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Decentralized Compromise-Tolerant Public Key
Management Ecosystem with Threshold

Validation
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Abstract—This paper examines the vulnerabilities inherent in prevailing Public Key Infrastructure (PKI) systems reliant on centralized
Certificate Authorities (CAs), wherein a compromise of the CA introduces risks to the integrity of public key management. We present
PKChain, a decentralized and compromise-tolerant public key management system built on blockchain technology, offering
transparent, tamper-resistant, and verifiable services for key operations such as registration, update, query, validation, and revocation.
Our innovative approach involves a novel threshold block validation scheme that combines a novel threshold cryptographic scheme
with blockchain consensus. This scheme allows each validator to validate each public key record partially and proactively secures it
before inclusion in a block. Additionally, to further validate and verify each block and to facilitate public verification of the public key
records, we introduce an aggregate commitment signature scheme. Our contribution extends to the development of a new, efficient,
and practical Byzantine Compromise-Tolerant and Verifiable (pBCTV) consensus model, integrating the proposed validation and
signature schemes with practical Byzantine Fault Tolerance (pBFT). Through a comprehensive examination encompassing security
analysis, performance evaluation, and a prototype implementation, we substantiate that PKChain is a secure, efficient, and robust
solution for public key management.

Index Terms—PKI, Blockchain, PKChain, Block Validation, Compromise-Tolerance.
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1 INTRODUCTION

Public key cryptography (PKC) enables secure communica-
tions over the Internet using public and private key pairs.
In PKC, the private key is securely held by an entity, while
the corresponding public key is publicly available. Fail-
ing to authenticate the public key can lead to man-in-the-
middle attacks and leak users’ sensitive information. Public
key management system addresses public key authenticity
problem by providing a verifiable mapping from an entity’s
name to its corresponding public key.

The most common and predominant Public key man-
agement system is the centralized Public Key Infrastructure
(PKI) which relies on Certificate Authority (CA) to bind
the public key with a specific entity using digital certifi-
cates, also known as CA-based PKI. A CA is considered
trustworthy and has the central role in registering and
revoking a public key. However, recent incidents [1]–[4]
have shown that CA may be compromised by adversaries,
which will result in the single-point-of-failure in the PKI
both in terms of security and availability. For example, a
compromise of the root or any subordinate CA can issue
a fake or fraudulent certificate by registering public keys
for illegitimate principals, update or revoke public keys for
existing principals [5].

Towards this problem, several solutions such as Certifi-
cate Transparency (CT) [6] and blockchain-based distributed
PKIs [7]–[11] are proposed to resolve CA single-point-of-
failure and make CA accountable for its action. However,
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existing solutions follow a reactive approach. In these ex-
isting solutions, different actions of a CA are continuously
logged in a publicly verifiable data structure so that when a
malicious CA issues a fake certificate with a valid signature,
it can be detected by observing the log. There is no concrete
mechanism to prevent a malicious CA from generating a
fake certificate in the first place. The reactive approach for
detecting malicious CA and fake certificates is not ideal in
practice. The time window between a malicious certificate
being issued and detected can be long enough and have
disastrous consequences. On numerous occasions, several
incidents remained undetected for several weeks, causing
a great deal of damage before they were detected [12],
[13]. Therefore, a proactive approach is crucial to prevent
a CA from issuing a fraudulent certificate in the first place,
together with resolving the CA single-point-of-failure.

Recently, several blockchain-based PKIs [7]–[11] have
been proposed to distribute PKI services by replacing a con-
ventional CA with one or more miners. The mining process
generates certificates that validate public-key records after
proof of work, like in public blockchains such as Bitcoin
[14] or Ethereum [15]. Miners get rewarded for generating
certificates and offering diligence over miner or CA mis-
behavior. These PKIs leverage the consistency guarantees
provided by tamper-proof and consensus mechanism of the
blockchain and mitigate the CA single-point-of-failure risk.

However, existing blockchain-based PKIs are distributed
in terms of availability but not security necessarily. In exist-
ing blockchain-based PKIs, each miner or validator holds
an absolute privilege to validate transactions (public key
records) and mine a block individually, and assume that
everyone would hold/access the same version of the public
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key blockchain. However, there is no concrete mechanism
to avert a compromised miner/CA from injecting fake public key
records into the blockchain from the beginning, as the verifica-
tion is often performed only by verifying the signature. As a
result, a compromise miner or CA can generate fake public
key records with valid signatures that will be synchronized
to all the users and cannot be removed due to the tamper
resistance of the blockchain. Although these fake public-
key records will eventually be detected by other miners or
users due to the append-only ledger log, they still can cause
severe damage by allowing enough exposure time windows
to attackers.

In this paper, we present a proactive solution and pro-
pose a new decentralized, compromise-tolerant, and trans-
parent public key management system based on blockchain
technology called PKChain. PKChain eliminates the single-
point-of-failure problem that the CA introduces in CA-based
PKI, both in terms of security and availability. Similar to
the existing distributed PKIs, PKChain also distributes trust
among a set of validators instead of relying on a single
validator or CA. However, contrary to existing distributed
PKIs, PKChain also offers proactive security, preventing
malicious users and compromised validators (CA) from
injecting a fraudulent public-key record into the blockchain
in the first place. The contributions of this paper are sum-
marized as follows:

1) We propose a decentralized and compromise-tolerant
public key management framework (PKChain) based
on blockchain technologies, providing transparent,
tamper-resistant, and verifiable public key services, in-
cluding public key registration, update, query, valida-
tion, and revocation. PKChain removes the need for
having separate entity for certificate revocation like in
CA-based PKI.

2) We design a threshold block validation (TBV) scheme
to enable a majority of block validators (e.g., t out of n)
to collaboratively validate whether a public key request
indeed comes from a valid user.

3) We design an aggregate commitment signature (ACS)
scheme to enable a majority of block validators to col-
laboratively generate an aggregated signature on each
public key commitment, which is public verifiable.

4) We design a new practical Byzantine Compromise-
Tolerant and Verifiable (pBCTV) consensus model by
integrating both TBV and ACS schemes in practi-
cal Byzantine Fault-tolerance (pBFT) consensus model,
which reduces communication overhead significantly.

5) We prove that the PKChain is compromise-tolerant by
showing that both TBV scheme and ACS scheme are
existentially unforgeable against chosen-message attack
under the Computational Diffie-Hellman assumption.
Moreover, we develop a prototype of PKChain to
demonstrate its functionality, efficiency, and robustness.

The rest of paper is organized as follows: Section 2
describes the related work. Section 3 describes PKChain
framework, threat model, and design goals. Section 4 de-
scribes algorithm design of PKChain. We give a concrete
construction of designed security schemes in Section 5. In
Section 6, we describe the implementation of core functions
of public key management for PKChain. Security model,

security proofs and analysis are given for the designed
constructions in Section 7 and performance is evaluated in
Section 8. Finally, a discussion is provided in 9, and conclude
this paper in Section 10.

2 RELATED WORK

2.1 Conventional Approaches to PKI

The most common PKM system is CA-based PKI – specifi-
cally, the X.509 standard that binds a public key to an entity
or principal, enabling users to validate the public key by ver-
ifying the signature in the digital certificate. However, due
to CA centralized role in PKI, it introduced a single-point-of-
failure in the PKI. Google proposed Certificate Transparency
(CT) [6], [13] to make the TLS certificates publicly visible
by recording them in public log servers. Technically, CT
constitutes public log-servers, monitors, and auditors that
serve as witnesses and gossip once any suspicious certificate
is seen. However, CT is vulnerable to split-world attacks
[16], and gossiping between CT’s components introduces a
key challenge when attackers control one or more witnesses
and deviate them to attacker-controlled log servers to avoid
suspicious behavior. Considering this challenge, Syta et
al. [17] proposed a collective cosign approach where wit-
nesses further cosign each certificate signed by the CA and
recorded in the public-logs servers, which protects a witness
from such secret attacks. However, witnesses still don’t
know for sure if the certificate signed by the CA is legit or
rogue; instead, witnesses ensure that any certificate signed
by the CA is exposed to public scrutiny. Later, several other
studies extended the CT and proposed features to the initial
proposal [18]–[22]. However, the proposed transparency
solutions provide transparency to CA operations but still
do not eliminate the CA single-point-of-failure and depend
on interested parties to detect a fraudulent certificate once
observed.

The Web of Trust (WoT) PKM is the first step towards
decentralization and allows an individual to sign another
individual’s public key to certify their authenticity [23].
However, the compromise of a widely trusted endorser in
WoT can still impact many users whose trust relies on it,
and it also lacks a revocation mechanism. Zhou et al. [24],
employs threshold cryptography where each CA partially
signs client requests. However, it depends on a trusted third
party to create shares for all participating servers [24]. More-
over, due to the lack of consensus mechanisms such as state
replication, it is difficult to prevent malicious servers from
generating a bogus certificate, especially if replica servers
and delegate server(s) are compromised simultaneously.

