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Abstract

Decentralized Finance (DeFi) has witnessed remarkable growth and innovation,
with Decentralized Exchanges (DEXes) playing a pivotal role in shaping this ecosys-
tem. As numerous DEX designs emerge, challenges such as price inefficiency and
lack of user privacy continue to prevail. This paper introduces a novel DEX design,
termed COMMON, that addresses these two predominant challenges. COMMON operates
as an order book, natively integrated with a shielded token pool, thus providing
anonymity to its users. Through the integration of zk-SNARKs, order batching,
and Multiparty Computation (MPC) COMMON allows to conceal also the values in or-
ders. This feature, paired with users never leaving the shielded pool when utilizing
COMMON, provides a high level of privacy.

To enhance price efficiency, we introduce a two-stage order matching process:
initially, orders are internally matched, followed by an open, permissionless Dutch
Auction to present the assets to Market Makers. This design effectively enables
aggregating multiple sources of liquidity as well as helps reducing the adverse effects
of Maximal Extractable Value (MEV), by redirecting most of the MEV profits back
to the users.

Keywords— private order book, privacy, DEX, ZK-SNARK, batching, Dutch auction,
MPC, smart contracts, MEV, threshold encryption
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1 Introduction

Decentralized Finance (DeFi) has sparked a wave of financial innovation, elevating de-
centralization, trustlessness, and accessibility to the forefront of the global finance land-
scape. Central to this paradigm shift are Decentralized Exchanges (DEXes), which serve
as the bedrock of DeFi on blockchain platforms. In recent years, the DeFi landscape
has witnessed an explosion of creativity and experimentation, giving rise to a multi-
tude of DEX designs. These innovations, including Constant Function Market Makers
(CFMMs [AZR, AC20]), Concentrated Liquidity models [AZS+21], Order Book-based
DEXes [WB17], and DEX aggregators, all share a common goal: enhancing the user ex-
perience and bridging the gap between decentralized and centralized exchanges, all while
preserving users’ control over their assets. However, amidst this notable advancement,
two persistent challenges remain largely unaddressed:

• Price inefficiency: the fragmentation of liquidity across DEXes continue to hin-
der optimal pricing for users in decentralized exchanges. Moreover, the risk (or
rather certainty) of falling victim to various MEV extraction tactics, such as fron-
trunning and sandwich attacks ([ZQT+21, EMC19, WZY+22, QZG22, ZXE+23]),
considerably exacerbates the appeal of centralized exchanges for large-scale trading.

• Lack of Privacy: the open nature of blockchain transactions, which allows anyone
to inspect transaction records of any blockchain user poses a significant privacy con-
cern [AKR+13, CELR18]. For this reason many users prefer centralized exchanges,
where they can, at the very least, hide their trading activities from other users
and general public, albeit at the cost of ceding control to the exchange. This pref-
erence for privacy has contributed to the substantial liquidity disparity between
decentralized and centralized exchanges.

Addressing the issue of price inefficiency remains an ongoing research topic within the
blockchain community. To combat liquidity fragmentation, various strategies have been
proposed, notably the use of DEX aggregators (such as 1inch) for consolidating liquid-
ity from on-chain sources and Liquidity Networks for cross-chain liquidity. Some modern
DEX designs (such as Cow or Uniswap X) incorporate built-in auction systems to bolster
liquidity. Still, all these designs are to some extent susceptible to increasingly sophisti-
cated MEV extraction strategies. In fact, it is widely acknowledged that MEV represents
an inherent facet of blockchain ecosystems and, as such, cannot be eliminated outright.
Instead, the most effective approach to mitigate MEV’s adverse effects [DGK+19] ap-
pears to lie in designing DeFi protocols to be MEV-aware. This involves implementing
mechanisms that systematically capture significant portions of what would otherwise be
MEV bot profits [CK22], redirecting these returns into the protocol for the benefit of its
users.

Enhancing privacy for DEX users, as well as blockchain users in general, has been a
focal point of research since the inception of blockchain technology (see [BCDF23] for a
survey). Initially, pseudonymity provided by assets like Bitcoin was believed to guarantee
privacy, but this claim was debunked early on [AKR+13, CELR18]. In the seminal work
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on ZeroCoin [MGGR13] (and later ZCash [HBHW22]) the notion of shielded pools has
been introduced as a tool for improving user privacy. They have been built using a novel
(at that time) and powerful cryptograhic tool: zk-SNARKS (see Definition 2.2). The
main idea of shielded pools is to allow users to deposit coins in a "magic box" where the
coins of different users are mixed, and the link between deposits and withdrawals is ob-
scured. This idea has since been refined and generalized by many different protocols (such
as TornadoCash [PSS19], Aztec [Wil18], Namada, Nocturne [Lab23], Zswap [EKKV22]
or Privacy Pools [BIN+23]). Especially in the recent years, along with the breakthroughs
in zero-knowledge proofs1 [BGKS20, GWC19, BGH19, CHM+19, BSCR+18], one could
witness increased interest in technologies based on ZKPs. Nonetheless, currently de-
ployed privacy solutions are often confined to coin mixing in shielded pools and lack
seamless integration with DeFi, requiring users to withdraw from these pools to engage
with specific protocols.

Efforts have also been made to design private DEXes using ZKPs. For instance,
developing an anonymous version of a Constant Function Market Maker (CFMM), akin
to DEXes like Uniswap, turns out to be possible2 – in such a DEX, swaps are public, yet
user identities remain concealed. There are, however, inherent obstacles in extending the
privacy further, particularly in ensuring that swap values are also kept confidential. For
instance Angeris, Evans and Chitra in [AEC21, CAE22] give strong impossibility results
regarding privacy of the state in such contracts. In the same work, transaction batching
is proposed as a way to circumvent these limitations (see [JDE+23] and [cow, pen, ano]).
Another approach is to build DEXes based on peer-to-peer trading, yet these suffer
from user experience issues: the users need to involve in complex counterparty selection
protocols, which makes order matching quite time-consuming but also requires the users
to stay online for long periods of time. More generally, all DEXes based purely on ZKPs
suffer from a common issue: every part of the DEX’s state must be known to at least one
party3 which surprisingly makes it hard or even impossible to design protocols where also
the traded values are masked. One could argue that to achieve such strong privacy more
sophisticated tools such as Multiparty Computation (MPC) [Yao82, GMW87, BG89]
or Trusted Execution Environments (TEE) [SAB15] are necessary. For more details
regarding related works cf. Subsection 1.2.

1.1 Our Contribution

This paper introduces COMMON, a novel Decentralized Exchange design, with the primary
goal of tackling the two issues mentioned earlier: price inefficiency and lack of privacy.
COMMON functions as an order book providing high privacy guarantees, offering users both

1In the blockchain community the term "zero-knowledge proofs" (ZKPs) is often colloquially used as
a synonym for zk-SNARKs. In this part of the paper we follow this (slightly incorrect) convention.

2Simplest way to achieve it: hold tokens in a shielded pool and then an anonymous swap boils down
to the following sequence of actions: unshield to a one-time account, swap tokens, and shield back.

3This is primarily because the "prover" party in the ZKP must know the state it is proving something
about. We also make the silent assumption here that the prover is a single party, and not a multi-party
committee.
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spot trade execution and the option to set (possibly long-living) limit orders. In addition
to internal order matching within COMMON, the order matching engine leverages external
liquidity sources to attain optimal prices.

The privacy features of COMMON are achieved using zk-SNARKs and a generic crypto-
graphic primitive called a Decryption Oracle that we introduce as part of the design. In
Section 9 we detail how to instantiate the Decryption Oracle using Multi-party Compu-
tation4. Technically, while zk-SNARKs are used to achieve anonymity, the Decryption
Oracle allows to achieve a level of confidentiality over the amounts in users’ trades. As
previously remarked, this requires techniques beyond ZKPs in order to achieve a solution
that doesn’t rely on trust to a single entity, hence the use of Multi-party Computation.

COMMON natively integrates with a shielded token pool, ensuring user anonymity. Im-
portantly, placing orders in COMMON does not force the user to exit the shielded pool,
which with the help of the Decryption Oracle allows users to maintain the confidentiality
of their orders. The aggregated value, a combination of multiple orders, is only disclosed
at the time of order matching. This not only enhances privacy, as opposed to mere
anonymity, but also serves as a MEV-protection mechanism. Indeed, prior to revealing
the aggregated value, the batch of orders is sealed to prevent specialized actors from
injecting strategic orders into it. Subsequently, a separate component of COMMON: the
SWAP-ENGINE takes over and tries to trade the batch in an optimal way.

The SWAP-ENGINE is designed in a MEV-aware fashion and works in two phases: 1)
Internal Matching – the users’ orders are directly matched incurring no fee, 2) Dutch
Auction – the remaining funds are sold in a public auction. The auction starts from a
relatively unattractive price, gradually reduces it, block by block, to encourage Market
Makers, to buy and/or arbitrage with respect to other markets. This mechanism allows
to effectively aggregate all the existing on-chain and off-chain liquidity (CEXes and other
chains, via bridges). Importantly, it achieves this in a manner that directs a significant
portion of MEV profits back to COMMON’s users.

1.2 Other Related Works

Processing orders in frequent batches has been suggested by [EPJ15] as a better market
design response compared to continuous limit order books, because it prevents wasteful
race for tiny advantages in speed. Moreover, batching of transactions for enhancing
privacy was presented in [AEC21] and later assessed under a simple adversarial model in
[CAE22]. As already mentioned, some examples of other protocols that use the technique
of batching are [cow] and [pen].

The closest to our work is ZSwap protocol proposed by Penumbra [pen]. ZSwap
is based on [JDE+23] and includes batching of encrypted orders (using homomorphic
threshold encryption), decryption of the aggregated amounts and “clearing” trades via
routing across multiple public concentrated liquidity positions that can open and close
in the same transaction anonymously. Note that in our protocol the SWAP-ENGINE smart

4Apart from that we also show how, alternatively, a Decryption Oracle can be implemented using
Trusted Execution Environments (TEEs) or just a single trusted party.
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contract performs internal matching as much as possible of the aggregated decrypted
amounts and then the excessive amount is not traded against public concentrated liq-
uidity positions. Instead, our protocol can attract liquidity from many sources (DEXes,
CEXes) via Market Makers who compete to buy the excessive amount in a Dutch auc-
tion. Some examples of other protocols that utilize Dutch auction to attract liquidity
are [ea23, 1in].

Examples of other protocols that use the homomorphic property or aggregation
to ensure privacy are [DDD+23, SWA23, EKKV22, Fla22, EMP+21]. Zama proto-
col [DDD+23] uses homomorphic encryption to ensure privacy in smart contracts and
[SWA23] proposes a framework that uses fully homomorphic encryption to support pri-
vacy preserving smart contracts. In [EKKV22] sparse homomorphic commitments are
used to merge transactions privately. Suave [Fla22] facilitates a Universal Preference
Environment where users can submit their encrypted preferences that will be aggregated
by block builders and will form a part of a block. [EMP+21] enables private exchange of
tokens via an aggregatable signature scheme.

Another technique that has been used in DEXs to enhance privacy is combining Zero-
knowledge proofs (ZKP) and Multiparty Computation (MPC). Some examples of works
that use this technique are [BDF21, GY21, BK, ano]. [BDF21] uses a publicly verifiable
MPC protocol to match secret-shared orders. In [GY21] there is (i) a bidding phase,
where the users send commitments to their orders to a smart contract, and (ii) a reveal
phase, where the users send encryptions of their orders to the same smart contract. The
encryptions use the public key of an operator (or MPC) who later can collect the en-
crypted orders, decrypt them and match them. In Renegade [BK] relayers manage users’
wallets (this means that they are able to view the unencrypted wallet that they control)
and they run MPC in order to match orders. [BK] also uses collaborative zk-SNARKS
[OB22](no party knows the whole secret) for proving that the MPC computations were
performed correctly. [ano] facilitates an Intent-Based Execution where intents are gos-
siped in a peer to peer network, they are matched by solvers using MPC or other method
and finally they get included on chain. In our work, to make it as practical as possible,
we avoid extensive use of generic MPC, and only apply it for decryption of aggregated
amounts, not for the order matching; the order matching is performed in plaintext by
the SWAP-ENGINE smart contract.

Some DEX protocols use the commit-reveal technique, where the users send initially
commitments to their orders, and reveal them afterwards when all the orders have been
collected. Some examples are [BDF21, CC21]. Another commit-reveal protocol that also
uses ZK membership proofs to hide the identity of the users before the reveal phase is
[MDFO22]. Moreover, [MDFO22] in order to prevent Miner Extractable Value (MEV)
(see [JSSW22] for its formal definition) proposes also a width-sensitive frequent batch
auction (WSFBA) which is an improvement to FBA [EPJ15], because it provides the
same guarantees but even under a mopolistic Market Maker and without demanding from
the clients to submit a limit order. Note that in our case the commit-reveal technique
is not suitable because we would like to hide the value of the orders not only before the
settling of the orders but even after. We note that even though in our protocol a user
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reveals the direction, this can be mitigated by generating fake orders that encrypt “0”
– see Subsection 10.5. Furthermore, compared to [MDFO22], due to the utilization of
MPC for decryption, we do not ask the users (i) to participate again and reveal their
order (ii) to put an escrow that will be removed if they do not reveal their order. Also
after the internal matching via geometric mean (which was also suggested by [MDFO22]),
as already mentioned, we use extra liquidity sources from external Market Makers via a
Dutch auction.

Since in our protocol we perform both order collection and order matching on-chain,
front-running protection protocols, such as [CIM+22], cannot be applied, as they assume
secure communication between traders and Market Makers.

1.3 Reading the Paper

The recommended order of reading the paper is to start with the Introduction (Section 1)
and then go straight to the Technical Overview (Section 4). The technical overview refers
to other sections but is largely self-contained and is meant to provide the reader with
a high-level understanding of COMMON. Subsequently the reader is encouraged to dive
into the details: Order Book (Section 6), Swap Engine (Section 7), Decryption Oracle
(Section 9) and zk-SNARK Relations (Section 8). The material in Section 2 provides
some preliminaries on cryptography, zk-SNARKS, and arithmetic in this paper. Section 3
gives preliminaries on blockchain and smart contracts, as well as introduces data types
used in COMMON. Section 5 provides an informal discussion of the guarantees provided
by COMMON in terms of security and privacy and discusses which will be the price of
trading in a best and worst case scenario. Finally, Section 10 discusses practical aspects
of implementing COMMON, including various extensions and improvements that were left
out of scope of this paper.

2 Preliminaries

2.1 Cryptographic primitives

2.1.1 zk-SNARKs

Next we formally define the zk-SNARK cryptographic primitive, and afterward we make
some conventions specific to our use-case.

Definition 2.1 (Relation). An indexed relation R is a set of triples5 (idx, x;w) ∈ {0, 1}∗×
{0, 1}∗×{0, 1}∗ consisting of an index idx, an input x (also called statement or instance),
and a witness w. Intuitively, idx represents parameters like a finite field.

A function κ : N→ R is called negligible if for all c > 0 there exists xc ≥ 0 such that
κ(x) ≤ x−c for all x ≥ xc. On the other hand, κ is called sublinear if κ(x) = o(x), i.e. if
limx→∞ κ(x)/x = 0.

5As is common in the literature we occasionally use the notation R(idx, x;w) to mean (idx, x;w) ∈ R.
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Definition 2.2 (Universal SNARK with preprocessing). A universal Succinct Non-
Interactive Argument of Knowledge (SNARK) with preprocessing for an indexed relation
R is a tuple of algorithms Π = (G, Ind,P,V) such that:

• G is a Probabilistic Polynomial Time (PPT) algorithm that takes as input 1λ and
a size bound N ∈ N, and outputs a structured reference string srs. Here λ is a
security parameter.

• Ind is a deterministic polynomial time algorithm that receives srs and an index idx
of size at most N , and outputs verifier and prover parameters vp, pp.

• P is a PPT algorithm that receives (pp, x,w) as input, and outputs a string of bits
π, called proof.

• V is a PPT algorithm that receives (vp, x, π) as input, and outputs accept or
reject.

We assume both G and Ind are run by a trusted party. We require the following properties
to hold:

• Perfect completeness. For all λ ≥ 0, N ∈ N, (idx, x,w) ∈ R with |idx| ≤ N , srs ←
G(1λ, N), pp, vp← Ind(srs, idx) and π ← P(pp, x,w), we have accept← V(vp, x, π)
with probability 1.

• Knowledge soundness (adaptive). For all λ ≥ 0 and N ∈ N and PPT algorithms
A1,A2 there exists a PPT algorithm Ext, called extractor, such that

Prob


(idx, x;w) ̸∈ R

|idx| ≤ N

⟨A2(st),V(vp, x)⟩ = 1

∣∣∣∣∣∣∣∣∣
srs← G(1λ, N)

(idx, x, st)← A1(srs)

w← Ext(srs)

(pp, vp)← Ind(srs, idx)

 = κ(λ),

where κ : N→ [0, 1] is a negligible function, and ⟨A2(st),V(vp, x)⟩ = 1 means that
V(vp, x) outputs accept after interacting with A2(st).

• Succinctness. For all λ ≥ 0, N ∈ N, srs← G(1λ, N), (idx, x,w) ∈ R with |idx| ≤ N ,
(pp, vp) ← Ind(srs, idx) and π ← P(pp, x,w), the proof π has size poly(λ + |x|).
Moreover, V(vp, x, π) runs in time poly(λ+ |x|).

• Zero-knowledge. There exists a PPT algorithm Sim, called simulator, such that for
every PPT algorithms (A1,A2) it holds that

Prob

 (idx, x,w) ∈ R

|idx| ≤ N

⟨P(pp, x,w),A2(st)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ, N)

(idx, x,w, st)← A1(srs)

(vp, pp)← Ind(srs, idx)

 =

= Prob

 (idx, x,w) ∈ R

|idx| ≤ N

⟨Sim(trap, idx, x),A2(st)⟩ = 1

∣∣∣∣∣ (srs, trap)← Sim(1λ, N)

(idx, x,w, st)← A1(srs)
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Convention 2.3. All our indexed relations R will be such that if (idx, x,w) ∈ R, then
idx = (p, n,m), where :

• p is a prime of poly(λ) bits, and n,m are two nonnegative integers.

• x represents an n-tuple of elements from the finite field Fp.

• w represents a m-tuple of elements from Fp.

Because of this, we will often omit referring to idx and will simply speak of input-
witness pairs (x,w) ∈ Fn

p × Fm
p . Moreover, we will denote Fp by F.

Additionally, and for ease of presentation, we will also omit referring to the algorithms
G and Ind further, as well as to the proving and verifier parameters pp, vp← Ind(srs, idx).
We instead assume these are generated and fixed at the initialization of COMMONand used
whenever appropriate.

2.1.2 Scalar Fields

In COMMON we often deal with token amounts and prices and would ideally want these
values to be represented by single F elements and the arithmetic on F to be compatible
with regular integer arithmetic (see also Subsection 2.2). For this reason, it is the most
practical to have F = Fp with p quite large, for instance p ≈ 2256, as is the case when
the proof system is instantiated with the BLS12-381 pairing system [BLS02].

For the sake of concreteness, in this paper we fix F to be the scalar field of BLS12− 381
and thus p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001.

We also define the type Scalar to hold elements of the field F (as introduced in
Section 2.1.2) with the standard field arithmetic defined over elements of Scalar.

2.1.3 Choice of Proof Systems

COMMON is generic over the choice of a particular zk-SNARK – any can be used as long as
it satisfies the definition in Subsection 2.1.1. However, the choice of a particular proof
system has crucial impact on the overall efficiency:

• Prover time: end-users are intended to generate proofs, hence the prover efficiency
plays an important role on the user experience.

