{FHE}}(\lambda, \mathcal{A}) := \Pr[\text{Exp-IND-CPA}^{\text{FHE}}(1^\lambda, \mathcal{A}) = 1] - \frac{1}{2} \leq \text{negl}(\lambda)$$

<table>
<thead>
<tr>
<th>Experiment $\text{Exp-IND-CPA}^{\text{FHE}}(1^\lambda, \mathcal{A})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(m_0, m_1) \leftarrow \mathcal{A}(1^\lambda)$</td>
</tr>
<tr>
<td>$(pk, sk) \leftarrow \text{FHE.Setup}(1^\lambda)$</td>
</tr>
<tr>
<td>$b \leftarrow {0, 1}$</td>
</tr>
<tr>
<td>$ct \leftarrow \text{FHE.Enc}(pk, m_b)$</td>
</tr>
<tr>
<td>$b' \leftarrow \mathcal{A}(pk, ct)$</td>
</tr>
<tr>
<td>Return $b = b'$</td>
</tr>
</tbody>
</table>

Fig. 4. Experiment Exp-IND-CPA for the selective indistinguishable security of FHE.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation, originally from $[BGI^+01]$.

Definition 4 (Indistinguishability Obfuscator). An indistinguishability obfuscator for a circuit class $\{C_\lambda\}_{\lambda \in \mathbb{N}}$ is an efficient algorithm iO such that:

- **Perfect correctness:** for all $\lambda \in \mathbb{N}$, all $C \in C_\lambda$, all inputs x, we have:

$$\Pr[C' \leftarrow iO(1^\lambda, C) : C'(x) = C(x)] = 1$$

- **Security:** for all efficient algorithms \mathcal{A}, there exists a negligible function negl such that for all $\lambda \in \mathbb{N}$, all pairs of circuits $C_0, C_1 \in C_\lambda$ such that $C_0(x) = C_1(x)$ for all inputs x, we have:

$$\text{Adv}^iO(\lambda, \mathcal{A}) := \left| \Pr[\mathcal{A}(iO(1^\lambda, C_0)) = 1] - \Pr[\mathcal{A}(iO(1^\lambda, C_1)) = 1] \right| \leq \text{negl}(\lambda)$$

2.4 Non-Interactive Zero Knowledge Proofs

Given a binary relation $R : \mathcal{X} \times \mathcal{W} \rightarrow \{0, 1\}$ defined over a set of statements \mathcal{X} and a set of witnesses \mathcal{W}, let \mathcal{L}_R be the language defined as $\mathcal{L}_R = \{x \in \mathcal{X} \mid \exists w \in \mathcal{W} : R(x, w) = 1\}$. A Non-Interactive Zero Knowledge proof system for the binary relation R (originally introduced in $[BFM88]$) allows a prover in possession of a statement x and a witness w such that $R(x, w) = 1$ to produce a proof that convinces a verifier of the fact that $x \in \mathcal{L}_R$ without revealing any information about w.

The soundness property ensures that no proof can convince the verifier of the validity of a false statement, i.e., a statement \(x \not\in L_R \). We require the existence of an extractor that efficiently gets a witness from a valid proof \(\pi \) of a statement \(x \), using an extraction trapdoor. Such proof systems are called \textit{proofs of knowledge}. We focus on \textit{NIZK} for relations \(R \) where the size of all statements and witnesses are bounded, which we call \textit{size-bounded} relation. We now give the formal definition of \textit{NIZK} proof of knowledge.

Definition 5 (NIZK-PoK). Let \(R \) be a size-bounded relation. A Non-Interactive Zero-Knowledge Proof of Knowledge (NIZK-PoK) for \(R \) consists of the following PPT algorithms:

- **Setup**(\(\lambda \)): on input the security parameter, it outputs a common reference string \(\text{crs} \) and an extraction trapdoor \(td_{\text{ext}} \).
- **Prove**(\(\text{crs}, x, w \)): on input \(\text{crs} \), a statement \(x \) and a witness \(w \), it outputs an argument \(\pi \).
- **Verify**(\(\text{crs}, x, \pi \)): on input \(\text{crs}, x \) and an argument \(\pi \), it deterministically outputs a bit representing acceptance (1) or rejection (0).

The PPT algorithms satisfy the following properties.

Composable Zero-Knowledge. There exist two PPT algorithms \(\text{SimSetup} \) and \(\text{Sim} \) such that for all PPT adversaries \(\mathcal{A} \), the following advantages \(\text{Adv}^{\text{CRS}}_{\text{ZK}}(\lambda, \mathcal{A}) \) and \(\text{Adv}^{\text{ZK}}(\lambda, \mathcal{A}) \) are negligible in \(\lambda \):

\[
\text{Adv}^{\text{CRS}}_{\text{ZK}}(\lambda, \mathcal{A}) = |1/2 - \Pr \left[(\text{crs}, td_{\text{ext}}) \leftarrow \text{Setup}(\lambda), (\text{crs}_{\text{sim}}, td_{\text{sim}}) \leftarrow \text{SimSetup}(\lambda), b' \leftarrow \mathcal{A}(\text{crs}_{\text{b}}) : b' = b \right] |.
\]

\[
\text{Adv}^{\text{ZK}}(\lambda, \mathcal{A}) = |1/2 - \Pr \left[(x, w) \leftarrow \mathcal{A}(\lambda), (\text{crs}_{\text{sim}}, td_{\text{sim}}) \leftarrow \text{SimSetup}(\lambda), \pi_0 \leftarrow \text{Prove}(\text{crs}_{\text{sim}}, x, w), \pi_1 \leftarrow \text{Sim}(\text{crs}_{\text{sim}}, td_{\text{sim}}, x), b \leftarrow \{0, 1\}, b' \leftarrow \mathcal{A}(\text{crs}_{\text{sim}}, td_{\text{sim}}, \pi_b) : R(x, w) = 1 \land b' = b \right] |.
\]

Completeness on Simulated CRS. For all efficient adversaries \(\mathcal{A} \), the following advantage is negligible in the security parameter \(\lambda \in \mathbb{N} \):

\[
\text{Adv}_{\mathcal{A}}(\lambda) = \Pr \left[(x, w) \leftarrow \mathcal{A}(\lambda), (\text{crs}_{\text{sim}}, td_{\text{sim}}) \leftarrow \text{SimSetup}(\lambda), \mathcal{A}.\text{Verify}(\text{crs}_{\text{sim}}, x, \pi) = 0 \right].
\]

Knowledge-Soundness. There exists an efficient algorithm \(\text{Extract} \) such that the following probability \(\nu_{\text{sound}}(\lambda) \) is a negligible function of \(\lambda \in \mathbb{N} \), defined as:

\[

\nu_{\text{sound}}(\lambda) = \Pr \left[(\text{crs}, td_{\text{ext}}) \leftarrow \text{Setup}(\lambda) : \exists \pi, x, w \in \text{Supp}(\text{Extract}(\text{crs}, td_{\text{ext}}, x, \pi)) \right. \\
\left. \text{s.t. } \text{Verify}(\text{crs}, x, \pi) = 1 \land R(x, w) = 0 \right].
\]

We say \textit{subexponential} knowledge-soundness holds if \(\nu_{\text{sound}} \) is subexponential in the security parameter \(\lambda \).

2.5 Fully Homomorphic Signatures

We recall the definition of Fully-Homomorphic Signature (FHS), which was originally given in [BF11a]. When many datasets are present, the signing algorithm takes as an additional input a tag \(\tau \) that identifies the dataset that is being signed. Only signatures issued for the same tag can be combined together. For simplicity, we focus on the single dataset setting here (where there are no tags), since [GVW15] showed how to generically transform any FHS for single dataset to many datasets. This transformation relies on regular (non-homomorphic) signature schemes. Again for simplicity, we focus on bit messages and Boolean functions.
Definition 6 (FHS, Single Dataset). An FHS scheme is a tuple of PPT algorithms $\Sigma = (\text{KeyGen}, \text{Sign}, \text{Verify}, \text{Eval})$, such that:

- $\text{KeyGen}(1^\lambda, 1^N)$: on input the security parameter λ and a data-size bound N, it generates a public verification key vk, along with a secret signing key sk.
- $\text{Sign}(sk, m, i)$: on input the secret key sk, a message $m \in \{0, 1\}$ and an index $i \in [N]$, it outputs a signature σ.
- $\text{Eval}(vk, f, (m_1, \sigma_1), \ldots, (m_N, \sigma_N))$: on input the public key vk, a function f of arity N and pairs (m_i, σ_i), it deterministically outputs an evaluated signature σ of the message $f(m_1, \ldots, m_N)$.
- $\text{Verify}(vk, f, y, \sigma)$: on input the public key vk, a function f, a value y and a signature σ, it outputs a bit. 0 means the signature σ is deemed invalid, 1 means it is considered valid.

The algorithms satisfy the following properties.

- **Perfect Signing Correctness.** For all $\lambda, N \in \mathbb{N}$, all pairs (vk, sk) in the support of $\text{KeyGen}(1^\lambda, 1^N)$, all $i \in [N]$, all messages $m \in \{0, 1\}$, all signatures σ in the support of $\text{Sign}(sk, m, i)$, we have $\text{Verify}(vk, id_i, m, \sigma) = 1$, where id_i is the projection function that takes N messages $m_1, \ldots, m_N \in \{0, 1\}$, and outputs the ith message m_i.

In our scheme, we achieve a weaker, computational variant of the correctness property, which roughly states that an efficient algorithm cannot find messages (with more than negligible probability) on which properly generated signatures do not verify successfully.

- **Computational Signing Correctness.** For all efficient algorithms A, the following probability, defined for all $\lambda, N \in \mathbb{N}$ is negligible in λ: $\Pr[(vk, sk) \leftarrow \text{Setup}(1^\lambda, 1^N), (m_1, \ldots, m_N) \leftarrow A(vk), \forall i \in [N], \sigma_i \leftarrow \text{Sign}(sk, m_i, i) : \exists i \in [N] \text{ s.t. } \text{Verify}(vk, id_i, m_i, \sigma_i) = 0]$.

- **Perfect Evaluation Correctness.** For all $\lambda, N \in \mathbb{N}$, all pairs (vk, sk) in the support of $\text{KeyGen}(1^\lambda, 1^N)$, all messages $m_1, \ldots, m_N \in \{0, 1\}$, all signatures $\sigma_1, \ldots, \sigma_N$ in the support of $\text{Sign}(sk, m_1), \ldots, \text{Sign}(sk, m_N)$ respectively, for all functions f of arity N, writing $\sigma_f = \text{Eval}(vk, f, (\sigma_1, m_1), \ldots, (\sigma_N, m_N))$ and $y = f(m_1, \ldots, m_N)$, we have $\text{Verify}(vk, f, y, \sigma_f) = 1$.

Moreover, it is possible to perform additional homomorphic operations on signatures that have already been evaluated. That is, correctness holds when functions are composed. Namely, for all $\ell \in \mathbb{N}$, all functions g of arity ℓ, all tuples $(\sigma_1, f_1, m_1), \ldots, (\sigma_\ell, f_\ell, m_\ell)$ such that for all $i \in [\ell]$, $\text{Verify}(vk, f_i, m_i, \sigma_i) = 1$, writing $\text{Eval}(vk, g, (m_1, \sigma_1), \ldots, (m_\ell, \sigma_\ell)) = \sigma$ and $y = g(m_1, \ldots, m_\ell)$, we have $\text{Verify}(vk, g, y, \sigma) = 1$.

Similarly to signing correctness, we define a computational variant of the evaluation correctness. For simplicity, we split the property into two properties: the first is a computational evaluation correctness that only consider one-shot homomorphic evaluation, but does not take into account the possibility of performing homomorphic evaluations in several steps, i.e. composing functions. The second property, called weak context hiding, states that composing functions using Eval many times yields the same signature as using Eval once on the composed function. The (non-weak) context hiding property additionally requires that evaluated signatures be independent of the underlying dataset, apart from the output of the evaluated function.

- **Computational Evaluation Correctness.** For all efficient algorithms A, the following probability, defined for all $\lambda, N \in \mathbb{N}$ is negligible in λ: $\Pr[(vk, sk) \leftarrow \text{Setup}(1^\lambda, 1^N), (m_1, \ldots, m_N, f) \leftarrow A(vk), \forall i \in [N], \sigma_i \leftarrow \text{Sign}(sk, m_i, i), \sigma_f \leftarrow \text{Eval}(vk, f, (m_1, \sigma_1), \ldots, (m_N, \sigma_N)), y = f(m_1, \ldots, m_N) : \text{Verify}(vk, f, y, \sigma_f) = 0]$.
We describe our unleveled FHS with the construction from [CLTV15], which does not require any circularity assumption (it relies on iO and lossy trapdoor functions). Then subexponentially adaptively unforgeable unleveled FHS exist.

