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Abstract. Fully homomorphic encryption (FHE) is an advanced cryptography tech-
nique to allow computations (i.e., addition and multiplication) over encrypted data.
After years of effort, the performance of FHE has been significantly improved and
it has moved from theory to practice. The transciphering framework is another
important technique in FHE to address the issue of ciphertext expansion and reduce
the client-side computational overhead. To apply the transciphering framework to the
CKKS FHE scheme, a new transciphering framework called the Real-to-Finite-Field
(RtF) framework and a corresponding FHE-friendly symmetric-key primitive called
HERA were proposed at ASIACRYPT 2021. Although HERA has a very similar
structure to AES, it is considerably different in the following aspects: 1) the power
map x 7→ x3 is used as the S-box; 2) a randomized key schedule is used; 3) it is
over a prime field Fp with p > 216. In this work, we perform the first third-party
cryptanalysis of HERA, by showing how to mount new algebraic attacks with multiple
collisions in the round keys. Specifically, according to the special way to randomize
the round keys in HERA, we find it possible to peel off the last nonlinear layer by
using collisions in the last-round key and a simple property of the power map. In this
way, we could construct an overdefined system of equations of a much lower degree
in the key, and efficiently solve the system via the linearization technique. As a
result, for HERA with 192 and 256 bits of security, respectively, we could break some
parameters under the same assumption made by designers that the algebra constant
ω for Gaussian elimination is ω = 2, i.e., Gaussian elimination on an n × n matrix
takes O(nω) field operations. If using more conservative choices like ω ∈ {2.8, 3}, our
attacks can also successfully reduce the security margins of some variants of HERA
to only 1 round. However, the security of HERA with 80 and 128 bits of security is
not affected by our attacks due to the high cost to find multiple collisions. In any
case, our attacks reveal a weakness of HERA caused by the randomized key schedule
and its small state size.
Keywords: HERA · algebraic attack · multiple collisions · randomized key schedule

1 Introduction
Most traditional symmetric-key primitives are designed over F2, and the corresponding
cryptographic components including nonlinear layers, affine layers, and key schedules
are all fixed. However, such a design strategy has evolved due to the new require-
ments on symmetric-key primitives in applications to secure multi-party computation
(MPC) [KHS+22,AGR+16,DKR+22,ARS+15,DGGK21,GØSW23], fully homomorphic
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encryption (FHE) [NLV11,MJSC16,CCF+18,DEG+18,HKC+20,HL20,CHK+21,CHMS22,
AMT22,CIR22,HKL+22,DGH+23], and zero-knowledge proof systems (ZKP) [AGP+19,
AAB+20,GKR+21,GKL+22,BBC+23,GHR+23].

In the case of FHE-friendly symmetric-key primitives, it is common to randomize
some components, like affine layers [MJSC16,DEG+18,HKC+20,HL20,CHMS22,CIR22,
DGH+23] or key schedules [CHK+21,HKL+22]. By such a way to randomize the cipher,
each input of the cipher is then evaluated with an ever-changing function under the same
key. In this way, conventional cryptanalysis techniques like the differential attack [BS90],
linear attack [Mat93], integral attack [KW02], and cube attack [DS09] cannot work, since
they all require that a number of different inputs are evaluated with the same function
under the same key. Hence, although many such FHE-friendly ciphers have a very small
number of rounds and use low-degree nonlinear layers, they are still resistant to these
conventional attacks. Due to the low number of rounds and low-degree nonlinear layers in
such ciphers, the most effective attack becomes the algebraic attack, and especially the
linearization attack, which is commonly used by designers to determine the secure number
of rounds [DEG+18,HKC+20,HL20,CHK+21,CIR22,HKL+22,DGH+23].

Linearization attack. The linearization technique is the simplest method to solve an
overdefined system of multivariate equations over a field F. Let us consider m equations
in terms of n variables, where the degree of each equation is upper bounded by d. In such
a system of equations, there are at most

∑d
i=1

(
n+i−1

i

)
=

(
n+d

d

)
− 1 non-constant terms of

degree smaller than d formed by the n variables1. For simplicity, we treat
(

n+d
d

)
− 1 as(

n+d
d

)
throughout this paper. In the linearization technique, each such different term is

treated as an independent variable. In this way, the system of m nonlinear equations can
be converted into m linear equations in

(
n+d

d

)
variables. If m ≥

(
n+d

d

)
and the coefficient

matrix of size m ×
(

n+d
d

)
is full-rank, we can expect to find one solution of the n variables

via Gaussian elimination. Usually, we can choose m =
(

n+d
d

)
, and the time complexity to

find the solution is estimated as O(
(

n+d
d

)ω) field operations, where 2 ≤ ω ≤ 3.
For simplicity, let us denote FHE-friendly ciphers by z = F (IV, k) where k =

(k1, . . . , kn) ∈ Fn is the secret key and z = (z1, . . . , zs) ∈ Fs is the output. For ci-
phers that use randomized components as stated above, F will ever-change for different
inputs IV under the same k. To mount the linearization attack, the attacker first upper
bounds the degree d of the expression of z in terms of k according to the fixed nonlinear
layers. In this way, he can collect s equations in k of degree d from each input IV. By
collecting

(
n+d

d

)
equations according to

(
n+d

d

)
· 1

s different inputs, he can apply the lin-
earization technique to solve the overdefined system of equations, and compute the secret
key k with time complexity O(

(
n+d

d

)ω). It is thus clear that d will have a significant impact
on the time complexity of this attack.