• Verifier time: proofs are verified on-chain in a smart contract, thus the verifier
time heavily impacts the gas-efficiency of the solution. The existence of particular
precompiles (EVM) or host functions (subtrate) for given elliptic curves and pairing
systems might also be of crucial importance when choosing the proof system.

• Proof size: the proof needs to be included in a transaction (calldata in EVM),
but does not need to be recorded in the state. This incurs some constraints on the
proof size, but the verifier time seems to have more impact.

Given the above constraints, at the time of writing, the most promising choices seem
to be Groth16 [Gro16a] and PLONK [GWC19] proof systems.
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2.1.4 Hashing

We make use of a cryptographic hash function Hash : Fn → F for not too large n (say
n ≤ 10). In practice, they can be instantiated with Poseidon [GKR+21]. Whenever we
write Hash(x) and x is not a tuple of F in an obvious way, we assume that there is a
generic, deterministic mapping between the type of x and Fn for some constant n.

2.1.5 Encryption scheme

We let (KGen,Enc,Dec) be an encryption scheme, and we let (pk, sk) ← KGen(1λ) be a
pair of keys for this encryption scheme.

Definition 2.4. Let E be an encryption scheme. We say that E is additively homo-
morphic if, for any ciphertexts c, c′ encrypted under public key pk with a corresponding
secret key sk, holds

E.Dec(pp, sk, c) + E.Dec(pp, sk, c′) = E.Dec(pp, sk, c+ c′) .

In Section 9.2 we introduce (chunked) ElGamal as an example of such an encryption
schemes.

2.2 Arithmetic

In the description of COMMON, we use several numeric types, such as FixedPoint, Amount,
Ratio and others, representing rational or integer numbers with various bounds. Apart
from being involved in arithmetic operations executed in smart contracts, values of these
types also appear in hashing (see Section 2.1.4) or in relations for zk-SNARKS, which
take field elements as input (see Section 8) thus need to be expressible as F elements.

Below we describe all the numeric types used in COMMON making sure that in each case
under the hood they are represented by integers in the range [0,

√
p) which guarantees

that they can be canonically mapped to Scalar in a way that multiplying two such field
elements still does not exceed p (no carry-over). This is a technical requirement that is
used in Section 8 in order to correctly implement relations validating "regular arithmetic"
using native field arithmetic in F. We note that conversions between "normal numeric
types" and Scalar are most susceptible to bugs and logical errors in implementations
often leading to underconstrained circuits, thus it is highly recommended to explicitly
check bounds in the circuit for each value which represents a "bounded type".

2.2.1 Type FixedPoint

For the sake of completeness in this section we define the fixed-point arithmetic. While
our definitions are standard, we emphasize in a few places how our choice of parameters
makes this arithmetic compatible with the native arithmetic in F and explain what does
it precisely mean.
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We fix a precision scalar M and bound scalar B (importantly, we assume6 M ≤
B <

√
p) and define the type FixedPoint(M,B) to be the set of integers [0,B − 1].

Conceptually, an element y ∈ FixedPoint(M,B) represents the rational number y
M .

From now on, we drop the references to M, B from the notation FixedPoint(M,B)
and write simply FixedPoint.

Addition: the sum + : FixedPoint× FixedPoint→ FixedPoint ∪ {Err} is defined as
follows:

y1 + y2 =

{
y1 + y2 if y1 + y2 < B,
Err otherwise

.

Note importantly that addition can fail, in case we exceed the range (denoted by Err)

Multiplication: similarly, we define the multiplication

y1 · y2 =

{
⌊y1y2M ⌋ if y1y2 < B ·M,

Err otherwise

Lemma A.1 in Appendix A states that the above defined arithmetic agrees with
regular rational arithmetic, up to perhaps a small error 1

M .
It is also important to note that the above definitions are 100% compatible with the

relations CONSTRFixedPtAdd and CONSTRFixedPtMul that are defined in Section 8.11
and take triples of F inputs. More specifically, if y1, y2, y3 ∈ FixedPoint then all these
elements are naturally also elements of F and it holds:

y1 + y2 = y3 ⇔ CONSTRFixedPtAdd(y1, y2, y3),

y1 · y2 = y3 ⇔ CONSTRFixedPtMul(y1, y2, y3).

Division: occasionally we also need to divide FixedPoint values. To this end, we define
/ : FixedPoint× FixedPoint→ FixedPoint ∪ {Err}

y1 / y2 =

{⌊
y1·M
y2

⌋
if
⌊
My1

y2

⌋
< B

Err otherwise

where the operations on the right-hand side are rational number operations. In other
words, y1/y2 is the result of making the rational number division y1/y2, removing deci-
mals beyond the M-th decimal, and multiplying by M so that the resulting value has no
decimals.

6The main idea behind this assumption is to allow performing some arithmetic operations in F without
wrap-arounds (going beyond p).
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2.2.2 Type Amount

The type Amount is meant to hold integer values in the range [0,MAXSUPPLY] repre-
senting token amounts, where MAXSUPPLY is a constant defined in Section 3.1.4. The
constants are selected so as to satisfy MAXSUPPLY < B

M .

Division of Amounts: in the protocol we occasionally need to divide amounts in order
to obtain prices (see Section 2.2.3 for the definition of Price). In order to compute
a1/a2 for a1, a2 ∈ Amount we just represent both these amounts as values y1, y2 of type
FixedPoint, where y1 = a1 ·M and y2 = a2 ·M , and compute the quotient y1/y2 as
defined in Section 2.2.1.

2.2.3 Types Ratio and Price

The type Price is simply an alias for FixedPoint, however it is meant to represent prices
of tokens.

The type Ratio is also the same as FixedPoint under the hood, but we also enforce
that the rational value it corresponds to is in the interval [0, 1].

Multiplying Amount by Price: when computing swap results we need to compute
a product of a : Amount and y : Price and get a result of type Amount. We thus define
· : Amount× Price→ Amount ∪ {Err}

a · y =

{⌊a·y
M

⌋
if a · y < B

Err otherwise

As with the previous operations involving values of type FixedPoint, the above mul-
tiplication definition is compatible with the relation CONSTRFixedPointAmountMul from
Section 8.11.2. More specifically, if a, y′ ∈ Amount and y ∈ Price then all these elements
are naturally also elements of F and it holds that

a · y = y′ ⇔ CONSTRFixedPointAmountMul(a, y, y
′).

2.2.4 Types ScaledAmount and ScaledRatio

Notice that the operations · and + defined on FixedPoint previously involve the “frac-
tional floor” function ⌊·⌋. This means that, if we want to, say, multiply a token amount
(a value of type Amount) by a fraction (a value of type Ratio), then we need to ap-
ply the fractional floor function to some value. This is not really friendly towards
the native arithmetic in F, indeed, the arithmetic circuits for CONSTRFixedPtAdd and
CONSTRFixedPtMul (cf. Section 8.11.2) have to involve complex range proofs and require
roughly log(p) gates.

However, at some specific points of our system, we would like to use additive homo-
morphic encryption: multiplying a value y of type Ratio with the encryption of a value
a of type Amount. In general, this will not result in the encryption of the value y · a,
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precisely because y ·a requires using the fractional floor function. However, in the special
case where a is divisible by M, say a = M · a′ for some a′, we have:

y

M
a = ya′.

Thus, if a = M · a′ and if we store a′ instead of a, we can define y · a′ simply as the
scalar multiplication of y and a′ (or Err if ya is larger than MAXSUPPLY). The resulting
element ya′ is given the type Amount because of constraints coming from the decryption
procedure in the Decryption Oracle.

With this in mind, we introduce a new constant7 N and two new types:

• ScaledAmount – at the low level it holds an integer a ∈
[
0, MAXSUPPLY

N

]
, but con-

ceptually it represents the integer value a · N.

• ScaledRatio – at the low level it holds an integer y ∈ [0,N], but conceptually it
represents the ration y

N .

What is important about the above two types is that if we have a ∈ ScaledAmount

and y ∈ ScaledRatio then both the low level, and "conceptual" representations have
the same product. Indeed:

(a · N) · y
N

= a · y.

For completeness we define the product operation: · : ScaledAmount× ScaledRatio→
Amount ∪ {Err}

a · y =

{
ya if ya ≤ MAXSUPPLY
Err otherwise.

2.3 Frontend vs Backend

In this Section we have described the low-level "backend" representation of numeric types
and have defined how arithmetic is defined. In the remaining sections of the paper (with
the exception, perhaps, of Section 8) we will not look at these low-level details anymore
and treat all these numbers as if they were integers or rational numbers. Whenever
we perform arithmetic on values of such types we mean that they should be performed
precisely as defined in Section 2.2 and thanks to strict typing there should never be
ambiguity in the expressions. However, for conceptual understanding of COMMON it is best
to ignore such details and just think that all operations are performed exactly, without
errors, and there is no issue with converting rational numbers to F elements.

7The reason for introducing a new constant here, instead of reusing M, is twofold: 1) we want to have
a clear distinction between ScaledAmount, ScaledRatio and Amount and Ratio, 2) M = N is not possible
because we need N to be reasonably small.

14



3 Blockchain, Smart Contracts and Data Types

3.1 Blockchain and Smart Contracts

We assume the standard model of a blockchain with deterministic finality:

• blocks keep being created and finalized (liveness),

• finalized blocks are never reverted (safety),

• users can observe blocks and reliably check if they are finalized (using finality
proofs),

• users can query the state at each block (perhaps using Merkle state proofs),

• user can send transaction to the chain and are not censored.

Whenever we mention waiting for a "transaction to be processed" we mean waiting until
the transaction enters a block and the block is finalized. This way it is guaranteed that
such a transaction cannot be reverted.

For COMMON to be efficient the blockchain should ideally have a short block-time and
near-instant finality. These properties are useful for obtaining good price efficiency of the
DEX. If the block time is large, then the resolution in the Dutch Auction (see Section 7)
cannot be made properly optimized.

3.1.1 Smart Contracts

We require the blockchain to support Turing-complete smart contracts. This could be
either EVM (Ethereum, Polygon, etc.) or WASM (like Aleph Zero) or any other. In
fact, COMMON does not require any specific, non-standard chain functionality, and can
be deployed merely as a system of two smart contracts. That being said, it is best if
the blockchain’s runtime supports specific cryptographic precompiles (host functions)
that allow for cheap zk-SNARK verification and additively-homomorphic encryption (for
instance ElGamal), because that allows to make COMMON cheap in terms of gas cost.

We assume that the contract has access to environmental calls, such as:

• currentBlock – returns the current block number,

• caller – returns the contract caller (either the user or another contract).

3.1.2 Smart Contract Execution

We assume a standard model of a smart contract:

• Code: the logic of the contract. It consists of a number of contract calls. Each
of these calls can be triggered by any user using a transaction, or by any other
contract via a cross-contract call. In the pseudocode we refer to these as Public
Calls, in contrast to Internal Calls which are not possible to call from outside,
only by the contract itself. The purpose of internal calls is to organize the contract
logic in an orderly fashion.
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• Storage: the data the contract stores and has exclusive right to modify. We assume
that there is random access to key-value collections (Map in the pseudocode) by key,
and the gas cost is constant (as in EVM).

The execution cost is measured in gas units, and there are limits on maximum amount
of gas per transaction, thus in particular it’s not possible to run arbitrarily long loops in
contract calls, and each single call should have a known upper bound on the amount of
gas it consumes.

Whenever the execution of a contract encounters an error, such as when accessing
a non-existent key in a map, or failing an Assert , then the execution stops and all
storage changes that resulted from the current call are reverted, as it it never happened
(of course, the gas fee is still charged).

3.1.3 Price Oracle

In COMMON we make use of a price oracle, thus we assume that there exists a contract
PRICE-ORACLE and its QueryPrices() call allows to get current prices of all tokens of
interest. We strongly emphasize that:

• the use of the price oracle in COMMON is not really crucial, and an on-chain price
discovery would also be fine,

• even if the oracle is ever compromised and keeps providing incorrect prices, this
does not lead to the loss of any funds on COMMON. That is because the oracle is used
only to improve matching efficiency, and has no effect on security.

3.1.4 Tokens

The tokens that can be input into COMMON and shielded are assumed to satisfy some
standard interface like ERC20 (or PSP22 for substrate chains). The exact mechanics of
transferring tokens are not of importance and thus in the pseudocode we are informal
by using statements of the form "tokens are transferred along the transaction". In a
real implementation one should replace them by first setting allowance and then using
the transfer_from call. However, we choose to ignore this low-level details to improve
clarity.

While the exact mechanics of the tokens are not significant, another seemingly tech-
nical and low-level aspect turns out to be quite important for COMMON, namely the token
supply and its number of "decimals". Because of technical reasons: 1) efficiency of zk-
SNARK proof generation, and 2) efficiency of the additevely homomorphic encryption
scheme, we need to avoid dealing with numbers that are too big. Specifically it is of much
help if there is a universal upper bound on the maximum supply of each token – we call
it MAXSUPPLY and assume that total_supply() ≤ MAXSUPPLY for each token that
is traded on COMMON. For instance, a reasonable setting for MAXSUPPLY would be 1036,
based on the field size p, and other parameters that need to be set (see Section 3.2).

Another technical issue is related to prices. We represent them with a fixed precision
of M (see Section 2.2 for the description of FixedPoint) and thus require the price to
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be in a specific range, in order to represent it with enough precision. This in turn brings
us to the quite low level consideration of token decimals. For instance AZERO has 12
decimals, which means that 1 AZERO is actually represented as an integer 1012 and
10−12 is the smallest indivisible portion of AZERO. Similarly ETH has 18 decimals,
thus 1 ETH is 1018 units (wei). Each token might have a different number of decimals,
typically 6, 9, 12, 18 or 24, also each token has a different absolute value (say in USD).
This can lead to anomalous cases that, e.g., a price of token A w.r.t. token B is 10−40,
which might be a value not easily represented as FixedPoint (depending on the choice of
M). For this reason we make an assumption (and below we explain how can we achieve
it in practice) that a particular fixed amount of each token, say 10D (for a constant D,
think D = 18) should have an absolute value in the range [10−K , 10K ] USD, for some
constant K. If this is satisfied, then the each price is in the range [10−2K , 102K ] and
hence we can set the precision parameter M accordingly and guarantee that the rounding
errors are never significant.

To solve the above two problems of max supply, and price precision, we use a simple
trick: rescale the token amounts for the internal use of COMMON. The simplest way to think
about it, is that for each token T a constant multiplier mT is selected upon registering
T in COMMON so that the USD value of 10D · mT units of token T is roughly 1 USD8.
This allows us to think that each token has D decimals, and that 10D of each token has
roughly price 1 USD. We emphasize that the multiplier mT is used only for the internal
representation of the tokens, and whenever COMMON interacts with external contracts, it
uses the multiplier to translate internal amounts to actual amounts.

We emphasize that the constraint that each token value v is at most MAXSUPPLY
(after rescaling by mT ) is a hard constraint, and the soundness of various zk-SNARK
proofs relies on this assumption. For this reason a practical implementation of COMMON
must implement a suitable safeguard that the total holdings of each token T must be at
most MAXSUPPLY at every time. While this cannot happen in normal circumstances
(because there is a good control over max supply from the USD value of the token), there
could be malicious tokens T registered on COMMON trying to violate this assumption by
minting a huge number of units.

3.2 Constants

• MAXSUPPLY – upper bound on the maximum supply each token in COMMON can
have.

• M – precision constant of FixedPoint. See Section 2.2.1 for more information on
the FixedPoint type.

• B – upper bound on the numerator in FixedPoint,

• N – another precision constant, used to guarantee integral values under homomor-
phic encryption, see Section 2.2.4, we can assume N|M, in particular, N is smaller
than M,

8Note that the price of T can then fluctuate in time, but it is safe to assume it does not go up or
down by a factor of 106.
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• LENCOLLECTPHASE – the number of blocks the collect phase is supposed to take.
(See ORDER-BOOK.FinalizeCollectPhase.)

• AUCTIONLENGTH – the number of blocks the Dutch auction in SWAP-ENGINE is
supposed to take.

• PRICESLACK – slack that we apply to current prices to obtain acceptable prices in
the current batch. Should be a small positive constant, like 0.005, or can be 0.

• DUMMY – a dummy element of type Scalar, that has unknown preimage under
the chosen hash function. We use it to signify "empty".

• HEIGHT – the default height of Merkle trees that we use. Example value HEIGHT =
30.

We also note that it’s convenient to choose all the constants: MAXSUPPLY,M,B,N
as either powers of 10 or powers of 2.

3.3 Common Types

Apart from self-explanatory types like Int or Boolean we make use of the following
custom types:

• Amount – used to represent token amounts. A value y of type Amount belongs to the
range [0,MAXSUPPLY] and represents a token amount. See 2.2.2 for more details.

• FixedPoint – a fraction value with fixed precision. See 2.2.1.

• Price – same as FixedPoint (type alias), but is specifically meant to store the
price of a token with respect to another (see 2.2.3). Intuitively, the price being
p ∈ Q for a token pair (A,B) represents the fact that p · x tokens A are worth
roughly the same as x tokens B.

• Ratio – a value of type FixedPoint but in the interval [0, 1]. See 2.2.3.

• ScaledRatio – an integer value 0 ≤ y ≤ N that represents the rational y/N. This
fraction belongs to the range [0, 1]. See 2.2.4.

• ScaledAmount – an integer value 0 ≤ a ≤ MAXSUPPLY
N that represents the number

y · N. See 2.2.4.

• Token – a type of variable representing a unique identifier of a token, e.g. the
address of the contract the token corresponds to.

• Pair – a type of the form (Token, Token). We refer to the first element of a pair
as pair.from and to the second element as pair.to. In the context of trading, if an
order refers to a pair = (A,B) : Pair then it corresponds to the user’s intent to
buy tokens B = pair.to in return for A = pair.from.

• Round – Int representing a round number in COMMON,

• Phase – a type that describes which phase of the round the contract is currently
in. Its possible values are collect , reveal , and trade.
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• OrderId – an alias for Scalar, used to hold unique identifiers of orders.

• AHCipherText – a type representing an encrypted value. The encryption scheme
(see Section 2.1.5) is additivively homomorphic, hence the "AH" prefix.

• EncPKey – a type representing the Decryption Oracle’s public key for encryption,
see Section 9.

3.4 Composite Types

In the pseudocode, especially when referring to data types, we use a syntax similar to
Rust. For instance the following types appear in several places throughout Sections 6
and 7:

• Map ⟨T, S⟩: represents a key-value mapping with keys of type T and values of type
S.

• Set ⟨T ⟩: represents a set of values of type T .

• Option ⟨T ⟩: the optional type, it is either None or a Some(t) with t being a value
of type T .

Apart from these generic data structures, below we describe a few data types and
structures specific to COMMON.

3.4.1 Nullifier Set

An important concept that has been introduced in [MGGR13, HBHW22] and then used
in virtually all protocols that are based on shielded pools is that of a nullifier set (e.g.
see ZEXE [BCG+18] and Privacy Pools [BIN+23]). This is simply a set of Scalar

values which is held on-chain (in a smart contract, in the case of COMMON) and is used to
invalidate notes (or more generally records) that have been spent, without pointing at
a particular note. In Section 4.1 we give a conceptual explanation of how nullifiers are
used.

struct NullifierSet
// The set of nullified elements
nullified : Set ⟨Scalar⟩;

Method: NullifierSet.initialize

1. Initialize self.nullified to an empty set.

The NullifierSet.nullify operation takes an element (from the F field) and outputs
a boolean value signifying whether the element was newly inserted.
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Method: NullifierSet.nullify

Input: element : Scalar
Output: Boolean

1. If element ∈ self.nullified:
Return False

2. Insert element into self.nullified

3. Return True

3.4.2 Merkle Trees

Merkle trees [Mer87] is a concept used all over blockchain systems. For privacy solutions
it is typically used to store a set of note (or record) hashes in a way that allows to
efficiently add new elements to it, and then prove inclusion of specific elements without
pointing to the explicitly. We refer to Section 4.1 for a high-level description of shielded
pools that gives an idea of the significance of Merkle trees.