Theorem 7 (Main Result). Assume the existence of subexponentially secure iO and lossy trapdoor functions. Then subexponentially adaptively unforgeable unleveled FHS exist.
computational signing correctness as per Definition 6, assuming satisfies the subexponential (selective) IND-CPA security (as per Definition 3), where

3.2 Correctness of the FHS

In this section we prove the computational signing correctness, the computational evaluation correctness, the weak context hiding and the pre-processing property of our scheme, all given in Definition 6.

Fig. 5. Fully-homomorphic signature scheme $\text{FHS} = (\text{FHS.KeyGen}, \text{FHS.Sign}, \text{FHS.Verify}, \text{FHS.Eval})$. PRF is a puncturable pseudo-random function, NIZK is a proof of knowledge (NIZK PoK), FHE is a fully-homomorphic encryption scheme, and λ is an indistinguishability obfuscator. By $\text{stat}_{m,ct}$ we denote the statement which claims that $\exists \tau \in \mathcal{R}$ such that $ct = \text{FHE.Enc}(fpk, m; \tau)$, where \mathcal{R} denotes the randomness space of the FHE encryption algorithm. Parameters $\kappa(\lambda) = (N + 2\log^2 \lambda + 5)^{1/\varepsilon}$, where $\varepsilon > 0$ is a constant whose existence is ensure by the subexponential security of the underlying building blocks.

3.1 Choice of Parameters

In our FHS, we rely on building blocks PRF, λ, NIZK, FHE that are subexponentially secure, that is, for which efficient adversaries can succeed with at most advantage $2^{-\kappa}$ in breaking the security, for a constant $\kappa > 0$, where κ is the parameter chosen to run the setup of these primitives. We denote by κ_1 the parameter used for FHE and by κ_2 the parameter used for PRF, λ, and NIZK. Correctness is satisfied as long as the equations (1) and (2) hold. Adaptive unforgeability is satisfied as long as the equation (3) holds. These equations are simultaneously satisfied when:

$$\kappa_1 = (N + \log N + 2\log^2 \lambda)^{1/\varepsilon}$$

$$\kappa_2 = (|ct| + N + \log N + 2\log^2 \lambda + O(1))^{1/\varepsilon}$$

where $|ct|$ denotes the size of the FHE ciphertexts.

3.2 Correctness of the FHS

In this section we prove the computational signing correctness, the computational evaluation correctness, the weak context hiding and the pre-processing property of our scheme, all given in Definition 6.

Lemma 8 (Computational Signing Correctness). The FHS scheme from Figure 5 satisfies the computational signing correctness as per Definition 6, assuming NIZK satisfies the subexponential composable zero-knowledge and completeness on simulated security (as per Definition 5), FHE satisfies the subexponential (selective) IND-CPA security (as per Definition 3), PRF satisfies the
subexponential pseudorandomness at punctured points and the functionality preservation under puncturing (as per Definition 1) and \(\text{iO} \) satisfies the correctness and subexponential security properties (as per Definition 4).

Proof. First we explain how to prove the computational signing property in the selective case, where \(\mathcal{A} \) sends the messages \(m_1, \ldots, m_N \in \{0, 1\} \) before receiving \(vk \). In this case, we can prove correctness using a hybrid argument, where we first switch the ciphertexts \(ct'_i \) from \(vk \) to \(\text{FHE.Enc}(fpk, m_i; r_i) \), using the selective IND-CPA security of FHE. Then, we want to change the way \(\text{FHS.Sign}(sk, m_i, i) \) computes the ZK proofs, using \(\pi \leftarrow \text{NIZK.Prove}(\text{crs}_\text{sim}, \text{stat}_m, ct'_i, r_i) \), where \(r_i \) is a witness for \(\text{stat}_m, ct'_i \); instead of producing \(\pi \leftarrow \text{NIZK.Sim}(\text{crs}_\text{sim}, \text{td}_\text{sim}, \text{stat}_m, ct'_i) \). This change would be justified by the composable zero knowledge property of NIZK. Finally, we would conclude the correctness proof using the completeness of NIZK on the simulated \(\text{crs}_\text{sim} \). To perform these changes, we first need to puncture the PRF key \(K_1 \) on the point 0, and hardcode the pair \((\text{crs}_\text{sim}, \text{td}_\text{sim}) = \text{NIZK.SimSetup}(\lambda^2; \text{PRF}(K_1, 0)) \) in the obfuscated circuits (which relies on the functionality preservation under puncturing of PRF and the security of \(\text{iO}) \), then switch the value \(\text{PRF}(K_1, 0) \) to truly random (which relies on the pseudorandomness at punctured points of PRF). Then, we can switch the way the proof \(\pi \) is computed by \(\text{FHS.Sign}(sk, m_i, i) \) as we explained, using the composable zero-knowledge property of NIZK. Finally use the completeness on simulated crs property of NIZK. To obtain correctness in the adaptive case, where \(\mathcal{A} \) can choose the messages \(m_1, \ldots, m_N \) after seeing \(vk \), we simply guess all the messages \(m_i \) in advance, which incurs a security loss of \(2^N \). Since we assume subexponential security of the underlying building blocks, we know that an adversary against the selective correctness can only succeed with a probability \(N \cdot 2^{-\kappa_1} + 4 \cdot 2^{-\kappa_2} \) for \(\varepsilon > 0 \) where \(\kappa_1 \) is the parameter used for FHE, and \(\kappa_2 \) is the parameter used for NIZK, PRF and \(\text{iO} \). Note that \(\varepsilon \) does not depend on \(N \), so we can choose \(\kappa_1, \kappa_2 \) as polynomials in the security parameter \(\lambda \) and the arity \(N \) such that \(2^N (N \cdot 2^{-\kappa_1} + 4 \cdot 2^{-\kappa_2}) \) is a negligible function of \(\lambda \), e.g.

\[
\kappa_1, \kappa_2 \geq (N + \log N + \log^2 \lambda)^{1/\varepsilon}.
\]

Lemma 9 (Computational Evaluation Correctness). The FHS scheme from Figure 5 satisfies the computational evaluation correctness as per Definition 6, assuming NIZK satisfies the subexponential zero-knowledge and completeness on simulated crs properties (as per Definition 5), FHE satisfies the subexponential (selective) IND-CPA security and the randomness homomorphism properties (as per Definition 3), PRF satisfies the subexponential pseudorandomness at punctured points and the functionality preservation under puncturing (as per Definition 1) and \(\text{iO} \) satisfies the subexponential security and the perfect correctness properties (as per Definition 4).

Proof. First, we prove the evaluation correctness in the selective case where the adversary \(\mathcal{A} \) sends the messages \(m_1, \ldots, m_N \) and the depth \(d \) of the circuit \(f \) before seeing the public key \(vk \). Then, \(\mathcal{A} \) receives \(vk \) and chooses the circuit \(f \) of depth \(d \). To obtain computational evaluation correctness in the adaptive setting where \(\mathcal{A} \) can choose \(f \) and the messages \(m_1, \ldots, m_N \) after seeing \(vk \) (as per Definition 3), we will use a guessing argument together with the subexponential security of the underlying building blocks similarly than for proving the signing correctness. Namely, we choose a superpolynomial function \(L(\lambda) \), e.g. \(L(\lambda) = 2^{\log^2 \lambda} \), and we guess the messages \(m_1, \ldots, m_N \) at random over \(\{0, 1\}^N \) and the depth \(d \) at random between 1 and \(L(\lambda) \). Because we choose \(L(\lambda) \) superpolynomial, we know that the depth \(d \) chosen by \(\mathcal{A} \) is less than \(L(\lambda) \), so the guess of the depth is correct with probability \(1/L(\lambda) \). Overall the guessing incurs a security loss of \(2^N L(\lambda) \).

Now we prove the selective variant of computational evaluation soundness. To begin with, we switch the ciphertexts \(ct'_i \) in \(vk \) to FHE encryptions of \(m_i \) of the form \(\text{FHE.Enc}(fpk, m_i; r_i) \), using the selective IND-CPA security of FHE, just as in the computational signing correctness proof. Moreover, by perfect correctness of \(\text{iO} \), we know that an evaluated signature \(\sigma_f = \text{Eval}(vk, f, (\sigma_1, m_1), \ldots, (\sigma_N, m_N)) \) is of the form \(\sigma_f = (ct, \pi, d) \) where \(ct = \text{FHE.Eval}(fpk, f, ct_1, \ldots, ct_N) \), and \(d \) is the depth of \(f \). By evaluation correctness of FHE, we know that \(ct \) is an encryption of the message \(f(m_1, \ldots, m_N) \). However, in the randomness homomorphism property of FHE, we know that \(ct = \text{FHE.Enc}(fpk, f(m_1, \ldots, m_N); r_f) \) where \(r_f = \text{FHE.EvalRand}(fsk, r_1, \ldots, r_N, m_1, \ldots, m_N, f) \). Then, we want to switch the way the proof \(\pi \) in \(\sigma_f \) is computed: using NIZK.Prove and the
witness \(r_f \) instead of using \(\text{NIZK.Sim} \) and the simulation trapdoor \(\text{td}_{\text{sim}} \). This switch would be justified by the composable zero-knowledge property of \(\text{NIZK} \). We would then conclude the proof using the completeness of \(\text{NIZK} \) on simulated \(\text{crs} \). Only to use these properties of \(\text{NIZK} \), we first need to generate \((\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) \) of level \(d \) using only random coins, as opposed to pseudo-random. As typical, this requires puncturing the \(\text{PRF} \) key \(K \) we have \(\sigma \), we denote by \(\text{Adv} \) with \(G \) also punctured in all the programs that run it.

When we hardcode a value in a subprogram, it is understood that this value is also hardcoded in all the programs that run it, and if a \(\text{PRF} \) key \(K \) is punctured in a subprogram, it is also punctured in all the programs that run it.

Since we assume subexponential security of the underlying building blocks, we know that an adversary against the selective computational evaluation correctness can only succeed with a probability \(N \cdot 2^{-\kappa_1} + 4 \cdot 2^{-\kappa_2} \) for \(\epsilon > 0 \) where \(\kappa_1 \) is the parameter used for \(\text{FHE} \), and \(\kappa_2 \) is the parameter used for \(\text{NIZK} \), \(\text{PRF} \) and \(\text{iO} \). Note that \(\epsilon \) does not depend on \(N \), so we can choose \(\kappa_1, \kappa_2 \) as polynomials in the security parameter \(\lambda \) and the arity \(N \) such that \(2^N L(\lambda) (N \cdot 2^{-\kappa_1} + 4 \cdot 2^{-\kappa_2}) \) is a negligible function of \(\lambda \), e.g.

\[
\kappa_1, \kappa_2 \geq (N + \log N + 2 \log^2 \lambda)^{1/\epsilon}.
\]

Lemma 10 (Weak Context Hiding). The \(\text{FHS} \) scheme from Figure 5 satisfies the weak context hiding property as per Definition 6, assuming the perfect correctness of \(\text{iO} \).

Proof. This property follows straightforwardly from the description of the \(\text{Eval} \) algorithm and the correctness of \(\text{iO} \). Indeed, \(\text{Eval} \) evaluates circuits gate by gate, using the \(\text{EvalNAND} \) algorithm (see Figure 5), which performs deterministic evaluation on the \(\text{FHE} \) ciphertext, and then derive a \(\text{ZK} \) proof deterministically from the statement and the depth level (using \(\text{PRF} \) on the key \(K_2 \)). Thus, we have \(\sigma_{g_{\alpha_f}} = \sigma_h \).

Lemma 11 (Pre-Processing). The \(\text{FHS} \) scheme from Figure 5 satisfies the pre-processing property as per Definition 6.

Proof. This simply follows from the description of \(\text{FHS.Verify} \). First, during a pre-processing phase, it computes the values \(ct_f \) and \(\text{crs} \) from \(vk \) and \(f \). This can be performed offline, since it does not require to know the message \(y \) and the signature \(\sigma \). The result is a short pre-processed key \(\alpha_f = (ct_f, \text{crs}) \). Then, during the online phase, \(\text{FHS.Verify} \) uses \(\alpha_f \), \(\sigma \) and \(y \) to run the \(\text{NIZK.Verify} \) algorithm. The running time of this online phase is independent from the size or depth of \(f \).

