
On Instantiating Unleveled Fully-Homomorphic Signatures
from Falsifiable Assumptions

Romain Gay1, Bogdan Ursu 2

1 IBM Research, Zurich, Switzerland
rga@zurich.ibm.com

2 Consensys⋆⋆

bogdan.ursu@consensys.net

Abstract. We build the first unleveled fully homomorphic signature scheme in the standard
model. Our scheme is not constrained by any a-priori bound on the depth of the functions that
can be homomorphically evaluated, and relies on subexponentially-secure indistinguishability
obfuscation, fully-homomorphic encryption and a non-interactive zero-knowledge (NIZK)
proof system with composable zero-knowledge. Our scheme is also the first to satisfy the
strong security notion of context-hiding for an unbounded number of levels, ensuring that
signatures computed homomorphically do not leak the original messages from which they
were computed. All building blocks are instantiable from falsifiable assumptions in the
standard model, avoiding the need for knowledge assumptions.

The main difficulty we overcome stems from the fact that bootstrapping, which is a crucial
tool for obtaining unleveled fully homomorphic encryption (FHE), has no equivalent for
homomorphic signatures, requiring us to use novel techniques.

1 Introduction

Fully Homomorphic Signatures. A signature scheme is said to be homomorphic when given
signatures σ1, . . . , σn of messages m1, . . . ,mn, it is possible to publicly compute a signature σf of
the message f(m1, . . . ,mn) for any function f . This evaluated signature σf is verified with respect
to the verification key of the scheme, the message m = f(m1, . . . ,mn) and the function f .

Given a set of signatures σ1, . . . , σn, unforgeability prevents an adversary from deriving a
signature σf that verifies with respect to a function f and a message y ̸= f(m1, . . . ,mn). In other
words, the signature certifies that the message corresponds to the proper evaluation of the function
f on the original messages.

Akin to homomorphic encryption, the signing algorithm is a homomorphism from the message
space to the signature space. Computing the addition of signatures σ1 ⊞ σ2 results in the signature
of the message m1 +m2, where ⊞ and + denote the addition in the signature and message space,
respectively. The same goes for multiplication. Schemes equipped with a ring homomorphism (with
both addition and multiplication) are referred to as fully homomorphic, since these operations are
sufficient to capture all possible Boolean functions.

Applications of FHS. Homomorphic signatures are applicable in a wide range of scenarios, such
as:

– Integrity for Network Coding. Network performances can be improved by encoding ongoing
messages into vectors and letting each node perform linear operations on these encodings, instead
of simply forwarding them. Unfortunately, because these encodings are modified by every node,
the integrity property is lost when using traditional signatures. Homomorphic signatures (or their
secret-key counterpart, as in [AB09]) that support linear operations can be used to preserve integrity
throughout the network. In particular, each node updates not only the encoded messages, but also
the homomorphic signatures associated with them.

⋆⋆ Work carried out during the author’s time at ETH Zurich.

https://orcid.org/0000-0003-4576-1826
mailto:rga@zurich.ibm.com
mailto:bogdan.ursu@consensys.net

2 Romain Gay and Bogdan Ursu

– Verifying Delegated Computations. A client that wishes to delegate some computation on his data
to a cloud provider could authenticate it via homomorphic signatures, then send it away to the
cloud. The cloud performs the computation and updates the signatures accordingly, then sends the
result back to the client, who can then verify the evaluated signature. If verification is successful,
then the client is guaranteed that the cloud computed the intended function on the data. It is the
perfect complement to fully homomorphic encryption (FHE), which preserves the confidentiality of
the data in use, but not its integrity.

– Anonymous Credentials. Consider the scenario where a user obtains signatures σ1, . . . , σn of her
credentials m1, . . . ,mn, produced by some authority (the authority is associated to the vk of the
signature scheme). Later on, the user is asked by a service provider (say, an insurance company) to
prove that her credentials satisfy a policy expressed by a predicate P. The user can compute the
signature σP and send it to the provider. If this signature verifies successfully with respect to vk and
the message 1 (the output of the predicate should be 1), then it proves the user’s credentials fulfill
the policy. Assuming the homomorphic signatures satisfy some mild re-randomizability property
(so that evaluated signatures look fresh), this does not reveal the underlying credentials to the
provider (only that they satisfy the policy). Giving the policy explicitly to the user provides some
transparency (for instance, the predicate P can be signed by a trusted regulator, ensuring the
insurance company is not performing some discriminatory screening). We can even evaluate a
function f on the signatures that not only indicates whether the user is eligible to an insurance
scheme, but also outputs the price to be paid based on the credentials.

State of the Art. The first construction of homomorphic signatures [AB09] was limited to additive
homomorphism in the secret-key setting i.e. it is a message authentication (MAC) scheme. Later
on, [BF11a] built the first homomorphic signature for constant-degree polynomials, subsequently
improved by [CFW14]. In [GW13], the authors built the first fully homomorphic MAC from FHE,
while [CF13] built an homomorphic MAC with better efficiency for a restricted class of functions.
Then, [GVW15] built the first leveled fully homomorphic signature (FHS) scheme.

All existing works suffer from the fact that the depth of the functions that can be homomorphi-
cally evaluated is bounded at setup. In other words, these are leveled FHS. This stands in contrast
with FHE, where unleveled schemes can be obtained via bootstrapping [Gen09] and circular security.
Bootstrapping requires an FHE encryption of the secret decryption key, and relies on evaluating
homomorphically the (shallow) decryption algorithm to ”refresh” ciphertexts. This idea is not
straightforwardly transferable to the signature case, and unleveled FHS have so far been elusive.

Another approach to building FHS is to use Succinct Arguments of Knowledge (SNARKs) for
NP, but this requires the use of strong knowledge assumptions, as we explain more in details in
Appendix D.

Given this state of affair, a natural question comes up:

Can we build unleveled FHS from falsifiable assumptions?

This was left as an open problem in [GVW15], and has remained unsolved until our construction.

Our Result. We answer the question positively. Namely, we build the first unleveled FHS from
falsifiable assumptions, in the standard model. Our feasibility result relies on indistinguishability
obfuscation (iO), of which promising constructions appeared recently in [BDGM20a,JLS21,GP21,
WW21,AP20,BDGM20b,DQV+21,JLS22], unleveled fully homomorphic encryption and a non-
interactive zero-knowledge proof system (NIZK). While iO is not a falsifiable assumption itself3, most
of the iO candidates rely on falsifiable assumptions. The second building block, fully-homomorphic
encryption, can be instantiated using circularly-secure LWE [GSW13], and alternatively using
indistinguishability obfuscation [CLTV15]. Instantiating the FHE scheme using [CLTV15] yields a
fully homomorphic signature construction that does not require any circular security assumption.

Building Blocks. We give more details on the building blocks, and the assumptions over which
they can be instantiated. To build our FHS, we use an unleveled Fully-Homomorphic Encryption
(FHE) scheme, which can be chosen to be either:

3 Formally, the iO security game does not fulfill falsifiability because the challenger cannot efficiently
check that the circuits submitted by the adversary are functionally equivalent.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 3

– a variant of the FHE scheme from [GSW13], slightly modified to ensure that it has unique
random coins (which is needed for technical reasons in the proof). This scheme can be built
from circularly-secure LWE.

– the FHE scheme of [CLTV15], which is instantiable using subexponentially-secure iO and a
re-randomizable public-key encryption scheme. This second type of FHE scheme does not
require a circular assumption. Moreover, the re-randomizable encryption scheme can be any
one of the following: Goldwasser-Micali [GM82], ElGamal [ElG85], Paillier [Pai99] or Damgard-
Jurik [DJ01] (which are secure assuming QR, DDH, or DCR).
Moreover, we rely on Non-Interactive Zero Knowledge (NIZK) proof systems satisfying a proof of

knowledge property and composable zero-knowledge, which can also be built from subexponentially
secure iO and lossy trapdoor functions [HU19]. Lossy trapdoor functions can be based on a
multitude of standard assumptions such as DDH, k-LIN, QR or DCR. Other NIZK systems also
offer the properties required, but from bilinear maps [GS08].

The NIZKs above [HU19,GS08] allow that the common reference string (CRS) can be either
generated honestly to be binding, which ensures soundness (i.e. the fact that only true statements
can be proved), or alternatively, the CRS is generated in a hiding way, providing a simulation mode
that ensures zero-knowledge. In fact, the binding CRS is generated together with an extraction
trapdoor that can be used to extract efficiently a witness from any valid proof (thereby ensuring
that the statement proved is indeed true). The simulated CRS is generated together with a
simulation trapdoor. In this case, the simulation trapdoor can be used to generate proofs on any
statement (without requiring a witness). The two modes (real or simulated) are computationally
indistinguishable.

Technical Overview

Overview of Our Construction. The verification key vk of our scheme contains several FHE
encryptions of an arbitrary message (for example the message equals to 0). The number of such
encryptions, N , determines the arity of the functions that can be homomorphically evaluated. We
require that the FHE is unleveled. This differs from the FHS scheme from [GVW15] which uses
homomorphic commitments instead of FHE encryptions. They crucially rely on the fact that these
commitments are non-binding, which prevents from bootstrapping and only yields leveled FHS.
To produce signatures, we rely on the NIZK proof system. To sign a message mi for i = 1, . . . , N ,
the signer produces a simulated proof stating (falsely) that the i’th encryption from vk, which we
denote by cti, is an FHE encryption of mi. This can be done since the NIZK common reference
string CRS is simulated with an associated simulation trapdoor tdsim. Creating these simulated
proofs requires the trapdoor, which is set to be the signing key. A signature is simply the ZK proof
πi stating that the ciphertext cti is an encryption of mi. To homomorphically evaluate a function f
on signatures σ1, . . . , σN of the messages m1, . . . ,mN , we use an obfuscated circuit containing the
simulation trapdoor tdsim that, given as input the tuple (σ1,m1, . . . , σn,mn, f), first checks that
the signatures σi are valid ZK proofs (of false statements), by running the verification algorithm of
the NIZK proof system. If the check is successful, then it homomorphically evaluates the function
f on the FHE encryptions ct1, . . . , ctN that are part of vk, which yields an FHE ciphertext ctf . It
also generates a proof π that ctf is an FHE encrytion of f(m1, . . . ,mn), using tdsim. The signature
σf is set to be the proof π, which the evaluation circuit outputs. To verify a signature σf with
respect to a function f and a value y, the verifier algorithm computes ctf by evaluating f on the
FHE encryptions ct1, . . . , ctN from vk and verifies that σ is a valid proof stating that ctf is an
FHE encryption of y.

Let us now have a look at the proof of unforgeability. For simplicity, we consider the selective
setting, where the adversary first sends messages m⋆

1, . . . ,m
⋆
n, then receives vk and the signatures

σ⋆
1 , . . . , σ

⋆
n. Finally, the adversary sends a forgery (σf , f, y). It wins if the signature σf verifies

successfully with respect to vk, f, y and y ̸= f(m⋆
1, . . . ,m

⋆
n). The first step of the proof is to switch

the FHE encryptions ct1 . . . ctN of 0 in the vk to FHE encryptions of m⋆
1, . . . ,m

⋆
n, respectively.

This way, we can change the signatures σ⋆
i to proofs that are computed using a witness (where

4 Romain Gay and Bogdan Ursu

the witness is the randomness used to compute the FHE encryptions in vk). The main implication
is that we do not need to simulate proofs using tdsim anymore. The intent is to get rid of tdsim
altogether and switch to an honestly computed CRS so that we can use the soundness of the NIZK
to prevent forgeries. Unfortunately it is not clear at this point how to remove tdsim from Eval, the
obfuscated circuit that performs the homomorphic evaluations. What if we use proofs of knowledge?
This way, if the signatures input to the Eval algorithm are valid ZK proofs, then Eval can efficiently
extract witnesses (i.e. randomness of the corresponding FHE ciphertexts), which can be used to
compute the randomness of the evaluated FHE ciphertext. This requires a so-called randomness
homomorphism of the FHE scheme. Namely, given the secret key of the FHE sk, randomness
r1, r2 and messages m1,m2 such that ct1 = FHE.Enc(pk,m1; r1) and ct2 = FHE.Enc(pk,m2; r2),
one can compute a randomness r such that FHE.EvalNAND(ct1, ct2) = FHE.Enc(pk,NAND; r). A
stronger property where a randomness r can be computed only using the pk is satisfied by most
lattice-based FHE schemes (e.g. [GSW13]) and the secret-key variant is satisfied by the FHE
scheme from [CLTV15]. Then, Eval can use this randomness r as a witness to produce the ZK
proof that constitutes the evaluated signature σf .

This approach runs into a circular issue: while it is true that the σ⋆
i are proofs that are computed

without tdsim, to use the proof of knowledge property and extract witnesses, we need to first remove
tdsim and switch to an honestly generated CRS. To do so, we need Eval to produce the signatures σf

without tdsim, but using witnesses instead, which already requires the proof of knowledge property
and an honest CRS.

To solve this circular issue, our scheme uses a different NIZK proof system for each depth level
of the circuit that is homomorphically evaluated. That is, to evaluate a function f , represented as
a depth d circuit, we evaluate the circuit gate by gate. Starting at the level 0, signatures σ1, . . . , σn

of messages m1, . . . ,mn are ZK proofs stating (falsely) that the FHE ciphertexts ct1, . . . , ctN from
vk are encryptions of m1, . . . ,mn, respectively, computed using crs0, a simulated crs, together
with a simulation trapdoor td0sim. Then Eval takes as input these level 0 signatures σ1, . . . , σn, the
messages m1, . . . ,mn and a n-ary gate g, verifies that the σi are valid proofs, computes the gate g
on the messages which yields the value y = g(m1, . . . ,mn), homomorphically evaluates g on the
ciphertexts ct1, . . . , ctn which yields ctg, and computes a ZK proof π stating that ctg is an FHE
encryption of y using crs1, a simulated crs, together with a simulation trapdoor td1sim. The Eval
algorithm performs just one more level of the homomorphic computation. It is repeated many times
to obtain the final signature σf for the function f . To keep track of the gate-by-gate evaluation
of the circuit, each signature will be of the form σ = (π, i, ct), where i ∈ N indicates the level of
the signature, π is a proof computed using (crsi, td

i
sim), and ct is an homomorphically evaluated

ciphertext (if i = 0 it is one ciphertext from vk). This way, Eval takes as input signatures of level i,
and outputs signatures of level i+ 1.

To prove the unforgeability of this scheme, as before, we start by replacing the FHE ciphertexts
ct1, . . . , ctN from the vk to encryptions of the messages m⋆

1, . . . ,m
⋆
N chosen by the adversary, using

the semantic security of FHE. Then, we generate level 0 signatures using witnesses (the randomness
used to compute the cti) instead of td0sim. At this point, we can switch crs0 to a real CRS, generated
along with an extraction trapdoor, since td0sim is not used anymore. The rest of the proof proceeds
using a hybrid argument over all the levels i = 1, . . . , d where d is the (unbounded) depth of the
circuit chosen by the adversary. By induction, we assume crsi is generated honestly along with
an extraction trapdoor tdiext. Therefore, we can switch the way Eval computes the ZK proof for
the level i+ 1. Instead of using a simulation trapdoor tdi+1

sim with respect to crsi+1 and computing
simulated proofs, it instead extracts witnesses from the level i signatures using tdiext, and uses
them to compute the proofs without the trapdoor tdi+1

sim . At this point tdi+1
sim is not used anymore

so we can also switch crsi+1 to a real CRS, and go to the next step until we reach the depth of the
function f chosen by the adversary.

While using a different CRS for each level seems to solve the circularity issue, this approach
creates another problem: if we simply generate all crsi for all levels in advance and put them in vk,
we necessarily have to bound the maximum depth of the functions that can be homomorphically
evaluated. In other words, we have a leveled FHS. To avoid that, Eval samples the crsi on the
fly using a pseudo-random function (the key of the PRF is hard-coded in the obfuscated circuit

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 5

Eval). This complicates the security proof, but it can be made to work using puncturing techniques.
Namely, to switch crsi from a simulated to real CRS and use the proof of knowledge property of the
proof system associated to crsi, we need crsi to be generated with truly random coins, as opposed
to a PRF. We simply hard-code the PRF value on i, puncture the PRF key, and switch the value
to random (this is a standard technique for security proofs using iO, see for instance [SW14]). The
crucial fact that makes these techniques applicable is that at any point in our security proof, we
only require the CRS of one specific level to be generated with truly random coins. That is, we
only need to hard-code the value of one CRS to perform the hybrid argument that goes over each
level one by one. Ultimately, we show that the CRS for the last level, which corresponds to the
depth of f chosen by the adversary, is generated honestly, and the soundness of the proof system
directly prevents any successful FHS forgery.