In this section we briefly describe how Merkle trees are implemented for our particular
application. We refer to ZCash [HBHW22] for more details.

The MerkleTree structure is simply a full binary tree of a particular height. It is
initialized with DUMMY elements to signify that it is empty. Later on, one can insert new
elements to the tree (but never remove elements), and the newly inserted elements land in
subsequent leaves of the tree. In the below implementation we also hold historicalRoots,
which is the set of all roots the tree ever had. This is kept for technical reasons related
to the fact that the proof of inclusion in the tree references a specific root, and a proof
submitted to the contract that references a historical root (and not necessarily the current
one) must still be recognized as correct.

struct MerkleTree
// Height of the tree
height : Int;
// Tree vertices have ids between 1 to 2height − 1

vertices : Map ⟨Int, Scalar⟩;
// The set of all roots the tree ever had.
historicalRoots : Set ⟨Scalar⟩;
// Number of leafs that are occupied so far.
numLeafsUsed : Int;
// The set of all occupied leaves.
leafSet : Set ⟨Scalar⟩;

We note that the below initialization method MerkleTree.initialize is naive and is
presented here only for the sake of simplicity, otherwise it should not be used in a real
system. Instead, one should initialize the tree lazily (i.e., create vertices at the moment
when they are referenced for the first time).
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Method: MerkleTree.initialize

Input: height : Int

1. Set self.height = height

2. Initialize self.vertices by placing DUMMY in all 2height−1 leafs at the indices in the
range

[
2height−1, 2height − 1

]
and computing the remaining vertices as hashes of chil-

dren.
3. Initialize self.historicalRoots to an empty set
4. Initialize self.leafSet to an empty set
5. Set self.numLeafsUsed = 0

Adding a leaf is done by placing the new element in the first free leaf spot and then
recalculating the hashes along the path from the leaf to root. Thus the complexity is
O(self.height).

Method: MerkleTree.addLeaf

Input: leaf : Scalar

1. Assert numLeafsUsed < 2height−1 // 2height−1 is the tree capacity

2. Place leaf at a leaf number self.numLeafsUsed in the tree (this corresponds to position
2height−1+ self.numLeafsUsed in self.vertices). Recalculate the hashes at vertices on
the path from leaf to the root.

3. Assign root = self.vertices[1] // Root of the tree.

4. Insert root into self.historicalRoots

5. Insert leaf into self.leafSet

6. Set self.numLeafsUsed = self.numLeafsUsed+ 1

7. Return self.numLeafsUsed− 1

Method: MerkleTree.isHistoricalRoot

Input: root : Scalar
Output: Boolean

1. Return [root ∈ self.historicalRoots]

Method: MerkleTree.isLeaf

Input: leaf : Scalar
Output: Boolean

1. Return [leaf ∈ self.leafSet]

Below we omit the technical details of Merkle proof generation as it is standard – the
proof is just ≈ self.height field elements.
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Method: MerkleTree.generateProof

Input: leafHash : Scalar
Output: (Scalar, MerkleProof)

1. Assert leafHash is one of the leaves in the tree. Let its position be leafId.
2. Compute merkleProof – the Merkle proof of inclusion of the leaf at position leafId.
3. Return (self.root,merkleProof)

3.4.3 Notes

Below we define the Note structure. The ORDER-BOOK.tokenBag Merkle tree holds hashes
of Note (see Section 6).

struct Note
// type of tokens the note holds
tokenId : Token;
// amount of tokens the note holds
value : Amount;
// secret held by the owner of the note
trapdoor : Scalar;
// secret used to invalidate the note when spent
nullifier : Scalar;

3.4.4 Orders

As explained in Section 4 each order in COMMON is held in two parts – one part is fully
public (the Order struct) and the second part is hidden and kept only as a hash in
ORDER-BOOK.orderBag (the OrderNote struct).
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struct Order
// the fraction of the order that has been filled already
fillRatio : Ratio;
// the pair of tokens the user wants to trade
pair : Pair;
// the maximum price the user wants to pay to buy token pair.to for token

pair.from (see also definition of Price)
maxPrice : Price;
// whether the order has been cancelled
isCancelled : Bool;
// the number of batch in which the order was placed the last time in

case the fillRatio has not yet been updated after the trade, or None if
the order is up-to-date

lastBatch : Option ⟨Round⟩;
// the encryption of the order amount

encAmount : AHCipherText;

The types Ratio and ScaledRatio are separate, and in fact use different constants:
M and N to define precision. That is why we need the below method to convert one type
into the other.

Method: Order.maxBoundedFraction

Output: ScaledRatio

1. Set scaledOrderFraction to be the largest positive integer k such that k/N ≤ 1 −
self.fillRatio

2. Return scaledOrderFraction

We note that there is a certain amount of duplication between Order and OrderNote.
This is intended and necessary – there are operations such as ORDER-BOOK.ClaimSwapped
where (for privacy reasons) we don’t want to refer to a specific order, only prove the
order exists and refer some of its data privately.

struct OrderNote

orderId : OrderId;
pair : Pair;
scaledAmount : ScaledAmount;
orderTrapdoor : Scalar;
orderNullifier : Scalar;

3.4.5 Events

There are two types of events that we record in ORDER-BOOK.eventLog.
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struct OrderInBatchEvent
// the order the event refers to
orderId : OrderId;
// the pair in the order
pair : Pair;
// fraction of the order that was placed in a batch (scaled by N)
scaledOrderFraction : ScaledRatio;
// the round the event took place
round : Round;

struct TradeEvent
// the pair that was traded
pair : Pair;
// fraction of the intended amount that was traded
tradedFraction : Ratio;
// the round then the event took place
round : Round;
// the price of the trade
price : Price;

The general Event type is the union of the two types OrderInBatchEvent and
TradeEvent.

union Event

OrderInBatchEvent;
TradeEvent;

Since in the protocol we need to compute Hash(event) for event : Event we should de-
fine what is meant by that. The simplest way to do that is to map elements of type Event
into F5. Since each of the 4 fields in both types OrderInBatchEvent and TradeEvent

map straightforwardly into F, we can just map elements of OrderInBatchEvent into
tuples of the form (1, ·, ·, ·, ·) and elements of TradeEvent into tuples (2, ·, ·, ·, ·). This
mapping is obviously one-to-one, and as explained in Section 2.1.4 hashing tuples of F is
exactly what Hash() supports.

4 Technical Overview

4.1 Shielded Token Pool

The foundational component upon which COMMON is built is the Shielded Token Pool. A
user holding regular tokens (ERC20 in case of EVM chains or PSP22 in case of Substrate,
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see also 3.1.4) can deposit such tokens to the shielded pool (see Figure 13) and then
withdraw them at any time (see Figure 14). The fundamental property of the shielded
pool is that a third party observer is not able to link two different actions in the pool as
coming from the same user. Thus, with the number of the shielded pool users growing, the
anonymity set grows, and hence more privacy is gained. The idea for shielded pools has
been first introduced in [MGGR13, HBHW22] and several variants have been studied
subsequently [BCG+18, PSS19, Wil18, EKKV22, Lab23]. All these solutions share a
common core: a merkle tree with commitments to "notes" and a "nullifier set". They
differ mostly in what data is exactly held in these notes and whether the system allows
transfers within the shielded pool or only deposits and withdrawals. Below we give some
details on how is a shielded pool implemented in COMMON.

Notes. The main component of a shielded pool is a Merkle tree ORDER-BOOK.tokenBag
(see Section 3.4.2 for details) holding hashes of notes in its leaves (for a detailed definition
of Note we refer to Section 3.4.3). The Merkle tree structure allows for efficient inclusion,
and for efficient proofs that a given note hash is contained in the tree. Each note consists
of:

• tokenId – think ETH, USDT or AZERO,

• amount – number of token units,

• trapdoor and nullifier – secret field elements that are required to track ownership
and the spending rights of this note.

Depositing tokens. Suppose a user holds 10 AZERO tokens and would like to deposit
them to the shielded pool. The precise steps such a user should perform are described in
Figure 15. Let us briefly review these steps here. The main step is for the user to submit
an ORDER-BOOK.DepositTokens transaction containing:

• noteHash = Hash(note) (see Section 3.4.3 for details on notes),

• proof.

The above note satisfies note.tokenId = AZERO and9 and note.amount = 10. Moreover,
the note has note.nullifier and note.trapdoor generated uniformly at random from F by
the user. The user is expected to store these and keep them secret. The proof attached
to the transaction is a zk-SNARK showing that noteHash is indeed the hash of a note
that has a correct tokenId and amount – see the relation RDepositTokens in Section 8.9.
The ORDER-BOOK contract after receiving such a transaction, verifies the proof, and adds
noteHash as a new leaf in the merkle tree. The user is the only holder of nullifier and
trapdoor and hence has exclusive rights to spend the note: either by withdrawing, or
performing another action, such as creating a buy order.

Spending notes. Above we have explained how a user can deposit tokens in the shielded
pool (implemented as part of the ORDER-BOOK contract) in order to add its note to the

9Technically note.amount would be 10 · 1012 because we keep token amount integral, and in this
example 12 is the number of decimals of AZERO.
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ORDER-BOOK.tokenBag Merkle tree. It is instructive to observe that at this point every user
of the blockchain is aware that a very particular leaf in the tree is a hash of a note contain-
ing 10 AZERO. So to preserve anonymity it is crucial to not refer explicitly to a particular
leaf of the tree when spending the note. Let us consider the simplest case of spending:
withdrawing the token. To do so, the user needs to call the ORDER-BOOK.WithdrawTokens
method of the smart contract supplying suitable data. Apart from the tokenId = AZERO
and the amount = 10, the user needs to attach proof and nullifier. The proof is a zk-
SNARK that the there exists a noteHash in the ORDER-BOOK.tokenBag Merkle tree – such
a proof does not point to a particular leaf in the tree, the leaf (as well as a corresponding
merkle branch) is part of the witness data, thus is not revealed. However, to prevent the
user from spending a note multiple times, the nullifier must be revealed. The ORDER-BOOK
contract checks that the revealed nullifier has not been used before, and then stores it in
the tokenNullifierSet (exactly to prevent spending the note again).

Merging and splitting notes. Once a note lands in the shielded pool, it’s value cannot
be altered. This is quite limiting, hence the shielded pool also allows to arbitrarily split
one note into multiple smaller notes, or combine multiple notes to yield one (cf. Sec-
tion 6.2.7). Technically, merging is just withdrawing two (or more) notes and depositing
one being a sum – no new technical idea is required to achieve that, other than what
we have discussed above for deposit and withdraw. However, the merge and split oper-
ations allow to not reveal the individual values of notes, hence they cannot be directly
"emulated" with these operations.

Using shielded pools. It is worth noting that shielded pools are effective in providing
privacy only if the users hold the funds inside the pool long enough. Indeed, depositing
the tokens to the pool and withdrawing them shortly after (especially if it’s the same
amount, see also Section 10.4) is not recommended, since the time correlation of these
two events might put a high probability link between them. Instead, the ideal way of
using shielded pools is to hold all the tokens there, thus essentially never withdrawing
from the pool, except when this is really necessary. One of the main reasons this is not
particularly popular for legacy solutions, is that interactions with DeFi protocols or any
other contracts is not supported directly from shielded pools (one must withdraw into
the clear). COMMON allows for trading directly from the shielded pools, thus improving the
user experience in this aspect – with more DeFi being natively integrated with shielded
pools holding tokens in the pool by default might become a convenient option.

4.2 COMMON – a Bird’s Eye View

Technically, COMMON consists of two interoperating smart contracts: the ORDER-BOOK and
the SWAP-ENGINE and one additional off-chain component: the Decryption Oracle. To
best describe what the responsibilities of each of those components are, we analyze the
flow of interacting with COMMON from the perspective of a user.

First of all – the only way of trading on COMMON is by sending limit orders of the
form "I want to buy tokens Y for some amount of tokens X at price at most p". Note
that apart from classical long-living orders in the order book (waiting to be matched)
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this also captures spot trading: one can just specify p = ∞ in order for the trade to
happen at the current price. Thus, even though the interface is simplistic it allows for
both typical ways of trading. In the below description we focus on one trading pair only:
(AZERO,ETH), and for simplicity we assume that there is only this single pair10 in the
DEX.

Creating Orders. Suppose that we have 1000 AZERO tokens in the shielded pool
and that we are willing to buy 1 ETH for them. To this end we should issue a trans-
action ORDER-BOOK.CreateOrder which can be seen as registering an intent of the form
"I want to buy tokens ETH for some amount of tokens AZERO at price at most 1000.0
(see also the definition of Price and Pair in Section 3.3). Note that here, we inten-
tionally skip how many of AZERO tokens the order is about – while the token pair
(AZERO,ETH) is public in the order, the token amount remains private. Indeed, the
ORDER-BOOK.CreateOrder along with cryptographic proofs that the order is well formed
contains an encrypted amount (in this case 1000 AZERO) that only a special entity – the
Decryption Oracle can decrypt. The Decryption Oracle is a black-box abstraction of a
component that will decrypt only specific ciphertexts, and only when certain conditions
are satisfied on-chain. Concretely, one can instantiate the Decryption Oracle using Multi-
Party Computation – we refer to Section 9 for details – we also give there alternative
instantiations: using TEEs or just a single trusted party.

Rounds and Batches. After such an order is placed, it waits for being filled. COMMON
operates in rounds, each round has a prespecified length11. Each round consists, roughly
speaking, of: 1) selecting orders that we want to fill this round, 2) trying to fill these
orders. Our example order for the pair (AZERO,ETH) will stay dormant in rounds when
the spot AZERO/ETH price stays above 1000, but after it drops below to, say 999.9,
the order will be selected for the round’s batch of orders. For the (AZERO,ETH) pair,
each buy order above price 999.9 will be selected to the batch, as well as each sell order
below price 999.9. After the collect phase of the round is over, all the orders in both
directions are aggregated, to form "batched orders": one in the direction (AZERO,ETH),
and another in the opposite direction (ETH, AZERO). Note that each order in such a
batch is encrypted (has unknown) value, and what the batching essentially does (details
in Subsection 4.3) is homomorphic addition of all these encrypted orders so that they
become one large order (for each direction). After that, the Decryption Oracle is queried
to decrypt the aggregated orders, and the result triggers the next phase: trade.

Trading. The trade phase is realized by the SWAP-ENGINE. It is worth clarifying that this
round does not involve privacy, and everything happens in the clear. Roughly speaking,
the SWAP-ENGINE receives the values of orders to be traded for all the pairs, along with
the underlying tokens (the corresponding ERC20/PSP22 tokens are transferred from
ORDER-BOOK to SWAP-ENGINE) and its goal is to fill the received orders as much as possible.
The SWAP-ENGINE fills the order in two phases: 1) it matches internally between orders in

10Since we distinguish the pairs (AZERO,ETH) and (ETH,AZERO), formally we have 2 pairs. The
first one corresponds to buying ETH for AZERO, and the second one, the opposite.

11Time can be measured using regular timestamps, yet the description in this paper uses block numbers.
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opposite directions, 2) the rest is traded in an open auction that happens on a distance
of AUCTIONLENGTH blocks. More details are provided in Section 4.4, but the main
idea is to let market makers bring liquidity from all possible markets in order to obtain
best possible prices. Once the auction is over, the SWAP-ENGINE reports back to the
ORDER-BOOK informing it about the amounts it managed to trade along with the resulting
prices. ORDER-BOOK processes all this information and saves necessary data in the contract
that is then used by users to claim the traded funds. An important note is in order here:
the swap engine does not have the guarantee to fill the input orders in full. Indeed, if
some order is huge, then there might not be enough liquidity to trade all of it in a single
round (note that the SWAP-ENGINE must respect the limit prices requested by users). In
such a case, the order will land in two or more subsequent batches, until it is filled fully.
Let us then assume that our example order was matched at 50% and the price was 999.8
(it is guaranteed to be at most 1000 – the price on the limit order).

Claiming. After an order is traded in a particular round (either fully or partially) the
user is able to claim the swapped funds and bring them to the shielded pool. To this we
need to send a ORDER-BOOK.ClaimSwapped transaction, referencing publicly the traded
pair: (AZERO,ETH), the round when the trade happened, but keeping all the remaining
details: the claimed value, and the particular orderId private. This transaction allows us
to create a note containing 0.5·1000

999.8 ≈ 0.5001 ETH. The remaining 50% of the order, i.e.,
500 AZERO is still pending, and will likely be filled in the subsequent round.

When it comes to claiming, there are no limitations as to when it is done, the user can
wait arbitrarily long before claiming swapped tokens. Apart from that, it’s also possible
to cancel an order and claim the tokens that were not traded.

In the subsequent subsections 4.3 and 4.4 we dive deeper into the internal workings
of the ORDER-BOOK and the SWAP-ENGINE.

4.3 Order Book

Order Storage. Apart from the data associated with the shielded pool itself, the
ORDER-BOOK holds also a number of other items, including: ordersSet – a map holding
public data about specific orders, orderBag – a Merkle tree holding hashes of private
data about the existing orders (similarly as tokenBag has hashes of private tokens),
eventLog – a Merkle tree holding hashes of events happening during rounds. When-
ever a user creates a new order by issuing the ORDER-BOOK.CreateOrder transaction,
data is added to two places: ordersSet and orderBag. More specifically, the user cre-
ates two structures: an order (of type Order) and an orderNote (of type OrderNote),
see Subsection 3.4.4 for details of what these comprise of. Roughly speaking, the order
contains the public data about the order that will be stored in the contract in the plain
(in ORDER-BOOK.ordersSet) and Hash(orderNote) will be added to ORDER-BOOK.orderBag,
without revealing orderNote. The public order contains information such as order.pair12,

12The ordered pair of tokens, for instance (AZERO,ETH) – means the order is about buying ETH
and selling AZERO.
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order.maxPrice – the limit price of buying, order.encAmount the encrypted amount of
tokens to sell, and other data related to managing the order. The private orderNote on
the other hand contains, importantly the plaintext orderNote.amount (note that this is
secret since only Hash(orderNote) is stored on chain), and similarly to the token notes:
orderNote.orderNullifier and orderNote.orderTrapdoor that serve similar purpose as the
analogous for token notes. To guarantee consistency between these two pieces of data in
the ORDER-BOOK the user submits a zero-knowledge proof (see Subsection 8.4) that the
orderNote agrees with order.

Order Filling. Each order, when initialized as a result of the ORDER-BOOK.CreateOrder
transaction starts with order.fillRatio = 0. The fillRatio determines what fraction of the
order has been filled already, and is a public value (in contrast to the token amount
of the order). Once the fillRatio becomes 1, the order is fully filled, and will not
be included in any more batches. After an order is included in a batch (using the
ORDER-BOOK.PlaceOrderInBatch transaction) in some round, the fillRatio is updated ac-
cordingly after the round is over. This update must be triggered via a transaction
ORDER-BOOK.UpdateOrder either by the user itself or by a party called an Updater
(see Subsection 6.4). Whenever an order with some fillRatio is included in a batch,
it is placed there with an indication what fraction of the order is being traded13 –
scaledOrderFraction = 1 − fillRatio. The scaledOrderFraction value is used specifically
in two places:

• when computing the encrypted amount in a partial order – see Figure 7,

• when claiming swapped tokens – see Figure 4.