2.2 Blockchain-Based PKI

Recently several blockchain-based PKIs have been proposed
to distribute trusts and provide transparency.

Yakubov et al. [25] proposed an Ethereum-based PKI
framework aiming to extend the X.509V3 certificate stan-
dard with blockchain compatible metadata fields. It uti-
lizes blockchain ledger to trace CA misbehavior concerning
certificate revocation. Fromknecht et al. [7] proposed Cert-
Coin, a blockchain-based PKI that ensures identity retention,
meaning that preventing multiple users from creating public
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keys for the same identity. The authors in [26] uses pBFT
consensus, instead of proof of work to validate certificates,
and use a digital signature to verify transactions. Blockstack
[11] leverages Namecoin and Bitcoin blockchain to provide
a name registration service that allows users to bind public
keys to their names. Authors in [10] proposed SCPKI, an
Ethereum smart contract-based PKI using a web of trust
model, aiming to detect rogue certificates when they are
published using smart contracts. Cecoin [9] and IKP [8]
proposed Ethereum-based PKI uses smart contracts to offer
automatic responses to CA’s misbehavior and incentivizes
those who help detect CA misbehavior. Authors in [27]
proposed a blockchain-based PKI system for Named Data
Networking (NDN), which addressed the compromised CA
problem in the NDN context using the PoW consensus
algorithm. However, validators or miners must contact
clients each time to verify while validating client requests,
introducing a heavy burden on clients.

Similar to the CT solutions, blockchain-based PKIs also
follow a reactive approach. Blockchain-based PKIs utilize
blockchain as a log-based ledger to trace the CA’s misbe-
havior and react once a fraudulent certificate is observed.
However, a concrete structure to detect compromises in
the first place is missing. In contrast, PKChain provides a
proactive solution and also resolves the CA single-point-of-
failure problem.

3 PKCHAIN: A DECENTRALIZED PUBLIC KEY
MANAGEMENT FRAMEWORK

3.1 PKChain System Model

To solve the Compromised CA Problem introduced by the
CA in the traditional CA-based PKI systems, we propose
an alternative decentralized PKI solution called PKChain.
PKChain is a decentralized public key management sys-
tem based on blockchain technology. We compare PKChain
with CA-based PKI in Figure 1. As shown in Figure 1, in
PKChain, we replace the single full-privileged CA in CA-
based PKI with a set of validation nodes (denoted as val-
idators) with lower privileges. PKChain is a permissioned
blockchain and a number of designated validators are pre-
selected to validate the principals who register their public
keys and maintain a blockchain containing the validated
public keys. The public key records are stored and main-
tained in a tamper-resistant blockchain, e.g., the PKChainedu
manages all the public keys in the edu domain, which were
managed by the CAedu in CA-based PKI. PKChain follows
a hierarchical structure similar to CA-based PKI. That is,
the public keys of all the validators in PKChainuniv are
managed by the PKChainedu, and similar for other domains.
The PKChain framework consists of the following entities:

Validators. Validators are a set of nodes collaboratively
performing the public key management functions. Unlike
the CA in PKI systems, no validator can complete any
public key request of registration, update, and revocation
by itself in PKChain and requires the collaboration of all
validators. One of the validators is selected as a Block-
generator (leader node), and the rest of validators continue
to act as Block-validators in each round of the consensus
process. The Block-generator selection process is based on
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Fig. 1. PKChain Framework

round-robin algorithm or by a relaxed threshold of proof-
of-work mechanism. Therefore, each node will have a fair
opportunity to become a Block-generator.

• Block-generator. Block-generator acts as a leader node
and is responsible for proposing a block by collecting
the public key request from memory pool and broad-
casting the proposed block to all the Block-validators.
All the validators will verify all public key requests
contained in the block, and only those public key re-
quests approved by the majority of validators will be
kept in the block. The Block-generator then adds the
new finalized block into the blockchain and responds
to the clients.

• Block-validators. Block-validators are the pre-selected
nodes participating in block validation process upon
receiving a block proposal from Block-generator.
Block-validators share their commitment with Block-
generator if they agree on block proposal in each round.

Client. A client could be a user or an entity that may
register public keys in PKChain. Any entity or device can
query or validate a public key from PKChain.

Any PKC-based application can interact with PKChain
through the APIs mentioned in section 5 to send a request
for public key registration, update, revocation, query, or
validation.

3.2 Threat Model
The threat model is defined as follows:

• Compromised Block-generator. A compromised Block-
generator may perform the following attacks: 1) Inject
fake public key records into a block; 2) Change the
validated block (which includes only the valid public
key records) after the consensus mechanism (e.g., add
a revoked public key record with valid signature); and
3) Fail to share new block proposal with some or all of
the validators causing a temporarily DoS attack.

• Compromised Block-validator. We assume that at most
one-third of the block-validator can be compromised
by adversaries. A compromised Block-validator may
perform the following attacks: 1) Make a forged public
key request by impersonating the client; 2) Fail to
respond to other validators or send a wrong message
(e.g., a validation result or a final commit message);
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and 3) Collude with other Block-validator or Block-
generator to perform a Byzantine fault or public key
forgery attack.

• Compromised Client. A malicious client or external ad-
versary may make a forged public key request, e.g., reg-
ister a public key with a different name, update/revoke
an existing public key of another user.

3.3 Design Goals

PKChain accomplishes the following design goals to deal
with the proposed threat model and provides all PKM
services:

• Eliminating Single-point-of-failure. PKChain should offer
a distributed PKI service and does not introduce a
single-point-of-failure both in terms of availability and
security.

• Proactive Security. PKChain should prevent individual
public key validation, and the majority of validators
are obliged to validate public key requests, and only
the majority approved public key records are included
in the blockchain.

• Public Verifiability. To be compatible with the existing
certificate-based applications, all the public key records
in the PKChain should be public verifiable by public
users.

• Compromise Tolerance. PKChain should be robust against
compromised validators as long as the majority of the
validators remained honest. A consensus mechanism is
required to enable validators to agree on the same state
of the blockchain. Moreover, validators should be able
to check whether all the records in the final block are
valid (in case the Block-generator is compromised).

• PKM Functionalities. PKChain should offer PKM core
services such as registration, query, update, and revoca-
tion of public keys. PKChain should eliminate the need
for having a separate entity for certificate revocation,
such as certificate revocation list (CRL) or Online Cer-
tificate Status Protocol (OCSP) in CA-based PKI.

• Efficiency. The PKChain should be efficient in terms of
communication overhead and computation cost.

4 ALGORITHM DESIGN OF PKCHAIN

In this section, we first describe the overall ideas, followed
by the proposed algorithms, including a novel threshold
block validation scheme, an aggregate commitment signa-
ture scheme, and a practical consensus model.

4.1 Technical Overview

Eliminating Single-point-of-failure. PKChain eliminates
the single-point-of-failure problem that the CA introduces
in CA-based PKI, both in terms of security and availability.
Similar to the existing distributed PKIs, PKChain also dis-
tributes trust among a set of validators instead of relying
on a single validator or CA. However, contrary to existing
distributed PKIs, in PKChain, each validator has a lower
privilege and requires other validators’ collaboration to
validate the final public key record.

Proactive Security. Contrary to existing PKI solutions,
PKChain provides proactive security. We defined infor-
mally proactive security here as predominately preventing
compromise validator(s) from infiltrating fake public key
records (certificates) into the blockchain. Following chal-
lenges should be addressed to accomplish proactive security
in PKChain.

1) Preventing individual validation. Typically, to perform
individual public key validation, a user authentication
method is required that enables each CA to verify that
the public key request is from a valid user holding valid
credentials (e.g., a private key or password). However,
signature-based validation is not always applicable due
to the lack of private-public key pair (e.g., new public
key registration request) or compromised private key
(e.g., public key update/revocation requests). Other
authentication methods, such as password-based au-
thentication, may be applicable to validate the public
key request. However, to complete the validation indi-
vidually, each CA may host the complete user creden-
tials (e.g., security token), enabling a compromised CA
to easily impersonate a user with such complete user
credentials and produce a forged public key request.

2) Finding honest collector. It is challenging to select an hon-
est validator to coordinate and collect all the evaluation
results, as Block-generator may also be compromised.
Indeed, finding an honest collector to collect all valid
partial signatures is a challenge in existing threshold
cryptography. That is why directly cosigning a certifi-
cate by a threshold number of validators does not solve
the problem (discussed in detail in section 9).