High-Level Description of our FHS Scheme. In this description, SimSetup generates a
simulated CRS with an associated simulation trapdoor tdsim. In the unforgeability proof, we will
use the honest variant Setup that generates a real CRS along with an extraction trapdoor tdext. For
simplicity, we consider an algorithm Eval that only evaluates binary NAND gates (this is without
loss of generality). Our scheme is as follows:

– vk = (FHE.Enc(0), . . . ,FHE.Enc(0), crs0), where (crs0, td
0
sim)← SimSetup(1λ), where λ ∈ N denotes

the security parameter. The verification key vk contains N FHE encryptions of 0, namely ct1 . . . ctN .
– sk = K, where K is a PRF key.

– EvalNAND
(
(σ0,m0), (σ1,m1)

)
= ˜C[td0sim,K]

(
(σ0,m0), (σ1,m1)

)
, where ˜C[td0sim,K] denotes an obfusca-

tion of the circuit C[td0sim,K] that has the values td0sim and K hard-coded, described in Figure 1 below,
σ0 and σ1 are signatures of level i ∈ N of the messages m0 and m1 respectively, and a binary
NAND gate is homomorphically evaluated.

– Verify(σf , f, y): parses σf as (ct, π, d). Proof π is a ZK proof with respect to crsd where d is the
depth of f and (crsd, tdd) = SimSetup(1λ;PRFK(i)), i.e. SimSetup is run on the pseudorandom
coins PRFK(d). Then, it homomorphically evaluates f on the ciphertexts cti = FHE.Enc(0) from vk
to obtain ctf . It checks that π is a valid proof stating that ctf is an encryption of y, with respect
to crsd (it outputs 1 if the check passes, 0 otherwise). Note that the ciphertext ct that is part of
the signature is not used by Verify. It is only useful if extra homomorphically evaluation are to be
performed on the evaluated signature.

C[td0,K]((σ0,m0), (σ1,m1)):

It parses σ0 = (π0, i, ct0) and σ1 = (ct1, π1, i) where i ∈ N denotes the level of these signatures, ct0, ct1
denotes FHE ciphertexts, and π0, π1 denotes ZK proofs.

– If i > 0, then it computes (crsi, td
i
sim) = SimSetup(1λ;PRFK(i)) and (crsi+1, td

i+1
sim) =

SimSetup(1λ;PRFK(i+ 1)).
– If i = 0, then it only computes (crsi+1, td

i+1
sim) = SimSetup(1λ;PRFK(i+1)), since crs0 has already been

generated (it is part of vk).

Then it checks that πb is a valid proof stating that ctb is a ciphertext of mb, with respect to crsi, for all
b ∈ {0, 1}. If any of these checks fail, it outputs ⊥. Otherwise, it evaluates homomorphically the NAND
gate on the ciphertexts ct0 and ct1 to obtain ct, computes m = NAND(m0,m1), and produces a proof π
stating that ct is a encryption of m, using the trapdoor tdi+1

sim . It then outputs σ = (ct, π, i+ 1).

Fig. 1. Circuit C[td0,K](·, ·) used by Eval.

We summarize the unforgeability proof using the list of hybrid games presented in Figure 2.
Note that G3.0 = G2, and in the last game G3.d, where d denotes the depth of the function f chosen
by the adversary, security simply follows from the soundness of the level d NIZK.

Complexity Leveraging and Adaptive Security. In the overview above, we skipped over
some technical details. In the unforgeability proof of our FHS scheme, the challenger that interacts
with the adversary does not know in advance the depth d of the function f chosen. To solve this
problem, the challenger chooses a super-polynomial e.g. 2ω(log λ) number of levels to perform the

6 Romain Gay and Bogdan Ursu

• G0: vk = {FHE.Enc(0)}i, (crs0, td0sim)← SimSetup(1λ), σ⋆
i simulated with td0sim. // original security game.

• G1: vk = { FHE.Enc(m⋆
i) }i, (crs0, td0sim)← SimSetup(1λ), σ⋆

i simulated with td0sim. // security of FHE

• G2: vk = {FHE.Enc(m⋆
i ; ri)}i, (crs0, td

0
ext)← Setup(1λ) , σ⋆

i proved with ri . // real CRS

• G3.ℓ: // games defined for all ℓ = 0, . . . , d, where d is the depth of f
Eval uses the obfuscation of the following circuit which has

the pair (crsℓ, td
ℓ
ext)← Setup(1λ) and the PRF key K hard-coded:

C[crsℓ,tdℓext,K]((σ0,m0), (σ1,m1)):

- Parse σb = (ctb, πb, j), for b ∈ {0, 1}
- Compute ct = FHE.Eval(NAND, ct0, ct1)

- If j < ℓ, then compute (crsj , td
j
ext) = Setup(1λ;PRFK(j)),

extract witnesses (r0, r1) from (π0, π1) using tdjext,
compute r such that ct = FHE.Enc(NAND(m0,m1); r) using r0, r1, m0,m1,
compute a proof π that ct encrypts NAND(m0,m1) using r.

- If j ≥ ℓ, then compute (crsj+1, td
j+1
sim) = SimSetup(1λ;PRFK(j + 1))

and compute the proof π with tdj+1
sim instead.

- Output σ = (π, ct, j + 1).

Fig. 2. Hybrid games for the selective unforgeability proof of our FHS. We denote by m⋆
i the message sent

by the adversary, by σ⋆
i the signatures it receives, by SimSetup the algorithm that generates a simulated

CRS with a trapdoor tdsim, by Setup(1λ) the honest variant that generates a real CRS together with an
extraction trapdoor and by K a puncturable PRF key. We denote by Setup(1λ; r) the algorithm Setup
run with coins r (which can be truly random or pseudo random). When omitted, truly random coins are
implicitly used. We use the same notations when writing SimSetup(1λ; r) or FHE.Enc(m; r).

hybrid argument sketched above. This gives a super-polynomial security loss, which is why we
require subexponential security of the underlying assumptions. A similar complexity leveraging
argument can be used to obtain adaptive security, where the adversary is not restricted to choose
the messages m⋆

1, . . . ,m
⋆
N before seeing the verification key of the scheme. The challenger guesses in

advance the messages and acts as though the adversary were selective. The security loss due to the
guessing argument is 2N , which we can accommodate by choosing appropriately large parameters,
relying again on the subexponential security of the underlying building blocks.

Unique Randomness. For technical reasons, we require additionally that the FHE has unique
randomness: given a message m and a ciphertext ct = Enc(pk,m; r) there cannot be another
randomness r′ ̸= r such that Enc(pk,m; r′) = ct. In Appendix A, we show that a slight modification
of the GSW FHE scheme [GSW13] directly achieves such a property. We also show that the FHE
from [CLTV15] can be adapted straightforwardly to obtain unique randomness. Simply put, their
scheme relies on iO and a re-randomizable encryption scheme (such as Goldwasser Micali, ElGamal,
Paillier or Damgard-Jurik). If the latter has unique randomness, then the resulting FHE also has
this property.

Related Works. The work of [JMSW02] introduced a similar notion of homomorphic signature
but where the verification algorithm does not take the function f as an input. That is, signatures
can be manipulated homomorphically, thereby changing the underlying message being signed, but
the verification does not track which function was applied. In that case, the notion of unforgeability
only makes sense when the homomorphism property is limited, so that from a set of signatures,
one can only get a signature on some but not all messages. Typically, the messages are vectors, and
given signatures on vectors v1, . . . ,vn, only signatures on the linear combinations of the vectors
v1, . . . ,vn can be obtained. In particular if n is less than the dimension of the vectors, then there
are some vectors for which signatures cannot be generated (those outside the span of v1, . . . ,vn)
and the unforgeability property is meaningful. These are referred to as linearly homomorphic
signatures, such as in [BF11b,Fre12,ALP13,LPJY15,CFN15,CLQ16,HPP20]. This is similar to
the notion of equivalence-class signatures [HS14,FHS19,FG18,KSD19], where signatures can be
combined homomorphically within a given equivalence class, but forgeries outside the class are

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 7

prohibited. The notion also requires a re-randomizability property, and is used in particular for
anonymous credentials.

Other works [LTWC18,FP18,AP19,SBB19] consider the multi-key extension of homomorphic
signatures, where the signatures to be homomorphically evaluated come from different users with
different signing keys.

In [BFS14], the authors provide a fully-homomorphic signature from lattices that has the
advantage of being adaptively secure (where the adversary can send the messages of her choice after
receiving the verification key in the security game). In [CFN18], the authors study the security
notions of homomorphic signatures in the adaptive setting, provide a simpler and stronger definition,
and a compiler that generically strengthens the security of a scheme. The work of [Tsa17] establishes
an equivalence between homomorphic signatures and the related notion of attribute-based signatures,
and provides new constructions for both.

Another recent line of work [CFT22,BCFL23] on functional commitments also addresses the
problem of homomorphic signatures. [BCFL23] instantiates the framework of [CFT22] with a
functional commitment for circuits of unbounded depth, resulting in a homomorphic signature that
supports circuits of unbounded depth (though the circuit width is bounded). In this way, [BCFL23]
proposes schemes based on new falsifiable assumptions which rely on pairings and lattices (the
pairing assumption holds in the bilinear generic group model, while the lattice one is an extension
of the k-R-ISIS assumption of [ACL+22]). Comparing our work to [BCFL23], our basic scheme
only relies on a bound on the input size4. Moreover, our scheme allows for arbitrary compositions
of signatures, as was the case in [GVW15]. The signatures in [BCFL23] can be composed only
sequentially, by feeding an entire signature as the input to another circuit (given a signature σ for
y = f(m), their scheme can compute a signature σ′ for z = g(y). Namely, the resulting signature
σ′ is with respect to z, circuit g ◦ f and input x).

As we mentioned already earlier, [CLTV15] builds an unleveled FHE scheme from subexpo-
nentially secure iO and re-randomizable encryption. Remarkably, their FHE does not require any
circular security assumption, since it does not rely on the bootstrapping technique. Although we
use a similar technical complexity leveraging argument to handle unbounded depth, the technical
similarities end here.

Fully-Homomorphic Signatures from SNARKs. It was claimed in previous works [GW13,
GVW15] that FHS can be built using succinct arguments of knowledge (SNARKs) for NP. This
comes at a cost: in the FHS regime, that would mean using unfalsifiable assumptions (even in the
random oracle model), as we explain in further details in Appendix D. This stands in contrast with
our scheme that can be instantiated from falsifiable assumptions, since general indistiguishability
obfuscation itself can be built from falisifiable assumptions [JLS21,GP21,JLS22].

Full Context-Hiding. Our FHS scheme is also the first to achieve a strong notion of context hiding,
more powerful than the one achieved by [GVW15]. Consider a signature σ for m = f(m1 . . .mN),
which was obtained by homomorphically evaluating a function f for signature-message pairs
(σ1,m1) . . . (σN ,mN). Full context-hiding5 guarantees that the signature σ only certifies m and
does not leak any information on messages m1 . . .mN . A signature σ in [GVW15] is not context-
hiding, but can be post-processed into another signature σ′ that achieves context-hiding, at the
cost that the homomorphism property is broken: no homomorphic operations can be applied on σ′.

In contrast, our FHS construction achieves full context hiding for signatures at all levels out-
of-the-box, and context-hiding signatures can be homomorphically combined for an unbounded
number of times. Our construction is the first to achieve this stronger notion of context-hiding in
the standard model. More details can be found in Appendix C.

Roadmap. In Section 2 we define the building blocks used in our construction, then we describe
our scheme in Section 3 and prove its security in Section 4. Appendix A covers unique randomness,
a property needed from the FHE building block in the proof. In Appendix B we showcase a variation
of the scheme that supports datasets of unbounded length and in Appendix C we describe the

4 our bound on the input size can be removed using random oracles, as in [GVW15].
5 Previous work [GVW15] refers to this notion as context hiding. We use the modifier “full” to differentiate
from its weak context hiding counterpart.

8 Romain Gay and Bogdan Ursu

context-hiding property of our scheme. In Appendix D, we discuss how SNARKs can be used to
build FHS, and the drawbacks associated with this approach. Finally, in Appendix E we briefly
explain how our scheme can be compiled to achieve a version that supports labels.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. For all n ∈ N, [n] denotes
the set {1, . . . , n}. An algorithm is said to be efficient if it is a probabilistic polynomial time
(PPT) algorithm. A function f : N→ N is negligible if for any polynomial p there exists a bound
B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with
overwhelming probability when its probability is at least 1− negl(λ) for a negligible function negl.
Given a finite set S, the notation x←r S means a uniformly random assignment of an element
of S to the variable x. For all probabilistic algorithms A, all inputs x, we denote by y ← A(x)
the process of running A on x and assigning the output to y. The notation AO indicates that
the algorithm A is given an oracle access to O. For all algorithm A,B, . . ., all inputs x, y, . . . and
all predicates P, we denote by Pr[a ← A(x); b ← B(a); . . . : P(a, b, . . .)] the probability that the
predicate P holds on the values a, b, . . . computed by first running A on x, then B on y and a,
and so forth. For two distributions D1, D2, we denote by ∆(D1, D2) their statistical distance. We
denote by D1 ≈c D2 two computationally indistinguishable distribution ensembles D1 and D2. We
denote by D1 ≈s D2 two statistically close ensembles.

Subexponential Security. The security definitions we consider will require that for every efficient
algorithm A, there exists some negligible function negl such that for all λ ∈ N, A succeeds in
“breaking security” w.r.t. the security parameter λ with probability at most negl(λ). All the
definitions that we consider can be extended to consider subexponential security; this is done by
requiring the existence of a constant ε > 0, such that for every PPT algorithm A, A succeeds in
“breaking security” w.r.t. the security parameter λ with probability at most 2−λε

. The security
notion of obfuscation (Section 2.3) and NIZK (Section 2.4) are traditionally defined for non-uniform
adversaries. We write our security definitions for uniform adversaries for simplicity, but they can
be easily adapted to non-uniform adversaries.

2.1 Puncturable Pseudorandom Functions

A pseudorandom function (PRF) is a tuple of PPT algorithms (PRF.KeyGen,PRF.Eval) where
PRF.KeyGen generates a key which is used by PRF.Eval to evaluate outputs. The core property
of PRFs states that for a random choice of key, the outputs of PRF.Eval are pseudo-random.
Puncturable PRFs (pPRFs) have the additional property that keys can be generated punctured at
any input x in the domain. As a result, the punctured key can be used to evaluate the PRF at all
inputs but x. Moreover, revealing the punctured key does not violate the pseudorandomness of the
image of x. This notion can be generalized to allow they key to be punctured at multiple points.

As observed in [BW13,BGI14,KPTZ13], it is possible to construct such punctured PRFs for
the original PRF construction of [GGM84], which can be based on any one-way functions [HILL99].
While this PRFs support puncturing for a polynomial number of times, in this paper we only to
puncture at sets that contain at most two points.

Definition 1 (Puncturable Pseudorandom Function). A puncturable pseudorandom func-
tion (pPRF) is a triple of PPT algorithms (PRF.KeyGen,PRF.Puncture,PRF.Eval) such that:

– PRF.KeyGen(1λ): on input the security parameter, it outputs a key K in the key space Kλ. It
also defines a domain Xλ, a range Yλ and a punctured key space K∗

λ.
– PRF.Puncture(K,S): on input a key K ∈ Kλ, a set S ⊆ Xλ, it outputs a punctured key

K{S} ∈ K∗
λ,

– PRF.Eval(K,x): on input a key K (punctured or not, i.e. K ∈ Kλ ∪ K∗
λ), and a point x ∈ Xλ,

it outputs a value in Yλ.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 9

We require the PPR algorithms to meet the following conditions:

Functionality Preserved under Puncturing. For all λ ∈ N, for all subsets S ⊆ Xλ,

Pr[K ← PRF.KeyGen(1λ),K{S} ← PRF.Puncture(K,S) :

∀x′ ∈ Xλ \ S : PRF.Eval(K,x′) = PRF.Eval(K{S}, x′)] = 1.

Pseudorandom at Punctured Points. For every stateful PPT adversary A and every security
parameter λ ∈ N, the advantage of A in Exp-pPRF (described in Figure 3) is negligible, namely:

AdvcPRF(λ,A) :=
∣∣Pr[Exp-pPRF(1λ,A) = 1]− 1

2

∣∣ ≤ negl(λ).

