Pairing-Free Blind Signatures from Standard Assumptions in the ROM

Julia Kastner\(^1\), Ky Nguyen\(^2\), and Michael Reichle\(^{1,3}\)

\(^1\) Department of Computer Science
ETH Zürich, Switzerland
\{julia.kastner,michael.reichle\}@inf.ethz.ch
\(^2\) DIENS, École normale supérieure, CNRS, Inria, PSL University,
Paris, France
ky.nguyen@ens.psl.eu
\(^3\) Work done partially while at ENS and Inria, Paris.

Abstract. Blind Signatures are a useful primitive for privacy preserving applications such as electronic payments, e-voting, anonymous credentials, and more. However, existing practical blind signature schemes based on standard assumptions require either pairings or lattices. We present the first practical construction of a round-optimal blind signature in the random oracle model based on standard assumptions without resorting to pairings or lattices. In particular, our construction is secure under the strong RSA assumption and DDH (in pairing-free groups). For our construction, we provide a NIZK-friendly signature based on strong RSA, and efficiently instantiate a variant of Fischlin’s generic framework (CRYPTO’06). Our Blind Signature scheme has signatures of size 4.28 KB and communication cost 10.98 KB. On the way, we develop techniques that might be of independent interest. In particular, we provide efficient relaxed range-proofs for large ranges with subversion zero-knowledge and compact commitments to elements of arbitrary groups.

1 Introduction

In privacy-preserving authentication of data, a central question is how to authenticate without compromising one’s private information. A blind signature solves this question by allowing a user to obtain signatures blindly from a signer while satisfying strong security guarantees. The property of blindness ensures that the signer cannot learn anything about the message when signing and cannot link signatures to the signing sessions of a user. This must hold even when the signer’s public key is chosen maliciously. On the other hand, the property one-more unforgeability imposes that after \(\ell\) completed signing sessions, a user cannot obtain more than \(\ell\) valid signatures (i.e., it cannot forge an additional signature).

Due to the strong security guarantees, blind signatures have applications in e-cash [28, 31, 74], e-voting [30, 49], or anonymous credentials [29, 21], and more. In the past few years blind signatures also play an important role in new applications such as blockchains [86, 23] or private access tokens [59, 53].

Initial constructions. Since their introduction by Chaum [28], many variants of blind signatures were proposed. The first proposed construction—blind RSA [28]—was proven secure under one-more RSA [13]. A similar construction secure under one-more CDH was proposed in [20]. These constructions have great efficiency—a signing interaction requires only two rounds—but require both the random oracle model (ROM) and an interactive security assumption. These strong assumptions are only somewhat falsifiable [71] and are tailored to the schemes itself.

Protocols with three or more rounds. Historically, the main alternative to the aforementioned blind signatures are based on linear identification protocols, e.g., blind Schnorr [78] or similar constructions [73, 6, 55, 64]. These blind signatures are shown to be secure under falsifiable assumptions (e.g., DLOG, RSA) for poly-logarithmically many concurrent signing sessions in the ROM. But for a polynomially large number of concurrent sessions, there are efficient attacks on such protocols [81, 16]. Since, interesting mechanisms that bind an obtained signature to a signing session were proposed, and the resulting schemes are secure in the ROM for an unbounded number of concurrent
sessions \[1, 47, 63, 80, 36\] under standard assumptions. Unfortunately, the security proof also requires the generic group model (i.e., it is assumed that the adversary interacts with the group in a black-box manner). Alternatively, stateful blind signatures can be obtained for an a-priori bounded number of signatures via a cut-and-choose technique \[25, 76, 67\]. Generally, these Schnorr-style approaches require more than two moves, i.e., are not round-optimal.

Round optimality. Round optimality is a desirable efficiency measure as it removes the requirement of storing a state for each signing session and less interaction is required to obtain a signature. Another advantage of round optimal blind signatures is that sequential security implies concurrent security \[68, 56\]. However, it is difficult to construct round-optimal blind signatures in the plain model under standard assumptions which is supported by several impossibility results \[68, 43, 75\]. Katsumata et al. \[65\] shows that this is possible under classical and quantum standard assumptions. While this result is of theoretical interest, the construction is impractical, due to its reliance on general-purpose cryptographic primitives, namely garbled circuits. More commonly, constructions circumvent such hurdles via a trusted setup \[42, 5, 70, 17, 19, 79, 3\], idealized models (e.g., generic groups and/or the random oracle model \[54, 4, 18, 37, 54, 66\]), complexity leveraging \[51, 50\], or interactive assumptions \[11, 69, 8, 46, 45, 52\]. All such constructions require pairings or lattices with the exception of blind RSA \[28, 13\]. But over large networks and complex web applications, existing implementations of pairings (e.g., \[83\]) seem to remain a significant bottleneck. Another disadvantage of pairing-based constructions is that highly-verified standard cryptographic libraries (for instance BoringSSL and NSS) do not support pairing-friendly curves. Similarly, lattice-based constructions are still in the process of being standardized \[82\]. On the other hand, plain groups (without pairings) and RSA-based constructions have found widespread use in practice, e.g., in Apple’s Proposal for Click Fraud Prevention in Safari \[84\] or SSH \[85\]. The only efficient round-optimal blind signature in this setting is blind RSA \[28, 13\] and its variants \[69, 8\]. The latter are covered in an RTF draft \[38\] and blind RSA is still a recommended nowadays \[27\]. Unfortunately, these schemes require both an interactive assumption (tailored to the scheme itself) and the ROM. This brings us to the following natural question:

Can we construct efficient round optimal blind signatures in the ROM, based on standard non-interactive assumptions without resorting to pairings or lattices?

1.1 Our Contributions

In this paper we answer this question affirmatively. We construct a round optimal blind signature scheme with competitive efficiency, whose security is proven in the ROM under standard assumptions in the RSA setting and group setting (without pairings) simultaneously. Concretely, our construction is secure under the strong RSA (sRSA) assumption and DDH in ordinary prime-order groups.

Our starting point for our construction is the variant of Fischlin’s framework \[42\] proposed in \[66\]. Roughly, \[66\] shows how to construct a blind signature via a signature scheme with an all-but-one reduction. We instantiate the framework with a variant of the signature proposed in \[41\] (hereafter denoted by S_{fis}), and obtain blind signatures with 10.98 KB communication and signatures of size 4.28 KB. We provide a comparison to prior works in Table \[1\]. Notably, we provide the first round-optimal blind signature without pairings or lattices. On a practical level, our signature is 2 times smaller than the previously most efficient blind signature in this regime \[25\] —and adds the desirable features of stateless, session-independent efficiency and round optimality. In particular, the computation cost in \[25\] (measured in group operations) grows linearly with the number of signing sessions opened, whereas in our construction communication and computation is $O(\lambda)$ in

\[4\] The framework of Fischlin \[42\] yields round-optimal blind signatures with trusted setup generically, but efficient instantiations rely either on pairings \[18, 1, 66\] or lattices \[37, 7\].

\[5\] Note that due to impossibility results for round optimal blind signatures \[68, 43, 75\], the reliance on random oracles can likely not be removed efficiently.

\[6\] In the context of signatures, an all-but-one reduction allows to puncture the verification key in such a way that all-but-one message m^* can be signed and given a signature on m^*, a hard problem can be solved. We refer to \[72\] for more details.
the number of group elements. Compared to Blind RSA [28], our construction is only around 10 larger times without relying on a strong interactive assumption.

We emphasize that our instantiation is non-trivial and requires several new techniques to achieve round-optimality and malicious blindness (i.e., blindness holds even if the signer’s verification key was setup maliciously). Also, since the security proof of \(S_{th} \) does not fit the framework as it has no all-but-one reduction, the one-more unforgeability proof requires new insights. We refer to the technical overview in Section 2 for more details. Along the way, we provide techniques that might be of independent interest, such as:

- Easy-to-use notions for subversion zero-knowledge in the ROM (i.e., zero-knowledge holds even for a maliciously setup \(\text{crs} \)).
- Efficient relaxed range proofs for large ranges, i.e., zero-knowledge proofs that prove to a verifier that a given value \(x \in [0, B] \) lies in a range \([-TB, BT]\), where \(T \in \mathbb{N} \) is the slack, with subversion zero-knowledge.
- Compact commitments to elements of arbitrary cyclic groups based on DDH in an independent prime-order group. Our commitments can be opened efficiently in zero-knowledge using our relaxed range proofs.
- A zero-knowledge-friendly variant of the \(S_{th} \) signature [41]. Knowledge of a signature on a given message \(m \) can be shown efficiently in zero-knowledge using our relaxed range proofs.

Table 1: Comparison to relevant state-of-the-art blind signatures.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sig. size</th>
<th>Comm. size</th>
<th>Setting</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>del Pino et al. [37]</td>
<td>100 KB</td>
<td>850 KB</td>
<td>Lattices</td>
<td>DSMR, MLWE, MSIS</td>
</tr>
<tr>
<td>Blazy et al. [18]</td>
<td>96 B</td>
<td>220 KB †</td>
<td>Pairings</td>
<td>SXDH, CDH</td>
</tr>
<tr>
<td>Abe et al. [4]</td>
<td>5.5 KB</td>
<td>1 KB</td>
<td>Pairings</td>
<td>SXDH</td>
</tr>
<tr>
<td>Hanzlik et al. [54] †</td>
<td>9 KB</td>
<td>36 KB</td>
<td>Pairings</td>
<td>CDH</td>
</tr>
<tr>
<td>Katsumata et al. [66] †</td>
<td>447 B</td>
<td>303 B</td>
<td>Pairings</td>
<td>SXDH</td>
</tr>
<tr>
<td>This work</td>
<td>4.28 KB</td>
<td>10.98 KB</td>
<td>RSA, Groups</td>
<td>sRSA, DDH</td>
</tr>
</tbody>
</table>

We provide signature size, communication size, and the underlying assumptions for known round-optimal blind signatures in the ROM secure under non-interactive assumptions.

We stress that our work relies on assumptions in prime-order groups without pairing.

(†): Communication of [18] scales linearly with the message size, and is given here for 256 bit messages.

(††): [54] offers tradeoffs between signature and communication sizes.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sig. size</th>
<th>Comm. size</th>
<th>Rounds</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind RSA and variants [28, 67, 8]</td>
<td>768 B</td>
<td>384 B</td>
<td>2</td>
<td>One-more RSA</td>
</tr>
<tr>
<td>Chairattana-Apirom et al. [25]</td>
<td>8.66 KB</td>
<td>8.08 KB</td>
<td>5</td>
<td>RSA</td>
</tr>
<tr>
<td>This work</td>
<td>4.28 KB</td>
<td>10.98 KB</td>
<td>2</td>
<td>sRSA, DDH</td>
</tr>
</tbody>
</table>

We provide signature size, communication size, number of rounds and the underlying assumption of known blind signatures in the RSA setting.

(†): [25] is not round-optimal and at most an a-priori fixed number of signatures can be issued, here 256. Also, the signer is required to keep a state and communication scales logarithmically in the number sessions in size but linearly in computation.

1.2 Concurrent Works

There is an independent and concurrent work that also constructs a pairing-free blind signature in the ROM from standard assumptions [26] but for a stricter notion of pairing-free. That is, their construction relies exclusively on a prime-order group without pairing, whereas our construction relies on a prime-order group and a hidden order group (namely \(QR_N \)). In addition to this difference, we give a brief comparison. [26] presents three blind signatures: two constructions \(BS_1 \) and \(BS_2 \) based on an interactive assumption, and \(BS_3 \) based on a non-interactive assumption in the ROM.

\(^7\) In the pairing setting, the known tradeoffs are similar (cf. [54] [66]) compared to Blind BLS [20].
When instantiating BS$_3$ with a group of order 256 bit, it has communication and signature size of roughly 26 KB and 10 KB, respectively. Compared to our construction, their signature size and communication is more than twice as large as ours. Their construction relies on weaker assumptions, namely CDH, but has 4 rounds of interaction. Our construction is round-optimal, but relies on DDH and sRSA. We believe it to be non-trivial to reduce the number of rounds in the protocol of BS$_3$ as it relies on a Schnorr-style proof of knowledge that is interactively computed. Similarly, we believe it to be non-trivial to remove the reliance of hidden order groups in our round-optimal construction.

2 Technical Overview

We provide an overview of our construction. Since our blind signature builds on the framework proposed in [66], we give a brief recap.

The framework. The framework of [66] is based on a signature scheme S with a compatible additively homomorphic commitment scheme C_{om}, i.e., $C_{om}(m;r) + C_{om}(m';r') = C_{om}(m + m';r + r')$. Here, compatible means that there exists an algorithm \hat{Sig} such that the signing algorithm $\hat{Sign}(sk,m)$ can be rewritten as $\hat{Sign}(sk, C_{om}(m;r)) - C_{om}(0;r)$. Namely, \hat{Sig} computes an intermediate signature $\sigma_{r'} = \hat{Sign}(sk, C_{om}(m;r))$ given a commitment to the message m with randomness r. Then, a signature can be computed by removing $C_{om}(0;r)$ from $\sigma_{r'}$ homomorphically. To turn this into a blind signature, a user can generate a commitment $c = C_{om}(m;r)$, send it to the signer, and the signer can simply return $\sigma_{r'} \leftarrow \hat{Sign}(sk,c)$. Finally, the user obtains a valid signature $\sigma \leftarrow \sigma_{r'} - C_{om}(0;r)$. During the signing process, the user also sends a proof π along with c that proves knowledge of (m,r) such that $c \equiv C_{om}(m;r)$ via an online-extractable NIZK. This is required for proof of one-more unforgeability (OMUF).

The above approach hides the message m during signing, and if the scheme is rerandomizable, then a user can produce a fresh signature σ' on the message m to ensure blindness. For OMUF, their proof relies on the all-but-one reduction of their underlying signature scheme—this means the reduction can set up the verification key in an alternate way that allows to sign all but one message m^*. Also, this property naturally yields the desired algorithm \hat{Sig}. Since our OMUF proof differs, we refer to [66] for more details. We finally remark that Katsumata et al. [66] instantiates this framework with Boneh-Boyen signatures and Pedersen commitments in the pairing setting.

A compatible RSA-based commitment. A natural approach to construct pairing-free blind signatures is to identify a signature scheme in the RSA setting which fulfills these requirements (i.e., a signature scheme with an all-but-one reduction that is rerandomizable and has a compatible commitment scheme). Unfortunately, to the best of our knowledge, all RSA-based signatures are not rerandomizable or have no all-but-one reduction. Instead, we choose a signature scheme that is almost compatible with Pedersen commitments over \mathbb{Z}_N, namely the signature scheme S_{RSA} based on Cramer-Shoup signatures [35]. Here, the verification key $\mathbf{vk} = (N, h, h_1, h_2)$ consists of an RSA modulus N and three QR$_N$ generators h, h_1, h_2. As usual, the secret key is the factorization of N. To sign a message m, the signer chooses a random prime e and a random integer a—both from specific intervals—and computes y such that

$$y^e \equiv h \cdot h_1^a \cdot h_2^{a \cdot m} \mod N$$

using its secret key. A valid signature is a tuple (e, a, y) that satisfies Eq. (1), where a and e lie in the aforementioned intervals. While the scheme is not quite compatible with Pedersen commitments due to the XOR operation in the exponent, we observe that a functions as a mask of m within the security proof. If we replace XOR-based masking with noise flooding then XOR is replaced with

8 This view is a simplified variant of [66]'s framework for the sake of exposition. We assume implicitly that $\sigma_{r'}$ contains a component with the same range as $C_{om}(0;r)$.

9 Online-extractability allows the reduction to obtain (m,r) in the proof of one-more unforgeability in an on-the-fly manner.

10 With noise flooding, we refer to adding a mask a that is exponentially larger than m.

An integer commitment allows to commit to (vectors of) integers. This can be guaranteed by deriving a valid signature from the NIZK flavor, we can show one-more unforgeability for our blind signature with the above modifications if

\[y^e \equiv h \cdot h_1^{a} \cdot h_2^{a+m} \mod N, \] (2)

where \(a \) is chosen from an exponentially larger interval compared to before. Since in Eq. (2), \(m \) is masked statistically by \(a \), the security proof can be adapted in a straightforward manner.

Turning it into a blind signature. We observe that the above scheme is almost compatible with Pedersen commitments. Let \(g \) be another \(QR_N \) generator. We can sign a Pedersen commitment \(c \equiv h_2^{r \cdot g^r} \mod N \) for some random \(r \) by first choosing an appropriate \(e \) and \(a \), then computing \(y \) such that

\[y^e \equiv h \cdot h_1^{a} \cdot h_2^{a \cdot e} \cdot c \mod N. \] (3)

This corresponds to the algorithm \(\text{Sig} \) but unfortunately, the value \(y^e = y_r \cdot g^{-r} \) does not yield a valid \(S_{\text{fs}} \) signature \((e, a, y') \) since Eq. (2) is not satisfied. It even seems that the user cannot derive a valid signature from \(y_r \) in another manner, since it requires computing \(y \equiv y_r \cdot g^{-r} \mod \Phi(N) \mod N \). But taking \(e \)-th roots is assumed to be hard in the first place! To fix this, we can let the signer send \(e \) first, and let the user commit via \(c \equiv h_2^{r \cdot g^r} \mod N \). Then, the computable value \(y \equiv y_r \cdot g^{-r} \mod N \) satisfies Eq. (3), where \(y_r \) is generated as in Eq. (1) as before. Then, as in \[66\], the user proves with a proof \(\pi_{\text{ped}} \) that she committed to message \(m \) with randomness \(e \cdot r \) to the signer via an online-extractable NIZK \(\Pi_{\text{ped}} \). Since the \(S_{\text{fs}} \) signatures are not rerandomizable, to present a signature, the user generates a proof \(\pi_{\text{fs}} \) via an additional NIZK \(\Pi_{\text{fs}} \) that proves that it knows a \(S_{\text{fs}} \) signature on message \(m \) (instead of presenting \((e, a, y) \) directly).

Making it round optimal. Unfortunately, the above construction requires an additional round of communication to send \(e \). Note that the user cannot generate \(e \) itself, as the reduction for \(S_{\text{fs}} \) needs to be able to choose the primes \(e \) used in signatures. Indeed, it is required in the security proof that a fresh prime \(e \) and mask \(a \) are picked for each fresh message \(m \) to be signed. A natural idea is to let the user generate it via a hash function \(H_\pi \) mapping into primes (of desired range).

As the signer also needs to derive the same prime \(e \) (i.e. see the input of \(H_\pi \)), we need to make sure that the message \(m \) is hidden by the input to \(H_\pi \). In particular, we cannot simply derive \(e = H_\pi(m) \). Another idea would be to derive \(e = H_\pi(c) \) as the commitment \(c \) is already hiding the message. However, the user needs to know \(e \) already to set up \(c \), so there is a cyclic dependency.

Therefore, we require that the user commits to \(m \) as well as the randomness \(r \) for generating \(c \) using an integer commitment \(c_Z \) which can then be hashed to derive \(e \). Since \(c_Z \) fixes \(c \) implicitly, this ensures that for each fresh commitment \(c \), we use a fresh \(e \). Under binding of \(c_Z \), this implies that for each distinct message \(m \), a fresh \(e \) is picked as desired. For technical reasons, we also need that if \(e \) is reused, e.g., if the same commitment is sent twice, the signer reuses the same mask \(a \). This can be guaranteed by deriving \(a \) from a pseudorandom function \(\text{PRF} \) via \(a \leftarrow \text{PRF}(c||c_Z) \)\(^{13}\)

In summary, the user commits to \((m, r) \) in \(c_Z \), computes \(e \leftarrow H_{\text{pp}}(c_Z) \) and sets \(c \equiv h_2^m \cdot g^{-e} \mod N \). Then, the user proves in \(\pi_{\text{ped}} \) generated via a NIZK \(\Pi_{\text{ped}} \) that the commitment \(c \) is constructed based on the values committed in \(c_Z \), and sends \((c, c_Z, \pi_{\text{ped}}) \) to the signer. The signer verifies \(\pi_{\text{ped}} \), sets \(e \leftarrow H_{\text{pp}}(c_Z) \) and \(a \leftarrow \text{PRF}(c||c_Z) \), then computes \(y_r \) as in Eq. (3). Finally, the user sets \(y \leftarrow y_r \cdot g^{-r} \) and obtains a valid \(S_{\text{fs}} \) signature \((e, a, y) \) for \(m \). The blind signature is \(\pi_{\text{fs}} \) generated via \(\Pi_{\text{fs}} \) as before.

Proving one-more unforgeability. While the unforgeability reduction of \(S_{\text{fs}} \) has no all-but-one flavor, we can show one-more unforgeability for our blind signature with the above modifications if the NIZK \(\Pi_{\text{fs}} \) is adaptively knowledge sound\(^{12}\). We stress that we cannot reduce to unforgeability

\(^{11}\) Recall that this property is required for the commitment to be compatible.

\(^{12}\) An integer commitment allows to commit to (vectors of) integers, i.e., has message space \(\mathbb{Z}^n \), and knowledge of an opening can be proven in zero-knowledge. Here, that means that \((m, r) \) is fixed over \(\mathbb{Z}^2 \).

\(^{13}\) For our construction, we can slightly relax this requirement if we hash \(m \) first, but we omit details here.

\(^{14}\) That is, there is an extractor that can extract a witness via black-box access to the prover, e.g., via rewinding.
the S_{fix} signature scheme directly, as the adversary obtains the prime e for the signature before the reduction knows the message m to be signed.

Instead, analogous to S_{fix}, the reduction for one-more unforgeability sets up the verification key vk in an alternative way so that it can sign without knowing the factorization of N. This involves guessing the “format” of the forgery generated by the adversary A.

To sign a commitment c, the reduction extracts (m, r) on-the-fly from the proof π_{ped}, and uses the alternatively set up key to sign m. It then reapplies the user’s binding. When the adversary outputs its forgeries, the reduction identifies a signature π_{fix} on a message m that it never signed\(^{15}\) and then extracts a valid signature (e, a, y) from π_{fix}.

Since the final extraction is not performed in a on-the-fly manner, there is a subtlety. For example, if the extractor rewinds the adversary to extract a proof, then the extracted witness might depend on the guess we made during the vk setup, rendering the forgery useless for our reduction. A similar issue was observed, e.g., in [6, 62], since witness indistinguishability is not necessarily preserved when rewinding. To solve this issue, we let the user commit to the signature parts (e, a) in c_1 with a perfectly binding integer commitment C_{int}. Then, the extracted values (e, a) are fixed during the initial run when our guess is still hidden. Even if our guess is revealed during extraction, the extractor still succeeds in finding a valid signature with fixed (e, a). Since our guess depends only on these values, we can conclude that we guess correctly with sufficient probability which allows to solve $sRSA$ with this modification.

Making it maliciously blind. An observant reader might realize that our scheme is not blind yet. Concretely, there are two types of problems: (a) we need to embed the crs into the vk, i.e. the crs is chosen by the signer and (b) Pedersen commitments are not hiding over \mathbb{Z}_N^\ast. We show how we deal with both problems below.

(a) Subversion Zero-knowledge. Since the signer can choose vk maliciously, we need to ensure that zero-knowledge holds for arbitrary crs in vk. As in [18], we require that the NIZKs Π_{ped} and Π_{fix} are subversion zero-knowledge, i.e., zero-knowledge holds even for a malicious setup [12]. Unfortunately, this notion is difficult to instantiate in our setting. To the best of our knowledge, all instantiations of subversion zero-knowledge NIZKs [12, 44] require strong knowledge assumptions (which we wish to avoid). Instead, we give a simplified definition which yields similar guarantees in the ROM. Roughly, we split the $crs = (urs, srs)$ into a uniform part $urs \in \{0, 1\}^\ell$ of length ℓ and structured part $srs \in SRS$. In our notion, we ask that (a) membership in SRS is testable efficiently and (b) zero-knowledge holds with respect to $crs = (urs, srs)$ for some random $urs \leftarrow \{0, 1\}^\ell$ and any malicious $srs \in SRS$. Our notion can be instantiated under standard assumptions (e.g., DDH in pairing-free groups) because in the security proof, we can embed trapdoors into the uniform part (which is output by a random oracle). More details on our instantiations are given below.

(b) Subgroup arguments over \mathbb{Z}_N^\ast. Pedersen commitments over \mathbb{Z}_N^\ast are not hiding for malicious modulus N: if $\langle g \rangle$ is a proper subset of $\langle h_2 \rangle$, there is a concrete attack on blindness. Thus, we let the signer prove that $\langle g \rangle = \langle h_2 \rangle$ with a NIZK with subversion soundness [12] (i.e., soundness holds even for malicious crs). We embed this proof into the verification key to avoid the trivial attack. We also need to ensure that C_{int} and C_{Z} are hiding. For both, we simply ask that public parameters are uniform (and sample them via a random oracle). There remain two more subtle problems.

(b.1) Recall that the user sets $c \equiv h_2^r \cdot g^e \mod N$, so even if $\langle h_2 \rangle = \langle g \rangle$, we might have $\langle g^e \rangle \not\subseteq \langle h_2 \rangle$. Fortunately, we can show that if $\langle h_2 \rangle = \langle g \rangle$, then $\langle g^e \rangle = \langle h_2 \rangle$ with overwhelming probability over the choice of a random prime e for arbitrary modulus N.

(b.2) The signer sends y_e to the user which again, might not be in the same subgroup. If the signature π_{fix} reveals the subgroup of y_e, blindness is broken. But conditioned on Eq. (3), we can show that $y_e \in \langle g \rangle$ if $\langle h, h_1, h_2 \rangle \subseteq \langle g \rangle$ and $e \in \langle g \rangle$. We let the former be proven by the signer in vk. If we let the user check that Eq. (3) holds, then the latter can be shown to hold with overwhelming probability over the choice of e.

\(^{15}\) Since we sign at most ℓ messages but there are $\ell + 1$ forgeries on distinct messages, such a signature exists.

\(^{16}\) Again, we can relax the commitment scheme, i.e., we do not require that C_{int} is a full-fledged integer commitment. We elaborate later.
Instantiation. There are several challenges when instantiating the NIZKs required for our blind signature. While it is somewhat straightforward to obtain an instantiation with generic techniques, our goal is to keep the instantiation as efficient as possible. We give a brief overview of the challenges and our solutions.

Online-extraction and integer commitments. Recall that we require an integer commitment scheme C_Z to commit to $(m, r) \in \mathbb{Z}^2$ in combination with an efficient online-extractable NIZK for the statement

$$c_Z = C_Z\text{.Commit}(m, r; z_r) \land c \equiv h_2^m \cdot g^{r \cdot c} \mod N. \quad (4)$$

For online-extraction, we use the approach of [66] (cf. Section 6). Let \mathbb{G} be a pairing-free group of prime order p with generators G, H. The values (m, r) are decomposed into $(e_i)_i = ((m_i)_i, (r_i)_i)$ via B-ary decomposition $(e.g., B = 2^{64})$, committed in ElGamal commitments $E_i = e_i G + s_i H$ for $s \leftarrow \mathbb{Z}_p$, and a range proof ensures that $e_i \in [0, B - 1]$ (e.g., Bulletproofs [22]). We then interpret $(E_i)_i$ as a bounded integer commitment c_Z, i.e., the committed values must lie in the limited range $[0, B - 1]$. This notion suffices for our construction. While we follow the template of [66], our instantiation is considerably more complicated since we need to show a statement over two algebraic structures: prime order groups and \mathbb{Z}_N^\ast. For this, we employ a structured srs to argue over the integers with techniques from [32]. We refer to Appendix E for more details.

Proof for S_{fs} signatures. To derive a blind signature, we need a perfectly binding commitment C_{RInt} and a NIZK Π_{fs} for the relation in Eq. (2) and simultaneously:

$$c_I = C_{\text{RInt}}\text{.Commit}(e, a, r_I) \land a \in [0, 2^{3\lambda} - 1] \land c \in [2^{3\lambda}, 2^{3\lambda+1}] \cap \mathbb{Z}_{\text{odd}}.$$

Note that these are the specific ranges for S_{fs} verification. While it is fine to employ range proofs during the (one-time) signing interaction, it is undesirable to include a range proof for presenting the signature (as the verification overhead is noticeable for such large ranges).

Instead, we relax the range requirements in such a way that the unforgeability proof of S_{fs} still goes through, i.e., we allow that a and e lie in larger (but distinct) intervals for verification. Then, we construct very efficient relaxed range proofs with subversion zero-knowledge for C_{RInt} consisting of ElGamal commitments over a prime-order \mathbb{G} (for perfect binding). Roughly, the range proof is a simple Σ-protocol to open ElGamal in zero-knowledge, where we also add range checks for the messages sent in third flow, compiled with Fiat-Shamir. In addition, we add a fresh RSA modulus N to the crs and commit to a and e in a commitment over \mathbb{Z}_N^\ast (similar to [22]). This technique guarantees that extracted values are short integers (but within a larger range). The overhead over simply opening the ElGamal commitment in zero-knowledge—which we need anyway to instantiate the NIZK—is just 784 Byte for a modulus of size 3072 bits. For comparison, a Bulletproof for the above ranges requires 932 Byte [22]. Our relaxed range proofs are smaller and allow seamless integration into more complex Σ-protocols.

To construct Π_{fs}, we combine our relaxed range proofs for C_{RInt} with standard commit-then-prove Σ-protocol techniques to show the remaining equations. For this, we require commitments over \mathbb{Z}_N for potentially malicious N to commit to y. Using the above techniques, we construct such commitments and provide efficient openings in zero-knowledge. Roughly, such a commitment is of the form $y \cdot g^s$ for $s \in [N \cdot 2^\lambda]$ with $y \in (g)$, in conjunction with a C_{RInt} commitment to fix s over the integers. Especially for this purpose our relaxed range proofs shine, since s lies in a large interval. (For such ranges, e.g., Bulletproofs requires 1.6 seconds for proof generation and almost 5 ms for verification.) We generalize the construction for arbitrary untrusted groups.

The remaining NIZKs are straightforward to instantiate. In total, we obtain blind signatures with 10.98 KB communication of size 4.28 KB.

Alternative View. Instead of viewing our construction as an instantiation of the Fischlin-style framework of [66] without pairings, we can view it as a maliciously-secure and optimized instantiation the construction sketched in [24]. In particular, [24] presents a blinded interactive signing protocol for sRSA-based signatures. Our instantiation of the underlying signature is more efficient, and the
construction in [24, Figure 1] does not seem to yield maliciously-secure blind signatures

We provide techniques to achieve OMUF and malicious blindness simultaneously and efficiently, while preserving round optimality.

3 Preliminaries

Notations. We denote the security parameter by \(\lambda \). A polynomial time (PT) algorithm \(A \) runs in time polynomial in the (implicit) security parameter \(\lambda \). We denote “probabilistic polynomial time” by PPT. We write \(\text{Time}(A) \) for the runtime of \(A \). A function \(f(\lambda) \) is negligible in \(\lambda \) if it is \(O(\lambda^{-c}) \) for every \(c \in \mathbb{N} \). We write \(f = \negl(\lambda) \) for short. Similarly, we write \(f = \poly(\lambda) \) if \(f(\lambda) \) is a polynomial with variable \(\lambda \). If \(D \) is a probability distribution, \(x \leftarrow D \) means that \(x \) is sampled from \(D \) and if \(S \) is a set, \(x \leftarrow S \) means that \(x \) is sampled uniformly and independently at random from \(S \). We also write \(|S| \) for the cardinality of set \(S \). Further, we write \(D_0 \approx D_1 \) for distributions \(D_0, D_1 \), if for all PPT adversaries \(A \), we have \(|\Pr[x_0 \leftarrow D_0 : A(1^\lambda, x_0) = 1] - \Pr[x_1 \leftarrow D_1 : A(1^\lambda, x_1) = 1]| = \negl(\lambda) \).

Similarly, we write \(D_0 \approx D_1 \) if the above holds even for unbounded adversaries. For some PPT algorithm \(A \), we write \(A^O \) if \(A \) has oracle access to the oracle \(O \). If \(A \) performs some check, and the check fails, we assume that \(A \) outputs \(\bot \) immediately. Generally, we assume that adversaries are implicitly stateful. We denote with \([n]\) the set \(\{1, \ldots, n\} \) for \(n \in \mathbb{N} \). We write \(\mathbb{P} \) for the set of primes and \(\mathbb{P}_2 \) for the set of primes in the interval \(I \). For some odd prime \(p \), we use the representatives \(\{\frac{p-1}{2}, \ldots, \frac{p-1}{2} \} \) for \(\mathbb{Z}_p \). For a group \(G \) we write \(\text{ord}(G) \) to denote the order of \(G \) and unless stated otherwise we write \(G \) with additive notation. For a group element \(g \) we write \(\text{ord}(g) \) to denote the order of the group element. We denote by \(\text{QR}_N = \{a \in \mathbb{Z}_N^\ast : \exists b \in \mathbb{Z}_N^\ast, b^2 \equiv a \mod N\} \) the quadratic residues \(\mod N \). For some \(N \in \mathbb{N} \), the group \(\text{QR}_N \) is a cyclic subgroup of \(\mathbb{Z}_N^\ast \) and we denote by \(\text{Gen} (\text{QR}_N) \) the set of generators of \(\text{QR}_N \). Some properties of \(\text{QR}_N \) are recalled in lemma \(3 \) in Appendix \(A \).

Probability. Let \(V, L \in \mathbb{N} \). We define uniform rejection sampling for the interval \([V, (V + 1)L]\) with masking overhead \(L \) as in [32]. Let \(v \in [0, V] \). To mask \(v \) additively with a mask \(\mu \) via rejection sampling, perform the following steps.

1. Draw a random mask \(\mu \leftarrow [0, (V + 1)L] \).
2. Abort if \(v + \mu \notin [V, (V + 1)L] \).
3. Output \(w = v + \mu \).

The value \(w \) is uniform over \([V, (V + 1)L]\) conditioned on no abort and the abort probability is at most \(1/L \).

We use a version of the Forking Lemma from [2] Lemma 1 that fits our usage of it. The lemma was first introduced by Pointcheval and Stern [77] then generalized in [14, 2]. The formal statement can be found in Appendix \(A.2 \).

Hardness Assumptions. We use the following assumptions in this paper. Let \(\text{Gen} G \) be a PPT algorithm that on input \(1^\lambda \) and prime order \(p \), outputs (a description of) a group \(G \leftarrow \text{Gen} G(1^\lambda) \) of order \(p \). We generally use additive notations for prime order groups and capital letters for elements. Also, we assume that given the description, group operations and membership tests are efficient.

We write \(g \leftarrow G \) for drawing elements from some group \(G \) at random. In the following, we assume that prime order groups are setup with \(\text{Gen} G \) implicitly.

Let \(\text{Gen} RSA \) be a PPT algorithm that on input \(1^\lambda \) outputs \((N, P, Q) \leftarrow \text{Gen} RSA(1^\lambda) \) such that \(N = P \cdot Q \) with \(P, Q \in \mathbb{P} \), where \(P = 2P'' + 1 \) and \(Q = 2Q' + 1 \) are strong primes (i.e., \(P', Q' \) are also primes). We assume that \(P', Q' > 2^{\lambda + 1} \).

First of all, the \((D, \ell)\)-relaxed DLOG assumption with regards to \(\bar{g} \), where \(\bar{g} = (g_0, \ldots, g_\ell) \in \text{QR}_N^{\ell + 1} \), assumes that for any PPT adversary, given \((N, g_0, \ldots, g_\ell) \) it is only with negligible probability.

For example, observe that \(C_x \) is not hiding if \(N \) and \((a, b) \) are set up maliciously. In particular, there is an attack if \(a \) and \(b \) are chosen in different subgroups. Proving that \(C_x \) is hiding requires a computational assumption over \(\text{QR}_N \), so it is limited (at most) to honest signer blindness.

When \(v = 0 \), the number of “bad” \(\mu \in [0, (V + 1)L] \) causing abort is \(\#([0, V - 1]) = V \). For a fixed \(0 < v \in [0, V] \), the number of “bad” \(\mu \) causing abort is \(\#([0, V - 1 - v]) + \#([(V + 1)L - v + 1, (V + 1)L]) = V \).

In both cases the abort probability over choices of \(\mu \) is \(V/(V + 1)L + 1) \leq 1/L \).
to output (c, d, x_0, \ldots, x_t) satisfying $c^t = \prod_{i=0}^{t} g^{x_i} \land \exists i: \frac{z_i}{d} \not\in \mathbb{Z} \land d \in [0, D] \land x_i \in \mathbb{Z}$. The (D, t)-relaxed DLOG assumption holds under the strong RSA assumption for all $D \leq 2^{\lambda+1}$. Next, the Decisional Diffie-Hellman (DDH) assumption in a cyclic group \mathbb{G} assumes that for all PPT adversary it is only with negligible probability that the adversary can distinguish (aG, bG, abG) from (aG, bG, cG) where $G \leftarrow \mathbb{G}$ and $a, b, c \leftarrow \text{ord} (\mathbb{G})$. Finally, the strong RSA (sRSA) assumes that it is only with negligible probability for any PPT adversary to output (c, z) such that $z^e \equiv y \mod N$.

Explaining Random Group Elements as Random Strings. For our framework, we require commitments with uniform public parameters pp. For readability, we allow pp (and also uniform random strings urs of NIZKs) to contain (uniform) group elements g of prime-order groups \mathbb{G} with known order p. This is without loss of generality because with explainable sampling, we can explain $g \leftarrow \mathbb{G}$ as a random bitstring. We refer to, e.g., [66, Appendix B] for more details.

3.1 Cryptographic Primitives

Commitment Scheme. A commitment scheme is a tuple of PPT algorithms $C = (\text{C.Setup}, \text{C.Commit}, \text{C.Verify})$ such that

- $\text{C.Setup}(\lambda)$: generates the public parameters pp,
- $\text{C.Commit}(pp, m)$: given the public parameters pp, message $m \in C_{\text{msg}}$, computes a commitment $c \in C_{\text{com}}$ with opening randomness d, and outputs the pair (c, d),
- $\text{Verify}(pp, c, m, d)$: given the public parameters pp, message $m \in C_{\text{msg}}$, and opening randomness d, outputs a bit $b \in \{0, 1\}$ which depends on the validity of the opening (m, d) with respect to the commitment c.

Here, $C_{\text{msg}}, C_{\text{rnd}}, C_{\text{com}}$, are message, randomness, and commitment spaces, respectively. If the public parameters are uniform or explainable (i.e., Setup outputs some $pp \leftarrow \{0, 1\}^\ell$ for $\ell \in \mathbb{N}$) we omit Setup without loss of generality.

We require the correctness, hiding and binding properties for a commitment scheme. A commitment schemes is correct, if honest commitments $(c, d) \leftarrow \text{Commit}(pp, m; r)$ always verify, i.e. it holds that $\text{Verify}(pp, c, m, d) = 1$ where pp are the public parameters. It is hiding if it is hard to decide whether an unopened commitment c commits to message m_0 or m_1, and it is binding if it is hard to open commitments c to distinct messages. We can have computational, statistical, perfect variants for hiding and binding properties. The formal definitions can be found in Appendix A.3.

(Bounded) Integer Commitments. We refer to a commitment scheme with message space $[A, B] \subseteq \mathbb{N}$ as a (bounded) integer commitment scheme. We often omit the term bounded if the message space is clear by context.

ElGamal commitments. We recall ElGamal (EG) over a group \mathbb{G} of prime order p with message space \mathbb{Z}_p [39]. We use additive notation for prime order groups.

- $\text{EG.GenPP}(\lambda)$: set $(G, H) \leftarrow \mathbb{G}$ and output $pp = (G, H)$,
- $\text{EG.Commit}(pp, m)$: sample $r \leftarrow \mathbb{Z}_p$ and set $c = (mG + rH, rG)$, and output (c, r),
- $\text{EG.Verify}(pp, c, m, r)$: check if $c = (mG + rH, rG)$.

Note that the public parameters are uniform and we can sample them via a random oracle to avoid trusted setup. EG commitments are correct, hiding under DDH and perfectly binding.

Remark 1. If in verification of EG, we check that $m \in [0, M]$ for $M < p$, then m is fixed over the integers and we can interpret the commitment as an integer commitment with message space $[0, M] \subseteq \mathbb{N}$.

Pedersen Commitments in QR$_N$. We recall Pedersen multi-commitments (MPed) over QR$_N$ with message space Z^ℓ for some $\ell \in \mathbb{N}$ (cf. [34]).

- MPed.GenPP(1^λ): set $(N, P, Q) \leftarrow \text{GenRSA}(1^\lambda)$ and sample ℓ random generators g_i of QR$_N$, and output $pp = (N, b, g_1, \cdots, g_{\ell})$. Note that with (P, Q), we can check whether g_i generates QR$_N$.
- MPed.Commit(pp, \vec{m}): sample $r \leftarrow [0, N \cdot 2^{\lambda}]$, set $c \leftarrow h^r \cdot \prod_{i=1}^{\ell} g_i^{m_i} \mod N$, and output (c, r).
- MPed.Verify(pp, c, \vec{m}, r): check if $c = \pm h^r \cdot \prod_{i=1}^{\ell} g_i^{m_i} \mod N$.

MPed commitments are correct, statistically hiding and binding under the factoring assumption (which is implied by sRSA). Throughout this work, we use MPed commitments in QR$_N$ to enforce in security proofs that values extracted from NIZKs are integers via lemma [34].

Signature Scheme. A signature scheme is a tuple of PPT algorithms $S = (\text{KeyGen}, \text{Sign}, \text{Verify})$ such that

- KeyGen(1^λ): generates a verification key vk and a signing key sk,
- Sign(sk, m): given a signing key sk and a message $m \in S_{\text{msg}}$, deterministically outputs a signature σ,
- Verify(vk, m, σ): given a verification key pk and a signature σ on message m, deterministically outputs a bit $b \in \{0, 1\}$.

Here, S_{msg} is the message space. We define the standard notion of correctness and euf-cma security. Correctness requires that any honestly generated signature $\sigma \leftarrow \text{Sign}(sk, m)$ verifies, i.e. $\text{Verify}(vk, m, \sigma) = 1$. The euf-cma security imposes that even with oracle accesses to $\text{Sign}(sk, -)$, no PPT adversary will be able to forge a valid signature σ on a message m that is not queried to $\text{Sign}(sk, -)$.

Blind Signature Scheme. A (two-move) blind signature scheme is a tuple of PPT algorithms $BS = (\text{KeyGen}, \text{Sign}, \text{Verify})$ such that

Definition 1 (Blind Signature). A (two-move) blind signature scheme is a tuple of PPT algorithms $BS = (\text{KeyGen}, \text{Sign}, \text{Verify})$ such that

- KG(1^λ): generates the verification key bvk and signing key bsk,
- Sign is split into the following algorithms:
 - User(bvk, m): given verification key bvk and message $m \in BS_{\text{msg}}$, outputs a first message ρ_1 and a state st,
 - Signer(bsk, ρ_1): given signing key bsk and first message ρ_1, outputs a second message ρ_2,
 - Derive(st, ρ_2): given state st and second message ρ_2, outputs a signature σ,
- Verify(bvk, m, σ): given verification key bvk and signature σ on message $m \in BS_{\text{msg}}$, outputs a bit $b \in \{0, 1\}$.