We developed a Threshold Block Validation (TBV) scheme
to resolve the first challenge. The TBV scheme allows each
validator only to host partial credentials (security tokens).
In TBV, each validator partially evaluates client requests,
shares its partial result with other validators, and accepts
the final evaluation results only when receiving t valid par-
tial evaluation responses from other validators. Once each
validator received t valid evaluation results, each validator
signed a COMMIT message supporting the evaluation re-
sult.

The solve the second challenge, we developed an Ag-
gregate Commitment Signature (ACS) scheme. The ACS
scheme allows each validator to aggregate locally t valid
partial signatures on the COMMIT message. Even though
only the block-generator inserts the final aggregated signa-
ture on public-key record (certificate) into the block. How-
ever, suppose the block-generator behaves maliciously by
injecting a fake aggregated signature. In that case, it will
be caught by other validators, as each validator has a local
copy of the aggregated signature.

Public Verifiablity. The ACS scheme also makes each
public key record in PKChian public verifiable and makes
PKChain compatible with existing CA-based applications
that require public verifiability. Technically, the ACS scheme
helps aggregate the majority of validators’ TBV scheme
results and provides an aggregate signature for each public
key record that public users can verify.

Our ACS scheme is based on the Boneh et al. [28]
signature. However, the Boneh et al. [28] signature can’t
be applied directly to achieve our design goals. We assume
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in PKChain the validators are trustless. So, the main chal-
lenge is that no trusted entity can generate and distribute
the signing keys in PKChain. Considering this challenge,
we propose a distributed and verifiable key generation
algorithm to generate the signing and verification keys
for all the validators while integrating the PKChain iden-
tity (h = H2(PKCHainID)) during the distributed key
generation process. Also, in Boneh et al. [28] signature,
each message signed must be distinct to be secure against
existential forgery in the aggregate chosen-key model. While
in PKChain, all validators sign the same final COMMIT
message. In addition, our ACS scheme is more efficient in
verification as it only requires three pairing operations while
[28] requires O(n), where n is the number of signers. Fast
verification of public key records (certificate) is mandated
to serve existing PKI applications efficiently.

Compromise Tolerance & Efficiency. We proposed the
practical Byzantine Compromise Tolerant and Verifiable
(pBCTV) consensus mechanism based on the well-studied
practical Byzantine Fault Tolerance (pBFT) algorithm [29]
to achieve consensus among the majority of validators. We
designed pBCTV to achieve the following design goals,
which cannot be achieved by directly using pBFT or its
variants.

1) To prevent the extra communication overhead caused
by the proposed schemes (TBV & ACS). To attain
this objective, we integrated the TBV scheme into the
Prepare phase and the ACS scheme into the Commit
phase of pBFT. Hence, the TBV and ACS schemes make
full use of the message exchange in the pBFT phases,
preventing them from causing extra communication
overhead.

2) Unlike pBFT, where each replica shares its final result
directly with the user, in pBCTV Block-generator gen-
erate the aggregate signature and submit the final block
to the blockchain. As a result, it reduces client commu-
nication from f + 1 (f is the number of faulty nodes)
to 1. As client only needs to receive one message and
verify only the final aggregated signature. In contrast
to pBFT, the client needs to receive and verify f + 1
messages.

3) Recovering previous TBV scheme results in the pres-
ence of malicious Block-generator. The Type-2 view-
change explained and handled this case in section 4.4.

4.2 Threshold Block Validation Scheme

To validate whether a public key request (e.g., register, up-
date, revoke) is from a legitimate client and not forged by a
compromised validator or any other adversary, we propose
a threshold block validation scheme to enable the validators to
validate each public key request in the block collaboratively.

Definition 4.1 (Threshold Block Validation Scheme). The
threshold block validation (TBV) scheme consists of the
following algorithms: ClientReg, ReqGen, ReqEval, and Re-
qVerify.

• ClientReg(Sv, ID) → (pwd, kc, {hc,i}i∈Sv , sp): Client
registration algorithm is run by each client. It takes as
inputs the validator set Sv and the client identity ID.
It outputs a client password pwd, a client key kc, a set

of secrets {hc,i}i∈Sv
and a system parameter sp, where

pwd and kc are kept private by the client and each secret
hc,i is shared to validator i.

• ReqGen(sp, kc, pwd, ID) → (req, Preq): The request
generation algorithm is run by each client. It takes as
inputs the system parameter sp, client key kc, client
password pwd and client identity ID. It generates a
public key request which consists of client ID and
public key (ID, PK) and the type of operation re-
quested (e.g., create, update, or revoke). The algorithm
also outputs a request proof Preq corresponding to this
request req.

• ReqEval(sp, hc,i, req, Preq)→ Sigi: The request evalua-
tion algorithm is run by each validator. It takes as inputs
the system parameter sp, the secret hc,i associated to
client identity ID, the request req, and the request
proof Preq . It will perform the evaluation on the request
and outputs an evaluation result Sigi on this request.

• ReqVerify(sp, {Sigi}i∈S1
, req, Preq) → YES/NO: The

request verification algorithm is run by each validator.
It takes as inputs the system parameter sp, a set of re-
quest evaluation results {Sigi}i∈S1

, the request req and
the request proof Preq . It outputs ‘YES’ if the request
and request proof are valid. Otherwise, it outputs ‘NO’.

4.3 Aggregate Commitment Signature Scheme

To verify if a public key record is approved by a majority
of validators and enable public verification, we propose
an aggregate commitment signature scheme, based on [28]
scheme.

Definition 4.2 (Aggregate Commitment Signature Scheme).
The aggregate commitment signature (ACS) scheme consists
of Setup, KeyGen, Sign, SigAgg, and PubVerify algorithms.

• Setup(1λ) → pp: The setup algorithm takes as inputs
the security parameter λ and the validator set Sv . It
outputs the public parameters pp.

• KeyGen(pp, Sv) → ({ks,j , gs,j}j∈Sv
, kv): The validator

key generation algorithm is a distributed algorithm that
runs by all the validators. It takes as inputs the public
parameter pp and the validator set Sv . It outputs a
validator signing key ks,j and validator verification key
gs,j for each validator j and a public verification key kv .

• Sign(ks,j , pp,m)→ σj . The signing algorithm is run by
each validator. It takes as inputs the secret key ks,j , the
public parameters pp, and the commitment message m.
It outputs a signature σj on the commitment message.

• SigVerify(pp, gs,j ,m, σj) → 1/0. The individual signa-
ture verification algorithm is run by each validator.
It takes as input the public parameters pp, individual
validator verification key gs,j , the commitment message
m, and each validator signature σj . It outputs 1 if the
individual signature σj is valid (i.e., σj can be verified
by gs,j). Otherwise, it outputs 0.

• SigAgg(pp, {σj}j∈S2
) → σ. The signature aggregation

algorithm is run by both block generator and block
validators. It takes as inputs the public parameters pp
and a set of valid signatures {σj}j∈S2

, where S2 is a set
of validators whose signatures are valid. It outputs an
aggregated signature σ.
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Fig. 2. pBCTV Consensus Model

• PubVerify(pp, kv,m, σ) → 1/0. The public verification
algorithm is run by any public users. It takes as inputs
public parameters pp, public verification key kv , com-
mitment message m, and the aggregated signature σ. It
outputs 1 if the signature is valid, Otherwise outputs 0.

4.4 pBCTV Consensus Model

To cope with the attacks from compromised validators, and
to achieve the consensus on the state of PKChain among
all the validators, we propose a new practical Byzantine
Compromise-Tolerant and Verifiable (pBCTV) consensus
model. The pBCTV consensus model is based on the pBFT
protocol which consists of the PrePrepare, Prepare and Com-
mit phases. To achieve the compromise-tolerant, we embed
the threshold block validation scheme into the pBFT pro-
tocol and take advantage of the message broadcasting in
the PrePrepare and Prepare phases. We further embed the
aggregate commitment signature scheme in the consensus
model to enable the public verification of public key records,
which also makes full use of the message broadcast in the
Commit phase. Figure 2 describes the pBCTV consensus
model.

Definition 4.3 (pBCTV Consensus Model). The pBCTV con-
sensus model consists of the following phases: System Ini-
tialization, Client Enrollment, Threshold Block Validation,
Verifiable Consensus Agreement, and Public Verification.

Phase 1: System Initialization. During system initial-
ization, ACS.Setup algorithm is run to generate system
parameters pp. Then, ACS.KeyGen is run by all the block
validators to obtain the secret keys {ks,j}j∈Sv

, individual
validator verification key gs,j , and a public verification key
kv .