Experiment Exp-pPRF(1λ,A)
S ← A(1λ)
b←r {0, 1}
K ← PRF.KeyGen(1λ)
K{S} ← PRF.Puncture(K,S)
Y = ∅
for all x ∈ S

y0 ← PRF.Eval(K,x)
y1 ←r Yλ

Y = Y
⋃
{yb}

b′ ← A(K{S}, Y)
Return b = b′

Fig. 3. Experiment Exp-pPRF(1λ,A) for the pseudo-randomness at punctured points.

For ease of notation we often write PRF(·, ·) instead of PRF.Eval(·, ·). When S is a singleton set
S = {x}, we denote the punctured key at S as K{S} = K{x}, and when S = {x1, x2}, we denote
K{S} = K{x1, x2}.

Theorem 2. [GGM84,BW13,BGI14,KPTZ13] Consider a fixed polynomial p(λ), and two arbitrary
polynomials n(λ),m(λ) in the security parameter λ. If one-way functions exist, then there exists a
puncturable PRF family that maps n(λ) bits to m(λ) bits and which supports punctured sets S of
p(λ) size.

As explained at the beginning of this section, in this paper we use puncturing for sets that contain
at most two elements.

2.2 Fully Homomorphic Encryption

We recall the definition of unleveled FHE here, where there is no a-priori bound on the depth of
circuits that can be homomorphically evaluated. For simplicity we consider messages to be bits.

Definition 3 (Fully Homomorphic Encryption). A fully homomorphic encryption scheme
FHE is a tuple of PPT algorithms (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval), where:

– FHE.KeyGen(1λ): outputs a public encryption/evaluation key pk and a secret key sk.
– FHE.Enc(pk,m): outputs an encryption ct of message m ∈ {0, 1}. We denote by R the randomness

space of FHE.Enc.
– FHE.Dec(sk, ct): uses sk to decrypt ct. It outputs a message.
– FHE.Eval(pk, f, ct1 . . . ctN): it is a deterministic algorithm that takes as input a circuit f of arity

N , and employs pk to compute an evaluated ciphertext ctf .

An FHE scheme must satisfy the following requirements:

10 Romain Gay and Bogdan Ursu

Encryption Correctness. For all λ ∈ N, all messages m ∈ {0, 1}, all (pk, sk) in the support of
FHE.KeyGen(1λ), all ciphertexts ct in the support of FHE.Enc(pk,m), we have FHE.Dec(sk, ct) = m.

Evaluation Correctness. For all λ ∈ N, all (pk, sk) in the support of FHE.KeyGen(1λ), all
messages m1, . . . ,mN ∈ {0, 1}, all ciphertexts (ct1 . . . ctN) such that FHE.Dec(sk, cti) = mi for all
i ∈ [N], all circuits f of arity N , it holds that:

FHE.Dec(sk,FHE.Eval(pk, f, ct1 . . . ctN)) = f(m1, . . . ,mN).

Randomness Homomorphism. There exists an efficient deterministic algorithm FHE.EvalRand
such that for all λ ∈ N, all (pk, sk) in the support of Setup(1λ), all messagesm1, . . . ,mN ∈ {0, 1} and
randomness r1, . . . , rN ∈ R, all circuits f of arityN , writing rf = FHE.EvalRand(sk, pk, r1, . . . , rN ,m1,
. . . ,mN , f) and cti = FHE.Enc(pk,mi; ri) for all i ∈ [N], we have:

FHE.Enc(pk, f(m1, . . . ,mN); rf) = FHE.Eval(pk, f, ct1, . . . , ctN).

For most lattice-based FHE schemes, such as [GSW13], a stronger property holds: EvalRand
can be publicly evaluated from the initial randomness and messages, and does not require sk (only
pk). Nevertheless, the FHE scheme based on iO from [CLTV15] does require the use of the secret
key to compute the evaluated randomness (which will consist of the key of a puncturable PRF).
Both variants can be used as a building block in our construction.

Unique Randomness. For all λ ∈ N, all (pk, sk) in the support of FHE.KeyGen(1λ), all messages
m ∈ {0, 1}, all r ∈ R where R denotes the randomness space, there is no r′ ∈ R such that r′ ̸= r
and Enc(pk,m; r) = Enc(pk,m; r′).

Selective IND-CPA Security. For any PPT adversary A, we require that AdvFHEIND-CPA(λ,A) in
the experiment Exp-IND-CPA from Figure 4 is negligible, namely:

AdvFHEIND-CPA(λ,A) :=
∣∣Pr[Exp-IND-CPAFHE(1λ,A) = 1]− 1

2]
∣∣ ≤ negl(λ)

Experiment Exp-IND-CPAFHE(1λ,A)
(m0,m1)← A(1λ);
(pk, sk)← FHE.Setup(1λ)
b←r {0, 1}
ct← FHE.Enc(pk,mb)
b′ ← A(pk, ct)
Return b = b′

Fig. 4. Experiment Exp-IND-CPA for the selective indistinguishable security of FHE.

2.3 Indistinguishability Obfuscation

We recall the definition of indinstuighuishability obfuscation, originally from [BGI+01].

Definition 4 (Indistinguishability Obfuscator). An indistinguishability obfuscator for a
circuit class {Cλ}λ∈N is an efficient algorithm iO such that:

– Perfect correctness: for all λ ∈ N, all C ∈ Cλ, all inputs x, we have:

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

– Security: for all efficient algorithms A, there exists a negligible function negl such that for all
λ ∈ N, all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x, we have:

AdviO(λ,A) := |Pr[A(iO(1λ, C0)) = 1]− Pr[A(iO(1λ, C1)) = 1]| ≤ negl(λ)

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 11

2.4 Non-Interactive Zero Knowledge Proofs

Given a binary relation R : X ×W → {0, 1} defined over a set of statements X and a set of witnesses
W, let LR be the language defined as LR = {x ∈ X | ∃w ∈ W : R(x,w) = 1}. A Non-Interactive
Zero Knowledge proof system for the binary relation R (originally introduced in [BFM88]) allows
a prover in possession of a statement x and a witness w such that R(x,w) = 1 to produce a
proof that convinces a verifier of the fact that x ∈ LR without revealing any information about w.
The soundness property ensures that no proof can convince the verifier of the validity of a false
statement, i.e. a statement x /∈ LR. We require the existence of an extractor that efficiently gets a
witness from a valid proof π of a statement x, using an extraction trapdoor. Such proof systems
are called proofs of knowledge. We focus on NIZK for relations R where the size of all statements
and witnesses are bounded, which we call size-bounded relation. We now give the formal definition
of NIZK proof of knowledge.

Definition 5 (NIZK-PoK). Let R be a size-bounded relation. A Non-Interactive Zero-Knowledge
Proof of Knowledge (NIZK-PoK) for R consists of the following PPT algorithms:

– Setup(1λ): on input the security parameter, it outputs a common reference string crs and an
extraction trapdoor tdext.

– Prove(crs, x, w): on input crs, a statement x and a witness w, it outputs an argument π.

– Verify(crs, x, π): on input crs, a statement x and an argument π, it deterministically outputs a
bit representing acceptance (1) or rejection (0).

The PPT algorithms satisfy the following properties.

Composable Zero-Knowledge. There exist two PPT algorithms SimSetup and Sim such that
for all PPT adversaries A, the following advantages AdvcrsΠ (λ,A) and AdvZKΠ (λ,A) are negligible in
λ:

AdvcrsΠ (λ,A) =
∣∣∣1/2− Pr

[
(crs, tdext)← Setup(1λ), (crssim, tdsim)← SimSetup(1λ),

b← {0, 1}, crs0 = crs, crs1 = crssim, b
′ ← A(crsb) : b′ = b

]∣∣∣.
AdvZKΠ (λ,A) =

∣∣∣1/2− Pr
[
(x,w)← A(1λ), (crssim, tdsim)← SimSetup(1λ),

π0 ← Prove(crssim, x, w), π1 ← Sim(crssim, tdsim, x),

b← {0, 1}, b′ ← A(crssim, tdsim, πb) : R(x,w) = 1 ∧ b′ = b
]∣∣∣.

Completeness on Simulated CRS. For all efficient adversaries A, the following advantage is neg-

ligible in the security parameter λ ∈ N: Pr
[
(x,w)← A(1λ), (crssim, tdsim)← NIZK.SimSetup(1λ), π ←

NIZK.Prove(crssim, x, w) : R(x,w) = 1 ∧ NIZK.Verify(crssim, x, π) = 0
]
.

Knowledge-Soundness. There exists an efficient algorithm Extract such that the following
probability νsound(λ) is a negligible function of λ ∈ N, defined as:

νsound(λ) = Pr
[
(crs, tdext)← Setup(1λ) : ∃ π, x, w ∈ Supp(Extract(crs, tdext, x, π))

s.t. Verify(crs, x, π) = 1 ∧ R(x,w) = 0
]
.

We say subexponential knowledge-soundness holds if νsound is subexponential in the security
parameter λ.

12 Romain Gay and Bogdan Ursu

2.5 Fully Homomorphic Signatures

We recall the definition of Fully-Homomorphic Signature (FHS), which was originally given
in [BF11a]. When many datasets are present, the signing algorithm takes as an additional input a
tag τ that identifies the dataset that is being signed. Only signatures issued for the same tag can
be combined together. For simplicity, we focus on the single dataset setting here (where there are
no tags), since [GVW15] showed how to generically transform any FHS for single dataset to many
datasets. This transformation relies on regular (non-homomorphic) signature schemes. Again for
simplicity, we focus on bit messages and Boolean functions.

Definition 6 (FHS, Single Dataset). An FHS scheme is a tuple of PPT algorithms Σ =
(KeyGen,Sign,Verify,Eval), such that:

– KeyGen(1λ, 1N): on input the security parameter λ and a data-size bound N , it generates a public
verification key vk, along with a secret signing key sk.

– Sign(sk,m, i): on input the secret key sk, a message m ∈ {0, 1} and an index i ∈ [N], it outputs a
signature σ.

– Eval(vk, f, (m1, σ1), . . . , (mN , σN)): on input the public key vk, a function f of arity N and pairs
(mi, σi), it deterministically outputs an evaluated signature σ of the message f(m1, . . . ,mN).

– Verify(vk, f, y, σ) : on input the public key vk, a function f , a value y and a signature σ, it outputs
a bit. 0 means the signature σ is deemed invalid, 1 means it is considered valid.

The algorithms satisfy the following properties.

Perfect Signing Correctness. For all λ,N ∈ N, all pairs (vk, sk) in the support of KeyGen(1λ, 1N),
all i ∈ [N], all messages m ∈ {0, 1}, all signatures σ in the support of Sign(sk,m, i), we have
Verify(vk, idi,m, σ) = 1, where idi is the projection function that takes N messages m1, . . . ,mN ∈
{0, 1}, and outputs the i’th message mi.

In our scheme, we achieve a weaker, computational variant of the correctness property, which
roughly states that an efficient algorithm cannot find messages (with more than negligible proba-
bility) on which properly generated signatures do not verify successfully.

Computational Signing Correctness. For all efficient algorithms A, the following probability,
defined for all λ,N ∈ N is negligible in λ: Pr[(vk, sk)← Setup(1λ, 1N), (m1, . . . ,mN)← A(vk),∀i ∈
[N], σi ← Sign(sk,mi, i) : ∃ i ∈ [N] s.t. Verify(vk, idi,mi, σi) = 0].

Perfect Evaluation Correctness. For all λ,N ∈ N, all pairs (vk, sk) in the support of
KeyGen(1λ, 1N), all messages m1, . . . ,mN ∈ {0, 1}, all signatures σ1, . . . , σN in the support of
Sign(sk,m1), . . . ,Sign(sk,mN) respectively, for all functions f of arityN , writing σf = Eval(vk, f, (σ1,m1), . . . ,
(σN ,mN)) and y = f(m1, . . . ,mN), we have Verify(vk, f, y, σf) = 1. Moreover, it is possible to
perform additional homomorphic operations on signatures that have already been evaluated on.
That is, correctness holds when functions are composed. Namely, for all ℓ ∈ N, all functions g
of arity ℓ, all tuples (σ1, f1,m1), . . . , (σℓ, fℓ,mℓ) such that for all i ∈ [ℓ], Verify(vk, fi,mi, σi) = 1,
writing Eval(vk, g, (m1, σ1), . . . , (mℓ, σℓ)) = σ and y = g(m1, . . . ,mℓ), we have Verify(vk, g, y, σ) = 1.

Similarly to signing correctness, we define a computational variant of the evaluation correctness.
For simplicity, we split the property into two properties: the first is a computational evaluation
correctness that only consider one-shot homomorphic evaluation, but does not take into account
the possibility of performing homomorphic evaluations in several steps, i.e. composing functions.
The second property, called weak context hiding, states that composing functions using Eval many
times yields the same signature as using Eval once on the composed function. The (non-weak)
context hiding property additionally requires that evaluated signatures be independent of the
underlying dataset, apart from the output of the evaluated function.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 13

Computational Evaluation Correctness. For all efficient algorithms A, the following proba-
bility, defined for all λ,N ∈ N, is negligible in λ: Pr[(vk, sk)← Setup(1λ, 1N), (m1, . . . ,mN , f)←
A(vk),∀i ∈ [N], σi ← Sign(sk,mi, i), σf ← Eval(vk, f, (m1, σ1), . . . , (mN , σN)), y = f(m1, . . . ,mN) :
Verify(vk, f, y, σf) = 0].

Weak Context Hiding. For all λ,N, t, ℓ ∈ N, all (vk, sk) in the support of Setup(1λ, 1N), all
messages m1, . . . ,mt ∈ {0, 1}, functions θ1, . . . , θt and signatures σ1, . . . , σt such that for all i ∈ [t],
Verify(vk, θi,mi, σi) = 1, all t-ary functions f1, . . . , fℓ, all ℓ-ary functions g, we have:

σg◦f⃗ = σh,

where σg◦f⃗ = Eval(vk, g, (σf1 , f1(m⃗)), . . . , (σfℓ , fℓ(m⃗))), σfj = Eval(vk, fj , (σ1,m1), . . . , (σt,mt)) for

all j ∈ [ℓ], σh = Eval(vk, h, (σ1,m1), . . . , (σt,mt)), h is the t-ary function defined on any input

m1, . . . ,mt as h(m⃗) = g(f1(m⃗), . . . , fℓ(m⃗))), which we denote by h = g ◦ f⃗ . We are also using the
notation m⃗ = (m1, . . . ,mt).

Pre-Processing. The scheme can be endowed with a pre-processing algorithm Process. Just
like the FHS scheme from [GVW15], our Verify algorithm works in two steps. The first step only
depends on the inputs vk and f . Thus, it can be run offline, before knowing the signature σ and
message y to verify. It produces a short processed vk, denoted by αf (whose size is independent of
the size of f). This first phase constitutes the Process algorithm. The second, online step takes as
input αf , y and σ and outputs a bit. The online step runs in time independent of the complexity
of f .

Adaptive Unforgeability. For all stateful PPT adversaries A and all data bound N ∈ N, the
advantage AdvforgΣ (λ,A) defined below is a negligible function of the security parameter λ ∈ N:

AdvforgΣ (λ,A) = Pr
[
(sk, vk)← Setup(1λ, 1N), (m1, . . . ,mN)← A(vk),

∀i ∈ [N], σi ← Sign(sk,mi, i), (f, y, σ
⋆)← A(σ1, . . . , σN) :

Verify(vk, f, y, σ⋆) = 1 ∧ y ̸= f(m1, . . . ,mn)
]
.

Selective unforgeability is defined identically except the adversary A must send the messages
m1, . . . ,mn of its choice before seeing the public key vk.

3 Construction

We describe our unleveled FHS scheme in Figure 5. We choose to focus on single dataset FHS (as
per Definition 6) rather that multi datasets for simplicity, since the work of [GVW15] presents a
generic transformation from single to multi datasets, relying only on (non-homomorphic) signatures.
Our FHS is for bit messages, and can evaluate arbitrary Boolean circuits. Without loss of generality,
we focus on evaluating binary NAND gates.