Here, BS_{msg} is the message spaces.

We consider the standard security notions for blind signatures [61]. Below, we define correctness, blindness under malicious keys, and one-more unforgeability of a blind signature scheme. Moreover, we will omit the state for better readability on occasion.

Definition 2 (Correctness). A blind signature scheme is correct, if for all messages $m \in BS_{\text{msg}}$, $(bvk, bsk) \leftarrow KG(1^\lambda), (\rho_1, st) \leftarrow User(bvk, m), \rho_2 \leftarrow Signer(bsk, \rho_1), \sigma \leftarrow Derive(st, \rho_2)$, it holds that $\text{Verify}(bvk, m, \sigma) = 1$.

Definition 3 (Blindness Under Malicious Keys). A blind signature scheme is blind under malicious keys if for any PPT adversary A, we have

$$\text{Adv}^{\text{blind}}_\lambda = \text{Pr} \left[\begin{array}{c}
(bvk, m_0, m_1) \leftarrow A(1^\lambda), \text{coin} \leftarrow \{0, 1\}, \\
(\rho_{1,b}, st_b) \leftarrow \text{User}(bvk, m_b) \text{ for } b \in \{0, 1\}, \\
(\rho_{2,\text{coin}}, \rho_{2,1-\text{coin}}) \leftarrow A(1, \text{coin}), \sigma_b \leftarrow \text{Derive}(st_b, \rho_{2,b}) \text{ for } b \in \{0, 1\}, \text{coin = A} (\sigma_0, \sigma_1)
\end{array} \right] - \frac{1}{2} = \negl(\lambda).$$
Definition 4 (One-more Unforgeability). A blind signature scheme is one-more unforgeable if for any $Q = \text{poly}(\lambda)$ and PPT adversary A that makes at most Q signing queries, we have

$$\text{Adv}^\text{unmf}_A(\lambda) = \Pr \left((\text{bk}, \text{bs}) \leftarrow \text{KG}(1^\lambda), \{ (m_i, \sigma_i) \}_{i \in [Q+1]} \leftarrow \text{Sim}(\text{bk}, \lambda)(\text{bk}) : \right. \begin{array}{l}
\forall i \neq j \in [Q+1]: \\
m_i \neq m_j \land \\
\text{Verify}(\text{bk}, m_i, \sigma_i) = 1
\end{array}\right) = \text{negl}(\lambda).$$

Σ-Protocol. Let R be an NP relation with statements x and witnesses w. We denote by $\mathcal{L}_R = \{ x \mid \exists w \text{ s.t. } (x, w) \in R \}$ the language induced by R. A Σ-protocol for an NP relation R for language \mathcal{L}_R with challenge space \mathcal{CH} is a tuple of PPT algorithms $\Sigma = (\text{Init}, \text{Chall}, \text{Resp}, \text{Verify})$ such that

- $\text{Init}(x, w)$: given a statement $x \in \mathcal{L}_R$, and a witness w such that $(x, w) \in R$, outputs a first flow message (i.e., commitment) Ω and a state st, where we assume st includes x, w,
- $\text{Chall}()$: samples a challenge $\gamma \leftarrow \mathcal{CH}$ (without taking any input),
- $\text{Resp}(\text{st}, \gamma)$: given a state st and a challenge $\gamma \in \mathcal{CH}$, outputs a third flow message (i.e., response) τ,
- $\text{Verify}(x, \Omega, \gamma, \tau)$: given a statement $x \in \mathcal{L}_R$, a commitment Ω, a challenge $\gamma \in \mathcal{CH}$, and a response τ, outputs a bit $b \in \{0, 1\}$.

We recall the standard notions of correctness, high-min entropy, (non-abort) honest-verifier zero-knowledge, and k-special soundness. A Σ-protocol is correct, if for all $(x, w) \in R$, if for any honestly generated transcripts (Ω, γ, τ), the verifier accepts, i.e. $\text{Verify}(x, \Omega, \gamma, \tau) = 1$. It has high min-entropy if for all $(x, w) \in R$, it is statistically hard to predict a honestly generated first flow Ω. It is honest-verifier zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator Sim such that the distributions of $\text{Sim}(x, \gamma)$ and a honestly generated non-aborting transcript with Init initialized with (x, w) are statistically indistinguishable for any $x \in \mathcal{L}_R$, and $\gamma \in \mathcal{CH}$, where the honest execution is conditioned on γ being used as the challenge. Finally, it is k-special sound, if there exists a deterministic PT extractor Ext such that given k valid transcripts $\{(\Omega_i, \gamma_i, \tau_i)\}_{i \in [k]}$ for statement x with pairwise distinct challenges $(\gamma_i)_i$, outputs a witness w such that $(x, w) \in R$.

Non-Interactive Zero Knowledge. All formal definitions of the following can be found in Appendix [A.8] Let $\text{URS} = \{0, 1\}^\ell$ be a set of uniform random strings for some $\ell \in \mathbb{N}$ and SRS be some set of structured random strings with efficient membership test $[17]$ A NIZK for a relation R with common reference string space $\text{CRS} = \text{SRS} \times \text{URS}$ is a tuple of PPT algorithms $(\text{GenSRS}, \text{Prove}^H, \text{Verify}^H)$, where the latter two are oracle-calling, such that:

- $\text{GenSRS}(1^\lambda)$: outputs a structured reference string $\text{sr} \in \text{SRS}$,
- $\text{Prove}^H(\text{crs}, x, w)$: receives a $\text{crs} = (\text{sr}, \text{urs}) \in \text{CRS}$, a statement x and a witness w, and outputs a proof π,
- $\text{Verify}^H(\text{crs}, x, \pi)$: receives a $\text{crs} = (\text{srs}, \text{urs}) \in \text{CRS}$, a statement x and a proof π, and outputs a bit $b \in \{0, 1\}$.

We recall that $\mathcal{L}_R = \{ x \mid \exists w : (x, w) \in R \}$ denotes the language induced by R. If there is no crs needed, i.e. $\text{CRS} = \emptyset$, we then omit crs as an input to Prove and Verify. A NIZK is correct if for any $\text{crs} = (\text{sr}, \text{urs})$ with $\text{sr} \leftarrow \text{GenSRS}(1^\lambda)$ and $\text{urs} \leftarrow \text{URS}$, $(x, w) \in R$, and $\pi \leftarrow \text{Prove}^H(\text{crs}, x, w)$, it holds that $\text{Verify}^H(\text{crs}, x, \pi) = 1$. It is zero-knowledge if there exists a PPT simulator $\text{Sim} = (\text{Sim}_{\text{crs}}, \text{Sim}_{\text{crs}}, \text{Sim}_{\text{crs}})$ such that the distributions of $\pi' \leftarrow \text{Sim}_{\text{crs}}(\text{crs}, x)$ and $\pi \leftarrow \text{Prove}^H(\text{crs}, x, w)$ are computationally indistinguishable for any $(x, w) \in R$. Note that the sub-algorithms of Sim share state. For simulated proofs, the algorithm Sim_{crs} simulates the random oracle and Sim_{crs} simulates the $\text{crs} = (\text{sr}, \text{urs})$, where there is an structured part srs. We also define a notion of subversion zero-knowledge, inspired by the notion introduced in [12]. To recall, the second part of the $\text{crs} = (\text{sr}, \text{urs})$ is a random reference string which can later be sampled via a random oracle, and the first part is a structured string SRS. For subversion zero-knowledge, there is no Sim_{crs}
anymore and the structured srs can be chosen by A, while urs is sampled uniformly at random by H for the real proofs π ← Prove^H(crs, x, w) or by Sim^H for the simulated proofs π' ← Sim^H(crs, x).
Here we also require that the subverted srs belongs to SRS.

We define adaptive knowledge soundness. An NIZK is adaptively knowledge sound for relation ˆR if there exist positive polynomials p_τ, p_ρ, constant c, a PPT extractor Ext and a PPT simulator Sim^CRS so that for any (crs, td) ← Sim^CRS(1^λ), given oracle access to any PPT A (with explicit random tape τ and making Q_H = poly(λ) RO queries) that cannot distinguish crs ∈ CRS from a real crs := (crs ← Gen^SRS(1^λ), urs ← U^R^S), with probability at least μ(λ) − negl(λ) the extractor finds w ← Ext(crs, td, x, π, ρ, ˆh) where (x, w) ∈ ˆR. Here, ˆh contains the outputs of H, the probability is over the random tape τ of A, the random tape of Sim^CRS, and the random choices of H. Also, we require that the runtime of Ext is bounded by p_τ(λ, Q_H) · Time(A).

We further define partial online-extractability for NIZKs over a relation with statements x = (x_0, x_1) and witnesses w = (w_0, w_1). A NIZK is partially online-extractable if there exists an algorithm Ext = (Ext_1, Ext_2) such that Ext_1 samples a partial statement x_0 uniformly at random along with a trapdoor td and for any PPT adversary that outputs pairs of partial statements x_{1,i} and proofs π_i such that all ((x_{0,i}, x_{1,i}), π_i) verify with probability μ(λ), the extraction algorithm Ext_2 can use the trapdoor to extract partial witnesses w_{1,i} for all statements such that there exist partial witnesses w_0, with probability μ(λ) − negl(λ) where p_ρ is a polynomial and Q_H is the number of hash queries made by the adversary. Looking forward, we will set the first partial statement x_0 to be the public parameters of a commitment scheme and the extracted witness to be the committed values – where the non-extracted witness is the opening of the commitments.

We also define (statistical) adaptive subversion soundness. Note that this notion does not require an extractor for the witness and the srs can be maliciously set up by an adversary, which differs from the standard notion of adaptive soundness. An NIZK is (statistically) adaptively subversion sound for relation ˆR inducing a language L_ˆR if no (possibly unbounded) adversary, given a urs and access to the RO H, can output a subverted srs, an instance x, and a proof π such that Verify^H(crs := (crs, urs), x, π) = 1 but x ̸∈ L_ˆR.

Fiat–Shamir transformation. We recall the Fiat–Shamir transformation [40, 10] to turn a Σ-protocol Σ = (Init, Chall, Resp, Verify) that satisfies correctness, high-min entropy, honest verifier zero-knowledge, and k-special soundness, into a NIZK FS[Σ] = (Gen^SRS, Prove^H, Verify^H) using a random oracle H that maps to the challenge space C_H of Σ:

- Gen^SRS(1^λ): outputs the empty string ε as we do not require a common reference string and omit crs as an input for other below algorithms,
- Prove^H(x, w): receives a statement x and a witness w, runs (Ω, st) ← Init(x, w), computes the challenge γ ← H(x, Ω), then computes τ ← Resp(st, γ) and outputs π = (Ω, γ, τ),
- Verify^H(x, π): receives a statement x and a proof π = (Ω, γ, τ), checks that and outputs b ← Verify(x, Ω, γ, τ) ∧ γ = H(x, Ω).

The resulted NIZK satisfies correctness, adaptive knowledge soundness and zero-knowledge.

4 NIZK-friendly Signature Scheme

In the following, we describe the signature scheme underlying our construction of a blind signature scheme. The scheme is NIZK-friendly, i.e., compatible with efficiently proving statements about signatures (e.g. knowledge of a valid signature) in NIZK proofs due to its algebraic structure. Looking forward, this property will be useful for creating a blind signature scheme using a Fischlin-inspired construction.

4.1 The scheme

We describe a variant of Fischlin’s variant of the Cramer–Shoup signature. We adapt it with the goal of constructing an efficient proof of knowledge of a signature later. The hash function H: : {0, 1}^* → {0, 1}^{2λ} is modelled as a random oracle.

We remark that the soundness relation ˆR can be different from the (correctness) relation R. If ˆR is not explicitly defined, we implicitly set ˆR = R.
The signature consists of three values \(y \in \mathbb{Z}_N, a \in \mathbb{Z} \) and \(e \in \mathbb{Z} \). We define intervals \(S_a \) and \(S_e \) which we use to sample \(a \) and \(e \) in \(\text{Sign} \), respectively. Also, we define the intervals \(\mathcal{R}_a \) and \(\mathcal{R}_e \) which we use to in \(\text{Verify} \) to check range membership of \(a \) and \(e \), respectively.

Let \(A = 2^{13} \) and \(S_a = [0, A] \). Also, let \(\mathcal{R}_a \supseteq S_a \), \(S_e \), and \(\mathcal{R}_e \supseteq S_e \) be intervals such that for all \(a \in \mathcal{R}_a \), we have \(a < e \) for any \(e \in \mathcal{R}_e \). Further, we require that \(|\mathcal{R}_a| = \Omega(2^{13}) \) (i.e., \(S_e \) contains at least \(\Omega(2^{13}) \) primes).

- \(S_{\text{sk}}.\text{KeyGen}(1^{\lambda}) \): Sets \((N, P, Q) \leftarrow \text{GenRSA}(1^{\lambda})\). Samples generators \(h, h_1, h_2 \leftarrow \text{Gen}(\mathcal{Q}_N) \) for \(\mathcal{Q}_N \) at random. Outputs the public key \(\text{vk} = (N, h, h_1, h_2) \) and the secret key \(\text{sk} = (P, Q) \).
- \(S_{\text{sk}}.\text{Sign}(\text{sk}, m) \): Parses \(\text{vk} = (N, h, h_1, h_2) \) and computes \(\overline{m} = H(m) \). Then, picks \(e \leftarrow \mathcal{R}_e \) and \(a \leftarrow S_a \) at random. Computes \(y \) such that

\[
y^e = h \cdot h_1^a \cdot h_2^{2+\overline{m}} \mod N.
\]

Output the signature \(\sigma = (e, a, y) \).

- \(S_{\text{sk}}.\text{Verify}(\text{vk}, m, \sigma) \): Parses \(\text{vk} = (N, h, h_1, h_2) \) and \(\sigma = (e, a, y) \). Checks that \(e \in \mathcal{R}_e \) is odd, \(a \in \mathcal{R}_a \), and that

\[
y^e = hh_1^a h_2^{2+H(m)} \mod N.
\]

4.2 Proof of Security

A detailed proof is given in Appendix B.2. We give a brief sketch below.

Our proof mostly follows the proof given in [41]. The reduction first punctures the verification key \(\text{vk} \). Roughly, this is done by generating all primes \(\mathcal{E} = \{e_1, \ldots, e_Q\} \) chosen during signing in advance, and setting up \(h, h_1, h_2 \) with respect to \(\mathcal{E} \). There are two cases for the punctured setup 21:

1. The reduction guesses that the forgery’s \(e \) was used during signing, i.e., \(e \in \mathcal{E} \).
2. The reduction guesses that the forgery contains a fresh \(e \), i.e., \(e \notin \mathcal{E} \).

Then, the reduction sets up \(h, h_1, h_2 \) in such a way that it can sign \(Q \) arbitrary messages via a trapdoor \(\text{td} \) but without knowing the factorization of \(N \). This is done by embedding \(\mathcal{E} \) into \(h, h_1, h_2 \) depending on the guess. Note the punctured setup is indistinguishable from the real setup in both cases. Also, signing via the trapdoor \(\text{td} \) reveals no information about the guess. Then, it answers all \(Q \) signing queries via \(\text{td} \) and hopes that its guess was correct. If so, the reduction can derive a \(\text{sRSA} \) solution. Since the guess remains hidden, this happens with sufficient probability.

We also use this strategy in the proof of the blind signature scheme in Section 6. In our blind signature, the primes \(e \) are not chosen by the signer but output by a hash function \(H_\mathbb{P} \). This still allows the reduction to prepare the list \(\mathcal{E} \) of primes used during signing. For a modular security proof, we provide the punctured key generation and alternative signing procedure in Appendix B.1. Since these algorithms depend on guesses with respect to the forgery’s format, they are indexed by bits \((b, b')\) that correspond to with in a case distinction in the proof.

5 Novel Commitment Schemes

We give an overview of our novel commitment constructions. These are helpful for our instantiation and influence the choice of primitives that our blind signature relies on. We construct two commitments that admit efficient openings in zero-knowledge:

Relaxed Integer Commitments: allows to commit to integers of a specific range \(I \). The proof of knowledge of an opening proves that the committed integer lies in \(I \). The soundness is relaxed however, i.e., it only guarantees membership in a larger range \(I_R \supseteq I \). Importantly, binding still holds with respect to the range \(I_R \).

Commitments in Groups: allows to commit to elements of arbitrary cyclic groups \(G \) given a generator \(g \) of \(G \).

21 In the detailed proof, the first case has two additional sub cases.
To improve readability, we use additive notation for prime-order groups and multiplicative notation otherwise. Recall that we require several types of commitments in our blind signature construction. Before we describe our novel commitments, we recap the required commitments and sketch how they are instantiated to provide context for the reader. We use the terminology from the technical overview (cf. Section 2):

- **Compatible commitment**: instantiated via MPed commitments (cf. Section 5.1). This is the homomorphic commitment that the user sends to the signer to sign. The user can then later derive a signature on the original message from the signature on the commitment.
- **C_G**: instantiated via ElGamal commitments via the observation in remark 1. Details are provided in Appendix E.1. Recall that this commitment is used as an input to the hash function \(H \) to obtain the prime exponent \(e \).
- **C_RInt**: instantiated via our relaxed integer commitments (cf. Section 5.1). This commitment will be used as a building block of the proof of knowledge of a QR signature that the user outputs in the end.
- **C_Grp**: This commitment to group elements (cf. Section 5.2) is used as a building block in the NIZK that constitutes our blind signature.

5.1 Relaxed Integer Commitments with Slack

We define the notion of **relaxed integer commitment schemes** parameterized by \(B, T \in \mathbb{N} \). Those are commitments with message space \(C_{\text{msg}} = [0, B] \) that admit efficient opening proofs in zero-knowledge with some slack, i.e., soundness guarantees that \(x \in [-BT, BT] \). We refer to \(B \) as the range and \(T \) as the slack.

Definition 5. A relaxed integer commitment is a commitment scheme \(C_{\text{RInt}} = \{\text{Setup}, \text{Commit}, \text{Verify}\} \) parameterized by two values \(T \in \mathbb{N} \) and \(B \in \mathbb{N}^\ell \) for some \(\ell \in \mathbb{N} \). The value \(B \) defines the message space \(C_{\text{msg}} = [0, B] \subseteq \mathbb{Z}^\ell \). The value \(T \) defines a relaxed message space \(C_{\text{rel}} = [-BT, BT] \). We further require that the commitment scheme \(C_{\text{RInt}} \) is

1. correct and hiding with respect to \(C_{\text{msg}} \) (i.e., the messages are sampled from \(C_{\text{msg}} \) in the Definitions 11 and 12), and
2. binding with respect to \(C_{\text{rel}} \) (i.e., the adversarial messages are allowed to be in \(C_{\text{rel}} \) instead of \(C_{\text{msg}} \) in Definition 13).

We now instantiate \(C_{\text{RInt}} \) over a group \(\mathbb{G} \) with prime order \(p \geq 2^{2\lambda} \). Let \(\mathbb{P} = (G, H) \in (\mathbb{G} \setminus \{0\})^2 \) be the public parameters, where 0 denotes the neutral element. Let \(B, T \in \mathbb{N} \) such that \(BT < \frac{p-1}{2} \). The commitments are ElGamal commitments \(c \leftarrow (xG + rH, rG) \) for \(r \leftarrow \mathbb{Z}_p \), except that we add the additional requirement of \(x \in [-BT, BT] \) in verification. Note that as we have \([-BT, BT] \subseteq [-\frac{p-1}{2}, \frac{p-1}{2}] \), this condition ensures that no overflows occur (so we commit to a subset of \(\mathbb{Z} \)). Looking ahead, our zero-knowledge opening proofs leverage the structure of QR\(\mathbb{N} \) to ensure that extracted values are integers in the relaxed range.

We naturally generalize our commitment scheme to vectors \(\vec{m} = (m_1, \cdots, m_\ell) \in [0, \vec{B}] \) of integers from (potentially different) intervals induced by \(\vec{B} = (B_1, \cdots, B_\ell) \). We require that \(B_i \cdot T < \frac{p-1}{2} \) for all \(i \in [\ell] \). The integer commitment \(C_{\text{RInt}} \) with uniform public parameters \(\mathbb{P} = (H, \vec{G}) \) is given below, where \(\vec{G} = (G_1, \cdots, G_\ell) \). The randomness space is \(C_{\text{msg}} = \mathbb{Z}_p \). By definition, the message space is \(C_{\text{msg}} = [0, \vec{B}] \) and the relaxed message space is \(C_{\text{rel}} = [-\vec{B}T, \vec{B}T] \).

- **\(C_{\text{RInt}} \text{-Commit}(\mathbb{P}, \vec{m}) \)**: Takes as input public parameters \(\mathbb{P} \) and \(\vec{m} \in [0, \vec{B}] \), samples \(r \leftarrow \mathbb{Z}_p \), sets \(C_i \leftarrow m_iH + rG_i, \vec{C} \leftarrow (C_1, \cdots, C_\ell), F \leftarrow rH \), and outputs \((c, r) \) for \(c = (\vec{C}, F) \).
- **\(C_{\text{RInt}} \text{-Verify}(\mathbb{P}, c, \vec{m}, r) \)**: Takes as input \((c, r) \in \mathbb{G}^{\ell+1} \times \mathbb{Z}_p \), parses \(c = (\vec{C}, F) \) and checks that \(\vec{m} \in [-\vec{B}T, \vec{B}T], F = rH, \vec{C} = \vec{m}H + r\vec{G} \).

If the (relaxed) range (induced by \(\vec{B} \) and \(T \)) is clear by context, we often write \(C_{\text{RInt}} \) for short.

Theorem 1. The scheme \(C_{\text{RInt}} \) is correct, hiding under DDH in \(\mathbb{G} \), and perfectly binding.
Proof. Correctness is straightforward.

For hiding, we have \((H, G_i, rH, t_iG_i) \approx (H, G_i, rH, t_iG_i)\) for \(t_i \leftarrow \mathbb{Z}_p\) under DDH. Since \(t_iG_i\) masks \(m_iH\) additively, the value \(m_iH + t_iG_i\) is uniform in \(\mathbb{G}\). Thus, \((\hat{C}, F) \approx \hat{D}\) for \(\hat{D} \leftarrow \mathbb{G}^{\ell+1}\) after \(\ell\) game hops.

For binding, observe that \(\hat{m}_i \in [0, \ell]\) is uniquely determined by \(c\) and the verification equations. In more detail, if \((\hat{C}, F)\) verifies correctly, then we have \(r = \log_H(F) \equiv 0 \pmod{p}\). Thus, \(m_i \equiv \log_H(C_i - rG_i) \pmod{p}\). Since for every \(x \in \mathbb{Z}_p\), there exists exactly one \(m_i \in [-\frac{p-1}{2}, \frac{p-1}{2}]\) such that \(m_i \equiv x\), the value \(m_i\) is uniquely determined.

Note that we could also set \(C \leftarrow rH + \sum x_iG_i\) to obtain compact commitments. We choose ElGamal commitments instead of Pedersen commitments as in our applications, we require perfect binding. In our construction, we also require exact integer commitments for some fixed range.

Definition 6 (Integer commitments with bounded range). If the range in verification is identical to the message space, we say that the commitment is an (exact) integer commitment with \(C_{\text{mag}} = [0, \hat{B}]\) (and \(C_{\text{mag}} = C_{\text{eMag}}\)).

5.2 Commitments in Arbitrary Cyclic Groups

Let \(\hat{G} = \langle \hat{g} \rangle\) be an arbitrary cyclic group with generator \(\hat{g}\). We assume an upper bound \(U\) on the order of \(\hat{G}\).

We construct a commitment scheme with message space \(C_{\text{mag}} = \hat{G}\) (i.e., for messages \(\hat{x} \in \hat{G}\)). Looking ahead, we cannot rely on computational hardness assumptions in \(\hat{G}\) (as in our construction, this group can be chosen maliciously by the adversary). As secure (non-interactive) commitments require some type of hardness assumption, we need some additional structure. For this, we use an additional relaxed integer commitment scheme \(C_{\text{RInt}}\) (with parameters \(B, T\) defined below)\(^{22}\). To commit to \(\hat{x} \in \hat{G}\), a user first selects \(\hat{c} \leftarrow \hat{g}^s\) for \(s \leftarrow [0, U \cdot 2^\lambda]\). Note that \(\hat{c}\) hides \(\hat{x}\) statistically, but is not binding to \(\hat{x}\). For example, a user can open \(\hat{c} = \hat{g}^s\) to message \(\hat{y} \neq \hat{g}^2\).

To achieve binding, the user additionally commits to its randomness \(s\) in a commitment \(c\) via \(C_{\text{RInt}}^{B,T}\) for \(B = U \cdot 2^\lambda\) and \(T\) arbitrary. If \(s\) is fixed over the integers \(\mathbb{Z}\), the user is forced to open the commitment \(\hat{c}\) to the message \(\hat{x} = \hat{c} \cdot \hat{g}^{-s}\). Note that the commitment \(c\) fixes \(s\) over a subset of \(\mathbb{Z}\) (due to binding of \(C_{\text{RInt}}\)) which is sufficient\(^{23}\). Since \(C_{\text{RInt}}\) is binding, the additional commitment \(c\) reveals no information about \(s\) and thus, the scheme remains binding.

Since our instantiation of \(C_{\text{RInt}}\) requires a group \(\hat{G}\) (whose size scales with \(B\)), we allow \(s\) to be split into a vector \(\vec{s}\) with \(s_i \in [0, B]\). Then, the user commits to \(\vec{s} \leftarrow [0, \hat{B}]\) via \(C_{\text{RInt}}^{B,T}\) for \(\hat{B} = (B, \cdots, B)\) and arbitrary \(B \in \mathbb{N}\). Let \(\ell = \lceil \log(U \cdot 2^\lambda) / \log(B) \rceil\). The commitment scheme \(C_{\text{Grp}}\) (which is implicitly parameterized by \(C_{\text{RInt}}\)) is given below.

- **\(C_{\text{Grp}, \text{Setup}}(1^\lambda)\):** Outputs \(pp \leftarrow C_{\text{RInt}}^{B,T}.\text{Setup}(1^\lambda)\).

- **\(C_{\text{Grp}, \text{Commit}}(pp, \hat{x})\):** Takes as input public parameters \(pp\) and \(\hat{x} \in \hat{G}\), samples \(s \leftarrow [0, U \cdot 2^\lambda]\), sets \(\hat{c} \leftarrow \hat{x} \cdot \hat{g}^s\). Then, decomposes \(s = \sum_{i=1}^\ell s_iB_i^{\ell-i}\) with \(s_i \in [0, B]\) and commits to \(\vec{s} = (s_1, \cdots, s_\ell)\) via \((c, r) \leftarrow C_{\text{RInt}}^{B,T}.\text{Commit}(pp, \vec{s})\). Outputs \((c_x, r_x)\) for \(c_x = (\hat{c}, c)\) and \(r_x = (\vec{s}, r)\).

- **\(C_{\text{Grp}, \text{Verify}}(pp, c_x, \vec{s}, r_x)\):** Parses \(c_x, r_x\) as above. Then, sets \(s = \sum_{i=1}^\ell s_iB_i^{\ell-i}\) and checks that \(C_{\text{RInt}}^{B,T}.\text{Verify}(pp, c_x, \vec{s}, r_x) = 1\) and \(\hat{c} = \hat{x} \cdot \hat{g}^s\).

Theorem 2. The scheme \(C_{\text{Grp}}\) is correct, hiding and binding under the hiding and binding property of \(C_{\text{RInt}}\), respectively.

\(^{22}\) If we instantiate \(C_{\text{RInt}}\) as in Section 5.1 then the additional structure is a prime order group \(G\) in which DDH is assumed to be hard.

\(^{23}\) Note that for our construction, it is important that \(C_{\text{RInt}}\) commits over the integers. For example, a commitment \(c\) over \(\mathbb{Z}_p\) is not sufficient. To illustrate this, assume that \(s \in \mathbb{Z}\) is fixed over \(\mathbb{Z}_p\). Then, \(\hat{c} = \hat{g}^s\) can be opened to \(\hat{g}^s\) or \(\hat{g}^{s'}\) since \(s \equiv s' \pmod{p}\). But we have \(\hat{g}^s = \hat{g}^s\) only if \(\ord(\hat{g}) | s(s^{p-2} - 1)\). Since the order is unknown, this does not hold in general and thus, the commitment is not binding.
Proof. Correctness is straightforward.

Hiding is argued as follows. First, observe that \(c \leftarrow \mathcal{C}_{\text{Rint}}(\mathsf{pp}, \mathsf{s}) \) and \(\mathcal{C}_{\text{Rint}}(\mathsf{pp}, \mathsf{0}) \) under the hiding property of \(\mathcal{C}_{\text{Rint}} \). Also, the distribution of \(\hat{c} = \hat{x} \cdot \hat{g}^s \) for \(s \leftarrow [0, U \cdot 2^\lambda] \) has a statistical distance of at most \(2^{-\lambda} \) to the uniform distribution \(\mathcal{U}_U \) over \(\hat{G} \). Thus, we have \(\hat{c} \approx \mathcal{U}_U \). In total, \((\hat{c}, c) \approx (\mathcal{U}_U, \mathcal{C}_{\text{Rint}}(\mathsf{pp}, \mathsf{0})) \) for \((\hat{c}, c) \leftarrow \mathcal{C}_{\text{Grp}}.\text{Commit}(\mathsf{pp}, \hat{x})\).

Binding follows from the binding property of \(\mathcal{C}_{\text{Rint}} \) and since \(\hat{x} = \hat{g}^s \) is uniquely determined if \(s \) is fixed. In more detail, we reduce binding to the binding property of \(\mathcal{C}_{\text{Rint}} \). Let \(\mathcal{A} \) be an adversary on the binding property of \(\mathcal{C}_{\text{Grp}} \). First, obtain \(\mathsf{pp} \) from a challenger of the \(\mathcal{C}_{\text{Rint}} \) binding property. Set \((c_x, \hat{x}(0), \hat{x}(1), r_x(0), r_x(1)) \leftarrow \mathcal{A}(\mathsf{pp})\). Parse \(c_x = (\hat{c}, c) \) and \(r_x(b) = (\hat{s}(b), r(b)) \). Output \((c, \hat{s}(0), \hat{s}(1), r(0), r(1))\) to the challenger.

To analyze the success probability, assume that \(\mathcal{A} \) is successful. Then, we have \(\hat{x}(0) \neq \hat{x}(1) \in \hat{G} \) and \(\mathcal{C}_{\text{Grp}}.\text{Verify}(\mathsf{pp}, c_x, \hat{x}(b), r_x(b)) = 1 \) for \(b \in \{0, 1\} \). Set \(s(b) = \sum_{i=1}^\ell \hat{s}_b \cdot B^{i-1} \). If \(s(0) = s(1) \Rightarrow s \), we have that
\[
\hat{c} = \hat{x}(0) \cdot \hat{g}^s = \hat{x}(1) \cdot \hat{g}^s.
\]

Thus, we have \(\hat{x}(0) = \hat{x}(1) \) which contradicts our assumption. Consequently, it holds that \(s(0) \neq s(1) \).

By construction of \(s(0) \) and \(s(1) \), it must hold that \(\hat{s}(0) \neq \hat{s}(1) \) over \(\mathbb{Z}^\ell \). But since \(\mathcal{C}_{\text{Rint}}.\text{Verify}(\mathsf{pp}, c, \hat{s}(b), r(b)) = 1 \) for \(b \in \{0, 1\} \), the values \((c, \hat{s}(0), \hat{s}(1), r(0), r(1))\) form a valid solution solution for the binding game of \(\mathcal{C}_{\text{Rint}} \). \(\square \)

5.3 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs \(\Pi_{\text{Rint}} \) and \(\Pi_{\text{Grp}} \) to open \(\mathcal{C}_{\text{Rint}} \) and \(\mathcal{C}_{\text{Grp}} \), respectively, in zero-knowledge. Due to space limitations, we refer to Section 4.1 for a brief overview. The full schemes are given in Appendix C.1.

6 Blind Signature with Malicious Signer Blindness

In this section, we detail our blind signature construction based on the strong RSA assumption and DDH in prime order groups.

6.1 Primitives

Before we detail our construction, we prepare the required primitives and related parameters. To see how these primitives fit in the larger picture, we refer to Section 2.

Remark 2. In the following, we will define several NIZKs. As the reference string \(\text{crs} \) of these NIZKs are set up by the signer, we need to be careful with the security guarantees of each NIZK. For cases where the signer takes the role of the prover, we require subversion soundness (i.e., the soundness property should hold even with regard to a maliciously generated \(\text{crs} \)) but standard zero-knowledge is sufficient. If the signer takes on the role of the verifier, we require subversion zero-knowledge (i.e., the zero-knowledge property should still hold even with regard to a maliciously generated \(\text{crs} \)).

Relaxed integer commitment. To construct a proof of knowledge of a signature of the scheme \(\mathcal{S}_{\text{Rint}} \), we use a relaxed integer commitment. The scheme is required to be perfectly binding to fix (parts of) the signature before extraction. We describe the choices of parameters and motivate them in the following.

Let \(T \in \mathbb{N} \). Let \(A = 2^{3\lambda} \), \(E = 2^{3\lambda} \), and \(\mathcal{B} \in \mathbb{N} \) such that the following equations hold.
\[
\log(\mathcal{B}) = \text{poly}(\lambda) \quad \text{(5)}
\]
\[
A \cdot T < \mathcal{B} - ET. \quad \text{(6)}
\]

Let \(\mathcal{C}_{\text{Rint}}^\mathcal{B}.T \) be a relaxed integer commitment scheme with uniform public parameters of length \(\ell_{\text{int}} \), perfect binding and computational hiding (cf. Section 5.1) for \(\mathcal{B} := (A, E) \) and slack \(T \). We write \(\mathcal{C}_{\text{Rint}} \) for short. The choices for these parameters are motivated below.
Recall that \(\tilde{B} \) defines the message space \([0, \tilde{B}]\) and that the slack \(T \) dictates the relaxed message space \([-\tilde{B}T, \tilde{B}T]\), i.e., the message space for verification.

For convenience, let \(\mathcal{S}_a := [0, A] \) and \(\mathcal{S}_c := [E, E + E] \). In our construction, we commit to \(a \in \mathcal{S}_a \) and \(e - E \in [0, E] \) for \(e \in \mathcal{S}_c \) via \(\mathcal{C}_{\text{Rint}} \). The above parameter choices guarantee that for message \((a, e - E)\) that passes \(\mathcal{C}_{\text{Rint}} \) verification, it holds that the values \((a, e)\) pass the range checks in the \(\mathcal{S}_{\text{R}} \) signature.

To illustrate this, set \(\mathcal{R}_a := [-AT, AT] \) and \(\mathcal{R}_c := [E - ET, E + ET] \). By Eq. \((\text{6})\), we have that for any \(a \in \mathcal{R}_a \) and \(e \in \mathcal{R}_c \) that \(a < e \). Further, verification of \(\mathcal{C}_{\text{Rint}} \) guarantees that the committed \(a \) lies in the interval \(a \in \mathcal{S}_a \) as desired. Also, since we commit to \(e - E \in [-ET, ET] \), we have \(e \in \mathcal{S}_c \).

In our instantiation, we can employ our \(\mathcal{C}_{\text{Rint}} \) construction from Section 5.1 which can be opened with a simple NIZK \(\Pi_{\text{int}} \). This is the core technique that allows us to construct a proof of knowledge of a \(\mathcal{S}_{\text{R}} \) signature in an efficient manner.

In the instantiation, we set \(E = 2^{5\lambda} \). Then, it is guaranteed that the interval \(\mathcal{S}_c = [E, E + E] \) contains at least \(\Omega(2^{2\lambda}) \) primes. This follows from a recent refinement \([58]\) of Huxley’s bound \([60, 57]\). We provide a full proof in Appendix D.1. This is required to avoid collisions in a hash function mapping into \(\mathcal{S}_c \).

Proof of Knowledge for \(\mathcal{S}_{\text{R}} \) signatures.

We require a NIZK to proof knowledge of a valid \(\mathcal{S}_{\text{R}} \) signature \((e, a, y)\) on the hash of a message \(\overline{m} \). To prove one-more unforgeability, we require that \((e, a)\) are fixed statistically in the statement. Thus, we add a \(\mathcal{C}_{\text{Rint}} \) commitment for \((e, a)\) which also enables efficient proofs for range membership (as discussed above). Let \(\Pi_{\text{R}} \) be an NIZK with oracle \(\mathcal{H}_{\text{R}} \) for the relation

\[
\mathcal{R}_{\text{R}} := \{(x, w) \mid y^e \equiv h \cdot h_1^a \cdot h_2^a \cdot \overline{m} \mod N, e \equiv 1 \mod 2, y \in \langle h_1 \rangle, (c_I, d_I) = \mathcal{C}_{\text{Rint}}.\text{Commit}(pp_I, (a, e - E); r_I), e \in \mathcal{S}_c, a \in \mathcal{S}_a\}
\]

for \(x = (pp_I, N, h_1, h_2, h, \overline{m}, c_I), w = (e, a, y, r_I, d_I) \) with subversion zero-knowledge, correctness, and adaptive knowledge soundness for the relation

\[
\mathcal{R}_{\text{R}} := \{(x, w) \mid y^e \equiv h \cdot h_1^a \cdot h_2^a \cdot \overline{m} \mod N, e \equiv 1 \mod 2, (c_{\text{Rint}}.\text{Verify}(pp_I, (a, e - E), d_I), 1) = 1\}
\]

with \(x, w \) as above. Note that the soundness relation \(\mathcal{R}_{\text{R}} \) implies that \(a \in \mathcal{R}_a \) and \(e \in \mathcal{R}_c \) (cf. Section 5.1) and Thus, \((e, a, y)\) form a valid \(\mathcal{S}_{\text{R}} \) signature. For zero-knowledge and correctness, there are stronger requirements for the witness (which are fulfilled in our construction). Notably, we require that \(a \in \mathcal{S}_a, e \in \mathcal{S}_c, \) and that \(y \in \langle h_1 \rangle \). (The latter is required to commit to \(y \) via \(\mathcal{C}_{\text{Grp}} \) in our instantiation.)

Integer commitment and opening proof for Pedersen.

Let \(S \in \mathbb{N} \). Let \(\mathcal{C}_Z \) be an exact integer commitment scheme with message space \(\mathcal{C}_Z.\mathcal{C}_{\text{msg}} := [0, 2^\lambda - 1] \times [0, S] \) with uniform public parameters of length \(\ell_z \), correctness, perfect binding, and computational hiding (cf. Definition 6).

We denote by \(\mathcal{C}_Z.\mathcal{C}_{\text{open}} \) the opening space of \(\mathcal{C}_Z \). In the blind signature scheme, we will require the user to both the hash \(\overline{m} \) as well as the random coins \(r \) that it plans to use to derive the Pedersen commitment using the perfectly binding commitment scheme \(\mathcal{C}_Z \). This first commitment is hashed to obtain the prime \(e \) used for signing. Furthermore, the user is required to attach a proof \(\pi_{\text{ped}} \) that the Pedersen commitment \(c \) is consistent with the hash \(\overline{m} \) and the coins \(r \). The commitment \(c_{\text{Z}} \) along with the proof \(\pi_{\text{ped}} \) allows the reduction in the one-more unforgeability proof to obtain the value \(\overline{m} \) and the coins \(r \) which in turn enables it to generate signatures using the alternate signing algorithms from Appendix B.1

In the proof of blindness, we rely on the zero-knowledge property of \(\Pi_{\text{ped}} \) as well as the hiding property of the commitment schemes.

24 In our instantiation, we have \(T = 2^{\lambda + 1}L \) with \(L = 2^{10} \). It is sufficient to set \(E = 2^{5\lambda} \) to have \(AT = 2^{4\lambda + 11} < 2^{5\lambda} - 2^{\lambda + 11} = E - ET \) for Eq. \((\text{6})\) if \(\lambda \geq 14 \).

25 In our construction, the value \(\tilde{B} \) is large. Our technique allows to avoid the use of exact range proofs whose efficiency scales noticeably with the range \([0, \tilde{B}]\).
Let Π_{ped} be an NIZK with oracle H_{ped} for the relation

$$R_{\text{ped}} := \{ (x, w) \mid c \equiv h^x \cdot g^{we} \mod N, C_Z \text{Verify}(pp, c_Z, (\overline{m}, r), d_Z) = 1, \overline{m} \in [0, 2^\lambda - 1], r \in [0, S] \},$$

for $x = (pp, N, c, h_2, g, c_Z), w = (\overline{m}, r, d_Z)$ with correctness and subversion zero-knowledge. We also require partial online-extraction for R_{ped}, where we split the statement x into $x_0 = pp$ and $x_1 = (N, c, h_2, g, c)$ and the witness into $w_0 = d_Z$ and $w_1 = (\overline{m}, r)$. (This implicitly defines the partial statement space $X_0 = \{0,1\}^{\ell_t}$ and the partial witness space $W_1 = C_Z.c_{\text{gen}}$.). The user uses the NIZK to ensure that the commitment c is indeed formed with the values committed via C_Z. For the security proof, the reduction “punctures” the verification key in such a way that it can sign messages without knowing the secret key. For this reason, online-extraction is required to extract the messages before signing. As mentioned above, we exclude d_Z from the extracted witness for efficiency (as existence is sufficient). Also, we embed the extraction trapdoor in the public parameters (instead of the crs also for efficiency).

NIZKS for group membership

As the factorization of the RSA modulus N is private, it is hard to check whether a given $g \in Z_N^*$ generates the entire group QR_N. This means that we need to prevent the signer from setting up the signing key for S_{gu} in a malicious way that allows the following attack against blindness. Recall that the user sends blinded commitment $c = h^{x_1} \cdot g^{we}$ to the signer during signing. When $h_2 \neq (g)$, a malicious signer could raise c to the power of $\text{ord}(g)$ to remove the part g^{we} and then check whether the resulting $c^{\text{ord}(g)} = (h_2^{x_1})^{\text{ord}(g)}$ or $c^{\text{ord}(g)} = (h_2^{x_1})^{\text{ord}(g)}$, and thus breaking blindness.

We carefully design our blind signature such that it actually suffices to check that for some group elements h in the verification key and a generator g, it holds that $(g) = G = \langle h \rangle$.

