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Abstract. The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure
key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the
presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a
particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are
being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are rejected by
reporting decryption failure explicitly or implicitly (by returning pseudorandom values).
The proof in [HHM22] involves a new correctness notion for the encryption scheme that is used to encapsulate
the keys. This allows in principle for a smaller additive security related to decryption failures, but requires
to analyze this new notion for the encryption scheme on which a concrete KEM at hand is based.
This note offers a trade-off between [HHM22] and its predecessors: it offers a bound for both rejection
variants, being mostly based on [HHM22], but uses a more established correctness notion.
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1 Introduction

The Fujisaki-Okamoto (FO) transform [FO99, FO13, Den03] has become the de-facto standard to build secure
KEMs. In particular, it was used in most KEM submissions to the NIST PQC standardisation process [NIS17].
In the context of post-quantum security, however, two novel issues surfaced:

1. Many of the PKE schemes used to encapsulate keys occasionally fail to decrypt a ciphertext to its plaintext
(they do not have perfect correctness), and decryption failures have been shown [DGJ+19, BS20, DRV20,
FKK+22] to impact security.

2. To rule out quantum attacks, the security proofs have to be done in the quantum-accessible random oracle
model (QROM).

Both issues were tackled in [HHK17] and follow-up work (e.g., [SXY18, JZC+18, BHH+19, HKSU20, KSS+20,
HHM22]). The QROM proofs prior to [HHM22], however, had a particular quirk: To avoid extreme additional
reduction losses, they required the scheme to reject implicitly, that is, to return pseudorandom session keys instead
of simply reporting an error when presented with a malformed ciphertext.

The FO transformation. Before discussing the goal of this note, we briefly recall the FO KEM transformation
as introduced in [Den03] and revisited as FO⊥m by [HHK17]. FO⊥m constructs a KEM from a public-key encryption
scheme PKE by first modifying PKE to obtain a deterministic scheme PKEG, and then applying a PKE-to-KEM
transformation (U⊥m in [HHK17]) to PKEG:
Derandomised scheme PKEG. Starting from PKE and a hash function G, PKEG encrypts messages m according
to the encryption algorithm Enc of PKE, using the hash value G(m) as the random coins for Enc:

EncG(pk,m) := Enc(pk,m; G(m)) ,

DecG uses the decryption algorithm Dec of PKE to decrypt a ciphertext c to plaintext m′. DecG rejects by returning
failure symbol ⊥ if c fails to decrypt or m′ fails to encrypt back to c. (The formal definition is recalled on page 12).
PKE-to-KEM transformation U⊥m. Starting from a deterministic encryption scheme PKE’ and a hash function
H, key encapsulation algorithm KEM⊥m := U⊥m[PKE′,H] encapsulates a key K via a ciphertext c by letting

Encaps(pk) := (c := Enc′(pk,m),K := H(m)),
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where m is picked at random from the message space. Decapsulation returns K := H(Dec′(c)) unless c fails to
decrypt, in which case it returns failure symbol ⊥.

The role of correctness errors. The impact of correctness errors on security is reflected in hindrances when
trying to show that FO-transformed KEMs are IND-CCA secure: During the proofs, the decapsulation oracle
oDecaps is replaced with a simulation. This simulation, however, is “too good” – it accurately decrapsulates
ciphertexts for which the real oDecaps would fail. In other words, the change from the honest to a simulated
decapsulation oracle is noticeable to attackers if they manage to craft a ciphertext where the honest decapsulation
fails detectably. In [HHK17], the resulting advantage in distinguishing oDecaps from its simulation was dealt
with in two steps:

1. Bound it via a ’break-correctness’ game COR. COR asks the adversary, equipped with the complete key pair
including the secret key, to produce a plaintext m such that EncG(m) fails to decrypt.

2. Bound the maximal COR advantage in terms of a statistical ’worst-case’ quantity δwc of the underlying scheme
PKE. δwc is the maximal probability for plaintexts to cause decryption failure, averaged over the key pair.

This lead to a typical search bound, as the adversary can use the secret key to check if ciphertexts fail.

Correctness treatment in [HHM22] and open question. A central motivation of [HHM22] was that it is
hard to estimate concrete δwc-bounds for particular schemes without relying on heuristics, and that it might be
easier to estimate bounds for notions in which the attacker does not obtain the secret key.

[HHM22] therefore introduced a new family of correctness games that represent the search for failing plaintexts
without the secret key, called Find Failing Plaintext (FFP) games, and then related the respective advantages to
properties of the underlying encryption scheme PKE (see Fig. 1):
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Fig. 1. Simplification of Figure 1 in [HHM22].The red-dotted part introduces new analysis tasks for KEM designers.

The resulting correctness requirements on PKE (δik, σδik and FFP-NG) are defined in a way such reasoning
about their concrete estimates can safely involve computational assumptions, as they represent settings in which
the attacker does not possess the secret key. On the other hand, [MX23] stressed that these notions nonetheless
introduce new analysis tasks for designers who want to argue security of their concrete scheme. We therefore
addresses the following open question:

Can we reconcile the proof for explicitly rejecting KEMs in [HHM22] with the more estab-
lished correctness notion (worst-case correctness)?