Phase 2: Client Enrollment. It involves two stages:
a) Name-Principal Registration: Any client is required to

register to PKChain (i.e., to all the validators) by running the
TBV.ClientReg algorithm and sending the name-principal
registration (ID, hc,i) to each validator i.

b) Name-Principal Authentication: The Name-Principal au-
thentication happens only in the initial registration phase.
Upon receiving the client registration (ID, hc,i), each val-
idator i will conduct the name-principal verification by
contacting the client to identify and authenticate whether

ID is indeed associated with the client (principal) corre-
sponding to its proof of ownership documents. Technically,
the identity verification that occurs here is similar to the
identification and authentication process of the registration
authority (RA) in CA-based PKI, where an RA verifies the
requestor’s identity before a CA issues a certificate. Once
the name-principal identity is verified successfully, each
validator i stores the corresponding client (ID, hc,i), which
can be used for future client public key requests validation,
including query, update and revoke.

Phase 3: Threshold Block Validation. The TBV.ReqGen
algorithm is run by the client to generate a request and
request proof, which will be broadcast to the rest of Block-
validators. The TBV.ReqEval algorithm is run by both
Block-generator and Block-validators in the Prepare phase of
the consensus protocol. Each validator runs this algorithm
to evaluate client request, and shares its result with other
validators. The request verification is performed by running
the TBV.ReqVerify at the beginning of the Commit phase of
consensus protocol.

Phase 4: Verifiable Consensus. Consists of two cases:
a) Normal Case: If the public key request is valid (i.e.,

TBV.Verify outputs ‘YES’), a commitment message will be
generated by the validator to show the support of this public
key request. Then, each validator j will sign the commit-
ment message by running ACS.Sign algorithm. The output
signature σj will be broadcast to all the other validators (as a
vote on the request). Finally, the Block-generator will verify
individual signature σj by running ACS.SigVerify algorithm,
and select a set with t valid signatures. Then, the Block-
generator will aggregate all the valid signatures in this set by
running the ACS.SigAgg algorithm and add the aggregated
signature σ to the associated public key record in the block.
If the public key request is invalid (i.e., TBV.Verify outputs
‘NO’), no commitment message will be generated, and a
broadcast or reject message will be broadcast to all other
validators.

b) Fault/Compromised Case : A malicious Block-generator
may aggregate wrong signatures trying to forge the public-
key record. The Block-validators can detect malicious Block-
generator behavior by running the ASC.PubVerify algo-
rithm. Once a malicious Block-generator is detected, a
view-change will occur, and a new Block-generator will
be elected. The new Block-generator does not need to re-
start entire consensus process by publishing a new block
proposal. Instead, it can use the previous round validation
results (TBV results), re-calculate the signature aggregation,
and share it with rest of the Block-validators. If the majority
of validators agree, then the new Block-generator will add
the block to blockchain.

Phase 5: Public Verification. Any client and validators
are able to verify the aggregated signature of the public key
record by running the ACS.PubVerify algorithm.

5 A CONCRETE CONSTRUCTION

This section provides concrete constructions of TBV and
ACS schemes and describe them with the design of pBCTV.

5.1 Phase 1: System Initialization
The ACS.Setup algorithm is run to set up the PKChain iden-
tity PKChainID and public parameter pp. The ACS.KeyGen
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algorithm is run by all block validators to generate the
validator signing keys {ks,j}j∈Sv

, validator verification key
gs,j for each validator j, and a public verification key kv .

• ACS.Setup(1λ, Sv) → ({ks,j}j∈Sv
, pp): Let PG =

(G,GT , p, g, e) be a symmetric-pairing group, where
G and GT are multiplicative groups with same prime
order p, g is a generator of G, and e : G × G → GT

be the bilinear map. Let H2 : {0, 1}∗ → G be a hash
function that maps PKChain identity to an element in
G. Let H3 : {0, 1}∗ → G be a hash function that maps a
commitment message to an element in G. The algorithm
chooses a PKChain identity PKChainID and computes
h = H2(PKChainID) and outputs public parameter as

pp = (G,GT , p, g, e,H2, H3,PKChainID, h, t).

• ACS.KeyGen(pp, Sv) → ({ks,j , gs,j}j∈Sv , kv): Because
there is no centralized entity that can generate the sign-
ing keys for all the validators, we propose a distributed
algorithm to share the secrets among all the validators.
Each validator i first checks if h = H2(PKChainID). If
not, it aborts. Then, each validator i chooses a random
secret si ∈ Z∗

p and a polynomial function fi(x) with
degree t− 1 as

fi(x) = ai,t−1x
t−1 + · · ·+ ai,1x+ si

where ai,t−1, · · · , ai,1 are randomly selected from
Z∗

p. The validator i will compute nv tuples
(j, hfi(j), gfi(j))1≤j≤nv , where nv is the total number of
validators (i.e., nv = |Sv|). Then, the validator i sends
(j, hfi(j), gfi(j), gsi) to each validator j, while keeping
(i, hfi(i), gfi(i)) itself. Upon receiving nv − 1 different
tuples from all the other validators, each validator j
will compute the individual signing key as

ks,j =
nv∏
i=1

hfi(j) = hs′j

and individual verification key as

gs,j =
nv∏
i=1

gfi(j) = gs
′
j

where s′j =
∑nv

i=1 fi(j) is the new implicit secret share.
So, if the distributed secret sharing is correct, at least t
out of nv validators can reconstruct the total secret as

s =
t∑

j=1

cjs
′
j =

t∑
j=1

cj

nv∑
i=1

fi(j) =
nv∑
i=1

t∑
j=1

cjfi(j) =
nv∑
i=1

si

The correctness of distributed secret sharing scheme
can be verified by checking whether the public verifica-
tion key generated from new (t, nv)-secret shares and
previous (nv, nv)-secret shares are consistent, i.e.,

kv =
t∏

j=1

(gs,j)
cj ?

= k′v =
nv∏
i=1

gsi .

If the above equation does not hold, it terminates and reruns
the key generation algorithm until the above equation holds.

5.2 Phase 2: Client Enrollment

The client enrollment includes the following two steps:
a) Name-Principal Registration. Any client is required to

register to the PKChain (i.e., all the validators) by run-
ning the TBV.ClientReg algorithm and sending the name-
principal registration (ID, hc,i) to the corresponding val-
idator i.

• TBV.ClientReg(Sv, ID) → (pwd, kc, {hc,i}i∈Sv
, sp): To

be consistent with the aggregate commitment signature
scheme, we will use the same set of group parameters
defined in the public parameter pp. Let H : {0, 1}∗ → G
be a hash function that maps arbitrary public key
requests to an element in G. Let H1 : {0, 1}∗ → G
be a hash function that maps a password pwd to
an element in G. The system parameter sp consists
of (G,GT , p, g, e,H,H1,PKChainID). The client first
chooses an ID and password pwd for the client en-
rollment. Then, it selects a random client key kc from
Z∗

p and constructs a polynomial with degree t − 1 as
follows:

g(x) = at−1x
t−1 + ...+ a1x+ a0,

where a0 is set to the client key kc. For each validator
i, the algorithm generates a share of the client key
kc,i = g(i) and computes hc,i = H1(pwd)

kc,i . Then,
the name-principal registration pair (ID, hc,i) is sent to
the validator i.

b) Name-Principal Authentication. Upon receiving the
name-principal registration pair (ID, hc,i), each validator i
contacts the principal to verify the ID via different channels.
For example, if an entity is a user, legal ID is required,
and proof of ownership is required if an entity is a device
or organization. Once the name-principal authentication is
successful, each i will store (ID, hc,i) in its database. Thus,
it enables validators to avoid contacting the principal and
doing the name-principal validation for each public key
request.

5.3 Phase 3: Threshold Block Validation

The TBV.ReqGen algorithm is run by the client to generate
a request and request proof, which will be broadcast to
the rest of the Block-validators. The TBV.ReqEval algorithm
is run by both Block-generator and Block-validators in the
Prepare phase of the consensus protocol. Each validator runs
this algorithm to evaluate the client request and shares its
result with other validators. The request verification is done
by running the TBV.ReqVerify algorithm at the beginning
of the Commit phase of consensus protocol.

• TBV.ReqGen(sp, kc, pwd, ID) → (req, Preq): The re-
quest generation algorithm generates a public key re-
quest which consists of the pair of the client, public key
(ID, PK), the type of operation requested (e.g., create,
update, or revoke), and the timestamp, denoted as

req = (PKChainID||ID||PK||OP Type||Timestamp)

Where operation types (OP Type):

OP Type = Create/Update/Revoke
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The algorithm also generates a request proof Preq cor-
responding to this request req as

Preq =
(
H1(pwd)

kcH(req)u, H(req)r, gu, gr
)

where u, r ← Z∗
p.

• TBV.ReqEval(sp, hc,i, req, Preq) → Sigi: The request
evaluation algorithm is run by each Block-validator and
the Block-generator. The signature Sigi is computed as:

Sigi =
(
e
(
hc,i ·H(req)ti , gr

)
, gti

)
, ti ← Z∗

p.