We use a puncturable PRF, an indistinguishability obfuscator iO, an FHE scheme and a NIZK-
PoK as building blocks, whose definition are given in the previous section. Our construction can
be implemented using the dual-mode NIZK from [GS08] (from pairings) or [HU19] (from iO and
lossy trapdoor functions), for instance. The FHE can be implemented using most lattice-based
FHE (with bootstrapping since the FHE must be unleveled, which requires circular security), or
with the construction from [CLTV15], which does not require any circularity assumption (it relies
on iO and lossy trapdoor functions). Altogether, if we use the NIZK from [HU19] and the FHE
from [CLTV15] we obtain our main result, which follows from Theorem 12 (unforgeability of our
FHS).

Theorem 7 (Main Result). Assume the existence of subexpentially secure iO and lossy trapdoor
functions. Then subexponentially adaptively unforgeable unleveled FHS exist.

14 Romain Gay and Bogdan Ursu

FHS.KeyGen(1λ, 1N)

(fpk, fsk)← FHE.Setup(1κ1)
{ct′i ← FHE.Enc(0)}i∈{1...N}
K1,K2 ← PRF.KeyGen(1κ2)
ObfGenCRS ← iO(1κ2 ,PubGenCRS)
ObfEval ← iO(1κ2 ,EvalNAND)
vk = (fpk, {ct′i},ObfGenCRS,ObfEval)
sk = (K1,K2, fsk)
Return (vk, sk)

FHS.Sign(sk,m, i)

(crssim, tdsim) = GenCRS(0)
π ← NIZK.Sim(crssim, tdsim, statm,ct′i

)

σ = (ct′i, π, 0)
Return σ

FHS.Verify(vk, f, y, σ)

Parse σ as (ct, π, level)
ctf = FHE.Eval(fpk, f, ct′1, . . . , ct

′
N)

crs = ObfGenCRS(level)
Return NIZK.Verify(crs, staty,ctf , π)

FHS.Eval(vk, f, (m1, σ1) . . . (mN , σN))

Evaluate each NAND gate of f
using ObfEval and return the result.

GenCRS(level)

Hardcoded: key K1

r = PRF(K1, level)
(crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)
Return (crssim, tdsim)

PubGenCRS(level)

(crssim, tdsim) = GenCRS(level)
Return crssim

EvalNAND((σ0,m0), (σ1,m1))

Hardcoded: key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
Return ⊥ if level0 ̸= level1
level = level0
(crssim, tdsim) = GenCRS(level)
If NIZK.Verify(crssim, statmb,ctb , πb) = 0

for some b ∈ {0, 1} then return ⊥
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)
(crs′sim, td

′
sim) = GenCRS(level+ 1)

ρ = PRF(K2, (m, ct, level+ 1))
π = NIZK.Sim(crs′sim, td

′
sim, statm,ct; ρ)

σ = (ct, π, level+ 1)
Return σ

Fig. 5. Fully-homomorphic signature scheme FHS = (FHS.KeyGen,FHS.Sign,FHS.Verify,FHS.Eval). PRF
is a puncturable pseudo-random function, NIZK is a proof of knowledge (NIZK PoK), FHE is a fully-
homomorphic encryption scheme, and iO is an indistinguishability obfuscator. By statm,ct we denote the
statement which claims that ∃ r ∈ R such that ct = FHE.Enc(fpk,m; r), where R denotes the randomness
space of the FHE encryption algorithm. Parameters κ(λ) = (N +2 log2 λ+5)1/ε, where ε > 0 is a constant
whose existence is ensure by the subexponential security of the underlying building blocks.

3.1 Choice of Parameters

In our FHS, we rely on building blocks PRF, iO, NIZK, FHE that are subexponentially secure,
that is, for which efficient adversaries can succeed with at most advantage 2−κε

in breaking the
security, for a constant ε > 0, where κ is the parameter chosen to run the setup of these primitives.
We denote by κ1 the parameter used for FHE and by κ2 the parameter used for PRF, iO, and
NIZK. Correctness is satisfied as long as the equations (1) and (2) hold. Adaptive unforgeability is
satisfied as long as the equation (3) holds. These equations are simultaneously satisfied when:

κ1 = (N + logN + 2 log2 λ)1/ε

κ2 =
(
|ct|+N + logN + 2 log2 λ+O(1)

)1/ε
where |ct| denotes the size of the FHE ciphertexts.

3.2 Correctness of the FHS

In this section we prove the computational signing correctness, the computational evaluation
correctness, the weak context hiding and the pre-processing property of our scheme, all given in
Definition 6.

Lemma 8 (Computational Signing Correctness). The FHS scheme from Figure 5 satisfies the
computational signing correctness as per Definition 6, assuming NIZK satisfies the subexponential
composable zero-knowledge and completeness on simulated crs properties (as per Definition 5), FHE
satisfies the subexponential (selective) IND-CPA security (as per Definition 3), PRF satisfies the

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 15

subexponential pseudorandomness at punctured points and the functionality preservation under
puncturing (as per Definition 1) and iO satisfies the correcntess and subexponential security
properties (as per Definition 4).

Proof. We first explain how to prove the computational signing property in the selective case, where
A sends the messages m1, . . . ,mN ∈ {0, 1} before receiving vk. In this case, we can prove correctness
using a hybrid argument, where we first switch the ciphertexts ct′i from vk to FHE.Enc(fpk,mi; ri),
using the selective IND-CPA security of FHE. Then, we want to change the way FHS.Sign(sk,mi, i)
computes the ZK proofs, using π ← NIZK.Prove(crssim, statmi,ct′i

, ri), where ri is a witness for
statmi,ct′i

, instead of producing π ← NIZK.Sim(crssim, tdsim, statmi,ct′i
). This change would be jus-

tified by the composable zero knowledge property of NIZK. Finally, we would conclude the
correctness proof using the completeness of NIZK on the simulated crssim. To perform these
changes, we first need to puncture the PRF key K1 on the point 0, and hardcode the pair
(crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1, 0)) in the obfuscated circuits (which relies on the
functionality preservation under puncturing of PRF and the security of iO), then switch the value
PRF(K1, 0) to truly random (which relies on the pseudorandomness at punctured points of PRF).
Then, we can switch the way the proof π is computed by FHS.Sign(sk,mi, i) as we explained, using
the composable zero-knowledge property of NIZK. Finally use the completeness on simulated crs
property of NIZK. To obtain correctness in the adaptive case, where A can choose the messages
m1, . . . ,mN after seeing vk, we simply guess all the messages mi in advance, which incurs a security
loss of 2N . Since we assume subexponential security of the underlying building blocks, we know that
an adversary against the selective correctness can only succeed with a probability N ·2−κε

1 +4 ·2−κε
2

for ε > 0 where κ1 is the parameter used for FHE, and κ2 is the parameter used for NIZK, PRF
and iO. Note that ε does not depend on N , so we can choose κ1, κ2 as polynomials in the security
parameter λ and the arity N such that 2N (N · 2−κε

1 + 4 · 2−κε
2) is a negligible function of λ, e.g.

κ1, κ2 ≥ (N + logN + log2 λ)1/ε. (1)

Lemma 9 (Computational Evaluation Correctness). The FHS scheme from Figure 5 satisfies
the computational evaluation correctness as per Definition 6, assuming NIZK satisfies the subex-
ponential zero-knowledge and and completeness on simulated crs properties (as per Definition 5),
FHE satisfies the subexponential (selective) IND-CPA security and the randomness homomorphism
properties (as per Definition 3), PRF satisfies the subexponential pseudorandomness at punctured
points and the functionality preservation under puncturing (as per Definition 1) and iO satisfies
the subexponential security and the perfect correctness properties (as per Definition 4).

Proof. First, we prove the evaluation correctness in the selective case where the adversary A sends
the messages m1, . . . ,mN and the depth d of the circuit f before seeing the public key vk. Then,
A receives vk and chooses the circuit f of depth d. To obtain computational evaluation correctness
in the adaptive setting where A can choose f and the messages m1, . . . ,mN after seeing vk (as per
Definition 3), we will use a guessing argument together with the subexponential security of the
underlying building blocks similarly than for proving the signing correctness. Namely, we choose
a superpolynomial function L(λ), e.g. L(λ) = 2log

2 λ and we guess the messages m1, . . . ,mN at
random over {0, 1}N and the depth d at random between 1 and L(λ). Because we choose L(λ)
superpolynomial, we know that the depth d chosen by A is less than L(λ), so the guess of the
depth is correct with probability 1/L(λ). Overall the guessing incurs a security loss of 2NL(λ).

Now we prove the selective variant of computational evaluation soundness. To begin with, we
switch the ciphertexts ct′i in vk to FHE encryptions of mi of the form FHE.Enc(fpk,mi; ri), using the
selective IND-CPA security of FHE, just as in the computational signing correctness proof. Moreover,
by perfect correctness of iO, we know that an evaluated signature σf = Eval(vk, f, (σ1,m1),
. . . , (σN ,mN)) is of the form σf = (ct, π, d) where ct = FHE.Eval(fpk, f, ct′1, . . . ct

′
N), and d is

the depth of f . By evaluation correctness of FHE, we know that ct is an encryption of the
message f(m1, . . . ,mN). In fact, by the randomness homomorphism property of FHE, we know that
ct = FHE.Enc(fpk, f(m1, . . . ,mN); rf) where rf = FHE.EvalRand(fsk, r1, . . . , rN ,m1, . . . ,mN , f).
Then, we want to switch the way the proof π in σf is computed: using NIZK.Prove and the

16 Romain Gay and Bogdan Ursu

witness rf instead of using NIZK.Sim and the simulation trapdoor tdsim. This switch would be
justified by the composable zero-knowledge property of NIZK. We would then conclude the proof
using the completeness of NIZK on simulated crs. Only to use these properties of NIZK, we first
need to generate (crssim, tdsim) of level d using truly random coins, as opposed to pseudo-random.
As typical, this requires puncturing the PRF key K1 and hardcoding the pair (crssim, tdsim) =
NIZK.Setup(1κ2 ;PRF(K1, d)) in the obfuscated circuits (thanks to the security of iO and the
functionality preservation under puncturing of PRF), then switching the value PRF(K1, d) to truly
random (thanks to the pseudo-randomness at punctured points property of PRF). Afterwards, we
can use the properties of NIZK to conclude the proof, as we explained.

Since we assume subexponential security of the underlying building blocks, we know that
an adversary against the selective computational evaluation correctness can only succeed with a
probability N · 2−κε

1 + 4 · 2−κε
2 for ε > 0 where κ1 is the parameter used for FHE, and κ2 is the

parameter used for NIZK, PRF and iO. Note that ε does not depend on N , so we can choose κ1, κ2

as polynomials in the security parameter λ and the arity N such that 2NL(λ)(N · 2−κε
1 + 4 · 2−κε

2)
is a negligible function of λ, e.g.

κ1, κ2 ≥ (N + logN + 2 log2 λ)1/ε. (2)

Lemma 10 (Weak Context Hiding). The FHS scheme from Figure 5 satisfies the weak context
hiding property as per Definition 6, assuming the perfect correctness of iO.

Proof. This property follows straightforwardly from the description of the Eval algorithm and the
correctness of iO. Indeed, Eval evaluates circuits gate by gate, using the EvalNAND algorithm (see
Figure 5), which performs deterministic evaluation on the FHE ciphertext, and then derive a ZK
proof deterministically from the statement and the depth level (using PRF on the key K2). Thus,
we have σg◦f⃗ = σh.

Lemma 11 (Pre-Processing). The FHS scheme from Figure 5 satisfies the pre-processing
property as per Definition 6.

Proof. This simply follows from the description of FHS.Verify. First, during a pre-processing phase,
it computes the values ctf and crs from vk and f . This can be performed offline, since it does
not require to know the message y and the signature σ. The result is a short pre-processed key
αf = (ctf , crs). Then, during the online phase, FHS.Verify uses αf , σ and y to run the NIZK.Verify
algorithm. The running time of this online phase is independent from the size or depth of f .

4 Proof of Unforgeability

Theorem 12 (Adaptive Unforgeability). Assuming subexponential security of PRF, FHE, iO,
and NIZK, the FHS from Figure 5 satisfies subexponential unforgeability as per Definition 6.

Proof of Theorem 12. We first prove the selective unforgeability (as per Definition 6), where
the adversary A must send the messages m1, . . . ,mN before receiving vk. Then we show how to
obtain adaptive unforgeability using a guessing argument and the subexponential security of the
underlying building blocks (just as in the proof of computational signing and evaluation correctness
in the previous section).

To prove unforgeability in the selective setting, we use a sequence of hybrid games, starting
with G0, defined exactly as the selective unforgeability game from Definition 6. For any game Gi,
we denote by Advi(A) the advantage of A in Gi, that is, Pr[Gi(1

λ,A) = 1], where the probability
is taken over the random coins of Gi and A. Before we proceed to describe the other hybrids, we
make several technical remarks.

Remark 13. When we hardcode a value in a subprogram, it is understood that this value is also
hardcoded in all the programs that run it, and if a PRF key K is punctured in a subprogram, it is
also punctured in all the programs that run it.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 17

Remark 14 (Padding the programs). The security of iO can only be invoked for programs of the
same size. For brevity, we assume without loss of generality that all programs in the security proof
are padded to the size of the longest program. Since our hybrids extend up to a superpolynomial
level L(λ) = 2ω(log λ), this implies a small increase in the programs contained in the real verification
key (since the last hybrid must keep track of the level, and its bit representation requires ω(log λ)

bits). For example, choosing L(λ) = 2log
2 λ would only incur a multiplicative increase by a factor

of log2 λ bits.

Remark 15 (Bounding the Sizes of Punctured PRF Keys). The security proof will require that

PRF keys K1 and K2 are punctured at levels i = 0 . . . L(λ), where L(λ) = 2log
2 λ. Puncturing

increases the size of the keys. In existing constructions of PRFs (e.g. [GGM84]), the size of the
punctured keys only grows logarithmically with the number of levels This results in a size-increase
of the keys (and therefore of the programs) of up to O(log2 λ). In particular, it is important to
note that this size increase is independent of the value of the specific level at which the adversary
will output a forgery.

– Game G1: same as G0, except that we change the FHS.KeyGen algorithm. Instead of computing
the ct′i in the verification key as encryptions of 0, we compute ct′i ← FHE.Enc(mi; ri), where mi

are the messages sent by A. The randomness ri used to compute the ciphertext ct′i is stored in the
secret key sk.

Lemma 16 (From G0 to G1). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv0(A)− Adv1(A)| ≤ AdvFHEIND-CPA(κ1,B).

Proof. The reduction B starts by sending (0 . . . 0) and (m1 . . .mN) to the IND-CPA challenger. It
receives (ct′1 . . . ct

′
N), which it embeds in the vk. During the execution of FHS.KeyGen, all the other

obfuscated programs in vk are generated as before, but using the ciphertexts received from the
challenger.

– Game G2: same as G1, except that we change the FHS.Sign algorithm and replace it with
HybridSign, defined in Figure 6. The latter computes the signatures σ1, . . . , σN sent to A (after
A sends the messages m1, . . . ,mN) as σi = (ct′i, πi, 0) where ct′i = FHE.Enc(fpk,mi; ri) is the i’th
FHE encryption contained in vk, 0 indicates the level, and πi is computed using the witness ri
(which is stored in sk), instead of using a simulation trapdoor.

Lemma 17 (From G1 to G2). For every PPT adversary A, there exist PPT adversaries B1, B2,
B3 such that:

|Adv1(A)− Adv2(A)| ≤ 2
(
AdvcPRF(κ2,B1) + AdviO(κ2,B2)

)
+N · AdvZK(κ2,B3).

Proof. To switch from proofs πi generated using NIZK.Sim and the simulation trapdoor tdsim to
proofs generated using NIZK.Prove and the witnesses ri, as described in Figure 6, we want to
use the composable zero-knowledge property of NIZK. To do so, we first have to hard-code the
pair (crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1, 0)) in the obfuscated circuit instead of using the
key K1 on the point 0. To generate the pairs (crssim, tdsim) for all other levels i ̸= 0, we compute
(crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1{0}, i)), where K1{0} is a key punctured at the point
0. Because puncturing preserves the functionality of PRF (as per Definition 1), this does not change
the input/output behavior of the obfuscated circuit. Thus we can use the iO security to argue
that this change is computational undetectable by the adversary. Then, we switch the hardcoded
pair (crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1, 0)) to (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r0),
where r0 is truly random. This is possible by the pseudorandomness property at punctured
points of PRF. Then, we use the composable zero-knowledge property of NIZK to switch πi to
πi ← NIZK.Prove(crssim, statct′i,mi

, ri) for all i ∈ [N]. Finally we switch back the generation of the
pairs (crssim, tdsim) using pseudo-random coins for all levels (instead of using truly random coins for
the level 0) and we unpucture the key K1.