Result of this note. We will show that the red-dotted part of Fig. 1 can be replaced with a picture only involving
the worst-case correctness parameter δwc, see Fig. 2.

To achieve this, the only part requiring a change will be how we reason that attackers cannot distinguish
oDecaps from its simulation, to which end we would like to simply resort to the original COR notion.

The only hurdle is that COR, as analysed so far, isn’t a seamless fit: the simulation of oDecaps in [HHM22]
involves a slightly more complicated variant of the QROM, called eQROM. In the eQROM, the attacker gets an
additional interface that essentially inverts certain encryptions, Since the search bound for COR was only known
in the plain QROM that does not provide this additional interface, we need to reprove the bound in the eQROM.
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Fig. 2. Analogue of Fig. 1 with the alternative decryption failure analysis developed in this note.

TL;DR for scheme designers. Theorem 1 (on page 4) provides concrete bounds for the IND-CCA security of
FO⊥m[PKE,G,H]. Ignoring constant factors up to 10 and an additive term related to the size of the message space
(denoted “.”), our bound is roughly of the following form:

εIND-CCA-KEM .
√

(d+ qD) · εIND-CPA + (q + qD + 1)2 · δwc + qD(q + qD) · 2−γ/2 .

The bound requires to upper bound the following values:

εIND-CPA IND-CPA advantage against PKE

q number of issued random oracles queries

qD number of decryption queries

d random oracle query depth (can be bounded trivially by q)

2−γ/2 maximal probability that encryption hits a specific ciphertext (see Def. 5 on page 11)

δwc worst-case correctness of PKE as defined in [HHK17] (see Def. 2 on page 4):

probability that decrypting Enc(m) doesn’t yield m for the worst message m,

averaged over KG

Assuming an attacker makes far less online queries than hash queries (so qD � q), trivially bounding d < q, and
dropping constant factors up to 4, we can further simplify the bound to

εIND-CCA-KEM .
√
q · εIND-CPA + q2 · δwc + qD · q · 2−γ/2 .

2 Preliminaries.

After establishing basic notation, we recall several correctness-related notions for public-key encryption schemes
that were introduced in [HHK17] and [HHM22]. (For convenience, we also recall more standard definitions for
public-key encryption and key encapsulation algorithms in Appendix A.)

For a finite set S, we denote the sampling of a uniform random element x by x ←$ S, and we denote
deterministic computation of an algorithm A on input x by y := A(x). By JBK we denote the bit that is 1 if the
Boolean statement B is true, and otherwise 0.
Finding Failing Plaintexts (FFP). Following [HHM22], we formalise the finding of failing plaintexts as the
winning condition of the FFP game below. In the FFP-CCA game, the adversary is given the public key and access
to a decryption oracle, outputs a message m and wins if Dec(sk,Enc(pk,m)) 6= m. We are only concerned with
the game run against PKEG, i.e., a public-key encryption scheme that stems from derandomising some public-key
encryption scheme PKE as sketched in the introduction and formalised in Fig. 9 on page 12).

Definition 1 (FFP-CCA of PKEG). Let PKEG = (KG,EncG,DecG) be the modified public-key encryption scheme
stemming from derandomising some public-key encryption scheme PKE = (KG,Enc,Dec). We define the FFP-CCA
game for PKEG as in Fig. 3, and the FFP-CCA advantage function of an adversary A against PKEG as

AdvFFP-CCA
PKEG (A) := Pr[FFP-CCAAPKEG ⇒ 1] .



4 K. Hövelmanns, C. Majenz

Game FFP-CCAPKEG

01 (pk, sk)← KG
02 m← AoDecrypt,eCO.RO,eCO.Ext(pk)
03 c := Enc(pk, m; G(m))
04 m′ := Dec(sk, c)
05 if c 6= Enc(pk, m′; G(m′))
06 m′ := ⊥
07 return Jm′ 6= mK

Oracle oDecrypt(c 6= c∗)
08 m′ := Dec(sk, c)
09 if c 6= Enc(pk, m′; G(m′))
10 return ⊥
11 else
12 return m′

Fig. 3. Game FFP-CCA for derandomised scheme PKEG with G modelled as an extractable compressed oracle eCO
with oracle interface eCO.RO and extractor interface eCO.Ext. We note that the difference between game FFP-CCA
and COR-eQROM is that in FFP-CCA, A has the decryption oracle oDecrypt, while possessing the full secret key in
COR-eQROM.

We now recall the definition of worst-case-correctness introduced in [HHK17], there called δ-correctness.

Definition 2 (δwc-worst-case-correctness). We say that a public-key encryption scheme PKE is δwc-worst-
case-correct if

E[ max
m∈M

Pr [Dec(sk, c) 6= m | c← Enc(pk,m)]] ≤ δwc ,

where the expectation is taken over (pk, sk)← KG and the probability is over the randomness of Enc.

In particular, δwc-worst-case correctness means that even (possibly unbounded) adversaries with access to the
secret key will succeed in triggering decryption failure with probability at most δwc. This property was formalised
in [HHK17] as the winning condition of a correctness game COR, in which the adversary gets the full key pair,
outputs a message, and wins if the message exhibits decryption failure. The difference between FFP-CCA and
COR is having the full key pair (COR) vs. having access to a decryption oracle (FFP-CCA).