We describe how the signer can prove this in a NIZK: Since the signer sets up the elements g and h itself, it can set $h = g^x$ for some $x \in \mathbb{Z}_{\text{ord}(g)}$. Knowing x, constructing such a proof for $\langle h \rangle = G$ is simple. Since the signer sets up multiple such values h, we batch the statement for simplicity.

Let Π_{gen} be an NIZK with oracle H_{gen} satisfying statistical adaptive subversion soundness, zero-knowledge, and correctness for the relation

$$R_{\text{gen}} = \{ (x, w) \mid \forall i \in [k] : h_i^{x_i} \equiv h \mod N, h_i^{\beta_i} \equiv h_i \mod N \},$$

where $x = (N, k, h, (h_i)_{i \in [k]}), w = ((\alpha_i, \beta_i)_{i \in [k]})$. Note that R_{gen} implies that $\langle h \rangle = \langle h_i \rangle$ for all i.

Hash functions

We require the following hash functions in our construction. Each hash function is modeled as random oracle in the security proofs.

- H_{urs}: Let $H_{\text{urs}} : \{0,1\}^* \rightarrow \{0,1\}^{\ell_{\text{ord}}} \times \{0,1\}^{\ell_{\text{usr}}} \times \{0,1\}^{\ell_{\text{usr}}}$ be a hash function, where ℓ_{usr} is the bit-size of the uniform reference string of Π_{usr}. Later, we use H_{urs} to setup the random part usr of each crs for the above NIZKS.
- H: Let $H : \{0,1\}^* \rightarrow \{0,1\}^{2^\lambda - 1}$ be a hash function. Later, we use H to compute a short digest $\overline{m} = H(m)$ of the message $m \in \{0,1\}^*$.
- H_{pp}: Let $H_{\text{pp}} : \{0,1\}^* \rightarrow \mathbb{F}_p$ be a hash function mapping into the primes in the interval S_p. Later, we use H_{pp} to setup the random part pp of each crs.
- H_{prf}: Let $H_{\text{prf}} : \{0,1\}^\lambda \times \{0,1\}^* \rightarrow \mathbb{F}_{S_p}$ be a random oracle. We use this hash function like a PRF to make the signer deterministic.

Note that we can instantiate $H_{\text{pp}} : \{0,1\}^* \rightarrow \mathbb{F}_p$ by picking uniformly random elements in the space $S_p := \mathbb{F}_p$ until we hit a prime. The distribution of the outputs of H_{pp} is uniform over \mathbb{F}_p, which is the set of primes in the interval S_p. Appendix 6.1 proves the following lemma.

Lemma 1. For $E = 2^{2^\lambda}, E = 2^{2^\lambda}$, there are $\Omega(2^{2^\lambda})$ primes in $S_p = [E, E + E]$.

26 Roughly, the commitment C_Z is extractable and we embed the extraction trapdoor into pp. But pp is part of the statement, so we make sure that this part is sampled at random (cf. Definition 25).
6.2 Construction

Set $S = N \cdot 2^i$ which is passed implicitly as parameter in our construction. Also, we set $pp = (pp_f, pp_z) \leftarrow H_{pp}(0)$. We assume that user and signer compute $pp = H_{pp}(0)$ implicitly. The construction is detailed below. We also detail a signing session in Fig. 1.

- **BS_{fis}.KG(1^k)**: First, generates the FIS for the NIZKs as $crs_{2kp} \leftarrow (srs_{2kp}, ur_{2kp})$, where $srs_{2kp} \leftarrow \Pi_{2kp,GenSRS}(1^k)$ and $ur_{2kp} \leftarrow H_{ur}(0)$. Then, generates a public key for S_{fis} as follows. Sets $(N, P, Q, C) \leftarrow GenRSA(1^k)$ and samples $g \in QR_N$. Samples $\alpha_i \leftarrow Z_{ord}(g)$ and sets $\beta_i \leftarrow \alpha_i^{-1} \mod ord(g)$ for $i \in [3]$. Computes $h_1 \leftarrow g^{\alpha_1} \mod N$, $h_2 \leftarrow g^{\alpha_2} \mod N$ and $h \leftarrow g^{\alpha_3} \mod N$. Note that h, h_1 and h_2 are generators of QR_N with overwhelming probability. Next, proves that all QR_N elements in bvk key generate the same group via $\pi_{gen} \leftarrow \Pi_{gen,Prove}^{H_{gen}}(crs_{gen}, x_{gen}, w_{gen})$, where $x_{gen} = (N, 3, g, (h, h_1, h_2))$, $w_{gen} = (\alpha_i, \beta_i)_{i \in [3]}$. Then, sample a key $K \leftarrow \{0, 1\}^k$ for H_{prf}. Finally, output

\[
\begin{align*}
 bvk &= (crs_{fis}, crs_{ped}, crs_{gen}, N, h, h_1, h_2, g, \pi_{gen}), \\
 bsk &= (bvk, P, Q, K).
\end{align*}
\]

- **BS_{fis}.User(bvk, m)**: Given verification key bvk, and message m, checks

\[
\Pi_{gen}.Verify^{H_{gen}}(crs_{gen}, x_{gen}, \pi_{gen}) = 1
\]

for $x_{gen} = (N, 4, (h, h_1, h_2, g))$. Then, sets $\overline{m} \leftarrow H(m)$ and set up a commitment c to \overline{m} as follows. Samples randomness $r \leftarrow [0, S]$ for c and commits to (\overline{m}, r) via $(c_Z, d_Z) \leftarrow C_{z,Commit}(pp, (\overline{m}, r))$. Sets $e \leftarrow H_p(c_Z)$ and compute $e = h_Z^{\overline{m}'} \cdot g^e \mod N$. Next, generate a proof $\pi_{ped} \leftarrow \Pi_{ped,Prove}^{H_{prf}}(cr_{fis}, x_{ped}, w_{ped})$ for $x_{ped} = (pp, N, e, h_2, g, c_Z)$, $w_{ped} = (\overline{m}, r, d_Z)$. Note that π_{ped} proves that the generation of c was performed honestly with respect to c_Z.

Finally, output

\[
\begin{align*}
 \rho_1 &= (c, c_Z, \pi_{ped}), \\
 st_U &= (e, r, m).
\end{align*}
\]

- **BS_{fis}.Signer(bsk, \rho_1)**: Given signing key $bsk = (bvk, P, Q, K)$ and user’s output $\rho_1 = (c, c_Z, \pi_{ped})$, checks $\Pi_{ped}.Verify^{H_{prf}}(crs_{fis}, x_{ped}, \pi_{ped}) = 1$ for $x_{ped} = (pp, N, e, h_2, g, c_Z)$. Next, computes $e \leftarrow H_p(c_Z)$ and sets $d \leftarrow e^\mod \phi(N)$. Then, sets $a \leftarrow H_{prf}(K, c \parallel c_Z)$ which it uses as randomness for the signing process. Using d and a, computes a presignature z via $z' \leftarrow h \cdot h_1^a \cdot c \cdot h_2^d \mod N$ and $z \leftarrow (z')^d \mod N$. Finally, outputs

\[
\begin{align*}
 \rho_2 &= (z, a), \\
 st_f &= (a, z').
\end{align*}
\]

- **BS_{fis}.Derive(st_f, \rho_2)**: Given state st_f and last message $\rho_2 = (z, a)$, sets $z' \leftarrow h \cdot h_1^a \cdot c \cdot h_2^d$, for $a \in S_a$, and checks $z' \equiv z' \mod N$ given e from st_f. Next, computes a S_{fis} signature on m via $S_{fis}.Verify(vk, m, \sigma_{fis}) = 1$. Next, generates a BS_{fis} signature as follows. Sets $\overline{m} = H(m)$ and $(c_{fis}, d_{fis}) \leftarrow C_{fis,Commit}(pp_f, (a, e - E); r_1)$ for $r_1 \leftarrow C_{RInt,C_{ped}}$. Proves that σ_{fis} verifies correctly via $\pi_{fis} \leftarrow \Pi_{fis,Prove}^{H_{prf}}(crs_{fis}, x_{fis}, w_{fis})$ for $x_{fis} = (pp_f, N, h_1, h_2, h, \overline{m}, c_1)$. Outputs

\[
\sigma = (\pi_{fis}, c_1).
\]

- **BS_{fis}.Verify(bvk, m, \sigma)**: Given verification key bvk, message m, and signature $\sigma = (\pi_{fis}, c_1)$, computes $\overline{m} = H(m)$ and checks

\[
\Pi_{fis}.Verify^{H_{prf}}(crs_{fis}, x_{fis}, \pi_{fis}) = 1
\]

for $x_{fis} = (pp, N, h_1, h_2, h, \overline{m}, c_1)$.
We consider $(\Omega, \lambda) \rightarrow \mathbb{Z}/\mathbb{P}$, where the probability is taken over the choice of Ω.

Lemma 2. Let $(\Omega, \lambda) \rightarrow \mathbb{Z}/\mathbb{P}$ and its corollary that will be used in our proof:

Before proving that our scheme satisfies blindness under malicious keys, we state a lemma:

Corollary 1.

\[\pi \leftarrow \Pi_{\text{ped} \rightarrow \Pi_{\text{gen}}(\text{crs}_{\text{ped}}, x_{\text{ped}}, \pi_{\text{ped}})}(c, cz_t, \pi_{\text{ped}})\]

\[\text{check } \Pi_{\text{ped}.\text{Verify}^{\Pi_{\text{gen}}(\text{crs}_{\text{gen}}, x_{\text{gen}}, \pi_{\text{gen}}) = 1 \text{ for message } m. \text{ We have } (\text{pp}_{f}, \text{pp}_{z}) = H_{\text{pp}}(0), x_{\text{gen}} = (N, 4, (h, h_{1}, h_{2}, g)), x_{\text{ped}} = (\text{pp}_{f}, N, e, h_{2}, g, c, cz), u_{\text{ped}} = (\pi, r, d_{z}), x_{\text{fis}} = (\text{pp}_{f}, N, h_{1}, h_{2}, h, \pi, c_{t}), u_{\text{fis}} = (e, a, y, r_{t}, d_{t})}\]

If a check fails, the party aborts.

6.3 Blindness under Malicious Keys

Before proving that our scheme satisfies blindness under malicious keys, we state a lemma and its corollary that will be used in our proof:

Lemma 2. Let $\lambda \in \mathbb{N}$ and $N > 3$ be an odd natural number of bitlength polynomially large in λ. We consider \mathbb{Z}_{N}^\ast and fix $G = \langle g \rangle \subseteq \mathbb{Z}_{N}^\ast$ where $g \in \mathbb{Z}_{N}$. Given $e \leftarrow \mathcal{S}_{e}$ where \mathcal{S}_{e} contains at least $\Omega(2^\lambda)$ primes, we have

$$
\Pr \left[(g^e) \neq G : e \leftarrow \mathcal{S}_{e} \right] \leq \text{negl}(\lambda)
$$

where the probability is taken over the choice of e.

Corollary 1. Let $\lambda \in \mathbb{N}$ and $N > 3$ be an odd natural number of bitlength polynomially large in λ. We consider \mathbb{Z}_{N}^\ast and fix $G = \langle g \rangle \subseteq \mathbb{Z}_{N}^\ast$ where $g \in \mathbb{Z}_{N}$. Given $e \leftarrow \mathcal{S}_{e}$ where \mathcal{S}_{e} contains at least $\Omega(2^\lambda)$ primes, with overwhelming probability over the choice of e

$$
\psi : G \rightarrow \langle g^e \rangle
$$

\[z \mapsto z^e \mod N\]

is a group isomorphism.
We defer the proofs to Appendix D.2. We now state the main theorem for blindness of BS$_{\text{fis}}$ followed by an overview. The full proof can be found in Appendix D.3.

Theorem 3. The scheme BS$_{\text{fis}}$ is blind under malicious keys following the subversion statistical adaptive soundness of Π_{gen}, the subversion zero-knowledge property of Π_{fis}, the computational hiding property of C_{RInt}, and the subversion zero-knowledge property of Π_{ped}.

Proof Overview. In the proof we use a sequence of games to transition from the blindness game as in Definition 3 with $\text{coin} = 0$ to the blindness game with $\text{coin} = 1$. To achieve this, we first employ the subversion zero-knowledge property of Π_{fis} for simulating the proofs π_{fis}. Particularly, corollary 1 which ensures that with overwhelming probability the presignature z is a unique correct c-th root of a masked S_{fis} signature, together with the adaptive soundness of Π_{gen} will guarantee that the derived signature y will be a valid S_{fis} signature in order to use the subversion zero-knowledge simulator of Π_{fis}. This allows us to change the commitment c_1 of the signature on m_0 to a commitment to 0, under the hiding property of C_{RInt}, which makes the signature independent of the signing session’s exponents c and a. We then turn to exchanging the CRS of Π_{ped} to a simulated one along with simulating the proof π_{ped} using the subversion zero-knowledge property of Π_{ped}. We also rule out that the signer gave us a key with $(h_2) \neq (g)$ via the adaptive soundness of Π_{gen} as otherwise the Pedersen commitment would not be perfectly hiding. Combining the previous game hop with lemma 2 makes sure that with overwhelming probability over the choices of c the commitment c is Pedersen over (g) and its committed values are independent from π_{ped}. Thus c can be switched to a uniformly random $c \leftarrow (g)$ for the session where m_0 is getting signed. After the Pedersen commitment is independent of the message, we also switch the commitment c_2 to be independent of the message using the hiding property of C_{Z}. We then use the analogous series of games in the other direction to end up with the real game for $\text{coin} = 1$.

6.4 One-more Unforgeability

Theorem 4. If the strong RSA problem is hard, H, H_F, H_{urs}, and H_{pp} are random oracles, Π_{ped} is a NIZK with partial online-extractability, C_{Z} is a perfectly binding commitment scheme, PRF is a pseudo-random function, Π_{fis} is a NIZK with adaptive knowledge-soundness, and C_{RInt} is a perfectly binding integer commitment scheme then BS$_{\text{fis}}$ is one-more unforgeable.

Proof Overview. For one-more unforgeability, we want to use similar techniques to generate signatures and solve the strong RSA problem as the scheme in Section 4.4. Our final reduction will do the following: It sets up the verification key for S_{fis} as the reduction for the scheme in Section 4.1. In particular, this means guessing the format of the “forgery”. One guess whether the adversary re-uses a prime e used also in a signing interaction with the signer or whether it picks a new e which may or may not be a prime. This guess we denote by a bit b. In the case that the adversary re-uses the prime e, more guesses are made. The reduction guesses the index j of which of the primes will be re-used. The other guess b' concerns the choice of the signature randomness a, namely whether it holds that $a_j \neq a^*$ or $a_j + \overline{m} \neq a^* + \overline{m}$ where \overline{m} is the hash of a message m. If $\overline{m}_j \neq \overline{m}^*$, at least one of the above will be the case. Analogous to the reduction for plain S_{fis} signatures, the reduction manipulates the signature randomness a_j and verification key in such a way that it can sign using exactly one choice of a_j and solve the strong RSA problem for other choices of a^*.

To answer signing queries, it extracts the message and commitment randomness from the NIZK sent by the adversary in the first message of a signing interaction. It then signs the message using the alternate signing key and reapplies the randomness.

To obtain an S_{fis} signature from the adversary, it uses the knowledge soundness extractor of Π_{fis}. It then solves the sRSA problem using the same strategy as the reduction described in Appendix B.2.

To apply this reduction we do game hops to arrive to a game where:

- The reduction can online-extract the hash of the message \overline{m} and the random blinding factor r used to generate the blinded message c. This we achieve by switching to the CRS that allows for extraction and by introducing extraction in a game.
- The reduction can be sure that in signing queries, the adversary uses an exponent e for which the reduction has trapdoored its verification key. This we achieve through programming the hash oracle H_F accordingly (as well as through online-extraction).
The reduction needs to be able to obtain an actual fresh signature (like in the EUF-CMA game for the adapted Fischlin scheme from Section 4.1). This we achieve by applying the knowledge extractor of Π_{fis}.

We need to be sure that the extracted signature is independent of the various signature simulation modes employed by the reduction (i.e. the choices of b, b', j). This is provided by employing a perfectly binding commitment to contain the signature.

We make additional game hops to rule out corner cases such as collisions in the hash functions.

We refer to Appendix D.4 for a detailed proof.

6.5 Instantiation

We instantiate the primitives from Section 6.1 required for our blind signature $BS_{BS_{fis}}$ as follows. For $C_{0,\text{int}}$, we use our construction from Section 5.1 which admits efficient opening proofs in zero-knowledge. For Π_{gen}, we use the construction from Appendix C.1 and for the PRF, an arbitrary choice is sufficient. It remains to instantiate Π_{fis} and Π_{ped}. Our constructions are technically involved. We refer to Section 2 for a brief overview. For detailed constructions, we refer to Appendix E.

For our instantiation, we choose a standard RSA modulus of size 3072 bit for $\lambda = 128$. In total, we obtain blind signatures secure under DDH and sRSA of size 4.28 KB with 10.98 KB communication.

Acknowledgements

We thank Henry Bambury for insightful comments on the Huxley’s bounds of the number of primes in a given interval. We also thank the anonymous reviewers for helpful feedback and suggestions. This work was supported in part by the French ANR Project ANR-19-CE39-0011 PRESTO.

References

Supplementary Material

A Full Preliminaries

A.1 Notation

Let \(\lambda \in \mathbb{N} \) be the security parameter. A probabilistic polynomial time (PPT) algorithm \(\mathcal{A} \) runs in time polynomial in the (implicit) security parameter \(\lambda \). We write \(\text{Time}(\mathcal{A}) \) for the runtime of \(\mathcal{A} \). A function \(f(\lambda) \) is negligible in \(\lambda \) if it is \(O(\lambda^{-c}) \) for every \(c \in \mathbb{N} \). We write \(f = \text{negl}(\lambda) \) for short. Similarly, we write \(f = \text{poly}(\lambda) \) if \(f(\lambda) \) is a polynomial with variable \(\lambda \). If \(D \) is a probability distribution, \(x \leftarrow D \) means that \(x \) is sampled from \(D \) and if \(S \) is a set, \(x \leftarrow S \) means that \(x \) is sampled uniformly and independently at random from \(S \). We also write \(|S| \) for the cardinality of set \(S \). Further, we write \(D_0 \approx D_1 \) for distributions \(D_0, D_1 \), if for all PPT adversaries \(\mathcal{A} \), we have \(\left| \text{Pr}[x_0 \leftarrow D_0 : \mathcal{A}(1^\lambda, x_0) = 1] - \text{Pr}[x_1 \leftarrow D_1 : \mathcal{A}(1^\lambda, x_1) = 1] \right| = \text{negl}(\lambda) \). Similarly, we write \(D_0 \approx D_1 \) if the above holds even for unbounded adversaries. For some PPT algorithm \(\mathcal{A} \), we write \(\mathcal{A}^O \) if \(\mathcal{A} \) has oracle access to the oracle \(O \). If \(\mathcal{A} \) performs some check, and the check fails, we assume that \(\mathcal{A} \) outputs \(\bot \) immediately. Generally, we assume that adversaries are implicitly stateful.

We denote with \([n] \) the set \(\{1, \ldots, n\} \) for \(n \in \mathbb{N} \). We write \(\mathbb{P} \) for the set of primes and \(\mathbb{P}_I \) for the set of primes in the interval \(I \). For some odd prime \(p \), we use the representatives \(\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\} \) for \(\mathbb{Z}_p \). For a group \(G \) we write \(\text{ord}(G) \) to denote the order of \(G \) and unless stated otherwise we write \(G \) with additive notation. We denote by \(\text{QR}_N = \{ a \in \mathbb{Z}_N^* : \exists b \in \mathbb{Z}_N^*, b^2 \equiv a \mod N \} \) the quadratic residues \(\mod N \). For some \(N \in \mathbb{N} \), the group \(\text{QR}_N \) is a cyclic subgroup of \(\mathbb{Z}_N^* \) and we denote by \(\text{Gen} (\text{QR}_N) \) the set of generators of \(\text{QR}_N \). We recall some properties of \(\text{QR}_N \)

Lemma 3 (Proposition 1, [34]). Let \(\lambda \in \mathbb{N} \) and \((N, P, Q) \leftarrow \text{GenRSA}(1^\lambda) \). Considering \(\text{QR}_N \), the following holds:

- The group \(\text{QR}_N \) is cyclic of order \(P'Q' \) where \(P = 2P' + 1 \) and \(Q = 2Q' + 1 \).
- \(-1 \notin \text{QR}_N \).
- Any square \(h \in \text{QR}_N \) has exactly four roots, among which there is exactly one square.
- For any element \(h \in \text{QR}_N \), finding roots of \(h \) is equivalent to factoring \(N \).
- For \(g, h \leftarrow \text{QR}_N \), finding \(a, b \in \mathbb{N} \setminus \{0\} \) such that \(g^a \equiv h^b \mod N \) is equivalent to factoring \(N \).
- For any \(e \in \mathbb{N} \) coprime with \(\phi(N) \) and \(y \in \mathbb{Z}_N^* \), finding \(x, e' \in \mathbb{N} \) such that \(x^e \equiv y^{e'} \mod N \) is equivalent to finding an \(e \)-th root of \(y \) in \(\mathbb{Z}_N^* \).

A.2 Probability

Rejection Sampling. Let \(V, L \in \mathbb{N} \). We define uniform rejection sampling for the interval \([0, V] \) with masking overhead \(L \) as in [32]. Let \(v \in [0, V] \). To mask \(v \) additively with a mask \(\mu \) via rejection sampling, perform the following steps.

1. Draw a random mask \(\mu \leftarrow [0, (V + 1)L] \).
2. Abort if \(v + \mu \notin [V, (V + 1)L] \).
3. Output \(w = v + \mu \).

The value \(w \) is uniform over \([V, (V + 1)L]\) conditioned on no abort and the abort probability is at most \(1/L \). This is easy to see as it is a requirement for the abort that either

Noise Flooding. Let \(V, L \in \mathbb{N} \). We define noise flooding for the interval \([-V, V] \) with masking overhead \(L = 2^L \). Let \(v \in [-V, V] \). To mask \(v \) additively with a mask \(\mu \) via noise flooding, output \(w = v + \mu \), where \(\mu \leftarrow [0, VL] \) is sampled at random. The value \(w \) is distributed close to uniform over \([0, VL] \) with statistical distance at most \(1/L = \text{negl}(\lambda) \).
Forking Lemma. We state here a version of Forking Lemma \cite{14} that fits our usage of it.

Lemma 4 (Lemma 1, \cite{2}). Let \(H \) be a set and let \(F : H^k \to \{q\} \) be a possibly random function. For every \(\vec{h} \in H^k \), let \(E(\vec{h}) \) be a probability event. The probability that when sampling \(k \) vectors \(\vec{h}_1, \ldots, \vec{h}_k \) uniformly and independently at random (conditioned that vectors are identical on their first \(F(\vec{h}_1) \) components), \(E(\vec{h}_i) \) happens for all \(i \in [k] \) and \(F(\vec{h}_1) = F(\vec{h}_2) = \cdots = F(\vec{h}_k) \), is at least \(\delta(E)^k / q^{k^2} \), where \(\delta(E) := \Pr[\vec{h} \leftarrow H^k : E(\vec{h})] \).

A.3 Assumptions

Groups and RSA. Let \(\text{GenG} \) be a PPT algorithm that on input \(1^\lambda \) and prime order \(p \), outputs (a description off) a group \(G \leftarrow \text{GenG}(1^\lambda) \) of order \(p \). We generally use additive notations for prime order groups and capital letters for elements. Also, we assume that given the description, group operations and membership tests are efficient. We write \(g \leftarrow \mathcal{G} \) for drawing elements from some group \(\mathcal{G} \) at random. In the following, we assume that prime order groups are setup with \(\text{GenG} \) implicitly.

Let \(\text{GenRSA} \) be a PPT algorithm that on input \(1^\lambda \) outputs \((N, P, Q) \leftarrow \text{GenRSA}(1^\lambda) \) such that \(N = P \cdot Q \) with \(P, Q \in \mathbb{P} \), where \(P = 2P' + 1 \) and \(Q = 2Q' + 1 \) are strong primes (i.e., \(P', Q' \) are also primes). We assume that \(P', Q' > 2^{\lambda/3} \).

Before recalling some standard hardness assumptions, let us recall the following well-known lemma.

Lemma 5. Given \(x, y \in \mathbb{Z}_N^\times \) with \(a, b \in \mathbb{Z} \) such that \(x^a = y^b \) and \(\gcd(a, b) = 1 \), one can efficiently compute \(z \in \mathbb{Z}_N^\times \) such that \(z^a = y \).

Remark 3. We need the following well-known fact. Let \(\mathcal{G} \) be a group and let \(G \leftarrow \mathcal{G} \) be a random element from \(\mathcal{G} \). Let \(S \in \mathbb{N} \). We consider the problem of distinguishing \(zG \), where \(z \leftarrow [0, S] \), from \(\tilde{z}G \) where \(\tilde{z} \leftarrow \mathbb{Z}_{\text{ord}(G)} \).

If the order \(p \) of the group \(\mathcal{G} \) is known, then the distinguishing probability is \(0 \) for \(S = p - 1 \). If only an upper bound \(U \) on the order is known, then the distinguishing probability is upper bounded by \(1/L \) for \(S = L \cdot U \). For the latter, we set \(L = 2^{\lambda} \) throughout to obtain negligible distinguishing probability.

Next, we recall the definition of a relaxed DLOG-relation from \cite{32} (for the hidden order group \(\text{QR}_N \)).

Definition 7 \((D, \ell)-\text{relaxed DLOG-relation}\). Let \((N, P, Q) \leftarrow \text{GenRSA}(1^\lambda) \), \(D, \ell \in \mathbb{N} \), and \(\vec{g} = (g_0, \ldots, g_{\ell}) \in \text{QR}_N^\ell \). Define the \((D, \ell)\)-relaxed DLOG relation with regards to \(\vec{g} \) as

\[
\mathcal{R}_{D,\ell}(\vec{g}) = \left\{ (c, d, \{ (x_i)_{i=1}^\ell \}) \middle| \begin{array}{l}
\exists d \in [0, D] \wedge c^d = \prod_{i=0}^\ell g_i^{x_i} \\
\exists i \in [\ell] \wedge g_i \not\in \mathbb{Z}_p
\end{array} \right\}
\]

We define the advantage of \(\mathcal{A} \) against the hardness of the \((D, \ell)\)-relaxed DLOG-relation as

\[
\text{Adv}_{(D, \ell), \mathcal{A}}^{\text{rel-dlog}}(\lambda) := \Pr \left[\begin{array}{l}
(N, P, Q) \leftarrow \text{GenRSA}(1^\lambda); g_0, \ldots, g_\ell \leftarrow \text{Gen}(\text{QR}_N); \\
(c, d, x_0, \ldots, x_\ell) \leftarrow \mathcal{A}(N, g_0, \ldots, g_\ell); \\
(c, d, x_0, \ldots, x_\ell) \in \mathcal{R}_{D,\ell}(\vec{g})
\end{array} \right].
\]

The following lemma is a simplification of Lemma A.13 of \cite{32} sufficient for our purpose. Note that \(\text{ord}(\text{QR}_N) = P'Q' \) and we assume that \(P', Q' > 2^{\lambda/3} \).

Lemma 6. Let \(D \leq 2^{\lambda/3} \) and \(\ell = \text{poly}(\lambda) \). For every PPT adversary \(\mathcal{A} \) we have that \(\text{Adv}_{(D, \ell), \mathcal{A}}^{\text{rel-dlog}}(\lambda) = \text{negl}(\lambda) \) under the strong RSA assumption.

Definition 8 (Decisional Diffie-Hellman). In a cyclic group \(\mathcal{G} \) of prime order \(p \), which are set up w.r.t a security parameter \(\lambda \in \mathbb{N} \), the Decisional Diffie-Hellman (DDH) assumption in \(\mathcal{G} \) holds if for all PPT adversary \(\mathcal{A} \) the advantage

\[
\left| \Pr[\bar{G} \leftarrow \mathcal{G}; a, b \leftarrow \mathbb{Z}_p : \mathcal{A}(G, aG, bG, abG) = 1] - \Pr[\bar{G} \leftarrow \mathcal{G}; a, b, c \leftarrow \mathbb{Z}_p : \mathcal{A}(G, aG, bG, cG) = 1] \right|
\]

is negligible in \(\lambda \).
Definition 9 (Strong RSA). Let $\lambda \in \mathbb{N}$. The strong RSA (sRSA) assumption holds if for all PPT adversary A, the advantage

$$
\text{Adv}_{\text{rsa}}^A(\lambda) := \Pr\left[(N, P, Q) \leftarrow \text{GenRSA}(1^\lambda); y \leftarrow \mathbb{Z}_N^* \right) \left(e, z \leftarrow A(N, y); z^e \equiv y \mod N \right)\right]
$$

is negligible in λ.

A.4 Explaining Random Group Elements as Random Strings

For our framework, we require commitments with uniform public parameters pp. For readability, we allow pp (and also uniform random strings urs of NIZKs) to contain (uniform) group elements g of prime-order groups G with known order p. This is without loss of generality because with explainable sampling, we can explain $g \leftarrow G$ as a random bitstring.

A.5 Commitment Scheme

Definition 10 (Commitment Scheme). A commitment scheme is a tuple of algorithms $C = (\text{Commit}, \text{Verify})$ such that

- $\text{C.Setup}(1^\lambda)$: generates the public parameters pp,
- $\text{C.Commit}(pp, m)$: given the public parameters pp, message $m \in C_{\text{msg}}$, computes a commitment $c \in C_{\text{com}}$ with opening randomness d, and outputs the pair (c, d),
- $\text{Verify}(pp, c, m, d)$: given the public parameters pp, message $m \in C_{\text{msg}}$, and opening randomness d, outputs a bit $b \in \{0, 1\}$ which depends on the validity of the opening (m, d) with respect to the commitment c.

Here, $C_{\text{msg}}, C_{\text{rand}}, C_{\text{com}}$, are message, randomness, and commitment spaces, respectively. If the public parameters are uniform or explainable as per Appendix A.4 (i.e., Setup outputs some $pp \leftarrow \{0, 1\}^\ell$ for $\ell \in \mathbb{N}$) we omit Setup without loss of generality.

Below, we define the correctness, hiding and binding properties of a commitment scheme.

Definition 11 (Correctness). A commitment scheme is correct, if for all $pp \leftarrow \text{Setup}(1^\lambda), m \in C_{\text{msg}}, r \in C_{\text{rand}}, (c, d) \leftarrow \text{Commit}(pp, m; r)$, it holds that $\text{Verify}(pp, c, m, d) = 1$.

Definition 12 (Hiding). A commitment scheme is hiding if for any PPT adversary A, we have

$$
\text{Adv}_{\text{hid}}^A(\lambda) = \Pr\left[pp \leftarrow \text{Setup}(1^\lambda), (m_0, m_1) \leftarrow A(pp), m_0, m_1 \in C_{\text{msg}}, \text{coin} \leftarrow \{0, 1\}, (c, d) \leftarrow \text{Commit}(pp, m_{\text{coin}}), \right. \right. \left. \left. \text{coin} = A(c) \right) - \frac{1}{2}\right] = \text{negl}(\lambda).
$$

Definition 13 (Binding). A commitment scheme is binding if for any PPT adversary A, we have

$$
\text{Adv}_{\text{bind}}^A(\lambda) = \Pr\left[pp \leftarrow \{0, 1\}^\ell, (c, m_0, m_1, d_0, d_1) \leftarrow A(pp), \right. \right. \left. \left. m_0 \neq m_1 \in C_{\text{msg}}; \text{Verify}(pp, c, m_0, d_0, b) = 1, b \in \{0, 1\}\right)\right] = \text{negl}(\lambda).
$$

Remark 4. A commitment scheme is said to be perfectly binding if for any (possibly unbounded) A, it holds that $\text{Adv}_{\text{bind}}^A(\lambda) = 0$.

(Bounded) Integer Commitments. We refer to a commitment scheme with message space $[A, B] \subseteq \mathbb{N}$ as a (bounded) integer commitment scheme. We often omit the term bounded if the message space is clear by context.
ElGamal commitments. We recall ElGamal (EG) over a group G of prime order p with message space \mathbb{Z}_p [39]. We use additive notation for prime order groups.

- EG.GenPP(1^λ): set $(G, H) \leftarrow G \setminus \{0\}$ and output $pp = (G, H)$.
- EG.Commit(pp, m): sample $r \leftarrow \mathbb{Z}_p$ and set $c = (mG + rH, rG)$, and output (c, r).
- EG.Verify(pp, c, m, r): check if $c = (mG + rH, rG)$.

Note that the public parameters are uniform and we can sample them via a random oracle to avoid trusted setup. EG commitments are correct, statistically hiding and binding under the factoring assumption.

Definition 15 (Correctness). A signature scheme is correct, if for all $(vk, sk) \leftarrow KeyGen(1^\lambda)$, $m \in S_{mag}$, and $\sigma \leftarrow Sign(sk, m)$, it holds that $Verify(vk, m, \sigma) = 1$.

Definition 16 (EUF-CMA). A signature scheme is EUF-CMA if for any PPT adversary A, we have

$$Adv^\text{euf}_{A} (\lambda) = \Pr \left[(vk, sk) \leftarrow KeyGen(1^\lambda), (m, \sigma) \leftarrow A^\text{Sign}(sk, \cdot)(vk) : m \notin L \land Verify(vk, m, \sigma) = 1 \right] = \text{negl}(\lambda),$$

where L is the list of messages A queried to the Sign-oracle.

A.6 Signature Scheme

Definition 14 (Signature Scheme). A signature scheme is a tuple of PPT algorithms $S = (\text{KeyGen}, \text{Sign}, \text{Verify})$ such that

- KeyGen(1^λ): generates a verification key vk and a signing key sk,
- Sign(sk, m): given a signing key sk and a message $m \in S_{mag}$, outputs a signature σ,
- Verify(vk, m, σ): given a verification key pk and a signature σ on message m, deterministically outputs a bit $b \in \{0, 1\}$.

Here, S_{mag} is the message space.

We define the standard notion of correctness and euf-cma security.

A.7 Σ-Protocol

Let R be an NP relation with statements x and witnesses w. We denote by $L_R = \{x \mid \exists w \text{ s.t. } (x, w) \in R\}$ the language induced by R. A Σ-protocol for an NP relation R for language L_R is a tuple of PPT algorithms $\Sigma = (\text{Init}, \text{Chall}, \text{Resp}, \text{Verify})$ such that

- Init(x, w): given a statement $x \in L_R$, and a witness w such that $(x, w) \in R$, outputs a first flow message (i.e., commitment) Ω and a state st, where we assume st includes x, w,
- \text{Chall}(): samples a challenge \(\gamma \leftarrow \mathcal{CH} \) (without taking any input),
- \text{Resp}(\text{st}, \gamma)\): given a state \(\text{st} \) and a challenge \(\gamma \in \mathcal{CH} \), outputs a third flow message (i.e., response) \(\tau \),
- \text{Verify}(x, \varOmega, \gamma, \tau)\): given a statement \(x \in \mathcal{L}_R \), a commitment \(\varOmega \), a challenge \(\gamma \in \mathcal{CH} \), and a response \(\tau \), outputs a bit \(b \in \{0, 1\} \).

Definition 17 (Correctness). A \(\Sigma \)-protocol is correct, if for all \((x, w) \in R\), \((\varOmega, \text{st}) \leftarrow \text{Init}(x, w), \gamma \in \mathcal{CH} \), and \(\tau \leftarrow \text{Resp}(\text{st}, \gamma) \), it holds that \(\text{Verify}(x, \varOmega, \gamma, \tau) = 1 \).

Definition 18 (High Min-Entropy). A \(\Sigma \)-protocol has high min-entropy if for all \((x, w) \in R\) and (possibly unbounded) adversary \(\mathcal{A} \), it holds that
\[
\Pr[(\varOmega, \text{st}) \leftarrow \text{Init}(x, w), \varOmega' \leftarrow \mathcal{A}(1^\lambda) : \varOmega = \varOmega'] = \operatorname{negl}(\lambda).
\]

Definition 19 (Non-abort HVZK). A \(\Sigma \)-protocol is non-abort honest-verifier zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator \(\text{Sim} \) such that the distributions of \(\text{Sim}(x, \gamma) \) and the honestly generated transcript with \(\text{Init} \) initialized with \((x, w)\) are statistically indistinguishable for any \(x \in \mathcal{L}_R \), and \(\gamma \in \mathcal{CH} \), where the honest execution is conditioned on \(\gamma \) being used as the challenge and no abort occurring.

We write HVZK for short if the \(\Sigma \)-protocol never aborts.

Definition 20 (\(k \)-Special Soundness). A \(\Sigma \)-protocol is \(k \)-special sound, if there exists a deterministic PT extractor \(\text{Ext} \) such that given \(k \) valid transcripts \(\{(\varOmega, \gamma_i, \tau_i)\}_{i \in [k]} \) for statement \(x \) with pairwise distinct challenges \(\gamma_i \), outputs a witness \(w \) such that \((x, w) \in R\).

A.8 Non-Interactive Zero Knowledge

Let \(\text{URS} = \{0, 1\}^\ell \) be a set of uniform random strings for some \(\ell \in \mathbb{N} \) and \(\text{SRS} \) be some set of structured random strings with efficient membership test\footnote{This membership test is required for our definition of subversion zero-knowledge. Note that in general it is difficult to check that some \(\text{SRS} \) was generated via \(\text{GenSRS}\). (We allow that \(\text{SRS} \) is not equal to the output space of \(\text{GenSRS}\).)} An \(\text{NIKZ} \) for a relation \(R \) with common reference string space \(\text{CRS} = \text{SRS} \times \text{URS} \) is a tuple of PPT algorithms \((\text{GenSRS}, \text{Prove}^H, \text{Verify}^H)\), where the latter two are oracle-calling, such that:

- \(\text{GenSRS}(1^\lambda) \): outputs a structured reference string \(\text{srs} \in \text{SRS} \),
- \(\text{Prove}^H(\text{crs}, x, w) \): receives a \(\text{crs} = (\text{srs}, \text{urs}) \in \text{CRS} \), a statement \(x \) and a witness \(w \), and outputs a proof \(\pi \),
- \(\text{Verify}^H(\text{crs}, x, \pi) \): receives a \(\text{crs} = (\text{srs}, \text{urs}) \in \text{CRS} \), a statement \(x \) and a proof \(\pi \), and outputs a bit \(b \in \{0, 1\} \).

We recall that \(\mathcal{L}_R = \{x \mid \exists w : (x, w) \in R\} \) denotes the language induced by \(R \). If there is no \(\text{crs} \) needed, i.e. \(\text{CRS} = \emptyset \); we then omit \(\text{crs} \) as an input to \(\text{Prove} \) and \(\text{Verify} \).

Definition 21 (Correctness). An \(\text{NIKZ} \) is correct if for any \(\text{crs} = (\text{srs}, \text{urs}) \) with \(\text{srs} \leftarrow \text{GenSRS}(1^\lambda) \) and \(\text{urs} \leftarrow \text{URS} \), \((x, w) \in R\), and \(\pi \leftarrow \text{Prove}^H(\text{crs}, x, w) \), it holds that \(\text{Verify}^H(\text{crs}, x, \pi) = 1 \).

Definition 22 (Zero-Knowledge). An \(\text{NIKZ} \) is zero-knowledge (ZK) if there exists a PPT simulator \(\text{Sim} = (\text{Sim}_{\text{crs}}, \text{Sim}_H, \text{Sim}_\pi) \) such that for any PPT adversary \(\mathcal{A} \), it holds that
\[
\text{Adv}_{\mathcal{A}}^\mathcal{P} = \Pr \left[\text{srs} \leftarrow \text{GenSRS}(1^\lambda), \text{crs} = (\text{srs}, \text{urs}) : \mathcal{A}^{H, \mathcal{P}}(\text{crs}) = 1 \right] - \Pr \left[\text{crs} \leftarrow \text{Sim}_{\text{crs}}(1^\lambda) : \mathcal{A}^{\text{Sim}_H, \mathcal{S}}(\text{crs}) = 1 \right] = \operatorname{negl}(\lambda),
\]

where \(\mathcal{P} \) and \(\mathcal{S} \) are oracles that on input \((x, w)\) return \(\perp \) if \((x, w) \notin R \), and else output \(\text{Prove}^H(\text{crs}, x, w) \) or \(\text{Sim}_{\text{crs}}(\text{crs}, x) \) respectively. Note that the probability is taken over the randomness of \(\mathcal{S} \) and \(\mathcal{A} \), and the random choices of \(H \) and \(\text{urs} \). Also, \(\text{Sim}_{\text{crs}}, \text{Sim}_H \) and \(\text{Sim}_\pi \) have a shared state.
We also define a notion of subversion zero-knowledge, inspired by the notion introduced in [12].

Definition 23 (Subversion Zero-Knowledge). An NIZK is subversion zero-knowledge \((\text{Sub-ZK})\) if there exists a PPT simulator \(\text{Sim} = (\text{Sim}_H, \text{Sim}_e)\) such that for any PPT adversary \(A\), it holds that

\[
\text{Adv}^{\text{sub-ak}}_A(\lambda) = \Pr_{\mathcal{H}, \mathcal{C}_1, \mathcal{C}_2} \left[\left(\mathcal{H}, \mathcal{C}_1 \right) \leftarrow \text{Sim}_H \left(1^\lambda \right), \left(\mathcal{C}_2 \right), \left(\mathcal{C}_3 \right) \leftarrow \text{Sim}_e \left(1^\lambda \right) : \mathcal{A}^\mathcal{H} = 1 \wedge \mathcal{C}_3 \in \mathcal{S}_R \right] = \negl(\lambda),
\]

where \(\mathcal{P}\) and \(\mathcal{S}\) are oracles that on input \((x, w)\) return \(\bot\) if \((x, w) \notin \mathcal{R}\), and else output \(\text{Prove}_H(\mathcal{C}_2, x, w)\) or \(\text{Sim}_e(\mathcal{C}_2, x)\), respectively. Note that the probability is taken over the randomness of \(\text{Sim} \) and \(A\), and the random choices of \(\mathcal{H}\) and \(\mathcal{C}_2\). Also, both \(\text{Sim}_H\) and \(\text{Sim}_e\) have a shared state.

We define different notions of soundness. We remark that the soundness relation \(\tilde{R}\) can be different from the (correctness) relation \(R\). If \(\tilde{R}\) is not explicitly defined, we implicitly set \(\tilde{R} = R\).