18 Romain Gay and Bogdan Ursu

HybridSign(sk,mi, i)

crssim = PubGenCRS(0)

πi ← NIZK.Prove(crs, statmi,ct
′
i
, ri)

σi = (ct′i, πi, 0)
Return σi

Fig. 6. In G2, we replace the FHS.Sign algorithm with HybridSign. Changes are highlighted in gray.

– Game G3,ℓ: At this point, the proof proceeds in a series of L(λ) = 2log
2 λ hybrids where G3,ℓ is

defined for all ℓ = {0, . . . , L(λ)} identically to G2, except that:
1. the program GenCRS is replaced by HybridGenCRSℓ, described in Figure 7. The latter generates a

crs with an extraction trapdoor using NIZK.Setup on any level < ℓ, and generates a simulated crs
with a simulation trapdoor using NIZK.SimSetup on any level ≥ ℓ.

2. the program EvalNAND is replaced by HybridEvalNANDℓ, described in Figure 7. For any level < ℓ,
the latter generates proofs for the next level using witnesses obtained using an extraction trapdoor
and the randomness homomorphic property of FHE. For any level ≥ ℓ, it generates proofs for the
next level using a simulation trapdoor.
Note that G3,0 = G2. In Theorem 18, we prove that for all ℓ ∈ {0, . . . , L(λ)− 1}, G3,ℓ ≈c G3,ℓ+1.

– Game G4: same as G3,L(λ), except the game guesses the depth of the function f chosen by the
adversary A for his forgery, by sampling d⋆ ←r {1, . . . , L(λ)}. At the end of the game, A sends the
forgery (f, y, σ⋆). If d⋆ ̸= d, then the game G4 outputs 0. Otherwise it proceeds as in G3,L(λ). Since
L(λ) has been chosen super polynomial in λ, we know that the function f has depth d ≤ L(λ).
Thus, with probability 1/L(λ), the guess is correct, i.e. we have d⋆ = d. Therefore,

Adv4(A) =
Adv3,L(λ)(A)

L(λ)
.

– Game G5: same as G4, except we puncture the key K1 at d⋆ and hardcode the value PRF(K1, d
⋆)

in the obfuscated circuit. Since puncturing preserve the functionality, we can use the security of iO
to argue that there exists a PPT adversary B5 such that:

|Adv5(A)− Adv4(A)| = AdviO(κ2,B5).

– Game G6: same as G5, except we change the value PRF(K1, d
⋆) hardcoded in the obfuscated

circuit is turned to a truly random value. By the pseudorandomness of PRF on punctured points,
we know there exists a PPT B6 such that:

|Adv6(A)− Adv5(A)| = AdvcPRF(κ2,B6).

We now proceed to bound Adv6(A). By the knowledge soundness property of NIZK, we know that
Adv6(A) ≤ νsound(κ2). Putting things together, we have Adv4(A) ≤ νsound(κ) + AdvcPRF(κ2,B6) +
AdviO(κ2,B5) and Adv3(A) = L(λ)Adv4(A). Together with the result of Theorem 18, we have:

Adv0(A) ≤(2|ct|+2 + L(λ) + 8)AdviO(κ2,B1) + (2|ct|+2 + L(λ) + 6)AdvcPRF(κ2,B2)
+ Advcrs(κ2,B3) + (2|ct|+1 +N)AdvZK(κ2,B4)
+ (L(λ) + 2)νsound(κ2) + AdvFHEIND-CPA(κ1,B5).

The subexponential security of the building blocks implies that there exists a constant ε >
0 such that AdviO(κ2,B1),AdvcPRF(κ2,B2),Advcrs(κ2,B3),AdvZK(κ2,B4), νsound(κ2) ≤ 2−κε

2 and
AdvFHEIND-CPA(κ1,B5) ≤ 2−κε

1 . Thus, we have

Adv0(A) ≤ 2−κε
2(5 · 2|ct|+1 + 3L(λ) +N + 17) + 2−κε

1 .

Since we chose L(λ) = log2 λ, selective security can be achieved by choosing for instance

κ2 ≥ (|ct|+ logN + 2 log2 λ+O(1))1/ε,

κ1 ≥ (log2 λ)1/ε.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 19

To achieve adaptive unforgeability, we use the same guessing technique as for the proof of computa-
tion correctness (both signing and evaluation) in the previous section. Namely, we simply guess the
messages m⋆

1, . . . ,m
⋆
N ←r {0, 1} in advance, then proceed as in the selective game (but with the

guesses m⋆
i instead of the real messages chosen by the adversary). If the guess is correct, we have

the same advantage as in the selective security game. If the guess is incorrect, the game outputs
0. This guessing argument incurs a security loss of 2N . That is, the advantage of an adaptive
adversary A against the unforgeability of our FHS is less than 2N times the security loss in the
selective setting written above. Therefore, adaptive unforgeability can be achieved by choosing for
instance

κ2 ≥ (|ct|+N + logN + 2 log2 λ+O(1))1/ε, κ1 ≥ (N + log2 λ)1/ε (3)

This concludes the unforgeability proof. ⊓⊔

HybridGenCRSℓ(level)

Hardcoded: key K1

s = PRF(K1, level)
Return (crs, tdext) = NIZK.Setup(1κ2 ; s) for level < ℓ
Return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; s) for level ≥ ℓ

HybridEvalNANDℓ((σ0,m0), (σ1,m1))

Hardcoded: key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
Return ⊥ if level0 ̸= level1
j = level0
(crsj , tdj) = HybridGenCRSℓ(j)
If NIZK.Verify(crsj , statmb,ctb , πb) = 0 for some b ∈ {0, 1} then output ⊥
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)

(crsj+1, tdj+1) = HybridGenCRSℓ(j + 1)
ρ = PRF(K2, (m, ct, j + 1))
If j < ℓ

rb = NIZK.Extract(crsj , tdj , statmb,ctb , πb) for b ∈ {0, 1}
r = FHE.EvalRand(fsk,NAND, r1, r2)
π = NIZK.Prove(crsj+1, statm,ct, r; ρ)

If j ≥ ℓ
π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

σ = (ct, π, j + 1)
Return σ

Fig. 7. Algorithms HybridGenCRSℓ and HybridEvalNANDℓ, used in the games G3,ℓ, for all ℓ ∈ {0, . . . , L(λ)}.

Theorem 18 (From G3,ℓ to G3,ℓ+1). For every PPT adversary A, there exist PPT adversaries
B1,B2,B3,B4, such that:

|Adv3,ℓ(A)− Adv3,ℓ+1(A)| ≤ (2|ct|+2 + 6)AdviO(κ2,B1) + (2|ct|+2 + 4)AdvcPRF(κ2,B2) +
2|ct|+1AdvZK(κ2,B3) + Advcrs(κ2,B4) + 2νsound(κ2).

We now provide the proof of the theorem.

Proof. We proceed by a hybrid argument using the games Hk
ℓ defined as follows. For all k ∈ N and all

adversaries A, we denote by Advkℓ (A) the advantage of A in the game Hk
ℓ , that is, Pr[H

k
ℓ (1

λ,A) = 1],
where the probability is taken over the random coins of Hk

ℓ and A.

Hybrid H1
ℓ : same as G3,ℓ, except that we puncture the key K1 at level ℓ and we hardcode

the pair (crsℓ, tdℓ) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ)) in the obfuscated circuit. That is, the crs

20 Romain Gay and Bogdan Ursu

HybridGenCRSℓ(level)

Hardcoded: key K1

r = PRF(K1, level)
Return (crs, tdext) = NIZK.Setup(1κ2 ; r) for level < ℓ
Return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r) for level ≥ ℓ

HybridGenCRSℓ
1(level)

Hardcoded: punctured key K1{ℓ}, pair (crsℓ, tdℓ) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ))

If level < ℓ, r = PRF(K1{ℓ} , level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)

If level = ℓ, return (crsℓ, tdℓ)

If level > ℓ , r = PRF(K1{ℓ} , level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

HybridGenCRSℓ
2(level)

Hardcoded: punctured key K1{ℓ}, pair (crsℓ, tdℓ)← NIZK.SimSetup(1κ2)

If level < ℓ, r = PRF(K1{ℓ}, level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)
If level = ℓ, return (crsℓ, tdℓ)
If level > ℓ, r = PRF(K1{ℓ}, level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

HybridGenCRSℓ
3(level)

Hardcoded: punctured key K1{ℓ}, pair (crsℓ, tdℓ)← NIZK.Setup(1κ2)

If level < ℓ, r = PRF(K1{ℓ}, level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)
If level = ℓ, return (crsℓ, tdℓ)
If level > ℓ, r = PRF(K1{ℓ}, level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

Fig. 8. Programs HybridGenCRSℓ
j for j ∈ {1, 2, 3} used in the proof. In each program, the changes relative

to the previous program are highlighted in gray.

generation procedure HybridGenCRSℓ is replaced with HybridGenCRSℓ1, described in Figure 8. The
only difference from the previous hybrid is the puncturing, and indistiguishability follows from the
functionality preserving property of the PRF and security of iO. We thus have:

Lemma 19 (From G3,ℓ to H1
ℓ). For every PPT adversary A, there exists a PPT adversary B,

such that: |Adv3,ℓ(A)− Adv1ℓ(A)| ≤ AdviO(κ2,B).

Hybrid H2
ℓ : same as H1

ℓ , except we replace the value PRF(K1, ℓ) to truly random. That is, now
have (crsℓ, tdℓ) ← NIZK.SimSetup(1κ2) generated with truly random coins. The crs generation
HybridGenCRSℓ1 is replaced with algorithm HybridGenCRSℓ2 from Figure 8. H1

ℓ ≈c H
2
ℓ by the pseudo-

randomness of the PRF at the punctured point (see Definition 1).

Lemma 20 (From H1
ℓ to H2

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv1ℓ(A)− Adv2ℓ(A)| ≤ AdvcPRF(κ2,B).

Hybrid H3
ℓ : same as H2

ℓ , except that we use HybridGenCRSℓ3 (described in Figure 8) instead of

HybridGenCRSℓ2. The level ℓ crs and trapdoor are now sampled as: (crsℓ, tdℓ)← NIZK.Setup(1κ2).
That is, the tdℓ is now an extraction trapdoor, instead of a simulation trapdoor. Note that in the
games H3

ℓ and H4
ℓ , tdℓ is not used anywhere. In particular, the program HybridEvalNANDℓ uses the

simulation trapdoor tdℓ+1 to produce the signature of level ℓ+ 1, and uses the extraction trapdoor
tdℓ−1 and the randomness homomorphism of FHE to obtain a witness and produce the level ℓ
signatures. Thus, we can change the way (crsℓ, tdℓ) is generated by the zero knowledge property of
NIZK.

For clarity, we provide more explanations for why the simulation trapdoor at level ℓ does not
appear in H2

ℓ . When ℓ = 0, the change that removed the simulation trapdoor occurred in hybrid
G2. When ℓ > 0, this change occurred when switching from G3,ℓ−1 to G3,ℓ.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 21

Putting everything together, we have:

Lemma 21 (From H2
ℓ to H3

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv2ℓ(A)− Adv3ℓ(A)| ≤ Advcrs(κ2,B).

HybridEvalNANDℓ
1((σ0,m0), (σ1,m1))

Hardcoded: Key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
If level0 ̸= level1, return ⊥.
j = level0
(crsj , tdj) = HybridGenCRSℓ

3(j)
If NIZK.Verify(crsj , statmb,ctb , πb) = 0 for some ∈ {0, 1} then return ⊥
If j = ℓ, wb ← NIZK.Extract(crsℓ, tdℓ, statmb,ctb , πb) for all b ∈ {0, 1},

if ctb ̸= FHE.Enc(fpk,mb;wb) for any b ∈ {0, 1}, return ⊥.
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)

(crsj+1, td
j+1
ext) = HybridGenCRSℓ

3(j + 1)
ρ = PRF(K2, (m, ct, j + 1))
If j < ℓ

rb = NIZK.Extract(crsj , tdj , statmb,ctb , πb) for b ∈ {0, 1}
r = FHE.EvalRand(fsk,NAND, r1, r2)
π = NIZK.Prove(crsj+1, statm,ct, r; ρ)

If j ≥ ℓ
π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

σ = (ct, π, j + 1)
Return σ

Fig. 9. Program HybridEvalNANDℓ
1.

Hybrid H4
ℓ : same as H4

ℓ , except that we use HybridEvalNANDℓ
1 from Figure 9. That is, in addition

to check the input signatures passes the verification imposed by NIZK.Verify, HybridEvalNANDℓ
1

additionally runs the extractor on the proofs of level ℓ and checks the witnesses obtained are
actually proper randomness of the ciphertexts. It returns ⊥ if this extra check fails. These two
programs are functionally different only if there exists a statement statm,ct and a proof π such that
NIZK.Verify(crsℓ, statm,ct, π) = 1 AND the value r obtained by NIZK.Extract(crsℓ, tdℓ, statm,ct, π) is
not a valid witness, i.e. it is not such that ct = FHE.Enc(fpk,m; r). The subexponential knowledge
soundness of NIZK exactly bounds this event by νsound(κ2). If the programs are functionally
equivalent, then we can rely on the security of iO. Thus, we have:

Lemma 22 (From H3
ℓ to H4

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv3ℓ(A)− Adv4ℓ(A)| ≤ νsound(κ2) + AdviO(κ2,B).

Hybrid H5
ℓ : same as H4

ℓ , except that we puncture the key K1{ℓ} additionally at the level ℓ+ 1
and we hardcode the pair (crsℓ+1, tdℓ+1) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ+ 1)) in the obfuscated
circuit. That is, the crs generation procedure HybridGenCRSℓ3 is replaced with HybridGenCRSℓ4,
described in Figure 10. Note that this replacement is also done in HybridEvalNANDℓ

1, which uses
the crs generation algorithm as a subroutine. The only difference from the previous hybrid is the
puncturing, and indistiguishability follows from the functionality preserving property of the PRF
and security of iO. We thus have:

Lemma 23 (From H4
ℓ to H5

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv4ℓ(A)− Adv5ℓ(A)| ≤ AdviO(κ2,B).

Hybrid H6
ℓ : same as H5

ℓ , except we replace the value PRF(K1, ℓ + 1) to truly random. That
is, now have (crsℓ+1, tdℓ+1) ← NIZK.SimSetup(1κ2) generated with truly random coins. The crs
generation HybridGenCRSℓ4 is replaced with algorithm HybridGenCRSℓ5 from Figure 10 (as before, this

22 Romain Gay and Bogdan Ursu

HybridGenCRSℓ
4(level)

Hardcoded: punctured key K1{ℓ, ℓ+ 1} , pairs (crsℓ, tdℓ)← NIZK.Setup(1κ2)

and (crsℓ+1, tdℓ+1) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ+ 1))

If level < ℓ, r = PRF(K1{ℓ, ℓ+ 1} , level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)

If level = ℓ, return (crsℓ, tdℓ)

If level = ℓ+ 1, return (crsℓ+1, tdℓ+1)

If level > ℓ+ 1 , r = PRF(K1{ℓ, ℓ+ 1} , level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

HybridGenCRSℓ
5(level)

Hardcoded: punctured key K1{ℓ, ℓ+ 1}, pairs (crsℓ, tdℓ)← NIZK.Setup(1κ2)

and (crsℓ+1, tdℓ+1)← NIZK.SimSetup(1κ2)

If level < ℓ, r = PRF(K1{ℓ, ℓ+ 1}, level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)
If level = ℓ, return (crsℓ, tdℓ)
If level = ℓ+ 1, return (crsℓ+1, tdℓ+1)
If level > ℓ+ 1, r = PRF(K1{ℓ, ℓ+ 1}, level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

Fig. 10. Programs HybridGenCRSℓ
j for j ∈ {4, 5} used in the proof. In each program, the changes relative

to the previous program are highlighted in gray.

replacement is also done in the program HybridEvalNANDℓ
1). H

5
ℓ ≈c H

6
ℓ by the pseudorandomness

of the PRF at the punctured point (see Definition 1).

Lemma 24 (From H5
ℓ to H6

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv5ℓ(A)− Adv6ℓ(A)| ≤ AdvcPRF(κ2,B).