Batching Orders. Whenever a new round starts in the ORDER-BOOK, the collect phase is
initialized and for each pair (such as pair = (AZERO,ETH)) the encAggregate[pair] stor-
age item in ORDER-BOOK is set to an encryption of 0. The idea is that encAggregate[pair]
is the encrypted sum of all orders added to the current batch, for a specific pair. Adding
new orders to the batch is done via the ORDER-BOOK.PlaceOrderInBatch transaction (see
Figure 7), it is expected to be triggered by updaters, see Subsection 6.4). Here are a few
necessary conditions tha must be satisfied to add an order for a particular pair to the
current batch:

• the order’s fillRatio ̸= 1 and the order has not been cancelled,

• the order has been updated (using ORDER-BOOK.UpdateOrder) since the last time it
was included in a batch (an indication for this is that order.lastBatch = None),

• the current rounds price for this pair: maxBuyPrices[pair] ≤ order.maxPrice.

The last condition is required, because once the orders are batched, the SWAP-ENGINE
will be asked to trade the aggregate order at a price no worse than maxBuyPrices, so

13For technical reasons scaledOrderFraction and fillRatio have different types, and are held with different
precision (we emphasize this by the "scaled" prefix in the name, see Subsection 3.3. Thus the equality
scaledOrderFraction = 1− fillRatio might hold only approximately. See also Order.maxBoundedFraction.
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including only orders with limits larger than that guarantees the user’s limit order price
is satisfied. For each pair maxBuyPrices[pair] is determined using prices queried from a
price oracle, adjusted by a small constant14 called PRICESLACK, see Figure 9 how it is
computed. Once an order is placed in a batch, the status of this order is updated by
setting order.lastBatch = currentRound and the encrypted value is updated as

encAggregate[pair] = encAggregate[pair] + scaledOrderFraction · order.encAmount.

Note that in the above, the values encAggregate[pair] and order.encAmount are cipher-
texts, and scaledOrderFraction is a small integer15. However since the encryption scheme
we use is additively homomorphic multiplication of a ciphertext by a scalar is possible
to achieve (by the "repeated squaring" algorithm).

Claiming Swapped Tokens. An important element of ORDER-BOOK is the eventLog –
it’s where the ORDER-BOOK deposits events16, more specifically:

• Upon placing an order in a batch, a OrderInBatchEvent is added to eventLog,
which contains information about the current round and the orderId of the order,
see Figure 7

• Upon terminating the trade phase in the ORDER-BOOK, the TradeEvent is added to
eventLog which for each pair traded in this round saves data on what fraction of
the order was traded, and what was the average price, see Figure 12.

The events are necessary for the users to claim swapped tokens. More specifically, in
order to claim the 0.5001 ETH that we have received as 50% of our order, we need
to send the ORDER-BOOK.ClaimSwapped transaction. As part of the transaction a specific
swapOrderNullifier is included and a proof that our claim is justified. We refer the reader to
Subsection 8.8 to learn what is this proof about, but just to give some intuition: the proof
must reference two events in the eventLog, one OrderInBatchEvent and one TradeEvent
(thus the proof checks a merkle proof of inclusion of these events) and connect these to
a particular orderNote. The swapOrderNullifier for this claim is computed as

swapOrderNullifier = Hash(orderNote.orderNullifier, round)

(see Figure 19) – this way we can have multiple different nullifiers per the same order.

Cancelling an Order. To cancel an order the user is supposed to send the transac-
tion ORDER-BOOK.CancelOrder. What this essentially does, is sets the isCancelled field
of the order to True so that the order cannot be placed in any batch anymore. Af-
terwards, assuming the order is up-to-date already (this might require waiting till the

14While in the paper PRICESLACK is a constant, independent on the pair, a version where PRICESLACK
is variable, depending on pair but also on what happened in previous rounds is certainly a viable variant
of the protocol.

15Even though scaledOrderFraction corresponds to a fraction in [0, 1], we represent it as an integer, to
enable homomorphic encryption. See the definitions of ScaledRatio and ScaledAmount in Section 3.3

16More precisely, hashes of events are stored there.
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end of the round), the user can claim the tokens that were left unswapped using the
ORDER-BOOK.ClaimCancelled transaction. The content of this transaction is similar to
ClaimSwapped, but referencing events is not necessary for the case of cancelling. Apart
from that, the cancelOrderNullifier has the form

cancelOrderNullifier = Hash(orderNullifier, cancel),

where cancel is simply a special field element guaranteed to be not equal to any round
number.

4.4 Swap Engine

The role of SWAP-ENGINE is to perform the trades coming from the ORDER-BOOK. Specif-
ically, after the trade values are revealed, the ORDER-BOOK calls the SWAP-ENGINE.Start
method in order to initialize the SWAP-ENGINE. There are two inputs to this function:

• amountsFrom : Map ⟨Pair, Amount⟩ a mapping representing for each pair (A,B) how
many tokens A is the SWAP-ENGINE supposed to trade for tokens B,

• maxBuyPrices : Map ⟨Pair, Price⟩ a mapping determining for each pair (A,B) the
maximum possible price for buying tokens B for tokens A.

The goal of the SWAP-ENGINE is, for each pair (A,B), to trade as many tokens A for B
as possible (but at most amountsFrom[(A,B)], while respecting the given bound on the
price maxBuyPrices[(A,B)]. Once the SWAP-ENGINE is done with its trades (for which
it spends a prespecified amount of time AUCTIONLENGTH) it returns the result to the
ORDER-BOOK by calling ORDER-BOOK.FinalizeTradePhase. The output consists of two
items:

• sold : Map ⟨Pair, Amount⟩ – for each pair (A,B) how many of the A tokens did the
SWAP-ENGINE manage to swap for B tokens,

• bought : Map ⟨Pair, Amount⟩ – for each pair (A,B) how many of the B tokens did
the SWAP-ENGINE managed to receive in return for the sold[(A,B)] tokens A.

Both when ORDER-BOOK is calling the SWAP-ENGINE and when SWAP-ENGINE is calling
ORDER-BOOK back, the corresponding amounts of tokens are transferred between the con-
tracts. Having explained how the SWAP-ENGINE interacts with the ORDER-BOOK we are
ready to explain how the trading is done – it is performed in two phases, which we discuss
separately below.

Internal matching. In order to maximize the amounts traded, as well as optimize
the prices for users, the SWAP-ENGINE starts by matching the opposite pairs against
each other. If for a pair of tokens (A,B), both constraints amountsFrom[(A,B)] > 0 and
amountsFrom[(B,A)] > 0 are satisfied, the SWAP-ENGINE first determines a common price
p such that:

p ≤ maxBuyPrices[(A,B)] and p−1 ≤ maxBuyPrices[(B,A)],
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and then trades the maximum amount of A and B tokens so as to not exceed any
of amountsFrom[(A,B)], amountsFrom[(B,A)]. Because of how ORDER-BOOK determines
maxBuyPrices it is guaranteed that such a price p exists and can be, for instance the geo-
metric mean of maxBuyPrices[(A,B)] and maxBuyPrices[(B,A)]−1. We refer to Figure 23
for the details.

In this version of the protocol the internal matching "closes" cycles of length 2 only:
A → B → A. One can generalize this to a version where more sophisticated internal
trades are made in order to maximize the traded amounts, this generalization is left out
of the scope of this paper. It is worth mentioning that matching internally is heavily
preferred over selling in the second phase, since there is no trading fee involved in the
first phase, which allows to secure better prices.

It is expected that the SWAP-ENGINE does not manage to fill all the trading requests
it got from the ORDER-BOOK during the internal matching phase. In the second phase, the
SWAP-ENGINE runs for each pair (A,B) (independently, in parallel) a Dutch auction to
buy B tokens for A tokens. The Dutch auction proceeds in AUCTIONLENGTH blocks. It
starts by computing an initial price p0 that is suitably lower than maxBuyPrices[(A,B)]
and it allows the market makers to sell tokens B for A at this initial price p0. With
every block, the price is increased, linearly, so that in the last block, the price is exactly
maxBuyPrices[(A,B)]. We refer to Figure 21 for the implementation of the Dutch Auction
mechanism – it is worth mentioning that the price at a given block is computable directly
from the data the SWAP-ENGINE contract holds and the block number, hence the price
does not need to be constantly updated in the contract.

The mechanism used by the SWAP-ENGINE allows to effectively aggregate all on-chain
sources of liquidity. Indeed, if there is another DEX that allows to buy tokens B for A
at a price cheaper than the current price of the Dutch auction, the market makers will
naturally take advantage of such an arbitrage opportunity and buy tokens B on the DEX
to sell in the COMMON Dutch auction.

We note that using an auction with a gradually changing price instead of just setting
the price to maxBuyPrices[(A,B)] right away allows COMMON to secure better prices from
the on-chain liquidity, as otherwise the cut of the arbitragers would be potentially higher.
Moreover, we claim that in the case of auction the competition between market makers
is expected to be healthier. Indeed, instead of MEV bots fighting for their transactions
to take the whole trade (in case it is profitable), the auction favors market makers who
can outbid the others by offering the best price. Since the auction takes several blocks
of time, it is also possible for market makers to pull liquidity from different sources to
perform non-atomic arbitrage (by bridging from different chains, or by bringing capital
from centralized exchanges).

5 Security and Privacy

We provide an informal discussion of the guarantees provided by COMMON in terms of
security and privacy.
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5.1 Security Guarantees for Users

Assumptions. On top of the blockchain assumptions stated in Subsection 3.1, we
make the following cryptographic assumptions necessary to reason about the security of
COMMON.

1. Collision Resistance and Preimage Resistance property of the underlying hash func-
tion.

2. Completeness, Soundness and the Zero Knowledge property (ZK) of the underlying
zk-SNARK.

3. Security and Additive Homomorphism of the Encryption Scheme used in the in-
stantiation of the Decryption Oracle.

4. The Decryption Oracle instantiation securely realizes the functionality described
in Section 9.

Discussion. We consider the scenario when an honest user tries to exchange an amount
of x token A for token B with maxPrice p on COMMON. The expected result is that the
user is able to collect:

• y
p token B,

• and x− y token A,

where y is an amount that depends on how much time (number of batches) the user is
willing to wait before it cancels its order and collects the untraded amount (x − y) –
note that the market conditions also play a crucial role here. This is the expected result
because of the following reasons.

• Impossibility for a malicious user to collect more than it should via
submitting incorrect orders or claims. The honest users are protected from
other malicious users who trade on COMMON. In more detail, if a malicious user
creates an order to exchange x token A for token B by spending a note (whose
hash is included in the tokenBag) that proves ownership of x token A, then it will
not be able to collect (i) more token A than the untraded amount of its order
and (ii) more token B than the amount which corresponds to the fraction of its
order that has been already traded and the prices of the corresponding batches in
which this order was included. This is guaranteed by the soundness property of the
underlying zk-SNARK, the relations used in the zk-SNARK (cf. Section 8), and
the collision resistance property of the hash function used in the Merkle trees that
we utilize for membership proofs (tokenBag, orderBag, eventLog). At a high level,
every user proves (via the relation RNewOrder) in a zk-SNARK that it constructed
correctly both the encryption of the order’s value and the order note (whose hash
will be stored in the orderBag) using the same amount as the value of the note that
it spends (whose hash is stored in the tokenBag).
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In addition, when a user collects back the amount of its order that has not yet been
traded or the traded amount by creating a note (whose hash will be included in the
tokenBag), it proves among others in a zk-SNARK (via the relations RClaimCancelled
and RClaimSwapped respectively) that the note is correctly constructed and includes
the correct amounts and token IDs.

• Impossibility for a malicious user to double-claim. COMMON prevents a
user from spending twice a note from tokenBag via the use of nullifiers (as in
[HBHW22]) whose correct use is checked in the relevant relations. Also, COMMON
prevents users from claiming twice the untraded or the traded amount of their
orders by utilizing again nullifiers but in a more complicated way, as the same
order can be executed in different batches. For example, recall that the nullifier
the user makes public to collect the traded amount of its order that corresponds to
a specific batch is constructed by hashing an initial nullifier that was stored in the
order note concatenated with the round when this batch was created.

• The order/claim/cancellation of an honest user will be accepted. Due to
the completeness property of the underlying zk-SNARK an honest user is able to
construct zk-SNARK proofs that pass the verification tests.

• An attacker cannot steal the funds from honest users due to privacy
leakage. Due to the ZK property of the underlying zk-SNARK, the preimage
resistance property of the underlying hash function and the security guarantees
of the Encryption Scheme used in the instantiation of the Decryption Oracle, an
honest user does not reveal secret information about its notes and its order notes
that could enable an attacker to spend them on its behalf.

• The aggregated amounts of every batch that are sent to the SWAP-ENGINE
are equal to the sum of the order values in the batch. Assuming (i) that
the Decryption Oracle instantiation securely realizes the functionality described in
Section 9 and (ii) the Additive Homomorphism of the Encryption Scheme used in
the instantiation of the Decryption Oracle, then the decrypted amounts that are
submitted by the Decryption Oracle to the ORDER-BOOK (and later are sent to the
SWAP-ENGINE) correspond to the sum of the order values.

• Everyone can check the correct execution of COMMON. All the procedures of
COMMON except the decryption of the aggregated amounts (its correctness can still
be verified on chain) are performed on chain via smart contracts which means that
everyone can check the correctness of the computations (cf. Subsection 3.1).

• The Market Makers cannot steal funds from the users. This holds because
when the Market Makers submit a transaction in order to participate in the Dutch
auction, then the smart contract SWAP-ENGINE checks that the Market Maker has
given access to the correct amount of token that it wants to sell.

• No fraction of the user’s order can be traded at a worst price than the
upper bound maxPrice that it has set when it submitted its order. We
explain why this holds in a different paragraph later.
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5.2 Security Guarantees for Market Makers

When a Market Maker sends a transaction to participate in the Dutch auction, then it
specifies (put as input) the worst price (the lowest price for selling) that it is willing to
accept. If this transaction gets included in the chain later than the current round (e.g
in the trade phase of the next round where a different price for the Dutch auction has
been set), it will not be processed if the new price is worse than what the Market Maker
had set as input. Also, if this transaction gets included in the collect or reveal phase of
a next round then it will not be processed at all as there will be zero amount for trading
available. Furthermore, a Market Maker that wants to exchange token B for token A
needs to set as input in its transaction the maximum amount y of token A that it wants
to buy and also to “send” the correct amount of token B according to the Dutch auction
price. If there are not y token A available when its transaction is included (because for
example other Market makers’ transactions were included first) then it will buy as much
as possible and the remaining amount of the token B that the Market Maker sent but
was not traded is returned. As a result, even if Market Maker’s transaction is included
with a delay, a Market Maker does not lose the amount that has sent but was not traded,
and also the traded amount is always executed at a price that is no worse than what it
has specified.

5.3 Privacy Guarantees

Under the following assumptions, an honest user keeps secret (i) the note from the
shielded pool that it spends in order to create a new order and trade on COMMON or the
order note it consumes when it claims its funds after trading on COMMON and transfers
them to the shielded pool, and (ii) what is the value of the newly created order. When
the user trades on COMMON, it reveals the token IDs that it wants to sell and buy via
its order (the direction of the order) and the maximum buying price that it is willing
to accept. Note that although in our protocol a user reveals the direction, this can be
mitigated by generating fake orders that encrypt “0” – see Subsection 10.5.

1. Preimage resistance property of the underlying hash function. We need this as-
sumption in order to retain secret the notes and the order notes of the users
when they reveal the hash of them (recall that the hash values are included in
the tokenBag and orderBag respectively).

2. ZK property of the underlying zk-SNARK. This property is essential so that the
users do not reveal any secret information when they prove via a zk-SNARK that
they own a note in tokenBag or an order note in orderBag with specific character-
istics.

3. Security guarantees of the Encryption Scheme used in the instantiation of the
Decryption Oracle.

4. We assume that the adversary cannot corrupt all but one parties whose orders will
be included in the same batch. Note that this assumption is needed for every private
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DEX that uses batching as the technique to hide the orders’ value (it makes public
the aggregated amounts). This assumption is essential because the aggregated
amounts of a pair and direction are revealed, so if the adversary corrupts all but
one parties in the batch, it can learn the value of the remaining user in the batch.

5.4 Price

Let us first discuss which is the worst case price. Every order in the same batch is traded
at the same price p0 which does not exceed the maxPrice of any order that is included in
the batch. Note that before the end of every round, the ORDER-BOOK computes which is
the fraction of the batch that has been traded and which is the clearing price (for every
pair and direction). This price depends on the price at which the internal matching
performed and the price at which the Market Makers participated in the Dutch auction
(both handled by the SWAP-ENGINE). For example, if after a round x% of the batch has
been traded at price p0, then every user can claim the tokens that correspond to the
trade of x% part of its order and to price p0.

This clearing price p0 is no worse than the maxPrice of any order in the batch, because:

1. The ORDER-BOOK collects for every batch only orders whose maxPrice is higher than
the upper bound on the buying prices that it can guarantee for this batch (this is
denoted by maxBuyPrices and is equal to an oracle price currentPrices multiplied
by some tolerance (1 + PRICESLACK), where PRICESLACK is a parameter).

2. The SWAP-ENGINE that is responsible for the trading of the aggregated amounts (i)
performs an internal matching that respects the maximum prices of all the directed
pairs. In more detail, it achieves this by selecting a price for the directed pair (A,B)
that is between maxBuyPrices[(B,A)]−1 and maxBuyPrices[(A,B)]; if no such price
exists then it skips the internal matching. (ii) queries again the price oracle after
the internal matching, but the Dutch auction starts with the oracle prices only if
they respect maxBuyPrices; otherwise maxBuyPrices are used for the initial Dutch
auction price) (iii) as the Dutch auction progresses, although the prices become
worse for the users and better for the Market Makers, they never become worse
than maxBuyPrices.

Best case price: if the oracle price queried by the SWAP-ENGINE for (A,B) is smaller
than maxBuyPrices[(A,B)], then in the best case the price for (A,B) (price for buying)
will be between the geometric mean of maxBuyPrices[(B,A)]−1 and maxBuyPrices[(A,B)],
and this oracle price (we do not know which of the two is smaller). This holds because in
the best case some fraction of the aggregated amount for pair (A,B) will be traded via in-
ternal matching at a price that is equal to the geometric mean of maxBuyPrices[(B,A)]−1

and maxBuyPrices[(A,B)] and some other fraction will be bought by the Market Makers
at the beginning of the Dutch auction where the price is equal to the oracle price. On
the other side, if the oracle price is higher than maxBuyPrices[(A,B)], then the price will
be between the geometric mean of the maxBuyPrices[(B,A)]−1 and maxBuyPrices[(A,B)]
and maxBuyPrices[(A,B)].
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For example, when PRICESLACK = 0 then maxBuyPrices[(A,B)] is equal to oracle
price as queried by the ORDER-BOOK and thus equal to maxBuyPrices[(B,A)]−1. In that
case the price for (A,B) would be in the best case between oracle price as queried by the
ORDER-BOOK and the minimum between the two oracle prices (the one that was queried
initially by the ORDER-BOOK and the other queried by the SWAP-ENGINE) and in the worst
case equal to oracle price as queried by the ORDER-BOOK. Note that the smaller the
PRICESLACK is the better the price for the users but the more difficult to attract Market
Makers.