4 Proof of Unforgeability

Theorem 12 (Adaptive Unforgeability). Assuming subexponential security of \(\text{PRF} \), \(\text{FHE} \), \(\text{iO} \), and \(\text{NIZK} \), the \(\text{FHS} \) from Figure 5 satisfies subexponential unforgeability as per Definition 6.

Proof of Theorem 12. We first prove the selective unforgeability (as per Definition 6), where the adversary \(\mathcal{A} \) must send the messages \(m_1, \ldots, m_N \) before receiving \(vk \). Then we show how to obtain adaptive unforgeability using a guessing argument and the subexponential security of the underlying building blocks (just as in the proof of computational signing and evaluation correctness in the previous section).

To prove unforgeability in the selective setting, we use a sequence of hybrid games, starting with \(G_0 \), defined exactly as the selective unforgeability game from Definition 6. For any game \(G_i \), we denote by \(\text{Adv}_i(\mathcal{A}) \) the advantage of \(\mathcal{A} \) in \(G_i \), that is, \(\text{Adv}_i(\mathcal{A}) = \Pr[G_i(1^\lambda, \mathcal{A}) = 1] \), where the probability is taken over the random coins of \(G_i \) and \(\mathcal{A} \). Before we proceed to describe the other hybrids, we make several technical remarks.

Remark 13. When we hardcode a value in a subprogram, it is understood that this value is also hardcoded in all the programs that run it, and if a \(\text{PRF} \) key \(K \) is punctured in a subprogram, it is also punctured in all the programs that run it.
Remark 14 (Padding the programs). The security of iO can only be invoked for programs of the same size. For brevity, we assume without loss of generality that all programs in the security proof are padded to the size of the longest program. Since our hybrids extend up to a superpolynomial level $L(\lambda) = 2^{|\log \lambda|}$, this implies a small increase in the programs contained in the real verification key (since the last hybrid must keep track of the level, and its bit representation requires $\omega(\log \lambda)$ bits). For example, choosing $L(\lambda) = 2^{|\log \lambda|}$ would only incur a multiplicative increase by a factor of $\log^2 \lambda$ bits.

Remark 15 (Bounding the Sizes of Punctured PRF Keys). The security proof will require that PRF keys K_1 and K_2 are punctured at levels $i = 0 \ldots L(\lambda)$, where $L(\lambda) = 2^{|\log \lambda|}$. Puncturing increases the size of the keys. In existing constructions of PRFs (e.g., [GGM84]), the size of the punctured keys only grows logarithmically with the number of levels. This results in a size-increase of the keys (and therefore of the programs) of up to $O(\log^2 \lambda)$. In particular, it is important to note that this size increase is independent of the value of the specific level at which the adversary will output a forgery.

- **Game** G_1: same as G_0, except that we change the FHS.KeyGen algorithm. Instead of computing the ct_i' in the verification key as encryptions of 0, we compute $ct_i' \leftarrow \text{FHE.Enc}(m_i; r_i)$, where m_i are the messages sent by A. The randomness r_i used to compute the ciphertext ct_i' is stored in the secret key sk.

Lemma 16 (From G_0 to G_1). For every PPT adversary A, there exists a PPT adversary B, such that: $|\text{Adv}_{\text{FHE.Enc}}(A) - \text{Adv}_{\text{FHE.Enc} \cdot \text{FHE}}(A)| \leq \text{Adv}_{\text{IND-CPA}}(\kappa_1, B)$.

Proof. The reduction B starts by sending $(0 \ldots 0)$ and $(m_1 \ldots m_N)$ to the IND-CPA challenger. It receives $(ct_1' \ldots ct_N')$, which it embeds in the vk. During the execution of FHS.KeyGen, all the other obfuscated programs in vk are generated as before, but using the ciphertexts received from the challenger.

- **Game** G_2: same as G_1, except that we change the FHS.Sign algorithm and replace it with HybridSign, defined in Figure 6. The latter computes the signatures s_1, \ldots, s_N sent to A (after A sends the messages m_1, \ldots, m_N) as $s_i = (ct_i', \pi_i, 0)$ where $ct_i' = \text{FHE.Enc}(fpk, m_i; r_i)$ is the ith FHE encryption contained in vk, 0 indicates the level, and π_i is computed using the witness r_i (which is stored in sk), instead of using a simulation trapdoor.

Lemma 17 (From G_1 to G_2). For every PPT adversary A, there exist PPT adversaries B_1, B_2, B_3 such that:

$$|\text{Adv}_{\text{FHE.Enc}}(A) - \text{Adv}_{\text{FHE.Enc}}(A)| \leq 2(\text{Adv}_{\text{FHE.Enc}}(\kappa_2, B_1) + \text{Adv}_{\text{IO}}(\kappa_2, B_2)) + N \cdot \text{Adv}_{\text{ZK}}(\kappa_2, B_3).$$

Proof. To switch from proofs π_i generated using NIZK.Sim and the simulation trapdoor td_{sim} to proofs generated using NIZK.Prove and the witnesses r_i, as described in Figure 6, we want to use the composable zero-knowledge property of NIZK. To do so, we first have to hard-code the pair $(\text{crs}_{\text{sim}}, td_{\text{sim}}) = \text{NIZK.SimSetup}(1^{\kappa_2}; \text{PRF}(K_1, 0))$ in the obfuscated circuit instead of using the key K_1 on the point 0. To generate the pairs $(\text{crs}_{\text{sim}}, td_{\text{sim}})$ for all other levels $i \neq 0$, we compute $(\text{crs}_{\text{sim}}, td_{\text{sim}}) = \text{NIZK.SimSetup}(1^{\kappa_2}; \text{PRF}(K_1(0), i))$, where $K_1(0)$ is a key punctured at the point 0. Because puncturing preserves the functionality of PRF (as per Definition 1), this does not change the input/output behavior of the obfuscated circuit. Thus we can use the iO security to argue that this change is computational undetectable by the adversary. Then, we switch the hardcoded pair $(\text{crs}_{\text{sim}}, td_{\text{sim}}) = \text{NIZK.SimSetup}(1^{\kappa_2}; \text{PRF}(K_1, 0))$ to $(\text{crs}_{\text{sim}}, td_{\text{sim}}) = \text{NIZK.SimSetup}(1^{\kappa_2}; r_0)$, where r_0 is truly random. This is possible by the pseudorandomness property at punctured points of PRF. Then, we use the composable zero-knowledge property of NIZK to switch π_i to $\pi_i \leftarrow \text{NIZK.Prove}(\text{crs}_{\text{sim}}, \text{stat}_{ct', m_i}, r_i)$ for all $i \in [N]$. Finally, we switch back the generation of the pairs $(\text{crs}_{\text{sim}}, td_{\text{sim}})$ using pseudo-random coins for all levels (instead of using truly random coins for the level 0) and we unpuncture the key K_1.

On the Feasibility of Unleveled Fully-Homomorphic Signatures 17
HybridSign\((sk, m_1, i)\)
\[
\text{crs}_{\text{sim}} = \text{PubGenCRS}(0) \\
\pi_i \leftarrow \text{NIZK.Prove}(\text{crs}, \text{stat}_{m_1, \alpha'}, r_i) \\
\sigma_i = (ct_i', \pi_i, 0) \\
\text{Return } \sigma_i
\]

Fig. 6. In \(G_2\), we replace the FHS.Sign algorithm with HybridSign. Changes are highlighted in gray.

- **Game \(G_{3, \ell}\):** At this point, the proof proceeds in a series of \(L(\lambda) = 2^{\log^2 \lambda}\) hybrids where \(G_{3, \ell}\) is defined for all \(\ell \in \{0, \ldots, L(\lambda)\}\) identically to \(G_2\), except that:
 1. the program \(\text{GenCRS}\) is replaced by HybridGenCRS\(^f\), described in Figure 7. The latter generates a crs with an extraction trapdoor using NI\(\text{ZK.Setup}\) on any level \(\ell\), and generates a simulated crs with a simulation trapdoor using NI\(\text{ZK.SimSetup}\) on any level \(\ell\).
 2. the program \(\text{EvalNAND}\) is replaced by HybridEvalNAND\(^f\), described in Figure 7. For any level \(\ell\), the latter generates proofs for the next level using witnesses obtained using an extraction trapdoor and the randomness homomorphic property of FHE. For any level \(\ell\), it generates proofs for the next level using a simulation trapdoor.

Note that \(G_{3,0} = G_2\). In Theorem 18, we prove that for all \(\ell \in \{0, \ldots, L(\lambda) - 1\}\), \(G_{3, \ell} \approx G_{3, \ell + 1}\).

- **Game \(G_4\):** same as \(G_{3, L(\lambda)}\), except the game guesses the depth of the function \(f\) chosen by the adversary \(A\) for his forgery, by sampling \(d^* \leftarrow \{1, \ldots, L(\lambda)\}\). At the end of the game, \(A\) sends the forgery \((f, y, \sigma^*)\). If \(d^* \neq d\), then the game \(G_4\) outputs 0. Otherwise it proceeds as in \(G_{3, L(\lambda)}\). Since \(L(\lambda)\) has been chosen super polynomial in \(\lambda\), we know that the function \(f\) has depth \(d \leq L(\lambda)\). Thus, with probability \(1/L(\lambda)\), the guess is correct, i.e. we have \(d^* = d\). Therefore,
 \[
 \text{Adv}_{4}(A) = \frac{\text{Adv}_{4, L(\lambda)}(A)}{L(\lambda)}.
 \]

- **Game \(G_5\):** same as \(G_4\), except we puncture the key \(K_1\) at \(d^*\) and hardcode the value \(\text{PRF}(K_1, d^*)\) in the obfuscated circuit. Since puncturing preserve the functionality, we can use the security of iO to argue that there exists a PPT adversary \(B_5\) such that:
 \[
 |\text{Adv}_{5}(A) - \text{Adv}_{4}(A)| = \text{Adv}_{iO}(\kappa_2, B_5).
 \]

- **Game \(G_6\):** same as \(G_5\), except we change the value \(\text{PRF}(K_1, d^*)\) hardcoded in the obfuscated circuit is turned to a truly random value. By the pseudorandomness of \(\text{PRF}\) on punctured points, we know there exists a PPT \(B_6\) such that:
 \[
 |\text{Adv}_{6}(A) - \text{Adv}_{5}(A)| = \text{Adv}_{\text{PRF}}(\kappa_2, B_6).
 \]

We now proceed to bound \(\text{Adv}_{6}(A)\). By the knowledge soundness property of NI\(\text{ZK}\), we know that \(\text{Adv}_{6}(A) \leq \nu_{\text{sound}}(\kappa_2)\). Putting things together, we have \(\text{Adv}_{4}(A) \leq \nu_{\text{sound}}(\kappa) + \text{Adv}_{\text{PRF}}(\kappa_2, B_6) + \text{Adv}_{iO}(\kappa_2, B_5)\) and \(\text{Adv}_{3}(A) = L(\lambda)\text{Adv}_{4}(A)\). Together with the result of Theorem 18, we have:
\[
\text{Adv}_{0}(A) \leq (2^{\epsilon t} + 2 + L(\lambda) + 8)\text{Adv}_{iO}(\kappa_2, B_1) + (2^{\epsilon t} + 2 + L(\lambda) + 6)\text{Adv}_{\text{PRF}}(\kappa_2, B_2) + \text{Adv}_{\text{crs}}(\kappa_2, B_3) + (2^{\epsilon t} + 1 + N)\text{Adv}_{\text{ZK}}(\kappa_2, B_4) + (L(\lambda) + 2)\nu_{\text{sound}}(\kappa_2) + \text{Adv}_{\text{IND-CPA}}(\kappa_1, B_5).
\]

The subexponential security of the building blocks implies that there exists a constant \(\epsilon > 0\) such that \(\text{Adv}_{iO}(\kappa_2, B_1), \text{Adv}_{\text{PRF}}(\kappa_2, B_2), \text{Adv}_{\text{crs}}(\kappa_2, B_3), \text{Adv}_{\text{ZK}}(\kappa_2, B_4), \nu_{\text{sound}}(\kappa_2) \leq 2^{-\kappa_2}\) and \(\text{Adv}_{\text{IND-CPA}}(\kappa_1, B_5) \leq 2^{-\kappa_1}\). Thus, we have
\[
\text{Adv}_{0}(A) \leq 2^{-\kappa_2}(5 \cdot 2^{\epsilon t} + 3 L(\lambda) + N + 17) + 2^{-\kappa_1}.
\]