Hybrid H7
ℓ : same as H6

ℓ , except that we use HybridEvalNANDℓ
2 from Figure 11. Now, when

given as input signatures of level ℓ, HybridEvalNANDℓ
2 computes the level ℓ+ 1 signatures using

the extracted witnesses and the randomness homomorphism of FHE, instead of the simulation
trapdoor. To perform this transition we need to do a hybrid argument over all 2|ct|+1 possi-
ble statements (ct∗,m∗): we first puncture K2 on (ct∗,m∗, ℓ + 1) and hardcode the proof π =
NIZK.Sim(crsℓ+1, tdℓ+1;PRF(K2, (ct

∗,m∗, ℓ+1)) in the obfuscated circuit. Then we switch the value
PRF(K2, (ct

∗,m∗, ℓ+1)) to truly random, and switch the proof to π ← NIZK.Prove(crsℓ+1, tdℓ+1, r),
where r is the witness extracted using the extraction trapdoor on the level ℓ NIZK, i.e. it is such
that ct∗ = FHE.Enc(fpk,m∗; r). These transitions rely on the security of iO, the pseudorandomness
of PRF, and the composable zero-knowledge property of NIZK. The security loss of 2|ct|+1 can be
dealt with the subexponential security of iO, PRF, and NIZK, since these are run with a parameter
κ2 that is independent of the size |ct|.

Theorem 25 (From H6
ℓ to H7

ℓ). For every PPT adversary A, there exist PPT adversaries B1, B2
and B3, such that: |Adv6ℓ(A)−Adv

7
ℓ(A)| ≤ 2|ct|+1

(
2AdviO(κ2,B1)+2AdvcPRF(κ2,B2)+AdvZK(κ2,B3)).

We postpone the proof of this theorem further down.

Hybrid H8
ℓ : same as H7

ℓ , except that the algorithm HybridGenCRSℓ4 (described in Figure 10) is

used instead of HybridGenCRSℓ5 to generate the crs (this replacement is also done in the program
HybridEvalNAND2 which uses the crs generation algorithm as a subroutine). That is, we now have
(crsℓ+1, tdℓ+1) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ + 1)) generated with pseudo-random coins. The
transition is the reverse of the transition from H5

ℓ to H6
ℓ . We have H7

ℓ ≈c H
8
ℓ by the pseudorandomness

of the PRF at the punctured point (see Definition 1).

Lemma 26 (From H7
ℓ to H8

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv7ℓ(A)− Adv8ℓ(A)| ≤ AdvcPRF(κ2,B).

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 23

HybridEvalNANDℓ
2((σ0,m0), (σ1,m1))

Hardcoded: Key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
If level0 ̸= level1, return ⊥.
j = level0
(crsj , tdj) = HybridGenCRSℓ

5(j)
If NIZK.Verify(crsj , statmb,ctb , πb) = 0 for some b ∈ {0, 1} then return ⊥
If j = ℓ, wb ← NIZK.Extract(crsℓ, tdℓ, statmb,ctb , πb) for all b ∈ {0, 1},

if ctb ̸= FHE.Enc(fpk,mb;wb) for any b ∈ {0, 1}, return ⊥.
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)

(crsj+1, tdj+1) = HybridGenCRSℓ
5(j + 1)

ρ = PRF(K2, (m, ct, j + 1))

If j ≤ ℓ

rb = NIZK.Extract(crsj , tdj , statmb,ctb , πb) for b ∈ {0, 1}
r = FHE.EvalRand(fsk,NAND, r1, r2)
π = NIZK.Prove(crsj+1, statm,ct, r; ρ)

If j > ℓ

π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

σ = (ct, π, j + 1)
Return σ

Fig. 11. Program HybridEvalNANDℓ
2.

Hybrid H9
ℓ : same as H8

ℓ , except that the algorithm HybridGenCRSℓ3 (described in Figure 8) is

used instead of HybridGenCRSℓ4 to generate the crs (as before, this replacement is also done in the
program HybridEvalNAND2 which uses the crs generation algorithm as a subroutine). That is, we
do not hardcode the pair (crsℓ+1, tdℓ+1) = NIZK.SimSetup(1κ2 ;PRF(K1, ℓ+ 1)) in the obfuscated
circuit, but instead use the PRF key that is only punctured at ℓ (but not at ℓ+ 1 anymore). The
transition is the reverse of the transition from H4

ℓ to H5
ℓ . The fact that H8

ℓ ≈c H
9
ℓ follows from the

functionality preserving property of the PRF and security of iO. We thus have:

Lemma 27 (From H8
ℓ to H9

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv8ℓ(A)− Adv9ℓ(A)| ≤ AdviO(κ2,B).

Hybrid H10
ℓ : same as H9

ℓ , except that we use HybridEvalNANDℓ+1 from Figure 7 instead of

HybridEvalNANDℓ
2 (where both programs use the crs generation algorithm HybridGenCRS3 as a

subroutine). The only difference is that HybridEvalNANDℓ+1 does not run the extractor on the proofs
of level ℓ and therefore cannot check that the witnesses obtained are actually proper randomness
of the ciphertexts as in HybridEvalNANDℓ

2. These two programs are functionally different only if
there exists a statement statm,ct and a proof π such that NIZK.Verify(crsℓ, statm,ct, π) = 1 AND the
value r obtained by NIZK.Extract(crsℓ, tdℓ, statm,ct, π) is not a valid witness, i.e. it is not such that
ct = FHE.Enc(fpk,m; r). The subexponential knowledge soundness of NIZK exactly bounds this
event by νsound(κ2). If the programs are functionally equivalent, then we can rely on the security of
iO. This transition is the reverse of the transition from H3

ℓ and H4
ℓ . Thus, we have:

Lemma 28 (From H9
ℓ to H10

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv9ℓ(A)− Adv10ℓ (A)| ≤ νsound(κ2) + AdviO(κ2,B).

Hybrid H11
ℓ : same as H10

ℓ , except the crs generation algorithm HybridGenCRSℓ3 is replaced

with algorithm HybridGenCRSℓ6 from Figure 12 (this replacement is also done in the program
HybridEvalNANDℓ+1 that runs the crs generation algorithm as a subroutine). The pair (crsℓ, tdℓ)
is now generated using pseudo-random coins, namely: (crsℓ, tdℓ) = NIZK.Setup(1κ2 ;PRF(K1, ℓ)).
The fact that H10

ℓ ≈c H
11
ℓ relies on the pseudorandomness of the PRF at the punctured point (see

Definition 1). This is the reverse transition than between H1
ℓ and H2

ℓ .

24 Romain Gay and Bogdan Ursu

HybridGenCRSℓ
6(level)

Hardcoded: punctured key K1{ℓ}, pair (crsℓ, tdℓ)← NIZK.Setup(1κ2 ;PRF(K1, ℓ))

If level < ℓ, r = PRF(K1{ℓ}, level), return (crs, tdext) = NIZK.Setup(1κ2 ; r)
If level = ℓ, return (crsℓ, tdℓ)
If level > ℓ, r = PRF(K1{ℓ}, level), return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)

Fig. 12. Program HybridGenCRSℓ
6 used in the unforgeability proof.

Lemma 29 (From H10
ℓ to H2

ℓ). For every PPT adversary A, there exists a PPT adversary B,
such that: |Adv10ℓ (A)− Adv11ℓ (A)| ≤ AdvcPRF(κ2,B).

The only difference between H11
ℓ and G3,ℓ+1 is that the former uses HybridGenCRSℓ6 whereas the

latter uses HybridGenCRSℓ+1 to generate the crs. While the former hardcodes the pair (crsℓ, tdℓ) =
NIZK.Setup(1κ2 ;PRF(K1, ℓ)), the latter uses the unpunctured key K1 for all levels. Because of the
functionality preserving property of the PRF, these two programs implement the same functionality,
therefore we can use the security of iO to argue that H11

ℓ ≈c G3,ℓ+1. Namely, we have:

Lemma 30 (From H11
ℓ to G3,ℓ+1). For every PPT adversary A, there exists a PPT adversary

B, such that: |Adv11ℓ (A)− Adv3,ℓ+1(A)| ≤ AdviO(κ2,B).

Putting everything together, we obtain that for every PPT adversary A, there exist PPT
adversaries B1,B2,B3,B4, such that:

|Adv3,ℓ(A)− Adv3,ℓ+1(A)| ≤ (2|ct|+2 + 6)AdviO(κ2,B1) + (2|ct|+2 + 4)AdvcPRF(κ2,B2) +
2|ct|+1AdvZK(κ2,B3) + Advcrs(κ2,B4) + 2νsound(κ2),

which concludes the proof of Theorem 12. ⊓⊔

We now provide the proof of Theorem 25. We now provide the proof of Theorem 25.

Proof of Theorem 25. To prove this theorem, we perform a hybrid argument over all possible
bit strings (m, ct) ∈ {0, 1}|ct|+1, where |ct| denotes the size of the FHE ciphertexts. We order
the bit strings arbitrarily from str1, str2, . . . , str2|ct|+1 ∈ {0, 1}|ct|+1. For all i ∈ [2|ct|+1] and all bit
strings (m, ct) ∈ {0, 1}|ct|+1, we write (m, ct) < stri if (m, ct) is ranked before stri (according to
the arbitrary order). For notational convenience, we define str0 that is ranked lower than all bit
strings, i.e. str0 < stri for all i ∈ [2|ct|+1]. We think it is a good time to remind the reader that the
notation [n] for any integer n ∈ N denotes the set [n] = {1, . . . , n}. For all i ∈ [2|ct|+1], we define
the hybrid game Jiℓ as follows.

Hybrid Jiℓ: same as H6
ℓ , except the program HybridEvalNANDℓ

1 is replaced by HybridEvalNANDℓ
1.i,

described in Figure 13, which uses as a subroutine the program GenProofℓi . The latter generates
proofs for levels j < ℓ using NIZK.Prove and a witness, whereas it uses NIZK.Sim and a simulation
trapdoor for levels j > ℓ, as before. For level j = ℓ, it generates proof for statements statm,ct such
that (m, ct) ≤ stri using NIZK.Prove and statements such that (m, ct) > stri using NIZK.Sim. It is

clear that J0ℓ = H6
ℓ and J2

|ct|+1

ℓ = H7
ℓ , by definition of the games.

We now prove the following lemma.

Lemma 31 (From Ji−1
ℓ to Jiℓ). For all i ∈ [2|ct|+1] all PPT adversaries A, there exist PPT

adversaries B1,B2,B3, such that: |Adv(Ji−1
ℓ ,A)−Adv(Jiℓ,A)| ≤ 2AdviO(κ2,B1)+2AdvcPRF(κ2,B2)+

AdvZK(κ2,B3).

Note that when stri is of the form (m, ct) such that there is no r ∈ R such that ct =
FHE.Enc(fpk,m; r), then the two games Ji−1

ℓ and Jiℓ are identical. Thus we focus on the case
where stri = (m, ct) where ct is an encryption of m, that is, there exists r∗i ∈ R such that
ct = FHE.Enc(fpk,m; r∗i). Recall that we assume the FHE has unique randomness. The proof of
the lemma requires more hybrid games, defined below.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 25

HybridEvalNANDℓ
1.i((σ0,m0), (σ1,m1))

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
If level0 ̸= level1, return ⊥.
j = level0
(crsj , tdj) = HybridGenCRSℓ

3(j)
If NIZK.Verify(crsj , statmb,ctb , πb) = 0 for some b ∈ {0, 1} then return ⊥
If j ≤ ℓ:

rb = NIZK.Extract(crsj , tdj , statmb,ctb , πb) for b ∈ {0, 1}
if j = ℓ and ctb ̸= FHE.Enc(fpk,mb; rb) for some b ∈ {0, 1}, return ⊥
r = FHE.EvalRand(fsk,NAND, r1, r2)

If j > ℓ: r = ∅.
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)

π = GenProofℓi(ct,m, r, j)
σ = (ct, π, j + 1)
Return σ

GenProofℓi(ct,m, r, j)

Hardcoded: Key K2

ρ = PRF(K2, (m, ct, j + 1))

(crsj+1, tdj+1) = HybridGenCRSℓ
5(j + 1)

If j < ℓ: π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ:

if (ct,m) ≤ stri, π = NIZK.Prove(crsj+1, statm,ct, r; ρ)
if (ct,m) > stri, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

If j > ℓ: π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).

Fig. 13. Program HybridEvalNANDℓ
1.i, which use the program GenProofℓi as a subroutine.

Hybrid Ji−1.1
ℓ : same as Ji−1

ℓ , except the program GenProofℓi−1 used as a subroutine of HybridEvalNANDℓ
i−1.1

is replaced by GenProofℓi−1.1, described in Figure 14. We now hardcode the proof π∗ = NIZK.Sim(crsj+1,
tdj+1, statstri ;PRF(K2, (stri, ℓ + 1))) and use the punctured key K2{stri, ℓ + 1} to generate the
other proofs. Since puncturing preserve the functionality, we know the obfuscated circuits are
functionality equivalent. Thus, we can justify this transition using the security of iO. Namely, we
have:

Lemma 32 (From Ji−1
ℓ to Ji−1.1

ℓ). For all PPT adversaries A, there exist a PPT adversary B
such that: |Adv(Ji−1

ℓ ,A)− Adv(Ji−1.1
ℓ ,A)| ≤ AdviO(κ2,B).

Hybrid Ji−1.2
ℓ : same as Ji−1.1

ℓ , except the program GenProofℓi−1.2 (described in Figure 14) is

now used instead of GenProofℓi−1.1. We now use truly random coins to generate the proof π∗ ←
NIZK.Sim(crsj+1, tdj+1, statstri) instead of the pseudorandom coins PRF(K2, (stri, ℓ+ 1)). We can
justify this transition using the pseudorandomness of PRF. Namely, we have:

Lemma 33 (From Ji−1.1
ℓ to Ji−1.2

ℓ). For all PPT adversaries A, there exist a PPT adversary B
such that: |Adv(Ji−1.1

ℓ ,A)− Adv(Ji−1.2
ℓ ,A)| ≤ AdvcPRF(κ2,B).

Hybrid Ji−1.3
ℓ : same as Ji−1.2

ℓ , except the program GenProofℓi−1.3 (described in Figure 15) is now

used instead of GenProofℓi−1.2. We now generate the hardcoded proof as π∗ ← NIZK.Prove(crsj+1,
tdj+1, statstri , r

∗
i) instead of using the algorithm NIZK.Sim and the simulation trapdoor tdj+1.

Recall that r∗i denotes the randomness such that stri = (m, ct) and ct = FHE.Enc(fpk,m; r∗i). Note
that we rely on the fact that the FHE scheme has unique randomness here. We can justify this
transition using the composable zero-knowledge of NIZK. Namely, we have:

Lemma 34 (From Ji−1.2
ℓ to Ji−1.3

ℓ). For all PPT adversaries A, there exist a PPT adversary B
such that: |Adv(Ji−1.2

ℓ ,A)− Adv(Ji−1.3
ℓ ,A)| ≤ AdvZK(κ2,B).

26 Romain Gay and Bogdan Ursu

Hybrid Ji−1.4
ℓ : same as Ji−1.3

ℓ , except the program GenProofℓi−1.4 (described in Figure 15) is

now used instead of GenProofℓi−1.3. We now use pseudo random coins to generate the proof
π∗ = NIZK.Prove(crsj+1, tdj+1, statstri , r

∗
i ;PRF(K2, (stri, ℓ+ 1))) instead of truly random coins as

before. We can justify this transition using the pseudorandomness of PRF. This transition is the
reverse than the transition between Ji−1.1

ℓ and Ji−1.2
ℓ . Namely, we have:

Lemma 35 (From Ji−1.3
ℓ to Ji−1.4

ℓ). For all PPT adversaries A, there exist a PPT adversary B
such that: |Adv(Ji−1.3

ℓ ,A)− Adv(Ji−1.4
ℓ ,A)| ≤ AdvcPRF(κ2,B).

The only difference between Ji−1.4
ℓ and Jiℓ is that in the former, the proof π∗ = NIZK.Prove(crsj+1,

tdj+1, statstri ;PRF(K2, (stri, ℓ + 1))) is hardcoded in the obfuscated circuit the punctured key
K2{stri, ℓ + 1} is used to generate the other proofs, whereas in the latter, the proof π∗ is not
hardcoded and all proofs are computed using the unpunctured key K2. Since puncturing preserve
the functionality, we know the obfuscated circuits are functionality equivalent. Thus, we can justify
this transition using the security of iO. Namely, we have:

Lemma 36 (From Ji−1.4
ℓ to Jiℓ). For all PPT adversaries A, there exist a PPT adversary B

such that: |Adv(Ji−1.4
ℓ ,A)− Adv(Jiℓ,A)| ≤ AdviO(κ2,B).