Like [HHK17], we need to analyse the respective term for PKEG, i.e., a public-key encryption scheme resulting
from derandomising some public-key encryption scheme PKE. Since derandomisation happens via a random oracle
G, [HHK17] introduced a QROM analogue of game COR, called COR-QRO, in which the attacker has quantum
access to G.

Unlike in [HHK17], however, the proof structure imposed by [HHM22] makes it necessary to analyse the
correctness game in an extension of the QROM, called eQROM. (For convenience, we briefly recapture the
eQROM in Appendix D.) With Definition 3 below, we hence extend the COR-QRO definition from [HHK17]
to the extended QROM. In the extended QROM, G is modelled as an extractable compressed oracle eCO that
provides the oracle’s interface (called eCO.RO) and, additionally, an extractor interface eCO.Ext that is defined
relative to some function f . We will need to refer to the unitary operator facilitating queries to eCO.RO, which
we denote by O. Intuitively, the extractor interface eCO.Ext, when queried on some target value t, produces
preimages x such that f(x,G(x)) = t, assuming that such an x was already noticeable in previous oracle queries.
Like [HHM22], we will work with f := Enc. This means that eCO.Ext, when queried on a ciphertext c, will produce
a plaintext m for c such that m and its random oracle value r have the property that Enc(m; r) = c.

Definition 3. We define the extended QROM correctness game COR-eQROMPKEG for PKEG in Fig. 4, and the
advantage of an adversary A against PKEG as

AdvCOR-eQROMEnc
PKEG (A) := Pr[COR-eQROMAPKEG ⇒ 1] .

3 Our main result

We start by stating our main result that relates IND-CCA security of FO⊥m[PKE,G,H] to IND-CPA security, δwc-
worst-case correctness and γ-spreadness of PKE.

Theorem 1 (PKE IND-CPA secure and δwc-worst-case correct ⇒ FO⊥m[PKE] IND-CCA). Let PKE be a
(randomized) PKE scheme that is γ-spread and δwc-worst-case-correct, with message space of size |M|. Let A
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GAME COR-eQROMPKEG

13 (pk, sk)← KG
14 m← AeCO.RO,eCO.Ext(sk, pk)
15 c := Enc(pk, m; G(m))
16 m′ := DecG(sk, c)
17 if c 6= Enc(pk, m′; G(m′))
18 m′ := ⊥
19 return Jm′ 6= mK

Fig. 4. Correctness game COR-eQROMEnc for PKEG with G modelled as an extractable compressed oracle eCO with oracle
interface eCO.RO and additional extractor interface eCO.Ext that, intuitively, produces plaintexts for queried ciphertexts.
Lines 03-05 are defined relative to the random oracle G that is modelled as an extractable QRO eCO, we stuck with writing
G for the sake of simplicity. (Formally, G represents oracle interface eCO.RO.)

be an IND-CCA-KEM adversary (in the QROM) against FO⊥m[PKE,G,H], issuing at most qG many queries to its
oracle G, qH many queries to its oracle H, and at most qD many queries to its decapsulation oracle oDecaps.
Let q = qG + qH, and let d be the query depth of the combined queries to G and H. Then there exists an IND-CPA
adversary B against PKE such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + 10(q + 1)2δwc + εγ ,

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 24qD(qG + 4qD) · 2−γ/2 .

The running time of B is bounded by Time(B) ≤ Time(A) + Time(eCO, q + qD, qD) + O(qD) and B requires
quantum memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where Time(eCO, q, qE), and
QMem(eCO, q, qE), denote the time, and quantum memory, necessary to simulate the extractable QROM for q
many queries to eCO.RO and qE many queries to eCO.Ext.

Proof. We begin by stating an implicit result of [HHM22] as Theorem 2 (below) that relates IND-CCA security
of FO⊥m[PKE,G,H] to IND-CPA security of PKE and FFP-CCA security of PKEG in the eQROMEnc.

Theorem 1 is obtained by bounding the FFP-CCA term in Eq. (1) of Theorem 2 in terms of δwc, which we will
do in Section 4: Theorem 3 states that the FFP-CCA term can be bounded by 10(qG + qH + qD + 1)2δwc. Here, we
identified C’s number of eCO.RO queries in Theorem 3 with qG + qH + qD as indicated by Theorem 2.

For completeness, we show that Theorem 2 indeed follows straightforwardly from the results in [HHM22] in
Appendix C. ut

Theorem 2. [PKEG FFP-CCA and PKE IND-CPA secure ⇒ FO⊥m[PKE] IND-CCA] Let PKE be a (randomized)
PKE scheme that is γ-spread, and let A be an IND-CCA-KEM adversary (in the QROM) against FO⊥m[PKE,G,H],
issuing at most qG many queries to its oracle G, qH many queries to its oracle H, and at most qD many queries
to its decapsulation oracle oDecaps. Let q = qG + qH, and let d be the query depth of the combined queries to G
and H. Then there exist an IND-CPA adversary B against PKE and an eQROMEnc FFP-CPA adversary C against
PKEG such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + AdvFFP-CCA
PKEG (C) + εγ , (1)

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 12qD(qG + 4qD)2−γ/2 .