Since we chose \(L(\lambda) = \log^2 \lambda\), selective security can be achieved by choosing for instance
\[
\kappa_2 \geq (|ct| + \log N + 2 \log^2 \lambda + O(1))^{1/\epsilon},
\]
\[
\kappa_1 \geq (\log^2 \lambda)^{1/\epsilon}.
\]
To achieve adaptive unforgeability, we use the same guessing technique as for the proof of computation correctness (both signing and evaluation) in the previous section. Namely, we simply guess the messages \(m_1^*, \ldots, m_N^* \leftarrow_r \{0,1\} \) in advance, then proceed as in the selective game (but with the guesses \(m_i^* \) instead of the real messages chosen by the adversary). If the guess is correct, we have the same advantage as in the selective security game. If the guess is incorrect, the game outputs 0. This guessing argument incurs a security loss of \(2^N \). That is, the advantage of an adaptive adversary \(\mathcal{A} \) against the unforgeability of our FHS is less than \(2^N \) times the security loss in the selective setting written above. Therefore, adaptive unforgeability can be achieved by choosing for instance

\[
\kappa_2 \geq (|\text{ct}| + N + \log N + 2\log^2 \lambda + O(1))^{1/\varepsilon}, \quad \kappa_1 \geq (N + \log^2 \lambda)^{1/\varepsilon}
\]

(3)

This concludes the unforgeability proof. \(\square \)

<table>
<thead>
<tr>
<th>HybridGenCRS((\ell))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardcoded: key (K_1)</td>
</tr>
<tr>
<td>(s = \text{PRF}(K_1, \text{level}))</td>
</tr>
<tr>
<td>Return ((\text{crs}, \text{td}_{\text{ext}}) = \text{NIZK.Setup}(1^{\text{ext}}; s)) for level (\ell)</td>
</tr>
<tr>
<td>Return ((\text{crs}{\text{sim}}, \text{td}{\text{sim}}) = \text{NIZK.SimSetup}(1^{\text{ext}}; s)) for level (\geq \ell)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HybridEvalNAND(((\sigma_0, m_0), (\sigma_1, m_1)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardcoded: key (K_2)</td>
</tr>
<tr>
<td>Parse (\sigma_i), as ((\text{ct}_i, \pi_i, \text{level}_i)), for (b \in {0,1})</td>
</tr>
<tr>
<td>Return (\perp) if (\text{level}_0 \neq \text{level}_1)</td>
</tr>
<tr>
<td>(j = \text{level}_0)</td>
</tr>
<tr>
<td>((\text{crs}_j, \text{td}_j) = \text{HybridGenCRS}(j))</td>
</tr>
<tr>
<td>If (\text{NIZK.Verify}(\text{crs}j, \text{stat}{m_0, c}, \pi_0) = 0) for some (b \in {0,1}) then output (\perp)</td>
</tr>
<tr>
<td>(\text{ct} = \text{FHE.Eval}(\text{fik}, \text{NAND}, \text{ct}_0, \text{ct}_1))</td>
</tr>
<tr>
<td>(m = \text{NAND}(m_0, m_1))</td>
</tr>
<tr>
<td>((\text{crs}{j+1}, \text{td}{j+1}) = \text{HybridGenCRS}(j + 1))</td>
</tr>
<tr>
<td>(\rho = \text{PRF}(K_2, (m, \text{ct}, j + 1)))</td>
</tr>
<tr>
<td>If (j < \ell)</td>
</tr>
<tr>
<td>(r_b = \text{NIZK.Extract}(\text{crs}_j, \text{td}j, \text{stat}{m_b, c}, \pi_0)) for (b \in {0,1})</td>
</tr>
<tr>
<td>(r = \text{FHE.EvalRand}(\text{fik}, \text{NAND}, r_1, r_2))</td>
</tr>
<tr>
<td>(\pi = \text{NIZK.Prove}(\text{crs}{j+1}, \text{stat}{m, ct}, r; \rho))</td>
</tr>
<tr>
<td>If (j \geq \ell)</td>
</tr>
<tr>
<td>(\pi = \text{NIZK.Sim}(\text{crs}{j+1}, \text{td}{j+1}, \text{stat}_{m, ct}; \rho))</td>
</tr>
<tr>
<td>(\sigma = (\text{ct}, \pi, j + 1))</td>
</tr>
<tr>
<td>Return (\sigma)</td>
</tr>
</tbody>
</table>

Fig. 7. Algorithms HybridGenCRS(\(\ell \)) and HybridEvalNAND(\((\sigma_0, m_0), (\sigma_1, m_1) \)), used in the games \(G_{3,\ell} \), for all \(\ell \in \{0, \ldots, L(\lambda)\} \).

Theorem 18 (From \(G_{3,\ell} \) to \(G_{3,\ell+1} \)). For every \(\text{PPT} \) adversary \(\mathcal{A} \), there exist \(\text{PPT} \) adversaries \(\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4 \), such that:

\[
|\text{Adv}_{3,\ell}(\mathcal{A}) - \text{Adv}_{3,\ell+1}(\mathcal{A})| \leq (2^{|\text{ct}| + 2} + 6)\text{Adv}_{0}(\kappa_2, \mathcal{B}_1) + (2^{|\text{ct}| + 2} + 4)\text{Adv}_{\text{PRF}}(\kappa_2, \mathcal{B}_2) + 2^{|\text{ct}| + 1}\text{Adv}_{\text{ZK}}(\kappa_2, \mathcal{B}_3) + \text{Adv}_{\text{crs}}(\kappa_2, \mathcal{B}_4) + 2\varepsilon_{\text{sound}}(\kappa_2).
\]

We now provide the proof of the theorem.

Proof. We proceed by a hybrid argument using the games \(H_{\ell}^k \) defined as follows. For all \(k \in \mathbb{N} \) and all adversaries \(\mathcal{A} \), we denote by \(\text{Adv}_{\ell}^k(\mathcal{A}) \) the advantage of \(\mathcal{A} \) in the game \(H_{\ell}^k \), that is, \(\Pr[H_{\ell}^k(1^\lambda, \mathcal{A}) = 1] \), where the probability is taken over the random coins of \(H_{\ell}^k \) and \(\mathcal{A} \).

Hybrid \(H_{\ell}^k \): same as \(G_{3,\ell} \), except that we puncture the key \(K_1 \) at level \(\ell \) and we hardcode the pair \((\text{crs}_\ell, \text{td}_\ell) = \text{NIZK.SimSetup}(1^{\text{ext}}; \text{PRF}(K_1, \ell))\) in the obfuscated circuit. That is, the crs
Programs HybridGenCRS^j for $j \in \{1, 2, 3\}$ used in the proof. In each program, the changes relative to the previous program are highlighted in gray.

The only difference from the previous hybrid is the puncturing, and indistinguishability follows from the functionality preserving property of the PRF and security of iO. We thus have:

Lemma 19 (From $G_{3,\ell}$ to H^j_3). For every PPT adversary A, there exists a PPT adversary B, such that: $|\text{Adv}_{3,\ell}(A) - \text{Adv}^j_3(A)| \leq \text{Adv}_{\text{iO}}(\kappa_2, B)$.

Hybrid H^j_3: same as H^j_1, except we replace the value $\text{PRF}(K_1, \ell)$ to truly random. That is, now have $(\text{crs}_\ell, \text{td}_\ell) \leftarrow \text{NIZK.Setup}(1^{\kappa_2})$ generated with truly random coins. The crs generation HybridGenCRS^j_3 is replaced with algorithm HybridGenCRS^j_4 from Figure 8. $H^j_3 =_{c} H^j_1$ by the pseudorandomness of the PRF at the punctured point (see Definition 1).

Lemma 20 (From H^j_3 to H^j_2). For every PPT adversary A, there exists a PPT adversary B, such that: $|\text{Adv}^j_3(A) - \text{Adv}^j_2(A)| \leq \text{Adv}_{\text{PRF}}(\kappa_2, B)$.

Hybrid H^j_2: same as H^j_1, except that we use HybridGenCRS^j_4 (described in Figure 8) instead of HybridGenCRS^j_4. The level ℓ crs and trapdoor are now sampled as: $(\text{crs}_\ell, \text{td}_\ell) \leftarrow \text{NIZK.Setup}(1^{\kappa_2})$. That is, the td_ℓ is now an extraction trapdoor, instead of a simulation trapdoor. Note that in the games H^j_2 and H^j_3, td_ℓ is not used anywhere. In particular, the program $\text{HybridEvalNAND}^j_4$ uses the simulation trapdoor $\text{td}_{\ell+1}$ to produce the signature of level $\ell + 1$, and uses the extraction trapdoor $\text{td}_{\ell-1}$ and the randomness homomorphism of FHE to obtain a witness and produce the level ℓ signatures. Thus, we can change the way $(\text{crs}_\ell, \text{td}_\ell)$ is generated by the zero knowledge property of NIZK.

For clarity, we provide more explanations for why the simulation trapdoor at level ℓ does not appear in H^j_2. When $\ell = 0$, the change that removed the simulation trapdoor occurred in hybrid G_2. When $\ell > 0$, this change occurred when switching from $G_{3,\ell-1}$ to $G_{3,\ell}$.
Putting everything together, we have:

Lemma 21 (From H^2_0 to H^0_0). For every PPT adversary \(\mathcal{A} \), there exists a PPT adversary \(\mathcal{B} \), such that: \(|\text{Adv}^2_\mathcal{H}_{\mathcal{A}} - \text{Adv}^0_\mathcal{H}_{\mathcal{A}}| \leq \text{Adv}_{\text{crs}}(\kappa_2, \mathcal{B})|.

\[
\text{HybridEvalNAND}^1((\sigma_0, m_0), (\pi_1, m_1))
\]

<table>
<thead>
<tr>
<th>Hardcoded: Key (K_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse (\sigma_0) as ((ct_b, \pi_b, \text{level}_b)), for (b \in {0, 1})</td>
</tr>
<tr>
<td>If (\text{level}_b \neq \text{level}_1), return (\bot).</td>
</tr>
<tr>
<td>(j = \text{level}_b)</td>
</tr>
<tr>
<td>((\text{crs}_j, \text{td}j) = \text{HybridGenCRS}^1{\mathcal{H}}(j))</td>
</tr>
<tr>
<td>If (\text{NIZK}.\text{Verify}(\text{crs}j, \text{stat}{m_0, ct_0}, \pi_0) = 0) for some (\in {0, 1}) then return (\bot)</td>
</tr>
<tr>
<td>If (j = \ell, w_b \leftarrow \text{NIZK}.\text{Extract}(\text{crs}_j, \text{td}j, \text{stat}{m_0, ct_0}, \pi_0)) for all (b \in {0, 1},)</td>
</tr>
<tr>
<td>(\text{ct} = \text{FHE}.\text{Eval}(\text{fpk}, \text{NAND}; ct_0, ct_1))</td>
</tr>
<tr>
<td>(m = \text{NAND}(m_0, m_1))</td>
</tr>
<tr>
<td>((\text{crs}{j+1}, \text{td}{j+1}) = \text{HybridGenCRS}^1_{\mathcal{H}}(j + 1))</td>
</tr>
<tr>
<td>(\rho = \text{PRF}(K_2, (m, \text{ct}, j + 1)))</td>
</tr>
<tr>
<td>If (j < \ell)</td>
</tr>
<tr>
<td>(r_b = \text{NIZK}.\text{Extract}(\text{crs}_j, \text{td}j, \text{stat}{m_0, ct_0}, \pi_0)) for (b \in {0, 1})</td>
</tr>
<tr>
<td>(r = \text{FHE}.\text{EvalRand}(f_{\text{sk}}, \text{NAND}; r_1, r_2))</td>
</tr>
<tr>
<td>(\pi = \text{NIZK}.\text{Prove}(\text{crs}{j+1}, \text{td}{j+1}, \text{stat}_{m, ct}; r, \rho))</td>
</tr>
<tr>
<td>If (j \geq \ell)</td>
</tr>
<tr>
<td>(\pi = \text{NIZK}.\text{Sim}(\text{crs}{j+1}, \text{td}{j+1}, \text{stat}_{m, ct}; \rho))</td>
</tr>
<tr>
<td>(\sigma = (\text{ct}, \pi, j + 1))</td>
</tr>
<tr>
<td>Return (\sigma)</td>
</tr>
</tbody>
</table>

Fig. 9. Program \(\text{HybridEvalNAND}^1_{\mathcal{H}} \).