• TBV.ReqVerify(sp, {Sigi}i∈S1 , req, Preq) → YES/NO:
The request verification algorithm is run by each Block-
validator at the beginning of Commit phase. Basically,
after receiving t different signatures from a set of val-
idators (i.e.,S1), each validator i performs the signatures
aggregation and verifies the proof of request as:∏

i∈S1

(
e
(
hc,iH(req)ti , gr

)
e
(
H(req)r, gti

) )zi
?
=

e
(
H1(pwd)

kcH(req)u, gr
)

e(H(req)r, gu)

where zi is the Lagrange coefficient. It outputs ‘YES’ if the
request and its proof are valid, otherwise, outputs ‘NO’.

Correctness:∏
i∈S1

(
e
(
hc,i ·H(req)ti , gr

)
e
(
H(req)r, gti

) )zi

=
∏
i∈S1

e(hc,i, g
r)zi

= e(H1(pwd), g
r)

∑
i∈S1

zikc,i

= e(H1(pwd), g
r)kc

=
e
(
H1(pwd)

kc ·H(req)u, gr
)

e(H(req)r, gu)

5.4 Phase 4: Verifiable Consensus
We will describe this phase in two cases: a) Normal Case
and b) Fault/Compromise Case.
1) Normal Case: If the public key request is valid (i.e.,
TBV.Verify outputs ‘YES’), a commitment message will be
generated by the validator to show the support of this
public key request. Then, each validator j will sign the
commitment message by running ACS.Sign:

• ACS.Sign(ks,j , pp,m)→ σj . The signing algorithm out-
puts a signature σj on commitment message m as

σj = (σj,1 = ks,j ·H3(m)rj , σj,2 = grj ).

If the public key request is invalid (i.e., TBV.Verify outputs
‘NO’), no commitment message will be generated, and a
broadcast or a reject message will be broadcast to all the
other validators.

Each validator j sends its signature, σj (as a vote),
to other validators. Block-generator verifies each validator
signature σj by running the following ACS.SigV erify
algorithm, and add only the valid σj to the list.

• ACS.SigVerify(pp, gs,j ,m, σj) → 1/0. The individual
signature verification algorithm uses the validator ver-
ification key gs,j to evaluate signature σj (vote) for the
commitment message m using the following equation:

e(σj,1, g)
?
= e(H2(PKChainID), gs,j) · e(H3(m), σj,2)

If the above equation holds, it outputs 1, otherwise 0.
Correctness:

e(σj,1, g) = e(ks,j ·H3(m)rj , g)

= e(hs′j , g) · e(H3(m)rj , g)

= e(h, gs
′
j ) · e(H3(m), grj )

= e(H2(PKChainID), gs,j) · e(H3(m), σj,2)

Based on the outputs of the individual signature verifi-
cation, the Block-generator will generate a set S2 consisting
of t valid signatures, and aggregate all the valid signatures
in S2 by running the ACS.SigAgg algorithm, and add the
aggregated signature σ to the public key record in the block.
Actually, each validator can aggregate the signature upon
receiving at least t valid signatures (i.e., S2) by running the
following algorithm:

• ACS.SigAgg(pp, {σj}j∈S2) → σ. The signature aggre-
gation algorithm outputs an aggregated signature σ as

σ = (σ1 =
∏
j∈S2

σ
cj
j,1, σ2 =

∏
j∈S2

σ
cj
j,2)

2) Fault/Compromise Case: View Change. The view change
protocol provides liveness by allowing the PKChain to
ensure progress when the Blockchain-generator fails or acts
maliciously. The pBCTV view-change mechanism prevents
a temporary DoS attack and a Block-generator malicious
behavior. There are two types of view-change mechanism
that occurs as follow in pBCTV:

Type 1 View-change. Type 1 view-change occurs similar
to the pBFT’s view-change when one of these events hap-
pened: 1) A time-out occurs due to network delay. 2) When a
Block-generator does not share the proposal with the rest of
the Block-validators or proposed malicious data, similar to
pBFT, one of the Block-validator initiates a view-change and
send a view-change message to the rest of Block-validators,
and if a majority agree, then a view-change occurs. A new
Block-generator is elected to send the proposal again. 3)
To start a new round after completing a previous normal
round.

Type 2 View-change. Type 2 view-change will occur when
a malicious Block-generator tried to change the validated
block (e.g., inject a previous public key record with a valid
signature). To detect such malicious behaviors of Block-
generator, the validated block will be broadcast to all the
Block-validators again for the final confirmation. Block-
validators will compare the received validated block with
the local one and broadcast the approve or reject confirmation
messages to all the Block-validators. The validated block
will be accepted and added to the chain if more than
t approve confirmation messages are received. Otherwise,
the Block-generator does not behave honestly, and a Type
2 view-change will occur. A new Block-generator will be
elected and uses the previously available validation results
(TBV result) and send its local validated block to other
validators for further confirmation.

5.5 Phase 5: Public Verification

Clients and validators can verify public key record signature
with public parameters pp and public verification key kv :
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• ACS.PubVerify(pp, kv,m, σ) → 1/0. The public verifi-
cation algorithm will use the public verification key
kv to evaluate the commitment message m and the
aggregated signature σ using the following equation:

e(σ1, g)
?
= e(H2(PKChainID), kv) · e(H3(m), σ2)

If the aggregated signature is valid, it outputs 1, other-
wise outputs 0.
Correctness:

e(σ1, g) = e(
∏
j∈S2

(ks,j ·H3(m)rj )cj , g)

= e(h
∑

j∈S2
cjs

′
j , g) · e(

∏
j∈S2

H3(m)rj )cj , g)

= e(h, gs) · e(H3(m),
∏
j∈S2

grjcj )

= e(H2(PKChainID), kv) · e(H3(m), σ2)

6 PKM CORE FUNCTIONS

Each core function of a public key management system is
implemented as an API in PKChain.

PKChain.Register(name, pk) → Success/Fail.
Principal can register a name and bind a corresponding
public key to this name. The client will choose a name for
a principal (owned or managed by this client) and generate
a public-private key pair. Then, a public key request is gen-
erated as (ID||(name, pk)||Create) and sent to the PKChain
memory pool. When the record is added to the blockchain,
the client receives the result ‘Success’; otherwise, it receives
‘Fail’. The client can check and verify the signature of the
public key.

PKChain.Query(name) → pkname/NotFound. The
query function returns the latest and valid public key cor-
responding to a given name. Any validator can retrieve the
entire chain and return the corresponding valid pkname or
‘NotFound’ to indicate no valid public key is found for the
given name.

PKChain.Validate(name, pk) → V alid/Invalid.
Given a pair of name and public key (name, pk), the vali-
dation function returns whether this pair is valid or invalid.
It calls the Query function with the name, then compares
the output with the given public key pk. If they are the
same, it returns ‘Valid’. Otherwise, it returns ‘Invalid’. This
validation function will remove the need for having a sep-
arate entity for certification revocation (e.g., Certification
Revocation List or Online Certificate Status Protocol) like
in CA-based PKI.

PKChain.Update(name, pk∗) → Success/Fail. The
update function enables any principal to request to update
the corresponding public key for a registered name. When
updating a public key for a given name, the (name, pk∗)
request goes to PKChain. The TBV scheme is used to figure
out if this is a request from a legitimate user and there is
already a registered user to the PKChain. If so, the public
key will be updated successfully, and a ‘Success’ will be
returned to the client. Otherwise, it returns ‘Fail’.

PKChain.Revoke(name, pk) → Success/Fail. If a
public key is compromised, it needs to be revoked. The
revoke operation is similar to the update operation. The TBV
scheme is used to figure out if this request comes from a

legitimate user who has already registered to PKChain. If so,
the public key will be revoked successfully, and a ‘Success’
will be returned to the client. Otherwise, it returns ‘Fail’.

Because blockchain is an immutable ledger, we cannot
modify content in previous blocks. Instead, a new block is
attached to the blockchain indicating an update or revoked
public key.

To secure the communication among validators and val-
idators know and have access to each other public keys the
public keys of all the validators maintaining PKChainuniv are
stored in the blockchain PKChainedu. Likewise, the public
keys of validators maintaining PKChainedu are stored in
the blockchain PKChainroot. The public keys of the root
validators are well-known and stored in the blockchain,
which is shared with all validators in the initial setup. Due
to the majority principle and tamper-proof of blockchain, a
misbehaving root validator has limited capability to cause
damage.

7 SECURITY ANALYSIS OF PKCHAIN

This section first describes the complexity assumption, secu-
rity model, and security proofs for TBV and ACS schemes,
followed by a security analysis of pBCTV model.