Definition 24 (Adaptive Knowledge Soundness). An NIZK is adaptively knowledge sound for relation \(\tilde{R}\) if there exists PPT simulator \(\text{Sim}_{\mathcal{C}R\mathcal{S}}\) and extractor \(\text{Ext}\) such that

\[
\text{CRS Indistinguishability.} \quad \text{For any PPT adversary } A, \text{ we have}
\]

\[
\text{Adv}^{\text{crs}}_A(\lambda) = \Pr_{\mathcal{H}, \mathcal{C}_1, \mathcal{C}_2} \left[\left(\mathcal{H}, \mathcal{C}_1 \right) \leftarrow \text{Sim}_{\mathcal{C}R\mathcal{S}} \left(1^\lambda \right), \left(\mathcal{C}_2 \right) \leftarrow \text{Sim}_{\mathcal{C}R\mathcal{S}} \left(1^\lambda \right) : \mathcal{A}^\mathcal{H} = 1 \right. \left. \right] = \negl(\lambda),
\]

Knowledge Soundness. There exists positive polynomials \(p_\mathcal{H}, p_\mathcal{P}\) and a constant \(c\) such that given oracle access to any PPT adversary \(A\) (with explicit random tape \(\rho\)) that makes \(Q_H = \text{poly}(\lambda)\) random oracle queries with

\[
\Pr[(\mathcal{C}_R, \mathcal{C}_D) \leftarrow \text{Sim}_{\mathcal{C}R\mathcal{S}} \left(1^\lambda \right), (x, \pi) \leftarrow \mathcal{A}^\mathcal{H}(\mathcal{C}_R, \mathcal{C}_D) : \text{Verify}_H(\mathcal{C}_R, x, \pi) = 1] \geq \mu(\lambda),
\]

we have

\[
\Pr[(\mathcal{C}_R, \mathcal{C}_D) \leftarrow \text{Sim}_{\mathcal{C}R\mathcal{S}} \left(1^\lambda \right), (x, \pi) \leftarrow \mathcal{A}^\mathcal{H}(\mathcal{C}_R, \mathcal{C}_D), (\mathcal{C}_D, \mathcal{D}_L) \leftarrow \text{Sim}_{\mathcal{D}_L} \left(1^\lambda \right) : (x, w) \in \tilde{R} \geq \frac{\mu(\lambda)^c \negl(\lambda)}{p_\mathcal{H}(\lambda, Q_H) \cdot \text{Time}(A)},
\]

where \(\tilde{R}\) are the outputs of \(H\), and the probability is over the random tape \(\rho\) of \(A\), the random tape of \(\text{Sim}_{\mathcal{C}R\mathcal{S}}\), and the random choices of \(H\). Also, we require that the runtime of \(\text{Ext}\) is bounded by \(p_\mathcal{D}(\lambda, Q_H) \cdot \text{Time}(A)\).

We also adapt the standard notion of online-extractability in two ways. Instead of embedding the online-extraction trapdoor \(\mathcal{D}_L\) into \(\mathcal{C}_R\), we allow that the extractor embeds it into specific parts of statement. Also, we relax the requirements in the sense that only a partial witness \(w_1\) is extracted. For extraction, we require that there exists a witness \(w_0\) such that \((x, (w_0, w_1)) \in \mathcal{R}\).

Definition 25 (Partial Online Extractability). An NIZK is partially online-extractable for relation \(\tilde{R}\) with statements \(x = (x_0, x_1)\) and witnesses \(w = (w_0, w_1)\), where \(w_0 \in \mathcal{W}_0\) and \(x_0 \in \mathcal{X}_0\) for some sets \(\mathcal{W}_0, \mathcal{X}_0\), if for all PPT adversaries \(A\), there exists a stateful PPT extractor \(\text{Ext} = (\text{Ext}_1, \text{Ext}_2)\), such that

1. \(x_0\) is distributed uniform over \(\mathcal{X}_0\) for \((x_0, \mathcal{D}_L) \leftarrow \text{Ext}_1 \left(1^\lambda \right)\) and
2. there exist positive polynomials \(p_\mathcal{H}, p_\mathcal{P}\) such that for any \(Q_H = \text{poly}(\lambda)\) and PPT adversary \(A\) that makes at most \(Q_H\) random oracle queries with

\[
\Pr \left[(x_0, \mathcal{D}_L) \leftarrow \text{Ext}_1 \left(1^\lambda \right), \mathcal{C}_R \leftarrow \text{GenSRS} \left(1^\lambda \right), \forall i \in [Q_S] : \text{Verify}_H(\mathcal{C}_R, x_i, \pi_i) = 1 \right. \left. \right] \geq \mu(\lambda),
\]
it holds that
\[
\Pr\left[\begin{array}{l}
(x_0, td) \leftarrow \text{Ext}_1(1^\lambda), crs \leftarrow \text{GenSRS}(1^\lambda), \\
\{(x_{i,1}, \pi_i)\}_{i \in [Q_S]} \leftarrow \mathcal{A}^H(crs, x_0), x_i \leftarrow (x_0, x_{i,1}), \\
w_{i,1} \leftarrow \text{Ext}_2(crs, td, x_i, \pi_i) \mid i \in [Q_S] : \\
\forall i \in [Q_S] \exists w_{0,i} \in W_0 : (x_i, (w_{0,i}, w_{i,1})) \in \tilde{R} \\
\wedge \text{Verify}^H(\text{crs}, x_i, \pi_i) = 1
\end{array}\right] \geq \mu(\lambda) - \text{negl}(\lambda) \frac{p_{\text{pr}}(\lambda, Q_H)}{p_{\text{pr}}(\lambda, Q_H)},
\]
where the runtime of Ext is upper bounded by \(p_{\text{pr}}(\lambda, Q_H) \cdot \text{Time}(\mathcal{A})\).

Adaptive Subversion Soundness. We also define adaptive subversion soundness, where we allow that srs can be maliciously set up by an adversary. Note that this notion does not require an extractor for the witness.

Definition 26 (Statistical Adaptive Subversion Soundness). An NIZK is (statistically) adaptively sound for relation \(R\) inducing a language \(L_R\) if for any possibly unbounded \(\mathcal{A}\) we have
\[
\text{Adv}^\text{adv}_{\mathcal{A}}(\lambda) := \Pr\left[\begin{array}{l}
\text{urs} \leftarrow \text{URS}, \\
(\text{crs}, x, \pi) \leftarrow \mathcal{A}^H(1^\lambda; \text{urs}), \\
x \notin L_R, \\
\text{Verify}^H(\text{crs}, x, \pi) = 1
\end{array}\right] \leq \text{negl}(\lambda),
\]
where the probability is over the random coins of \(\mathcal{A}\) and GenCRS, the random choices of urs, and the random choices of \(H\).

Fiat-Shamir transformation. We recall the Fiat-Shamir transformation \([10]\) to turn a \(\Sigma\)-protocol into a NIZK. Sometimes, we require more involved variants of this transformations. In that case, we provide the compiled NIZK explicitly.

Theorem 5. Let \(\Sigma = (\text{Init}, \text{Chall}, \text{Resp}, \text{Verify})\) be a \(\Sigma\)-protocol that satisfies correctness, high-min entropy, honest verifier zero-knowledge, and 2-Special Soundness. The Fiat-Shamir transformation \(FS[\Sigma] = (\text{GenSRS}, \text{Prove}^H, \text{Verify}^H)\) is described below:

- \(\text{GenSRS}(1^\lambda)\): outputs the empty string \(e\) as we do not require a common reference string and omits crs as an input for other below algorithms,
- \(\text{Prove}^H(x, w)\): receives a statement \(x\) and a witness \(w\), runs \((\Omega, \text{st}) \leftarrow \text{Init}(x, w)\), computes the challenge \(\gamma \leftarrow H(x, \Omega)\), then computes \(\tau \leftarrow \text{Resp}(\text{st}, \gamma)\) and outputs \(\tau = (\Omega, \gamma, \tau)\).
- \(\text{Verify}^H(x, \pi)\): receives a statement \(x\) and a proof \(\pi = (\Omega, \gamma, \tau)\), and outputs \(b \leftarrow \text{Verify}(x, \Omega, \gamma, \tau) \wedge \gamma = H(x, \Omega)\).

In the ROM, \(FS[\Sigma]\) is a NIZK that is correct and satisfies adaptive knowledge soundness.

B Deferred Content from Section 4

B.1 Alternative Algorithms

For the proof of security, we describe some “alternative” algorithms for signing and key generation. First, we describe the alternate key generation algorithms:

\(S_{\text{skGen}_{0,0}}(1^\lambda, N, z)\) sample \(Q_S\) primes \(e_1, \ldots, e_{Q_S} \leftarrow \mathcal{S}_e\). Sample \(\beta \leftarrow \mathcal{S}_a\). Sample \(v, w \leftarrow Z_N\).

Sample \(j \leftarrow \{1, \ldots, Q_S\}\). Set \(h_1 := z^2 \Pi_{z^j} e_i, h_2 := v^2 \Pi_i e_i, h := h_1^{-\beta} \cdot w^2 \Pi_i e_i\). Output \(vk = (N, h, h_1, h_2)\) along with \(sk_{0,0} = (\beta, v, w, e_1, \ldots, e_{Q_S}, j)\).

\(S_{\text{skGen}_{0,1}}(1^\lambda, N, z)\) sample \(Q_S\) primes \(e_1, \ldots, e_{Q_S} \leftarrow \mathcal{S}_e\). Sample \(\beta \leftarrow \mathcal{S}_a\). Sample \(v, w \leftarrow Z_N\).

Sample \(j \leftarrow \{1, \ldots, Q_S\}\). Set \(h_1 := v^2 \Pi_i e_i, h_2 := z^2 \Pi_{z^j} e_i, h := h_2^{-\beta} \cdot w^2 \Pi_i e_i\). Output \(vk = (N, h, h_1, h_2)\) along with \(sk_{0,1} = (\beta, v, w, e_1, \ldots, e_{Q_S}, j)\).

\(S_{\text{skGen}_{1}}(1^\lambda, N, z)\) sample \(Q_S\) primes \(e_1, \ldots, e_{Q_S} \leftarrow \mathcal{S}_e\). Sample \(a, a' \leftarrow \{1, \ldots, N^2\}\) and set \(h_1 := z^2 \Pi_i e_i, h_2 := h_1^\gamma, h := h_1^\delta\). Output \(vk = (N, h_1, h_2, h)\) along with \(sk_1 = (a, a', e_1, \ldots, e_{Q_S})\).
Corresponding to these alternate key generation algorithms, we describe how to use the internal state for generating signatures on hashes of messages \(\overline{m} \) where \(k \) is a counter for the number of signing queries.

S_{\text{ks}}.\text{Sign}_{0,0}(\beta, v, w, e_1, \ldots, e_{Q_5}, j, k, \overline{m}) If \(k \neq j \), sample \(a_k \leftarrow S_a \). Compute

\[
y_k := w^{2 \prod_{i \neq j} e_i} \cdot \left(\frac{2 \prod_{i \neq j} e_i}{z} \right)^{a_k - \beta} \left(v^{2 \prod_{i \neq j} e_i} \right)^{a_k + \overline{m}}
\]

\[
= \left(h \cdot h_1^{a_k} \cdot h_2^{a_k + \overline{m}} \right)^{\frac{1}{z}}
\]

For \(k = j \), it sets \(a_k = \beta \) and computes

\[
y_k := w^{2 \prod_{i \neq j} e_i} \cdot \left(v^{2 \prod_{i \neq j} e_i} \right)^{a_k + \overline{m}}
\]

\[
= \left(h \cdot h_1^{a_k} \cdot h_2^{a_k + \overline{m}} \right)^{\frac{1}{z}}
\]

Output \(\sigma_k = (e_k, a_k, y_k) \).

S_{\text{ks}}.\text{Sign}_{0,1}(\beta, v, w, e_1, \ldots, e_{Q_5}, j, k, \overline{m}) For any \(k \neq j \), sample \(a_k \leftarrow S_a \) and compute

\[
y_k := w^{2 \prod_{i \neq j} e_i} \cdot \left(\frac{2 \prod_{i \neq j} e_i}{z} \right)^{a_k + \overline{m} - \beta} \left(v^{2 \prod_{i \neq j} e_i} \right)^{a_k}
\]

\[
= \left(h \cdot h_1^{a_k} \cdot h_2^{a_k + \overline{m}} \right)^{\frac{1}{z}}
\]

For \(k = j \), it sets \(a_k = \beta - \overline{m} \) and computes

\[
y_k := w^{2 \prod_{i \neq j} e_i} \cdot \left(v^{2 \prod_{i \neq j} e_i} \right)^{a_k + \overline{m}}
\]

\[
= \left(h \cdot h_1^{a_k} \cdot h_2^{a_k + \overline{m}} \right)^{\frac{1}{z}}
\]

S_{\text{ks}}.\text{Sign}_{1}(a, a', e_1, \ldots, e_{Q_5}, k, \overline{m}) Sample \(a_k \leftarrow S_a \) and compute

\[
y_k := z^{2 (a + a' + (a + \overline{m}))} \prod_{i \neq j} e_i
\]

\[
= \left(h \cdot h_1^{a_k} \cdot h_2^{a_k + \overline{m}} \right)^{\frac{1}{z}}
\]

B.2 Proof of security

Theorem 6. If the sRSA assumption holds and the hash function \(H \) is a random oracle mapping from \(\{0,1\}^* \) to \(\{0,1\}^{2^\lambda} \) then the scheme described above is EUF-CMA secure.

Proof. Let \(A \) be an adversary against the EUF-CMA security of the scheme that runs in time \(t' \) and has advantage \(\varepsilon' \) and makes \(Q_5 \) queries to the signing oracle.

We denote by \(m_i \) the \(i \)th message queried to the signing oracle by \(A \), by \(\sigma_i = (e_i, a_i, y_i) \) the \(i \)th signature output by the signing oracle to \(A \), and by \(m^*, \sigma^* = (e^*, a^*, y^*) \) we denote \(A \)'s forgery. We show security through a series of games.

Game 1: Game 1 is the original EUF-CMA game.

Game 2: In Game 2 the game aborts if for any \(i, j \) \(m_i \neq m_j \) it holds that \(H(m_i) = H(m_j) \) or if \(H(m_i) = H(m^*) \). We can bound the abort probability by bounding the number of collisions in \(H \), namely,

\[
|\Pr[\text{Game 2} = 1] - \Pr[\text{Game 1} = 1]| \leq \frac{Q_5^2}{2} \cdot 2^{2\lambda}
\]
Game 3: In Game 3, we introduce an abort condition in which our reduction will not be able to simulate. At the end of the game, the game Game 3 samples a bit \(b \) and aborts if \(b = 0 \) and \(e^* \notin \{e_1, \ldots, e_{Q_S}\} \) or if \(b = 1 \) and \(e^* \in \{e_1, \ldots, e_{Q_S}\} \). It is easy to see that

\[
\Pr[\text{Game 3} = 1] \geq \frac{1}{2} \Pr[\text{Game 2} = 1].
\]

Game 4: In Game 4, if \(b = 0 \), the Game samples an index \(j \in \{1, \ldots, Q_S\} \). It aborts if \(e^* \neq e_j \). It holds that

\[
\Pr[\text{Game 4} = 1] \geq \frac{1}{Q_S} \Pr[\text{Game 3} = 1].
\]

Game 5: In Game 5, if \(b = 0 \), the Game samples a bit \(b' \). If \(b' = 0 \) and \(a_j = a^* \) (where \(j \) is as defined in Game 4), the game aborts. If \(b' = 1 \) and \(a_j + H(m_j) = a^* + H(m^*) \), the game aborts. We argue why the abort probability is \(\frac{1}{2} \). As the adversary is not allowed to re-sign a previously signed message, it holds that \(m_j \neq m^* \). This, along with the abort condition induced in Game 2, implies that \(H(m^*) \neq H(m_j) \). Thus, if the adversary chooses \(a^* = a_j \), it must be the case that \(a_j + H(m_j) \neq a^* + H(m^*) \). Otherwise it holds that \(a^* \neq a_j \). The bit \(b \) is chosen independently of this choice of the adversary regarding his forgery and therefore,

\[
\Pr[\text{Game 5} = 1] \geq \frac{1}{2} \Pr[\text{Game 4} = 1].
\]

Game 6: In Game 6, we sample \(b, b', j \) at the beginning of the game. This is a purely conceptual change, thus

\[
\Pr[\text{Game 6} = 1] = \Pr[\text{Game 5} = 1].
\]

Game 7: In Game 7 we change how the values \(a_j \) are sampled during signature generation. If \(b = 0 \), \(b' = 0 \), instead of sampling \(a_j \leftarrow S_a \), it first samples \(\beta \leftarrow S_a \) and then sets \(a_j = \beta \). If \(b = 1 \) and \(b' = 1 \), it samples \(\beta \leftarrow S_a \) and sets \(a_j = \beta - H(m_j) \). A simple argument shows that the distribution of \(a_j \) in Game 7 has statistical distance at most \(1/2^k \) from the distribution of \(a \) in Game 6.

Thus, we get that \(|\Pr[\text{Game 7} = 1] - \Pr[\text{Game 6} = 1]| \leq \frac{1}{2^k} \).

The Reduction: We now provide a reduction that simulates Game 7 and breaks the strong RSA assumption.

On input \((N, z \in \mathbb{Z}_N^*) \), the reduction behaves as follows:

First, it samples a bit \(b, b' \) and an index \(j \). If \(b = 0 \) (recall that in this case Game 7 aborts if \(e^* \notin \{e_1, \ldots, e_{Q_S}\} \)), the reduction works as follows:

Setup. Runs \(S_{\text{FK}}.\text{KeyGen}_{0,b}(1^\lambda, N, z) \) to obtain \(vk, sk_{0,b} \). It passes the public key \((N, h, h_1, h_2) \) to the adversary.

Signing Queries. For the \(k \)th signing query it runs \(S_{\text{FK}}.\text{Sign}_{0,b'}(sk_{0,b'}, k, H(m)) \) to obtain \(\sigma_k = (e_k, a_k, y_k) \) and outputs \(\sigma_k \).

Output Determination. When the adversary outputs a forgery \(m^*, \sigma^* = (e^*, a^*, y^*) \), the reduction can compute an \(e_j \)th root of \(z \). As Game 7 aborts unless \(e^* = e_j \), the reduction obtains

\[
h_1^{-a_j}h_2^{-(a_j+H(m_j))} \cdot y_j^{e_j} = h = h_1^{-a^*}h_2^{-(a^*+H(m^*))} y^{e_j}
\]

If \(b' = 0 \), solving for \(z \) using the preselected values from the public key yields

\[
z^2 \prod_{i \neq j} e_i \cdot (a^* - a_{i}) = (v^2 \prod_{i \neq j} e_i \cdot (a_j + H(m_j) - a^* - H(m^*)) \cdot (y_j^{e_j} y_j^{e_j - 1} e_j)
\]

Which we can solve for a \(e_j \)th root of \(z \) if \(\gcd(e_j, 2 \prod_{i \neq j} e_i \cdot (a^* - a_{i})) = 1 \) using lemma 5. It holds that the gcd is 1 as \(a_j < e \) and \(a^* < e \) by virtue of the range checks, and thus also their
difference is smaller than e_j. As e_j is prime this immediately implies coprimality. Furthermore, all the other e_i are coprime to e_j, and e_j is odd, so it is also coprime with 2.

Analogously, if $b' = 1$, we swap the roles of h_1 and h_2 and get

$$z^2 \Pi_{\ell, x_j, e_i (m^r + a^r - \ell (m^r + a^r))} = \left(v^2 \Pi_{\ell, x_j, e_i (a_j - a_i)} \right)^j (y^* y_j^{-1})^e_j.$$

Again, using the same reasoning as above, we can solve for an e_jth root of z using lemma 5.

For the case that $b = 1$, the reduction simulates as follows:

Setup. Given N and $z \in \mathbb{Z}_N$, the reduction runs $\text{Sirs.KeyGen}(1^\lambda, N, z)$ to obtain $\text{vk} = (N, h_1, h_2)$ and sk_1. It outputs the public key vk to the adversary.

Signing Queries. The reduction responds to the kth signing query by running $\text{Sirs.Sign}(\text{sk}_1, k, \text{H(m)})$ to obtain σ_k. It outputs the signature σ_k.

Output Determination. When the adversary outputs its forgery $m^*, \sigma^* = e^*, a^*, y^*$, the reduction can learn the following

$$y^* e^* = h h_1 a_1 a_1^{H(m^*)} = z^{2 (a + a^r + a^r + H(m^*))} \Pi_{\ell, x_j, e_i}.$$

Computing a root of z follows as in 41 where the probability of success is $(1 - 1/r)$ where r is the smallest prime factor dividing e^*. As e^* is odd, r is at least 3.

Putting this together yields

$$\text{Adv}^{\text{RSA}}_H \geq \frac{2}{3} \Pr[\text{Game 7} = 1]$$

$$\geq \frac{2}{3} \left(\Pr[\text{Game 6} = 1] - \frac{1}{2^\lambda} \right)$$

$$\geq \frac{2}{3} \left(\frac{1}{4Q_S} \Pr[\text{Game 2} = 1] - \frac{1}{2^\lambda} \right)$$

$$\geq \frac{2}{3} \left(\frac{1}{4Q_S} \left(\Pr[\text{Game 1} = 1] - \frac{Q^2_H}{2 \cdot 2^2\lambda} \right) - \frac{1}{2^\lambda} \right)$$

$$= \frac{1}{6Q_S} \text{Adv}^{\text{eff-cma}}_A - \frac{1}{6Q_S} \frac{Q^2_H}{2 \cdot 2^2\lambda} - \frac{1}{3 \cdot 2^\lambda - 1}.$$

C Deferred Content from Section 5

C.1 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs Π_{int} and Π_{grp} to open C_{int} and C_{grp}, respectively, in zero-knowledge.

Proof for Public Parameters. Before we detail both NIZKs, we construct an additional NIZK Π_{gen} to prove that MPed is statistically hiding under public parameters $\text{pp} = (N, h, \tilde{g})$ for MPed and $\tilde{g} = (g_1, \ldots, g_l)$. This is the case if $(h) = (g_i) \subseteq \mathbb{Z}_N$ for all $i \in \ell$. More generally, we construct an NIZK Π_{gen} with oracle H_{gen} for the relation

$$R_{\text{gen}} = \{(x, w) | \forall i \in \ell : g_i^{\omega_i} \equiv h \text{ mod } N, h^{\beta_i} \equiv g_i \text{ mod } N\},$$

where $x = (N, \ell, h, (g_i)_{i \in \ell})$ and $w = ((\alpha_i, \beta_i)_{i \in \ell})$ for some $\ell \in \mathbb{N}$. Note that we also use Π_{gen} in Section 3. It is based on the Σ-protocol Σ_{gen} given in Fig. 2 with challenge space $[0, C]$ for $C = 2^\lambda - 1$, compiled into a NIZK via Fiat-Shamir. The random oracle is denoted by H_{gen}. Note that no CRS is required (i.e., $\text{SRS = URS = } \{\bot\}$).

- $\Pi_{\text{gen}}.\text{GenSRS}(1^\lambda)$: Outputs \bot.
- $\Pi_{\text{gen}}.\text{Prove}_{\text{gen}}(\text{crs}, x, w)$: On input crs, statement x, and witness w, outputs the proof π computed as follows

$$(\Omega_{\Sigma}, st) \leftarrow \Sigma_{\text{gen}}.\text{Init}(x, w),$$

$$\gamma_{\Sigma} \leftarrow H_{\text{gen}}(x, \Omega_{\Sigma}),$$

$$\tau_{\Sigma} \leftarrow \Sigma_{\text{gen}}.\text{Resp}(x, st, \gamma_{\Sigma}),$$

$$\pi \leftarrow (\Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma}).$$
\(- \Pi_{\text{gen}}.\text{Verify}^{\text{un}}(\text{crs}, x, \pi)\): On input \text{crs}, statement \(x\), and proof \(\pi\), checks

\begin{align*}
H_{\text{gen}}(x, \Omega_\Sigma) &= \gamma_\Sigma, \\
\Sigma_{\text{ped}}.\text{Verify}(x, \Omega_\Sigma, \gamma_\Sigma, \tau_\Sigma) &= 1,
\end{align*}

where \(\pi = (\Omega_\Sigma, \gamma_\Sigma, \tau_\Sigma)\), and outputs 1 iff all checks succeed.

\begin{align*}
\text{Prover}(x; w) &\quad \quad \text{Verifier}(x) \\
1: \quad \vec{\mu}_\alpha, \vec{\mu}_\beta &\leftarrow \left(\{0, N \cdot 2^{2\lambda}\}\right)^\lambda \\
2: \quad \vec{\Theta}_g &\leftarrow \vec{g}^{\vec{\mu}_\alpha}, \vec{\Theta}_h &\leftarrow h^{\vec{\mu}_\beta} \\
3: \quad \vec{\eta} &\leftarrow \{0, 1\}^\lambda \\
4: \quad \vec{\tau}_\alpha &\leftarrow \vec{\eta} \circ \vec{\alpha} + \vec{\mu}_\alpha, \vec{\tau}_\beta &\leftarrow \vec{\eta} \circ \vec{\beta} + \vec{\mu}_\beta \\
5: \quad \text{check } \vec{\Theta}_g \circ h^{\vec{\tau}_\alpha} \equiv \vec{g}^{\vec{\tau}_\alpha} \text{ mod } N \\
6: \quad \text{check } \vec{\Theta}_h \circ g^{\vec{\tau}_\beta} \equiv h^{\vec{\tau}_\beta} \text{ mod } N
\end{align*}

Fig. 2: Description of \(\Sigma_{\text{gen}}\) for \(x = (N, \ell, h, \vec{g})\) and \(w = (\alpha_i, \beta_i)_{i \in [\ell]}\) with \(\vec{g} = (g_1, \cdots, g_\ell)\). We denote the Hadamard product by \(\circ\).

We first show that the \(\Sigma\)-protocol \(\Sigma_{\text{gen}}\) given in Fig. 2 satisfies desired properties for the Fiat-Shamir transform.

Theorem 7. The \(\Sigma\)-protocol \(\Sigma_{\text{gen}}\) given in Fig. 3 satisfies correctness, 2-special soundness, honest-verifier zero-knowledge, and has high min-entropy.

Proof. For the commitment vectors \(\vec{\Theta}_g, \vec{\Theta}_h\) and the response vectors \(\vec{\tau}_\alpha, \vec{\tau}_\beta\), their \(i\)-th element is denoted by \(\vec{\Theta}_{g,i}, \vec{\Theta}_{h,i}, \vec{\tau}_{\alpha,i}, \vec{\tau}_{\beta,i}\). First of all, we recall that \(\Sigma\)-protocol \(\Sigma_{\text{gen}}\) is used for \(N\) comes from the \(\text{pp} = (N, h, \vec{g})\) for the Pedersen commitment \(\text{MPed}\) in \(\text{QR}_N\). (Since membership in \(\text{QR}_N\) cannot be efficiently tested without factorization of \(N\), the \(\text{MPed}\) commitment is formally defined over \(\mathbb{Z}_N\). Later, \(N\) and \(\text{pp}\) are given in the crs, and \(\text{pp}\) are generators of \(\text{QR}_N\) else we find witness of some relaxed DLOG relation as per Definition 7.) Thus as long as \(h, g_i \neq 1\) for \(i \in [\ell]\), the groups \((h, \{g_i\})\) are of exponentially large orders in \(\lambda\). Therefore, using the fact that the space \((\{0, N \cdot 2^{2\lambda}\}\)^\lambda is exponentially large in \(\lambda\), \(\Sigma_{\text{gen}}\) has high min-entropy. Next, correctness is straightforward, noting that by construction, for \(x = (N, \ell, h, \vec{g})\) and \(w = (\alpha_i, \beta_i)_{i \in [\ell]}\), for all \(i \in [\ell]\)

\[
\vec{\Theta}_{g,i} \circ h^{\vec{\tau}_\alpha} = g_i^{\vec{\tau}_{\alpha,i}} g_i^{\vec{\tau}_{\alpha,i}} = g_i^{\vec{\tau}_{\alpha,i}}, \quad \vec{\Theta}_{h,i} \circ g_i^{\vec{\tau}_\beta} = h^{\vec{\tau}_{\beta,i}} h^{\vec{\tau}_{\beta,i}} = h^{\vec{\tau}_{\beta,i}}.
\]

For 2-special soundness, given two valid transcripts \((\vec{\Theta}_g, \vec{\Theta}_h), \vec{\tau}_0, \vec{\tau}_0, \vec{\tau}_1\) where \(b \in \{0, 1\}\) and \(\vec{\tau}_0 \neq \vec{\tau}_1\), a deterministic polynomial-time extractor \(\text{Ext}\) can executes as follows: First, identify an index \(j\) s.t. \(\gamma_j^0 \neq \gamma_j^1\)

1. For each \(i \in [\ell]\), \(\text{Ext}\) sets \(\alpha_i := \frac{\vec{x}_0 - \vec{x}_1}{\gamma_j^0 - \gamma_j^1}\).
2. For each \(i \in [\ell]\), \(\text{Ext}\) sets \(\beta_i := \frac{\vec{x}_1 - \vec{x}_0}{\gamma_j^1 - \gamma_j^0}\).
3. Outputs \(w = (\alpha_i, \beta_i)_{i \in [\ell]}\) as a witness for \(x = (N, \ell, h, \vec{g})\).
The output w by Ext is well defined and indeed a witness of x because $\gamma^0 \neq \gamma^1$, $\gamma_0^j - \gamma_1^j \in \{-1, 1\}$ (and thus has an efficiently computable multiplicative inverse) and

$$\begin{align*}
\tilde{\mathcal{O}}_{g,i} \cdot h^{\gamma_0^i} &= g_{\alpha,i}^{\gamma_0^i}, \\
\tilde{\mathcal{O}}_{g,i} \cdot h^{\gamma_1^i} &= g_{\alpha,i}^{\gamma_1^i}, \\
\tilde{\mathcal{O}}_{h,i} \cdot g_i^{\gamma_0^i} &= h^{\tau_0^i} = g_{\beta,i}^{\gamma_0^i - \gamma_1^i}, \\
\tilde{\mathcal{O}}_{h,i} \cdot g_i^{\gamma_1^i} &= h^{\tau_1^i} = g_{\beta,i}^{\gamma_0^i - \gamma_1^i}.
\end{align*}$$

A PPT simulator Sim for honest-verifier zero-knowledge works as follows:

1. For each $i \in [\ell]$:
 - Sim samples the challenge $\tilde{\gamma} \leftarrow \{0, 1\}^\lambda$ as well as the i-th responses $\tilde{\tau}_{a,i}, \tilde{\tau}_{b,i} \leftarrow ([0, N \cdot 2^\lambda])^\lambda$. Sim computes $\tilde{\mathcal{O}}_{g,i} := g_{\tilde{\gamma},i}^{\tilde{\tau}_{a,i}}, \tilde{\mathcal{O}}_{h,i} := h^\tilde{\tau}_{b,i} \circ (g_i^{\tilde{\gamma}})^{-1}$. The commitments are defined as well as the
 - Output $(\tilde{\mathcal{O}}_{g}, \tilde{\mathcal{O}}_{h}, \tilde{\gamma}, \tilde{\tau}_{a}, \tilde{\tau}_{b})$.

For any $x \in \mathcal{L}_R$, i.e. $\langle h \rangle = \langle g_i \rangle \subseteq \mathbb{Z}_N^\ast$ for all $i \in [\ell]$, the simulator Sim(x, C) outputs a valid transcript that follows a distribution statistically close to that of the honestly generated transcript with Init initialized with (x, w). First we argue the distribution of the commitments $\tilde{\mathcal{O}}_{g}, \tilde{\mathcal{O}}_{h}$. We use the fact that because $\langle h \rangle = \langle g_i \rangle$, it holds that $\tilde{\mathcal{O}}_{g,i} := g_{\tilde{\gamma},i}^{\tilde{\tau}_{a,i}} \in \langle g_i \rangle$ and $\tilde{\mathcal{O}}_{h,i} := h^{\tilde{\tau}_{b,i}} \circ (g_i^{\tilde{\gamma}})^{-1}$. By noise flooding the induced $\tilde{\mu}_a \leftarrow -\tilde{\gamma} \circ \tilde{\alpha} + \tilde{\tau}_{a}$, $\tilde{\mu}_b \leftarrow -\tilde{\gamma} \circ \tilde{\beta} + \tilde{\tau}_{b}$ are distributed close to uniform within distance $1/2^\lambda$. Next we argue that the distribution of the real responses \tilde{r}_a, \tilde{r}_b in the real protocol are statistically close to uniform over $([0, N \cdot 2^\lambda])^\lambda$. More specifically, in the real protocol

$$\tilde{r}_a \leftarrow \tilde{\gamma} \circ \tilde{\alpha} + \tilde{\mu}_a, \tilde{r}_b \leftarrow \tilde{\gamma} \circ \tilde{\beta} + \tilde{\mu}_b$$

where $\tilde{\mu}_a, \tilde{\mu}_b \leftarrow ([0, N \cdot 2^\lambda])^\lambda$ act as masks for $\tilde{\gamma} \circ \tilde{\alpha}, \tilde{\gamma} \circ \tilde{\beta} \in ([0, N^i])^\lambda$. Thus, for any value $\Omega_{g,i,j} \in \mathbb{Z}_N^\ast$ it cannot hold that both $\Omega_{g,i,j} \cdot h \in \langle g_i \rangle$ as well as $\Omega_{h,i,j} \in \langle g_i \rangle$. We consider a hash query made by the statistical soundness adversary. The adversary submits vectors $\mathcal{O}_{g,i}, \mathcal{O}_{h}$ to the random oracle. By what we saw above, for each entry $\mathcal{O}_{g,i,j}$, it holds that either $\Omega_{g,i,j} \cdot h \in \langle g_i \rangle$ or $\Omega_{h,i,j} \in \langle g_i \rangle$ (if neither is the case the adversary cannot output a proof using this hash query). As the hash oracle is a random oracle, with probability $\leq 1/2$, the j-th entry of the hash response is b_j such that $\Omega_{g,i,j} \cdot h^j \in \langle g_i \rangle$. As the b_j are sampled uniformly at random by the random oracle, it follows that the probability that for all $j \in [\lambda]$, $\Omega_{g,i,j} \cdot h^j \in \langle g_i \rangle$ is $\leq 1/2^\lambda$. Union bounding over all $Q_{h,i,j}$ hash queries made by the adversary yields that $\text{Adv}^\text{ind}_A (\lambda) \leq Q_{\text{gen}}/2^\lambda$.

Zero-knowledge. The Zero-Knowledge property directly follows from the honest verifier zero-knowledge property of the Σ-protocol and the Fiat-Shamir transform.
Efficient Proof of Opening for C_{Rint}. We construct a NIZK Π_{int} that allows to open C_{Rint}^B in zero-knowledge for arbitrary $B \in \mathbb{N}$ and slack $T = 2^{\lambda+1}L$, where $L \in \mathbb{N}$ is the masking overhead for rejection sampling. Note that the size of T and B impact the size of the underlying group G.

To construct Π_{int}, we compile a Schnorr-style Σ-protocol with challenge space $[0, C]$ for $C := 2^\lambda - 1$ using Fiat-Shamir with abort. To ensure (relaxed) range membership we use techniques from \[33, 32\]. Roughly, we add an MPed commitment \overline{z} to \overline{m} that in conjunction with a size check ensures that the extracted integers are in the relaxed range $[-\overline{BT}, \overline{BT}]$. The public parameters $\mathbf{pp}_{\text{MPed}} = (N, h, g_1, \cdots, g_\ell)$ for MPed constitute the srs. To obtain subversion zero-knowledge, we add a proof π_{gen} generated via Π_{gen} that $(h) = (g_i)$ for all $i \in \ell$ to ensure that MPed is hiding even for a malicious $\mathbf{pp}_{\text{MPed}}$. We denote by H_{gen} the hash function for Π_{gen}.

Formally, the zero-knowledge relation is

$$R = \{ (x, w) \mid (c, d) = C_{\text{Rint}}.\text{Commit}(\overline{m}; r), \overline{m} \in [0, \overline{B}] \}$$

for $x = (\mathbf{pp}, c)$ with $c = (\overline{C}; F)$ and $w = (\overline{m}; r)$, where $d = r \in \mathbb{Z}_p$. The soundness relation is

$$\tilde{R} = \{ (x, w) \mid C_{\text{Rint}}.\text{Verify}(\mathbf{pp}, c, \overline{m}; r) \}.$$

The underlying Σ-protocol Σ_{int} is given in Fig. 3. Note that the crs is included in the statement of Σ_{int} for technical reasons. The NIZK Π_{int} with hash function $H_{\text{int}} : \{0, 1\}^* \to [0, C]$, srs length $\ell_{\text{int}} = 0$ and $\mathbf{SRS} = \{ (\mathbf{pp}_{\text{MPed}}, \pi_{\text{gen}}) \mid \mathbf{pp}_{\text{MPed}} = (N, h, \overline{g}) \in \mathbb{N} \times (\mathbb{Z}_N^*)^{\ell+1}, \pi_{\text{gen}} \in \Pi_{\text{gen}}.\text{Verify}^\lambda(x_{\text{gen}}, \pi_{\text{gen}}), x_{\text{gen}} = (N, \ell, h, \overline{g}) \}$ is defined as follows. Note that membership checks for \mathbf{SRS} are efficient by design.

- $\Pi_{\text{int}}.\text{GenCRS}(1^\lambda)$: On input 1^λ, samples $\mathbf{pp}_{\text{MPed}} = (N, h, \overline{g}) \leftarrow \text{MPed.Setup}(1^\lambda)$. Then, sets $\pi_{\text{gen}} \leftarrow \Pi_{\text{gen}}.\text{Prove}^\lambda(x_{\text{gen}}, \pi_{\text{gen}})$ for $x_{\text{gen}} = (N, \ell, h, \overline{g})$ and appropriate w_{gen} (which can be computed explicitly during MPed.Setup). Outputs the structured reference string $\mathbf{SRS} = (\mathbf{pp}_{\text{MPed}}, \pi_{\text{gen}})$.
- $\Pi_{\text{int}}.\text{Prove}^\lambda(\mathbf{crs}, x, w)$: Computes a proof π as follows for $x_{\sigma} = (x, \mathbf{crs})$.

$$\begin{align*}
(\Omega_{\Sigma}, \mathbf{st}) &\leftarrow \Sigma_{\text{int}}.\text{Init}(x, w), \\
\gamma_{\Sigma} &\leftarrow H_{\text{int}}(x_{\Sigma}, \Omega_{\Sigma}), \\
\tau_{\Sigma} &\leftarrow \Sigma_{\text{int}}.\text{Resp}(x_{\Sigma}, \mathbf{st}, \gamma_{\Sigma}), \\
\pi &\leftarrow (\Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma}).
\end{align*}$$

Restarts if $\Sigma_{\text{int}}.\text{Resp}$ aborted, else outputs π.

- $\Pi_{\text{int}}.\text{Verify}^\lambda(\mathbf{crs}, x, \pi)$: On input \mathbf{crs}, statement x, and proof π, sets $x_{\Sigma} = (x, \mathbf{crs})$ and checks

$$\begin{align*}
H_{\text{int}}(x_{\Sigma}, \Omega_{\Sigma}) &\equiv \gamma_{\Sigma}, \\
\Sigma_{\text{ped}}.\text{Verify}(x_{\Sigma}, \Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma}) &\equiv 1,
\end{align*}$$

where $\pi = (\Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma})$, and outputs 1 iff all checks succeed.

We show that Π_{int} is secure. We give a brief sketch. Correctness is clear (if the abort probability is sufficiently low). For soundness, we use the forking lemma to obtain 2 accepting transcripts. Then, we compute openings for C_{Rint} as usual. Due to lemma [3], and the shortness checks, the opening is in the right interval. For subversion zero-knowledge, observe that for any $\mathbf{crs} \in \mathbf{SRS}$, the commitment π is hiding (under soundness of Π_{gen}).

Theorem 9. The NIZK is correct if $(1 - \frac{1}{\ell})^{-\ell} = \text{poly}(\lambda)$, adaptively knowledge sound for \tilde{R} and subversion zero-knowledge.

Proof. We give a proof sketch for correctness and subversion zero-knowledge (as the proofs are straightforward) and give a detailed proof for soundness.

Correctness. Note that a single run succeeds with probability $(1 - \frac{1}{\ell})^{\ell}$ because $1/L$ is the abort probability of the size check in line 10 per coordinate (cf. Appendix \[A,2\]). Thus, proof generation
Before the simulator outputs the proof $\pi = (\Omega_F, \gamma, \Omega_c, \tau)$, it programs the random oracle H_{int} accordingly. Observe that the underlying Σ-protocol has high min-entropy (since Ω_F is distributed uniformly over G), thus H_{int} is not defined at input $(\bar{x}, \bar{c}, \Omega_{\mathcal{C}}, c \bar{\mathcal{C}})$ yet with overwhelming probability. As discussed above, conditioned on no abort, the proof π is identically distributed to honestly generated proofs. Repetitions due to aborts are only noticeable if the adversary observes H_{int} queries for aborted transcripts. Due to high min-entropy, this occurs only with negligible probability.
Adaptive knowledge soundness. For soundness, we obtain two valid transcripts \(tr = (\alpha, \gamma, \omega) \), \(tr' = (\alpha', \gamma', \omega') \) with shared \(\alpha = (\tilde{r}, \Omega_F, \tilde{\Omega}_C, \Omega_e) \) but distinct challenges \(\gamma \neq \gamma' \) via the forking lemma (cf. Appendix A.2). Parse \(\omega = (\tilde{r}_m, \tau, \tau_r) \) and \(\omega' = (\tilde{r}_m', \tau_r, \tau_r') \). Let us denote \(\Delta \tilde{m} = \tilde{r}_m - \tilde{r}_m', \Delta r = \tau_r - \tau_r', \Delta \tilde{r} = \tau - \tau_r \), and \(\Delta \gamma = \gamma - \gamma' \neq 0 \). Without loss of generality, we have \(\Delta \gamma \in [0, C] \). Since both transcripts are valid (with shared \(\alpha = \alpha' \)), we have

\[
\Omega_F = \tau_r H - \gamma F = \tau_r' H - \gamma' F
\]

Rearranging both terms yields

\[
\tau_r H - \tau_r' H = -\gamma' F + \gamma F
\]

\[
\implies \Delta \gamma F = \Delta r H
\]

\[
\implies F = \frac{\Delta r}{\Delta \gamma} H
\]

Similarly, we obtain

\[
\tilde{C} = \frac{\Delta \tilde{m}}{\Delta \gamma} H + \frac{\Delta r}{\Delta \gamma} \tilde{G}
\]

Thus, \(\tilde{m} := \frac{\Delta \tilde{m}}{\Delta \gamma} \) and \(r = \frac{\Delta r}{\Delta \gamma} \) form a valid opening for \(c \) if \(\tilde{m} \in [-\tilde{B}T, \tilde{B}T] \). For this, we use the properties of \(\tilde{r} \). As above, we obtain

\[
h^{\tilde{r} \tau} \cdot \prod_{i=1}^{\ell} g_i^{(r_m)_i} \cdot (\tilde{r})^{-\gamma} = h^{\tilde{r} \tau} \cdot \prod_{i=1}^{\ell} g_i^{(r_m')_i} \cdot (\tilde{r})^{-\gamma'} \mod N
\]

\[
\implies h^{\tilde{r} \tau} \cdot \prod_{i=1}^{\ell} g_i^{(\Delta m)_i} = (\tilde{r})^{\Delta \gamma} \mod N
\]

Recall that \(\Delta \gamma \in [0, C] \) with \(C = 2^\lambda - 1 \). Under lemma 6, we have \(\Delta \tau \Delta \gamma / \Delta \gamma_i / \Delta \gamma \in \mathbb{Z} \). Also, since \((r_m)_i, (r_m')_i \in [0, (B, C + 1)L] \) we have that \(\| (\Delta m)_i / \Delta \gamma \| \leq 2(B, C + 1)L \). Since \(2(B, C + 1)L \leq 2^{\lambda + 1}B, L = T, L \), we have \(\tilde{m} \in [-\tilde{B}T, \tilde{B}T] \) as desired.