6 K. Hövelmanns, C. Majenz

The running time of B is bounded by Time(B) ≤ Time(A)+Time(eCO, q+qD, qD)+O(qD) and B requires quantum
memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where Time/QMem(eCO, q, qE) denotes
the time/quantum memory necessary to simulate the extractable QROM for q many queries to eCO.RO and qE

many queries to eCO.Ext. C makes qG + qH + qD queries to eCO.RO.

4 Bounding FFP-CCA in the eQROM via worst-case correctness

We now give the alternative analysis of FFP-CCA in the eQROMEnc that allows us to replace the FFP-CCA term
in Theorem 2 by 10(q + 1)2δwc.

Theorem 3 (PKE δwc-worst-case-correct ⇒ PKEG FFP-CCA). Let PKE be a (randomized) PKE scheme that
is δwc-worst-case-correct, and let C be an FFP-CCA adversary C against PKEG in the eQROMEnc, issuing at most
qD decryption queries and q many queries to its extQROM oracle interface eCO.RO. Then

AdvFFP-CCA
PKEG (C) ≤ 10(q + qD + 1)2δwc . (2)

Proof. The proof proceeds in two steps.

1. Use FFP-CCA adversary C to construct a COR-eQROM adversary Ĉ against PKEG in the eQROMEnc that has
the same advantage as C and makes q̂ := q + qD many queries to eCO.RO.

2. Prove that any such COR-eQROMPKEG,Enc adversary D, making q̂ many queries to the oracle interface eCO.RO
that models G, has advantage at most 10(q̂ + 1)2δwc.

δwc
small for PKE

PKEG

COR-eQROM
in the

eQROM

PKEG

FFP-CCA in
the eQROM

Step 2 Step 1

For step 1, we note that COR-eQROM adversaries get the full key pair (sk, pk) (as specified by game
COR-eQROM, see Fig. 4) and can hence simulate the decryption oracle on their own. In more detail, we construct
COR-eQROM adversary Ĉ against PKEG as follows: Ĉ runs C, forwards all eCO.RO/eCO.Ext queries to its own
extractable oracle interfaces, and simulates C’s Dec oracle using the secret key. To perform the re-encryption check
during the simulation of Dec, Ĉ has to make one additional query to eCO.RO per Dec call. Once C finishes, Ĉ
simply forwards C’s output m. Ĉ perfectly simulates the FFP-CCA game for C and wins iff C wins, hence

AdvFFP-CCA
PKEG (C) ≤ AdvCOR-eQROMEnc

PKEG (Ĉ) .

To begin with step 2 (analysing the COR-eQROMEnc advantage), we first slightly simplify the winning con-
dition of the COR-eQROMEnc game for PKEG: We introduce game 1 that only differs from game 0, the original
COR-eQROMEnc game for PKEG, by dropping the re-encryption check from the winning condition. It is easy to
verify that the COR-eQROMEnc advantage is exactly the advantage against game 1:

– The winning condition in game 1 implies the winning condition in game 0.
– To show the other direction, we notice that A wins game 0 by producing a message m such that either its

encryption fails to decrypt (which is the winning condition in game 1) or such that the re-encryption check
fails. But if the the re-encryption check fails, then Dec(sk, c) cannot yield m (and A again wins in game 1).

AdvCOR-eQROMEnc
PKEG (Ĉ) = Pr[Ĉ wins in G1] .

We proceed by analysing the COR-eQROMEnc advantage with this simplified winning condition. More con-
cretely, we would like to bound the maximal advantage in game 1 of any adversary that makes at most q̂ many
queries. To that end, we fix the key pair and define a predicate Pfail,PKEG by

Pfail,PKEG(m)⇔ Decsk(EncG
pk(m)) 6= m.
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GAMES 0 - 1
20 (pk, sk)← KG
21 m← AeCO.RO,eCO.Ext(sk, pk)
22 c := Enc(pk, m; G(m))
23 m′ := DecG(sk, c)
24 if c 6= Enc(pk, m′; G(m′)) �Game G0
25 m′ := ⊥ �Game G0
26 return Jm′ 6= mK

Fig. 5. Game G0, the correctness game COR-eQROMEnc for PKEG, and Game G1 with slightly simplified winning condition.

We use the predicate to rewrite the winning condition in game 1:

Pr[Ĉ wins in G1] = EKG Pr
m←ĈeCO.RO,eCO.Ext(sk,pk)

[Pfail,PKEG(m)] .

We will now bound the right-hand side, i.e., the probability that Ĉ returns a message satisfying the predicate,
for any fixed key pair. To that end, we give a helper Lemma 1 below which relates Ĉ’s success probability to a
sum of square roots of probabilities (“amplitudes”). The sum is taken over all random oracle queries (including an
implicit one to check the predicate). In the sum, the k–th summand intuitively represents the following: Consider
the oracle query database D for eCO to contain up to k many entries, meaning up to k many queries to eCO.RO
were made so far, without satisfying the predicate. We consider the maximal probability that picking a random
output value u for some oracle input value m leads to (m,u) satisfying the predicate. (In the lemma’s notation,
Found(D[m 7→ u]), where we define Found like in Lemma 1, using our predicate Pfail,PKEG on the message space.)
The maximum is taken over all possible oracle input values m and all query databases D such that the predicate
was not yet satisfied (¬Found(D)).