7.1 Computational Diffie-Hellman Assumption
Definition 7.1 (CDH). Let G be a multiplicative group with
prime order p. The CDH problem on G states that given
(g, ga, gb) with a randomly chosen generator g and a, b ∈
Zp, an algorithm A has advantage ϵ in solving the CDH
problem if Pr[A(g, ga, gb) = gab] ≥ ϵ.

We say that the (τ, ϵ)-CDH assumption holds if no τ -
time algorithm has a non-negligible advantage ϵ in solving
the CDH problem.

7.2 Security Model
We define the security model for TBV and ACS as follows:

Definition 7.2 (TBV Security Game (Selective EU-CMA
Security)). We define the security of TBV under a selective
existential unforgeability against chosen-message attacks
(EU-CMA) game between a challenger C and an adversary
A whose running time is probabilistic polynomial in a
security parameter λ and threshold t as follows.

• Initial. In the initial phase, the adversary A specifies a
set of compromised validators Sc where the maximum
size of Sc is t− 1.

• Setup. The challenger C runs the client registration
algorithm and sends the system parameter sp to the
adversary A. For all the identities in the compromised
set Sc, the secrets {hc,i}i∈Sc

will also be sent to the
adversary A.

• Query. The adversary makes request proof queries on
requests that are adaptively chosen by the adversary
on an identity that are not in the compromised set Sc.

• Forgery. The adversary A returns a forged request
proof P ∗

req on some request req∗ that has not been
queried. The adversary A wins the game if P ∗

req can
pass the request verification after running the ReqEval
and ReqVerify algorithms.
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Definition 7.3 (TBV Security). A threshold block validation
scheme is (t, qs, ϵ)-secure in the selective EU-CMA security
model if there exists no adversary who can win the TBV
security game in time t with non-negligible advantage ϵ
after it has made qs proof queries.

Definition 7.4 (ACS Security Game). We define the se-
curity of ACS under a selective existential unforgeability
against chosen-message attacks (EU-CMA) game between
a challenger C and an adversary A whose running time
is probabilistic polynomial in a security parameter λ and
threshold t as follows.

• Initial. In the initial phase, the adversary A specifies a
set of compromised validators Sc where the maximum
size of Sc is t− 1.

• Setup. The challenger C runs the setup algorithm and
sends the public parameter pp to the adversary A. It
runs the key generation algorithm to generate a set
of validator signing key ks,j and a public verification
key kv . For all the validators in the compromised set
Sc, the signing keys {ks,j}i∈Sc

will also be sent to the
adversary A.

• Query. The adversary makes signature queries on com-
mit messages that are adaptively chosen by the adver-
sary.

• Forgery. All the participating validators from the set
of Sv sign the commit message mi and sends it to
Block-generator. Here, we consider a Block-generator
acts as an adversary A which collects the σj ,mi

from
all participating validators and aims at forging the
aggregate signature. The adversary A returns a forged
aggregated signature σ∗ on commit message m∗ that
has not been queried. The adversary A wins the game
if σ∗ can be publicly verified.

Definition 7.5 (ACS Security). An aggregate commitment
signature scheme is (t, qs, ϵ)-secure in the selective EU-CMA
security model if there exists no adversary who can win the
ACS security game in time t with non-negligible advantage
ϵ after it has made qs signature queries.

7.3 Security of TBV Scheme

Theorem 1 (Security of TBV). The proposed TBV scheme
is selective EU-CMA secure under the Computational Diffie-
Hellman assumption.

Proof. Suppose there exists an adversary A who can
(t, qs, ϵ)-break the TBV scheme in the selective EU-CMA
security model, i.e., A can forge a valid request proof Preq

with non-negligible advantage, we can construct a simulator
B in polynomial time to solve the CDH problem. Given as
input a problem instance (g, ga, gb) over the pairing group
G, B controls the random oracle, runs A, and works as
follows.

Initial. In the initial phase, the adversary A specifies a
set of compromised validators Sc where the maximum size
of Sc is t− 1.

Setup. Let public parameters be pp = (G,GT , g, p, e).
The simulator B randomly chooses an identity ID and
specify an i∗ ∈ [1, qH1 ] where qH1 is the total number of
query for the H1 oracle. The password selected is the i∗

query for the H1 oracle. B also selects a random secret k
from Z∗

p and shared it using a t-degree polynomial function
f(x) and obtain secret shares {k1, · · · , knv

}. The client key
kc is implicitly set as kc = a · k.

To simulate the secret hc,i, the B will first simulate the
two random oracles:

• O(H): B prepares a hash list, which is empty at the be-
ginning, to record all queries and responses as follows:
If reqi is already in the hash list, B responds to this
query following the hash list. Otherwise, B randomly
chooses wi from Z∗

p and sets H(reqi) as H(reqi) = gwi .
The simulator B responds to this query with H(reqi)
and adds (i, reqi, wi, H(reqi)) to the hash list.

• O(H1): Let the i-th hash query be pwdi. If pwdi is
already in the hash list, B responds to this query
following the hash list. Otherwise, B randomly chooses
yi from Z∗

p and sets H1(pwdi) as

H1(pwdi) =

{
gb+yi if i = i∗

gyi otherwise

The simulator B responds to this query with H1(pwdi)
and adds (i, pwdi, yi, H1(pwdi)) to the hash list.

The secret hc,i will be simulated as hc,i = H1(pwdi)
ki .

The simulator B will also share the compromised secrets
{hc,i}i∈Sc to the adversary.

Query. The adversary makes a request proof query in
this phase. The proof can be simulated as

Preqi =
(
H1(pwd)

kcH(reqi)
ui , H(reqi)

ri , gui , gri
)

=
(
(gyi)akH(reqi)

ui , (gwi)ri , gui , gri
)

=
(
(ga)yik(gwi)ui , (gwi)ri , gui , gri

)
.

where ui, ri
R←− Z∗

p.
Forgery. The adversary A returns a forged request proof

P ∗
req on some request req∗ that has not been queried. If the

query of pwd∗ to O(H1) is not the i∗-th queried message
in the hash list, abort. Otherwise, we have H(pwd∗) =
gb+ri∗yi∗ . According to the request proof definition and
simulation, a valid proof should follow the same structure
as follows:

Preq∗ =
(
H1(pwd)

kcH(req∗)u, H(req∗)r, gu, gr
)

=
(
(gb+yi∗ )ak(gw

∗
)u, (gw

∗
)r, gu, gr

)
.

The simulator B computes

(gb+yi∗ )akgw
∗u

(ga)yikgwiui
· (g

ui)wi

(gu)w∗ = gabk

Then, the gab = (gabk)1/k as the solution to the CDH
problem instance. This completes the simulation and the
solution.

Indistinguishable Simulation. The correctness of the
simulation has been explained above. The randomness of
the simulation includes all random numbers in the key
generation and the responses to hash queries:

k, a, y1, · · · , yi∗−1, b+ yi∗ , yi∗+1, · · · , yqH1
, w1, · · · , wqH .
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According to the simulation, a, b, yi, wi, ri, ui are randomly
chosen, it is easy to see that they are random and indepen-
dent from the point of view of the adversary. Therefore, the
simulation is indistinguishable from the real attack.

Probability of successful simulation and useful attack.
If the simulator successfully guesses i∗, all queried request
proofs are simulatable, and the forged request proof Preq∗

is reducible because the password pwdi∗ cannot be chosen
for a request proof query, and it will be used for the request
proof forgery. Therefore, the probability of successful simu-
lation and useful attack is 1

qH1
for qH1

queries.
Advantage and time cost. Suppose the adversary A

breaks the TBV scheme with (t, qs, ϵ) after making qH1

queries to the random oracles H1. The advantage of solving
the CDH problem is therefore ϵ

qH1
. Let Ts denote the time

cost of the simulation. We have Ts = O(qH1
+ qs), which

is mainly dominated by the oracle response and the request
proof generation. Therefore, B will solve the CDH problem
with (t+ Ts, ϵ/qH1

). This completes the proof.

7.4 Security of ACS Scheme

Theorem 2 (Security of ACS). The proposed ACS scheme
is EUF-CMA secure under the Computational Diffie-Hellman
assumption.

Proof. Suppose there exists an adversary A who can
(t, qs, ϵ)-break the aggregate commitment signature scheme
under the EU-CMA security model. The main focus of
A is to forge the aggregated signature σ. We construct a
simulator B to solve the CDH problem. Given as input a
problem instance (g, ga

′
, gb) over the pairing group G, B

controls the random oracle, runs A, and works as follows.
Initial. In the initial phase, the adversary A specifies a

set of compromised validators Sc where the maximum size
of Sc is t− 1.

Setup. Let public parameters be
(G,GT , g, p, e,H2, H3, h), where H2 be the random
oracle controlled by simulator B.