Hybrid H^1_0: same as \(H^1_0 \), except that we use \(\text{HybridEvalNAND}^1_{\mathcal{H}} \) from Figure 9. That is, in addition to check the input signatures passes the verification imposed by \(\text{NIZK}.\text{Verify} \), \(\text{HybridEvalNAND}^1_{\mathcal{H}} \) additionally runs the extractor on the proofs of level \(\ell \) and checks the witnesses obtained are actually proper randomness of the ciphertexts. It returns \(\bot \) if this extra check fails. These two programs are functionally different only if there exists a statement \(\text{stat}_{m, ct} \) and a proof \(\pi \) such that \(\text{NIZK}.\text{Verify}(\text{crs}_j, \text{stat}_{m, ct}, \pi) = 1 \) AND the value \(r \) obtained by \(\text{NIZK}.\text{Extract}(\text{crs}_j, \text{td}_j, \text{stat}_{m, ct}, \pi) \) is not a valid witness, i.e. it is not such that \(\text{ct} = \text{FHE}.\text{Enc}(\text{fpk}, m; r) \). The subexponential knowledge soundness of \(\text{NIZK} \) exactly bounds this event by \(\nu_{\text{sound}}(\kappa_2) \). If the programs are functionally equivalent, then we can rely on the security of iO. Thus, we have:

Lemma 22 (From H^3_0 to H^0_0). For every PPT adversary \(\mathcal{A} \), there exists a PPT adversary \(\mathcal{B} \), such that: \(|\text{Adv}^3_\mathcal{H}_{\mathcal{A}} - \text{Adv}^0_\mathcal{H}_{\mathcal{A}}| \leq \nu_{\text{sound}}(\kappa_2) + \text{Adv}_{\text{iO}}(\kappa_2, \mathcal{B})|.

Hybrid H^2_0: same as \(H^1_0 \), except that we puncture the key \(K_1 \{\ell\} \) additionally at the level \(\ell + 1 \) and we hardcode the pair \((\text{crs}_{\ell+1}, \text{td}_{\ell+1}) = \text{NIZK}.\text{SimSetup}(1^{\kappa_2}; \text{PRF}(K_1, 1, \ell + 1)) \) in the obfuscated circuit. That is, the crs generation procedure \(\text{HybridGenCRS}^1_{\mathcal{H}} \) is replaced with \(\text{HybridGenCRS}^1_{\mathcal{H}} \), described in Figure 10. Note that this replacement is also done in \(\text{HybridEvalNAND}^1_{\mathcal{H}} \), which uses the crs generation algorithm as a subroutine. The only difference from the previous hybrid is the puncturing, and indistinguishability follows from the functionality preserving property of the PRF and security of iO. We thus have:

Lemma 23 (From H^3_0 to H^0_0). For every PPT adversary \(\mathcal{A} \), there exists a PPT adversary \(\mathcal{B} \), such that: \(|\text{Adv}^3_\mathcal{H}_{\mathcal{A}} - \text{Adv}^0_\mathcal{H}_{\mathcal{A}}| \leq \text{Adv}_{\text{iO}}(\kappa_2, \mathcal{B})|.

Hybrid H^4_0: same as \(H^5_0 \), except that we replace the value \(\text{PRF}(K_1, 1, \ell + 1) \) to truly random. That is, now have \((\text{crs}_{\ell+1}, \text{td}_{\ell+1}) = \text{NIZK}.\text{SimSetup}(1^{\kappa_2}) \) generated with truly random coins. The crs generation \(\text{HybridGenCRS}^1_{\mathcal{H}} \) is replaced with algorithm \(\text{HybridGenCRS}^1_{\mathcal{H}} \) from Figure 10 (as before, this
HybridGenCRS\(_j^\ell\)(level)

Hardcoded: punctured key \(K_1\{\ell, \ell + 1\}\), pairs \((\text{crs}_\ell, \text{td}_\ell) \leftarrow \text{NIZK.Setup}(1^{\kappa_2})\)
and \((\text{crs}_{\ell + 1}, \text{td}_{\ell + 1}) \leftarrow \text{NIZK.SimSetup}(1^{\kappa_2})\)

If level < \(\ell\), \(r = \text{PRF}(K_1\{\ell, \ell + 1\}, \text{level})\), return \((\text{crs}_{\text{ext}}, \text{td}_{\text{ext}}) = \text{NIZK.Setup}(1^{\kappa_2}; r)\)
If level = \(\ell\), return \((\text{crs}_\ell, \text{td}_\ell)\)
If level = \(\ell + 1\), return \((\text{crs}_{\ell + 1}, \text{td}_{\ell + 1})\)
If level > \(\ell + 1\), \(r = \text{PRF}(K_1\{\ell, \ell + 1\}, \text{level})\), return \((\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) = \text{NIZK.SimSetup}(1^{\kappa_2}; r)\)

Fig. 10. Programs HybridGenCRS\(_j^\ell\) for \(j \in \{4, 5\}\) used in the proof. In each program, the changes relative to the previous program are highlighted in gray.

Lemma 24 (From \(H_7^\ell\) to \(H_6^\ell\)). For every PPT adversary \(\mathcal{A}\), there exists a PPT adversary \(\mathcal{B}\), such that: \(|\text{Adv}_{\mathcal{A}}^{\kappa_2}(\mathcal{A}) - \text{Adv}_{\mathcal{B}}^{\kappa_2}(\mathcal{A})| \leq \text{Adv}_{\text{PRF}}(\kappa_2, \mathcal{B})\).

Hybrid \(H_6^\ell\): same as \(H_6^\ell\), except that we use HybridEvalNAND\(_2^\ell\) from Figure 11. Now, when given as input signatures of level \(\ell\), HybridEvalNAND\(_2^\ell\) computes the level \(\ell + 1\) signatures using the extracted witnesses and the randomness homomorphism of FHE, instead of the simulation trapdoor. To perform this transition we need to do a hybrid argument over all \(2^{2^{\ell + 1}}\) possible statements \((c^*, m^*)\): we first puncture \(K_2\) on \((c^*, m^*, \ell + 1)\) and hardcode the proof \(\pi = \text{NIZK.Sim}(\text{crs}_{\ell + 1}, \text{td}_{\ell + 1}; \text{PRF}(K_2, (c^*, m^*, \ell + 1)))\) in the obfuscated circuit. Then we switch the value \(\text{PRF}(K_2, (c^*, m^*, \ell + 1))\) to truly random, and switch the proof to \(\pi \leftarrow \text{NIZK.Prove}(\text{crs}_{\ell + 1}, \text{td}_{\ell + 1}, r)\), where \(r\) is the witness extracted using the extraction trapdoor on the level \(\ell\) NIZK, i.e. it is such that \(c^* = \text{FHE.Enc}(\text{fpk}, m^*, r)\). These transitions rely on the security of iO, the pseudorandomness of PRF, and the composable zero-knowledge property of NIZK. The security loss of \(2^{2^{\ell + 1}}\) can be dealt with the subexponential security of iO, PRF, and NIZK, since these are run with a parameter \(\kappa_2\) that is independent of the size \(|c|\).

Theorem 25 (From \(H_6^\ell\) to \(H_5^\ell\)). For every PPT adversary \(\mathcal{A}\), there exist PPT adversaries \(\mathcal{B}_1, \mathcal{B}_2\), and \(\mathcal{B}_3\), such that: \(|\text{Adv}_{\mathcal{A}}^{\kappa_2}(\mathcal{A}) - \text{Adv}_{\mathcal{B}_1}^{\kappa_2}(\mathcal{A})| \leq 2^{2^{2\ell + 1}} (2\text{Adv}_{\text{iO}}(\kappa_2, \mathcal{B}_1) + 2\text{Adv}_{\text{PRF}}(\kappa_2, \mathcal{B}_2) + \text{Adv}_{\text{ZK}}(\kappa_2, \mathcal{B}_3))\).

We postpone the proof of this theorem further down.

Hybrid \(H_5^\ell\): same as \(H_6^\ell\), except that the algorithm HybridGenCRS\(_4^\ell\) (described in Figure 10) is used instead of HybridGenCRS\(_3^\ell\) to generate the crs (this replacement is also done in the program HybridEvalNAND\(_2^\ell\) which uses the crs generation algorithm as a subroutine). That is, we now have \((\text{crs}_{\ell + 1}, \text{td}_{\ell + 1}) = \text{NIZK.SimSetup}(1^{\kappa_2}; \text{PRF}(K_1, \ell + 1))\) generated with pseudo-random coins. The transition is the reverse of the transition from \(H_7^\ell\) to \(H_6^\ell\). We have \(H_7^\ell \approx_c H_6^\ell\) by the pseudorandomness of the PRF at the punctured point (see Definition 1).

Lemma 26 (From \(H_7^\ell\) to \(H_6^\ell\)). For every PPT adversary \(\mathcal{A}\), there exists a PPT adversary \(\mathcal{B}\), such that: \(|\text{Adv}_{\mathcal{A}}^{\kappa_2}(\mathcal{A}) - \text{Adv}_{\mathcal{B}}^{\kappa_2}(\mathcal{A})| \leq \text{Adv}_{\text{PRF}}(\kappa_2, \mathcal{B})\).
Fig. 11. Program HybridEvalNAND\(_j^\ell\).**

Hybrid H\(_j^0\): same as H\(_j^3\), except that the algorithm HybridGenCRS\(_j^\ell\) (described in Figure 8) is used instead of HybridGenCRS\(_j^3\) to generate the crs (as before, this replacement is also done in the program HybridEvalNAND\(_2\) which uses the crs generation algorithm as a subroutine). That is, we do not hardcode the pair (crs\(_j+1\), td\(_j+1\)) = NIZK.Setup\((1^{\kappa_2}; \text{PRF}(K_1, \ell + 1))\) in the obfuscated circuit, but instead use the PRF key that is only punctured at \(\ell\) (but not at \(\ell + 1\) anymore). The transition is the reverse of the transition from H\(_j^1\) to H\(_j^2\). The fact that H\(_j^2\) \(\approx\) H\(_j^3\) follows from the functionality preserving property of the PRF and security of iO. We thus have:

Lemma 27 (From H\(_j^0\) to H\(_j^3\)). For every PPT adversary \(A\), there exists a PPT adversary \(B\), such that: \(|\text{Adv}_{\text{H}_j}^0(\mathcal{A}) - \text{Adv}_{\text{H}_j}^3(\mathcal{A})| \leq \text{Adv}_{\text{IO}}(\kappa_2, \mathcal{B})|\).

Hybrid H\(_j^0;\): same as H\(_j^3\), except that we use HybridEvalNAND\(_{j+1}^\ell\) from Figure 7 instead of HybridEvalNAND\(_2\) (where both programs use the crs generation algorithm HybridGenCRS\(_3\) as a subroutine). The only difference is that HybridEvalNAND\(_{j+1}^\ell\) does not run the extractor on the proofs of level \(\ell\) and therefore cannot check that the witnesses obtained are actually proper randomness of the ciphertexts as in HybridEvalNAND\(_2\). These two programs are functionally different only if there exists a statement \(\text{stat}_{m,ct}\) and a proof \(\pi\) such that NIZK.Verify(crs\(_j\), \text{stat}_{m,ct}, \pi) = 1 AND the value \(r\) obtained by NIZK.Extract(crs\(_j\), td\(_j\), \text{stat}_{m,ct}, \pi) is not a valid witness, i.e. it is not such that ct = FHE.Enc(fpk, m; r). The subexponential knowledge soundness of NIZK exactly bounds this event by \(\nu_{\text{sound}}(\kappa_2)\). If the programs are functionally equivalent, then we can rely on the security of iO. This transition is the reverse of the transition from H\(_j^1\) to H\(_j^2\). Thus, we have:

Lemma 28 (From H\(_j^0;\) to H\(_j^1;\)). For every PPT adversary \(A\), there exists a PPT adversary \(B\), such that: \(|\text{Adv}_{\text{H}_j}^0(\mathcal{A}) - \text{Adv}_{\text{H}_j}^1(\mathcal{A})| \leq \nu_{\text{sound}}(\kappa_2) + \text{Adv}_{\text{IO}}(\kappa_2, \mathcal{B})|\).

Hybrid H\(_j^1;\): same as H\(_j^1\), except the crs generation algorithm HybridGenCRS\(_j^\ell\) is replaced with algorithm HybridGenCRS\(_j^{\ell+1}\) from Figure 12 (this replacement is also done in the program HybridEvalNAND\(_{j+1}^\ell\) that runs the crs generation algorithm as a subroutine). The pair (crs\(_j\), td\(_j\)) is now generated using pseudo-random coins, namely: (crs\(_j\), td\(_j\)) = NIZK.Setup\((1^{\kappa_2}; \text{PRF}(K_1, \ell))\). The fact that H\(_j^1\) \(\approx\) H\(_j^3\) relies on the pseudorandomness of the PRF at the punctured point (see Definition 1). This is the reverse transition than between H\(_j^2\) and H\(_j^3\).
Lemma 29 (From H^6 to H_7). For every PPT adversary A, there exists a PPT adversary B, such that: $\left| \text{Adv}_{\ell}^6(A) - \text{Adv}_{\ell}^7(A) \right| \leq \text{Adv}_{\ell}^\text{PRF}(\kappa_2, B)$.