Putting everything together, we obtain Lemma 31. Summing up for all i ∈ [2|ct|+1], we obtain
Theorem 25. ⊓⊔

5 Acknowledgements

We would like to thank Geoffroy Couteau and Dennis Hofheinz for their input during discussions
that led to this work.

References

AB09. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network coding. In
ACNS 09, LNCS 5536, pages 292–305. Springer, Heidelberg, June 2009.

ACL+22. M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. K. Thyagarajan. Lattice-based
SNARKs: Publicly verifiable, preprocessing, and recursively composable - (extended abstract).
In CRYPTO 2022, Part II, LNCS 13508, pages 102–132. Springer, Heidelberg, August 2022.

ALP13. N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding quotable
and linearly homomorphic signatures. In PKC 2013, LNCS 7778, pages 386–404. Springer,
Heidelberg, February / March 2013.

AP19. D. F. Aranha and E. Pagnin. The simplest multi-key linearly homomorphic signature scheme.
In International Conference on Cryptology and Information Security in Latin America, pages
280–300. Springer, 2019.

AP20. S. Agrawal and A. Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and
fixes for noisy linear FE. In EUROCRYPT 2020, Part I, LNCS 12105, pages 110–140. Springer,
Heidelberg, May 2020.

BCFL23. D. Balbás, D. Catalano, D. Fiore, and R. W. F. Lai. Chainable functional commitments
for unbounded-depth circuits. In Theory of Cryptography, pages 363–393, Cham, 2023. Springer
Nature Switzerland.

BDGM20a. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Candidate iO from homomorphic
encryption schemes. In EUROCRYPT 2020, Part I, LNCS 12105, pages 79–109. Springer,
Heidelberg, May 2020.

BDGM20b. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Factoring and pairings are not necessary
for io: circular-secure lwe suffices. Cryptology ePrint Archive, 2020.

BF11a. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In
EUROCRYPT 2011, LNCS 6632, pages 149–168. Springer, Heidelberg, May 2011.

BF11b. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In PKC 2011, LNCS 6571, pages 1–16. Springer, Heidelberg,
March 2011.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 27

BFM88. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BFS14. X. Boyen, X. Fan, and E. Shi. Adaptively secure fully homomorphic signatures based on lattices.
Cryptology ePrint Archive, Paper 2014/916, 2014. https://eprint.iacr.org/2014/916.

BGI+01. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO 2001, LNCS 2139, pages 1–18.
Springer, Heidelberg, August 2001.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, LNCS 8383, pages 501–519. Springer, Heidelberg, March 2014.

BW13. D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT 2013, Part II, LNCS 8270, pages 280–300. Springer, Heidelberg, December 2013.

CF13. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits. In EURO-
CRYPT 2013, LNCS 7881, pages 336–352. Springer, Heidelberg, May 2013.

CFN15. D. Catalano, D. Fiore, and L. Nizzardo. Programmable hash functions go private: Constructions
and applications to (homomorphic) signatures with shorter public keys. In CRYPTO 2015,
Part II, LNCS 9216, pages 254–274. Springer, Heidelberg, August 2015.

CFN18. D. Catalano, D. Fiore, and L. Nizzardo. On the security notions for homomorphic signatures.
In ACNS 18, LNCS 10892, pages 183–201. Springer, Heidelberg, July 2018.

CFT22. D. Catalano, D. Fiore, and I. Tucker. Additive-homomorphic functional commitments and
applications to homomorphic signatures. In ASIACRYPT 2022, Part IV, LNCS 13794, pages
159–188. Springer, Heidelberg, December 2022.

CFW14. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verification
for polynomial functions. In CRYPTO 2014, Part I, LNCS 8616, pages 371–389. Springer,
Heidelberg, August 2014.

CGKS23. M. Campanelli, C. Ganesh, H. Khoshakhlagh, and J. Siim. Impossibilities in succinct arguments:
Black-box extraction and more. In International Conference on Cryptology in Africa, pages
465–489. Springer, 2023.

CLQ16. W. Chen, H. Lei, and K. Qi. Lattice-based linearly homomorphic signatures in the standard
model. Theoretical Computer Science, 634:47–54, 2016.

CLTV15. R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic circuits
and applications. In TCC 2015, Part II, LNCS 9015, pages 468–497. Springer, Heidelberg,
March 2015.

DJ01. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In PKC 2001, LNCS 1992, pages 119–136. Springer, Heidelberg,
February 2001.

DQV+21. L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs. Succinct LWE sampling,
random polynomials, and obfuscation. In TCC 2021, Part II, LNCS 13043, pages 256–287.
Springer, Heidelberg, November 2021.

ElG84. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In CRYPTO’84, LNCS 196, pages 10–18. Springer, Heidelberg, August 1984.

ElG85. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

FG18. G. Fuchsbauer and R. Gay. Weakly secure equivalence-class signatures from standard as-
sumptions. In PKC 2018, Part II, LNCS 10770, pages 153–183. Springer, Heidelberg, March
2018.

FHS19. G. Fuchsbauer, C. Hanser, and D. Slamanig. Structure-preserving signatures on equivalence
classes and constant-size anonymous credentials. Journal of Cryptology, 32(2):498–546, April
2019.

FP18. D. Fiore and E. Pagnin. Matrioska: a compiler for multi-key homomorphic signatures. In
International Conference on Security and Cryptography for Networks, pages 43–62. Springer,
2018.

Fre12. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic framework.
In PKC 2012, LNCS 7293, pages 697–714. Springer, Heidelberg, May 2012.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC, pages
169–178. ACM Press, May / June 2009.

GGM84. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

GM82. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In 14th ACM STOC, pages 365–377. ACM Press, May 1982.

https://eprint.iacr.org/2014/916

28 Romain Gay and Bogdan Ursu

GP21. R. Gay and R. Pass. Indistinguishability obfuscation from circular security. In 53rd ACM
STOC, pages 736–749. ACM Press, June 2021.

GS08. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT 2008, LNCS 4965, pages 415–432. Springer, Heidelberg, April 2008.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO 2013, Part I, LNCS
8042, pages 75–92. Springer, Heidelberg, August 2013.

GVW15. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from
standard lattices. In 47th ACM STOC, pages 469–477. ACM Press, June 2015.

GW11. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

GW13. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In ASIACRYPT 2013,
Part II, LNCS 8270, pages 301–320. Springer, Heidelberg, December 2013.

HILL99. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

HPP20. C. Hébant, D. H. Phan, and D. Pointcheval. Linearly-homomorphic signatures and scalable
mix-nets. In PKC 2020, Part II, LNCS 12111, pages 597–627. Springer, Heidelberg, May 2020.

HS14. C. Hanser and D. Slamanig. Structure-preserving signatures on equivalence classes and their
application to anonymous credentials. In ASIACRYPT 2014, Part I, LNCS 8873, pages
491–511. Springer, Heidelberg, December 2014.

HU19. D. Hofheinz and B. Ursu. Dual-mode NIZKs from obfuscation. In ASIACRYPT 2019, Part I,
LNCS 11921, pages 311–341. Springer, Heidelberg, December 2019.

ILL89. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions
(extended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May 1989.

JLS21. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded assumptions.
In 53rd ACM STOC, pages 60–73. ACM Press, June 2021.

JLS22. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN,
and PRGs in NC0. In EUROCRYPT 2022, Part I, LNCS 13275, pages 670–699. Springer,
Heidelberg, May / June 2022.

JMSW02. R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes. In
Cryptographers’ track at the RSA conference, pages 244–262. Springer, 2002.

KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom
functions and applications. In ACM CCS 2013, pages 669–684. ACM Press, November 2013.

KSD19. M. Khalili, D. Slamanig, and M. Dakhilalian. Structure-preserving signatures on equivalence
classes from standard assumptions. In ASIACRYPT 2019, Part III, LNCS 11923, pages 63–93.
Springer, Heidelberg, December 2019.

LP11. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA 2011, LNCS 6558, pages 319–339. Springer, Heidelberg, February 2011.

LPJY15. B. Libert, T. Peters, M. Joye, and M. Yung. Linearly homomorphic structure-preserving
signatures and their applications. Designs, Codes and Cryptography, 77(2):441–477, 2015.

LTWC18. R. W. F. Lai, R. K. H. Tai, H. W. H. Wong, and S. S. M. Chow. Multi-key homomorphic
signatures unforgeable under insider corruption. In ASIACRYPT 2018, Part II, LNCS 11273,
pages 465–492. Springer, Heidelberg, December 2018.

Mic00. S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg, May 1999.

SBB19. L. Schabhüser, D. Butin, and J. Buchmann. Context hiding multi-key linearly homomorphic
authenticators. In Cryptographers’ track at the rsa conference, pages 493–513. Springer, 2019.

SW14. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

Tsa17. R. Tsabary. An equivalence between attribute-based signatures and homomorphic signatures,
and new constructions for both. In TCC 2017, Part II, LNCS 10678, pages 489–518. Springer,
Heidelberg, November 2017.

WW21. H. Wee and D. Wichs. Candidate obfuscation via oblivious LWE sampling. In EURO-
CRYPT 2021, Part III, LNCS 12698, pages 127–156. Springer, Heidelberg, October 2021.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 29

A FHE with Unique Randomness

Here we present two FHE schemes with unique randomness. The first one is a variant of the GSW
FHE scheme [GSW13], where the left over hash lemma is replaced by a computational argument,
namely the use of the LWE assumption. The second is a variant of the scheme from [CLTV15]
from subexponentially secure iO plus re-randomizable encryption. In our variant, we simply require
the re-randomizable encryption to have unique randomness. This property is satisfied by standard
encryption schemes, such as Goldwasser Micali, ElGamal, Paillier or Damgard Jurik.

A.1 Variant of GSW

The GSW scheme uses a random binary matrix R and computes the encryption of m as ct =
pk ·R+mG , where pk and G are matrices of appropriate dimensions. For security, R is much
higher than pk: the map R→ pk ·R is not injective and there are multiple matrices R′ that are
compatible with ct and m. This choice of dimension is required to apply a statistical argument
referred to as the left over hash lemma [ILL89]. Instead, we rely on a computational argument
which is compatible with unique randomness, just as in the encryption scheme from [LP11]. In
this variant, an encryption of m is of the form ct = pk ·R + E + mG where E is a matrix of
small-norm values (called the error term or noise term). Now, the height of R is about the same as
the height of pk. With this choice of dimension, the map R,E→ pk ·R+E is now injective. Thus,
the scheme has unique randomness. The security relies on the LWE assumption. In particular, pk
is first switched to a uniformly random matrix. Then, The LWE assumption is used to argue that
the value pk ·R+E is pseudo random and hides the message part mG. Note that to use LWE, we
use R with values distributed according to a small error distribution (as the values of E), but not
binary as before.

A.2 Variant of CLTV

In their paper, CLTV build an unleveled FHE from subexponentially secure iO for circuits and
re-randomizable encryption. The FHE encryption in their scheme simply runs the re-randomizable
encryption algorithm. If the latter has unique randomness, then so does the FHE. It is straightfor-
ward to see that the re-randomizable encryption schemes [GM82,ElG84,Pai99,DJ01] happen to
satisfy the unique randomness property.

B Unbounded Arity in the Random Oracle Model

In this section, we provide a variant of the construction from Figure 5, which does not require
the parameter N to be known when running KeyGen(·). recall that the parameter N dictated the
size of the dataset (x1 . . . xN) to be signed. The construction with unbounded arity is given in
Figure 16.

The ciphertexts ct′i are not fixed in the verification key anymore, but are generated using a hash
function H as ct′i = H(i). Using the random oracle model, one argues that H(i) looks uniformly
random. Under the additional assumption that FHE has ciphertexts that are computationally
indistinguishable from uniformly random strings, ct′i = H(i) can be interpreted as FHE ciphertexts.

Random Oracles and Obfuscation. We stress that the random oracle H never appears inside an
obfuscated program, but only as part of the FHS.Setup and FHS.Verify algorithms.

Definition 37. A fully homomorphic encryption scheme has pseudo-random ciphertexts if for all
PPT adversaries A, it holds that AdvFHEIND-CPA(λ,A) in the experiment Exp-Rand from Figure 17 is
negligible.

Theorem 38 (Selective Unforgeability). Assuming that FHE has pseudo-random ciphertexts,
as well as the subexponential security of PRF, FHE, iO, and NIZK, the FHS scheme from Figure 16
achieves selective correctness and selective unforgeability in the random oracle model.

30 Romain Gay and Bogdan Ursu

Proof Sketch. This proof is similar to the proof of Theorem 12, we mostly focus on highlighting the
main differences here. One important difference is that we only prove selective unforgeability here,
where the adversary sends messages of its choice m1 . . .mN to the challenger before receiving vk. In
the previous scheme, we would switch the ciphertext ct′i from vk to encryption of mi. Here, we will
program the hash function H (modeled as a random oracle) so that H(i) = FHE.Enc(mi; ri) where
the randomness ri is sampled on the fly when H is queried. This is computationally indistinguishable
from truly random values beacuse the FHE has pseudo-random ciphertexts. Afterwards, the proof
proceeds as the for the bounded-arity scheme.

Note that we cannot simply guess the messages m1, . . . ,mN in advance to obtain adaptive
unforgeability here, since the number of such messages is unbounded. Thus we have to settle down
for selective unforgeability. The same remark applies to the correctness proof: we only obtain a
selective variant. Consequently, our proof here does not suffer from a security loss of 2N and we
can choose parameters

κ2 = (|ct|+ 3 log2 λ+O(1))1/ε,

κ1 = (log2 λ)1/ε,

where ε > 0 is a constant whose existence is implied by the subexponential security of the building
blocks.

C Full Context-Hiding Security

Full context-hiding is a stronger property of fully-homomorphic signatures, ensuring that a signature
σ for m does not leak the original messages m1 . . .mN from which σ was derived. In particular,
the signature σ should be simulatable only using m and the function f for which σ was computed.
This must hold even if the adversary is given the secret key sk of the FHS scheme. This is different
from the notion of weak context-hiding from Definition 6, which only states that executing the
operations in the functions in a different (but still consistent) order leads to the same signature.
In contrast, full context-hiding also allows for guarantees on the privacy of the original messages
m1 . . .mN .

The construction from [GVW15] supports full context-hiding6, but suffers from several draw-
backs:

1. The homomorphic signatures of [GVW15] are not themselves fully context-hiding, but they can
be processed in order to ensure that they maintain the privacy of the original input m1 . . .mN .
This means that σ is processed into a new context-hiding signature σ′.

2. However, this postprocessing step also removes the homomorphism property of the resulting
signature σ′. This means that σ′ cannot be further combined either with other non-context
hiding signatures or other fully context-hiding ones. It was left as an open problem in [GVW15]
to achieve fully context-hiding signatures that are homomorphic as well.

Our scheme from Figure 5, Section 3 has none of this two drawbacks. Signatures are already
fully context-hiding and require no further postprocessing. Moreover, they can be combined for an
unbounded number of levels.

In order to showcase this property, we first provide a formal definition of full context-hiding,
which will be a strenthening of the notion from [GVW15].

Definition 39 (Full Context-Hiding). A fully homomorphic single-data signature scheme FHS
is fully context-hiding if there exists a PPT simulator Sim such that for any fixed choice (vk, sk)
in the support of KeyGen(1λ, 1N), for all messages m, for all pre-processed public keys α derived
from vk, and all σ in the support of either FHS.Signsk(·) or FHS.Evalvk(·), it holds that for all PPT
adversaries A:
6 We note that full context-hiding is simply called context-hiding in [GVW15]. We use this terminology to
distinguish from the notion of weak context-hiding in Definition 6.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 31

∣∣∣∣∣Pr [A(vk, sk, α, σ,m) = 1
]
−

Pr
[
σ′ = Sim(sk, α,m) : A(vk, sk, α, σ′,m) = 1

]∣∣∣∣∣ ≤ negl(λ)

Lemma 40. The FHS construction from Figure 5 satisfies perfect full context-hiding in the sense
of Definition 39.