• O(H2): B randomly chooses an integer j∗ ∈
[1, qH2

] and set the challenge PKChain identity be
PKChainID∗ = PKChainIDj∗ , where qH2

represents the
number of hash queries to the random oracle H2. B pre-
pares a hash list, where the hash list is empty at the be-
ginning, to record all queries and responses as follows:
If PKChainIDj is already in the hash list, B responds
to this query following the hash list. Otherwise, B

randomly chooses hj from Z∗
p and set H2(PKChainIDj)

H2(PKChainIDj) =

{
gb if j = j∗

hj otherwise

The B responds to the query with H2(PKChainIDj) and
adds (j,PKChainIDj, H2(PKChainIDj) to the hash list.

• O(H3): Before receiving queries for commitment mes-
sage mi, B randomly chooses an integer i∗ ∈ [1, qH3 ],
where qH3 represents the number of hash queries to
the random oracle H3. Then, B prepares a hash list to
record all queries and responses as follows, where the
hash list is empty at the beginning. Let the i − th hash
query be mi. If mi is already in the hash list, B responds

to this query following the hash list. Otherwise, B

randomly chooses wi from Z∗
p and sets H3(mi) as

H3(mi) =

{
gwi if i = i∗

gb+wi otherwise

The simulator B responds to this query with H3(mi)
and adds (i,mi, wi, H3(mi)) to the hash list.

Then the simulator B chooses a random secret s ∈ Z∗
p

and share s into multiple pieces (s1, · · · , snv
). Instead of

running the ACS.KeyGen, the simulator can simply generate
these secret shares. The secret key ks,j is define as follows
based on CDH problem instance: ks,j = (gb)a

′·sj = gb·aj ,
where aj = a′ · sj and gaj = (ga

′
)sj . The public verifica-

tion key kv is simulated as kv = ga
′·s = ga, where a = a′ · s.

The secret key s is similar to a as in the CDH problem. The
public key is available from the problem instance.

Query. The adversary makes signature queries in this
phase. For a signature query on mi, if mi is the i∗-th queried
request message in the hash list, abort. Otherwise, we have
H3(mi) = gb+wi . We can simulate the signature σj for
message mi as follows:

• Simulation of σj,1: B randomly chooses r′ij ∈ Z∗
p, set

rij = r′ij − aj , and computes σj,1 as

σj,1 = gb·aj ·H(mi)
rij = gb·aj · (gb+wi)r

′
ij−aj

= (gaj )−wi ·H(mi)
r′ij

• Simulation of σj,2:

σj,2 = grij = gr
′
ij−aj = gr

′
ij · (gaj )−1

• Aggregation: Upon receiving all the σj from Block-
validators, the simulator B computes the signatures
aggregation as:

σ1 =
∏
j

σ
cj
j,1 =

∏
j

(gaj )−wi·cj ·H(mi)
r′ij ·cj

σ2 =
∏
j

σ
cj
j,2 =

∏
j

gr
′
ij ·cj · g−aj ·cj

• Validation of Simulated and Aggregated Signatures: The
aggregated signatures can be validated as:

e(σ1, g) = e
(∏

j

g−aj ·wi·cj , g
)
· e
(
H(mi)

∑
j r′ij ·cj , g

)
= e

(
H3(m),

∏
j

gr
′
ij ·cj

)
· e
(
gwi , ga

)
= e(H3(m), σ2) · e(H2(PKChainID), kv).

Forgery. In a real scenario, the σj ,mi
is a single signature

created by validator j for commit message mi. All the
participating validators from the set of Sv sign the com-
mit message mi and sends it to Block-generator. Here, we
consider a Block-generator acts as an adversary A which
collects the σj ,mi

from all participating validators and aims
at forging the aggregate signature.

The adversary A returns a forged aggregated signature
σ∗ on commit message m∗ that has not been queried. If
m∗ is not the i∗-th queried message in the hash list, abort.
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Otherwise, we have H3(m
∗) = gwi∗ . According to the re-

quest signature definition and simulation, a valid signature
follows the following structure:

σ∗
1 = (gab ·H(m∗)r, gr)

Then, the simulator B can compute( σ∗
1

(σ∗
2)

w∗
i

)1/s
=
(gab · gw∗

i ·r

gw
∗
i ·r

)1/s
=
(
gab
)1/s

= ga
′b

as the solution to the CDH problem. This completes the
simulation and the solution.

Indistinguishable Simulation. The correctness of the
simulation has been explained above. The randomness of
the simulation includes all random numbers in the key gen-
eration and the responses to hash queries, and the signature
generation. They are as follows:

a, b, a′, s, r′ij , b+w1, · · · , b+wi∗−1, wi∗ , b+wi∗+1, · · · , b+wqH3

According to the setting of the simulation, where
a, a′, b, wi, r

′
ij are randomly chosen, it is easy to see that

they are random and independent from the point of view of
the adversary. Therefore, the simulation is indistinguishable
from the real attack.

Probability of successful simulation and useful attack.
If the simulator successfully guesses i∗, all queried signa-
tures are simulatable, and the forged signature is reducible
because the commit message mi∗ cannot be chosen for a
request signature query, and it will be used for the signature
forgery. Similarly, for the query of PKChainID∗. Therefore,
the probability of successful simulation and useful attack is

1
qH2

+qH3
for qH2

and qH3
queries.

Advantage and time cost. Suppose the adversary A

breaks the ACS scheme with (t, qs, ϵ) after making qH2 and
qH3 queries to the random oracles H2 and H3. The advan-
tage of solving the CDH problem is ϵ

qH2
+qH3

. Let Ts denote
time cost of the simulation. We have Ts = O(qH2

+qH3
+qs),

which is mainly dominated by the oracle response and
the signature generation. Therefore, B will solve the CDH
problem with (t + Ts, ϵ/(qH2

+ qH3
)). This completes the

proof.

7.5 Security of pBCTV consensus model
Theorem 3. The practical Byzantine Compromise-tolerant and
Verifiable consensus model with nv validators can tolerate at most
⌊nv−1

3 ⌋ compromised validators if the threshold block validation
scheme and the aggregate commitment signature scheme is EUF-
CMA secure.

Proof. Suppose there are nc compromised validators in the
system, all the nc compromised validators may not respond
to any messages in both Prepare and Commit phases in the
pBCTV consensus mechanism. In order to finish the consen-
sus procedure, each validator will continue to the next phase
upon receiving at least nv−nc different messages. However,
sometimes the messages from uncompromised validators
may be delayed, and the messages from the compromised
validators are counted in the received messages that are
carried for the next phase. That is, there may be nc mes-
sages from the compromised validators among those who
received nv −nc messages. To guarantee that at lease nc+1

TABLE 1
Communication Overhead

Process pBCTV pBFT
Initialization nv(nv − 1) · 4|p| n/a
Enrollment nv · 2|p| n/a

Proposal |req|+ 4|p| |req|
Pre-Prepare nv(|req|+ 4|p|) nv |req|

Prepare nv(nv − 1) · 2|p| nv(nv − 1)|vote|
Commit nv(nv − 1)(|m|+ 2|p|) nv(nv − 1)|m|

messages are valid messages, we requires nv−2nc ≥ nc+1.
Thus, we have nc ≤ ⌊nv−1

3 ⌋ and the threshold t can be set
to nc + 1 or any value between [nc + 1, nv − 2nc]. If both
TBV and ACS schemes are existentially unforgeable against
the chosen message attack, then any adversary, including
the compromised validators, cannot forge a valid public key
request and a valid signature of a public key record in the
blockchain.

8 PERFORMANCE EVALUATION

We develop a prototype of PKChain and implement the
schemes in Python. The TBV and ACS schemes are im-
plemented using the charm framework and pairing-based
cryptography library (pbc-0.15.14), GPM 6.2.0, and OpenSSL
1.1.1. For EC with bilinear maps or pairing the NIST-
approved curve, MNT159 representing an asymmetric curve
with the 159-bit base field is used, together with Hash-
lib(SHA256) library for secure hashes and digest. We uti-
lized the round-robin-0.0.1 package for round-robin proto-
col implementation. We also implemented pBFT to use as a
baseline and compare the performance evaluation between
pBCTV and pBFT.

We run the experimental workloads on 20 local stan-
dalone Docker-1.3.0 containers; each represented a validator
node. One node is elected as a Block-generator, and the
remaining nodes work as Block-validators in each round.
We used the urllib3 library for client implementation. The
Docker-1.30 hosts on Intel(R) CPU @ 1.6 GHz Dual-Core In-
tel Core i5, 8GB RAM, and hosts macOS Catalina (10.15.17)
operating system.