We continue by giving a formal argument. Note that the predicate Pfail,PKEG can be computed using a single
query to G, we can therefore identify variable qP in Lemma 1 with 1. Applying Lemma 1, we thus obtain

√
Pr

m←ĈeCO.RO,eCO.Ext(sk,pk)
[Pfail,PKEG(m)] ≤

q̂+1∑
k=1

max
m,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[Found(D[m 7→ u])]

≤ (q̂ + 1) max
m,D:
|D|≤q+1
¬Found(D)

√
10 Pr

u←Y
[Found(D[m 7→ u])]

where the second inequality holds because any database with ` < q + 1 entries fulfilling the predicate can be
completed to a database with q + 1 entries still fulfilling the predicate.

To translate the summands back into terms concerning decryption failure, we note the following: If ¬Found(D),
but Found(D[x 7→ u]), then it must be specifically the entry (x, u) that satisfies the predicate. Thus, assuming
the database D before was in a state such that ¬Found(D), we find

Found(D[x 7→ u])⇔ Decsk(Encpk(x;u)) 6= x .

Using this fact and squaring both sides of the above inequality yields

Pr
m←ĈeCO.RO,eCO.Ext(sk,pk)

[Pfail,PKEG(m)] ≤ 10(q̂ + 1)2 max
m

Pr
u←Y

[Decsk(Encpk(m;u)) 6= x]

for any fixed key pair (sk, pk). Taking the expectation over KG hence yields

Pr[Ĉ wins in G1] ≤ EKG10(q̂ + 1)2 max
m

Pr
u←Y

[Decsk(Encpk(m;u)) 6= x]

= 10(q̂ + 1)2δwc.

ut
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In the above proof, we used the following
Lemma 1 (Variant of Lemma 1 in [AMHJ+23]). Let G : X → Y be a random oracle and let PG be a
predicate on some set Z that can be computed using at most qP classical queries to G. Let further AG be an
algorithm in the eQROf (for an arbitrary f), making at most q quantum queries to eCO.RO and outputing z ∈ Z.
Then √

Pr
z←AG

[P (z)] ≤
q+qP∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[FoundP(D[x 7→ u])] (3)

where FoundP is the database property

FoundP = (∃z ∈ Z : PD(z)) (4)

and PD is the algorithm that computes P but makes queries to D instead of G, and if any query returns ⊥, PD

ouptuts ‘false’.
Before we give a proof of Lemma 1, we need to prepare some ingredients. In particular, the proof uses the

concept of transition capacities from [CFHL21], we now recall the required notation from that paper.
A database property P is a predicate on the set of partial functions with the same input and output space

as G. Overloading notation, we also denote by P the projector acting on a compressed oracle database register
with support spanned by the computational basis states corresponding to partial functions fulfilling P . For any
database property P we define the database property Pi such that f fulfils Pi iff it fulfils P and is defined on at
most i inputs.

We now define the quantum transition capacity, following [CFHL21]. The quantum transition capacity
q
P →

P ′
y

is the quantum analogue of the maximum probability that a query transcript has a property P ′ after an
input together with a freshly lazy-sampled output has been added to the transcript, given that the transcript has
property P before. In addition, we define a q-query variant that considers q adaptively chosen inputs.
Definition 4 (Quantum transition capacity). Let P, P ′ be two database properties. Then, the quantum
transition capacity is defined as

q
P

q→ P ′
y

:= sup
U1,...,Uq−1

‖P ′OUq−1 O · · ·OU1 OP‖ .

where the supremum is over all adversary register sizes and all unitaries U1, . . . , Uq−1 acting on the adversary’s
registers. We write q

P → P ′
y

:=
q
P

1→ P ′
y

= ‖P ′OP‖
To bound the power of the eQROMf for search tasks, we strengthen the model slightly by having the interface

eCO.Ext apply the purified version (the Stinespring dilation) ofMt on input t, and return the (quantum) output
register. This generalization is not strictly necessary for our proof, but is convenient as it allows us to model an
algorithm with query access to eQROMf as unitary. Concretely, the purified measurement is the isometry

VT D→T DO =
∑

t

|t〉〈t|T ⊗ V
(t)

D→DO, with

V
(t)

D→DO =
∑

x∈{0,1}m

Σt,x
D ⊗ |x〉O .

Let us call this model the eQROM∗f and the strengthened extraction interfacte eCO.Ext∗. Any algorithm in the
eQROMf can be simulated in the eQROM∗f by submitting any eCO.Ext queries to eCO.Ext∗, measuring the output
and returning the result.

In the following we prove that for query bounds for oracle search problems (like, e.g., preimage search, collision
search) proven using the compressed oracle framework, the same bound holds for algorithms with eQROM∗f -access,
irrespective of the number of queries made to the interface eCO.Ext∗. On a high level, this is due to the fact that
the operator that facilitates a query to eCO.Ext∗ and the projector checking the database property commute. The
argument is similar to the one made in Appendix B of [AMHJ+23]. We define the decorated transition capacity
as q

P → P ′
y

V
= ‖P ′V OP‖.

We have the following
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Lemma 2. Let VDE be a controlled unitary with control register the database register D, and acting on an
arbitrary additional register E. Then q

P → P ′
y

V
=

q
P → P ′

y
.