6 Order Book

This section is devoted to describing the details of the ORDER-BOOK contract. For a high
level description we refer to Subsection 4.3. The first part of the description is the
definition of the ORDER-BOOK storage in Subsection 6.1. Subsequently in Subsection 6.2
all the contract calls of ORDER-BOOK are written as pseudocode. Finally in Subsection 6.3
we describe how would a user interact with the ORDER-BOOK contract: how should they
craft transactions and which data should they preserve in their local storage.

6.1 Storage

We list all the storage items of ORDER-BOOK along with their types. In the pseudocode
a given storage item, like tokenBag, is referred to as self.tokenBag because self is the
ORDER-BOOK itself.

• tokenBag : MerkleTree – a Merkle Tree representing ownership of tokens by users.
Each leaf of this tree is an element of type Scalar of the form h = Hash(note)
where note is of type Note.

• tokenNullifierSet : NullifierSet – a set of field elements that represent invalidation
of notes in tokenBag. More specifically, if n ∈ tokenNullifierSet then it is not possible
to spend a note such that note.nullifier = n.

• orderBag : MerkleTree – holds secret data in users’ orders. Each leaf of this tree
is an element of type Scalar of the form h = Hash(orderNote) where orderNote is
of type OrderNote.

• orderNullifierSet : NullifierSet – a set holding invalidations of token claims re-
sulting from swaps and cancelled orders. More specifically, each element of this set
is of the following form: Hash(n, nonce) where:

– n is a nullifier of some order in the orderBag,
– nonce is either an element of type Round (i.e. it is a round number), or the

special element cancel : Scalar guaranteed to be not equal to any round
number.

Each order can have multiple nullifiers in orderNullifierSet corresponding to claiming
tokens swapped in various rounds and/or tokens claimed for cancelling the order.
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• ordersSet : Map ⟨OrderId, Order⟩ – a mapping from order identifiers to the public
order data.

• eventLog : MerkleTree – holds events that occurred in the order book. More
specifically, the events are of type Event (see the definition of Event) and are held
in the subsequent leafs of a Merkle tree as hashes.

• encAggregate : Map ⟨Pair, AHCipherText⟩ – a mapping representing the encrypted
total trade value for each pair of tokens in the current round.

• aggregate : Map ⟨Pair, Amount⟩ – similar as encAggregate but the amounts are in
the plain. Note that this map is populated only after encAggregate gets decrypted
by the Decryption Oracle.

• maxBuyPrices : Map ⟨Pair, Price⟩ – a mapping representing the maximum price
that the pair will trade at, the SWAP-ENGINE will generally try to buy as cheap as
possible but it also has the hard constraint to never buy at a price higher than
maxBuyPrices.

• encPKey : EncPKey – the public key of the Decryption Oracle used for encryption.

• currentRound : Round – the number of the current round.

• currentPhase : Phase – the current phase in round.

• currentRoundStart : Int – the block number when the current round has started.

6.2 Calls

This subsection is devoted to presenting the pseudocode of all the calls available in
ORDER-BOOK. The calls often use zk-SNARK verification with respect to various relations
R⋆ – the description of those can be found in Section 8.
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6.2.1 Order Management

Public Call: ORDER-BOOK.NewOrder

Input: orderId : OrderId, pair : Pair, maxPrice : Price, root : Scalar, noteHash : Scalar,
orderHash : Scalar, encAmount : AHCipherText, proof : ZKProof, tokenNullifier : Scalar

1. Assert orderId /∈ self.ordersSet // ensure that the orderId is not taken

2. Assert self.tokenBag.isHistoricalRoot(root)

3. Assign xNewOrder = (root, noteHash, tokenNullifier, orderHash, encAmount, self.encPKey)

4. Assert ZKP.V(RNewOrder, xNewOrder, proof)

5. Assert self.tokenNullifierSet.nullify(tokenNullifier)

6. self.orderBag.Add(orderHash)

7. Initialize order : Order

• order.fillRatio = 0,
• order.pair = pair,
• order.maxPrice = maxPrice,
• order.isCancelled = False,
• order.lastBatch = None,
• order.encAmount = encAmount,

Figure 1: Creating a new order.

Public Call: ORDER-BOOK.CancelOrder

Input: orderId : OrderId, root : Scalar, proof : ZKProof

1. Assert self.orderBag.isHistoricalRoot(root)

2. Assign xCancelOrder = (root, orderId)

3. Assert ZKP.V(RCancelOrder, xCancelOrder, proof)

4. Set self.ordersSet[orderId].isCancelled = True

Figure 2: Cancelling an order.
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6.2.2 Claiming Tokens

Public Call: ORDER-BOOK.ClaimCancelled

Input: cancelOrderNullifier : Scalar, rootOrderBag : Scalar, orderId : OrderId,
noteHash : Scalar, proof : ZKProof

1. Assert self.orderNullifierSet.nullify(cancelOrderNullifier)

2. Set order = self.ordersSet[orderId]

3. Assert self.orderBag.isHistoricalRoot(rootOrderBag)

4. Assert (order.isCancelled = True) ∧ (order.lastBatch = None)

// We ensure that the order has been marked as cancelled and is up-to-date

5. Assign x = (cancelOrderNullifier, rootOrderBag, orderId, noteHash, order.fillRatio)

6. Assert ZKP.V(RClaimCancelled, x, proof)

7. self.tokenBag.Add(noteHash)

Figure 3: Claiming funds from a cancelled.

Public Call: ORDER-BOOK.ClaimSwapped

Input: swapOrderNullifier : Scalar, rootOrderBag : Scalar, rootEventLog : Scalar,
noteHash : Scalar, proof : ZKProof

1. Assert self.orderNullifierSet.nullify(swapOrderNullifier)

2. Assert self.orderBag.isHistoricalRoot(rootOrderBag)

3. Assert self.eventLog.isHistoricalRoot(rootEventLog)

4. Assign x = (swapOrderNullifier, rootOrderBag, rootEventLog, noteHash)

5. Assert ZKP.V(RClaimSwapped, x, proof)

6. self.tokenBag.Add(noteHash)

Figure 4: Claiming funds from a swap.

6.2.3 Adding Events

Note that the below call is internal – only the ORDER-BOOK can deposit events.

Internal Call: ORDER-BOOK.AddEvent

Input: event : Event

1. Set eventHash = Hash(event) // we refer to Section 3.4.5 for hashing Event.

2. self.eventLog.addLeaf(eventHash)

Figure 5: Adding an event to the log.
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6.2.4 Batch Management

We recall that + and · below are the arithmetic operations we defined for FixedPoint,
Amount and Ratio data types (cf. Section 2.2.1).

Public Call: ORDER-BOOK.UpdateOrder

Input: orderId : OrderId, event : TradeEvent

1. Assert self.eventLog.isLeaf(Hash(event)).
2. Set order = self.ordersSet[orderId]

3. Assert order.lastBatch = event.round

4. Set scaledOrderFraction = order.maxBoundedFraction()

// it is the same fraction as was included in the batch in round event.round.
5. Converta scaledOrderFraction from type ScaledRatio to FixedPoint

6. Set order.fillRatio = order.fillRatio+ scaledOrderFraction · event.tradedFraction
7. Set order.lastBatch = None

8. Set self.ordersSet[orderId] = order

ascaledOrderFraction is of type ScaledRatio thus really some y ∈ [0,N] representing y
N . Since

we assume N is a divisor of M, this conversion to FixedPoint incurs no error.

Figure 6: Update order.
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Public Call: ORDER-BOOK.PlaceOrderInBatch

Input: orderId : OrderId, round : Round

1. Assert self.currentPhase = collect

2. Assert self.currentRound = round

3. Set order = self.ordersSet[orderId]

4. Assert order.lastBatch = None

5. Assert order.isCancelled = False

6. Assert self.maxBuyPrices[pair] ≤ order.maxPrice

// this guarantees the price in the order will be respected

7. Set scaledOrderFraction = order.maxBoundedFraction()

8. Assert scaledOrderFraction > 0

// no point in trading 0 amounts

9. Initialize event : OrderInBatchEvent

• event.orderId = orderId

• event.pair = order.pair

• event.scaledOrderFraction = scaledOrderFraction

• event.round = round

10. self.AddEvent(event)

11. Set order.lastBatch = round

12. Set self.encAggregate[pair] = self.encAggregate[pair] + scaledOrderFraction ·
order.encAmount

// homomorphic operations on ciphertexts

Figure 7: Placing order in a batch.

6.2.5 Control Flow

The call below initializes the contract and is assumed to be called just once, at the start,
so it is really a constructor.
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Internal Call: ORDER-BOOK.InitializeOrderBook

1. Call ORDER-BOOK.InitializeRound(1)
2. Set self.encParams = DecryptionOracle.KGen[0]

3. Set self.encPKey = DecryptionOracle.KGen[2]

4. Initialize Merkle trees:

• self.tokenBag.initialize(HEIGHT)
• self.orderBag.initialize(HEIGHT)
• self.eventLog.initialize(HEIGHT)

5. Initialize nullifier sets:

• self.orderNullifierSet.initialize()

• self.tokenNullifierSet.initialize()

Figure 8: Initialize contract.

Internal Call: ORDER-BOOK.InitializeRound

Input: round : Round

1. Set self.currentRound = round.
2. Set self.currentPhase = collect .
3. Set self.currentRoundStart = currentBlock

4. Call PRICE-ORACLE.QueryPrices() to populate currentPrices[pair] for each pair of to-
kens traded in ORDER-BOOK.

5. For each pair ∈ currentPrices:
Set self.maxBuyPrices[pair] = (1 + PRICESLACK) · currentPrices[pair]

6. For each pair, initialize self.encAggregate[pair] to the encryption of 0.
7. Clear self.aggregate

Figure 9: Initialize a round.

Public Call: ORDER-BOOK.FinalizeCollectPhase

1. Assert (currentBlock− self.currentRoundStart) ≥ LENCOLLECTPHASE
2. Set self.currentPhase← reveal

Figure 10: Triggering the end of the collect phase.
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Public Call: ORDER-BOOK.RevealTradeValues

Input: aggregate : Map ⟨Pair, Amount⟩ , proofs : Map ⟨Pair, DecProof⟩
// To get aggregate and proofs the sender calls DecryptionOracle.Decrypt on self.encAggregate.

1. Assert self.currentPhase = reveal

2. For each pair in self.encAggregate:

• Set π = proofs[pair]

• Set amount = aggregate[pair]

• Set encAmount = self.encAggregate[pair]

• Assert DecryptionOracle.Verify(self.encParams, encAmount, amount;π)

// Assert that aggregate[pair] is the decryption of self.encAggregate[pair].

3. For each element (pair, amount) in self.aggregate:
Send amount of tokens pair.from to SWAP-ENGINE

4. Set self.aggregate = aggregate

5. Set self.currentPhase = trade

6. Call SWAP-ENGINE.Start(aggregate, self.maxBuyPrices)

Figure 11: Reveal the encrypted aggregated trade values.

Public Call: ORDER-BOOK.FinalizeTradePhase

Input: sold : Map ⟨Pair, Amount⟩, bought : Map ⟨Pair, Amount⟩

1. Assert caller = SWAP-ENGINE.
2. For each element (pair, amount) in self.aggregate:

• Set tradedFraction = sold[pair] / self.aggregate[pair]

• Set price = sold[pair] / bought[pair], (unless tradedFraction = 0, in which case
set price = 0)

• Initialize event : TradeEvent

– event.pair = pair
– event.tradedFraction = tradedFraction
– event.round = self.currentRound
– event.price = price

• self.AddEvent(event)

3. Call ORDER-BOOK.InitializeRound(self.currentRound+ 1)

Figure 12: ORDER-BOOK receives the trading results from SWAP-ENGINE and the round is
finalized.
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6.2.6 Basic Token Note Management

Below we provide implementation of the two basic functionalities of the shielded pool:
ORDER-BOOK.DepositTokens and ORDER-BOOK.WithdrawTokens. The former allows to
deposit a note in the shielded pool by sending public coins to the contract. The latter
allows to spend a note: withdraw part of its funds to a public account and keep the rest
but in a new, separate note.

Public Call: ORDER-BOOK.DepositTokens

Input: amount : Amount, tokenId : Token, noteHash : Scalar, proof : ZKProof

1. Assert the caller has sent value of tokens tokenId along the transactiona.
2. Assert 0 ≤ amount ≤ MAXSUPPLY
3. Set xDepositTokens = (amount, tokenId, noteHash)

4. Assert ZKP.V(RDepositTokens, xDepositTokens, proof)

5. self.tokenBag.addLeaf(noteHash)

aIn a real implementation this should be done using ERC20 allowance.

Figure 13: Deposit tokens to create a note.

Public Call: ORDER-BOOK.WithdrawTokens

Input: valueOut : Amount, tokenId : Token, root : Scalar, proof : ZKProof,
tokenNullifier : Scalar, newNoteHash : Scalar

1. Assert self.tokenBag.isHistoricalRoot(root)

2. Assert self.tokenNullifierSet.nullify(tokenNullifier)

3. Set xWithdrawTokens = (root, valueOut, tokenId, newNoteHash, tokenNullifier)

4. Assert ZKP.V(RWithdrawTokens, xWithdrawTokens, proof)

5. self.tokenBag.addLeaf(newNoteHash)

6. Send valueOut tokens tokenId to the caller

Figure 14: Withdraw tokens from a note.

6.2.7 Advanced Token Note Management

Apart from the basic functionality of the shielded pool, it is also convenient to give the
user more flexibility to manage the notes with additional calls. These are:

• ORDER-BOOK.MergeNotes – takes hashes of two notes with the same token, spends
them, and creates a new note with value being the sum of values of the spent notes,

• ORDER-BOOK.SplitNote – the opposite of ORDER-BOOK.MergeNotes, takes one note
and splits it into two.
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The implementations of the above two methods is straightforward when already given
ORDER-BOOK.DepositTokens and ORDER-BOOK.WithdrawTokens, hence we omit the de-
tails.

6.3 User Actions

While Subsection 6.2 provides the description of the ORDER-BOOK contract calls, it might
not be immediately clear how does the interaction with the ORDER-BOOK should look like
from the user perspective. The tricky part is mostly about keeping track of the various
secrets that are necessary to claim the tokens.

6.3.1 Storage

The user’s storage consists of two collections of notes: token notes localNoteSet and order
notes localOrderSet. It is necessary to keep track of these notes to be able to claim the
underlying funds. In a practical implementation the wallet could keep these locally or in
a cloud, or perhaps generate the relevant secrets pseudorandomly from a secret seed, so
that they can be recovered without the need to keep lots of data.

1. localNoteSet : Set ⟨Note⟩ – a set of notes that the user owns, i.e. their hashes are
held in ORDER-BOOK.tokenBag

2. localOrderSet : Map ⟨OrderId, OrderNote⟩ – a mapping of order ids into order notes.
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6.3.2 Interactions

User Action: CreateNote

Input: tokenId : Token, amount : Scalar

1. Sample elements tokenTrapdoor, tokenNullifier←$ Scalar.
2. Initialize note : Note

• note.tokenId = tokenId,
• note.amount = amount,
• note.tokenTrapdoor = tokenTrapdoor,
• note.tokenNullifier = tokenNullifier.

3. Set noteHash = Hash(note)

4. Set w = (note)

5. Set x = (noteHash, tokenId, amount)

6. Set proof ← ZKP.P(RDepositTokens, x,w)

7. Sign transaction tx = ORDER-BOOK.DepositTokens(noteHash, tokenId, amount, proof),
which has attached amount of token tokenId.

8. Send tx and wait until it has been processed on chain.
9. Assert tx executed without errors on chain.

10. Add the note to the local storage: self.localNoteSet.Add(note)

Figure 15: Create a new note.
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User Action: CreateOrder

Input: pair : Pair, amount : Amount, maxPrice : Price

1. Retrieve note from the localNoteSet such that note.amount = amount and note.pair =
pair.

// If there is no such note the user is supposed to use ORDER-BOOK.MergeNotes

// and ORDER-BOOK.SplitNote to create one.

2. Set scaledAmount = ⌊amount/N⌋
3. Sample orderId←$ Scalar

4. Sample orderTrapdoor, orderNullifier←$ Scalar

5. Set encPKey = ORDER-BOOK.encPKey

6. Compute the encryption of amount as

encAmount = DecryptionOracle.Encrypt(encPKey, scaledAmount; r)

with r ←$ Scalar

7. Initialize orderNote : OrderNote

• orderNote.orderId = orderId

• orderNote.pair = pair

• orderNote.scaledAmount = scaledAmount

• orderNote.orderTrapdoor = orderTrapdoor

• orderNote.orderNullifier = orderNullifier

8. Set orderHash = Hash(orderNote)

9. Set noteHash = Hash(note)

10. Set (root,merkleProof) = ORDER-BOOK.tokenBag.generateProof(noteHash)

11. Set x = (root, noteHash, orderHash, encAmount).
12. Set w = (note, orderNote, path, r).
13. Set proof = ZKP.P.(RNewOrder, x,w)

14. Sign transaction

tx = ORDER-BOOK.NewOrder

(
orderId, pair,maxPrice, root, noteHash,

orderHash, encAmount, proof, tokenNullifier

)

15. Send tx and wait until it has been processed on chain.
16. Add the order to the local storage: self.localOrderSet[orderId] = orderNote

Figure 16: Create a new order.
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User Action: CancelOrder

Input: orderId : OrderId

1. Retrieve orderNote = localOrderSet[orderId] from the local storage
2. Set orderHash = Hash(orderNote)

3. (root,merkleProof) = ORDER-BOOK.orderBag.generateProof(orderHash)

4. Set x = (root, orderId)

5. Set w = (orderNotePath, orderNote)

6. Set proof = ZKP.P(RCancelOrder, x,w)

7. Sign transaction tx = ORDER-BOOK.CancelOrder(orderId, root, proof)

8. Send tx and wait until it has been processed on chain.

Figure 17: Cancel an order.
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User Action: ClaimCancelled

Input: orderId : OrderId,

1. Retrieve orderNote = localOrderSet[orderId] from the local storage.
2. Set order = ORDER-BOOK.ordersSet[orderId]

3. Assert order.isCancelled = True, order.lastBatch = None, and order.fillRatio < 1.
4. Set cancelOrderNullifier = Hash(orderNote.orderNullifier, cancel)

5. Set orderAmount = orderNote.scaledAmount · N
// Conversion from ScaledAmount to Amount

6. Set valueClaimed = orderAmount · (1− fillRatio)
// Cf. Section 2.3 for an explanation of how this expression is computed under the hood

7. Sample elements tokenTrapdoor, tokenNullifier←$ Scalar.
8. Initialize note : Note

• note.tokenId = pair.from,
• note.amount = valueClaimed,
• note.tokenTrapdoor = tokenTrapdoor,
• note.tokenNullifier = tokenNullifier.

9. Set noteHash← Hash(note)

10. Set orderHash = Hash(orderNote)

11. (rootOrderBag, orderNotePath) = ORDER-BOOK.orderBag.generateProof(orderHash)

12. Set x = (cancelOrderNullifier, rootOrderBag, orderId, noteHash, fillRatio)

13. Set w = (orderNote, note, orderNotePath)

14. proof ← ZKP.P(RClaimCancelled, x,w)

15. Sign transaction

tx = ORDER-BOOK.ClaimCancelled

(
cancelOrderNullifier, rootOrderBag,

orderId, noteHash, proof

)

16. Send tx and wait until it has been processed on chain.
17. Assert tx executed without errors on chain.
18. Add the note to the local storage: self.localNoteSet.Add(note)

Figure 18: Claim a cancelled order.
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User Action: ClaimSwapped

Input: orderId : OrderId, orderInBatch : OrderInBatchEvent, trade : TradeEvent
// The events are public on chain, so the user can fetch them if needed.