Efficient Proof of Opening for \(C_{\text{Grp}} \). A commitment of \(C_{\text{Grp}} \) consists of a Pedersen commitment (in \(\hat{G} \)) and a \(C_{\text{Bchn}} \) commitment. If \(C_{\text{Bchn}} \) is instantiated as in Section 5.1 it is straightforward to obtain a NIZK for opening \(C_{\text{Grp}} \) in zero-knowledge using the techniques from Appendix C.1 (since the decomposition of \(s \) is linear). An example of this NIZK is given within the NIZK provided in Appendix C.2.

D Deferred content from Section 6

D.1 Number of primes in \([2^{5\lambda}, 2^{5\lambda} + 2^{3\lambda}] \)

Lemma 1. For \(E = 2^{3\lambda}, F = 2^{5\lambda}, \) there are \(\Omega(2^{2\lambda}) \) primes in \(S = [E, E + F] \).

Proof. We prove that there are \(\Omega(2^{2\lambda}) \) in the interval \([2^{5\lambda}, 2^{5\lambda} + 2^{3\lambda}] \). In the following we denote by \(\pi(x) \) the number of primes at most \(x \), for any \(x \in \mathbb{R} \) is a function of \(\lambda \). In the following we use \(\sim \) to write the limit as \(\lambda \to \infty \). We want to estimate

\[
\pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda})
\]

which is the number of primes in \([2^{5\lambda}, 2^{5\lambda} + 2^{3\lambda}] \). First, from a recent result [58], which refines the celebrated Huxley’s bound [60], [77], we have

\[
\pi(x + y) - \pi(x) \sim y / \log x
\]
We consider \(2^{5\lambda} \) and \(2^{3\lambda} \), while noticing that \(7/12 < 3/5 \) yields
\[
\pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda}) \sim \frac{3\lambda}{5\lambda} . \tag{8}
\]
The approximation Eq. (8) means that for any \(\epsilon > 0 \), there exists \(\lambda_0 \in \mathbb{R}_{>0} \) such that for sufficiently large \(\lambda > \lambda_0 \), the number of primes between \(2^{5\lambda} \) and \(2^{5\lambda} + 2^{3\lambda} \) satisfies
\[
\left| \pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda}) - \frac{3\lambda}{5\lambda} \right| \leq \epsilon . \tag{9}
\]
We choose \(\epsilon := \frac{1}{5} > 0 \) and (9) implies: for sufficiently large \(\lambda \)
\[
\left| \pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda}) - \frac{3\lambda}{5\lambda} \right| \leq \frac{1}{5} \Rightarrow \frac{2\lambda}{5\lambda} - \frac{1}{5} \leq \pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda})
\]
\[
\Rightarrow \frac{2\lambda}{5\lambda} \leq \pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda}) .
\]
In other words, we have
\[
\pi(2^{5\lambda} + 2^{3\lambda}) - \pi(2^{5\lambda}) = \Omega \left(\frac{2\lambda}{5\lambda} \right) = \Omega (2^{2\lambda})
\]
and the claim is proved. \(\square \)

D.2 Proof of lemma 2 and Corollary 1

Lemma 2. Let \(\lambda \in \mathbb{N} \) and \(N > 3 \) be an odd natural number of bitlength polynomially large in \(\lambda \). We consider \(\mathbb{Z}_N \) and fix \(G \in (g) \subseteq \mathbb{Z}_N^{*} \) where \(g \in \mathbb{Z}_N \). Given \(e \leftarrow S_e \) where \(S_e \) contains at least \(\Omega(2^\lambda) \) primes, we have
\[
\Pr \left[(g^e) \not\subseteq G : e \leftarrow S_e \right] \leq \text{negl}(\lambda)
\]
where the probability is taken over the choice of \(e \).

Proof. We write \(N = \prod_{i=1}^{k} p_i^{\nu_i} \) for some \(k \in \mathbb{N} \) and \(p_i \in S_e \) where \(p_i > 2 \) as \(N \) is odd. We denote by \(\ell(\lambda) : \mathbb{N} \rightarrow \mathbb{N} \) a polynomial dictating the bit length of \(N \). Then, since \(3 < N \) it holds that
\[
2^{\ell(\lambda)} \gg N > \phi(N) = \prod_{i=1}^{k} p_i^{\nu_i-1}(p_i - 1)
\]
\[
> \prod_{i=1}^{k} 2 > 2^k \tag{10}
\]
and thus \(k < \ell(\lambda) \), i.e. the number of distinct prime factors of \(\phi(N) \) is at most \(\ell(\lambda) \). Moreover, we have \(\langle g^e \rangle \not\subseteq \langle g \rangle \) if and only if \(e \mid \text{ord}(g) \). Because \(G = (g) \subseteq \mathbb{Z}_N^{*} \), we have \(\text{ord}(g) \mid \phi(N) \) and from (10) it follows that the number of distinct prime factors of \(\text{ord}(g) \) is also at most \(\ell(\lambda) \). Consequently, this implies
\[
\Pr \left[(g^e) \not\subseteq \langle g \rangle : e \leftarrow S_e \right] \leq \Pr \left[e \mid \text{ord}(g) : e \leftarrow S_e \right]
\]
\[
\leq \frac{k}{|S_e|} = O \left(\frac{\ell(\lambda)}{2^\lambda} \right) = \text{negl}(\lambda)
\]
by the fact that \(k < \ell(\lambda) \), \(S_e \) contains at least \(\Omega(2^\lambda) \), as well as \(\ell(\lambda) \) is a polynomial in \(\lambda \). The proof is completed. \(\square \)

\(^{28} \)In our blind signature scheme \(\text{BS}_{e_0} \) (Fig. 1) we set \(\ell(\lambda) := 2\lambda \).
Corollary 1. Let $\lambda \in \mathbb{N}$ and $N > 3$ be an odd natural number of bitlength polynomially large in λ. We consider \mathbb{Z}_N^* and fix $G = \langle g \rangle \subseteq \mathbb{Z}_N^*$ where $g \in \mathbb{Z}_N^*$. Given $e \leftarrow S_e$ where S_e contains at least $\Omega(2^\lambda)$ primes, with overwhelming probability over the choice of e

$$\psi : G \rightarrow \langle g^e \rangle$$

$$z \mapsto z^e \mod N$$

is a group isomorphism.

Proof. Suppose $\langle g^e \rangle = G$, we will prove that

$$\psi : G \rightarrow \langle g^e \rangle$$

$$z \mapsto z^e \mod N$$

which is a group isomorphism. For $a, b \in G$, $\psi(ab^{-1}) = (ab^{-1})^e = \psi(a) \cdot \psi(b)^{-1} \mod N$ by arithmetic in \mathbb{Z}_N^*. As a consequence ψ is a group homomorphism. We now show that ψ is surjective. Thanks to the hypothesis $\langle g^e \rangle = G$, it holds that $\gcd(e, \text{ord}(G)) = 1$, $\text{ord}(G) = \text{ord}(\langle g^e \rangle)$, and $e^1 \mod \text{ord}(\langle g^e \rangle)$ is well defined. Therefore, for any $z' \in \langle g^e \rangle$, we define $d \equiv e^{-1} \mod \text{ord}(\langle g^e \rangle)$, and $z := (z')^d \mod N$.

It can be verified that

$$\psi(z) = (z')^ed = z' \mod N$$

as $ed \equiv 1 \mod \text{ord}(\langle g^e \rangle)$. Next, ψ is injective if and only if $\ker(\psi) = \{1\}$. The inclusion $\{1\} \subseteq \ker(\psi)$ is clear. Suppose for the sake of contradiction that there exists $1 \neq z \in G$ so that $\psi(z) = 1$. This implies $z^e \equiv 1 \mod N$ and thus $\text{ord}(z) \mid e$. Moreover, from $1 \neq z \in G$ it holds that $1 < \text{ord}(z) \mid \text{ord}(G)$ thanks to Lagrange. Combiningly we obtain $1 < \text{ord}(z) \mid \text{gcd}(e, \text{ord}(G))$, which contradicts the hypothesis that $\langle g^e \rangle = G$. Therefore $\ker(\psi) = \{1\}$ and ψ is injective.

Finally, with overwhelming probability over the choice of $e \leftarrow S_e$, lemma 2 concludes that $\langle g^e \rangle = G$ and this finishes the proof.

D.3 Blindness under Malicious Keys of BS$_{\text{fs}}$ - Proof of Theorem 3

Theorem 3. The scheme BS$_{\text{fs}}$ is blind under malicious keys following the subversion statistical adaptive soundness of Π_{gen}, the subversion zero-knowledge property of Π_{fs}, the computational hiding property of G_{Int}, and the subversion zero-knowledge property of Π_{ped}.

Proof. We proceed by a sequence of hybrids. We denote by $\text{Adv}^{\text{blind}}_{A, \text{Game } i}(\lambda)$ the probability that a PPT adversary A outputs 1 in Game i. We assume that all the check steps are passed during the execution. This is not without loss of generality, but for the ease of presentation. In Remark 6 we elaborate on the cases when some check steps are not passed.

Game 1: We start with the game following Definition 3 where coin = 0.

Game 2: This hybrid is the same as Game 1, except that we use the subversion zero-knowledge simulator $\text{Sim}_{\text{fs}} = (\text{Sim}_{I_{\text{fs}}, \text{fs}}, \text{Sim}_{\pi, \text{fs}})$ of Π_{fs} to simulate π_{fs} in the derived signature $\sigma = (\pi_{\text{fs}}, c_1)$. Game 2 differs from Game 1 in the following details. We program the unstructured reference string urs_{fs} in $(\text{urs}_{\text{ped}}, \text{urs}_{\text{fs}}, \text{urs}_{\text{gen}}) \leftarrow H_{\text{urs}}(0)$ together with honest $\text{urs}_{\text{ped}}, \text{urs}_{\text{gen}} \in \text{URS}$. The blindness adversary A also sets up sr_{zkp} for $\text{zkp} \in \{\text{ped, fs, gen}\}$. The common reference strings are defined, in particular $\text{crs}_{\text{fs}} = (\text{crs}_{\text{fs}}, \text{urs}_{\text{fs}})$ along with crs_{ped}, crs_{gen} in bvk. We program H_{fs} by $\text{Sim}_{I_{\text{fs}}, \text{fs}}$ for further RO queries. Then, run $\tau_{\text{fs}} \leftarrow \text{Sim}_{I_{\text{fs}}, \text{fs}}(\text{crs}_{\text{fs}}, x_{\text{fs}})$. The following lemma 7 argues that Game 2 and Game 1 are indistinguishable. In particular, for any blindness adversary A, there exist PPT B_1, B_2, B_3 so that

$$|\text{Adv}^{\text{blind}}_{A, \text{Game } 2}(\lambda) - \text{Adv}^{\text{blind}}_{A, \text{Game } 1}(\lambda)| \leq \text{Adv}^{\text{blind}}_{B_2, \Pi_{\text{gen}}}(\lambda) + \text{Adv}^{\text{blind}}_{B_1, \Pi_{\text{fs}}}(\lambda) + \text{negl}(\lambda)$$

and is negligible in λ.

Lemma 7. Under the subversion zero-knowledge of \(\Pi_{\text{fis}} \) as well as the subversion adaptive soundness \(\Pi_{\text{gen}} \), the games Game 2 and Game 1 are indistinguishable. For any blindness adversary \(A \), there exist PPT \(B_2, B_3 \) so that

\[
|\text{Adv}^{\text{blind}}_{A, \text{Game } 2}(\lambda) - \text{Adv}^{\text{blind}}_{A, \text{Game } 1}(\lambda)| \leq \text{Adv}^{\text{end}}_{B_2, \Pi_{\text{gen}}}(\lambda) + \text{Adv}^{\text{sub-zk}}_{B_3, \Pi_{\text{fis}}}(\lambda) + \text{negl}(\lambda).
\]

Proof. By construction, with respect to the relation \(R_{\text{fis}} \), the values \(c, (c_1, d_1), r_1 \) determined by the user satisfy:

\[
\begin{cases}
 e \equiv 1 \text{ mod } 2 \\
 (c_1, d_1) = C_{\text{fint}}.\text{Commit}(pp_1, (a, e - \bar{E}); r_1) = 1,
\end{cases}
\]

We also recall that \(c = h_2^{m} \cdot g^{e} \) mod \(N \) in the first message to the blindness adversary \(A \) and \(y \leftarrow z \cdot g^{-r} \) mod \(N \) during the signature derivation are both computed by the user. Moreover, we suppose that all the check steps are passed during the execution, it holds \(a \in S_c \) as a part in the relation \(R_{\text{fis}} \). Now, using the simulation as described in Game 2, there are three cases to treat as follows:

Case 1: Suppose that \(x_{\text{fis}} \notin L_{\text{R}_a} \) and \(y^{e} \neq h \cdot h_1^{a} \cdot h_2^{a+m} \) mod \(N \). This implies

\[
\begin{align*}
 & y^{e} \\
 \Rightarrow & z^{e} \cdot g^{-re} \\
 \Rightarrow & z^{e} \cdot g^{-r} \\
 \Rightarrow & z^{e} \\
 \Rightarrow & z^{e} \equiv z' \text{ mod } N
\end{align*}
\]

From Corollary \ref{corollary:overwhelming} with overwhelming probability over the choice of \(e \in S_c \), raising to the power of \(e \) is a bijection. Therefore, except with negligible probability, inequality \((\dagger)\) contradicts the fact that during Derive it is set \(z' \leftarrow h \cdot h_1^{a} \cdot c \cdot h_2^{a} \) and the hypothesis that the check \(z^{e} \equiv z' \) mod \(N \) holds. Equivalently, this current case with the inequality \((\dagger)\) happens only with negligible probability.

Case 2: Suppose that \(x_{\text{fis}} \notin L_{\text{R}_a} \) and \(y^{e} \equiv h \cdot h_1^{a} \cdot h_2^{a+m} \) mod \(N \) but \(y \notin \langle h_1 \rangle \). Due to the hypotheses that \(y^{e} \equiv h \cdot h_1^{a} \cdot h_2^{a+m} \) mod \(N \) and \(y \notin \langle h_1 \rangle \), we have \(\langle h_1 \rangle \neq \langle h \rangle \) or \(\langle h \rangle \neq \langle h_2 \rangle \). Recalling that without loss of generality we are supposing all the check steps are passed during the execution, in particular \(\Pi_{\text{gen}}.\text{Verify}_{\Pi_{\text{gen}}}(\text{crs}_{\text{gen}}, x_{\text{gen}}, \pi_{\text{gen}}) = 1 \). This means we obtain an instance \((N, 3, g, (h, h_1, h_2))\) that breaks the subversion soundness of \(\Pi_{\text{gen}} \).

We provide a PPT adversary \(B_2 \) breaking the subversion soundness of \(\Pi_{\text{gen}} \) as follows:

- \(B_2 \) simulates Game 2 by programming the unstructured reference string \(\text{urs}_{\text{fis}} \) in \(H_{\text{urs}}(0) \) together with honest \(\text{urs}_{\text{ped}} \in URS \). Then \(B_2 \) receives \(\text{urs}_{\text{gen}} \) from its subversion soundness challenger.

- The blindness adversary \(A \) sets up \(\text{crs}_{\text{zpk}} \) for \(zpk \in \{\text{ped}, \text{fis}, \text{gen}\} \). The common reference strings are defined, in particular \(\text{crs}_{\text{fis}} = (\text{crs}_{\text{fis}}, \text{crs}_{\text{gen}}) \) along with \(\text{crs}_{\text{ped}}, \text{crs}_{\text{gen}} \) in \(\text{bvk} \).

- Specifically, as soon as \(A \) outputs

\[
\text{bvk} = (\text{crs}_{\text{fis}}, \text{crs}_{\text{ped}}, \text{crs}_{\text{gen}}, N, h, h_1, h_2, g, \pi_{\text{gen}})
\]

\(B_2 \) outputs the instance \((N, 3, g, (h, h_1, h_2))\) to its challenger against the subversion soundness of \(\Pi_{\text{gen}} \).

Hence, the probability of this case is bounded by \(\text{Adv}^{\text{end}}_{B_2, \Pi_{\text{gen}}}(\lambda) \) for some PPT \(B_2 \) against the subversion soundness of \(\Pi_{\text{gen}} \).

Case 3: Finally, suppose that \(x_{\text{fis}} \in L_{\text{R}_a} \). The adversary \(A \) can be used to construct a PPT \(B_3 \) against the subversion zero-knowledge (S-ZK) game of \(\Pi_{\text{fis}} \) as below:

- \(B_3 \) receives \(\text{urs}_{\text{fis}} \) from the S-ZK challenger and program \(\text{urs}_{\text{fis}} \) into the output of \(H_{\text{urs}}(0) \), together with honest \(\text{urs}_{\text{ped}}, \text{urs}_{\text{gen}} \in URS \).

- The blindness adversary \(A \) sets up \(\text{crs}_{\text{fis}} \) as part of \(\text{bvk} \). \(B_3 \) parses \(\text{crs}_{\text{fis}} = (\text{crs}_{\text{fis}}, \text{crs}_{\text{gen}}) \) and outputs \(\text{crs}_{\text{fis}} \) to the S-ZK challenger for \(\Pi_{\text{fis}} \).
The blindness game for A is simulated by B_3: it computes then sends (c, c_Z, π_{ped}) to A, simulates H_{ped} and queries the RO for other H_{ped} queries, receives (z, a) from A. At the step of derived signature, B_3 queries its S-ZK challenger on

$$x_{fis} = (pp_f, N, h_1, h_2, h, \overline{m}, c_I), \quad w_{fis} = (c, a, y, r_I, d_I)$$

to get π_{fis}. We note that B_3 possesses the witness w_{fis} throughout the signing session that is simulated to A (see Fig. 1). Then B_3 outputs (π_{fis}, c_I) as the derived signature.

$- B_3$ outputs what A outputs.

We argue that B_3 is breaking S-ZK of Π_{fis}:

$- Following Definition 23$ Game 2 corresponds to the simulated case in the S-ZK game for Π_{fis}, where B_3 receives urs_{fis} and outputs a possibly subverted srs_{fis}, then interacts with Sim_{fis}. The proofs in the derived signatures by B_3 during signing sessions with A are simulated by $\pi_{fis} \leftarrow Sim_{fis}(crs_{fis}, x_{fis})$, where $crs_{fis} = (srs_{fis}, urs_{fis})$.

$- On the other hand$ Game 1 correspond to the real case in Definition 23, where the adversary receives urs_{fis} and output a possibly subverted srs_{fis}, then interacts with H. The proofs in the derived signatures by B_3 during signing sessions with A are computed by $Prove^H(crs, x, w)$ where $crs_{fis} = (srs_{fis}, urs_{fis})$.

Conditioned on the foregoing case, the advantage that A can distinguish Game 2 from Game 1 is bounded by $Adv_{B_3, \Pi_{fis}}(\lambda) + Adv_{Sub-zk}(\lambda)$ for PPT adversaries B_2, B_3 as described above. Assuming the subversion zero-knowledge of Π_{fis} as well as the subversion adaptive soundness of Π_{gen} against all such PPT B_2, B_3, Game 2 are indistinguishable from Game 1.

Game 3: This hybrid is the same as Game 2, except that we make c_I independent of the blindness adversary’s response (z, a, π_{sub}). More specifically, we change the computation $(c_I, d_I) \leftarrow C_{RInt, Commit}(pp_f, (0, 0), r_I)$ for $r_I \leftarrow C_{RInt, C_{end}}$. We argue that this change is indistinguishable using the fact that r_I is information theoretically hidden thanks to the simulation of π_{fis} from Game 2 as well as the hiding property of C_{RInt}. Indeed, we construct a simulator B against the hiding game of C_{RInt} that simulates Game 3. At the time of computing c_I, B outputs two messages $(a, e - E)$ and $(0, 0)$ when interacting with the hiding game’s challenger, to receive c_I. Finally, B uses c_I in the derived signature $\sigma = (\pi_{fis}, c_I)$ to the blindness adversary A and outputs what A outputs. We have

$$|Adv^{blind}_{A, Game 3}(\lambda) - Adv^{blind}_{A, Game 2}(\lambda)| \leq Adv^{hide}_{B, Sim}(\lambda)$$

and is negligible in λ.

Game 4: This hybrid is the same as Game 3, except that we use the subversion zero-knowledge simulator $Sim_{ped} = (Sim_{1, ped}, Sim_{2, ped})$ of Π_{fis} to simulate π_{ped} in the first message (c, c_Z, π_{ped}). Game 4 differs from Game 3 in the following details. We program the unstructured reference string urs_{ped} in $(urs_{ped}, urs_{fis}, urs_{gen}) \leftrightarrow H_{urs}(0)$ together with honest $urs_{fis}, urs_{gen} \in URS$. The blindness adversary A also sets up sk_{zkp} for $zkp \in \{ped, fis, gen\}$. The common reference strings are defined, in particular $crs_{ped} = (srs_{ped}, urs_{ped})$ along with $crs_{fis}, crs_{gen} \in bv_k$. We also program H_{ped} by $Sim_{1, ped}$ for further RO queries. We afterwards run $\pi_{ped} \leftarrow Sim_{\pi_{ped}}(crs_{ped}, \pi_{ped})$. The following lemma 8 argues that this simulation of π_{ped} is indistinguishable from the real proofs. The following lemma 8 argues that Game 4 and Game 3 are indistinguishable. In particular, for any blindness adversary A, there exist PPT B_1, B_2 so that

$$|Adv^{blind}_{A, Game 4}(\lambda) - Adv^{blind}_{A, Game 3}(\lambda)| \leq Adv^{end}_{B_1, \Pi_{fis}}(\lambda) + Adv^{sub-zk}_{B_2, \Pi_{fis}}(\lambda)$$

and is negligible in λ.

Pairing-Free Blind Signatures from Standard Assumptions in the ROM
Lemma 8. Under the subversion zero-knowledge of Π_{ped} as well as the subversion adaptive soundness of Π_{gen}, the games Game 4 and Game 3 are indistinguishable. For any blindness adversary A, there exist PPT B_1, B_2 so that

$$\left| \text{Adv}_{A, \text{Game 4}}^\text{blind} (\lambda) - \text{Adv}_{A, \text{Game 3}}^\text{blind} (\lambda) \right| \leq \text{Adv}_{B_1, \Pi_{\text{gen}}}^\text{adv} (\lambda) + \text{Adv}_{B_2, \Pi_{\text{ped}}}^\text{sub} (\lambda).$$

Proof. By construction, with respect to the relation R_{ped}, the values $m, r, (c_Z, d_Z)$ determined by the user satisfy:

$$\begin{cases} c_Z.\text{Verify}(pp, c_Z, (m, r), d_Z) = 1 \\ m \in [0, 2^\lambda - 1] \\ r \in [0, S] \end{cases}$$

We recall that $c = h_{m_2} \cdot g^e \mod N$ is computed by the user in this Game 4, as part of the first message that is sent to the adversarial signer. Now, using the simulation as described in Game 2, there are three cases to treat as follows:

Case 1 Suppose $x_{\text{ped}} \notin L_{R_{\text{ped}}}$ and $c \notin \langle g \rangle$. This implies $\langle g \rangle \neq \langle h_2 \rangle$. As we are supposing $\Pi_{\text{gen}}.\text{Verify}^{\text{adv}}(\text{crs}_{\text{gen}}, \text{crs}_{\text{gen}}, \pi_{\text{gen}}) = 1$, without loss of generality so that all check pass, the instance $(N, 3, g, \langle h, h_1, h_2 \rangle)$ breaks the subversion soundness of Π_{gen}. We provide a PPT adversary B_1 breaking the subversion soundness of Π_{gen} as follows:

- B_1 simulates Game 4 by programming the unstructured reference string urs_{ped} in $H_{\text{urs}}(0)$ together with honest $\text{urs}_{\text{gen}} \in URS$. Then B_1 receives urs_{gen} from its subversion soundness challenger.
- The blindness adversary A sets up crs_{urs} for $Z \in \{\text{ped}, \text{fis}, \text{gen}\}$. The common reference strings are defined, in particular $\text{crs}_{\text{ped}} = (\text{crs}_{\text{ped}}, \text{crs}_{\text{ped}})$ along with $\text{crs}_{\text{ped}}, \text{crs}_{\text{gen}}$ in bvk.
- Specifically, as soon as A outputs

$$bvk = (\text{crs}_{\text{fis}}, \text{crs}_{\text{ped}}, \text{crs}_{\text{gen}}, N, h, h_1, h_2, g, \pi_{\text{gen}})$$

B_1 outputs the instance $(N, 3, g, \langle h, h_1, h_2 \rangle)$ to its challenger against the subversion soundness of Π_{gen}.

Hence, the probability of this case is bounded by $\text{Adv}_{B_1, \Pi_{\text{gen}}}^{\text{adv}} (\lambda)$ for some PPT B_1 against the subversion soundness of Π_{gen}.

Case 2 Suppose $x_{\text{ped}} \in L_{R_{\text{ped}}}$. The adversary A can be used to construct a PPT B_2 against the subversion zero-knowledge (S-ZK) game of Π_{ped} as follows:

- B_2 receives urs_{ped} from the S-ZK challenger and program urs_{ped} into the output of $H_{\text{urs}}(0)$, together with honest $\text{urs}_{\text{fis}}, \text{urs}_{\text{gen}} \in URS$.
- The blindness adversary A sets up crs_{ped} as part of bvk. B_2 parses $\text{crs}_{\text{ped}} = (\text{crs}_{\text{ped}}, \text{crs}_{\text{ped}})$ and outputs crs_{ped} to the S-ZK challenger for Π_{ped}.
- The blindness game for A is simulated by B_2. First of all B_2 queries its S-ZK challenger on

$$x_{\text{ped}} = (pp, N, e, h_2, g, c_Z, w_{\text{ped}} = m_0, r, d_Z)$$

to get π_{ped}. We note that B_2 possesses the witness w_{ped}, where $m_0 := H(m_0)$, throughout the signing session that is simulated to A (see Fig. 1). Then B_3 sends $(c, c_Z, \pi_{\text{ped}})$ to A, queries the RO for other $H_{\text{sub}}, H_{\text{fis}}$ queries, receives (z, a, π_{sub}) from A. Finally, B_2 derives and outputs (π_{fis}, c_1) as the derived signature.
- B_2 outputs what A outputs.

We argue that B_2 is breaking S-ZK of Π_{ped}:

- Following Definition [23] Game 4 corresponds to the simulated case, where the adversary receives urs_{ped} and outputs a possibly subverted crs_{ped}, then interacts with $\text{Sim}_{\pi_{\text{ped}}}$, the proofs in the derived signatures by B_2 during signing sessions with A are simulated by $\pi_{\text{ped}} \leftarrow \text{Sim}_{\pi_{\text{ped}}}(\text{crs}_{\text{ped}}, \pi_{\text{ped}})$, where $\text{crs}_{\text{ped}} = (\text{crs}_{\text{ped}}, \text{crs}_{\text{ped}})$.
- On the other hand Game 3 correspond to the real case in Definition [23], where the adversary receives urs_{ped} and output a possibly subverted crs_{ped}, then interacts with H. The proofs in the derived signatures by B_2 during signing sessions with A are computed by $\text{Prove}^H(\text{crs}, x, w)$ where $\text{crs}_{\text{ped}} = (\text{crs}_{\text{ped}}, \text{crs}_{\text{ped}})$.

Conditioned on the foregoing case, the advantage that \(\mathcal{A} \) can distinguish Game 4 from Game 3 is bounded by \(\text{Adv}^{\text{blind}}_{\Pi_{\text{ped}}, \Pi_{\text{gen}}} (\lambda) \) against the subversion zero-knowledge property of \(\Pi_{\text{ped}} \).

Totally, the probability that \(\mathcal{A} \) can distinguish Game 4 from Game 3 is bounded by

\[
\text{Adv}^{\text{blind}}_{\Pi_{\text{gen}}} (\lambda) + \text{Adv}^{\text{sub-zk}}_{\Pi_{\text{ped}}} (\lambda)
\]

for some PPT \(\mathcal{B}_1, \mathcal{B}_2 \). Assuming the subversion zero-knowledge of \(\Pi_{\text{ped}} \) as well as the subversion adaptive soundness of \(\Pi_{\text{gen}} \) against all such PPT \(\mathcal{B}_1, \mathcal{B}_2 \), Game 4 are indistinguishable from Game 3.

\(\square \)

Game 5: This hybrid is the same as Game 4, except that we replace \(c \) in the first user’s message by \(c \leftarrow (g) \). This transition is statistical. By the union bound, the advantage of any possibly unbounded adversary \(\mathcal{A} \) to distinguish between this Game 5 and the previous Game 4 can be bounded by considering two cases:

Case 1 The replacement \(c \leftarrow (g) \) is distinguishable from the previous computation

\[
c = h_{\bar{x}}^x \cdot g^r \mod N
\]

in Game 4 because \((g) \neq \{ h_2 \cdot g^y \mod N \mid x, y \in \mathbb{N} \} \). This implies that \((h_2) \neq (g) \) and under our hypothesis that \(\Pi_{\text{gen}} \cdot \text{Verify}^{\text{sub}}_{\Pi_{\text{gen}}, \mathcal{x}} = 1 \), this implies the adversary \(\mathcal{A} \) can output \((N, 3, g, (h, h_1, h_2))\) that breaks the subversion soundness of \(\Pi_{\text{gen}} \). We provide a PPT adversary \(\mathcal{B}_1 \) breaking the subversion soundness of \(\Pi_{\text{gen}} \) in the same manner as **Case 1** in Game 4. The probability of this case is bounded by \(\text{Adv}^{\text{blind}}_{\mathcal{B}_1, \Pi_{\text{gen}}} (\lambda) \) for some PPT \(\mathcal{B}_1 \) against the statistical subversion soundness of \(\Pi_{\text{gen}} \).

Case 2 Else, suppose that \((h_2) = (g) \). By lemma \(\square \) under the fact that \(\mathcal{H}_\lambda \) is uniform over \(\mathcal{S}_h \), with overwhelming probability we have \((g^r) = (g) \). This means we can write \(c = h_{\bar{x}}^x \cdot \bar{g}^r \mod N \) for some generator \(\bar{g} := g^r \) of \((g) = (h_2) \), thus has the form of a Pedersen commitment over \((g) \). Therefore, because \(r \leftarrow [0, S] \), where \(S = N \cdot 2^\lambda \), is exponentially large in \(\lambda \), remark \(\square \) implies the statistical hiding of the commitment \(c = h_{\bar{x}}^x \cdot \bar{g}^r \mod N \) that ensures the advantage of distinguishing of \(\mathcal{A} \) in this case is \(\text{negl}(\lambda) \).

By combining the two cases, we conclude that the probability a blindness adversary \(\mathcal{A} \) can distinguish Game 5 from Game 4 is bounded by \(\text{Adv}^{\text{blind}}_{\mathcal{B}_1, \Pi_{\text{gen}}} (\lambda) + \text{negl}(\lambda) \), for some PPT \(\mathcal{B}_1 \), and thus negligible under the subversion soundness of \(\Pi_{\text{gen}} \).

Game 6: This hybrid is the same as Game 5, except that we makes \(c_Z \) independent of the adversary’s response. More specifically, we change the computation \((c_Z, d_Z) \leftarrow C_{\text{Gen}} \cdot \text{Commit}(p_{\text{Gen}}, (0, r)) \) for \(r \leftarrow [0, S] \). We argue that this change is indistinguishable by constructing a simulator \(\mathcal{B} \) against the hiding game of \(C_{\text{Gen}} \) that simulates Game 6. At the time of computing \(c_Z \), \(\mathcal{B} \) outputs two messages \((\bar{m}_0, r) \) and \((0, 0) \) when interacting with the hiding game’s challenger, to receive \(c_Z \). We are using the fact that \(r \) is information theoretically hidden thanks to the simulation of \(\pi_{\text{Gen}} \) from Game 2, the simulation of \(\pi_{\text{Ped}} \) from Game 4, and the replacement of the commitment \(c \leftarrow (g) \) from Game 5. Finally, \(\mathcal{B} \) uses \(c_Z \) in the first message \((c, c_Z, \pi_{\text{Ped}}) \) to the blindness adversary \(\mathcal{A} \) and outputs what \(\mathcal{A} \) outputs. We have

\[
|\text{Adv}^{\text{blind}}_{\mathcal{A}, \text{Game 6}} (\lambda) - \text{Adv}^{\text{blind}}_{\mathcal{A}, \text{Game 5}} (\lambda)| \leq \text{Adv}^{\text{blind}}_{\mathcal{B}, \Pi_{\text{Gen}}} (\lambda)
\]

and is negligible in \(\lambda \).

Game 7: We note that after hopping to Game 6, the first message \((c, c_Z, \pi_{\text{Ped}}) \) as well as the derived signature \((\pi_{\text{Gen}}, c_1) \) do not depend on \(\bar{m}_0 \) anymore. We then apply a similar sequence of hoppings, but symmetrically in a reverse order to go to the game following Definition \(\square \) where \(\text{coin} = 1 \), i.e. \(\bar{m}_1 \) is used in the first message and the derived signature. The above arguments still apply so that the transitions stay indistinguishable. In total, we have proved that

\[
2 \cdot \text{Adv}^{\text{blind}}_{\mathcal{A}, \text{Game 6}} (\lambda) = |\text{Adv}^{\text{blind}}_{\mathcal{A}, \text{Game 1}} (\lambda) - \text{Adv}^{\text{blind}}_{\mathcal{A}, \text{Game 7}} (\lambda)|
\]

is negligible in \(\lambda \) and the proof is completed. \(\square \)
Remark 6. We now give more details on the argument when some checks in the blindness game are not passed. Suppose there is \(m_b \) among the blindness challenges \((m_0, m_1)\) such that one of the checks in \textit{User} or \textit{Derive} does not pass.

- If the failed check is in \textit{User} : The only check therein is on \(\text{bk} \), independent from \((m_0, m_1)\), hence the first signing messages from \textit{User} are

\[
\rho_{1,0} = \rho_{1,1} = \bot
\]

and vacuously do not depend on \((m_0, m_1)\). Hence, by combining the aforementioned with the fact that the check in \textit{User} passes in this current case, an argument similar to our game hops Game 4 → Game 5 → Game 6 in the blindness proof argue that the first signing messages \(\rho_{1,0} \) and \(\rho_{1,1} \) can be made independent from \(\text{coin} \) as well. This concludes that in this case \(\mathcal{A} \)'s advantage to correctly output \(\text{coin} \) stays negligible in \(\lambda \) (union bound, 0 from the derived signatures and negligible from the first signing messages).

Finally, it remains to argue that whether the check(s) fail(s) or not does not depend on the blindness challenger’s \(\text{coin} \). This is clear for the check in \textit{User} that is only on \(\text{bk} \) and does not involve \(\text{coin} \). With respect to the check in \textit{Derive}, conditioned that the check in \textit{User} passes, the first signing messages \(\rho_{1,0} \) and \(\rho_{1,1} \) of our scheme (will be given to the adversary as defined in the blindness game Definition 3) can be made independent from \(\text{coin} \) in the same vein of the game hops Game 4 → Game 5 → Game 6 in the blindness proof. Therefore, the event that “the check in \textit{Derive} fails” in the adversary’s view, given \(\rho_{1,0} \) and \(\rho_{1,1} \), happens independently from \(\text{coin} \).

D.4 One-More Unforgeability Proof of BS_{fis}

Proof. We prove this using a series of games to rule out some cases in which the reduction won’t work.

Game 1: This is the one-more-unforgeability game.

Game 2: In this game we introduce an abort condition. Namely, the game aborts if there is a collision in the hash oracle \(\mathcal{H} \), i.e. if the adversary during the game makes two queries \(\zeta, \zeta' \) to \(\mathcal{H} \) such that \(\mathcal{H}(\zeta) = \mathcal{H}(\zeta') \), but \(\zeta \neq \zeta' \).

Lemma 9. \(|\text{Adv}_{\mathcal{A}, \text{Game } 1}(\lambda) - \text{Adv}_{\mathcal{A}, \text{Game } 2}(\lambda)| \leq Q^2_{\mathcal{H}}/2 \cdot 2^{2\lambda}|

Proof. Birthday bound.

Game 3: In this game we introduce an abort condition. Namely, the game aborts if there is a collision in the hash oracle \(\mathcal{H}_P \), i.e. if the adversary during the game makes two queries \(\zeta, \zeta' \) to \(\mathcal{H}_P \) such that \(\mathcal{H}_P(\zeta) = \mathcal{H}_P(\zeta') \), but \(\zeta \neq \zeta' \).

Lemma 10. \(|\text{Adv}_{\mathcal{A}, \text{Game } 2}(\lambda) - \text{Adv}_{\mathcal{A}, \text{Game } 3}(\lambda)| \leq \text{negl}(\lambda)|

Proof. This follows via a birthday bound since due to lemma, the image of \(\mathcal{H}_P \) is of exponential size.
Game 4: In this game, we alter how the parameters for C_Z are set up. Namely, we use the algorithm $\Pi_{ped}.Ext_1$ to set up the parameters for C_Z as $(x_0, td) \leftarrow \Pi_{ped}.Ext_1(1^\lambda)$ and we program the random oracle μ_{pp} so that it returns x_0 as pp_Z. Apart from this, Game 4 behaves identically to Game 3. As the parameters pp_Z are chosen uniformly at random by Ext_1, this game is identically distributed to the previous one and we get $\text{Adv}_{A,Game4}(\lambda) = \text{Adv}_{A,Game3}(\lambda)$.

Game 5: In this game, we introduce another abort condition, namely the game aborts if there exists a signing session where no witness can be extracted from π_{ped}. The game now extracts the values \mathbf{m}, r for every signing session. This game hop can be bounded by the Partial Online-Extractability of Π_{ped}. We formalize this in the following claim:

Lemma 11. There exists a PPT adversary B_1 against the online-extractability of Π_{ped} such that $\text{Adv}_{A,Game 5}(\lambda) \geq \frac{\text{Adv}_{A,Game 4}(\lambda) - \text{negl}(\lambda)}{\mu_{pp}(\lambda, \mathcal{Q}_n)}$ where we plugged in $\text{Adv}_{A,Game4}(\lambda)$ as $\mu(\lambda)$ from Definition 25 and negl, pp are as in Definition 25.

Proof. We provide an adversary B_1 against the online-extractability of Π_{ped} to bound the distance between the two games. The adversary receives the simulated CRS \mathbf{crs} for Π_{ped}. It then simulates Game 4 to the adversary A by sampling all the other parts of \mathbf{vk} as in Game 4 and answering the signing queries using the secret key. It outputs the proofs of Π_{ped} that the adversary sent when opening a new signing session. The online-extractability of Π_{ped} yields the claim.

Remark 7. We note that as the commitment scheme C_Z is perfectly binding, and the above online extraction property guarantees the existence of a full witness, there cannot be two sessions using the same commitment c_Z with different messages \mathbf{m}, \mathbf{m}' and different r, r'. Thus, it follows that if $\mathbf{m} \neq \mathbf{m}'$, also $c_Z \neq c'_Z$ and $H_F(c_Z) \neq H_F(c'_Z)$ due to the abort condition introduced in Game 3.

Game 6: This game aborts if among the message-signature pair in the adversary’s output there is a message for which the adversary has never queried $H(m)$.

Lemma 12. $|\text{Adv}_{A,Game5} - \text{Adv}_{A,Game6}(\lambda)| \leq \frac{1}{2^\lambda}$.

Proof. This boils down to the adversary having to guess the hash value $\mathbf{m} = H(m)$. As H is a random oracle mapping into $\{0, 1\}^{2\lambda}$, the probability of guessing a uniformly random value from this space is 2^{λ}.

Game 7: In this game, the game samples all random choices that the signer and the random oracle make at the beginning of the game. As this change is purely conceptual, it holds that $\text{Adv}_{A,Game7}(\lambda) = \text{Adv}_{A,Game6}(\lambda)$.

Game 8: In this game, we change how the CRS for Π_{fs} is generated. Namely, we instead of generating \mathbf{crs}_{fs} using GenCRS, we switch to generating \mathbf{crs}_{fs} using SimCRS. This game hop can be bounded by the CRS indistinguishability property of Π_{fs}.

Lemma 13. There exists a reduction B_2 such that $|\text{Adv}_{A,Game8} - \text{Adv}_{A,Game7}| \leq \text{Adv}_{B_2}^{fs}(\lambda)$.

Proof. The reduction A_2 receives a CRS from the CRS indistinguishability challenger.

It samples all other parts of the verification key as in Game 7 and outputs them to the adversary. It answers signing queries as in Game 7. If the adversary wins the game it outputs that the CRS was honest, otherwise that it was simulated. It is easy to see that the claim follows.

Game 9: In Game 9 we change how the values a_j are sampled during signature generation. In particular, the game samples bits $b, b' \leftarrow \{0, 1\}$ and $j \leftarrow \{1, \ldots, Q_{\mathcal{H}_b}\}$.

If $b = 1, b' = 0$, instead of sampling $a_j \leftarrow \{0, 1\}^{2\lambda}$, it first samples $\beta \leftarrow \{0, 1\}^{3\lambda}$ and then sets $a_j = \beta$. If $b = 1$ and $b' = 1$, it samples $\beta \leftarrow \{0, 1\}^{3\lambda}$ and sets $a_j = \beta - H(m_j)$. A simple argument shows that the distribution of a_j in Game 9 has statistical distance at most $1/2^\lambda$ from the distribution of a in Game 8.