Proof. As V is a controlled unitary with control register D, and P ′ is an operator that is diagonal in the compu-
tational basis, we have VDEP

′
D = P ′DVDE . We thus get

q
P → P ′

y
V

= ‖P ′V OP‖ = ‖V P ′OP‖ = ‖P ′OP‖ =
q
P → P ′

y
.

Here, the second equality follows because V and P ′ commute, and the third equality is due to the unitary
invariance of the operator norm. ut

This lemma can be used to show that the framework for query bounds developed in [CFHL21] works essentially
unchanged for the decorated transition capacity

q
P → P ′

y
V

with a controlled unitary V as in Lemma 2 as well.3
Now, any algorithm A in the eQROM∗f proceeds without loss of generality by applying the unitary

UA = UqOUq−1O . . . OU0

to a quantum register initialized in the all-0 state, where the Ui have the form

Ui = Ui,`V Ui,`−1V . . . V Ui,0,

where the unitaries Ui,j do not act on the compressed oracle database.
Using the prepared ingredients, we can conclude that Lemma 1 from [AMHJ+23] holds in the eQROM∗f , with

a bound depending on the number of eCO.RO queries only:

Proof (of Lemma 1). The proof is identical to the proof of Lemma 1 in [AMHJ+23], with one difference: If we
denote the adversary’s unitary (we can purify/Stinespring-dilate any adversary for this mathematical argument)
between the ith and the (i+ 1)st query to eCO.RO by Ui, we obtain the decorated transition capacity

q
¬Found∧

(|D| ≤ k−1)→ Found
y

Ui
instead of the ’non-decorated’ capacity

q
¬Found∧ (|D| ≤ k−1)→ Found

y
. (Note that

Ui includes any eCO.Ext queries made by the adversary between the ith and the (i+1)st query to eCO.RO, which
are controlled unitaries with control register D.) Due to Lemma 2, however, this does not make any difference
and the proof proceeds as in [AMHJ+23]. ut
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A Definitions for Public-Key Encryption (PKE) and Key Encapsulation
Mechanisms (KEMs)

We also consider all security games in the (quantum) random oracle model, where PKE and adversary A are given
access to (quantum) random oracles. (How we model quantum access is made explicit in Appendix D.)

A.1 Definitions for PKE

For convenience, we start by recalling the formal definition of γ-spreadness.

Definition 5 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈ supp(KG) and all
messages m ∈M it holds that

max
c∈C

Pr[Enc(pk,m) = c] ≤ 2−γ ,

where the probability is taken over the internal randomness Enc.

We also recall two standard security notions for public-key encryption: One-Wayness under Chosen Plaintext
Attacks (OW-CPA) and Indistinguishability under Chosen-Plaintext Attacks (IND-CPA).

Definition 6 (OW-CPA, IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme with message
space M. We define the OW-CPA game as in Fig. 6 and the OW-CPA advantage function of an adversary A
against PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAAPKE ⇒ 1] .

Furthermore, we define the ’left-or-right’ version of IND-CPA by defining games IND-CPAb, where b ∈ {0, 1}
(also in Fig. 6), and the IND-CPA advantage function of an adversary A = (A1,A2) against PKE (where A2 has
binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA0 ⇒ 1]− Pr[IND-CPAA1 ⇒ 1]| .

Game OW-CPA
01 (pk, sk)← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk, m∗)
04 m′ ← A(pk, c∗)
05 return Jm′ = m∗K

Game IND-CPAb

06 (pk, sk)← KG
07 (m∗

0, m∗
1, st)← A1(pk)

08 c∗ ← Enc(pk, m∗
b)

09 b′ ← A2(pk, c∗, st)
10 return b′

Fig. 6. Games OW-CPA and IND-CPAb for PKE.

A.2 Standard notions for KEM

We now recall Indistinguishability under Chosen-Plaintext Attacks (IND-CPA) and under Chosen-Ciphertext
Attacks (IND-CCA).

Definition 7 (IND-CPA, IND-CCA). Let KEM = (KG,Encaps,Decaps) be a key encapsulation mechanism with
key space K. For ATK ∈ {CPA,CCA}, we define IND-ATK-KEM games as in Fig. 7, where

OATK :=
{
− ATK = CPA
oDecaps ATK = CCA .

We define the IND-ATK-KEM advantage function of an adversary A against KEM as

AdvIND-ATK-KEM
KEM (A) := |Pr[IND-ATK-KEMA ⇒ 1]− 1/2| .



12 K. Hövelmanns, C. Majenz

Game IND-ATK-KEM
01 (pk, sk)← KG
02 b←$ {0, 1}
03 (K∗

0 , c∗)← Encaps(pk)
04 K∗

1 ←$ K
05 b′ ← AOATK (pk, c∗, K∗

b )
06 return Jb′ = bK

oDecaps(c 6= c∗)
07 K := Decaps(sk, c)
08 return K

Fig. 7. Game IND-ATK-KEM for KEM, where ATK ∈ {CPA, CCA} and OATK is defined in Definition 7.

B The Fujisaki-Okamoto transformation with explicit rejection

This section recalls the definition of FO⊥m. To a public-key encryption scheme PKE = (KG,Enc,Dec) with message
space M, randomness space R, and hash functions G :M→R and H : {0, 1}∗ → {0, 1}n, we associate

KEM⊥m := FO⊥m[PKE,G,H] := (KG,Encaps,Decaps) .