1. Set orderNote = localOrdersSet[orderId]

2. Set round = orderInBatch.round

3. Check that the events orderInBatch and trade express the fact that order orderId was
included and traded in round round.

4. Set

(
rootOrderBag,

orderNotePath

)
= ORDER-BOOK.orderBag.generateProof(Hash(orderNote))

5. Set

(
rootEventLog,

merklePathBatch

)
= ORDER-BOOK.eventLog.generateProof(Hash(orderInBatch))

6. Set

(
rootEventLog,

merklePathTrade

)
= ORDER-BOOK.eventLog.generateProof(Hash(trade))

7. Set swapOrderNullifier = Hash(orderNote.orderNullifier, round)

8. Set amountTraded = (orderNote.scaledAmount · orderInBatch.scaledOrderFraction) ·
trade.fractionTraded

9. Set valueClaimed = amountTraded · trade.price
10. Initialize note : Note:

• note.tokenId = orderNote.pair.to

• note.amount = valueClaimed

• note.tokenTrapdoor = tokenTrapdoor, randomly sampled from Scalar

• note.tokenNullifier = tokenNullifier, randomly sampled from Scalar

11. Set noteHash = Hash(note)

12. Set x = (swapOrderNullifier, rootOrderBag, rootEventLog, noteHash)

13. Set w =

orderNote, note,

orderInBatch, trade,

orderNotePath,merklePathBatch,merklePathTrade


14. Set proof = ZKP.P(RClaimSwapped, x,w)

15. Sign transaction

tx = ORDER-BOOK.ClaimSwapped

(
swapOrderNullifier, rootOrderBag,

rootEventLog, noteHash, proof

)

16. Send tx and wait until it has been processed on chain.
17. Assert tx executed without errors on chain.
18. Add the note to the local storage: self.localNoteSet.Add(note)

Figure 19: Claim a swapped order.
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6.4 Updaters

In order for the system to work correctly we need one or more parties to function as
Updaters. This is a role we distinguish in the system, even though there are no permissions
necessary to act in this role – in fact any user of the blockchain can be an updater. The
role of an updater is quite pragmatic: its goal is to make the contract progress with
rounds in a timely fashion – thus, most of all, trigger the start of new phases and rounds.
The reason we need updaters at all is because of the execution model of smart contracts –
a contract can change its state only when triggered by a transaction. On the other hand,
a contract cannot schedule a state change based on some conditions being met in the
future (like a particular block number or so). Updaters are parties who are responsible
for triggering the actions.

Before we list the particular responsibilities of updaters, let us briefly discuss the
incentives behind such an activity. Note that updaters are expected to send some trans-
actions, and thus they bear the cost of transactions fees. An important question to ask
is then, why would they do that, if there is a clear cost, but no benefits? The answer is
twofold:

• Regular, frequent users (perhaps market makers) might be interested in acting as
updaters if the profit they make on trading on Common justifies the costs of running
an updater. They simply have an incentive to keep Common running because they
directly benefit from this fact.

• One could add an incentive mechanism to Common where updater actions would
yield monetary rewards outweighing the fee costs. One possible source of the re-
wards for updaters could be trading fees that Common could collect (which it
doesn’t in the current version).

6.4.1 Updater Responsibilities

• Finalize phases. While the rounds and phases are completely determined by
blockheight, the updates must still trigger some such events using transactions.
Here, the updater is expected to call ORDER-BOOK.FinalizeCollectPhase when
the phase is over (according to block height).

• Reveal batch. Once in the reveal phase, the updater is expected to reach out to
the Decryption Oracle and fetch the plain text values of traded values, and then
call ORDER-BOOK.RevealTradeValues.

• Include orders in a batch. In each round there are deterministic requirements
on which orders should be included. The responsibility of the updater is to find all
orders that satisfy these requirements and call ORDER-BOOK.PlaceOrderInBatch on
each.

• Update orders. Whenever an order has been traded in a batch it enters a state in
which it cannot be added to a batch again (because data in ORDER-BOOK.ordersSet
is not up-to-date) and the updaters are expected to call ORDER-BOOK.UpdateOrder
on each such order.
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7 Swap Engine

This section is devoted to a formal description of the SWAP-ENGINE contract. For a high
level description we refer to Section 4.4.

7.1 Storage

We list all the storage items of ORDER-BOOK along with their types. In the pseudocode a
given storage item, like sold, is referred to as self.sold because self is the SWAP-ENGINE
itself.

1. initialFrom : Map ⟨Pair, Amount⟩ – a mapping specifying for each trading pair (A,B)
how many A tokens should be sold for B tokens.

2. sold : Map ⟨Pair, Amount⟩ – a mapping associating a pair (A,B) to the amount of
token A that the SWAP-ENGINE has already sold (this includes the amount of token
sold during the internal matching).

3. bought : Map ⟨Pair, Amount⟩ – a mapping associating a pair (A,B) to the amount
of token B that the SWAP-ENGINE has received in return for sold[(A,B)] token A
(includes the amount of token received during the internal matching).

4. startAuctionPrices : Map ⟨Pair, Price⟩ – a mapping associating a pair to the price
that is used when the Dutch auction is initiated. If a token pair (A,B) is associated
with a price p then it means that p · x token A is worth x token B.

5. maxBuyPrices : Map ⟨Pair, Price⟩ – a mapping associating a pair (A,B) to the
maximum price for which the SWAP-ENGINE can buy token B in return for token
A. The Dutch auction will begin with price of buying token B (in return for
A) from the side of SWAP-ENGINE equal to the minimum of the oracle price and
maxBuyPrices. Note that maxBuyPrices is determined based on the prices from the
query of the ORDER-BOOK to the price oracle at the beginning of the round. At
the moment when SWAP-ENGINE queries again the price oracle, these prices may be
already higher than the maxBuyPrices. The price of selling token B in return for
A from the side of the Market Makers (and buying token B from the side of the
A) will increase until all the available amount has been sold or the length of the
auction reaches AUCTIONLENGTH.

6. timestart : Int – stores the block number when the current auction has started.
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7.2 Calls

Public Call: SWAP-ENGINE.Start

Input: initialFrom : Map ⟨Pair, Amount⟩ ,maxBuyPrices : Map ⟨Pair, Price⟩

1. Assert caller = ORDER-BOOK.
2. Initialize for every pair:

• self.sold[pair] = 0

• self.bought[pair] = 0

• self.initialFrom[pair] = 0

• self.startAuctionPrices[pair] = 0

• self.maxBuyPrices[pair] = 0

3. Set self.initialFrom = initialFrom

4. Set self.maxBuyPrices = maxBuyPrices

5. For each unordered pair of tokens {A,B}:
SWAP-ENGINE.InternalMatching((A,B))

6. For each pair do:

• oraclePrice = PRICE-ORACLE.QueryPrices(pair)
• self.startAuctionPrices[pair] = min(oraclePrice, self.maxBuyPrices[pair])

7. Initialize self.timestart = currentBlock

Figure 20: Receives tokens from the ORDER-BOOK, performs maximum possible internal
matching, and initiates Dutch Auction for selling the remaining amount. Called by
ORDER-BOOK.
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Public Call: SWAP-ENGINE.ParticipateAuction

Input: (A,B) : Pair, buyAmountA : Amount, price : Price
// A Market Maker makes this call to buy buyAmountA tokens A at price at most 1

price
.

// The price parameter is useful to make sure the transaction executes only
// if the price at the current block is compatible with the sender’s request.

1. Assert (currentBlock− self.timestart) ≤ AUCTIONLENGTH
2. Set p = SWAP-ENGINE.DutchAuctionPrice(currentBlock, (A,B))

3. Assert p ≥ price

4. Assert that caller has sent to SWAP-ENGINE buyAmountA
price tokens B.

5. Set tradedAmountA = min(self.initialFrom[(A,B)]− self.sold[(A,B)], buyAmountA)

// The buyAmountA specifies the maximum amount that the caller wants to buy

// If there is not enough available, all will be sold.

6. Set tradedAmountB = tradedAmountA
p

7. Send to the caller tradedAmountA tokens A and refund the B tokens that were not
traded, i.e., an amount of ( buyAmountA

price − tradedAmountB)

8. self.sold[(A,B)] = self.sold[(A,B)] + tradedAmountA

9. self.bought[(A,B)] = self.bought[(A,B)] + tradedAmountB

Figure 21: Participate in the Dutch Auction for specific pair and amount to buy.

Internal Call: SWAP-ENGINE.DutchAuctionPrice

Input: blockNum, (A,B) : Pair

1. Set α = blockNum−self.timestart
AUCTIONLENGTH

2. Return (1− α) · startAuctionPrices[(A,B)] + α ·maxBuyPrices[(A,B)]

Figure 22: Computes the price of the Dutch auction at a particular block height.
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Internal Call: SWAP-ENGINE.InternalMatching

Input: (A,B) : Pair

1. Assert self.maxBuyPrices[(B,A)]−1 ≤ self.maxBuyPrices[(A,B)]

// The above condition guarantees existence of a common matching price.

2. Set p =
√

self.maxBuyPrices[(A,B)]
self.maxBuyPrices[(B,A)]

3. self.sold[(B,A)] = min
(
self.initialFrom[(A,B)]

p , self.initialFrom[(B,A)]
)

4. self.bought[(A,B)] = self.sold[(B,A)]

5. self.sold[(A,B)] = p · self.sold[(B,A)]

6. self.bought[(B,A)] = self.sold[(A,B)]

Figure 23: Computes a common price and performs internal matching if possible.

Public Call: SWAP-ENGINE.FinalizeAuction

Input:

1. Assert (currentBlock− self.timestart) > AUCTIONLENGTH a

2. Transfer all the traded and untraded tokens back to ORDER-BOOK

3. Call ORDER-BOOK.FinalizeTradePhase(self.sold, self.bought)
4. clear self.initialFrom, self.startAuctionPrices, self.maxBuyPrices

5. clear self.sold, self.bought, self.timestart.
// It is important that the maps include zeros after that step in order to

// prevent Market makers whose transaction was included in a later round

// to trade in phases different from trade. (step 5 in SWAP-ENGINE.ParticipateAuction).

aAlternatively one can allow finishing the auction in case everything is sold.

Figure 24: Finalize the auction and pass the results to ORDER-BOOK.

7.3 User Actions

Market makers will monitor the Dutch auction with the purpose to exchange tokens in a
price they find attractive. When they agree with the price, then they send a transaction
that triggers SWAP-ENGINE.ParticipateAuction. Note that as the Dutch auction pro-
gresses, the price becomes more favourable to the market makers. However, if a market
maker waits too long, they take the risk of other market makers buying all the avail-
able amount. Moreover, when the Market makers send their transaction, they include
as input the minimum price at which they want to sell the specified token. This ensures
that even if their transaction is included in the trade phase of a later round, where the
prices for the pairs may differ, they will not trade at a worse price than what they have
specified; in that case their transaction will not be executed if the current price does not
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satisfy their limit. Note that if their transaction is included in the collect , reveal phases
of a later round, then their trade will not be executed, because the relevant maps that
specify the available amount for trading will contain 0.

7.4 Updaters

Updaters are supposed to call the SWAP-ENGINE.FinalizeAuction in order for the Dutch
auction to become finalized and for the ORDER-BOOK.FinalizeTradePhase to get called.
Note that when the SWAP-ENGINE.FinalizeAuction is triggered, it checks that the length
of the Dutch auction has reached the AUCTIONLENGTH. Thus, we do not need to trust
the updater, as they cannot terminate the auction early. Also, even if no updater triggers
SWAP-ENGINE.FinalizeAuction right away the Dutch auction will not accept any more
requests from the market makers (as SWAP-ENGINE.ParticipateAuction asserts that the
length of the auction has not exceeded AUCTIONLENGTH).

8 Relations

In this section we formally describe the relations used in COMMON. Each relation is specified
using the following template.

Relation: Rexample

Instance: // Instance
Witness: // Witness
Constraints:

• // Constraints involving the instance and witness

Figure 25: Template for specifying constraint bundles

When it comes to specifying the list of witnesses in our relations, we list just the
essential ones, and, for ease of presentation, we don’t include temporary variables and
“hint” variables in case they are computable from other witnesses.

Some of these relations share some subset of constraints. Because of this, and to
lighten the presentation, we informally introduce the concept of “constraint bundle”.
These are simply collections of constraints that can be included inside the constraint
section of relations. A constraint bundle places no assumptions on what parts of the
elements involved are public or private: in practice, this is taken care by the relation where
the constraint bundle is included. Constraint bundles are specified with the following
template.
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Constraint: CONSTRExample

Input: // Elements used in the constraints
Constraints:

• // Constraints invlving the elements in the input section

Figure 26: Template for specifying constraint bundles

8.1 Constraint bundle : Merkle tree membership

With the goal of fixing notation, in this subsection we define a constraint enforcing Merkle
tree membership. However, since this is a standard concept, we omit most of the details.

In short, the constraint enforces that, for public inputs a Merkle tree root root and a
purported leaf leaf in the tree, there exist a path path from leaf to root in the tree. The
witness for (root, leaf) is such path (or, more precisely, the hashes in the nodes of the
path), together with the childs of each node in the path. Abusing the terminology, we
denote such witness by path.

Constraint: CONSTRMerkle−tree

Input: root, leaf, path
Constraints:

• For each node n with label h in path, we have h = Hash(h0||h1), where h0, h1 are the
labels of the two children of n.

• The last node in path is labeled with root.
• The path starts at a node with label leaf.

Figure 27: Constraint bundle for asserting the membership of a leaf in a Merkle tree.

8.2 Constraint bundle: correct link between order and note

These constraints enforce that the contents of a note note and an order note orderNote
are “consistent”. Precisely, it enforces that the token in note coincides with the token
being sold in orderNote, and the amount scaledAmount of tokens in orderNote is precisely
⌊note.amount/M⌋.
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Constraint: CONSTRlink

Input: note, orderNote
Constraints:

• note.tokenId = orderNote.pair.from

• Set scaledAmount = orderNote.scaledAmount

• Set amount = note.amount

• 0 ≤ amount− scaledAmount · N < N
// This ensures that scaledAmount = ⌊amount/N⌋, due to Lemma 8.1 from Section 8.11

Figure 28: Constraint bundle enforcing that the contents of a note note and an order
note orderNote are “consistent”.

8.3 Constraint bundle: correct token nullifier

The following constraint bundle enforces that the nullifier of a note coincides with a
specific nullifier.

Constraint: CONSTRtokenNullifier

Input: note, tokenNullifier
Constraints:

• note.tokenNullifier = tokenId

8.4 New order

This relation enforces that an order orderNote created while executing the command
NewOrder is created correctly. More precisely, it checks that:

• Both note and orderNote (which are secret) hash into publicly known values.

• The user has a note note in tokenBag.

• The contents of note and orderNote are consistent, as enforced by the constraint
bundle CONSTRlink.

• The token note note contains a publicly specified nullifier tokenNullifier.

• The token amount scaledAmount in orderNote is the plaintext corresponding to a
public ciphertext encAmount.
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Relation: RNewOrder

Instance: root, noteHash, tokenNullifier, orderHash, encAmount, encPKey
Witness: note, orderNote, path, r
// root and path are supposed to be, respectively, a root of tokenBag,
// and the path in tokenBag from noteHash to root.
Constraints:

• orderHash = Hash (orderNote)

• noteHash = Hash(note)

• (root, noteHash, path) ∈ CONSTRMerkle−tree

// Enforces that noteHash is a leaf of the tokenBag Merkle tree

• (note, orderNote) ∈ CONSTRlink

// Enforces that tokenId in note and the token being sold in orderNote are the same
// It also enforces that the respective token amounts are “consistent”

• (note, tokenNullifier) ∈ CONSTRtokenNullifier

// Verifies that note contains the public nullifier tokenNullifier

• encAmount = DecryptionOracle.Encrypt(encPKey, orderNote.scaledAmount, r)
// In Section 9 we discuss how to write the above as a circuit.

Figure 29: Relation enforcing the correct creation of an order.

8.5 Constraint bundle: Order ownership

Intuitively, these constraints will be used show that the prover is the “owner” of a secret
order note orderNote whose order Id is public. This is attained by enforcing that the
hash of orderNote belongs to orderBag; and that the field orderId in orderNote matches
the public order Id.

Constraint: CONSTRNoteOrderOwnership

Input: rootOrderBag, orderId, orderNotePath, orderNote
Constraints:

• Set orderHash = Hash(orderNote)

• (rootOrderBag, orderHash, orderNotePath) ∈ CONSTRMerkle−tree

• orderNote.orderId = orderId

Figure 30: Constraints enforcing that the prover is the “owner” of an order note.

8.6 Cancel order

To cancel an order, it is enough to show ownership of the order. Hence we let RCancelOrder
be CONSTRNoteOrderOwnership with appropriately specified public inputs and witnesses.
Precisely:
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Relation: RCancelOrder

Instance: rootOrderBag, orderId
Witness: orderNotePath, orderNote
Constraints:

• (rootOrderBag, orderId, orderNotePath, orderNote) ∈ CONSTRNoteOrderOwnership

Figure 31: Relation enforcing all necessary checks to cancel an order.

8.7 Claim cancelled order

To claim a cancelled order for a certain value valueClaimed, the user:

• Shows it is the owner of the order note, as enforced by the constraints given in
CONSTRNoteOrderOwnership.

• Shows that note hashes into a publicly known value.

• Shows that the contents of note and orderNote are “consistent”, i.e. that

note.tokenId = orderNote.pair.from.

• Shows that the token amount in note is the result of multiplying the initial or-
der’s amount by the value N · (1 − orderNote.fillRatio). Here we use the multipli-
cation definition from Section 2.2, which is enforced using the constraint bundle
CONSTRFixedPointAmountMul from Section 8.11. Here we multiply by N here since
orderNote holds token amounts scaledAmount, which represent the floor division of
an actual token amount by the scaling factor N. Intuitively, multiplying by a value
scaledAmount by N “undoes the scaling”.

• Shows that the public order nullifier is correctly computed.

Relation: RClaimCancelled

Instance: (cancelOrderNullifier, rootOrderBag, orderId, noteHash, fillRatio)
Witness: (orderNote, note, orderNotePath)
Constraints:

• (rootOrderBag, orderId, orderNotePath, orderNote) ∈ CONSTRNoteOrderOwnership

• noteHash = Hash(note)

• note.tokenId = orderNote.pair.from

• (orderNote.scaledAmount · N, 1− fillRatio, note.amount) ∈ CONSTRFixedPointAmountMul

// Enforces that note.amount = (orderNote.scaledAmount · N) · (1− fillRatio)

• cancelOrderNullifier = Hash(orderNote.orderNullifier, cancel)

Figure 32: Relation enforcing all necessary checks allowing a user to claim the tokens
left in a cancelled order.
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8.8 Claim swap

To claim a partially swapped order, the user:

• Shows it knows the contents of an order note orderNote belonging to the order bag.

• Shows it knows two events, orderInBatch and trade in the event log.

• Shows that all of orderNote and orderInBatch refer to the same order Id. Similarly,
the user shows that orderInBatch and trade refer to the same round number and to
the same pair of tokens.

• Shows the public order nullifier is correctly computed.

• Shows that it knows the contents of a note note whose hash is the public value
noteHash.