The only difference between H^6 and $G_{3,\ell+1}$ is that the former uses HybridGenCRS_6 whereas the latter uses $\text{HybridGenCRS}^{\ell+1}$ to generate the crs. While the former hardcodes the pair $(\text{crs}_\ell, \text{td}_\ell)$, the latter uses the unpunctured key K_ℓ for all levels. Because of the functionality preserving property of the PRF, these two programs implement the same functionality; therefore, we can use the security of iO to argue that $H^6 \approx G_{3,\ell+1}$. Namely, we have:

Lemma 30 (From H^6 to $G_{3,\ell+1}$). For every PPT adversary A, there exists a PPT adversary B, such that: $\left| \text{Adv}_{\ell}^6(A) - \text{Adv}_{\ell}^{3,\ell+1}(A) \right| \leq \text{Adv}_{\ell}^\text{iO}(\kappa_2, B)$.

Putting everything together, we obtain that for every PPT adversary A, there exist PPT adversaries B_1, B_2, B_3, B_4, such that:

$$\left| \text{Adv}_{\ell}(A) - \text{Adv}_{\ell}^{3,\ell+1}(A) \right| \leq (2^{\lceil \ell \rceil} + 2)\text{Adv}_{\ell}^\text{iO}(\kappa_2, B_1) + (2^{\lceil \ell \rceil} + 4)\text{Adv}_{\ell}^\text{PRF}(\kappa_2, B_2) + 2^{\lceil \ell \rceil} \text{Adv}_{\ell}^\text{ZK}(\kappa_2, B_3) + \text{Adv}_{\ell}^\text{crs}(\kappa_2, B_4) + 2\nu^\text{sound}(\kappa_2),$$

which concludes the proof of Theorem 12. \(\square\)

We now provide the proof of Theorem 25. To prove this theorem, we perform a hybrid argument over all possible bit strings $(m, ct) \in \{0,1\}^{\lceil \ell \rceil+1}$, where $|ct|$ denotes the size of the FHE ciphertexts. We order the bit strings arbitrarily from $\text{str}_1, \text{str}_2, \ldots, \text{str}_{2^{\lceil \ell \rceil}+1} \in \{0,1\}^{\lceil \ell \rceil+1}$. For all $i \in [2^{\lceil \ell \rceil}+1]$ and all bit strings $(m, ct) \in \{0,1\}^{\lceil \ell \rceil+1}$, we write $(m, ct) < \text{str}_i$ if (m, ct) is ranked before str_i (according to the arbitrary order). For notational convenience, we define str_0 that is ranked lower than all bit strings, i.e. $\text{str}_0 < \text{str}_i$ for all $i \in [2^{\lceil \ell \rceil}+1]$. We think it is a good time to remind the reader that the notation $[n]$ for any integer $n \in \mathbb{N}$ denotes the set $[n] = \{1, \ldots, n\}$. For all $i \in [2^{\lceil \ell \rceil}+1]$, we define the hybrid game J_i^ℓ as follows.

Hybrid J^ℓ_i: same as H^6, except the program $\text{HybridEvalNAND}^\ell_i$ is replaced by $\text{HybridEvalNAND}^\ell_{1,i}$, described in Figure 13, which uses as a subroutine the program GenProof^ℓ_i. The latter generates proofs for levels $j < \ell$ using NIZK.Prove and a witness, whereas it uses NIZK.Sim and a simulation trapdoor for levels $j > \ell$, as before. For level $j = \ell$, it generates proof for statements $\text{stat}_{m,ct}$ such that $(m, ct) \leq \text{str}_i$ using NIZK.Prove and statements such that $(m, ct) > \text{str}_i$ using NIZK.Sim. It is clear that $J_0^\ell = H^6$ and $J_{2^{\lceil \ell \rceil}+1}^\ell = H_7^\ell$, by definition of the games.

We now prove the following lemma.

Lemma 31 (From $J_i^{\ell-1}$ to J_i^ℓ). For all $i \in [2^{\lceil \ell \rceil}+1]$ all PPT adversaries A, there exist PPT adversaries B_1, B_2, B_3, such that: $\left| \text{Adv}(J_i^{\ell-1}, A) - \text{Adv}(J_i^\ell, A) \right| \leq 2\text{Adv}_{\ell}^\text{iO}(\kappa_2, B_1) + 2\text{Adv}_{\ell}^\text{PRF}(\kappa_2, B_2) + \text{Adv}_{\ell}^\text{ZK}(\kappa_2, B_3)$.

Note that when str_i is of the form (m, ct) such that there is no $r \in \mathbb{R}$ such that $ct = \text{FHE.Enc}(\text{pk}, m; r)$, then the two games $J_i^{\ell-1}$ and J_i^ℓ are identical. Thus we focus on the case where $\text{str}_i = (m, ct)$ where ct is an encryption of m, that is, there exists $r_i^* \in \mathbb{R}$ such that $ct = \text{FHE.Enc}(\text{pk}, m; r_i^*)$. Recall that we assume the FHE has unique randomness. The proof of the lemma requires more hybrid games, defined below.

Fig. 12. Program $\text{HybridGenCRS}_6^\ell$ used in the unforgeability proof.
Lemma 33 (From J_{ℓ}^{l-1} to $J_{\ell}^{l-1.1}$). For all PPT adversaries A, there exist a PPT adversary B such that: $|\text{Adv}(J_{\ell}^{l-1}, A) - \text{Adv}(J_{\ell}^{l-1.1}, A)| \leq \text{Adv}_{\text{iO}}(\kappa_2, B)$.

Hybrid $J_{\ell}^{l-1.2}$: same as $J_{\ell}^{l-1.1}$, except the program $\text{GenProof}^{l}_{\ell-1.2}$ (described in Figure 14) is now used instead of $\text{GenProof}^{l}_{\ell-1.1}$. We now use truly random coins to generate the proof $\pi^* \leftarrow \text{NIZK.Sim}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{str})$ instead of the pseudorandom coins $\text{PRF}(K_2, (\text{str}_i, \ell + 1))$. We can justify this transition using the security of iO. Namely, we have:

Lemma 33 (From J_{ℓ}^{l-1} to $J_{\ell}^{l-1.2}$). For all PPT adversaries A, there exist a PPT adversary B such that: $|\text{Adv}(J_{\ell}^{l-1}, A) - \text{Adv}(J_{\ell}^{l-1.2}, A)| \leq \text{Adv}_{\text{PRF}}(\kappa_2, B)$.

Hybrid $J_{\ell}^{l-1.3}$: same as $J_{\ell}^{l-1.2}$, except the program $\text{GenProof}^{l}_{\ell-1.3}$ (described in Figure 15) is now used instead of $\text{GenProof}^{l}_{\ell-1.2}$. We now generate the hardcoded proof as $\pi^* \leftarrow \text{NIZK.Prove}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{str}, r^*_i)$ instead of using the algorithm NIZK.Sim and the simulation trapdoor td_{j+1}. Recall that r^*_i denotes the randomness such that $\text{str}_i = (m, ct)$ and $ct = \text{FHE.Enc}(fpk, m; r_i)$. Note that we rely on the fact that the FHE scheme has unique randomness here. We can justify this transition using the composability zero-knowledge of NIZK. Namely, we have:

Lemma 34 (From $J_{\ell}^{l-1.2}$ to $J_{\ell}^{l-1.3}$). For all PPT adversaries A, there exist a PPT adversary B such that: $|\text{Adv}(J_{\ell}^{l-1.2}, A) - \text{Adv}(J_{\ell}^{l-1.3}, A)| \leq \text{Adv}_{\text{ZK}}(\kappa_2, B)$.

Fig. 13. Program HybridEvalNAND$_{\ell+1}^l$, which use the program GenProof$_{\ell}$ as a subroutine.

Hybrid $J_{\ell}^{l-1.1}$: same as J_{ℓ}^{l-1}, except the program GenProof$_{\ell-1}$ used as a subroutine of HybridEvalNAND$_{\ell-1.1}$ is replaced by GenProof$_{\ell-1.1}$, described in Figure 14. We now hardcode the proof $\pi^* = \text{NIZK.Sim}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{str}, \text{PRF}(K_2, (\text{str}_i, \ell + 1)))$ and use the punctured key $K_2\{\text{str}_i, \ell + 1\}$ to generate the other proofs. Since puncturing preserve the functionality, we know the obfuscated circuits are functionality equivalent. Thus, we can justify this transition using the security of iO. Namely, we have:
such that:

We would like to thank Geoffroy Couteau and Dennis Hofheinz for their input during discussions that led to this work.

\begin{thebibliography}{9}

\end{thebibliography}
On the Feasibility of Unleveled Fully-Homomorphic Signatures

A FHE with Unique Randomness

Here we present two FHE schemes with unique randomness. The first one is a variant of the GSW FHE scheme [GSW13], where the left over hash lemma is replaced by a computational argument, namely the use of the LWE assumption. The second is a variant of the scheme from [CLTV15] from subexponentially secure iO plus re-randomizable encryption. In our variant, we simply require the re-randomizable encryption to have unique randomness. This property is satisfied by standard encryption schemes, such as Goldwasser Micali, ElGamal, Paillier or Damgard Jurik.
A.1 Variant of GSW

The GSW scheme uses a random binary matrix R and computes the encryption of m as $ct = pk \cdot R + mG$, where pk and G are matrices of appropriate dimensions. For security, R is much higher than pk: the map $R \rightarrow pk \cdot R$ is not injective and there are multiple matrices R' that are compatible with ct and m. This choice of dimension is required to apply a statistical argument referred to as the left over hash lemma [ILL89]. Instead, we rely on a computational argument which is compatible with unique randomness, just as in the encryption scheme from [LP11]. In this variant, an encryption of m is of the form $ct = pk \cdot R + E + mG$ where E is a matrix of small-norm values (called the error term or noise term). Now, the height of R is about the same as the height of pk. With this choice of dimension, the map $R, E \rightarrow pk \cdot R + E$ is now injective. Thus, the scheme has unique randomness. The security relies on the LWE assumption. In particular, pk is first switched to a uniformly random matrix. Then, The LWE assumption is used to argue that the value $pk \cdot R + E$ is pseudo random and hides the message part mG. Note that to use LWE, we use R with values distributed according to a small error distribution (as the values of E), but not binary as before.

A.2 Variant of CLTV

In their paper, CLTV build an unleveled FHE from subexponentially secure iO for circuits and re-randomizable encryption. The FHE encryption in their scheme simply runs the re-randomizable encryption algorithm. If the latter has unique randomness, then so does the FHE. It is straightforward to see that the re-randomizable encryption schemes [GM82, ElG84, Pai99, DJ01] happen to satisfy the unique randomness property.

B Unbounded Arity in the Random Oracle Model

In this section, we provide a variant of the construction from Figure 5, which does not require the parameter N to be known when running $\text{KeyGen}(\cdot)$. recall that the parameter N dictated the size of the dataset $(x_1 \ldots x_N)$ to be signed. The construction with unbounded arity is given in Figure 16.

The ciphertexts ct'_i are not fixed in the verification key anymore, but are generated using a hash function H as $ct'_i = H(i)$. Using the random oracle model, one argues that $H(i)$ looks uniformly random. Under the additional assumption that FHE has ciphertexts that are computationally indistinguishable from uniformly random strings, $ct'_i = H(i)$ can be interpreted as FHE ciphertexts.

Random Oracles and Obfuscation. We stress that the random oracle H never appears inside an obfuscated program, but only as part of the FHS.Setup and FHS.Verify algorithms.

Definition 37. A fully homomorphic encryption scheme has pseudo-random ciphertexts if for all PPT adversaries A, it holds that $\text{Adv}^{\text{FHE}}_{\text{IND-CPA}}(\lambda, A)$ in the experiment Exp-Rand from Figure 17 is negligible.

Theorem 38 (Selective Unforgeability). Assuming that FHE has pseudo-random ciphertexts, as well as the subexponential security of PRF, FHE, iO, and NIZK, the FHS scheme from Figure 16 achieves selective correctness and selective unforgeability in the random oracle model.