Proof. Note that the definition requires that only honestly computed signatures are fully context-
hiding. To see why that is indeed the case, we describe Sim: the simulator parses α as an FHE
ciphertext, and computes a proof π and uses the simulation trapdoor tdsim of the NIZK at the
corresponding level to generate a fake proof π′ that α indeed encrypts m

We explain the simulator in more details. Let level be the corresponding parameter of signature σ.
The simulator Sim knows the PRF keysK1,K2 and computes (crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)
with randomness r = PRF(K1, level). It then derives π = NIZK.Sim(crssim, tdsim, statm,α; ρ) using ρ =
PRF(K2, (m, ct)). Simulated signature σ′ is then computed as σ′ = (α, π, level). It is straightforward
to check that the simulated signatures are computed in the same way as honest ones, therefore the
distribution of simulated signatures is identical to those of honestly-computed ones.

D Discussion on SNARKs

It was claimed in [GW13,GVW15] that FHS can be built from succinct arguments of knowledge
(SNARKs) for NP, although no concrete construction was provided (let alone a security analysis).
We sketch here a possible approach to build FHS from SNARKs. The main disadvantage of this
approach it its reliance on a strong extractability property, which is only achievable from strong
knowledge extraction assumptions (even in the random oracle model), as far as we know.

The first construction that comes to mind is simply to use a digital signature scheme Σ =
(KeyGen,Sign,Verify) together with a SNARK as follows: given signatures {σi = Sign(sk,mi)}i∈[n]

of the dataset {mi}i∈[n], on can simply evaluate a function f on the messages mi to obtain the value
y = f(m1, . . . ,mn) and create a proof for the statement: ∃{mi, σi}i∈[n] such that f(m1, . . . ,m) = y
and Verify(vk, σi,mi) = 1 for all i ∈ [n]. The proof serves as the evaluated signature. Succinctness
of the SNARK directly translates into succinct signatures (and therefore efficient to verify). The
extraction property of the SNARK is necessary to reduce the unforgeability of the FHS to the
unforgeability of the underlying signatures scheme. Unfortunately, this property has been shown to
require non-falsifiable so-called knowledge of exponent assumptions [GW11,CGKS23] or rely on
the random oracle model [Mic00]. This is in contrast to general obfuscation that can be build from
falsifiable assumptions [JLS21,GP21,JLS22].

Another problem with this approach is that it only allows users to perform homomorphic
computations in one step, unlike existing constructions (including ours) where the homomorphic
computations can be performed in multiple hops. To obtain such a feature, SNARK can be used
recursively. Namely, signatures are labeled by level, where level 0 signatures are digital signatures
{σi = Sign(sk,mi)}i∈[n] of the dataset {mi}i∈[n], as before. Homomorphic computation is carried
out gate by gate, where gates are assumed to be binary wlog. A signature of level j for a value y is
a proof that there exists messages m0, m1, signatures σ0, σ1 of level j − 1, functions g0, g1, and a
binary gate g such that: Verify(vk,mb, gb, σb) = 1 for all b ∈ {0, 1}, and g(m0,m1) = y. To prove
unforgeability of this FHS, we would need to rely on the extractability property of the SNARK
recursively: if the adversary submits a signature for a function of depth d, we need to apply the
extractor d times to recover witnesses all the way to the original signatures, and finally rely on the
unforgeability of Σ. For that we need the extractor to have a runtime tA + poly(λ), where tA is
the runtime of the adversary, as opposed poly(λ)tA as is usually required. This is to make sure
the reduction (to the unforgeability of Σ) running time does not blow up exponentially. This is a

32 Romain Gay and Bogdan Ursu

significant strengthening of the typical extraction property, and as far as we know, only SNARKs
based on strong knowledge assumptions achieve it (even in the random oracle model).

E Multi-Data FHS

[GVW15] also analysed the case of multi-data FHS, a generalization of the single-dataset definition
of FHS. Moreover, [GVW15, Theorem 5.1] contains a generic transformation that also applies to
our scheme in Figure 5.

In this appendix, we recall the definition of FHS for multiple datasets, where each dataset is
labeled (the label can be an identifier or a time stamp, for instance). Multi-data FHS schemes offer
more functionality and are more useful in practical applications:

Definition 41 (Multi-Data FHS). A multi-data FHS scheme is a tuple of PPT algorithms
Σ = (KeyGen,Sign,Verify,Eval), such that:

– KeyGen(1λ, 1N): on input the security parameter λ and a data-size bound N , it generates a public
verification key vk, along with a secret signing key sk.

– Sign(sk,m, i, τ): on input the secret key sk, a message m ∈ {0, 1}, an index i ∈ [N], and a label
τ ∈ {0, 1}∗, it outputs a signature σ under a label τ .

– Eval(vk, f, (m1, σ1), . . . , (mN , σN), τ): on input the public key vk, a function f of arity N and
pairs (mi, σi) under label τ , it deterministically outputs an evaluated signature σ of the message
f(m1, . . . ,mN) for label τ .

– Verify(vk, f, y, σ, τ) : on input the public key vk, a function f , a value y, a label τ and a signature σ,
it outputs a bit. 0 means the signature σ is deemed invalid under label τ , 1 means it is considered
valid for τ .

Multi-data FHS has the same properties as the single-data FHS from Definition 6. Here we
only describe the properties whose descriptions need to be adapted in order to support labels.

Computational Signing Correctness. For all efficient algorithms A, the following probabil-
ity, defined for all λ,N ∈ N is negligible in λ: Pr[(vk, sk) ← Setup(1λ, 1N), (m1, . . . ,mN , τ) ←
A(vk),∀i ∈ [N], σi ← Sign(sk,mi, i, τ) : ∃ i ∈ [N] s.t. Verify(vk, idi,mi, σi, τ) = 0].

Computational Evaluation Correctness. For all efficient algorithms A, the following prob-
ability, defined for all λ,N ∈ N, is negligible in λ: Pr[(vk, sk)← Setup(1λ, 1N), (m1, . . . ,mN , τ, f)←
A(vk),∀i ∈ [N], σi ← Sign(sk,mi, i, τ), σf ← Eval(vk, f, (m1, σ1), . . . , (mN , σN), τ), y = f(m1, . . . ,mN) :
Verify(vk, f, y, σf , τ) = 0].

Weak Context Hiding. For all λ,N, t, ℓ ∈ N, all (vk, sk) in the support of Setup(1λ, 1N), all
messages m1, . . . ,mt ∈ {0, 1}, labels τ ∈ {0, 1}∗, functions θ1, . . . , θt and signatures σ1, . . . , σt such
that for all i ∈ [t], Verify(vk, θi,mi, σi, τ) = 1, all t-ary functions f1, . . . , fℓ, all ℓ-ary functions g,
we have:

σg◦f⃗ = σh,

where σg◦f⃗ = Eval(vk, g, (σf1 , f1(m⃗)), . . . , (σfℓ , fℓ(m⃗)), τ), σfj = Eval(vk, fj , (σ1,m1), . . . , (σt,mt), τ)

for all j ∈ [ℓ], σh = Eval(vk, h, (σ1,m1), . . . , (σt,mt), τ), h is the t-ary function defined on any input

m1, . . . ,mt as h(m⃗) = g(f1(m⃗), . . . , fℓ(m⃗))), which we denote by h = g ◦ f⃗ . We are also using the
notation m⃗ = (m1, . . . ,mt).

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 33

Adaptive Unforgeability. For all stateful PPT adversaries A and all data bound N ∈ N, the
advantage AdvforgΣ (λ,A) defined below is a negligible function of the security parameter λ ∈ N:

AdvforgΣ (λ,A) = Pr
[
(sk, vk)← Setup(1λ, 1N), (m1, . . . ,mN , τ)← A(vk),

∀i ∈ [N], σi ← Sign(sk,mi, i, τ), (f, y, σ
⋆)← A(σ1, . . . , σN) :

Verify(vk, f, y, σ⋆) = 1 ∧ y ̸= f(m1, . . . ,mn)
]
.

Selective unforgeability is defined identically except the adversary A must send the messages
m1, . . . ,mn of its choice before seeing the public key vk.

Definition 42 (Multi-Data Adaptive Security of Homomorphic Signatures [GVW15]).
A multi-data homomorphic signature scheme is adaptively secure if for all stateful PPT adversaries
A, the advantage of A in the following experiment is negligible:

– The challenger generates (vk, sk)← KeyGen(1λ, 1N). It sends vk to A.
– Adaptive Signing Queries: The adversary A asks an arbitrary number of signing queries. For every
query j, A picks a fresh label τj ∈ {0, 1}∗ that was never queried before, along with messages
(mj,1 . . .mj,N) ∈ {0, 1}N . The challenger replies with the corresponding signature:

(σj,1, . . . , σj,N) = (Sign(sk,mj,1, 1, τ) . . . Sign(sk,mj,N , N, τ))

– A chooses a function f : {0, 1}N → {0, 1} and values τ, y′, σ′. It wins the experiment when
Verify(vk, f, y′, σ′, τ) = 1 and one of the following conditions hold:
1. Type I forgery: τ ≠ τj for any query j. This means that the adversary produces a signature for

a label that it never queried before.
2. Type II forgery: τ = τj for some j with corresponding message (mj,1 . . .mj,N) where:

y′ ̸= g(mj,1 . . .mj,N).

In other words, this type of forgery corresponds to the case of the adversary certifying an
incorrect result of homomorphic computation.

As mentioned at the beginning of this section, [GVW15] contains a generic transformation
from single-data FHS to multi-data FHS using as an additional building block a regular signature
scheme.

34 Romain Gay and Bogdan Ursu

GenProofℓi−1(ct,m, r, j)

Hardcoded: Key K2

(crsj+1, tdj+1) = HybridGenCRSℓ
5(j + 1)

ρ = PRF(K2, (m, ct, j + 1))
If j < ℓ: π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ:

if (m, ct) < stri: π = NIZK.Prove(crsj+1, statm,ct, r; ρ)
if (m, ct) ≥ stri: π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

If j > ℓ: π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).
Return π

GenProofℓi−1.1(ct,m, r, j)

Hardcoded: punctured key K2{stri, ℓ+ 1} ,
proof π∗ = NIZK.Sim(crsj+1, tdj+1, statstri ;PRF(K2, (stri, ℓ+ 1)))

(crsj+1, tdj+1) = HybridGenCRSℓ
5(j + 1)

If (m, ct, j + 1) ̸= (stri, ℓ+ 1), ρ = PRF(K2{stri, ℓ+ 1} , (m, ct, j + 1))

If j < ℓ, π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ,

if (m, ct) ≤ stri, π = NIZK.Prove(crsj+1, statm,ct, r; ρ)

if (m, ct) = stri, π = π∗

if (m, ct) > stri, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)
If j > ℓ, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).
Return π

GenProofℓi−1.2(ct,m, r, j)

Hardcoded: punctured key K2{stri, ℓ+ 1},
proof π∗ ← NIZK.Sim(crsj+1, tdj+1, statstri)

(crsj+1, tdj+1) = HybridGenCRSℓ
5(j + 1)

If (m, ct, j + 1) ̸= (stri, ℓ+ 1): ρ = PRF(K2{stri, ℓ+ 1}, (m, ct, j + 1))
If j < ℓ: π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ:

if (m, ct) < stri: π = NIZK.Prove(crsj+1, statm,ct, r; ρ)
if (m, ct) = stri: π = π∗

if (m, ct) > stri: π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)
If j > ℓ, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).
Return π

Fig. 14. Programs used as subroutine of the program HybridEvalNANDℓ
1.i.

On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions 35

GenProofℓi−1.3(ct,m, r, j)

Hardcoded: punctured key K2{stri, ℓ+ 1},
proof π∗ ← NIZK.Prove(crsj+1, tdj+1, statstri , r

∗
i)

(crsj+1, tdj+1) = HybridGenCRSℓ
3(j + 1)

If (m, ct, j + 1) ̸= (stri, ℓ+ 1), ρ = PRF(K2{stri, ℓ+ 1}, (m, ct, j + 1))
If j < ℓ, π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ,

if (m, ct) < stri, π = NIZK.Prove(crsj+1, statm,ct, r; ρ)
if (m, ct) = stri, π = π∗

if (m, ct) > stri, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)
If j > ℓ, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).
Return π

GenProofℓi−1.4(ct,m, r, j)

Hardcoded: punctured key K2{stri, ℓ+ 1},
proof π∗ = NIZK.Prove(crsj+1, tdj+1, statstri , r

∗
i ;PRF(K2, (stri, ℓ+ 1)))

(crsj+1, tdj+1) = HybridGenCRSℓ
3(j + 1)

If (m, ct, j + 1) ̸= (stri, ℓ+ 1), ρ = PRF(K2{stri, ℓ+ 1}, (m, ct, j + 1))
If j < ℓ, π = NIZK.Prove(crsj+1, statm,ct, r; ρ).
If j = ℓ,

if (m, ct) < stri, π = NIZK.Prove(crsj+1, statm,ct, r; ρ)
if (m, ct) = stri, π = π∗

if (m, ct) > stri, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)
If j > ℓ, π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ).
Return π

Fig. 15. Programs used as subroutine of the program HybridEvalNANDℓ
1.i.

36 Romain Gay and Bogdan Ursu

FHS.KeyGen(1λ)

(fpk, fsk)← FHE.Setup(1κ2)
K1,K2 ← PRF.KeyGen(1κ2)
ObfGenCRS ← iO(1κ2 ,PubGenCRS)
ObfEval ← iO(1κ2 ,EvalNAND)
H ← H(1λ)
vk = (fpk, {ct′i},ObfGenCRS,ObfEval, H)
sk = (K1,K2, fsk)
Return (vk, sk)

FHS.Sign(sk,m, i, ct′i = H(i))

(crssim, tdsim) = GenCRS(0)
π ← NIZK.Sim(crssim, tdsim, statm,ct′i

)

σ = (ct′i, π, 0)
Return σ

FHS.Verify(vk, f, y, σ)

Parse σ as (ct, π, level)
{ct′i = H(i)}i∈{1...N}
ctf = FHE.Eval(fpk, f, ct′1, . . . , ct

′
N)

crs = ObfGenCRS(level)
Return NIZK.Verify(crs, staty,ctf , π)

FHS.Eval(vk, f, (m1, σ1) . . . (mN , σN))

Evaluate each NAND gate of f
using ObfEval and return the result.

GenCRS(level)

Hardcoded: key K1

r = PRF(K1, level)
(crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)
Return (crssim, tdsim)

PubGenCRS(level)

(crssim, tdsim) = GenCRS(level)
Return crssim

EvalNAND((σ0,m0), (σ1,m1))

Hardcoded: key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
Output ⊥ if level0 ̸= level1
j = level0
(crssim, tdsim) = GenCRS(j)
If NIZK.Verify(crssim, statmb,ctb , πb) ̸= 1

for some b ∈ {0, 1} then output ⊥
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0,m1)
(crs′sim, td

′
sim) = GenCRS(j + 1)

ρ = PRF(K2, (m, ct, j + 1))
π = NIZK.Sim(crs′sim, td

′
sim, statx,ct; ρ)

σ = (ct, π, j + 1)
Return σ

Fig. 16. Fully-homomorphic signature scheme FHS = (FHS.KeyGen,FHS.Sign,FHS.Verify,FHS.Eval). PRF
is a puncturable pseudo-random function, NIZK is a proof of of knowledge (NIZK PoK), FHE is a fully-
homomorphic encryption scheme, and iO is an indistinguishability obfuscator. By statm,ct we denote the
statement which claims that ∃r ∈ R such that ct = FHE.Enc(fpk,m; r) where R denotes the randomness
space of the encryption algorithm. The parameter κ is chosen as described in proof of Theorem 38.

Experiment Exp-RandFHE(1λ,A)
m← A(1λ);
(pk, sk)← FHE.Setup(1λ)
ct0 = FHE.Enc(pk,m)

ct1 ← {0, 1}p(λ)
b← {0, 1}
b′ ← A(pk, ctb)
Return b = b′

Fig. 17. Experiment Exp-Rand for the pseudo-random ciphertext security of FHE. The polynomial p
corresponds to the size of FHE ciphertexts.

	On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions
	Introduction
	Preliminaries
	Puncturable Pseudorandom Functions
	Fully Homomorphic Encryption
	Indistinguishability Obfuscation
	Non-Interactive Zero Knowledge Proofs
	Fully Homomorphic Signatures

	Construction
	Choice of Parameters
	Correctness of the FHS

	Proof of Unforgeability
	Acknowledgements
	FHE with Unique Randomness
	Variant of GSW
	Variant of CLTV

	Unbounded Arity in the Random Oracle Model
	Full Context-Hiding Security
	Discussion on SNARKs
	Multi-Data FHS