Thus, we get that $|\text{Pr}[\text{Game 9} = 1] - \text{Pr}[\text{Game 8} = 1]| \leq \frac{1}{2^\lambda}$.
Game 10: In Game 10, we change how we set up the key \(\mathbf{vk} \). Namely, instead of using \(S_{N_9}.\text{KeyGen} \), we use the alternate algorithm \(S_{N_9}.\text{KeyGen}_{b,b'} \) using \(N \) generated as before and \(z \leftarrow \mathbb{Z}_N \) and it programs the random oracle \(H_z \) to return primes from \(e_1, \ldots, e_{Q_{N_9}} \). Everything else we do as in Game 9. As the keys are distributed the same, it holds that

\[
\text{Adv}_{A,\text{Game10}}(\lambda) = \text{Adv}_{A,\text{Game9}}(\lambda).
\]

Game 11: In Game 11, we change how signatures are created. In particular, the game uses the alternate signing algorithms \(S_{N_9}.\text{Sign}_{b,b'} \) as follows. As we introduced extraction of \(\pi, r \) in Game 5, the game has access to these two values. It therefore applies \(S_{N_9}.\text{Sign}_{b,b'}(sk_{b,b'}, \pi) \) to obtain a signature \(\sigma = (e, a, y) \). It then outputs \(y', a \) to the adversary.

As the signatures produced by this game are identically distributed to the ones output by Game 10, we obtain that

\[
\text{Adv}_{A,\text{Game11}}(\lambda) = \text{Adv}_{A,\text{Game10}}(\lambda).
\]

Game 12: In Game 12 we switch the setup of the CRS for \(\Pi_{N_9} \) to generating it using the simulator \(\text{SimCRS} \) for extraction.

Lemma 14.

\[
|\text{Adv}_{A,\text{Game12}}(\lambda) - \text{Adv}_{A,\text{Game11}}(\lambda)| = \text{negl}(\lambda).
\]

Proof. We construct an adversary \(B_3 \) against CRS indistinguishability (see Definition 24). The adversary takes as input a CRS for \(\Pi_{N_9} \). It sets up the rest of the verification key \(\mathbf{vk} \) as Game 12 and simulates all oracles except for \(H_{N_9} \) as Game 12. It simulates \(H_{N_9} \) by forwarding the queries of the adversary to its own hash oracle provided by the CRS indistinguishability challenger. It aborts whenever Game 12 would abort. If the adversary outputs a valid one-more forgery, the reduction \(B_3 \) outputs 1, otherwise 0. The claim follows from the CRS indistinguishability according to Definition 24 of \(\Pi_{N_9} \).

Moving Towards Breaking sRSA: We now want to use the knowledge soundness property of the NIZK \(\Pi_{N_9} \) to obtain a signature that will be used by the final reduction to break sRSA.

Namely, after the adversary has submitted its signatures, we extract a witness from \(\pi_{N_9} \).

We describe below how this extraction procedure works.

We describe a “wrapper” \(B_4 \) around \(A \) to extract from. This is necessary for formal reasons as the adversary \(A \) requires additional inputs and oracles compared to a knowledge soundness adversary, in particular \(A \) expects a verification key, several random oracles, as well as a signing oracle. The wrapper \(B_4 \) will be our soundness adversary to extract from and it will provide all additional inputs and oracles to \(A \).

Setup The algorithm \(B_4 \) takes as input a (simulated) CRS and has access to the random oracle \(H_{N_9} \). It generates all other parts of the verification key as Game 12, that is, it chooses the bits \(b, b' \) and runs the corresponding alternative key generation algorithm, however it replaces the CRS for \(\Pi_{N_9} \) with the one from its input. Note that the CRS of \(\Pi_{N_9} \) is generated completely independently of the rest of the verification key in the honest setup of \(\text{KeyGen} \), as well as in the alternative setup algorithms that use a different secret key to sign, and hence this new verification key \(\mathbf{vk} \) using the input CRS is identically distributed to a verification key set up by Game 12.

Online Phase. The wrapper simulates the following oracles to the adversary. It aborts whenever Game 12 would abort.

Signing The wrapper answers signing queries as Game 12 using the online-extraction and the alternative signing algorithms corresponding to the bits \(b, b' \).

Hash oracle \(H_{N_9} \) It simulates \(H_{N_9} \) by forwarding queries and responses to and from its own oracle \(H_{N_9} \) provided by the extractor.

Other Random Oracles The other random oracles it provides itself and implements them in the same way as Game 12.
Output determination. Due to the changes made in Game 6, for each message that the adversary A outputs a signature for, it has to have made a hash query. Further, as we introduced online-extraction of all witnesses of π_{ped} submitted during signing queries, the wrapper can identify the hashes \mathbb{M} that it has signed and which messages they belong to. As Game 2 aborts if there are collisions in \mathbb{H}, there are no collisions in \mathbb{H} in Game 12, and therefore, the wrapper can efficiently identify which of the messages submitted as part of the final message-signature pairs it has not signed. Once the adversary outputs its message-signature pairs, the wrapper identifies the commitment, i.e., no other witnesses, this is the unique witness that the extractor can extract perfectly to the adversary, the witness contained in the commitment

Lemma 15. B_4 is a valid adversary against adaptive knowledge soundness of Π_{ba} and it holds that

$$\Pr[(\mathbb{CRS}, \mathbb{td}) \leftarrow \text{SimCRS}(1^\lambda), (x, \pi) \leftarrow B_4^{\text{ba}}(\mathbb{CRS}, \rho): \text{Verify}^{\mathbb{H}_0}(\mathbb{CRS}, x, \pi) = 1] \geq \varepsilon_{B_4},$$

where $\varepsilon_{B_4} = \text{Adv}_{A, \text{Game}12}(\lambda)$

Proof. As the wrapper perfectly simulates Game 12 to the adversary A, with probability $\text{Adv}_{A, \text{Game}12}(\lambda)$, the adversary outputs a one-more forgery. Therefore, with the same probability, the wrapper outputs a pair $(c_1^*, \pi_{\text{ba}}^*)$ which is a statement-witness pair with a valid proof π_{ba}^*. The claim follows.

The extractor $\Pi_{\text{ba}}.\text{Ext}$ is now run on the wrapper B_4 wrapping A.

Lemma 16. It holds that

$$\Pr\left((\mathbb{CRS}, \mathbb{td}) \leftarrow \text{SimCRS}(1^\lambda), (c_1^*, \pi_{\text{ba}}^*) \leftarrow B_4^{\Pi_{\text{ba}}}(\mathbb{CRS}, \rho), w \leftarrow \text{Ext}(\mathbb{CRS}, \mathbb{td}, c_1^*, \pi_{\text{ba}}^*, \vec{h}) \in \mathbb{R}_{\text{ba}} \right) \geq \frac{\varepsilon_{B_4} - \text{negl}(\lambda)}{p_{\text{pr}}(\lambda, \mathbb{Q}_{\mathbb{H}_0})}.$$

Proof. This follows immediately from lemma 15 along with the adaptive knowledge soundness (see Definition 24) of Π_{ba}.

We now discuss how the witness is affected by the wrapper:

Information-theoretically, c_1^* contains a unique opening. We define the distribution

$$D_{\text{Game}12} := \{w | c_1^* \text{ is a commitment to } w\}$$

where $(m', c_1', \pi_{\text{ba}}')$ is the first tuple in the output of A Game 12 such that Game 12 has not signed m' in a signing session.

Furthermore, we define the distribution

$$D_{\text{ext}} := \{(\mathbb{CRS}, \mathbb{td}) \leftarrow \text{SimCRS}(1^\lambda), (c_1^*, \pi_{\text{ba}}^*) \leftarrow B_4^{\Pi_{\text{ba}}}(\mathbb{CRS}, \rho), w \leftarrow \text{Ext}(\mathbb{CRS}, \mathbb{td}, c_1^*, \pi_{\text{ba}}^*, \vec{h}) \in \mathbb{R}_{\text{ba}} \}.$$

Lemma 17. $D_{\text{Game}12} = D_{\text{ext}}$

Proof. The witness extracted by $\Pi_{\text{ba}}.\text{Ext}$ is information-theoretically fixed already after one run of the wrapper and adversary because c_1 is perfectly binding. As the wrapper simulates Game 12 perfectly to the adversary, the witness contained in the commitment c_1^* is therefore the unique witness the adversary would have committed to in Game 12. As there exist no other openings for the commitment, i.e., no other witnesses, this is the unique witness that the extractor can extract from B_4 wrapping around A.

Remark 8. We note that a similar argument would not go through if c_1 was only a computationally binding commitment. In this case, there would be no unique witness that the extractor is guaranteed to extract – any witness would mean success of the extractor, and thus the witness extracted might turn out to be dependent on the behavior of the wrapper in the same way as the witness extracted in [6][62] can depend on the behavior of the wrapper there.
Reduction simulating Game 12 We describe a reduction \(B_5 \) that simulates Game 12 and solves the strong RSA problem.

Setup. The reduction receives a strong RSA challenge \(N, z \) from its challenger. The reduction samples \(b, b' \leftarrow \{0, 1\} \) and then runs \(S_{\text{HK}, \text{KeyGen}_{b,b'}(1^\lambda, N, z)} \) to generate the verification key parts of \(S_{\text{HK}} \). It sets up the NIZK and commitment parameters as in Game 12.

Online Phase. The reduction interacts with the adversary as follows:

- **Simulation of \(H \)** This is done via lazy sampling from \(\{0, 1\}^{2\lambda} \)
- **Simulation of \(H_P \)** on the \(i \)-th fresh query to \(H_P \), return \(c_i \) from \(S_{\text{HK}, \text{KeyGen}_{b,b'}(1^\lambda, N, z)} \).
- **Simulation of other hash oracles** Lazy Sampling apart from whatever is defined through the setup of the NIZKs

Answering Signing Queries The reduction extracts the values \((m, r) \) from the proof \(\pi_{\text{ped}} \) using \(\Pi_{\text{HK}, \text{Ext}} \). It then derives \(e \) using \(H_P \). By the programming of \(H_P \), it identifies the index \(k \) such that \(e = e_k \in \{e_1, \ldots, e_{Q_{\text{HK}}}\} \). It then uses \(S_{\text{HK}, \text{Sign}_{b,b'}(sk_{b,b'}, k, m)} \) to generate the signature \(\sigma = (e, a, y) \). It then re-blinds the signature as \(z = y \cdot g^r \) and outputs \(z, a \).

Output Determination When the adversary \(A \) outputs its message-signature pairs, the reduction identifies the first message \(m^* \) that it has not signed before. It then uses the extractor \(\Pi_{\text{HK}, \text{Ext}} \) to obtain a signature \(\sigma^* = (e^*, a^*, y^*) \). The reduction then solves for \(z^{e^*} \) using the same techniques as in Section 4.

It is easy to see that \(B_5 \) simulates Game 12 perfectly.

We compute the probability that the reduction can use the solution output by the adversary to solve its sRSA challenge:

Lemma 18. The probability that none of the following properties hold for the combined run of the reduction, extractor, wrapper, and adversary is at least \(\frac{1}{2^{Q_{\text{HK}}}} \cdot \frac{e_{Q_{\text{HK}}}}{\text{negl}(\lambda)} \):

- extraction fails
- \(b = 0 \) and \(e^* \in \{e_1, \ldots, e_{Q_{\text{HK}}}\} \)
- \(b = 1 \) and \(e^* \notin \{e_1, \ldots, e_{Q_{\text{HK}}}\} \)
- \(b = 1 \) and \(e^* \neq e_j \) where \(j \) is the index \(j \) from \(sk_{b,b'} \).
- \(b = 1 \), the previous condition doesn’t apply, \(j \) as above. Denote by \(a_j \), \(\lambda \), \(\pi_j \) the values used in the first signing session where \(e_j \) was used as an exponent. If no such session exists, sample \(a_j \leftarrow S_{\text{HK}} \).

- \(b' = 0 \) and \(a^* = a_j \)
- \(b' = 1 \) and \(a^* + m = a_j + m_j \)

Proof. We calculate the probability of the opposite event.

By Lemma 16, extraction works with probability at least \(\frac{1}{2^{Q_{\text{HK}}}} \cdot \frac{e_{Q_{\text{HK}}}}{\text{negl}(\lambda)} \).

The witness committed to in Game 12 is independent of the choices of \(b, b', j \). This follows as in Theorem 6.

Therefore, by Lemma 17, the witness extracted is also independent. Thus the probability of \(b = 1 \) and \(e^* \in \{e_1, \ldots, e_{Q_{\text{HK}}}\} \) is at least \(\frac{1}{2} \). The probability of \(e^* = e_j \) and \(b = 0 \) is at least \(\frac{1}{2^{Q_{\text{HK}}}} \), multiplied by the probability \(\frac{1}{2} \) that either \(b' = 1 \) and \(a^* = a_j \) or \(b' = 0 \) and \(a^* + m = a_j + m_j \).

We briefly describe why solving sRSA works as in Section 4. First of all, \(\Pi_{\text{HK}} \) guarantees that \(a \in S_a \) and \(e \in S_e \). Thus \(a < e \) and in the case of \(b = 1 \), we know \(e^* \) is prime and thus co-prime to \(a_j - a^* \). In the case of \(b = 0 \) we cannot guarantee primality of \(e^* \) as it is chosen by the adversary, however, \(\Pi_{\text{HK}} \) still guarantees that \(e^* \) is odd and thus the same strategy as in Section 4 can be applied.

E Instantiations of NIZKs

In this section, we instantiate the remaining NIZKs required for \(BS_{\text{HK}} \): \(\Pi_{\text{ped}} \) and \(\Pi_{\text{HK}} \). Let us give first give a brief overview of the constructions. Both constructions follow roughly the Fiat-Shamir template: (1) Construct a \(\Sigma \)-protocol for the desired relation and (2) apply the Fiat-Shamir transformation to obtain a NIZK.
As before, we use the following notational conventions. In \(\Sigma \)-protocols, we denote by \(\Omega \) the ZK commitments sent in the first flow. To improve readability, specific \(\Omega \) are indexed by the relation to be shown. We denote by \(\gamma \) the challenge. The responses (generally consisting of a linear combination of \(\gamma \), a witness \(w \) and a mask denoted by \(\mu_w \)) are denoted by \(\tau_w \).

Design principles of our \(\Sigma \)-protocols. Throughout, we will utilize two groups types of groups: \(\mathbb{Z}_N^\times \) and prime-order \(G \). The latter is used for commitments (cf. Section [5]). The technical difficulty of both instantiations is due to the need to argue over both groups (of distinct order) consistently. Also, we cannot reduce to computational assumptions with respect to \(N \) because it is part of the statement. Roughly, our approach is as follows:

- For relations over either \(\mathbb{Z}_N^\times \) or \(G \) alone, we employ Schnorr-style \(\Sigma \)-protocol techniques. If a witness \(w \) appears within relations over both \(\mathbb{Z}_N^\times \) and \(G \), the verifier checks both equations using the same response \(\tau_w \) for both relations. Later, this ensures that the extracted witness satisfies the relations in both groups consistently. Because the order of \(\mathbb{Z}_N^\times \) and \(G \) is different [29], for instance, we cannot reuse a response in \(\mathbb{Z}_p \) within an equation over \(\mathbb{Z}_N^\times \)—this would lead to inconsistencies and already correctness fails.

Instead, to compute the \(\Sigma \)-protocol responses, the prover masks the witness over the integers with either rejection sampling or noise flooding. Roughly, this ensures correctness when reusing the same response over both \(\mathbb{Z}_N^\times \) and \(G \).

- For relations between witnesses over the integers, we use a technique often used in Lattice-based NIZKs (e.g., [15]). Roughly, we embed the desired relation in the leading coefficient \(f_d \) of a polynomial \(f \) of degree \(d \), where \(\gamma \) is interpreted as variable. Here, \(f \) is defined over the integers to avoid a dependence on the order of the groups. We design \(f \) such that the desired relation holds if \(f_d \) is 0 over the integers. Then, the prover proves that \(f_d = 0 \) over the integers by employing MPed commitments over QR\(\tilde{N} \), where \(\tilde{N} \) is a fresh RSA modulus [30]. For this, the prover commits to each coefficient except the leading coefficient \(f_d \) via MPed. The evaluation \(f_d(\gamma) \) is computable by the verifier by design, and the verifier checks that the prover committed to \(f_d(\gamma) \) by linearity of MPed. A Schwarz-Zippel argument then allows to argue that \(f_d = 0 \) over the integers [31]. Note that MPed over QR\(\tilde{N} \) is binding over the integers, so \(f_d = 0 \in \mathbb{Z} \) independent of the order of the group(s).

To show (relaxed) ranges within the \(\Sigma \)-protocol, we employ the techniques in Section [5] and Appendix [C.1]. That is, we commit to the witness via a relaxed integer commitment and open it in zero-knowledge by verifying range memberships of the response.

- To argue special soundness, we need to ensure that we can extract witnesses in \(\mathbb{Z} \). Then, all relations are well-defined since exponentiation in \(\mathbb{Z}_N^\times \) and \(G \) is well-defined for integer exponents. For this, we proceed as in Appendix [C.1]. That is, the prover commits to all witnesses over \(\mathbb{Z} \) in an MPed commitment over QR\(\tilde{N} \). Due to lemma [6] we can argue that extracted values must be integers. Then, to argue that specific relations hold, we follow standard proof techniques.

- To argue specific relations hold, we follow standard proof techniques.

- Another technicality is that for non-abort HVZK, we need that the witnesses lie within a specified range for masking to hide the witness statistically. Since some range checks are introduced in a modular manner later, the soundness extractor does not guarantee this at this

29. Furthermore, the order of \(\mathbb{Z}_N^\times \) is unknown to both verifier and prover within this section.

30. We stress that we cannot reuse the modulus \(N \) for the MPed commitment because soundness relies on binding of MPed (which holds under sRSA). As \(N \) is part of the statement, we cannot reduce to computational assumptions related to \(N \) within our proof. On the other hand, we later embed \(\tilde{N} \) into the NIZK’s crs, more precisely srs. In that case, we can reduce extraction failure to assumptions over \(\tilde{N} \). Let us also remark that for subversion zero-knowledge, we also cannot use assumptions related to \(\tilde{N} \) either since \(\tilde{N} \) is non-uniform.

31. Roughly, the check ensures that \(f_d(x) \) and polynomial \(f'(x) := \sum_{i \in [0,d-1]} f_i x^i \) committed to in MPed evaluate to the same values for \(x = \gamma \). If \(f_d(\gamma) - f'(\gamma) = 0 \) for \(d+1 \) different values \(\gamma \), then it must hold that \(f_d(x) = f'(x) \). Since the degree of \(f' \) is \(d-1 \), this means that \(f_d = 0 \). We provide more details when introducing our specific \(\Sigma \)-protocols below.
To instantiate values are short to enable online-extraction via a discrete logarithm computation. (The trapdoor is \(\Pi \) and \(C \) short values committed in ElGamal commitments and show that the relation holds with respect to the \(\Sigma \)-protocol compiled with Fiat-Shamir proves that the desired relation holds for the witnesses that are encrypted via ElGamal. (Because the witnesses are in general larger than \(B \), we decompose them in \(B \)-ary representation first.) The extractor simply decrypts the ElGamal commitments. Due to the optimizations akin to Section 5. (all \(i \) respectively, and defines \(c \)). Outputs \(\ell = \frac{1}{\log B} - 1 \) and \(\ell_r = \lfloor \log_B(S) - 1 \rfloor \). The scheme \(C_Z \) is defined below.

- \(C_Z.\text{Setup}(1^\lambda) \): Samples \(\overline{G}, \overline{H} \leftarrow \mathbb{F}_p \) and outputs \(pp \leftarrow \overline{G}, \overline{H} \).
- \(C_Z.\text{Commit}(pp, (m, r)) \): Takes as input public parameters \(pp \) and message \((m, r) \), where \(m \in [0, B - 1] \) and \(r \in [0, B] \). Decomposes \(m = \sum_{i=1}^{\ell_m} m_i B^{r_i - 1} \) and \(r = \sum_{i=1}^{\ell_r} r_i B^{r_i - 1} \). Let \(\bar{e} = (m_1, \ldots, m_{\ell_m}, r_1, \ldots, r_{\ell_r}) \in [0, B - 1]^{\ell_m + \ell_r} \). Samples \(s_i \leftarrow \mathbb{Z}_p \) and sets \(E_i = e_i \overline{G} + s_i \overline{H}, S_i = s_i \overline{G} \). Outputs \(c_Z = (E_1, S_1)_{i=1}^{\ell_m + \ell_r} \) and \(d_Z = (s_1, \ldots, s_{\ell_m + \ell_r}) \).
- \(C_Z.\text{Verify}(pp, c_Z, (m, r), d_Z) \): Parses \(c_Z \) and \(d_Z \) as above. Decomposes \(m \) and \(r \) into \(m_i \) and \(r_i \), respectively, and defines \(\bar{e} \) as above. Checks that \(E_i = e_i \overline{G} + s_i \overline{H}, S_i = s_i \overline{G} \) and \(e_i \in [0, B] \) for all \(i \in [\ell_m + \ell_r] \).

Lemma 19. The integer commitment scheme with bounded range \(C_Z \) with message space \(\mathbb{Z}_2^\lambda \times [0, S] \) is correct, hiding under DDH in \(\mathbb{F}_p \) and perfectly binding (cf. Definition 5).

[32] Also, sometimes the ranges required for HVZK and ranges guaranteed by soundness are different due to optimizations akin to Section 5.
Proof. For correctness, given c_Z, d_Z from $C_Z.\text{Commit}(pp, (m, r))$ and the opening (\overline{m}, r), we parse $c_Z = (E_i, S_i)_{i=1}^{\ell_m+\ell_r}$ and $d_Z = (s_i)_{i=1}^{\ell_m+\ell_r}$. The values s_i are the same that are used in $C_Z.\text{Commit}$. Since $B = \text{poly}(\lambda)$ is a power of two, or more generally since the super-increasing $(1, B, B^2, \ldots)$ satisfies $B^i \sum_{j=0}^{i-1} B^j$, the B-ary decomposition of \overline{m} and r is unique. Hence, in $C_Z.\text{Verify}(pp, c_Z, (\overline{m}, r), d_Z)$, decomposing $\overline{m} = \sum_{i=0}^{\ell_m} m_i B^i$ and $r = \sum_{i=1}^{\ell_r} r_i B^i$ gives the same vector $\overline{c} = (m_1, \ldots, m_{\ell_m}, r_1, \ldots, r_{\ell_r}) \in [0, B-1]^{\ell_m+\ell_r}$ that is used in $C_Z.\text{Commit}$, satisfying the range checks of e_i for all $i \in [\ell_m, \ell_r]$. Finally, the fact that $\overline{c}, \overline{\Pi} \leftarrow \overline{\mathcal{G}}_p$ being cyclic ensures that the equality $E_i = e_i \overline{G} + s_i \overline{H}$ holds, by using the same (e_i, s_i) that are used in $C_Z.\text{Commit}(pp, (m, r))$ to set E_i.

For hiding, observe that a commitment c_Z is comprised of $\ell_m + \ell_r = \text{poly}(\lambda)$ ElGamal commitments (E_i, S_i). Let us argue with a hybrid argument. Let A be an adversary on hiding. In the i-th hybrid, replace (E_i, S_i) with $(\overline{E}_i, \overline{S}_i) \leftarrow \mathcal{G}_p$. Since $(\overline{\Pi}, \overline{S}_i, \overline{H})$ form a DDH-tuple, it is straightforward to construct an adversary on DDH that distinguishes two consecutive hybrids with advantage $\varepsilon = \text{Adv}^\text{hide}_{\lambda}(\lambda)$. Since $(\ell_m + \ell_r)\varepsilon = \text{negl}(\lambda)$ under DDH, the claim follows.

Let us show the security. Let $c_Z = (E_i, S_i)_{i=\ell_m+\ell_r} \in \mathbb{G}^{2(\ell_m + \ell_r)}$. Observe that (E_i, S_i) fixes $e_i \mod p$ perfectly\footnote{An inefficient algorithm can recompute a unique $e_i \in \mathbb{Z}_p$ that satisfies $E_i = e_i \overline{G} + s_i \overline{H}$, where s_i is the DLOG of S_i.}. If $\exists i : e_i \notin [0, B]$, then the commitment cannot be opened because the interval membership check in verification fails. Else, since $\text{poly}(\lambda) = B < 2^\lambda \leq p$, any valid opening of (E_i, G_i) fixes unique e_i over the integers as described above. These values determine the message (\overline{m}, r) uniquely within $[0, 2^\lambda - 1] \times [0, S]$ through B-ary decomposition. In conclusion, c_Z can only be opened to (\overline{m}, r) fixed as described above.

Online-Extractable NIZK. We are now ready to instantiate Π_{ped}. Let $B = \text{poly}(\lambda)$ and $\ell_m := \lfloor \frac{1}{\log B} - 1 \rfloor, \ell_r := \lfloor \log_B(S) - 1 \rfloor$. For the above C_Z, we can rewrite the relation R_{ped} as follows.

$$R_{\text{ped}} = \{(x, w) \mid c \equiv h_{\overline{\tau}} \cdot g^{\overline{e}^x} \mod N, E_i = e_i \overline{G} + s_i \overline{H}, S_i = s_i \overline{G}, e_i \in [0, B - 1],$$

$$\overline{m} = \sum_{i=1}^{\ell_m} e_i B_i - 1, r = \sum_{i=1}^{\ell_r} e_i m_i B_i - 1 \},$$

for $x = (B, \overline{\tau}, r, e_i, h_{\overline{\tau}}, g, c_i, (E_i, S_i)_{i=\ell_m+\ell_r})$ and $w = (\overline{m}, r, (s_i)_{i=\ell_m+\ell_r})$. Above, $\overline{m} \in [0, 2^\lambda - 1], r \in [0, S]$ and $s_i \in \mathbb{Z}_p$. Note and that the values e_i are unique given \overline{m} and r via the B-ary decomposition. Moreover, by the choices of (ℓ_m, ℓ_r) it holds that

$$0 \leq \overline{m} = \sum_{i=1}^{\ell_m} e_i B_i - 1 \leq \sum_{i=1}^{\ell_m} (B-1) B_i - 1 \leq \sum_{i=0}^{\ell_m} B_i < \sum_{i=0}^{\ell_m} B_i^{\ell_m+1} \leq 2^\lambda$$

where \ast follows from the fact that $\ell_m = \lfloor \frac{1}{\log B} - 1 \rfloor$ and $|x| \leq x$ for all $x \in \mathbb{R}$. A similar calculation on r can be obtained

$$0 \leq r < B^{\ell_r+1} \leq S$$

and $(\ast \ast)$ follows from the fact that $\ell_r = \lfloor \log_B(S) - 1 \rfloor$.

To instantiate Π_{ped}, we construct a standard Σ-protocol Σ_{ped} to show that R_{ped} holds, except for the statement $e_i \in [0, B - 1]$. For the latter, we later use a range proof Π_m from \cite{56}. Then, we compile Σ_{ped} into an NIZK Π_{ped} via Fiat-Shamir and combine both NIZKs Π_{ped} and Π_m into an NIZK for the full relation R_{ped} as in \cite{66}, Section 6. This approach was shown to be secure in \cite{66}.

There is one difficulty that arises during the construction of Σ-protocol: the relations for \overline{m} and r have to hold over the integers. For example, notice that it is not sufficient to show that $r = \sum_{i=1}^{\ell_r} e_i m_i B_i - 1 \mod \mathbb{G}_p$ since the commitment C_Z is (perfectly) binding only if this relation holds over \mathbb{Z}. To ensure that soundness guarantees that the relations hold over \mathbb{Z}, we add an additional M_{Ped} commitment \overline{c} over $QR_{\mathbb{Z}}$ for a fresh RSA modulus N. If we commit to all witnesses (except s_i since these are defined over \mathbb{Z}_p) in \overline{c} and open it in \mathbb{Z}, the extracted values are integers under sRSA (cf. lemma\cite{6}). We can also use M_{Ped} commitments to show the statements over the integers (leveraging the binding property of M_{Ped}). To ensure subversion zero-knowledge,
we add a \(\Pi_{\text{gen}} \) proof (cf. Appendix C.1) which ensures that the public parameters of MPed are setup in a manner that ensures hiding.

Below, we provide the protocols \(\Sigma_{\text{ped}} \) and \(\Pi_{\text{p}} \), and then combine them to construct \(\Pi_{\text{ped}} \).

Step 1: the \(\Sigma \)-protocol. Let \(C = 2^\lambda \) (which determines the challenge space). Let \(\tilde{N} \in \mathbb{N} \) and let \(\tilde{\mathbf{p}} = (\tilde{h}, \tilde{y}_1, \ldots, \tilde{y}_{\ell m + \ell r}) \in (\mathbb{Z}_N^*)^{\ell m + \ell r} \) denote the public parameters of an MPed commitment with message space \(\mathbb{Z}^{\ell m + \ell r} \). (Since membership in \(\mathbb{QR}_N \) cannot be efficiently tested without factorization of \(\tilde{N} \), the MPed commitment is formally defined over \(\mathbb{Z}_N^* \). Later, \(\tilde{N} \) and \(\tilde{\mathbf{p}} \) are given in the crs.) Denote by \(R \) the relation

\[
R = \{ (x, w) : \quad c \equiv h_T^x \cdot g^{ce} \text{ mod } N, \quad E_i = e_i G + s_i H, \quad S_i = s_i G, \quad \overline{m} = \sum_{i=1}^{\ell m} e_i B_i^{i-1}, \quad r = \sum_{i=1}^{\ell r} e_{\ell m+i} B_{\ell m+i-1}, \}
\]

where \(x = (\tilde{N}, \tilde{\mathbf{p}}, B, \overline{H}, P, E, h_2, g, c, (E_i, S_i)_{i=1}^{\ell m + \ell r}) \) and \(w = ((e_i, s_i)_{i=1}^{\ell m + \ell r}, \overline{m}, r) \). Here, \(\overline{m}, r, e_i \in \mathbb{Z} \) and \(s_i \in \mathbb{Z}_p \). The protocol \(\Sigma_{\text{ped}} \) for relation \(R_{\Sigma_{\text{ped}}} \) is given in Fig. 4. We include the statements \(e_i \in [0, B-1] \) and \(\langle \tilde{h} \rangle = \langle \tilde{g}_i \rangle \) in the relation \(R_{\Sigma_{\text{ped}}} \). For the soundness relation, we omit \(e_i \in [0, B-1] \) and \(\langle \tilde{h} \rangle = \langle \tilde{g}_i \rangle \) (since these statements are shown via a separate NIZK within \(\Pi_{\text{ped}} \) later—in particular these relations are not ensured to hold by \(\Sigma \)-protocol yet). We remark that to show the decompositions, we use a standard technique that is often used in lattices to show multiplicative relations (e.g. [15]). In particular, we show 2-special soundness for the relation \(R_{\Sigma_{\text{ped}}} \).

\[
\tilde{R}_{\Sigma_{\text{ped}}} = \{ (x, w) : \quad (x, w) \in R \text{ or } (\tilde{\mathbf{p}}, w) \in R_{\Sigma_{\text{ped}}} \text{ or } (\tilde{\mathbf{p}}, w) \in R_{\text{dlog}} \},
\]

where \(R_{\Sigma_{\text{ped}}} \) is defined in Definition 7 and \(R_{\text{dlog}} \) denotes the relation that contains all non-trivial DLOG relations in \(\tilde{\mathbf{p}} \) (see [9] for more details). Note that under the factoring assumption, it is hard to find a witness for \(R_{\text{dlog}} \) if the statement \(\tilde{\mathbf{p}} \) are random generators of \(\mathbb{QR}_N \).

Our construction follows the design principles discussed at the start of this section. Let us give a brief overview. To show the statements over \(\mathbb{Z}_N^* \) and \(\mathbb{Z}_p \), we use Schnorr-type \(\Sigma \)-protocol techniques except that the witnesses are masked over the integers via noise flooding. This ensures that we can reuse the responses over groups of distinct order. For the relations related to the \(B \)-ary decomposition of \(\overline{m} \) and \(r \), we define two polynomials \(f_m \) and \(f_r \) of degree 1 where the leading coefficient is \(f_{m,1} = \overline{m} - \sum_{i=1}^{\ell m} e_i B_i^{i-1} \) and \(f_{r,1} = r - \sum_{i=1}^{\ell r} e_{\ell m+i} B_{\ell m+i-1} \), respectively. The polynomials are designed such that \(f_m(\gamma) \) and \(f_r(\gamma) \) can be recomputed given the \(\Sigma \)-protocol responses, where \(\gamma \) is the challenge. Notably, if \(f_m \) and \(f_r \) are constant, then the desired relations hold. This can be efficiently verified if the prover commits to the constant terms \(f_{m,0} \) of \(f_r \) in a separate MPed commitment and the verifier checks that \(f_{m,0}(\gamma) = f_m(\gamma) \) and \(f_{r,0}(\gamma) = f_r(\gamma) \) using the commitment’s linearity. Roughly, special soundness is argued as follows: If \(f_{m,0}(\gamma) - f_m(\gamma) = 0 \) for two distinct values \(\gamma \), then because \(f_{m,0} - f_m \) is of degree 1 but has two zeroes, it must hold that \(f_{m,0} - f_m = 0 \). But then, \(f_{m,1} = 0 \) because \(f_{m,0} \) is constant. Thus, the relation holds as discussed above.

The above discussion is formalized below.

Lemma 20. The \(\Sigma \)-protocol \(\Sigma_{\text{ped}} \) is correct, HVZK, has high min-entropy for relation \(R_{\Sigma_{\text{ped}}} \), and is 2-special sound for relation \(\tilde{R}_{\Sigma_{\text{ped}}} \).

34 As in the beginning of this section, we commit to \(e_i \) via an MPed commitment over \(\tilde{N} \) to ensure that \(e_i \in \mathbb{Z} \) and that the statements hold over the integers. Thus, we need that the public parameters \(\tilde{\mathbf{p}} \) is setup such that MPed is hiding. This is guaranteed by \(\langle \tilde{h} \rangle = \langle \tilde{g}_i \rangle \). Further, we know that in an honest execution, we have that \(e_i \in [0, B-1] \). We add this condition in the correctness and HVZK relation in order to mask over the integers with small masks. (This is required to compute the \(\Sigma \)-protocol responses.)

35 We could use rejection sampling and compile \(\Sigma_{\text{ped}} \) with Fiat-Shamir with aborts for better efficiency. We choose noise flooding for simplicity.
Proof. For correctness, the first check on line 16 follows arithmetics modulo N where $c^{-\gamma} \equiv h_2^{\gamma \tau r} \cdot g^{-\gamma r c} \mod N$ together with
\[
h_2^{\gamma \tau r} \cdot g^{-\gamma r c} \equiv h_2^{\gamma \tau r + \mu \tau} \cdot g^{\gamma r c + \mu c} \mod N
\]
and $\Omega_c \leftarrow h_2^{\gamma \tau r} \cdot g^{\mu c} \mod N$ implies $c^{-\gamma} h_2^{\gamma \tau r} \cdot g^{-\gamma r c} \equiv \Omega_c \mod N$. In a similar manner, the checks on lines 20 and 22 follow from modular arithmetics in \mathbb{Z}_n. More specifically, the check on line 22 passes because
\[
{\tilde{c}}^{-\gamma} \cdot {\tilde{h}}^{\tau r} \cdot \prod_{i=1}^{t} \tilde{g}_i^{\tau e_i} \equiv \tilde{h}^{-\gamma e + \tau i} \cdot \prod_{i=1}^{t} \tilde{g}_i^{-\gamma e_i + \tau e_i} \equiv \tilde{h}^{\mu i} \cdot \prod_{i=1}^{t} \tilde{g}_i^{\mu e_i} \mod \tilde{N}
\]
and is congruent to Ω_τ modulo \tilde{N} thanks to $\Omega_\tau \leftarrow {\tilde{h}}^{\mu \tau} \cdot \prod_{i=1}^{t} {\tilde{g}}^{\mu e_i} \mod \tilde{N}$, where (\ast) follows from $\tau_i \leftarrow \gamma l + \mu i$ and $\tau e_i \leftarrow \gamma e_i + \mu e_i$. To examine the check on line 23, we observe the following in \mathbb{Z}
\[
f_m = \left(\sum_{i=1}^{t} \tau_i \cdot B^{i-1} \right) - \tau_{m,0}
\]
and in the same manner, also in \mathbb{Z}_q,
\[
f_r = \left(\sum_{i=1}^{t} B^{i-1} \tau_{e,0} \right) - \tau_{e,0}
\]
This gives
\[
{\tilde{h}}^{l_q} \cdot {\tilde{g}}^{l_m} \cdot {\tilde{g}}^{l_r} \equiv {\tilde{h}}^{l_q} \cdot {\tilde{g}}^{l_m,0} \cdot {\tilde{g}}^{l_r,0} \equiv \Omega_q \mod \tilde{N}
\]
Finally, the checks on lines 18 and 19 are done in $\overline{\mathbb{Z}}_p$, even though $\gamma s_i \in \mathbb{Z}$ while $\mu s_i \in \mathbb{Z}_p$, the computation is in $\overline{\mathbb{Z}}_p$ of order p and thus $\tau_s \overline{H} = (\gamma s_i + \mu s_i) \overline{H} \in \overline{\mathbb{Z}}_p$ is well-defined (which would not be the case if μs_i was a congruent class of a modulus other than p). The calculations can be verified with ease
\[
\begin{align*}
-\gamma E_i + \tau_s \overline{G} + \tau_s \overline{H} &= -\gamma (\ell \gamma i + \gamma s_i \overline{H}) + (\gamma e_i + \mu e_i) \overline{G} + (\gamma s_i + \mu s_i) \overline{H} = \mu e_i \overline{G} + \mu s_i \overline{H} = \Omega E_i \in \overline{\mathbb{Z}}_p \\
-\gamma S_i + \tau_s \overline{G} &= -\gamma s_i \overline{G} + (\gamma s_i + \mu s_i) \overline{G} = \mu s_i \overline{G} = \Omega S_i \in \overline{\mathbb{Z}}_p.
\end{align*}
\]
For showing high min-entropy, we consider the first flow
\[
\Omega := (\overline{c}, \overline{E}_i, \overline{G}_i, (\Omega_{E_i}), (\Omega_{S_i}), \Omega_c)
\]
The cyclic group $\overline{\mathbb{Z}}_p$ has order $p \geq 2^\lambda$ and because $\mu s_i \leftarrow \mathbb{Z}_p$ uniformly at random modulo p, the terms $\mu s_i \overline{H}$, $\mu s_i \overline{G}$ are uniformly distributed in $\overline{\mathbb{Z}}_p$ and implying $\Omega_{E_i}, \Omega_{S_i}$ are uniformly distributed in $\overline{\mathbb{Z}}_p$. The probability that an adversary correctly guesses Ω is thus at most $2^{-\lambda}$, concluding the high-min-entropy property.

For $HVZK$, we observe that following the properties of noise flooding (see Supplementary materials [A,2]), the masking by
\[
\begin{align*}
\mu i &\leftarrow [0, C N \cdot 2^\lambda], \quad \mu \tau &\leftarrow [0, C 2^\lambda], \quad \mu c &\leftarrow [0, C S \cdot 2^\lambda] \\
\mu e_i &\leftarrow [0, C B \cdot 2^\lambda], \quad \mu s_i &\leftarrow \mathbb{Z}_p
\end{align*}
\]
ensures that the values
\[
\begin{align*}
\tau \overline{\tau} &\leftarrow \gamma \overline{m} + \mu \overline{\tau}, \quad \tau e_i \leftarrow \gamma e_i + \mu e_i, \quad \tau s_i \leftarrow \gamma s_i + \mu s_i,
\end{align*}
\]

sent in the third flow are statistically close to uniform over their respective ranges \([0, CB \cdot 2^\lambda]^{f_m} \times Z_p^{f_r} \times [0, C \cdot 2^{2\lambda}] \times [0, CS \cdot 2^{2\lambda}] \times [0, CN \cdot 2^{2\lambda}] \times [0, N \cdot 2^{2\lambda}]\). Moreover, the commitment \(\tilde{c}\) is distributed close to uniform over \((\tilde{h})\) (with statistical distance at most \(2^{-\lambda}\)) because \(\ell\) is drawn uniform over \([0, N \cdot 2^\lambda]\), and because \((\tilde{h}) = (\tilde{g}_i)\). The remaining values \(\Omega_e, \Omega_q, (\Omega_{E_i}), (\Omega_{S_i}), \Omega_c\) are determined from the third flow and the challenge \(\gamma\), by setting with respect to the verification equations

\[
\begin{align*}
\Omega_e &= c^{-\gamma} h_2^{m-1} \cdot g^{r \cdot c} \mod N \\
\forall i \in [l_m + l_r] : \Omega_{E_i} &= -\gamma E_i + \tau_{e_i} \overline{G} + \tau_{s_i} \overline{H}; \quad \Omega_{S_i} = -\gamma S_i + \tau_{s_i} \overline{G} \\
\Omega_c &= \tilde{c}^{-\gamma} \cdot \tilde{h}^{r_i} \cdot \prod_{i=1}^{m+f_r} \tilde{g}_i^{\gamma_i} \mod N \\
\Omega_q &= \tilde{h}^{t_i} \cdot \tilde{g}_1^{m} \cdot \tilde{g}_2^{f_r} \mod N.
\end{align*}
\]

Given the above discussion, the simulator receives the challenge \(\gamma\) and samples the responses (for the third flow) according to the above distributions. It also samples \(\tilde{c}\) (with negligible distance close to) uniform over \((\tilde{h})\). Finally, it recomputes the remaining first flow that is determined as above and outputs the full transcript. Since the distribution is statistically close to the real protocol, the simulator suffices.

Let us finally show 2 special soundness. We want to construct a deterministic PT extractor so that, for

\[
x = (\tilde{N}, \tilde{pp}, B, \overline{G}, \overline{H}, N, e, h_2, g, c, (E_i, S_i)_{i=1}^{m+f_r}),
\]
given 2 valid transcripts that are indexed by \(i \in [2]\) with

Identical first flow: \(\Omega = (\tilde{c}, \Omega_e, \Omega_q, (\Omega_{E_i}), (\Omega_{S_i}), \Omega_c)\)

Pairwise distinct challenge:

Third flow: \(\tilde{t}_i = ((\tau_{e_{i,k}}), (\tau_{s_{i,k}}), \gamma_{m_{i,k}}, \tau_{r_i}, \tau_{t_i}, t_{q,i})\)

the extractor extracts the witness \(w = ((e_k, s_k)_{k=1}^{m+f_r}, \overline{m}, r)\) such that \((x, w) \in \tilde{R}_{x,m}\). In the following, we denote by \(\Delta v_{i,j} := \tau_{v_{i,j}} - \tau_{v_{j,i}} \in \mathbb{Z}\) for \(v \in \{(e_k, s_k)_{k=1}^{m+f_r}, \overline{m}, r\}\) and \(\Delta \gamma_{i,j} := \gamma_i - \gamma_j \neq 0\).