8.1 Communication Overhead
We evaluate the communication overhead in each stage
of the PKChain (especially the pBCTV consensus model),
which is compared to the communication overhead of the
pBFT consensus model. The communication overhead of
each process is shown in Table 1 where p is an element size
in the group G, |req| is the size of public key request, |vote|
is the size of vote message in pBFT, and |m| is the size of
commitment message. We can see that our proposed pBCTV
consensus model does not increase much communication
overhead compared to the pBFT consensus model. This is
because both the threshold block validation scheme and the
aggregate commitment signature scheme fully use of the
existing message exchange in the pBFT protocol.

8.2 Computation Cost
We evaluate block confirmation time between pBCTV and
pBFT. Figure 3 shows when the number of validators in-
creases, in the presence of compromised validator nodes,
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Fig. 3. Comparison of Block Confirmation Time

communication overhead increases, which is obvious from
the BFT (n× n) message broadcast. There is an expected
overhead in pBCTV compared to pBFT due to the crypto-
graphic operations. Our pBFT implementation uses MAC
similar to pBFT [30], instead of digital signature, while
pBCTV involves digital signatures based on EC bilinear
pairing. There is a trade-off between security and per-
formance, and to achieve the design goal of PKChain, a
certain level of overhead is caused due to cryptographic
operations. Previous works (e.g., Zyzzyva [31] or pBFT
[29]) have shown that the bottleneck in BFT protocols is
actually cryptography, not network usage [32]. Concerning
throughput, pBCTV leverages pBFT batching in the form
of a block to lower bound on the number of authentication
operations performed during consensus.

We evaluate the computation cost of each algorithm pro-
posed in the pBCTV. Figure 4 describes the executing time
of each algorithm on each validator in the threshold block
validation scheme. We can see that only the TBV.ReqVerify
is dependent on the number of validators because it has
to collect a set of request evaluations {Sigi} from at least
t uncompromised validators. Given the received nv − nc

request evaluations, the probability that a validator selects
a set consisting of t uncompromised request evaluations is
1/Ct

nv−nc
. Therefore, in the worst case, a validator has to

repeat all the Ct
nv−nc

combinations and outputs ‘NO’ if all
the combinations fail on the verification. That is, as long
as one set with t request evaluations passes the request
verification algorithm, it outputs ‘YES’.

Figure 5 shows the executing time of each algorithm on
each validator, where only the ACS.SigAgg is dependent on
the number of validators. Similarly, during the signature
aggregation, the Block-generator (and each Block-validator)
will able to compute the aggregated signature with a set of
t signatures from uncompromised validators. Based on the
result of individual signature validation, it is easy to select
such a set for signature aggregation.

8.3 Scalability Analysis
The pBCTV consensus mechanism is designed based on the
pBFT protocol, where the message exchange is the main
concern when scaling to a large network. The threshold
block validation scheme is integrated into the pre-prepare
and prepare phases of the pBFT protocol, so the pBCTV is
as efficient as the pBFT protocol. The scalability of PKChain
is further analyzed as follows:
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Number of Validators in PKChain: PKChain is a permis-
sioned blockchain. It is usually not required that everyone
participate in the consensus process. The number of valida-
tors nv depends on the number of compromised validators
nc that can be tolerant, i.e., nv ≥ 3nc + 1.

New Message Broadcasting Protocol: Instead of using P2P
communication between nodes, some data synchronization
methods may be used to improve the efficiency of mes-
sage broadcasting, e.g., the synchronization method [33]
designed based on Name Data Networking [34].

Dynamic Change of Validators: In PKChain, removal of
a malicious validator will not affect the threshold value.
When a new validator is added, secret shares can be re-
distributed among validators including the newly joined
validator using a key re-distribution mechanism (similar to
the ACS.KeyGen), which does not require to re-bootstrap the
system.

Message Complexity: There are some other approaches
that reduce the O(n2) message complexity in the BFT al-
gorithms. For instance, chain-based approach [35], [32] (to
use multiple instances run in parallel), tree-based approach
[36] (where leader becomes root of the tree and other nodes
services as child nodes), the collector-based approach [37]
where a set of nodes serves a collector to collect the vote
in prepare and commit phases of pBFT, or a set of root
committee [38] perform BFT operation and the rest of nodes
services passively in the network. We are planning to lever-
age one of these techniques in our future work to improve
the scalability of the PKChain while maintaining security.

PKChain Compatibility with CA-based PKI: To better scale,
reduce the complexity of the public key blockchain, and
makes PKChain compatible with CA-based PKI, we keep
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the hierarchical structure in PKChain similar to CA-based
PKI. In PKChain, the public keys of all the validators in
PKChainuniv are managed by the PKChainedu, and similar
for other domains allowing structure compatibility with CA-
based PKI. Therefore, PKChain can work with the existing
CA-based PKI by replacing an arbitrary number of CAs
with PKChains. If PKChain replaces all the CAs, it will be
a new public key management system that completely re-
places CA-based PKI. Moreover, to make existing CA-based
PKI applications compatible with PKChain. Each public-key
record in PKChain is publicly verifiable similar to the CA-
based PKI.

9 DISCUSSION ON PKCHAIN V.S. THRESHOLD
CO-SIGNING

PKChain solves the following two technical challenges that
we assume it is not possible to use threshold signature
directly.

Challenge 1. We assume there is no initial PKI setup
between users and validators. So, validators may not have
credentials like public keys to authenticate and validate
user certificate requests, To deal with this challenge, typi-
cally, there are two approaches to perform validations (1)
each CA may contact the principal (client) and do name-
principal validation through some out-of-band channels for
each request, as described in [27], which will incur a heavy
burden on the user; and (2) a user authentication method
may enable each CA to verify that public key request is from
a legitimate user holding valid credentials (e.g., a private
key or password).

However, in our paper, we claimed that signature-based
validation is not always applicable due to the lack of
private-public key pair (e.g., new public key registration
request) or compromised private key (e.g., public key up-
date/revocation requests. One approach to this problem is
that a user shares an initial public key (without a certificate)
to each validator through an authenticated and confidential
channel. This simple approach presumably works, but it
also requires the name-principal validation procedure. Since
the secure channel is a one-way authenticated channel,
enabling only the user to authenticate each validator. As a
result, an adversary may forge a pair of public and secret
keys. To further authenticate whether the request comes
from a valid user, the validator has to contact the user via a
different channel. Following this signature-based approach,
each validator is able to complete the validation of a request,
and a trusted coordinator has to collect a threshold num-
ber of partial signatures (votes). One can use a consensus
mechanism like a practical Byzantine Fault-Tolerant (pBFT)
to eliminate a trusted coordinator.

In this paper, we took an alternative approach to
signature-based authentication. We solved the above chal-
lenges by designing a Threshold Block Validation (TBV)
mechanism, which is a collaborative password-based au-
thentication approach. Password-based authentication is
considered convenient and user-friendly compared to pri-
vate key management in signature-based authentication,
signifying that no security devices are required to store
the signing key in signature-based authentication. How-
ever, unlike signature-based authentication, in password-

based authentication, each CA may host the completed user
credentials (e.g., security token), enabling a compromised
CA to easily impersonate a user with such completed user
credentials and produce a forged public key request (certifi-
cate).

To further compare the above two approaches, the
(signature-based authentication + pBFT) scheme needs
to receive a 2f + 1 (f is the maximum number of
fault/compromised validators) number of messages to
move to the commit phase. In our proposed (password-
based authentication + pBCTV) scheme, it only needs a set
of f +1 messages from honest validators, which means that
a validator can proceed to the commit phase if it receives
f + 1 (best case) to 2f + 1 (worst case) messages.

Challenge 2. As shown in the COMMIT phase of the
pBCTV, each validator locally aggregates all the received
signatures on the commit message. Suppose a malicious
block-generator generates a fake aggregate signature. In that
case, any honest validator can verify and compare the fake
aggregated signature with its own aggregated signature
and initiate a Type-2 View-change and reshare the aggre-
gate signature. This will not be directly possible without
a consensus mechanism and will require each validator to
reshare its signature with a newly selected aggregator (in the
presence of a malicious aggregator). However, in PKChain,
each validator already has all the signatures and does not
require to restart the partial signature-sharing process again.

10 CONCLUSION

In this paper, we proposed a novel compromise-tolerant and
verifiable public key management system, namely PKChain,
which can provide transparent, tamper-proof, and verifiable
public key services, including public key registration, up-
date, query, validation, and revocation. To validate public
key requests, we proposed a threshold block validation
scheme, where a majority of block validators can work to-
gether to validate if the request comes from a valid user. We
also proposed an aggregate commitment signature scheme
to enable the public verification of the public key. We fur-
ther design a new pBCTV consensus model by integrating
the threshold block validation scheme and the aggregate
commitment signature scheme with the pBFT protocol. The
security analysis and prototype implementation show that
PKChain is secure, efficient, robust, and provides proactive
security.
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