• Shows that the token Id in note is the token being bought in orderNote (i.e.
note.tokenId = orderNote.pair.to)

• Shows that the value amount in note is consistent with the amount of tokens traded
in trade. Precisely,

note.amount =

((orderNote.scaledAmount · orderInBatch.scaledOrderFraction)
· trade.fractionTraded) · trade.price.
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Relation: RClaimSwapped

Instance: (swapOrderNullifier, rootOrderBag, rootEventLog, noteHash)
Witness: (orderNote, note, orderInBatch, trade, orderNotePath, merklePathBatch,
merklePathTrade)

Constraints:
• (rootOrderBag,Hash(orderNote), orderNotePath) ∈ CONSTRMerkle−tree

• (rootEventLog,Hash(orderBag),merklePathBatch) ∈ CONSTRMerkle−tree

• (rootEventLog,Hash(trade),merklePathTrade) ∈ CONSTRMerkle−tree

• orderNote.orderId = orderInBatch.orderId

• orderInBatch.round = trade.round

• orderInBatch.pair = trade.pair

• swapOrderNullifier = Hash(orderNote.orderNullifier, event.round)

• noteHash = Hash(note)

• note.tokenId = order.pair.to

The next three constraints enforce that note.amount = ((orderNote.scaledAmount ·
orderInBatch.scaledOrderFraction) · trade.fractionTraded) · trade.price (cf. Section 2.2). The
values aux1, aux2 are auxiliary witness entries which we omit in the witness declaration
above.

• (orderNote.scaledAmount, orderInBatch.scaledOrderFraction, aux1)
∈ CONSTRFixedPointAmountMul

• (aux1, trade.fractionTraded, aux2) ∈ CONSTRFixedPointAmountMul

• (aux2, trade.price, note.amount) ∈ CONSTRFixedPointAmountMul

Figure 33: Relation enforcing all necessary checks allowing a user to claim an amount of
traded tokens.

8.9 Deposit tokens

This relation is used when a user deposits a tokens (in the form of a note) in the order
book. The relation enforces that a private note note (with publicly specified hash) refers
to a public token Id tokenId and contains a publicly specified amount of tokens amount.
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Relation: RDepositTokens

Instance: amount, tokenId, noteHash
Witness: note
Constraints:

• note.tokenId = tokenId

• note.amount = amount

• noteHash = Hash(tokenId, amount, note.tokenTrapdoor, note.tokenNullifier)

Figure 34: Relation used when depositing tokens in the order book.

8.10 Withdraw tokens

This relation is used when a user attempts to withdraw tokens from the order book. The
user must prove that:

• It knows the contents of a note note belonging to the token bag.

• This note contains a publicly specified nullifier.

• It knows the contents of a “new” note newNote whose hash is publicly known. This
new note will hold the tokens from note that are not withdrawn.

• Both note and newNote contain the same type of tokens, i.e.

note.tokenId = newNote.tokenId.

• The amount of tokens in note is equal to the amount of tokens in newNote plus
the amount of tokens valueOut being withdrawn. Moreover, the latter is not larger
than MAXSUPPLY.

Relation: RWithdrawTokens

Instance: root, valueOut, tokenId, newNoteHash, tokenNullifier
Witness: noteHash, path, note, newNote
Constraints:

• (root,Hash(note), path) ∈ CONSTRMerke−tree

• (note, tokenNullifier) ∈ CONSTRtokenNullifier

• newNoteHash = Hash(newNote)

• note.tokenId = tokenId and newNote.tokenId = tokenId

• 0 ≤ newNote.value ≤ MAXSUPPLY
• newNote.value+ valueOut = note.value

Figure 35: Relation used when withdrawing tokens in the order book.
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8.11 Constraint bundles: non-standard arithmetics

8.11.1 Fixed point arithmetic

In this section we use Lemma A.1 from Appendix A to define constraints that enforce
correct computations between values of type FixedPoint. The main technical result we
need is the following:

Lemma 8.1. Let a, b, c ∈ N ∪ {0} be three natural numbers (possibly zero), with b ̸= 0.
The following holds ⌊a

b

⌋
= c if and only if 0 ≤ a− bc < b.

Proof. Suppose ⌊a/b⌋ = c and write a/b = ⌊a/b⌋+ ε for some n ∈ N∪{0} and 0 ≤ ϵ < 1.
Then a − bc = b⌊a/b⌋ + bε − bc = bε, and clearly 0 ≤ bε < b. Conversely, suppose
0 ≤ a− bc < b. Then 0 ≤ a/b− c = n+ ε− c < 1, where n = ⌊a/b⌋ and 0 ≤ ε < 1. Now,
being an integer, n− c must be 0, since otherwise (n− c)+ ε would be outside the range
[0, 1). Hence n = ⌊a/b⌋ = c.

For convenience, we recall here the definitions of addition and multiplication between
values of type FixedPoint (see Section 2.2.1):

y1 + y2 =

{
y1 + y2 if y1 + y2 < B,
Err otherwise

.

y1 · y2 =

{
⌊y1y2M ⌋ if y1y2 < B,
Err otherwise

In views of this definition and of Lemma 8.1, we can define constraints for the above
operations as

Constraint: CONSTRFixedPtAdd

Input: (y1, y2, y3)
Constraints:

• y3 = y1 + y2,
• y1 + y2 < B.

Constraint: CONSTRFixedPtMul

Input: (y1, y2, y3)
Constraints:

• 0 ≤ y1y2 − y3 < M
• y1 · y2 < B

Figure 36: Constraint bundles enforcing correctness of the addition and multiplication
operations between values of type FixedPoint (as defined in Section 2.2).

In Figure 36, the elements y1, y2, y3,M,B above are understood as elements from F,
and all operations are field operations. The inequality < is understood (abusing the
notation) as inquality of natural numbers in the interval [0, |F| − 1].

Note that, due to Lemma 8.1, the following holds for all y1, y2, y3 ∈ FixedPoint,

y1 + y2 = y3 ⇔ CONSTRFixedPtAdd(y1, y2, y3),

y1 · y2 = y3 ⇔ CONSTRFixedPtMul(y1, y2, y3).
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8.11.2 Arithmetic between values of type Amount and FixedPoint

Similarly as in the previous section, we want to write a constraint that enforces correct
multiplication of values of type Amount and FixedPoint (see Section 2.2.3). Recall that
the given a, y of type Amount and FixedPoint, we define a · y as

a · y =

{⌊a·y
M

⌋
if a · y ≤ B,

Err otherwise

Using a similar rationale as in the previous section, we define

Constraint: CONSTRFixedPointAmountMul

Input: (a, y, y′)
Constraints:

• 0 ≤ a · y − y′ < M
• a · y < B

Figure 37: Constraint bundle enforcing correctness of the multiplication operation be-
tween a value of type amount and a value of type FixedPoint (as defined in Section 2.2).

Then, for values a, y, y′ of types Amount, FixedPoint, Amount, respectively, we have

a · y = y′ ⇔ (a, y, y′; ∅) ∈ CONSTRFixedPointAmountMul.

9 Decryption Oracle

9.1 Functionality

Decryption Oracle is an abstraction layer representing an additively homomorphic en-
cryption scheme along with a party responsible for decrypting ciphertexts when in-
structed by the on-chain contract ORDER-BOOK. This functionality comprises five sub-
procedures.

1. DecryptionOracle.KGen – takes public parameters pp and creates encryption, de-
cryption, and verification keys. In practice, Decryption Oracle.KGen is triggered
when COMMON is initialized so as to save the suitable public keys in the ORDER-BOOK
contract. Parameters pp determine, e.g., the groups that the underlying encryp-
tion scheme uses, the maximal value of the plaintext pp.MAXSUPPLY, the maximal
value of plaintext’s chunk pp.MAXENC (which, for the sake of simplicity, is a power
of 2), secret key type pp.SecretKey, public key type pp.PublicKey, verification key
type VerificationKey and message and ciphertext spaces pp.Message, pp.AHCipherText.

2. DecryptionOracle.Encrypt – takes the public key pk generated in the procedure
DecryptionOracle.KGen, a message m ∈ [0,MAXSUPPLY] and possibly randomness
r, and encrypts this message into a ciphertext c : AHCipherText,
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3. DecryptionOracle.Add – adds two ciphertexts to form a new ciphertext. We require
additive homomorphism here.

4. DecryptionOracle.Decrypt – checks that the aggregated orders in the current round
of COMMON are ready to be decrypted, and if this is the case, it decrypts them.
Additionally, DecryptionOracle.Decrypt outputs a succinct proof that the decrypted
message has been obtained correctly from its ciphertext.

The DecryptionOracle.Decrypt operation can be triggered by any user of the COMMON,
yet it is supposed to be successful only during the reveal phase, and when called
on suitable data.

5. DecryptionOracle.Verify – verifies the proof generated by DecryptionOracle.Decrypt.
This is used in the ORDER-BOOK contract, when the aggregated plaintext amounts
are revealed.

9.2 Decryption Oracle Instantiation Pattern

We provide three instantiations of the DecryptionOracle:

1. using Multi-Party Computation, specifically, using ElGamal threshold decryption,
see Section 9.3,

2. using a single party and integrating ElGamal encryption directly with the [Gro16b]
proving system (SAVER protocol [LCKO19]), see Section 9.4,

3. using Trusted Execution Environments, see Section 9.5.

All these instantiations are based on a common pattern (see Section 9.2.1), which in turn
relies on a publicly verifiable encryption scheme, as defined below.

Definition 9.1 (Publicly verifiable threshold encryption scheme). A threshold encryp-
tion scheme E is a set of seven algorithms

Setup(1λ): that takes a security parameter 1λ and outputs public parameter pp. These
parameters determine, e.g., the maximal value of the plaintext pp.MAXENC, thresh-
old of parties able to decrypt a message, number of all parties, group structure of
the encryption scheme, etc.

KGen(pp)→ (pk; sk1, . . . , skn): takes public parameters pp and, if defined, the threshold
pp.thr and the number of parties pp.prt. If these are not defined it sets them both
to 1 and outputs a public key pk, secret key shares sk1, . . . , skpp.prt and verification
key vk.

Encode(pp,m): that takes a message m ∈ Fp and outputs a vector (m1, . . . ,ml) such
that m =

∑l
i=1mi · pp.MAXENCi−1.

Decode(pp,m1, . . . ,ml): that takes a vector (m1, . . . ,ml) and outputs m =
∑l

i=1mi ·
pp.MAXENCi−1.
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Enc(pp, pk;m; r)→ c: that takes a public key pk, message m = (m1, . . . ,ml) and ran-
domness r and outputs a ciphertext c = (c1, . . . , cl).

Dec(pp, ski1 , . . . , skipp.thr , pk, vk; c)→m, proof: that takes the pp.thr secret key shares ski1 , . . . , skipp.thr ,
a valid ciphertext c, and outputs the plaintext m if mi ≤ pp.MAXDEC for all i ∈ [l],
and outputs “Error” otherwise. Additionally, it outputs a proof proof that m has
been obtained by correctly following the decryption procedure on c.

V(pp, pk, vk; c,m;π) that takes a public ciphertext, plaintext m, and proof proof of the
decryption’s correctness and outputs 1 if and only if the proof is acceptable.

Add(pp, c, c′)→ c′′ that takes two ciphertexts

c = Enc(pp, pk; (m1, . . . ,ml)), c′ = Enc(pp, pk; (m′
1, . . . ,m

′
k))

such that mi + m′
i < pp.MAXDEC, for i = 1, . . . , l, and returns c′′ = c + c′ such

that

Decode(pp, ,Dec(pp, ski1 , . . . , skip.thr , pk, vk; c+ c′)) =

Decode(pp, ,Dec(pp, ski1 , . . . , skip.thr , pk, vk; c) + Decode(Dec(pp, ski1 , . . . , skip.thr , pk, vk; c
′)).

We note that the concrete meaning of "+" depends on the encryption scheme.

Note that setting n = 1 and pp.thr = 1 we can remove the “threshold” property of
the scheme. In what follows, we sometimes do so without mentioning it.

Further, we remark that our concrete instantiation based on “threshold ElGamal”
[CGS97] does not fully adhere to the above formalism (see Section 37). In particular, the
decryption procedure has a slightly different interface to accomodate for asynchronous
communication between the decrypting parties.

9.2.1 Designing the Decryption Oracle

In Figure 9.2 we describe a general pattern for instantiating the Decryption Oracle given
an encryption scheme E as in Definition 9.1. Later, we will specify E to be variants
of the ElGamal “in-the-exponent” encryption scheme. Precisely, for the single-party
instantiation, we use an enhanced ElGamal, as proposed in [LCKO19]. For the committee
instantiation, we also use a flavor of ElGamal proposed in [CGS97].

While ElGamal “in-the-exponent”, in its basic form, is additively homomorphic, it
does not allow for easy decryption of arbitrarily large numbers. This comes from the fact
that for an encryption of m ∈ FScalar, the decryption procedure yields the element m ·G
and the last step boils down to solving the discrete log problem. Note that this is possible
only with the guarantee that m is in some small enough range. In the schemes presented
in Figs. 39 to 41 we call a function BreakDlog which takes group description from public
parameters pp, generator G, and a group element H. Whenever computationally feasible,
the algorithm returns a scalar x, such that x ·G = H.
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Public Call: DecryptionOracle.KGen

Input: 1λ

1. pp← E.Setup(1λ)

2. (sk) ← (sk1, . . . , skpp.prt) : SecretKey, pk : PublicKey, vk : VerificationKey ←
E.KGen(pp)

3. Return (pp, sk, pk, vk)

Public Call: DecryptionOracle.Encrypt

Input: pk : EncPKey,m : Message, r : Randomness

1. Assert m ∈ [0,MAXSUPPLY]
2. Set (m1, . . . ,ml)← E.Encode(pp,m).
3. Return c← E.Enc(pp, pk, (m1, . . . ,ml), r)

Public Call: DecryptionOracle.Add

Input: c : AHCipherText, c′ : AHCipherText

1. Return c′′ ← E.Add(pp, pk, c, c′)

Public Call: DecryptionOracle.Decrypt

Input: ∅

1. Assert ORDER-BOOK.currentPhase = reveal

2. aggregate← ∅
3. zkAggregate← ∅
4. For each (pair, encAmount) ∈ ORDER-BOOK.encAggregate

(a) (m, π)← E.Dec(pp, (ski1 , . . . , skipp.thr), pk, vk, encAmount)

(b) amount← E.Decode(pp,m)

// We have amount =
∑l

i=1 mi · MAXENCi−1

(c) aggregate.Add((pair, amount))

(d) zkAggregate.Add(π)

5. Return(aggregate, zkAggregate)

Public Call: DecryptionOracle.Verify

Input: π : ZKProof; c : AHCipherText,m : Message
Return E.V(pp, pk, vk;π; c,m)

Figure 38: General pattern for instantiating the DecryptionOracle based on the publicly
verifiable threshold encryption scheme E.



To make sure that plaintexts are efficiently decryptable we leverage the encoding
procedure Enc.Add described in Definition 9.1. Recall that such encoding consists of
dividing the plaintext m into chunks mi, each in the interval [0,MAXENC), so that
m =

∑l
i=0miMAXENCi, for some fixed l. Then, we use “ElGamal-in-the-exponent” to

encrypt each chunk mi separately. Ciphertexts are thus tuples of ElGamal ciphertexts,
which can then be decrypted component-wise. Finally, the original plaintext can be
recoverd by using the decoding algorithm from Definition 9.1.

This, however, requires some care when handling the additive homomorphic proper-
ties of the scheme. Precisely, the scheme is additively homomorphic from an “end-to-end”
perspective, in the sense that, for

c = Enc.Enc(pp, pk,E.Encode(pp,m); r), c′ = E.Enc(pp, pk,E.Encode(pp,m′); r′)

we have (as long as the components of encoded plaintexts never go beyond the bound
MAXDEC)

E.Decode(pp,E.Dec(pp, sk, c+ c′))

=E.Decode(pp,E.Dec(pp, sk, c)) + E.Decode(pp,E.Dec(pp, sk, c′)),

where sk here denotes a tuple of secret key shares ski1 , . . . , skipp.thr . However, in general it
is not true that E.Dec(pp, sk, c+c′) = E.Dec(pp, sk, c)+E.Dec(pp, sk, c′) that this equality
does not necessarily hold if one removes the decoding part

Another delicate point is that, since we perform additively homomorphic operations
on encoded plaintexts, the values mi in the encoded plaintexts can, in principle, grow
arbitrarily, preventing the decryption algorithm from being able to decrypt a ciphertext
(due to the underlying plaintext having too large components). Fortunately, in COMMON
we can get a concrete bound on the number of homomorphic operations so that no mi

in a ciphertext has value beyond a constant MAXDEC (being an appropriate constant
which allows for solving the discrete logarithm, think of MAXDEC = 1012).

9.3 Instatiation using Threshold ElGamal Encryption

We instantiate the decryption oracle by following the scheme in Section 9.2, and using
Threshold Elgamal Encryption as the encryption protocol E. For this instantiation we
assume there is a committee of prt (potentially mutually distrusting) users P1, . . . ,Pprt.
When requested, the committee jointly decrypts a given ciphertext. To enforce joint
decryption, we use a threshold encryption scheme that ensures that the batch is decrypted
only if thr parties from the committee collaborate. Moreover, any set of cardinality less
than thr learns nothing about the plaintext.

Scheme description In Fig. 39 we provide a detailed explanation of the threshold
encryption scheme we use. The proposed solution is based on [CGS97].

The key generation and decryption algorithms are performed in MPC, which requires
the parties to broadcast messages to other parties and listen to other parties’ messages.
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We assume the parties have established a secure broadcast channel, ensuring each broad-
casted message is delivered to every party. The channel is used by calling broadcast (we
allow to broadcast arbitrary messages, we do not discuss here the format of the mes-
sages). Similarly, each party can send a direct message to another party by calling send
on two inputs: the recipient and the message. See Fig. 40 for the description of the de-
cryption MPC procedure. Importantly, we keep the MPC part under the hood, leaving
the decryption procedure endpoints untouched.

Remark 9.2. We note that in the proposed solution, we assume a trusted dealer that
distributes the secret shares to the committee members. This assumption can be removed
by using a publicly verifiable secret sharing scheme, where the parties jointly compute the
shares, and each party outputs a publicly verifiable proof that the shares it distributed
are correct. The trusted dealer can also be substituted by a committee, e.g., the same
committee that handles decryption queries.

Public parameter instantiation, making the encryption SNARK-friendly It
is important to specify how the public parameters of the encryption scheme are chosen
so as to ensure the scheme’s SNARK-friendliness. Indeed, neglecting careful picking of
the parameters may cause major inefficiencies. This is especially the case when a party
needs to make zero-knowledge statements about the plaintext hidden in a publicly known
ciphertext, which is the case of Common.

Let ZKP be a zkSNARK for a relation R defined over a field F. That is, the circuit
C that describes R is also over F. In order to support efficient encryption inside of
SNARK relations, such as in RNewOrder, we need to represent DecryptionOracle.Encrypt
as an arithmetic circuit over F. To this end we need a smart choice of the elliptic curve
E over which we use ElGamal encryption.

Recall that there are essentially two fields associated with an elliptic curve E, the
base field FBase and the scalar field FScalar. The elements of E are really tuples (pairs or
triples, depending on the representation) of elements from FBase, and the addition on E

can be represented efficiently as arithmetic expressions over FBase. The scalar field FScalar

on the other hand can be thought of as a prime field of characteristic |E| (although it is
not always like this) and typically is of roughly the same size as |FBase|. A very natural
choice for E is then one that satisfies the following conditions:

• the base field FBase of E is equal to F,

• the Diffie-Hellman problem is hard on E – so that ElGamal is safe.