By verification on line 22, we have that for \(i \in [2]\), it holds that

\[
\tilde{c}^{-\gamma_i} \cdot \tilde{h}^{\tau_{t_i}} \cdot \prod_{k=1}^{m+f_r} \tilde{g}_k^{\gamma_{e_{i,k}}} \equiv \Omega_e \mod \tilde{N}
\]

Thus, it holds for \(i \neq j \in [2]\)

\[
\tilde{c}^{\Delta \gamma_{i,j}} \equiv \tilde{h}^{\Delta t_{i,j}} \cdot \prod_{k=1}^{m+f_r} \tilde{g}_k^{\Delta e_{i,k}} \mod \tilde{N}
\]

Thus, either \(\Delta \gamma_{i,j}\) divides \(\Delta v_{i,j}\) for \(v \in \{(e_k, s_k)_{k=1}^{m+f_r}, \overline{m}, r\}\) over \(\mathbb{Z}\), or the above equation yields a witness \(w\) for \((\tilde{pp}, w) \in R_{\tilde{C}, \tilde{c} \cdot \tilde{pp}}\). In the latter case, the extractor outputs the witness \(w\).

Further, the verification checks ensure that

\[
\begin{align*}
&c^{-\gamma} h_2^{m-1} \cdot g^{r \cdot c} \equiv c^{-\gamma} h_2^{m-1} \cdot g^{r \cdot c} \\
&\forall k \in [l_m + l_r] : -\gamma E_k + \tau_{e_{k,1}} \overline{G} + \tau_{s_{k,1}} \overline{H} = -\gamma E_k + \tau_{e_{k,2}} \overline{G} + \tau_{s_{k,2}} \overline{H} \\
&\forall k \in [l_m + l_r] : -\gamma S_k + \tau_{s_{k,1}} \overline{G} = -\gamma S_k + \tau_{s_{k,2}} \overline{G}
\end{align*}
\]

We set \(e_k = \Delta e_{k,1,2}/\Delta \gamma_{1,2}, s_k = \Delta s_{k,1,2}/\Delta \gamma_{1,2} \mod p, \overline{m} = \Delta \overline{m}_{1,2}/\Delta \gamma_{1,2}, \text{ and } r = \Delta r_{1,2}/\Delta r_{1,2}\). From (11), it holds that

\[
c \equiv h_2^{\Delta \overline{m}_{1,2}/\Delta \gamma_{1,2} \cdot g^{(\Delta r_{1,2}/\Delta \gamma_{1,2}) \cdot c}} \mod N
\]

where we note that the division \(\Delta \overline{m}_{1,2}/\Delta \gamma_{1,2}\) and \(\Delta r_{1,2}/\Delta \gamma_{1,2}\) are well defined over integer values \(\Delta \overline{m}_{1,2}, \Delta r_{1,2}, \Delta \gamma_{1,2} \in \mathbb{Z}\), with respect to the above argument regarding verification in line 22. Consequently, setting \(\overline{m} = \Delta \overline{m}_{1,2}/\Delta \gamma_{1,2}, \text{ and } r = \Delta r_{1,2}/\Delta r_{1,2}\) satisfies \(c \equiv h_2^{\overline{m}} \cdot g^{c} \mod N\). Next, for each \(k \in [l_m + l_r]\), (12) and (13) imply that

\[
E_k = \Delta e_{k,1,2}/\Delta \gamma_{1,2} \overline{G} + \Delta s_{k,1,2}/\Delta \gamma_{1,2} \overline{H} \quad \text{and} \quad S_k = \Delta s_{k,1,2}/\Delta \gamma_{1,2} \overline{G}
\]
where the inverse $1/\Delta \gamma_{1.2}$ is well defined in \mathbb{Z} following a similar argument regarding verification in line 22. We find a witness for the relaxed DLOG relation. As a result, setting $e_k = \Delta e_{k.1.2}/\Delta \gamma_{1.2}$ and $s_k = \Delta s_{k.1.2}/\Delta \gamma_{1.2}$ satisfies $E_k = e_k \mathbf{G} + s_k \mathbf{H}, S_k = s_k \mathbf{G}$ for all $k \in [\ell_m + \ell_r]$.

From line 23, we obtain two openings for Ω_q. Thus, we know that $f_m = f_m'$ and $f_r = f_r'$, else we find a non-trivial DLOG relation in \mathbb{pp} as in [34], Section 5.1. By definition, we have

$$f_m = (\sum_{i=1}^{\ell_m} B_i^{-1} \tau_i) - \tau_m = (\sum_{i=1}^{\ell_m} B_i^{-1} \tau_i') - \tau_m' = f_m'$$

$$\implies (\sum_{i=1}^{\ell_m} B_i^{-1} \tau_i) - \tau_m = 0$$

$$\implies \sum_{i=1}^{\ell_m} B_i^{-1} \tau_i = \tau_m.$$

Similarly, we obtain $r = \sum_{i=1}^{\ell_r} e_i \tau_i + B_i^{-1}$. This concludes the proof.

\begin{tabular}{|c|c|}
\hline
\textbf{Prover}(x; w) & \textbf{Verifier}(x) \\
\hline
1: & $t_q, i \leftarrow [0,N \cdot 2^\lambda]$ \\
2: & $\mu_i \leftarrow [0, C \mathbf{N} \cdot 2^{2\lambda}], \mu_m \leftarrow [0, C 2^{3\lambda}], \mu_r \leftarrow [0, C S \cdot 2^\lambda]$ \\
3: & for $i \in [\ell_m + \ell_r]$ do \\
4: & $\mu_{e_i} \leftarrow [0, C B \cdot 2^\lambda], \mu_{e_i} \leftarrow \mathbb{Z}_p$ \\
5: & $\Omega_{E_i} \leftarrow \mu_{e_i} \mathbf{G} + \mu_{s_i} \mathbf{H}, \Omega_{S_i} \leftarrow \mu_{e_i} \mathbf{G}$ \\
6: & $\hat{\epsilon} \leftarrow \mu_{\epsilon_i}, \Pi_{i=1}^{\ell_m+\ell_r} \hat{g}_{\epsilon_i} \mod \tilde{N}$ \\
7: & $f_{m,0} \leftarrow (\sum_{i \in [\ell_m]} B_i^{-1} \mu_{e_i}) - \mu_m$ \\
8: & $f_{r,0} \leftarrow (\sum_{i \in [\ell_r]} B_i^{-1} \mu_{e_i+\ell_m}) - \mu_r$ \\
9: & $\tilde{c} \leftarrow \hat{h}^i \cdot \Pi_{i=1}^{\ell_m+\ell_r} \hat{g}_{\epsilon_i} \mod \tilde{N}$ \\
10: & $\hat{\Omega}_q \leftarrow \tilde{h}^{i_q} \cdot \Pi_{i=1}^{\ell_m+\ell_r} \hat{g}_{\epsilon_i} \mod \tilde{N}$ \\
11: & \hline
12: & $\gamma \leftarrow [0, C]$ \\
13: & $\tau_m \leftarrow \gamma \mu_m + \mu_m, \tau_r \leftarrow \gamma \mu_r + \mu_r, \tau_i \leftarrow \gamma \mu_i + \mu_i$ \\
14: & for $i \in [\ell_m + \ell_r]$ do \\
15: & $\tau_{e_i} \leftarrow \gamma \mu_{e_i} + \mu_{e_i}, \tau_{\epsilon_i} \leftarrow \gamma \mu_{\epsilon_i} + \mu_{\epsilon_i}$ \\
16: & check $c^{-\gamma} h^i \cdot \hat{g}^{\tau_{\epsilon_i}} \equiv \hat{\Omega}_e \mod \tilde{N}$ \\
17: & for $i \in [\ell_m + \ell_r]$ do \\
18: & check $-\gamma E_i + \tau_s \mathbf{G} + \tau_s \mathbf{H} = \Omega_{E_i}$ \\
19: & check $-\gamma S_i + \tau_s \mathbf{G} = \Omega_{S_i}$ \\
20: & $f_m \leftarrow (\sum_{i=1}^{\ell_m} B_i^{-1} \tau_i) - \tau_m$ \\
21: & $f_r \leftarrow (\sum_{i=1}^{\ell_r} B_i^{-1} \tau_i) - \tau_r$ \\
22: & check $\tilde{c}^{-\gamma} \cdot \hat{h}^{i_q} \cdot \Pi_{i=1}^{\ell_m+\ell_r} \hat{g}_{\epsilon_i} \equiv \Omega_c \mod \tilde{N}$ \\
23: & check $\tilde{h}^{i_q} \cdot \hat{g}_{\epsilon_i} \mod \tilde{N}$ \\
\hline
\end{tabular}

Fig. 4: Description of Σ_{ped} for $x = (\tilde{N}, \mathbb{pp}, N, e, h_2, g, c, (E_i, S_i)_{i=1}^{\ell_m+\ell_r})$ and $w = ((e_i, s_i)_{i=1}^{\ell_m+\ell_r}, \overline{m}, r)$.

Step 2: the range proof. Next, let \(\Pi_{rp} \) be the NIZK with random oracle \(H_{rp} \) from \cite{66} (cf. Section 6.2). Note that \(\Pi_{rp} \) is obtained by compiling Bulletproofs \cite{22,9} via Fiat-Shamir. The correctness and zero-knowledge relation is

\[
R_{\text{rp}} = \{(x, w) : E_i = e_iG + s_i\mathcal{H}, e_i \in [0, B - 1] \text{ for } i \in [\ell_m + \ell_r]\},
\]

with \(x = (\mathcal{G}, \mathcal{H}, B, (E_i)_{i \in [\ell_m + \ell_r]}) \) and \(w = ((e_i, s_i)_{i \in [\ell_m + \ell_r]}) \), where \(B \) is a power of two. Note that \(srs = \perp \) and \(\text{urs}_{\text{rp}} = ((\tilde{g}_i)_{i \in [\ell_m]}) \in \mathbb{G}_p^2 \) define the crs = \(\text{urs}_{\text{rp}} \) of \(\Pi_{rp} \), where \(\ell_{rp} \in \mathbb{N} \) is chosen appropriately. The soundness relation is

\[
\tilde{R}_{\text{rp}} := \{(x, w) : (x, w) \in R_{\text{rp}} \text{ or } ((\mathcal{G}, \mathcal{H}, \text{urs}_{\text{rp}}), w) \in R_{\text{dlog}}\},
\]

where \(R_{\text{dlog}} = \{((\mathcal{G}, \mathcal{H}, \text{urs}_{\text{rp}}), w)\} \) denotes the relation that contains all non-trivial DLOG relations \(w \) for \((\mathcal{G}, \mathcal{H}, \text{urs}_{\text{rp}})\) (see \cite{9} for more details). Note that for uniform statement, it is hard to find a witness for \(R_{\text{dlog}} \) under the DLOG assumption. We recall well-known properties of \(\Pi_{rp} \) in lemma 21.

Lemma 21 (\cite{66}, Theorem 17). The NIZK \(\Pi_{rp} \) for relation \(R_{\text{rp}} \) is correct, zero-knowledge and adaptively knowledge sound for the relaxed relation \(\tilde{R}_{\text{rp}} \supseteq R_{\text{rp}} \).

Step 3: the online-extractable NIZK. Finally, we combine \(\Sigma_{\text{ped}} \) and \(\Pi_{rp} \) to construct \(\Pi_{\text{ped}} \) for the relation

\[
R_{\text{ped}} = \{(x, w) \mid c \equiv h_2^{\overline{m}} \cdot g^r \text{ mod } N, E_i = e_i\mathcal{G} + s_i\mathcal{H}, s_i = s_i\mathcal{H}, e_i \in [0, B - 1], \overline{m} = \sum_{i=1}^{\ell_m} e_iB^{i-1}, r = \sum_{i=1}^{\ell_r} e_iB^{i-1}\}.
\]

The construction is similar to the NIZK in Section 6.3 \cite{66} except that our \(\Sigma \)-protocol is more involved. We first define the srs space. Recall that \(\Sigma_{\text{ped}} \) relies on a fresh modulus \(N \) and MPed parameters \(pp \). These are provided in the \(\Sigma \). To ensure subversion zero-knowledge, we follow the approach in Appendix C.1. That is, we add a NIZK to prove that \(pp \) is setup in a hiding manner and set

\[
SRS = \{(\check{N}, pp, \pi_{\text{gen}}) \mid \check{N} \in \mathbb{N}, pp = (\check{h}, \check{g}_1, \ldots, \check{g}_{\ell_m + \ell_r}), (\mathbb{Z}_N^*)^{1+\ell_m + \ell_r}, \pi_{\text{gen}}.\text{Verify}^{\text{HP}}(x_{\text{gen}}, \pi_{\text{gen}}) = 1, x_{\text{gen}} = (\check{N}, \ell_m + \ell_r, \check{h}, (\check{g}_1, \ldots, \check{g}_{\ell_m + \ell_r}))\}.
\]

The proof \(\pi_{\text{gen}} \) ensures that the preconditions with respect to \(pp \) for the HVZK relation of \(\Sigma_{\text{ped}} \) are ensured for malicious srs, and thus ensure subversion zero-knowledge. We denote by \(H_{\text{ped}} \) the random oracle of \(\Pi_{\text{ped}} \) and by \(URS = \mathbb{G}_p^2 \) the space for the srs of \(\Pi_{\text{ped}} \). Below, we have \(\text{urs} \in URS \) and crs = \((\text{urs}, \text{crs}) \) for some srs \(\in SRS \). Let \(H_\gamma \) be a random oracle mapping into \([0, C] \). The random oracle of \(\Pi_{\text{ped}} \) is \(H_{\text{ped}} = (H_{\text{rp}}, H_\gamma) \). Let \(x = (B, \mathcal{G}, \mathcal{H}, N, \mathcal{c}, h_2, g, c, (E_i, S_i)_{i=1}^{\ell_m + \ell_r}) \) and \(w = (\overline{m}, r, (s_i)_{i \in [\ell_m + \ell_r]}) \). The scheme is given below. Roughly, the prover decomposes \(\overline{m} \) and \(r \) via \(B \)-ary decomposition, commits to \(e_i \) in ElGamal commitments \((E_i, S_i)\), and then proves that \(e_i \in [0, B] \) via \(\Pi_{rp} \) and that the committed values satisfy \(\check{R}_{\Sigma_{\text{ped}}} \) via Fiat-Shamir compiled \(\Sigma_{\text{ped}} \).

- \(\Pi_{\text{ped}}.\text{GenSRS}(1^\lambda) \): Samples pp_{MPed} = (\check{N}, pp) \leftarrow \text{MPed.Setup}(1^\lambda) \) with \(pp = (\check{h}, \check{g}_1, \ldots, \check{g}_{\ell_m + \ell_r}) \). Then, sets \(\pi_{\text{gen}} \leftarrow \Pi_{\text{ped}}.\text{Prove}^{\text{HP}}(w_{\text{gen}}, x_{\text{gen}}) \) for \(x_{\text{gen}} \) as above and appropriate \(w_{\text{gen}} \). Outputs the structured reference string srs = \((\check{N}, pp, \pi_{\text{gen}}) \).

- \(\Pi_{\text{ped}}.\text{Prove}^{\text{HP}}(\text{crs}, x, w) \): Parses \(x = (B, \mathcal{G}, \mathcal{H}, N, \mathcal{c}, h_2, g, c, (E_i, S_i)_{i=1}^{\ell_m + \ell_r}) \) and \(w = (\overline{m}, r, (s_i)_{i \in [\ell_m + \ell_r]}) \). Decomposes \(\overline{m} \) and \(r \) into \(\ell_1 \) and \(\ell_2 \), via \(B \)-ary decomposition, respectively. Note that \((E_i, S_i) = (e_i\mathcal{G} + s_i\mathcal{H}, s_i\mathcal{G})\). Then, computes

\[
\pi_0 \leftarrow \Pi_{\text{ped}}.\text{Prove}^{\text{HP}}(\text{crs}, x_0, w_0),
\]

\footnote{We moved the generators \(\mathcal{G} \) and \(\mathcal{H} \) to the statement from the uniform reference string \(\text{urs}_{\text{rp}} \). This is a purely notational change and we adapted the soundness relation below accordingly.}
for $x_0 = (\mathcal{G}, \mathcal{H}, B, (E_i)_{i \in [t_m + t_r]})$ and $w_0 = ((e_i, s_i)_{i \in [t_m + t_r]})$,

$$(\Omega_\Sigma, st) \leftarrow \Sigma_{\text{ped}}.\text{Init}(x_1, w_1),$$

$$\gamma_\Sigma \leftarrow H_3(x_1, \Omega_\Sigma),$$

$$\tau_\Sigma \leftarrow \Sigma_{\text{ped}}.\text{Resp}(x_1, st, \gamma_\Sigma),$$

$$\pi_1 \leftarrow (\Omega_\Sigma, \gamma_\Sigma, \tau_\Sigma),$$

for statement $x_1 = (\hat{N}, \hat{p}, B, \mathcal{G}, \mathcal{H}, N, c, h_2, g, c, (E_i, S_i)_{i = 1}^{t_m + t_r})$ and witness $w_1 = ((e_i, s_i)_{i = 1}^{t_m + t_r}, m, r)$. Outputs $\pi = (\pi_0, \pi_1)$.

- $\Pi_{\text{ped}}.\text{Verify}^\text{Hs}(\text{crs}, x, \pi)$: On input crs, x, and $\pi = (\pi_0, \pi_1)$, checks

$$\Pi_{\text{ped}}.\text{Verify}^\text{Hs}(\text{crs}, x, \pi_0) = 1,$$

$$H_3(x_0, \Omega_\Sigma) = \gamma_\Sigma,$$

$$\Sigma_{\text{ped}}.\text{Verify}(x_1, \Omega_\Sigma, \gamma_\Sigma, \tau_\Sigma) = 1,$$

where $\pi_1 = (\Omega_\Sigma, \gamma_\Sigma, \tau_\Sigma)$ and x_0, x_1 are defined as above, and outputs 1 iff all checks succeed.

We show that the scheme is sufficient to instantiate our framework BS$_{\text{sub}}$ in Section 6 (i.e., the NIZK is correct, subversion zero-knowledge, and partially online-extractable). Correctness and subversion zero-knowledge follow from the discussion above. For partial online-extraction, recall that statement x and witness w of relation R_{ped} are split into $x_0 = (\mathcal{G}, \mathcal{H}), w_0 = (s_1, \ldots, s_{t_m + t_r})$ and $x_1 = (B, N, c, h_2, g, c, (E_i, S_i)_{i = 1}^{t_m + t_r}), w_1 = (m, r)$. For the sake of simplicity, we sketch how the extractor proceeds to extract from a single proof. Let A be an adversary (i.e., prover) for online-extraction. Since the tuple $x_0 = (\mathcal{G}, \mathcal{H})$ is drawn at random from $X_0 = \mathcal{G}_p^2$, the extractor samples $\mathcal{G} \leftarrow \mathcal{G}_p$ and $\text{td} \leftarrow \mathbb{Z}_p$, then sets $\mathcal{H} = \text{td} \cdot \mathcal{G}$. Then, it outputs $x_0 = (\mathcal{G}, \mathcal{H})$ and crs = (crs, urs) to A, where crs $\leftarrow \Pi_{\text{ped}}.\text{GenRS}(1^\lambda)$ and urs $\leftarrow \text{URS}$. After obtaining (partial) statement x_1 and proof π from A, the extractor decrypts the ElGamal commitments (E_i, S_i) via a brute-force computation of the discrete logarithm $e_i = \text{DLOG}(\mathcal{G}^i)$ of $E_i' = E_i - \text{td} \cdot S_i$. If $e_i \notin [0, B - 1]$, the extractor aborts. (Since $B = \text{poly}(\lambda)$, the extractor remains efficient and the NIZKs guarantee that aborts happen with high probability.) Using e_i, the adversary recomputes \overline{m} and td via B-ary decomposition and checks that $c \equiv h_2^{\overline{m}} \cdot g^{\text{td}} \pmod N$. Note that in this case, the existence of suitable ElGamal openings $w_0 = (s_{i_0})$ is guaranteed. (These are the discrete logarithms $s_i = \text{DLOG}(S_i)$ of S_i.) A subtlety of the proof is that we need to extract from both proofs π_0 and π_1 of $\pi = (\pi_0, \pi_1)$ simultaneously in the case that extraction fails. Fortunately, this was shown to be possible in [66]. In both extractions succeed, we can reduce to either DLOG in \mathcal{G}_p or RSA.

Theorem 10. The NIZK Π_{ped} is correct, subversion zero-knowledge under the DDH assumption, and partially online-extractable under the RSA assumption and the DLOG assumption in \mathcal{G}_p.

Proof. Correctness is straightforward. In more detail, let us show that $(x_0, w_0) \in R_{\text{sub}}$ and $(x_1, w_1) \in R_{\text{sub}}$. Then, correctness of both Π_{ped} and Σ_{ped} yield correctness of Π_{ped}. First, observe that $e_i \in [0, B - 1]$. Also, $E_i = e_i \mathcal{G} + s_i \mathcal{H}$ holds since $(x, w) \in R_{\text{sub}}$. Thus, $(x_0, w_0) \in R_{\text{sub}}$. Similarly, $(x, w) \in R_{\Sigma_{\text{ped}}}$ yields that $c \equiv h_2^{\overline{m}} \cdot g^{\text{td}} \pmod N, S_i = s_i \mathcal{G}$. By construction, it holds that $e_i \notin [0, B - 1]$ and $\overline{m} = \sum_{i=1}^{t_m} e_i B_i^{i-1}, r = \sum_{i=1}^{t_3} e_{m+i} B_i^{i-1}$. Further, we have that $\langle \overline{h} \rangle = \langle \tilde{y}_i \rangle$ by definition of MPed.Setup. Thus, $(x_1, w_1) \in R_{\text{sub}}$ as desired.

Subversion zero-knowledge follows similarly to Theorem 9. Notably, we have $(x_0, w_0) \in R_{\text{sub}}$ by design — this follows as above and since σ_{gen} in the adversarial crs ensures that $(\overline{h}) = \langle \tilde{y}_i \rangle$ under soundness of σ_{gen} with overwhelming probability. The simulator then simply simulates π_1 via HVZK of Σ_{ped} and by programming H_3 accordingly. (The latter is possible due to high min-entropy of Σ_{ped}.) Similarly, π_0 is simulated via the zero-knowledge simulator of Π_{ped}. This is possible since $(x_1, w_1) \in R_{\text{sub}}$ which again, follows as above.

Online-extraction requires some care, but the proof is similar to the proof of Theorem 20, [66] (taking into account that we embed the trapdoor into the statement $x_0 = (\mathcal{G}, \mathcal{H})$ instead of the crs). That is, the extractor Ext proceeds as follows.

- Ext(1^λ): Sets up $\mathcal{G} \leftarrow \mathcal{G}_p$ and $\mathcal{H} \leftarrow \text{td} \cdot \mathcal{G}$ for $\text{td} \leftarrow \mathbb{Z}_p$ and outputs $x_0 = (\mathcal{G}, h_p)$.
\begin{itemize}
 \item $\text{Ext}(\text{crs}, \text{td}, x, \pi)$: Parses $x = (x_0, x_1)$ with $x_0 = (\mathcal{G}, \mathcal{H})$ and $x_1 = (B, N, e, h_2, g, c, (E_i, S_i))_{i=1}^{\ell_r}$.

 Note that $\mathcal{H} = \text{td} \cdot \mathcal{G}$. Decrypts the ElGamal commitments (E_i, S_i) to $e_i = \text{DLOG}_{\mathcal{G}}(E'_i)$ via a discrete logarithm computation of $E'_i \leftarrow E_i - \text{td} \cdot S_i$ (but outputs \bot and aborts if there is no such $e_i \in [0, B - 1]$). Then, sets $\overline{m} = \sum_{i=1}^{\ell_r} e_i B'^{-1}$ and $r = \sum_{i=1}^{\ell_r} e_i t_{m+i} B'^{-1}$. Checks that $c \equiv h_{\mathcal{G}}^{\overline{m}} \cdot g^r \mod N$. If the check succeeds, outputs partial witness $w_1 = (\overline{m}, r)$, and \bot otherwise.

 Note that $\text{Ext}(1^\lambda)$ outputs uniform $(\mathcal{G}, \mathcal{H})$ over $\mathbb{G}_p^2 = X_0$ and that Ext runs in polynomial time (since the DLOG computation aborts in case e_i is not short, i.e., of polynomial size). Also, if all check succeed, then the output of Ext is sufficient, i.e., there is a $w_0 = (s_1, \ldots, s_{\ell_m + \ell_r})$ such that $((w_0, w_1), x) \in R_{\text{ped}}$ due to the following facts.

 \begin{itemize}
 \item We have that $c \equiv h_{\mathcal{G}}^{\overline{m}} \cdot g^r \mod N$ due to the last check.
 \item We have that $E_i = e_i \mathcal{G} + s_i \mathcal{H}$ and $S_i = s_i \mathcal{G}$, $e_i \in [0, B - 1]$, where $s_i = \text{DLOG}_{\mathcal{G}}(S_i)$ for some $s_i \in \mathbb{Z}_p$. This holds by construction since for $s_i = \text{DLOG}_{\mathcal{G}}(S_i)$, we have that $E_i = E'_i + \text{td} \cdot S_i = e_i \mathcal{G} + s_i \mathcal{H}$.
 \item We have that $\overline{m} = \sum_{i=1}^{\ell_r} e_i B'^{-1}$, $r = \sum_{i=1}^{\ell_r} e_i t_{m+i} B'^{-1}$ by construction.
 \end{itemize}

 Now let \mathcal{A} be an adversary that on input (crs, x_0) outputs $Q_{\mathcal{A}}$ pairs $(x_{1,i}, \pi_i) \in Q_{\mathcal{A}}$ that verify (i.e., we have that $\Pi_{\text{ped}} \cdot \text{Verify}(\text{crs}, (x_{1,i}, \pi_i)) = 1$ with probability at least $\mu(\lambda)$). Here, $\text{crs} = (\mathcal{G}, \mathcal{H}, S_i)$ is setup by Π_{ped} and $\text{urs}_{\mathcal{A}} \leftarrow \text{crs}$. Denote with Fail, the event that the proof $(x_{1,i}, \pi_i)$ verifies but extraction fails for $i \in Q_{\mathcal{A}}$. It remains to show $\Pr[\text{Fail}] = \neg \mu(\lambda)$. Then, we can conclude that $\Pr[\exists i : \text{Fail}_i] = \neg \mu(\lambda)$ via a union bound.

 Assume that Fail occurs. Parse $x_{1,i} = (N, e, h_2, g, c, (E_i, S_i))_{i=1}^{\ell_r}$ and $\pi_i = (\pi_{i,0}, \pi_{i,1})$ with $\pi_{i,0} = (\Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma})$. Set $x = (x_{0,1}, x_{1,i})$, $x_{rp} = (\mathcal{G}, \mathcal{H}, B, (E_i)_{i=1}^{\ell_r+\ell_c})$ and $x_{\Sigma} = (N, pp, B, \mathcal{G}, \mathcal{H}, N, e, h_2, g, c, (E_i, S_i))_{i=1}^{\ell_r+\ell_c}$. Then we use the procedure from Theorem 20. \[\text{Obtain a witness } w_{\mathcal{A}} \text{ such that } (x_{1,i}, w_{\mathcal{A}}) \in R_{\text{ped}} \supseteq R_{\text{ped}} \text{ and two related transcripts } (tr, tr') \text{ of } \Sigma_{\text{ped}} \text{ for the statement } x_{\Sigma} \text{ on } 37. \]

 Under the DLOG assumption, we have $((\mathcal{G}, \mathcal{H}), \text{urs}_{\mathcal{A}})$, $w_{\mathcal{A}} \in R_{\text{ped}}$ with at most negligible probability. Thus, $(x_{1,i}, w_{\mathcal{A}}) \in R_{\text{ped}}$ which means that $w_{\mathcal{A}} = (c', s_{i}')_{i=1}^{\ell_r+\ell_c}$ and

 \begin{equation}
 E_i = e_i \mathcal{G} + s_i' \mathcal{G}' \text{ and } e'_i \in [0, B - 1].
 \end{equation}

 Then, we invoke 2-special soundness of Σ_{ped} on (tr, tr') and obtain a witness w_{Σ} with $(x_{1,i}, w_{\Sigma}) \in R_{\Sigma_{\text{ped}}}$. We have that $(x_{1,i}, w_{\Sigma}) \in R$ or $(pp, w_{\Sigma}) \in R_{C_{\Sigma} \cdot \text{crs}}$ or $(pp, w_{\Sigma}) \in R_{\text{ped}}$. Under $s\text{RSA}$, we have that $(pp, w_{\Sigma}) \in R_{C_{\Sigma} \cdot \text{crs}}$ or $(pp, w_{\Sigma}) \in R_{\text{ped}}$ with at most negligible probability. Thus, $(x_{1,i}, w_{\Sigma}) \in R$.

 Parse $w_{\Sigma} = ((e_i, s_i))_{i=1}^{\ell_r+\ell_r}, \overline{m}, r$. By definition, it holds that

 \begin{equation}
 c \equiv h_{\mathcal{G}}^{\overline{m}} \cdot g^r \mod N
 \end{equation}

 \begin{equation}
 E_i = e_i \mathcal{G} + s_i \mathcal{H}, S_i = s_i \mathcal{G}
 \end{equation}

 Notably, we have $e_i = e'_i$ under DLOG as otherwise, we can compute a non-trivial DLOG relation between \mathcal{H} and \mathcal{G}. Finally, observe that Eqs. 14 and 15 with $e_i = e'_i$ imply that extraction of Π_{ped} via Ext succeeds, i.e., Fail, does not occur. Thus, $\Pr[\text{Fail} \cdot \text{ext}] = \neg \mu(\lambda)$. This concludes the proof.

 Optimizations. We apply standard Σ-protocol optimizations for Σ_{ped}. That is, we omit the first \overline{m} of Σ_{ped} (i.e., the values $\Omega_{\ell_i}, \Omega_{\ell_c}, (\Omega_{E_i})_{i=1}^{\lambda}, (\Omega_{S_i})_{i=1}^{\lambda}$ except \overline{c}) from the proof π_1. The verification equations are then verified within the hash function H_r.

 Efficiency. We set $B = 2^{64}$. Then, the DLOG computation in extraction runs in time $O(2^{64})$. Further, we use standard RSA moduli and groups for $\lambda = 128$ bit security, i.e., N and \tilde{N} of size 3072 bit and group \mathbb{G}_p with order 256 bit. With these parameters, we have $\ell_m + \ell_r = 54$ and an integer commitment C_2 is of size 3.46 KB. The online-extractable NIZK is of size 5.62 KB and the range proof Π_{rp} is of size 1088 Byte. In total, the proof size of Π_{ped} is 6.7 KB.

37 Roughly, the procedure extracts a witness for $x_{1,i}$ via the knowledge extractor of Π_{rp} and two related transcripts for x_Σ via forking. Notably, the argument is agnostic to the concrete Σ-protocol that is being used. [66] proves that the procedure succeeds in polynomial time with probability close to $\Pr[\text{Fail}]$. We refer to [66] for more details.
E.2 Instantiation of Π_{fs}

In this section, we instantiate Π_{fs}. Recall that Π_{fs} allows to prove knowledge of a valid S_{fs} signature (e, a, y), where (e, a) are fixed in a C_{Rint} commitment c_I. We instantiate C_{Rint} with $\tilde{C}^{\tilde{B}, \tilde{T}}$, where $\tilde{B} = (2^{3\lambda}, 2^{3\lambda})$ and $T = 2^{\lambda+1}L$ for $L \in \mathbb{N}$ (cf. Section 5). As discussed in Section 6.1, we set $E = 2^{3\lambda}$. The public parameters are $pp_I = (G_1, G_2, H) \in \mathbb{G}$ for some group \mathbb{G} of order p such that $2^{3\lambda}p < \frac{2^{\lambda+1}L}{2^\lambda}$. We assume without loss of generality that $G_1, G_2, H \neq 0$. Denote by $\tilde{G} := (G_1, G_2)$.

We can rewrite the relation R_{fs} as follows

$$R_{fs} := \{(x, w) \mid y^e \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N, e \equiv 1 \mod 2, y \in \langle h_1 \rangle, (e - \mathcal{E}, a) \in [0, \tilde{B}], \tilde{C} = (e - \mathcal{E}, a)H + r\tilde{G}, F = rH\},$$

for $x = (pp_I, N, h_1, h_2, h, \overline{\mu}, \tilde{C}, F), w = (e, a, y, r)$. The soundness relation can be written as \tilde{R}_{fs}

$$\tilde{R}_{fs} := \{(x, w) \mid y^e \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N, e \equiv 1 \mod 2, (e - \mathcal{E}, a) \in \mathbb{Z}, \tilde{C} = (e - \mathcal{E}, a)H + r\tilde{G}, F = rH\},$$

We construct a Σ-protocol Σ_{fs} for the relation R_{fs}, and then compile it via Fiat-Shamir.

Step 0: Preparing a ZK-friendly relation for R_{fs}. First, we derive a more Σ-protocol friendly relation that implies R_{fs}. Assume that $y \in \langle h_1 \rangle^{38}$ Note that the relation R_{fs} contains the equation

$$y^e \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N.$$

Since both y and e are part of the witness, this equation is non-trivial to prove, especially since y is an element of a group $\langle h_1 \rangle$ that might be setup maliciously. We solve this by committing to y in an additional C_{Grp} commitment c_N (cf. Section 5.2) over the group $\langle h_1 \rangle$. We recall that C_{Grp} is an ElGamal commitment of the form $c_N = y \cdot h_1^s \in \langle h_1 \rangle$, where the integer randomness s is fixed via an Π_{int} commitment over a prime-order group. Then, with $\omega = e \cdot s \in \mathbb{Z}$, we have that

$$y^e \equiv c_N^e \cdot h_1^{-es} \equiv c_N^e \cdot h_1^{-\omega} \mod N$$

and consequently, we have an equivalence

$$y^e \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N \iff c_N^e \cdot h_1^{-\omega} \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N \quad (16)$$

in \mathbb{Z}_N. More specifically, it suffices to show

$$c_N^e \cdot h_1^{-\omega} \equiv h \cdot h_1^a \cdot h_2^{e+\overline{\mu}} \mod N \land \omega = e \cdot s \land C_{\text{Grp}}, \text{Verify}(pp, c_N, y, s) = 1$$

and we can resort to well-known techniques for quadratic equations over \mathbb{Z}. Also, we follow the technique to zero-knowledge outlined in Section 5. Recall that C_{Grp} is defined over a prime-order group. In order to use the same group \mathbb{G} for the relaxed integer commitment of C_{Grp} and the commitment c_I of (e, a) defined above, we split the integer randomness s of C_{Grp} into ℓ_s values $s_i \in [0, 2^{3\lambda} - 1]$ via $2^{3\lambda}$-ary decomposition, i.e., $s = \sum_{i=1}^{\ell_s} s_i \cdot 2^{3\lambda(i-1)}$. We recall to Section 5.2 for this splitting of s into ℓ_s values in a vector $\vec{s} = (s_i)_{i \in [\ell_s]}$, while reminding that the domain of s is $[0, N \cdot 2^{3\lambda}]$, since the order of $\langle h_1 \rangle$ is upper bounded by N. Specifically, we set $\ell_s = \lceil \log_2(N \cdot 2^{3\lambda}) \rceil$ and $\vec{B} = (2^{3\lambda}, \ldots, 2^{3\lambda}) \in \mathbb{N}^{\ell_s}$. Then, we use a second relaxed integer commitment $C_{\text{Rint}} = \tilde{C}^{\tilde{B}, \tilde{T}}$ with public parameters $pp_I = (H', G_1', \ldots, G_{\ell_s}')$ to commit to \vec{s} satisfying $s_i \in [0, 2^{3\lambda} - 1]$ for all $i \in [\ell_s]$. Below, we denote by $\tilde{G}' := (G_1', \ldots, G_{\ell_s}')$.

We modify the relation in two other ways:

1. Instead of using witness e, we use $\vec{e} = e - \mathcal{E}$ for some even $\mathcal{E} \in \mathbb{Z}$ and adapt the relations accordingly. As \vec{e} is shorter, this reduces the proof size. Also, note that $e \equiv 1 \mod 2$ is equivalent to showing that $\vec{e} = 2e' + 1$ over \mathbb{Z} because \mathcal{E} is even.

38 This is guaranteed by the correctness and HVZK relation.
2. Let \(\tilde{N} \in \mathbb{N} \). We add public parameters \(\overline{p} = (\overline{h}, \overline{g}_1, \ldots, \overline{g}_l) \in (\mathbb{Z}_N^*)^{l+1} \) for MPed to the statement, where \(l = 4 + \ell_s \). In the \(\Sigma \)-protocol, the prover commits to the witnesses over \(\mathbb{Z} \) via MPed. As in previous NIZKs, this allows to ensure that the extracted values are integers in the soundness proof.

We are now ready to describe the \(\Sigma \)-protocol-friendly relation. First, let us define the relation \(R \) as follows. (\(R \) serves as basis for both the correctness and HVZK relation, and the soundness relation.)

\[
R := \{ (x, w) \mid c_{x}^+ \overline{e} \cdot h_{1}^{\omega} \cdot h_{1}^{-s} \overline{e} \equiv h \cdot h_{1}^{s} : h_{2}^{\pm \mp} \mod N, \quad w = \overline{e} \cdot s, \overline{e} = 2e' + 1, \quad \overline{C} = (\overline{e} \cdot h, a \cdot H) + r \overline{G}, F = r H, \quad \overline{C}' = sH' + r' \overline{G}', F' = r'H, \quad s = \sum_{i \in [l_s]} s_i 2^{3\lambda(i-1)}, c_{x} \equiv y \cdot h_{1}^{s} \mod N \} ,
\]

where \(x = (c_N, \tilde{N}, \overline{p}, \overline{p}', c, N, h_1, h_2, h, m, \overline{C}, F, \overline{C}', F'), w = (e, a, y, r, e', \omega, (s_1, \ldots, s_{\ell_s})) \). Let us remark that Eqs. (17) and (18) correspond to verifying that the signature \((e, a, y)\) is valid with respect to \(\mathcal{S}_{\text{fs}} \) verification (except the range membership), where \(e = \overline{e} + \overline{e} \). Also, \(y \) is committed in a \(\mathcal{C}_{\text{grp}} \) commitment \((\overline{c}_x, \overline{C}, F')\) and \((\overline{e}, a)\) is committed in a \(\mathcal{C}_{\text{ring}} \) commitment \((\overline{C}, F)\), as specified by Eqs. (19) and (20), respectively, except range checks are omitted. Then, adding the range and subgroup checks, gives the correctness and HVZK relation \(R_{\Sigma} \) as follows:

\[
R_{\Sigma} := \{ (x, w) \mid (x, w) \in R, y \in (h_1, B), (s_1, \ldots, s_{\ell_s}) \in (0, B^\ell, \tilde{h}) = (\overline{g}_x, h_1) \}.
\]

Note that \(R_{\Sigma} \) is obtained by applying the modifications discussed above to \(R_{\text{fs}} \). Similarly, applying the above modifications to the soundness relation \(R_{\text{fs}} \), we obtain relation

\[
\tilde{R}_{\Sigma} := \{ (x, w) \mid (x, w) \in R_{\Sigma}, (\overline{e}, a) \in [-\overline{B}T, \overline{B}T], (s_1, \ldots, s_{\ell_s}) \in [-\overline{B}T, \overline{B}T] \text{ or } (\overline{p}, w) \in R_{C_{\text{grp}}}(\overline{p}) \text{ or } (\overline{p}, w) \in R_{\text{dlog}} \},
\]

where \(R_{C_{\text{grp}}}(\overline{p}) \) is defined in Definition 7 and \(R_{\text{dlog}} \) denotes the relation that contains all non-trivial DLOG relations in \(\overline{p} \) (cf. Appendix E.1). Later, we show that a \(\Sigma \)-protocol for these relations allows to construct a NIZK for \(R_{\Sigma} \) via Fiat–Shamir under sRSA.

Step 1: the \(\Sigma \)-protocol. We now construct a \(\Sigma \)-protocol for relations \(R_{\Sigma}, \tilde{R}_{\Sigma} \) defined in the previous paragraph. Set \(C = 2^l - 1 \) which defines the challenge space \([0, C]\). The \(\Sigma \)-protocol \(\Sigma_{\text{fs}} \) is given in Fig. 3. We briefly discuss the construction. (Note that we follow the design guidelines described in the beginning of Appendix E.)

- The Eq. (19) and the (relaxed) range membership for \((\overline{e}, a)\) correspond to opening a \(\mathcal{C}_{\text{ring}} \) commitment in zero-knowledge. We proceed as discussed in Appendix C.1 for these equations (using MPed with parameters \(\overline{p} \) to argue over the integers).
- The Eq. (20) and the (relaxed) range membership for \((s_1, \ldots, s_{\ell_s})\) correspond to opening a \(\mathcal{C}_{\text{grp}} \) commitment in zero-knowledge. We proceed as discussed in Appendix C.1 for these equations (again, using MPed with parameters \(\overline{p} \) to argue over the integers).
- We show Eq. (17) using Schnorr-style \(\Sigma \)-protocol techniques.
- To show Eq. (18), we define degree 2 polynomials, where the leading coefficient is 0 iff both relations hold. That is, we construct a polynomial \(f_\omega = f_{e,2}\gamma^2 + f_{e,1}\gamma + f_{e,0} \) and \(f_\omega = f_{e,2}\gamma^2 + f_{e,1}\gamma + f_{e,0} \) where the challenge \(\gamma \) is interpreted as variable, such that \(f_{e,2} = f_{e,2} = 0 \) implies that \(\omega = \overline{e} \cdot s \) and \(\overline{e} = 2e' + 1 \). The prover shows that indeed \(f_{e,2} = f_{e,2} = 0 \) by committing to the non-zero coefficients in a MPed commitment. Then, the verifier recomputes \(f_\omega(\gamma) \) and \(f_\omega(\gamma) \) (which is possible by construction) and verifies that \(f_{e,2}(\gamma) = f_{e,1}\gamma + f_{e,0} \) and \(f_{e,2}(\gamma) = f_{e,1}\gamma + f_{e,0} \) by linearity of MPed over \(\mathbb{Z}_N^* \).