Proof Sketch. This proof is similar to the proof of Theorem 12, we mostly focus on highlighting the main differences here. One important difference is that we only prove selective unforgeability here, where the adversary sends messages of its choice $m_1 \ldots m_N$ to the challenger before receiving vk. In the previous scheme, we would switch the ciphertext ct'_i from vk to encryption of m_i. Here, we will program the hash function H (modeled as a random oracle) so that $H(i) = \text{FHE.Enc}(m_i; r_i)$ where the randomness r_i is sampled on the fly when H is queried. This is computationally indistinguishable
from truly random values because the FHE has pseudo-random ciphertexts. Afterwards, the proof proceeds as the for the bounded-arity scheme.

Note that we cannot simply guess the messages \(m_1, \ldots, m_N \) in advance to obtain adaptive unforgeability here, since the number of such messages is unbounded. Thus we have to settle down for selective unforgeability. The same remark applies to the correctness proof: we only obtain a selective variant. Consequently, our proof here does not suffer from a security loss of \(2^N \) and we can choose parameters

\[
\kappa_2 = (|\text{ct}| + 3 \log^2 \lambda + O(1))^{1/\varepsilon}, \\
\kappa_1 = (\log^2 \lambda)^{1/\varepsilon},
\]

where \(\varepsilon > 0 \) is a constant whose existence is implied by the subexponential security of the building blocks.

\section{Full Context-Hiding Security}

Full context-hiding is a stronger property of fully-homomorphic signatures, ensuring that a signature \(\sigma \) for \(m \) does not leak the original messages \(m_1 \ldots m_N \) from which \(\sigma \) was derived. In particular, the signature \(\sigma \) should be simulatable only using \(m \) and the function \(f \) for which \(\sigma \) was computed. This must hold even if the adversary is given the secret key \(sk \) of the FHS scheme. This is different from the notion of weak context-hiding from Definition 6, which only states that executing the operations in the functions in a different (but still consistent) order leads to the same signature. In contrast, full context-hiding also allows for guarantees on the privacy of the original messages \(m_1 \ldots m_N \).

The construction from \cite{GVW15} supports full context-hiding\(^5\), but suffers from several drawbacks:

1. The homomorphic signatures of \cite{GVW15} are not themselves fully context-hiding, but they can be processed in order to ensure that they maintain the privacy of the original input \(m_1 \ldots m_N \). This means that \(\sigma \) is processed into a new context-hiding signature \(\sigma' \).
2. However, this postprocessing step also removes the homomorphism property of the resulting signature \(\sigma' \). This means that \(\sigma' \) cannot be further combined either with other non-context hiding signatures or other fully context-hiding ones. It was left as an open problem in \cite{GVW15} to achieve fully context-hiding signatures that are homomorphic as well.

Our scheme from Figure 5, Section 3 has none of this two drawbacks. Signatures are already fully context-hiding and require no further postprocessing. Moreover, they can be combined for an unbounded number of levels.

In order to showcase this property, we first provide a formal definition of full context-hiding, which will be a strengthening of the notion from \cite{GVW15}.

\begin{definition}[Full Context-Hiding] A fully homomorphic single-data signature scheme FHS is fully context-hiding if there exists a PPT simulator \(\text{Sim} \) such that for any fixed choice \((vk, sk) \) in the support of \(\text{KeyGen}(1^\lambda,1^N) \), for all messages \(m \), for all pre-processed public keys \(\alpha \) derived from \(vk \), and all \(\sigma \) in the support of either \(\text{FHS.Sign}_{sk}(\cdot) \) or \(\text{FHS.Eval}_{vk}(\cdot) \), it holds that for all PPT adversaries \(A \):

\[
\Pr[A(vk, sk, \alpha, \sigma, m) = 1] - \Pr[\sigma' = \text{Sim}(sk, \alpha, m) : A(vk, sk, \alpha, \sigma', m) = 1] \leq \text{negl}(\lambda)
\]
\end{definition}

\(^5\) We note that full context-hiding is simply called context-hiding in \cite{GVW15}. We use this terminology to distinguish from the notion of weak context-hiding in Definition 6.
Lemma 40. The FHS construction from Figure 5 satisfies perfect full context-hiding in the sense of Definition 39.

Proof. Note that the definition requires that only honestly computed signatures are fully context-hiding. To see why that is indeed the case, we describe Sim: the simulator parses α as an FHE ciphertext, and computes a proof π and uses the simulation trapdoor td_sim of the NIZK at the corresponding level to generate a fake proof π' that α indeed encrypts m.

We explain the simulator in more details. Let level be the corresponding parameter of signature σ. The simulator Sim knows the PRF keys K_1, K_2 and computes $(crs_sim, td_sim) = \text{NIZK.Setup}^{(1^{\lambda}; r)}$ with randomness $r = \text{PRF}(K_1, \text{level})$. It then derives $\pi = \text{NIZK.Sim}(crs_sim, td_sim, \text{stat}_{m, \alpha}; \rho)$ using $\rho = \text{PRF}(K_2, (m, ct))$. Simulated signature σ' is then computed as $\sigma' = (\alpha, \pi, \text{level})$. It is straightforward to check that the simulated signatures are computed in the same way as honest ones, therefore the distribution of simulated signatures is identical to those of honestly-computed ones.

D Discussion on SNARKs

It was claimed in [GW13, GVW15] that FHS can be built from succinct arguments of knowledge (SNARKs) for NP, although no concrete construction was provided (let alone a security analysis). We sketch here a possible approach to build FHS from SNARKs. The main disadvantage of this approach is its reliance on a strong extractability property, which is only achievable from strong knowledge extraction assumptions (even in the random oracle model), as far as we know.

The first construction that comes to mind is simply to use a digital signature scheme $\Sigma = (\text{KeyGen}, \text{Sign}, \text{Verify})$ together with a SNARK as follows: given signatures $\{\sigma_i = \text{Sign}(sk, m_i)\}_{i \in [n]}$ of the dataset $\{m_i\}_{i \in [n]}$, one can simply evaluate a function f on the messages m_i to obtain the value $y = f(m_1, \ldots, m_n)$ and create a proof for the statement: $\exists\{m_i, \sigma_i\}_{i \in [n]}$ such that $f(m_1, \ldots, m_n) = y$ and Verify$(vk, \sigma_i, m_i) = 1$ for all $i \in [n]$. The proof serves as the evaluated signature. Succinctness of the SNARK directly translates into succinct signatures (and therefore efficient to verify). The extraction property of the SNARK is necessary to reduce the unforgeability of the FHS to the unforgeability of the underlying signatures scheme. Unfortunately, this property has been shown to require non-falsifiable so-called knowledge of exponent assumptions [GW11, CGKS23] or rely on the random oracle model [Mic00]. This is in contrast to general obfuscation that can be build from falsifiable assumptions [JLS21, GP21, JLS22].

Another problem with this approach is that it only allows users to perform homomorphic computations in one step, unlike existing constructions (including ours) where the homomorphic computations can be performed in multiple hops. To achieve this feature, SNARK can be used to check that the simulated signatures are computed in the same way as honest ones, therefore the distribution of simulated signatures is identical to those of honestly-computed ones.

E Multi-Data FHS

[GVW15] also analysed the case of multi-data FHS, a generalization of the single-dataset definition of FHS. Moreover, [GVW15, Theorem 5.1] contains a generic transformation that also applies to our scheme in Figure 5.
In this appendix, we recall the definition of FHS for multiple datasets, where each dataset is labeled (the label can be an identifier or a time stamp, for instance). Multi-data FHS schemes offer more functionality and are more useful in practical applications:

Definition 41 (Multi-Data FHS). A multi-data FHS scheme is a tuple of PPT algorithms \(\Sigma = \langle \text{KeyGen}, \text{Sign}, \text{Verify}, \text{Eval} \rangle \) such that:

- **KeyGen**(\(1^\lambda, 1^N \)): on input the security parameter \(\lambda \) and a data-size bound \(N \), it generates a public verification key \(\text{vk} \), along with a secret signing key \(\text{sk} \).

- **Sign**(\(\text{sk}, m_i, i, \tau \)): on input the secret key \(\text{sk} \), a message \(m_i \in \{0, 1\}^\ell \), an index \(i \in [N] \), and a label \(\tau \in \{0, 1\}^* \), it outputs a signature \(\sigma \) under a label \(\tau \).

- **Eval**(\(\text{vk}, f, (m_1, \sigma_1), \ldots, (m_N, \sigma_N), \tau \)): on input the public key \(\text{vk} \), a function \(f \) of arity \(N \) and pairs \((m_i, \sigma_i) \) under label \(\tau \), it deterministically outputs an evaluated signature \(\sigma \) of the message \(f(m_1, \ldots, m_N) \) for label \(\tau \).

- **Verify**(\(\text{vk}, f, y, \sigma, \tau \)): on input the public key \(\text{vk} \), a function \(f \), a value \(y \), a label \(\tau \) and a signature \(\sigma \), it outputs a bit 0 if the signature \(\sigma \) is deemed invalid under label \(\tau \), 1 if it is considered valid for \(\tau \).

Multi-data FHS has the same properties as the single-data FHS from Definition 6. Here we only describe the properties whose descriptions need to be adapted in order to support labels.

Computational Signing Correctness. For all efficient algorithms \(\mathcal{A} \), the following probability, defined for all \(\lambda, N \in \mathbb{N} \) is negligible in \(\lambda \): \(\text{Pr}[(\text{vk}, \text{sk}) \leftarrow \text{Setup}(1^\lambda, 1^N), (m_1, \ldots, m_N, \tau) \leftarrow \mathcal{A}(\text{vk}), \forall i \in [N], \sigma_i \leftarrow \text{Sign}(\text{sk}, m_i, i, \tau) : \exists i \in [N] \text{ s.t. } \text{Verify}(\text{vk}, \text{id}_i, m_i, \sigma_i, \tau) = 0] \).

Computational Evaluation Correctness. For all efficient algorithms \(\mathcal{A} \), the following probability, defined for all \(\lambda, N \in \mathbb{N} \) is negligible in \(\lambda \): \(\text{Pr}[(\text{vk}, \text{sk}) \leftarrow \text{Setup}(1^\lambda, 1^N), (m_1, \ldots, m_N, \tau, f) \leftarrow \mathcal{A}(\text{vk}), \forall i \in [N], \sigma_i \leftarrow \text{Sign}(\text{sk}, m_i, i, \tau), \sigma_f \leftarrow \text{Eval}(\text{vk}, f, (m_1, \sigma_1), \ldots, (m_N, \sigma_N), \tau), y = f(m_1, \ldots, m_N) : \text{Verify}(\text{vk}, f, y, \sigma_f, \tau) = 0] \).

Weak Context Hiding. For all \(\lambda, N, t, \ell \in \mathbb{N} \), all \((\text{vk}, \text{sk}) \) in the support of \(\text{Setup}(1^\lambda, 1^N) \), all messages \(m_1, \ldots, m_\ell \in \{0, 1\}^\ell \), all labels \(\tau \in \{0, 1\}^* \), all \(t \)-ary functions \(f_1, \ldots, f_\ell \), \(\ell \)-ary functions \(g \), we have:

\[
\sigma_{\text{go}f} = \sigma_h,
\]

where \(\sigma_{\text{go}f} = \text{Eval}(\text{vk}, g_i, (\sigma_{f_1, f_1(i\vec{m})}), \ldots, (\sigma_{f_\ell, f_\ell(i\vec{m})}), \tau) \), \(\sigma_h = \text{Eval}(\text{vk}, h, (\sigma_1, m_1), \ldots, (\sigma_\ell, m_\ell), \tau) \) for all \(i \in [t], \sigma_h = \text{Eval}(\text{vk}, h, (\sigma_1, m_1), \ldots, (\sigma_\ell, m_\ell), \tau) \), \(h \) is the \(t \)-ary function defined on any input \(m_1, \ldots, m_\ell \) as \(h(\vec{m}) = g(f_1(\vec{m}), \ldots, f_\ell(\vec{m})) \), which we denote by \(h = g \circ f \). We are also using the notation \(\vec{m} = (m_1, \ldots, m_\ell) \).