For our choice of F that we made in Section 2 one can indeed find such a suitable
curve E. From now on we fix such a curve E and fix its generator G ∈ E. We note however
that the scalar field FScalar of E is not equal to F (unless we have an elliptic curve cycle
of length 2) but that is not an obstacle, because in the encryption procedure one just
computes m ·G where m is a small integer – this can be easily done by including the bit
decomposition of m as a hint in the witness and using exponentiation by squaring.

Differently than the trusted-party instantiation, committee instantiation has addi-
tional parameters set, namely pp.thr, which determines the threshold of the encryption
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E.Setup(1λ)

1. Set pp.MAXLENGTH← log2 MAXENC // MAXENC is a power of 2

2. Set pp.maxNumber← l

3. Set pp.group← E

4. Set pp.group[0].generator← G

5. Set pp.thr← t

6. Set pp.prt← n

7. Set pp.PublicKey← E

8. Set pp.SecretKey← FScalar

9. Set pp.VerificationKey← ⊥
10. Set pp.Message← [0,MAXSUPPLY]
11. Set pp.AHCipherText← E2l

Return pp

E.KGen(pp)

1. For j = 1, . . . , t

(a) skj ←$ FScalar

(b) send(Pj , skj)

(c) ℓj(X)←
∏

i∈[1,...,t]\{j}
X−i
j−i

2. f(X)←
∑t

i=1 ℓi(X) · ski
3. For j = t+ 1, . . . , n

(a) skj ← f(j)

(b) send(Pj , skj)

4. pk← G ·
∑t

i=1 ℓi(0) · ski
Return sk, pk, vk← ⊥

E.Enc(pp, pk,m = (m1, . . . ,ml); r =
(r1, . . . , rl))

1. For i = 1, . . . , l

ci ← (ri ·G,mi ·G+ ri · pk)
2. Return c = (c1, . . . , cl)

E.Dec(pp, (sk1, . . . , skn), pk, vk, c)

See Fig. 40 for details.

E.AuxV(pp, pk, vk; c, π = (a, b, h, z, ov))

// Auxiliary verification procedure used in E.V and in E.Decrypt

1. Parse (c1, c2)← c

2. Return (z ·G = a+ h · pki) ∧ (z · c1 = b+ h · ov)

E.V(pp, pk, vk; c,m, π)

1. Parse (πj
v)j,v∈[thr],j ̸=v ← π

2. Parse (c1, . . . , cthr)← c

3. Return E.AuxV(pp, pk, vk; cj , π
v
j ) for all j, l ∈ [thr], j ̸= l

// Note m is not used in this procedure, though we include it as input due to our formalization in Definition 9.1

E.Add(c, c′)

1. Assert |c| = |c′|
2. For i = 1, . . . , |c| do c′′i ← ci + c′i

Return c′′

Figure 39: Publicly verifiable threshold encryption scheme based on ElGamal.
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E.Dec

On input (pp, skv, pk, vk, c):

1. Parse (c1, . . . , cl)← c

2. For j = 1, . . . , l,

(a) counterj ← 0prt

(b) (auxj , πj)← (⊥,⊥)
(c) isDecrypted← Falsel

(d) Parse (c1j , c
2
j )← cj ,

(e) Mj,v ← skv · c1j
// In the following steps Pv generates a proof πj

v of correct decryption
(f) Pick a random r′j ←$ FScalar

(g) Compute (aj , bj)← (r′j ·G, r′j · c1j )
(h) Compute hj ← Hash(pp, (Mj,v, c

1
j ), aj , bj)

(i) Compute zj = r′j + skv · hv

(j) πj
v ← (aj , bj , hj , zj ,Mj,v)

(k) broadcast(VerifyPartialDec, (cj , j;πj
v))

On input (VerifyPartialDec, (cj , j;π
j
v′) from Pv′ :

1. If E.AuxV(pp, pk, vk; cj , π
j
v′), then

counterj [v
′]← 1

(auxj , πj)← ((auxj ||(cj , j), (πj ||πj
v′)).

2. If
∑prt

k=1 counterj [k] = thr then

(a) Λj ← {k : counterj [k] = 1}
(b) Mj ← c2j −

∑
Λj

Mj,k ·
∏

l∈Λj\k
l

l−k // mj ·G reconstruction

(c) mj ← BreakDlog(pp, G,Mj)
(d) If mj ̸= ⊥ then isDecrypted[j]← True

If ∀j ∈ [1, . . . , l], isDecrypted[j] then return m ← (m1, . . . ,ml), aux ←
(aux1, . . . , auxl), π ← (π1, . . . , πl)

Figure 40: Extended view of the decryption algorithm from the perspective of party Pv



scheme, and pp.prt which corresponds to the number of all parties that can participate
in decryption.

9.4 Instatiation with a Single Party using SAVER

Another instantiation we propose relies on a trusted third party that keeps the decryption
key. To ensure that the oracle cannot cheat on decryption, we require it to provide a
proof of the decryption’s correctness.

Public parameter instantiation, using SAVER For the trusted third-party instan-
tiation, we use an enhanced ElGamal encryption scheme, as proposed by Lee et al. in
[LCKO19], see Fig. 41. [LCKO19] allows for easy verification of the decrypted messages
and efficient proving facts about the plaintext by a smart modification of the Groth16
zkSNARK [Gro16a]. Since the Groth16 proof system requires bilinear pairings, we set
pp, to include descriptions of three groups G1,G2,GT . We denote by e : G1 ×G2 → GT

a pairing. We require that all these groups have order SFIELD, G1,G2 are defined over
elliptic curves. For the sake of concreteness, we denote by G a generator of G1 and by
H a generator of G2. We also recall that according to our convention in Section 2 the
scalar field of curves G1 and G2 is denoted by F.

Lee at al. propose the following approach. Let R be a relation defined over F. We
denote by C the arithmetic circuit that represents R. We note that C is defined over F.
The key idea of [LCKO19] is to observe that the ElGamal encryption scheme considered
over G1, i.e., such that the plaintext messages are in F and the ciphertexts are in G1 is
very much compatible with the proof-generation machinery in [Gro16b]. What this allows
to do is to integrate this encryption scheme “natively” into the Groth16 proof-system.
More specifically, SAVER is an extension of Groth16 that allows to include as part of
the statement not only elements of F, but also ciphertexts (in G1) that are ElGamal
encryptions of arbitrary witnesses. Exactly what we need in the relation RNewOrder.

Homomorphic additivity of SAVER’s ElGamal For a public key

pk = (X0, X1, X2, . . . , Xl, Y1, Y2, . . . , Yl, Z0, Z1, Z2, . . . , Zl,W1,W2, . . . ,Wl)

the encryption of a message m = (m1, . . . ,ml) under randomness r equals Enc(pp, pk,m, r) =
(r · X0, (r · Xi + mi · Gi)

l
i=1). Similarly, an encryption of m′ = (m′

1, . . . ,m
′
l) under

randomness r′ and key pk equals Enc(pp, pk,m′, r′) = (r′ · X0, (r
′ · Xi + m′

i · Gi)
l
i=1).

Adding these two ciphertexts gives us an encryption (one of possibly many) of m + m′ =
(m1 +m′

1, . . . ,ml +m′
l) under randomness r + r′ and public key pk. That is,

Decode(Dec(pp, sk,Enc(pp, pk,m, r))+Dec(pp, sk,Enc(pp, pk,m′, r′))) =

= Decode(Dec(pp, sk,Enc(pp, pk,m+m′, r + r′))).
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E.Setup(1λ)

1. Set pp.MAXLENGTH← log2 MAXENC
2. Set pp.maxNumber← l

3. Set pp.group← (G1,G2,GT )

4. Set pp.group[0].generator← (G,G1, . . . , Gl)

5. Set pp.group[1].generator← H

6. Set pp.group[2].generator← T

7. Set pp.PublicKey← G3l+3
1 ||Gl+1

2

8. Set pp.SecretKey← FScalar

9. Set pp.VerificationKey← G2l+1
2

10. Set pp.Message← [0,MAXSUPPLY]
11. Set pp.AHCipherText← Gl+1

1

Return pp

E.KGen(pp)

1. Sample the trapdoor parameters ((si)
l
i=1, (vi)

l
i=1, (ti)

l
i=0)←$ F3l+1

Scalar

2. Sample secret key sk←$ FScalar

3. Compute public key:

pk =(X0, X1, X2, . . . , Xl, Y1, Y2, . . . , Yl, Z0, Z1, Z2, . . . , Zl,W1,W2, . . . ,Wl) =

(δ ·G, (δsi ·G)li=1, (ti ·G1)
l
i=1, (ti ·H)li=0).

4. Compute verification key: vk = (V0, V1, . . . V2l) = (sk ·H, (visi ·H)li=1, (skvi ·H)li=1.
Return sk, pk, vk

E.Enc(pp, pk,m = (m1, . . . ,ml); r)

1. Return c← (r ·X0, (r ·Xi +mi ·Gi)
l
i=1)

E.Dec(pp, sk, pk, vk, c)

1. Parse (c0, . . . , cl)← c, set counter← 0

2. For i = 1, . . . , l

Compute mi · e(Gi, Vl+i) = e(ci, Vl+i)− sk · e(c0, Vi)

Compute mi by bruteforcing mi · e(Gi, Vl+i)

3. π ← sk · c0
Return m = (m1, . . . ,ml), π

E.V(pp, vk; (ci)
l
i=0; (mi)

l
i=1;π)

1. Assert e(π,H) = e(c0, V0)

2. For i = 1, . . . , l,
Assert mi · e(Gi, Vn+i) = e(ci, Vl+i)− e(π, Vi).

Return 1

E.Add

Input: c, c′

1. Assert |c| = |c′|
2. For i = 1, . . . , |c| do c′′i ← ci + c′i

Return c′′

Figure 41: Publicly verifiable encryption scheme based on the SAVER protocol.



9.5 Trusted Execution Environment Instantiation

The third instantiation is by using a Trusted Execution Environment (TEE). In that
case, the Decryption Oracle is simply some secure hardware that contains the decryption
key and:

• uses the key only to decrypt whatever is requested by the ORDER-BOOK contract,

• does not allow to extract the decryption key by any party.

The main challenge when using this type of instantiation is to ensure the first condition
above is satisfied (with the second condition being guaranteed by the TEE manufac-
turer). We propose the following two ideas – their technical viability might depend on
the concrete type of TEE used:

1. One could let the TEE run a light client of the blockchain. This way, the TEE
operator can prove to the TEE, using Merkle proofs, what the current round and
phase is and what is the content of encAggregate in the ORDER-BOOK contract. This
way the TEE could validate the "decrypt conditions" are satisfied and proceed only
if a correct proof is given.

2. Upon each decryption, the TEE could be instructed to sign a nonce signifying how
many decryptions did the TEE perform so far. This signed nonce would need to
be posted on chain (along the decryption) by the TEE operator. This way, the
first event when the TEE was used to decrypt something out of order would be
immediately visible. Note that this does not really defend against an adversary that
wants to just reveal the whole history and is fine with being detected. However, we
can disincentivize the operator from doing so by asking them to stake some funds
that are potentially slashed on misbehavior.

10 Extensions and Practical Considerations

10.1 Recovering from Decryption Oracle Malfunction

An important property of COMMON is that the security of users’ funds does not require
assumptions on the Decryption Oracle. The basic version of the exchange presented
in the previous section is already safe against stealing funds by the Decryption Oracle.
Indeed, in every round the Decryption Oracle makes only one decision: either reveal the
plaintext aggregated values or not, and it doesn’t have any impact on where users’ funds
go. Note that the oracle could also reveal incorrect decryptions – but this is equivalent
to not revealing anything at all, because the decryptions are verified, and thus incorrect
decryptions would simply be ignored.

However, already from this decision (reveal or not) there comes some significant
power – by not revealing, the Decryption Oracle could cause the round to get stuck on
the reveal phase. This would cause the funds that went into this round’s order batch
to be frozen. Depending on the concrete instantiation of the Decryption Oracle and the
underlying assumptions the likelihood of this event might vary, but taking hardware and
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software failures into account it’s not possible to rule it out entirely. That is why ideally
there should be a mechanism that prevents fund freeze when the Decryption Oracle stops
responding.

Fortunately, there exists a straightforward modification to COMMON that allows to deal
with this issue. Indeed it is enough to add the possibility of cancelling the round when
the reveal is taking too long. Roughly the wait it would work would be the following:

• If the reveal takes too long, i.e. the call ORDER-BOOK.RevealTradeValues is not
successfully called for a given number of blocks, then the possibility to make a new
call ORDER-BOOK.CancelRound is unlocked.

• When ORDER-BOOK.CancelRound is called, the round is considered void. In partic-
ular a series of TradeEvents is emitted with amountTraded = 0 for each.

• The users can cancel their orders at any time (using ORDER-BOOK.CancelOrder.
This way they can avoid their orders to be included in any other batches, and just
call ORDER-BOOK.UpdateOrder and ORDER-BOOK.ClaimCancelled to withdraw the
funds.

This modification, while simple, makes COMMON completely safe against any faults of the
Decryption Oracle.

10.2 Compliance and Avoiding Bad Actors

When building privacy systems on blockchains an important problem to tackle is that
of bad actors who try to privacy systems to launder funds obtain by illicit activi-
ties. Multiple solutions has been proposed for this problem (see for instance the recent
work [BIN+23]). This topic has been purposely left out of scope of this paper since it
is independent of the problem we are solving here (private DEX). Indeed, most of the
aforementioned solutions can be integrated at the shielded pool layer, and do not require
any changes to the COMMON design.

10.3 Correlations Based on Transaction Origin

It is worth mentioning that when using a shielded pool one needs to be quite careful with
regard to sending transaction. Indeed, consider the following antipattern:

1. User creates an account A on the blockchain.

2. The user then deposits 1 ETH of its funds from account A to the shielded pool.

3. After enough time, the user withdraws 1 ETH from the shielded pool to the account
A.

Note that this way the user gained no privacy, because the actions of depositing and
withdrawing are linked in an obvious way: both originate from the same account. Indeed
for unlinkability it is absolutely crucial to perform the withdraw to a different account
than A.
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Whereas the above suggestion sounds simple and obvious, in practice, it is not so easy
to follow when the shielded pool has an interface exactly as specified in Section 6. The
reason is that in order to initiate a withdraw to a different account B than the deposit,
the user needs native coins to pay the gas fee. This however requires to fund the account
B with coins for gas. However, if the user tops up B from A, this again creates a clear
link between these acccounts and hence between deposit and withdrawal.

There are a few well known solutions to this problem. In a practical deployement of
COMMON it’s important to implement one of these to circumvent the discussed issue. One
of the solutions is to implement a way to fund fresh accounts on demand to cover gas
cost. This can be for achieved by the means of a semi-trusted party which sells "tickets"
for creating fresh accounts using blind signatures. These tickets are then redeemed by
communicating with the party off-chain. If blind signatures are used to create these
tickets then the party cannot link any particular ticket to who bought it.

Another potential solution is to modify the ORDER-BOOK.WithdrawTokens call to spec-
ify a withdraw address that is separate from the caller. This allows to have a "relayer"
role that is responsible for sending transactions on chain that withdraw tokens to possi-
bly empty accounts. This is often accompanied also with an incentive layer for relayers,
where part of the withdrawn funds go to the transaction sender.

10.4 Correlations Based on Token Amounts

One particularly successful technique of deanonymizing users of shielded pools is the
analysis of deposited and withdrawn amounts of particular tokens. Here is the basic
idea: if there was a deposit for a very specific amount, say 3.417 tokens, and after a
while a withdraw for that exact amount is performed, then there is a good chance the
deposit and withdraw were made by the same user, hence there is a high probability link
between these transactions. Even if the withdraw amount is not the same as the deposit,
but it is something like 2.417 there is still a good probability that it’s the same user, who
just withdrew 1 token first, and the rest later.

There are a few possible mitigations for this issue: one that is employed in many
different protocols is to limit the possible token amounts deposited and withdrawn in the
system to just a few possibilities (say 1, 5, 25 ETH). This makes the analysis based on
token amounts impossible.

In the case of a system like COMMON the above mitigation is not so straightforward to
apply – even if we force the users to deposit amounts from a short prespecified list, they
will end up holding different amounts because of the trades they have performed in the
DEX. One can still apply the same idea by putting constraints on withdraw amounts
(and not on deposit), for instance: the users can withdraw amounts that are powers of 2.
This way, a user who wants to withdraw 67 AZERO, would need to withdraw 64, then 2
and then 1. Note that this increases the costs (transaction fees), is less convenient, and
also barely increases the privacy in case the user performs the transactions one by one.

An alternative to the above, instead of enforcing rules on deposit and withdrawal
at the protocol level, is to allow the user interface (wallet software) to take care of
that. This solution is way more flexible and allows the user to configure a privacy vs
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convenience/cost tradeoff. The basic idea is as follows: whenever the user interacts with
the shielded pool, it’s notes are intentionally broken into pieces of random denominations.
Also, when withdrawing, the user would do that in pieces, ideally not at the same time,
but leaving random time intervals between withdrawals. How much of this "obfuscation"
happens should be configurable and also can depend on the current state and traffic in
the pool.

10.5 Adding Noise to Hide Order Direction

Although in our protocol the users reveal the direction of their orders when they send
their transactions to the ORDER-BOOK, the fact that the order values are hidden allows for
fake orders that encrypt “zero” to be created to disrupt information collection about the
directions. In that case the encryption scheme should be IND-CPA secure in order to
prevent an attacker from distinguishing the orders that encrypt “0” from the other orders.
For example, users could create simultaneously two orders with opposite directions, one
real and one “fake” that encrypts “0”. The idea of using “dummy” outputs with zero
value has been used also in [HBHW22] to hide the number of inputs and outputs of a
transaction.

A Precision of Fixed Point

In Section 2.2 we defined addition and multiplication operations between values of type
FixedPoint. These can be thought of as “approximately modelling operations between
rational numebrs”. The lemma below describes the error incurred by these operations,
with respect to the rational operations they model.

Lemma A.1 (Small errors). Let x1, x2, x3 ∈ Q be three rational numbers such that
xi = yi/M for some fixed point numbers y1, y2, y3 ∈ B. Then, if y1 + y2 < B,

y1 + y2 = y3 if and only if x1 +Q x2 =Q x3.

Similarly, it also holds that, if y1y2 < B,

y1 · y2 = y3 if and only if 0 ≤ x1 ·Q x2 − x3 <
1

M
,

In both equations, the operations on the left are between values of type FixedPoint, and
the operations on the right are over the rationals numbers, as defined in Section 2.2.

Proof. The first statement concerning addition operations is clear. To prove the state-
ment concerning rational multiplication and the operation ·, observe (all operations below
are rational number operations)

0 ≤ x1x2 =
y1
M

y2
M

=

(
⌊y1y2M ⌋M + r

)
M2 =

⌊y1y2M ⌋
M

+
r

M2 <
⌊y1y2M ⌋

M
+

1

M
(1)
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where 0 ≤ r < M. Hence, if y1 · y2 = ⌊y1y2/M⌋ = y3, then 0 ≤ x1x2 − x3 < 1/M.
Conversely, if 0 ≤ x1x2 − x3 < 1/M, then, using (1),

0 ≤ x1x2 − x3 =
⌊y1y2M ⌋

M
+

r

M2 −
y3
M

<
1

M

⇔0 ≤
⌊y1y2

M

⌋
− y3 +

r

M
< 1.

Since both q :=
⌊y1y2

M

⌋
and y3 are integers we have that either they are the same integer

(as wanted), or |q − y3| > 1. Since r ≥ 0, the above inequality can only hold if q = y3,
as needed.
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