Its constituting algorithms are given in Fig. 8. FO⊥m uses the underlying scheme PKE in a derandomized way by
using G(m) as the encryption coins (see line 02) and checks during decapsulation whether the decrypted plaintext
does re-encrypt to the ciphertext (see line 06). This building block of FO⊥m, i.e., the derandomisation of PKE and
performing a reencryption check, is incorporated in the following transformation T:

PKEG := T[PKE,G] := (KG,EncG,DecG) ,

with its constituting algorithm given in Fig. 9.

Encaps(pk)
01 m←$ M
02 c := Enc(pk, m; G(m))
03 K := H(m)
04 return (K, c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or c 6= Enc(pk, m′; G(m′))
07 return ⊥
08 else
09 return K := H(m′)

Fig. 8. Key encapsulation mechanism KEM⊥
m = (KG, Encaps, Decaps), obtained from PKE = (KG, Enc, Dec) by setting

KEM⊥
m := FO⊥

m [PKE, G, H].

EncG(pk)
01 m←$ M
02 c := Enc(pk, m; G(m))
03 return c

DecG(sk, c)
04 m′ := Dec(sk, c)
05 if m′ = ⊥ or c 6= Enc(pk, m′; G(m′))
06 return ⊥
07 else
08 return m′

Fig. 9. Derandomized PKE scheme PKEG = (KG, EncG, DecG), obtained from PKE = (KG, Enc, Dec) by encrypting a message
m with randomness G(m) for a random oracle G, and incorporating a re-encryption check during DecG.

C Obtaining Theorem 2 from [HHM22]

For the reader’s convenience, we begin by restating Theorem 2.
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Theorem 2. [PKEG FFP-CCA and PKE IND-CPA secure ⇒ FO⊥m[PKE] IND-CCA] Let PKE be a (randomized)
PKE scheme that is γ-spread, and let A be an IND-CCA-KEM adversary (in the QROM) against FO⊥m[PKE,G,H],
issuing at most qG many queries to its oracle G, qH many queries to its oracle H, and at most qD many queries
to its decapsulation oracle oDecaps. Let q = qG + qH, and let d be the query depth of the combined queries to G
and H. Then there exist an IND-CPA adversary B against PKE and an eQROMEnc FFP-CPA adversary C against
PKEG such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + AdvFFP-CCA
PKEG (C) + εγ , (1)

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 12qD(qG + 4qD)2−γ/2 .

The running time of B is bounded by Time(B) ≤ Time(A)+Time(eCO, q+qD, qD)+O(qD) and B requires quantum
memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where Time/QMem(eCO, q, qE) denotes
the time/quantum memory necessary to simulate the extractable QROM for q many queries to eCO.RO and qE

many queries to eCO.Ext. C makes qG + qH + qD queries to eCO.RO.

The corollary is obtained in a straightforward manner by combining Theorems 4 and 7 from [HHM22] as
indicated in the figure below.

PKEG

FFP-CCA

PKE
IND-CPA

KEM⊥
m

IND-CPA

KEM⊥
m

IND-CCAFO⊥
m , [HHM22, Theorem 7]

[HHM22, Theorem 4]

We begin by repeating [HHM22, Theorem 3].

Theorem 4 (FO⊥
m [PKE] IND-CPA and PKEG FFP-CCA eQROMEnc⇒ FO⊥

m [PKE] IND-CCA). Let PKE be a (randomized)
PKE that is γ-spread, and KEM⊥m := FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM-adversary (in the QROM)
against KEM⊥m, making at most qD many queries to its decapsulation oracle oDecaps, and making qG, qH queries
to its respective random oracles. Let furthermore d and w be the combined query depth and query width of A’s
random oracle queries. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CCA adversary B against
PKEG, both in the eQROMEnc, such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ AdvFFP-CCA

PKEG (C) + 12qD(qG + 4qD) · 2−γ/2 .

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth of d + qD, and qD queries to
eCO.Ext. Here, eCO.RO simulates G × H. Adversary C makes qD many queries to oDecrypt and eCO.Ext and
qG queries to eCO.RO. Neither Ã nor C query eCO.Ext on the challenge ciphertext. The running times of the
adversaries Ã and C are bounded by Time(Ã),Time(C) ≤ Time(A) +O(qD).

We proceed by repeating [HHM22, Theorem 7]. The bound in Theorem 2 is obtained by plugging [HHM22,
Theorem 7] into [HHM22, Theorem 3] and identifying q̃ with qG + qH + qD, d̃ with d+ qD, and q̃E with qD.
Theorem 5. Let Ã be an IND-CPA-KEM adversary against KEM⊥m := FO⊥m[PKE,G,H] in the eQROMEnc, issuing
q̃ many queries to eCO.RO in total, with a query depth of d̃, and q̃E many queries to eCO.Ext, where none of them
is with its challenge ciphertext. Then there exists an IND-CPA adversary B against PKE such that

AdvIND-CPA-KEM
KEM⊥

m
(Ã) ≤ 4 ·

√
d̃ ·AdvIND-CPA

PKE (B) + 8q̃√
|M|

.