Then, 3 special soundness is argued as follows. If \(f_\omega(\gamma) = f_{e,1}\gamma + f_{e,0} \) holds for three 3 distinct challenge \(\gamma \), then the polynomial \(f_{\text{dlog}} := f_\omega(x) - f_{e,1}x + f_{e,0} \) has three zeroes. Since the polynomial \(f_{\text{dlog}} \) is of degree 2 with 3 zeroes, it must be the zero polynomial. In particular, the leading coefficient of \(f_\omega \) is zero and thus, \(\overline{e} = 2e' + 1 \). The equation \(\omega = \overline{e} \cdot s \) is argued similarly.
Lemma 22. The Σ-protocol Σ_{fa} for relation R_{Σ} is correct with abort probability $1 - \frac{1}{\ell} + \frac{3}{\ell}$, is non-abort HVZK, has high min-entropy, and is 3-special sound for R_{Σ}.

Proof. We only give a brief sketch as this follows as similarly to security of previous Σ-protocols. For correctness, we examine each of the checks. The range checks on lines 19 and 20 for (τ_r, τ_s, τ_c) are satisfied thanks to the checks by prover before sending the responses (on lines 17 and 18). The check on line 21 on the commitment Ω_f is satisfied by

\begin{align*}
& c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \tau_i \cdot 2 \lambda^{2 \lambda(1 - i)} \cdot h_1 \gamma \cdot h_1^\alpha + \mu_a \cdot h_2^\alpha + \gamma \mod N \\
& \equiv c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \mu_i \cdot 2 \lambda^{2 \lambda(1 - i)} \cdot h_1 \mu_a \cdot h_2^\alpha \cdot \left(c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \lambda^2 \lambda(1 - i) \cdot h_1 \gamma \cdot h_1^\alpha + \gamma \mod N \\
& \equiv c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \mu_i \cdot 2 \lambda^{2 \lambda(1 - i)} \cdot h_1^\mu_a \cdot h_2^\mu_a \cdot h_2^\mu_a \cdot \left(c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \lambda^2 \lambda(1 - i) \cdot h_1 \gamma \cdot h_2^\alpha + \gamma \mod N \\
& \equiv c_N^{-c} \cdot h_1^\omega \cdot h_1 \sum_{i \in \ell} \mu_i \cdot 2 \lambda^{2 \lambda(1 - i)} \cdot h_1^\mu_a \cdot h_2^\mu_a \cdot h_2^\mu_a \mod N \\
& \equiv \Omega_f \mod N
\end{align*}

where we make use of the response calculations $\gamma \leftarrow \gamma e + \mu_e, \tau_a \leftarrow \gamma a + \mu_a, \tau_\omega \leftarrow \gamma \omega + \mu_\omega$ over \mathbb{Z}, (\ast) follows from the unique $2 \lambda^{2 \lambda(1 - i)}$-decomposition of $s = \sum_{i \in \ell} s_i 2 \lambda^{2 \lambda(1 - i)}$, and ($\ast\ast$) follows from Equation (17). Next, the check on line 22 is satisfied as per the following computation over \mathbb{G}

\begin{align*}
& (\tau_r, \tau_a) H + \tau_r \hat{G} - \gamma \hat{C} \\
& = (\gamma e + \mu_e, \gamma a + \mu_a) H + (\gamma r + \mu_r) \hat{G} - \gamma ((\tau \cdot H, a \cdot H) + r \hat{G}) \\
& = (\mu_r, \mu_a) H + \mu_r \hat{G} \\
& = \Omega_C, \tag{22} \\
& \tau_r H - \gamma F \\
& = (\gamma r + \mu_r) H - \gamma r H \\
& = \Omega_F \tag{23} \tag{24}
\end{align*}

where the first equality (22) follows from the definition (19) of $\hat{C} = (\tau H, a H) + r \hat{G}$ in relation R_{Σ}, and equalities (23) (24) follow from the definitions by prover at line 6.

We now examine the next check on line 23 in the same vein of computation

\begin{align*}
& \tilde{\tau}_s H' + \tau_r \hat{G}' = \gamma \hat{C}' \\
& = (\gamma \tilde{s} + \tilde{\mu}_s) H' + (\gamma \tilde{r}' + \mu_r) \hat{G}' - \gamma (\tilde{s} \cdot H' + \tilde{r}' \hat{G}') \\
& = \tilde{\mu}_s H' + \mu_r \hat{G}' \\
& = \tilde{\Omega}_C', \tag{25} \\
& \tau_r H' - \gamma F' \\
& = (\gamma r + \mu_r) H' - \gamma r H' \\
& = \Omega_F', \tag{26}
\end{align*}

where the opening $\tilde{\tau}_s \leftarrow \gamma \tilde{s} + \tilde{\mu}_s$ and the opening $\tau_r \leftarrow \gamma \tilde{r}' + \mu_r$ are both over \mathbb{Z} from lines (16) (13), for which the group exponentiation is well defined in the cyclic group \mathbb{G}. Regarding the check on line 24 we apply the specification of the opening $\tilde{\tau}_s \leftarrow \gamma \tilde{f} + \tilde{\mu}_s, \tau_a \leftarrow \gamma a + \mu_a, \tau_c \leftarrow \gamma \tilde{c}' + \mu_c$ as well as $\tilde{\tau}_s \leftarrow \gamma \tilde{s} + \tilde{\mu}_s$ by the prover on lines (14) (15) (16).
respectively:
\[
\tilde{c}^{-\gamma} \cdot h^{t_i} \cdot \tilde{g}_1^\mu \cdot \tilde{g}_3^\tau_{i+1} \cdot \tilde{g}_{i+1}^\omega \equiv \tilde{c}^{-\gamma} \cdot h^{\tau_{i+1} + \mu} \cdot \tilde{g}_1^{\tau_i + \mu} \cdot \tilde{g}_3^\gamma \cdot \tilde{g}_{1+1}^\omega \cdot \tilde{g}_{4+\ell_s}^\omega \\
\equiv (h^{t_i} \cdot \tilde{g}_1^\mu \cdot \tilde{g}_3^\tau_{i+1} \cdot \tilde{g}_{i+1}^\omega) \cdot \tilde{g}_1^{\tau_i + \mu} \cdot \tilde{g}_3^\gamma \cdot \tilde{g}_{2}^{\gamma + \mu} \cdot \tilde{g}_{4+\ell_s}^\omega \\
\equiv (h^{t_i} \cdot \tilde{g}_1^\mu \cdot \tilde{g}_3^\tau_{i+1} \cdot \tilde{g}_{i+1}^\omega) \cdot \tilde{g}_1^{\tau_i + \mu} \cdot \tilde{g}_3^\gamma \cdot \tilde{g}_{2}^{\gamma + \mu} \cdot \tilde{g}_{4+\ell_s}^\omega \\
\equiv \Omega_c \mod \tilde{N}.
\]

where (*) and the last equality follow from the definition of \(\tilde{c}\) and the definition of \(\Omega_c\) by prover on line 10 respectively. Lastly, the check on line 26 is satisfied by
\[
\tilde{c}_q \cdot \Omega_q \equiv \left(h^{t_q} \cdot \tilde{g}_1^{\mu_q} \cdot \tilde{g}_3^{\tau_q} \cdot \tilde{g}_{2}^{\omega} \right) \cdot \tilde{h}_1^{\mu_q} \cdot \tilde{g}_3^{\tau_q} \cdot \tilde{g}_{2}^{\omega} \\
\equiv \tilde{h}_1^{\tau_q + \mu_q} \cdot \tilde{g}_1^{\gamma} \cdot \tilde{g}_3^{\omega} \cdot \tilde{g}_{2}^{\gamma + \mu_q} \cdot \tilde{g}_{4+\ell_s}^\omega \\
\equiv \tilde{h}_1^{\tau_q} \cdot \tilde{g}_1^{\gamma} \cdot \tilde{g}_3^{\omega} \cdot \tilde{g}_{2}^{\gamma + \mu_q} \cdot \tilde{g}_{4+\ell_s}^\omega \tag{25}
\]
\[
\Omega_q \equiv \tilde{h}_1^{\tau_q} \cdot \tilde{g}_1^{\gamma} \cdot \tilde{g}_3^{\omega} \cdot \tilde{g}_{2}^{\gamma + \mu_q} \cdot \tilde{g}_{4+\ell_s}^\omega \tag{26}
\]

where equation (25) follows from the definition of \(\tilde{c}_q\) and \(\Omega_q\) by prover on line 10 equation (26) comes from \(f_{\omega,0} \leftarrow -\sum_{i \in \{e\}} \mu_i 2^{3\lambda(i-1)} \) as well as
\[
f_{\omega,1} \leftarrow \mu_{\omega} - \sum_{i \in \{e\}} \left(\mu_i e + s_i 2^{3\lambda(i-1)} \right), \\
\]
where we are using the fact that \(\tau = e - \tilde{E}\). Moreover, \(f_{\omega,0} \leftarrow \mu_{\omega}, f_{\omega,1} \leftarrow -2\mu_{\omega}\) on lines 89 by prover, and the last equation (27) results from \(\tau_q \leftarrow \gamma t_q + \mu_q \in \mathbb{Z}\) together with the below calculation
\[
f_{\omega} = \gamma \cdot \tau_{\omega} = \left(\sum_{i \in \{e\}} \tau_{s_i} 2^{3\lambda(i-1)} \right) \cdot \tau_{\omega} \\
= \gamma \cdot (\mu_{\omega} + \gamma \omega) - \left(\sum_{i \in \{e\}} (\mu_i + \gamma s_i) \cdot 2^{3\lambda(i-1)} \right) \cdot (\mu_{\omega} + \gamma \tau_{\omega}) \\
= \gamma \cdot (\mu_{\omega} - \sum_{i \in \{e\}} (\mu_i \tau + s_i 2^{3\lambda(i-1)})) - \sum_{i \in \{e\}} \mu_i 2^{3\lambda(i-1)} \mu_{\omega} + \gamma^2 \cdot (\omega - s\tau) \\
= \gamma \cdot (\mu_{\omega} - \sum_{i \in \{e\}} (\mu_i \tau + s_i 2^{3\lambda(i-1)})) - \sum_{i \in \{e\}} \mu_i 2^{3\lambda(i-1)} \mu_{\omega} \tag{28}
\]
\[
f_{e} = \gamma \cdot (\tau_{\omega} - (2 \cdot \tau_{\omega}) + \gamma) \\
= \gamma \cdot (\gamma \tau_{\omega} + \mu_{\omega} - 2 \cdot \mu_{\omega} - 2 \gamma \tau_{\omega} - \gamma) \\
= \gamma \cdot (\mu_{\omega} - 2 \cdot \mu_{\omega}) \tag{29}
\]
in which equation (28) follows from the condition 18 that \(\omega = \tau_{s}\) in \(R_{\Sigma}\), while equation (29) also follows from \(\tau = 2e + 1\) in condition 18 of \(R_{\Sigma}\).

For showing that the \(\Sigma\)-protocol has high min-entropy, we consider the first flow
\[
\Omega := (\tilde{c}, \tilde{c}_q, \tilde{h}_0, \Omega_{P}, \tilde{h}_0, \Omega_{P}, \Omega_{t}, \Omega_{q}).
\]
Recall that \(G\) is of order \(p > 2^{3\lambda}\). Observe that \(\Omega_{P} = \mu_{H}\) is distributed uniform over \(G\), since \(H \neq 0\) and \(\mu_{H}\) is sampled uniform over \(Z_p\). Thus, an adversary can predict \(\Omega\) with probability at most \(2^{-2\lambda}\), and the \(\Sigma\)-protocol has high min-entropy.

For non-abort HVZK, we need to show that the transcript can be simulated indistinguishably conditioned that the prover does not abort and the challenge \(\gamma\) of an honest verifier is known in
Thus, it holds for f where τ and samples the responses (for the third flow) according to the above distributions. It also samples μ_3 and because $\mu_3 \approx \tilde{\tau}$, μ is straightforward to provide an appropriate simulator. Roughly, the simulator receives the challenge and because $\mu \approx \tilde{\tau}$, μ is distributed uniform since μ_3, μ_3' are sampled uniformly at random from \mathbb{Z}. Also, \tilde{c} and \tilde{c}_q are distributed close to uniform over (\tilde{h}) (with statistical distance at most $2^{-\lambda}$) because \tilde{t} and t_q are drawn uniform over $[0, N \cdot 2^\lambda]$, and because $(\tilde{h}) = (\tilde{g}_i)$. (Note that the order of $(\tilde{h}) \subseteq \mathbb{Z}_N$ is at most N.) The remaining values $\tilde{\Omega}_C, \tilde{\Omega}_F, \tilde{\Omega}_C', \tilde{\Omega}_F', \tilde{\Omega}_C$ and Ω_q are determined from the third flow and the challenge γ, by setting with respect to the verification equations

$$
\begin{align*}
\tilde{\Omega}_f &= c^{-\gamma} \cdot h_1^\gamma \cdot h_1^{e \Sigma_{i \in [s]} \tilde{\tau}_i \cdot 2^{\lambda(1-\gamma)}}, \\
\tilde{\Omega}_C &= (\tilde{\tau}_e, \tilde{\tau}_a) H + \tilde{\tau}_e \tilde{G} - \gamma \tilde{C}, \\
\tilde{\Omega}_F &= \tilde{\tau}_e H - \gamma F \\
\tilde{\Omega}_C' &= \tilde{\tau}_e H' + \tilde{\tau}_e \tilde{G}' - \gamma \tilde{C}' \\
\Omega_q &= \tilde{c}^{-\gamma} \cdot \tilde{h}_1^\gamma \cdot \tilde{g}_1^L \cdot \tilde{g}_2^L \mod \tilde{N}
\end{align*}
$$

where $f_\omega = \gamma \cdot \tilde{\tau}_\omega - \left(\sum_{i \in [s]} \tilde{\tau}_i \cdot 2^{\lambda(1-\gamma)} \right) / (\tilde{\tau}_e)$. Given the above discussion, it is straightforward to provide an appropriate simulator. Roughly, the simulator receives the challenge γ and samples the responses (for the third flow) according to the above distributions. It also samples \tilde{c} and \tilde{c}_q (with negligible distance close to (uniform over (\tilde{h})). Finally, it recomputes the remaining first flow that is determined as above and outputs the full transcript. Since the distribution is statistically close to the real protocol (conditioned on no abort), the simulator suffices.

For 3-special soundness, let us construct a deterministic PT extractor so that, for

$$
x = (c, N, \tilde{N}, \tilde{\Omega}, \tilde{\Omega}_f, \tilde{\Omega}_C, \tilde{\Omega}_F, \tilde{\Omega}_C', \tilde{\Omega}_F', \tilde{\Omega}_C, \Omega_q),
$$
given 3 valid related transcripts that are indexed by $i \in [3]$

Identical first flow: $\Omega = (\tilde{c}, \tilde{c}_q, \Omega_f, \tilde{\Omega}_C, \Omega_F, \tilde{\Omega}_C', \Omega_F', \tilde{\Omega}_C, \Omega_q)$

Pairwise distinct challenge: γ_i

Third flow: $\tilde{\tau}_i = (\tau_{e,i}, \tau_{t,i}, \tau_{j,i}, \tau_{a,i}, \tau_{t',i}, \tau_{a',i}, \tilde{\tau}_{s,i}, \tilde{\tau}_{w,i})$

the extractor extracts a witness w such that $(x, w) \in \mathbb{R}$. In the following, we denote by $\Delta_{i,j} := \tau_{e,i} - \tau_{e,j} \in \mathbb{Z}$ for $v \in \{r, r', \tilde{t}, \tilde{t}_q, \tilde{c}, \tilde{c}', \tilde{r}, \tilde{s}, \tilde{w} \}$ and $\Delta_{i,j} := \gamma_i - \gamma_j$.

By verification, we have that for $i \in [3]$, it holds that

$$
\tilde{\tau} = \left(\delta_{\tilde{\tau}_i} \cdot \tilde{h}_1^\gamma \cdot \tilde{g}_1^L \cdot \tilde{\tau}_e \cdot \tilde{g}_2 \cdot \tilde{g}_3 \cdot \tilde{g}_{s+k} \cdot \tilde{g}_{4+\epsilon} \equiv \tilde{\Omega}_e \mod \tilde{N}
$$

Thus, it holds for $i \neq j \in [3]$ that

$$
\tilde{\tau}_{s,i,j} \equiv h^{\Delta_{i,j}} \cdot \tilde{g}_1^{\Delta_{i,j}} \cdot \tilde{g}_2^{\Delta_{i,j}} \cdot \tilde{g}_3^{\Delta_{i,j}} \cdot \prod_{k \in [\epsilon]} \tilde{g}_3^{\Delta_{i,k}} \cdot \tilde{g}_4^{\Delta_{4+\epsilon}} \mod \tilde{N}
$$
Thus, either $\Delta \gamma_{1,2}$ divides $\Delta \eta_{1,2}$ for $v \in \{\bar{t}, \bar{e}, \bar{a}, \bar{a}', s, \omega\}$ over \mathbb{Z}, or the above equation yields a witness w for $(\bar{p}, \bar{w}) \in \mathbb{R}_{C,C}(\bar{p})$. In the latter case, the extractor outputs the witness w. In the former case, the extractor defines $r := \Delta \gamma_{1,2}/\Delta \gamma_{1,2} \mod p$, $r' := \Delta \gamma_{1,2}/\Delta \gamma_{1,2} \mod p$ over \mathbb{Z}_p, as well as $\bar{a} := \Delta \gamma_{1,2}/\Delta \gamma_{1,2}$, $\bar{a}' := \Delta \gamma_{1,2}/\Delta \gamma_{1,2}$, $\bar{s} := \Delta(s_{1,2})/\Delta \gamma_{1,2}$, and $\omega := \Delta(\omega)/\Delta \gamma_{1,2} \mod \mathbb{Z}$ (which is now well-defined).

Further, the verification checks ensure that

$$\begin{align*}
(\tau_{r,1}, \tau_{a,1})H + \tau_{r,1} \vec{G} - \gamma_1 \vec{C} &= (\tau_{r,1}, \tau_{a,1})H + \tau_{r,1} \vec{G} - \gamma_2 \vec{C} = (\tau_{r,1}, \tau_{a,1})H + \tau_{r,1} \vec{G} - \gamma_3 \vec{C} \\
\tau_{r,1}H - \gamma_1 F &= \tau_{r,1}H - \gamma_2 F = \tau_{r,1}H - \gamma_3 F \\
\tau_{r,1}H' + \tau_{r,1} \vec{G} - \gamma_1 \vec{C}' &= \tau_{r,1}H' + \tau_{r,1} \vec{G} - \gamma_2 \vec{C}' = \tau_{r,1}H' + \tau_{r,1} \vec{G} - \gamma_3 \vec{C}' \\
\tau_{r,1}H' - \gamma_1 F' &= \tau_{r,1}H' - \gamma_2 F' = \tau_{r,1}H' - \gamma_3 F'
\end{align*}$$

We first use the identities (31) (33) to obtain

$$\begin{align*}
F &= \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} H = rH \\
F' &= \frac{\Delta \gamma_{1,2}'}{\Delta \gamma_{1,2}} H' = r'H
\end{align*}$$

as correct representations of F and F'. Then, the identity (30) gives

$$\begin{align*}
(\tau_{r,1}, \tau_{a,1})H + \tau_{r,1} \vec{G} - \gamma_1 \vec{C} &= (\tau_{r,1}, \tau_{a,1})H + \tau_{r,1} \vec{G} - \gamma_2 \vec{C} \\
(\tau_{r,1} - \tau_{r,2}, \tau_{a,1} - \tau_{a,2})H + (\tau_{r,1} - \tau_{r,2}) \vec{G} &= (\gamma_1 - \gamma_2) \vec{C} \\
\Rightarrow \vec{C} &= \left(\frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} \right) H + \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} \vec{G} \\
&= \left(\frac{\gamma_1}{\gamma_2} \right) \vec{C}
\end{align*}$$

Thus, the extractor obtains a correct opening for \vec{C} where the range is ensured $(\bar{a}, a) \in [-\bar{B}T, \bar{B}T]$ thanks to check on line [19] and $0 \neq \Delta \gamma_{1,2} \in (0, C]$ without loss of generality. The same calculation based on (32) can be carried out for \vec{C}' as well, yielding

$$\vec{C}' = sH' + r' \vec{G}.$$

The obtained opening is ensured to be correct (in the sense that $s \in [-\bar{B}T, \bar{B}T]$) thanks to passing the check on line [20] and $0 \neq \Delta \gamma_{1,2} \in (0, C]$ without loss of generality.

Next, we look at the check on line [21] where the three valid transcripts give

$$\begin{align*}
\vec{C} &= \frac{\Delta \varphi_{1,2}}{\Delta \gamma_{1,2}} H + \frac{\Delta \varphi_{1,2}}{\Delta \gamma_{1,2}} \vec{G} \\
&= \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} H + \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} \vec{G}
\end{align*}$$

In particular, this implies

$$c_{\mathbb{N}}^{-\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \eta_{1,2}/\Delta \gamma_{1,2}} \cdot \sum_{\ell \in \{r, s\}} \frac{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}}{2^{2 \lambda(1-1)}} \equiv h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \eta_{1,2}/\Delta \gamma_{1,2}} \cdot h_2^{2^{2 \lambda(1-1)-1}} \mod N. \tag{34}$$

As noted above, $\Delta \gamma_{1,2}$ divides all the values in the exponent over \mathbb{Z}, and thus, equation (34) implies that:

$$\begin{align*}
\vec{C} &= \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} H + \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} \vec{G} \\
&= \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} H + \frac{\Delta \gamma_{1,2}}{\Delta \gamma_{1,2}} \vec{G}
\end{align*}$$

$$\begin{align*}
\Rightarrow c_{\mathbb{N}}^{-\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot \sum_{\ell \in \{r, s\}} \frac{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}}{2^{2 \lambda(1-1)}} \equiv h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_2^{2^{2 \lambda(1-1)-1}} \mod N.
\end{align*}$$

$$\begin{align*}
\Rightarrow c_{\mathbb{N}}^{-\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot \sum_{\ell \in \{r, s\}} \frac{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}}{2^{2 \lambda(1-1)}} \equiv h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_1^{\Delta \gamma_{1,2}/\Delta \gamma_{1,2}} \cdot h_2^{2^{2 \lambda(1-1)-1}} \mod N
\end{align*}$$
leading to a witness for equation (17) in \hat{R}_Σ. Also, the extractor sets s such that $s \equiv c N \cdot h_1^{-s}$, where $s = \sum_{i \in [\ell]} s_i 2^{3(i-1)}$ and finally, $w = (e, a, y, r, r', \omega, (s_1, \ldots, s_\ell))$. It remains to show that $\omega = \bar{v} \cdot s, \bar{v} = 2^\ell + 1$. Roughly, this follows due to the check in line 26 since we there are three related transcripts. This follows similarly to the equations over \mathbb{Z} in Lemma 20; else we find a witness for the hard DLOG relation. (Note that we need 3 related transcripts because the degree of f is 2 instead of 1 but the required adaptions to obtain the result are straightforward).

Step 2: the NIZK. For the final NIZK, we compile Π_{fb} into an NIZK via Fiat-Shamir with abort. Again, we require public parameters for $MPed$ in the srs, where SRS is defined as in Appendix E.1 i.e.,

$$SRS = \{ (\tilde{N}, pp, \pi_{gen}) \mid \tilde{N} \in \mathbb{N}, pp = (\tilde{h}, \tilde{g}_1, \ldots, \tilde{g}_{4+\ell}), \in \mathbb{Z}_N^{5+\ell}, \}.$$

$$\Pi_{gen}.Verify^{h_\Sigma}(x_{gen}, \pi_{gen}) = 1, x_{gen} = (\tilde{N}, 3 + \ell, \tilde{h}, (\tilde{g}_1, \ldots, \tilde{g}_{4+\ell})).$$

Let $URS = G_\Sigma^{1+\ell}$. Note that $urs = pp_f$ specifies the public parameters for a second C_{Rint} commitment (in addition to the pp_f within the statement). This is the commitment for C_{Grp}. We denote by $H_{fb} = (H_{gen}, H_y)$ random oracle of Π_{fb}. (Here, H_{gen} corresponds to the random oracle for Π_{gen} and H_y maps into $[0, \mathcal{C}]$. Below, we have $urs \in URS$ and $crs = (srs, urs)$ for some $srs \in SRS$. Also, let $x = (pp, N, h_1, h_2, h, m, C, F)$ and $w = (e, a, y, r, \omega).$ (Note that (C, F) corresponds to Π_{gen} commitment to $(a, e - E)$ with opening r.) The scheme is given below.

- $\Pi_{fb}.GenSRS(1^\lambda)$: Samples $pp_{MPed} = (\tilde{N}, pp) \leftarrow MPed.Setup(1^\lambda)$ with $pp = (\tilde{h}, \tilde{g}_1, \ldots, \tilde{g}_{4+\ell}).$ Then, sets $\pi_{gen} \leftarrow \Pi_{gen}.Prove^{h_\Sigma}(w_{gen}, x_{gen})$ for x_{gen} as above and appropriate w_{gen}. Outputs the structured reference string $srs = (\tilde{N}, pp, \pi_{gen}).$

- $\Pi_{fb}.Prove^{h_\Sigma}(crs, x, w)$: First, commits to y via C_{Grp}. That is, samples $s \leftarrow [N : 2^\lambda]$, splits s into $(s_1), \in [0, 2^{3\lambda}]$, via $2^{3\lambda}$-ary decomposition and computes $c_N = y \cdot h_1, \tilde{C} = \tilde{s}H' + r'C^\ell$ and $F' = r'H$. Then, compiles Σ_{fb} into a proof π via

$$\begin{align*} (\Omega_{\Sigma}, st) &\leftarrow \Sigma_{fb}.Init(x_{\Sigma}, w_{\Sigma}), \\
\gamma_{\Sigma} &\leftarrow H_{\Sigma}(x_{\Sigma}, \Omega_{\Sigma}), \\
\tau_{\Sigma} &\leftarrow \Sigma_{fb}.Resp(x_{\Sigma}, st, \gamma_{\Sigma}), \\
\pi_{\Sigma} &\leftarrow (\Omega_{\Sigma}, \gamma_{\Sigma}; \tau_{\Sigma}), \end{align*}$$

for statement $x_{\Sigma} = (c_N, \tilde{N}, pp, pp_f, pp_f', c, N, h_1, h_2, h, m, \tilde{C}, F, F', C', F')$ and witness $w_{\Sigma} = (e, a, y, r, r', \omega, (s_1, \ldots, s_\ell))$, where $\omega = (e - E) \cdot s$. Outputs $\pi = (\pi_{\Sigma}, c_N, \tilde{C}, F')$.

- $\Pi_{fb}.Verify^{h_\Sigma}(crs, x, \pi)$: On input $crs, x, and \pi = (\pi_{\Sigma}, c_N, \tilde{C}, F')$, checks

$$\begin{align*} H_{fb}(x_{\Sigma}, \Omega_{\Sigma}) &= \gamma_{\Sigma}, \\
\Sigma_{fb}.Verify(x_{\Sigma}, \Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma}) &= 1, \end{align*}$$

where $\pi_{\Sigma} = (\Omega_{\Sigma}, \gamma_{\Sigma}; \tau_{\Sigma})$. The statement x_{Σ} is defined as above. Outputs 1 iff all checks succeed.

Theorem 11. The NIZK Π_{fb} is correct, subversion zero-knowledge under the DDH assumption, and adaptively sound knowledge under the sRSA assumption.

Proof. First, correctness follows by correctness of Σ_{fb}. (It is easy to check that $(x_{\Sigma}, w_{\Sigma}) \in R_{fb}$ by design.)

Subversion ZK follows as in previous NIZKs (cf. Theorems 8 and 10) and since C_{Grp} is hiding. In more detail, observe that π_{gen} in the adversarial srs ensures that (\tilde{h}, \tilde{g}) under soundness of Π_{gen} with overwhelming probability. Since thus $(x_{\Sigma}, w_{\Sigma}) \in R_{fb}$ in the real proof generation, the simulator simply simulates π_{Σ} via non-abort HVZK of Σ_{fb} and by programming H_y accordingly. (The latter is possible due to high min-entropy of Σ_{fb}.) Also, the simulator outputs a fresh C_{Grp} commitment (c_N, \tilde{C}, F') to $l \in (h_1)$ (instead of a commitment to y). This is justified by the hiding property of C_{Grp}. A simple hybrid argument allows to show that the above simulator suffices for subversion zero-knowledge.
Finally, we show adaptive knowledge soundness (cf. Definition 21). Roughly, this follows by forking the adversary twice to obtain three related transcripts. Then, 3 special soundness of Σ_{fs} ensures that a witness can be recomputed. In more detail, SimCRS simply outputs $\text{crs} = (\text{srs}, \text{urs})$ with $\text{srs} \leftarrow \text{GenCRS}(1^k)$ and $\text{urs} \leftarrow \text{URS}$. Since crs follows the real distribution, CRS indistinguishability holds. (Note that $\text{td} = \perp$.) To define the extractor Ext with oracle access to some prover A making $Q H\gamma$ queries, let us make some preparations. First, assume that

$$\Pr[\text{crs} \leftarrow \text{SimCRS}(1^k), (x, \pi) \leftarrow A^{H\gamma}(\text{crs}; \rho) : \text{Verify}^{H\gamma}(\text{crs}, x, \pi) = 1] \geq \mu(\lambda)$$

Denote by $(x, \pi) \leftarrow A^{H\gamma}(\text{crs}; \rho)$ the statement-proof pair output by A on input $(\text{crs}; \rho)$, where the oracle queries to $H\gamma$ are answered via a vector $\vec{h} \in [0, C]^Q$ and H_{gen} queries are answered via a vector \vec{h}'. Parse $x = (pp, N, h_1, h_2, h, \overline{m}, \vec{C}, F), \pi = (\pi_{\Sigma}, e, a, y, r, r')$ and $\pi_{\Sigma} = (\Omega_{\Sigma}, \gamma_{\Sigma}, \tau_{\Sigma}).$ Denote $x_{\Sigma} = (\pi_{\Sigma}, \vec{N}, \vec{pp}, pp_f, \vec{pp}_e, c, N, h_1, h_2, h, \overline{m}, \vec{C}, \vec{C}', F, F')$, where (\vec{pp}, pp_f') are specified by the crs. Define by i the index of the first oracle query $q_i = (x_{\Sigma}, \Omega_{\Sigma})$ to $H\gamma$ made by A. If no such query exists, then $i = \perp$. Note that if (x, π) verifies, then except with probability $1/(C + 1)$ such a query exists because $H\gamma(x_{\Sigma}, \Omega_{\Sigma}) = \gamma_{\Sigma}$ must hold. Denote by E the event that $\text{Verify}^{H\gamma}(\text{crs}, x, \pi) = 1$ and $i \neq \perp$. By the above discussion, we have

$$\Pr[E] \geq \mu(\lambda) - 1/(C + 1).$$

For fixed $(\text{crs}, \rho, \vec{h}')$, let us define a function $F_{\text{Ext}} : [0, C]^Q \rightarrow [Q]$ by $F_{\text{Ext}}(\vec{h}) = i - 1$ if E occurs and $F_{\text{Ext}}(\vec{h}) = 1$ otherwise.

We are now ready to define the extractor Ext. First, Ext samples randomness ρ for A and a tuple $\vec{h}_1 \in [0, C]^Q$ which corresponds to the $H\gamma$ outputs to A’s queries. Also, samples the H_{gen} outputs \vec{h}' which remain unaltered in the following. Then, Ext runs A on input $(\text{crs}; \rho)$ answering the Σ_{fs} queries via \vec{h}_1 and \vec{h}'. If E occurs, then Ext samples 2 other vectors \vec{h}_2 and \vec{h}_3 from $[0, C]$ at random conditioned on $F_{\text{Ext}}(\vec{h}_1) = F_{\text{Ext}}(\vec{h}_2) = F_{\text{Ext}}(\vec{h}_3)$. Then, Ext runs A two more times on input $(\text{crs}; \rho)$ by answering the $H\gamma$ queries \vec{h}_2 and \vec{h}_3 (and the H_{gen} queries via \vec{h}'). If E occurs for all $\vec{h}_k, k \in [3]$, parse A’s output for each run as above but indexed by k. By construction, we have that $(x_{\Sigma}, \Omega_{\Sigma}) := (x_{\Sigma, 1}, \Omega_{\Sigma, 1}) = (x_{\Sigma, 2}, \Omega_{\Sigma, 2}) = (x_{\Sigma, 3}, \Omega_{\Sigma, 3})$. If the challenges $(\gamma_{\Sigma, k})_{k \in [3]}$ are distinct, then Ext applies the extractor of Σ_{fs} to the three related transcripts $(\Omega_{\Sigma, k}, \gamma_{\Sigma, k}, \tau_{\Sigma, k})_{k \in [3]}$ for statement x_{Σ}. This yields a witness w_{Σ} such that $(w_{\Sigma}, x_{\Sigma}) \in \tilde{R}_{\Sigma}$. Parse $w_{\Sigma} = (e, a, y, r', r, \omega, (s_1, \cdots, s_{\ell})).$ Finally, Ext outputs $w = (e, a, y, r')$. If the challenges are not distinct or E does not occur for $i \in [k]$, Ext outputs \perp.

It remains to show that Ext outputs a witness w such that $(w, x) \in \tilde{R}_{\Sigma}$ with sufficient probability. For convenience, let us recall the definition of \tilde{R}_{Σ} below.

$$\tilde{R}_{\Sigma} = \{(x, w) \mid gy \equiv h_1 + h_2 + \overline{m} \text{ mod } N, e \equiv 1 \text{ mod } 2, (e - E, a) \in [\overline{BT}, \overline{BT}], \overline{C} = (e - E, a) H + \overline{G}, F = r H\}.$$

First, let us analyze the probability that Ext outputs some witness $w \neq \perp$. By lemma 4 the event E occurs for all runs of A with probability at least $\mu(\lambda)^3/Q^2$. Also, with probability $1 - 3/(C + 1)$, the challenges $(\gamma_{\Sigma, k})_{k}$ are distinct. Thus, we have

$$\Pr[(x_{\Sigma}, w_{\Sigma}) \in \tilde{R}_{\Sigma}] \geq \mu(\lambda)^3/Q^2 - 3/(C + 1) = \mu(\lambda)^3/Q^2 - \text{negl}(\lambda),$$

Further, under the sRSA assumption, it holds that

$$\Pr[(pp, w_{\Sigma}) \in R_{C, \epsilon}(pp) \text{ or } (pp, w_{\Sigma}) \in R_{C, \epsilon}(pp)] = \text{negl}(\lambda).$$

To see this, recall that finding a witness for either of the above relations is hard under sRSA for random $pp \in QR_{N}^{L_p}$ and RSA modulus N. Since (\vec{N}, \vec{pp}) is part of the srs, it is possible to embed a hard instance into srs. It is straightforward to construct appropriate adversaries on sRSA and we omit details. Thus, we have

$$\Pr[(x_{\Sigma}, w_{\Sigma}) \in \tilde{R}_{\Sigma} \land (pp, w_{\Sigma}) \notin R_{C, \epsilon}(pp), (pp, w_{\Sigma}) \notin R_{C, \epsilon}(pp)] \geq \mu(\lambda)^3/Q^2 - \text{negl}(\lambda),$$

Observe that for fixed $\vec{h} \in [0, C]^Q$, the output of A is deterministic. Because each run, the $H\gamma$ queries are answered identically until query $q_i = (x_{\Sigma, k}, \Omega_{\Sigma, k})$, the input q_i to this query is identical for all $k \in [3]$.

By definition of \tilde{R}_F, if $(w_{\Sigma}, x_{\Sigma}) \in \tilde{R}_F$ but $(\tilde{p}, w_{\Sigma}) \notin R_{C,E}(\tilde{p})$ and $(\tilde{p}, w_{\Sigma}) \notin R_{C,E}(\tilde{p})$, the following holds:

$$c_N^{e} \cdot h_1^{-\omega} \cdot h_1^{-s} \equiv h \cdot h_1^{a} \cdot h_2^{a+e} \mod N, \omega = \tau \cdot s, \tau = 2e' + 1, e = \tau + E$$

$$\tilde{C} = (\tau \cdot H, a \cdot H) + r\tilde{G}, F = rH$$

$$\tilde{C}' = \tilde{s}H' + r'\tilde{G}', F' = r'H, s = \sum_{i \in \{s_i\}} s_i 2^{3\lambda(i-1)}, c_N \equiv y \cdot h_1^e \mod N,$$

$$(\tau, a) \in [-\tilde{B}T, \tilde{B}T], (s_1, \ldots, s_{\ell}) \in [-\tilde{B}'T, \tilde{B}'T]$$

It follows that $(x, w) \in \tilde{R}_{\Sigma}$. To see this, observe that all equations but $y^e \equiv h \cdot h_1^e \cdot h_2^{a+e} \mod N$ follow immediately. The latter follows because

$$c_N^{e} \cdot h_1^{-\omega} \cdot h_1^{-s} \equiv (y \cdot h_1^e)^{\tau} \cdot h_1^{-\tau} \cdot h_1^{-s} \equiv y^e \cdot (h_1^{e+s} \cdot h_1^{-s}) \equiv y^e \mod N.$$

This concludes the proof.

Optimizations. Again, we omit the first flow of Σ_{ins} (i.e., the values $\tilde{G}_C, \Omega_F, \tilde{G}_C', \Omega_F', \tilde{G}_q, \Omega_q$ except \tilde{c} and c_q) from the proof π_{Σ}. The verification equations are verified within the hash function H_{ins}.

Efficiency. We use standard RSA moduli and groups for $\lambda = 128$ bit security, i.e., N and \tilde{N} of size 3072 bit. We set $L = 2^{10}$ and thus $T = 2^{\lambda+11}$. Further, we assume that G is of order $4\lambda + 12$ (which is required for C_{Rint}). With these parameters, we have $\ell_s = 9$. In total, a proof is of size 4.08 KB.
<table>
<thead>
<tr>
<th>Prover($x;w$)</th>
<th>Verifier(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $\bar{t}, t_q \leftarrow [0, N \cdot 2^\lambda], \mu_r, \mu_r \leftarrow \mathbb{Z}_p, \mu_q \leftarrow [0, C \cdot N \cdot 2^\lambda]$</td>
<td></td>
</tr>
<tr>
<td>2: $(\mu_r, \mu_a) \leftarrow [0, (\bar{B}C + 1)L], \mu_r' \leftarrow [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>3: $\bar{u}_s \leftarrow [0, (\bar{B}C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>4: $\omega \leftarrow \pi \cdot (\sum_{i \in {e}} \bar{s}i 2^{3\lambda(i-1)}), \mu\omega \leftarrow [0, C \cdot B_1 N \cdot 2^{2\lambda}$</td>
<td></td>
</tr>
<tr>
<td>5: $\Omega_f \leftarrow c_N^{-F} \cdot h^s_{\omega} \cdot h_{\tau}^{\pi_{\alpha}} \cdot e \cdot (\sum_{i \in {e}} h_i 2^{3\lambda(i-1)}) \cdot h_{\mu}^{\tau_{\omega}} \cdot h_{\mu}^{\omega} \mod N,$</td>
<td></td>
</tr>
<tr>
<td>6: $\tilde{G}_C = (\mu_r, \mu_a) H + \mu_r \bar{G}, \Omega_f \leftarrow \mu_r H,$</td>
<td></td>
</tr>
<tr>
<td>7: $\tilde{G}_C = (\bar{\mu}_r H + \mu_r \bar{G}, \Omega_f \leftarrow \mu_r H,$</td>
<td></td>
</tr>
<tr>
<td>8: $f, \omega, \bar{e} \leftarrow \pi - \sum_{i \in {e}} \mu_i h_i 2^{3\lambda(i-1)}, f, \omega, \bar{e} \leftarrow \mu_r - \sum_{i \in {e}} (\mu_i e + \mu_i e_2) 2^{3\lambda(i-1)} + \sum_{i \in {e}} \mu_i e_2 2^{3\lambda(i-1)}$</td>
<td></td>
</tr>
<tr>
<td>9: $f, \omega, \bar{e} \leftarrow \pi - \sum_{i \in {e}} \mu_i h_i 2^{3\lambda(i-1)}, f, \omega, \bar{e} \leftarrow \mu_r - \sum_{i \in {e}} (\mu_i e + \mu_i e_2) 2^{3\lambda(i-1)} + \sum_{i \in {e}} \mu_i e_2 2^{3\lambda(i-1)}$</td>
<td></td>
</tr>
<tr>
<td>10: $e_{\omega} \leftarrow h^\gamma \cdot \bar{g}_2^s \cdot \overline{g}2^e \cdot \prod{i \in {e}} g_i^e \cdot \tilde{g}2^e \cdot \tilde{g}2^e \cdot \Omega\omega \leftarrow h^\mu\omega \cdot \bar{g}_2^e \cdot \overline{g}2^e \cdot \Omega\omega$</td>
<td></td>
</tr>
<tr>
<td>11: $e'_{\omega} \leftarrow h^\gamma \cdot \bar{g}_2^s \cdot \overline{g}2^e \cdot \Omega\omega \leftarrow \bar{h}^\omega \cdot \bar{g}_2^s \cdot \overline{g}_2^e$</td>
<td></td>
</tr>
<tr>
<td>12: $\gamma \leftarrow [0, C]$</td>
<td>γ</td>
</tr>
<tr>
<td>13: $\tau_r \leftarrow \gamma^r + \mu_r, \tau_r' \leftarrow \gamma^r + \mu_r'$</td>
<td></td>
</tr>
<tr>
<td>14: $\tilde{\tau}_r \leftarrow \bar{\gamma} + \mu_r, \tilde{\tau}_r \leftarrow \bar{\gamma} + \mu_r'$</td>
<td></td>
</tr>
<tr>
<td>15: $\tilde{\tau}_r \leftarrow \gamma + \mu_r, \tilde{\tau}_r' \leftarrow \gamma + \mu_r'$</td>
<td></td>
</tr>
<tr>
<td>16: $\tilde{\tau}_r \leftarrow \gamma + \mu_r, \tilde{\tau}_r \leftarrow \gamma + \mu_r'$</td>
<td></td>
</tr>
<tr>
<td>17: $\text{check } (\tau_r, \tau_r') \in [\bar{B}C, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>18: $\text{check } (\tau_r, \tau_r') \in [\bar{B}C, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>19: $\text{check } (\tau_r, \tau_r') \in [0, (\bar{B}C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>20: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>21: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>22: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>23: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>24: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
<tr>
<td>25: $f, \omega \leftarrow [0, (\bar{B}C + 1)L]$</td>
<td>$f, \omega \leftarrow [0, (\bar{B}C + 1)L]$</td>
</tr>
<tr>
<td>26: $\text{check } (\tau_r, \tau_r') \in [0, (B_1C + 1)L]$</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5: Description of Σ_{ω} with $x = (e_N, \bar{N}, \overline{p}_r, \overline{p}_r, h')$ and $w = (e, \omega, a, \omega', \omega, (s_1, \cdots, s_{e_r}))$.