Adaptive Unforgeability. For all stateful PPT adversaries \(\mathcal{A} \) and all data bound \(N \in \mathbb{N} \), the advantage \(\text{Adv}_{\Sigma}^{\text{for}}(\lambda, \mathcal{A}) \) defined below is a negligible function of the security parameter \(\lambda \in \mathbb{N} \):

\[
\text{Adv}_{\Sigma}^{\text{for}}(\lambda, \mathcal{A}) = \text{Pr}[(\text{sk}, \text{vk}) \leftarrow \text{Setup}(1^\lambda, 1^N), (m_1, \ldots, m_N, \tau) \leftarrow \mathcal{A}(\text{vk}), \forall i \in [N], \sigma_i \leftarrow \text{Sign}(\text{sk}, m_i, i, \tau), (f, y, \sigma^*) \leftarrow \mathcal{A}(\sigma_1, \ldots, \sigma_N) : \text{Verify}(\text{vk}, f, y, \sigma^*) = 1 \wedge y \neq f(m_1, \ldots, m_n)]
\]

Selective unforgeability is defined identically except the adversary \(\mathcal{A} \) must send the messages \(m_1, \ldots, m_n \) of its choice before seeing the public key \(\text{vk} \).
Definition 42 (Multi-Data Adaptive Security of Homomorphic Signatures [GVW15]). A multi-data homomorphic signature scheme is adaptively secure if for all stateful PPT adversaries A, the advantage of A in the following experiment is negligible:

- The challenger generates \((vk, sk) \leftarrow \text{KeyGen}(1^\lambda, 1^N)\). It sends \(vk\) to \(A\).
- Adaptive Signing Queries: The adversary \(A\) asks an arbitrary number of signing queries. For every query \(j\), \(A\) picks a fresh label \(\tau_j \in \{0, 1\}^*\) that was never queried before, along with messages \((m_{j,1} \ldots m_{j,N}) \in \{0, 1\}^N\). The challenger replies with the corresponding signature:

\[
(\sigma_{j,1}, \ldots, \sigma_{j,N}) = (\text{Sign}(sk, m_{j,1}, 1, \tau) \ldots \text{Sign}(sk, m_{j,N}, N, \tau))
\]

- \(A\) chooses a function \(f : \{0, 1\}^N \to \{0, 1\}\) and values \(\tau, y', \sigma'\). It wins the experiment when \(\text{Verify}(vk, f, y', \sigma', \tau) = 1\) and one of the following conditions hold:

1. Type I forgery: \(\tau \neq \tau_j\) for any query \(j\). This means that the adversary produces a signature for a label that it never queried before.
2. Type II forgery: \(\tau = \tau_j\) for some \(j\) with corresponding message \((m_{j,1} \ldots m_{j,N})\) where:

\[
y' \neq g(m_{j,1} \ldots m_{j,N}).
\]

In other words, this type of forgery corresponds to the case of the adversary certifying an incorrect result of homomorphic computation.

As mentioned at the beginning of this section, [GVW15] contains a generic transformation from single-data FHS to multi-data FHS using as an additional building block a regular signature scheme.
\text{GenProof}^\ell_{i-1}(ct, m, r, j)

Hardcoded: Key K_2
\[(crs_{j+1}, td_{j+1}) = \text{HybridGenCRS}'_\ell(j + 1)\]
\[\rho = \text{PRF}(K_2, (m, ct, j + 1))\]
If $j < \ell$: \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\).
If $j = \ell$:
\begin{itemize}
 \item if \((m, ct) < \text{str}_i\): \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\)
 \item if \((m, ct) \geq \text{str}_i\): \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\)
\end{itemize}
If $j > \ell$: \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\).
Return \(\pi\)

\text{GenProof}^\ell_{i-1,1}(ct, m, r, j)

Hardcoded: punctured key $K_2\{\text{str}_i, \ell + 1\}$,
\[\text{proof } \pi^* = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_{\text{str}_i}; \text{PRF}(K_2, (\text{str}_i, \ell + 1)))\]
\[(crs_{j+1}, td_{j+1}) = \text{HybridGenCRS}'_\ell(j + 1)\]
If \((m, ct, j + 1) \neq (\text{str}_i, \ell + 1)$, \(\rho = \text{PRF}(K_2\{\text{str}_i, \ell + 1\}, (m, ct, j + 1))\)
If $j < \ell$, \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\).
If $j = \ell$:
\begin{itemize}
 \item if \((m, ct) \leq \text{str}_i\): \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\)
 \item if \((m, ct) = \text{str}_i\): \(\pi = \pi^*\)
 \item if \((m, ct) > \text{str}_i\): \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\)
\end{itemize}
If $j > \ell$, \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\).
Return \(\pi\)

\text{GenProof}^\ell_{i-1,2}(ct, m, r, j)

Hardcoded: punctured key $K_2\{\text{str}_i, \ell + 1\}$,
\[\text{proof } \pi^* \leftarrow \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_{\text{str}_i})\]
\[(crs_{j+1}, td_{j+1}) = \text{HybridGenCRS}'_\ell(j + 1)\]
If \((m, ct, j + 1) \neq (\text{str}_i, \ell + 1)$, \(\rho = \text{PRF}(K_2\{\text{str}_i, \ell + 1\}, (m, ct, j + 1))\)
If $j < \ell$, \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\).
If $j = \ell$:
\begin{itemize}
 \item if \((m, ct) < \text{str}_i\): \(\pi = \text{NIZK}.\text{Prove}(crs_{j+1}, stat_m, r; \rho)\)
 \item if \((m, ct) = \text{str}_i\): \(\pi = \pi^*\)
 \item if \((m, ct) > \text{str}_i\): \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\)
\end{itemize}
If $j > \ell$, \(\pi = \text{NIZK}.\text{Sim}(crs_{j+1}, td_{j+1}, stat_m, \rho)\).
Return \(\pi\)

Fig. 14. Programs used as subroutine of the program HybridEval\text{NAND}'_{i,j}.
On the Feasibility of Unleveled Fully-Homomorphic Signatures

GenProof$^\ell_{i-1,4}(c_t, m, r, j)$

- Hardcoded: punctured key $K_2\{str_i, \ell + 1\}$
 - proof $\pi^* \leftarrow \text{NIZK.Prove}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{ar_i}, r_i^*)$
- $(\text{crs}_{j+1}, \text{td}_{j+1}) = \text{HybridGenCRS}^\ell_j(j + 1)$
- If $(m, ct, j + 1) \neq (str_i, \ell + 1)$, $\rho = \text{PRF}(K_2 \{str_i, \ell + 1\}, (m, ct, j + 1))$
- If $j < \ell$, $\pi = \text{NIZK.Prove}(\text{crs}_{j+1}, \text{stat}_{m,ct}, r; \rho)$. If $j = \ell$,
 - if $(m, ct) < str_i$, $\pi = \text{NIZK.Prove}(\text{crs}_{j+1}, \text{stat}_{m,ct}, r; \rho)$
 - if $(m, ct) = str_i$, $\pi = \pi^*$
 - if $(m, ct) > str_i$, $\pi = \text{NIZK.Sim}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{m,ct}; \rho)$
- If $j > \ell$, $\pi = \text{NIZK.Sim}(\text{crs}_{j+1}, \text{td}_{j+1}, \text{stat}_{m,ct}; \rho)$
- Return π

Fig. 15. Programs used as subroutine of the program HybridEvalNAND$^\ell_{i,i}$.
\textbf{FHS.KeyGen}(1^\lambda)
$$\begin{aligned}
 (fpk, fsk) &\leftarrow \text{FHE.Setup}(1^{\lambda'}) \\
 K_1, K_2 &\leftarrow \text{PRF.KeyGen}(1^2) \\
 \text{Obf}_{\text{GenCRS}} &\leftarrow \text{iO}(1^{\lambda'}, \text{PubGenCRS}) \\
 \text{Obf}_{\text{Eval}} &\leftarrow \text{iO}(1^{\lambda'}, \text{EvalNAND}) \\
 H &\leftarrow H(1^\lambda) \\
 vk &\leftarrow (fpk, \{ct'_i\}, \text{Obf}_{\text{GenCRS}}, \text{Obf}_{\text{Eval}}, H) \\
 sk &\leftarrow (K_1, K_2, fsk) \\
 \text{Return } (vk, sk)
\end{aligned}$$

\textbf{FHS.Sign}(sk, m, i, ct'_i = H(i))
$$\begin{aligned}
 (\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) &\leftarrow \text{GenCRS}(0) \\
 \sigma &\leftarrow \text{NIZK.Sim}(\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}, \text{stat}_m, ct'_i) \\
 \text{Return } \sigma
\end{aligned}$$

\textbf{FHS.Verify}(vk, f, y, \sigma)
$$\begin{aligned}
 \text{Parse } \sigma \text{ as } (ct, \pi, \text{level}) \\
 \{ct'_i = H(i)\}_{i\in\{1,...,n\}} \\
 ct_f = \text{FHE.Eval}(fpk, f, ct'_1,...,ct'_n) \\
 \text{crs} = \text{Obf}_{\text{GenCRS}}(\text{level}) \\
 \text{Return } \text{NIZK.Verify}(\text{crs}, \text{stat}_y, ct_f, \pi)
\end{aligned}$$

\textbf{FHS.Eval}(vk, f, (m_1, \sigma_1), \ldots, (m_N, \sigma_N))
$$\begin{aligned}
 \text{Evaluate each NAND gate of } f \\
 \text{using } \text{Obf}_{\text{Eval}} \text{ and return the result.}
\end{aligned}$$

\textbf{GenCRS}(\text{level})
$$\begin{aligned}
 \text{Hardcoded: key } K_1 \\
 \tau &\leftarrow \text{PRF}(K_1, \text{level}) \\
 (\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) &\leftarrow \text{NIZK.SimSetup}(1^{\lambda'}; \tau) \\
 \text{Return } (\text{crs}_{\text{sim}}, \text{td}_{\text{sim}})
\end{aligned}$$

\textbf{PubGenCRS}(\text{level})
$$\begin{aligned}
 (\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) &\leftarrow \text{GenCRS}(\text{level}) \\
 \text{Return } \text{crs}_{\text{sim}}
\end{aligned}$$

\textbf{EvalNAND}((\sigma_0, m_0), (\sigma_1, m_1))
$$\begin{aligned}
 \text{Hardcoded: key } K_2 \\
 \text{Parse } \sigma_0 \text{ as } (ct_0, \pi_0, \text{level}_0), \text{ for } b \in \{0,1\} \\
 \text{Output } \bot \text{ if level}_0 \neq \text{level}_1 \\
 j &\leftarrow \text{level}_0 \\
 (\text{crs}_{\text{sim}}, \text{td}_{\text{sim}}) &\leftarrow \text{GenCRS}(j) \\
 \text{If } \text{NIZK.Verify}(\text{crs}_{\text{sim}}, \text{stat}_{m_b, ct_0}, \pi_0) \neq 1 \\
 \text{for some } b \in \{0,1\} \text{ then output } \bot \\
 ct &\leftarrow \text{FHE.Eval}(fpk, \text{NAND}, ct_0, ct_1) \\
 m &\leftarrow \text{NAND}(m_0, m_1) \\
 (\text{crs}'_{\text{sim}}, \text{td}'_{\text{sim}}) &\leftarrow \text{GenCRS}(j + 1) \\
 \rho &\leftarrow \text{PRF}(K_2, (m, ct, j + 1)) \\
 \pi &\leftarrow \text{NIZK.Sim}(\text{crs}'_{\text{sim}}, \text{td}'_{\text{sim}}, \text{stat}_{e, ct}; \rho) \\
 \sigma &\leftarrow (ct, \pi, j + 1) \\
 \text{Return } \sigma
\end{aligned}$$

\textbf{Experiment Exp-Rand}^{\text{FHE}}(1^\lambda, \mathcal{A})
$$\begin{aligned}
 m &\leftarrow \mathcal{A}(1^\lambda); \\
 (pk, sk) &\leftarrow \text{FHE.Setup}(1^\lambda) \\
 ct_0 &\leftarrow \text{FHE.Enc}(pk, m) \\
 \text{ct}_1 &\leftarrow \{0,1\}^{p(\lambda)} \\
 b &\leftarrow \{0,1\} \\
 b' &\leftarrow \mathcal{A}(pk, ct_b) \\
 \text{Return } b = b'
\end{aligned}$$

\textbf{Fig. 16}. Fully-homomorphic signature scheme \text{FHS} = \{\text{FHS.KeyGen, FHS.Sign, FHS.Verify, FHS.Eval}\}. PRF is a puncturable pseudo-random function, NIZK is a proof of knowledge (NIZK PoK), FHE is a fully-homomorphic encryption scheme, and \text{iO} is an indistinguishability obfuscator. By \text{stat}_{m,ct} we denote the statement which claims that \(\exists r \in \mathcal{R}\) such that \(ct = \text{FHE.Enc}(pk, m; r)\) where \(\mathcal{R}\) denotes the randomness space of the encryption algorithm. The parameter \(\kappa\) is chosen as described in proof of Theorem 38.

\textbf{Fig. 17}. Experiment \text{Exp-Rand} for the pseudo-random ciphertext security of \(\text{FHE}\). The polynomial \(p\) corresponds to the size of \(\text{FHE}\) ciphertexts.