The running time and quantum memory footprint of B satisfy Time(B) = Time(Ã) + Time(eCO, q̃, q̃E) and
QMem(B) = QMem(Ã) + QMem(eCO, q̃, q̃E).
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D Compressed oracles and extraction

It was shown in [Zha19] how a quantum-accessible random oracle O : X → Y can be simulated by preparing a
database D with an entry Dx for each input value x, with each Dx being initialized as a uniform superposition of
all elements of Y , and omitting the “oracle-generating” measurements until after the algorithm accessing O has
finished. In [DFMS21], this oracle simulation was generalized to obtain an extractable oracle simulator eCO (for
extractable Compressed Oracle) that has two interfaces, the random oracle interface eCO.RO and an extraction
interface eCO.Extf , defined relative to a function f : X × Y → T . Informally, eCO.Extf takes as input a classical
value t. Consider the classical procedure of going through a lexicographically ordered list of lazy-sampled input
output pairs (x, y) and outputting the first one such that f(x, y) = t. eCO.Extf performs the quantum analogue
of that: a measurement that partially collapses the oracle database, just enough so that the classical procedure
would yield one particular outcome x for all parts of the superposition. After the measurement, D is thus in
a state such that the superposition held in database entry Dx only contains possibilities y for eCO.RO(x) such
that f(x, y) = t, and no entry Dx′ for any x′ < x will have any possibilities y′ left such that also f(x′, y′) = t.
Whenever it is clear from context which function f is used, we simply write eCO.Ext instead of eCO.Extf .

In general, eCO.Extf can extract preimage entries from the “database” D during the runtime of an adversary
instead of only after the adversary terminated. This allows for adaptive behaviour of a reduction, based on an
adversary’s queries. In [DFMS21], it was already used for the same purpose we need it for – the simulation
of a decapsulation oracle, by having eCO.Ext extract a preimage plaintext from the ciphertext on which the
decapsulation oracle was queried. We will denote oracles modelled as extractable quantum-accessible ROs by
eQROf , and a proof that uses an eQROf will be called a proof in the eQROMf .

We will now make this description more formal, closely following notation and conventions from [DFMS21].
Like in [DFMS21], we keep the formalism as simple as possible by describing an inefficient variant of the oracle
that is not (yet) “compressed”. Efficient simulation is possible via a standard sparse encoding, see [DFMS21,
Appendix A]. The simulator eCO for a random function O : {0, 1}m → {0, 1}n is a stateful oracle with a state
stored in a quantum register D = D0m . . . D1m , where for each input value x ∈ {0, 1}m, register Dx has n + 1
qubits used to store superpositions of n-bit output strings y, encoded as 0y, and an additional symbol ⊥, encoded
as 10n. We adopt the convention that an operator expecting n input qubits acts on the last n qubits when applied
to one of the registers Dx. The compressed oracle has the following three components.

– The initial state of the oracle, |φ〉 = |⊥〉2
m

– A quantum query with query input register X and output register Y is answered using the oracle unitary O
defined by

O |x〉X = |x〉X ⊗
(
FDxCNOT⊗n

Dx:Y FDx

)
, (5)

where F |⊥〉 = |φ0〉, F |φ0〉 = |⊥〉 and F |ψ〉 = |ψ〉 for all |ψ〉 such that 〈ψ|⊥〉 = 〈ψ|φ0〉 = 0, with |φ0〉 = |+〉⊗n

being the uniform superposition. The CNOT operator here is responsible for XORing the function value
(stored in Dx, now in superposition) into the query algorithm’s output register.

– A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D and measure it to obtain the function
table of O.

We now make our description of the extraction interface eCO.Ext formal: Given a random oracle O : {0, 1}m →
{0, 1}n, let f : {0, 1}m × {0, 1}n → {0, 1}` be a function. We define a family of measurements (Mt)t∈{0,1}` . The
measurementMt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined as follows. For x ∈ {0, 1}m, the projector
selects the case where Dx is the first (in lexicographical order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′
x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y〉〈y| (6)

and Π̄ = 1−Π. The remaining projector corresponds to the case where no register contains such a y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′

D′
x
. (7)

As an example, say we model a random oracle H as such an eQROf . Using f(x, y) := JH(x) = yK, M1 allows us
to extract a preimage of y.
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eCO is initialized with the inital state of the compressed oracle. eCO.RO is quantum-accessible and applies the
compressed oracle query unitary O. eCO.Ext is a classical oracle interface that, on input t, applies Mt to eCO’s
internal state (i.e. the state of the compressed oracle) and returns the result. The simulator eCO has several useful
properties that were characterized in [DFMS21, Theorem 3.4], given below.These characterisations are in terms
of the quantity

Γ (f) = max
t
ΓRf,t

, with

Rf,t(x, y) :⇔ f(x, y) = t and
ΓR := max

x
|{y | R(x, y)}|. (8)

For f = Enc(·; ·), the encryption function of a PKE that takes as first input a message m and as second
input an encryption randomness r, we have Γ (f) = 2−γ |R| if PKE is γ-spread. In this case, eCO.Ext(c) outputs
a plaintext m such that Enc(m, eCO.RO(m)) = c, or ⊥ if the ciphertext c has not been computed using eCO.RO
before.
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