The literature. There have been a number of FHE-friendly ciphers, like LowMC [ARS+15],
Kreyvrium [CCF+18], FLIP [MJSC16], Rasta [DEG+18], Masta [HKC+20], DASTA [HL20],
FASTA [CIR22], Pasta [DGH+23], HERA [CHK+21], Rubato [HKL+22], Chaghri [AMT22]
and Elisabeth-4 [CHMS22]. Among them, LowMC has been well analyzed in recent
years [RST18, BBDV20, BBVY21, LIM21, Din21, LSW+22, LMSI22], mainly due to its
application to the post-quantum signature scheme Picnic [CDG+17], and there are some
successful full-round attacks [RST18, LIM21, Din21, LSW+22, LMSI22]. Moreover, the
original designs of FLIP, Chaghri and Elisabeth-4 have been broken with algebraic tech-
niques [DLR16,LAW+23,GBJR23]. Although there is a full-round attack [GAH+23] on
some variants of Rubato over the ring Zq when q is a non-prime number, as clarified by the

1When the equations are over F2, there are at most
∑d

i=1

(
n
i

)
non-constant terms formed by the n

variables.
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designers of Rubato (i.e., on page 6 of [HKL+22]), q is implicitly assumed to be a prime
number, i.e., Rubato is indeed defined over prime fields. For Rasta-like ciphers over F2 (e.g.,
Rasta, DASTA, FASTA), the most effective attack is the linearization attack by peeling
off the last nonlinear layer such that the attacker can set up a system of equations of a
much lower degree [LSMI21,LSMI22]. Such an attack highly relies on a special property
of the nonlinear layer defined by the n-bit χ transform [Dae95]. However, this attack can
only reduce the security margins of these ciphers by 1 round, and they are still secure.
For Rasta-like ciphers over prime fields (e.g., Masta, Pasta), as far as we know, there
is no third-party cryptanalysis, and the most effective attack is still the straighforward
linearization attack which cannot reach full rounds. Different from Rasta-like ciphers
which are based on the SPN structure and use randomized affine layers, HERA is the
first FHE-friendly cipher with the randomized key schedule proposed at ASIACRYPT
2021, and Rubato published at EUROCRYPT 2022 adopts the same way to randomize
its round keys, though the two ciphers are quite different. In addition, both HERA and
Rubato are designed to be friendly to the CKKS FHE scheme proposed at ASIACRYPT
2017 [CKKS17], which is an FHE scheme for arithmetic of approximate numbers. Although
HERA has been proposed for 2 years, we are not aware of any third-party cryptanalysis.

1.1 Our Contributions
We propose a new algebraic attack on HERA based on a different idea to construct low-
degree equations by peeling off the last non-linear layer. Specifically, if we simply denote
such randomized ciphers by z = F (IV, k) as stated above, all previous attacks on FLIP,
Rasta, Rubato and Elisabeth-4 share the same feature that the attackers try to construct
some low-degree equations in k from a single input-output pair (IV, z). After collecting
sufficiently many (IV, z), they can set up an overdefined system of equations in k and solve
it via the linearization technique. However, in our attacks, each low-degree equation in
k is set up from 2 well-chosen input-output pairs (IV, z) and (IV′, z′). In this sense, our
attack is a chosen-IV attack2. Overall, our attack procedure can be abstracted as follows:

• Offline phase: Find sufficiently many good input pairs (IV, IV′) by the offline
computation.

• Online phase: For each input pair (IV, IV′), evaluate them via F and obtain the
corresponding output pair (z, z′). If (z, z′) satisfy certain conditions, we can set up
some low-degree equations in k.

• Solving equations: After collecting many low-degree equations, we solve them
with the linearization technique.

Offline phase. In particular, finding multiple good input pairs at the offline phase is
equivalent to the problem to find multiple collisions of a function G : Fℓ1

2 7→ Fℓ2
2 . Finding

multiple collisions is a well-studied problem [vOW99,Din20] and it has some applications
in cryptanalysis [vOW99,DEM19]. To find 2ℓ3 collisions of G, a straightforward method
is to consider 2

ℓ2+ℓ3+1
2 different inputs of G. In this way, we can expect to obtain about

1
2ℓ2 · 2ℓ2+ℓ3 = 2ℓ3 collisions in the ℓ2-bit outputs. The time and memory complexity are
both O(2

ℓ2+ℓ3
2 ). Moreover, to ensure the existence of 2ℓ3 collisions, we further need to

constrain ℓ1 ≥ ℓ2+ℓ3+1
2 → 2ℓ1 ≥ ℓ2 + ℓ3 + 1 since in total 2

ℓ2+ℓ3+1
2 different inputs are

considered.
We also remark that with the advanced algorithm by van Oorschot and Wiener [vOW99]

for this problem under ℓ1 = ℓ2, the best-known time-memory tradeoff for the time T and
2When sharing our results with the designers of HERA, they pointed out that our attack is a chosen-IV

attack.
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memory M is T 2 · M = O(22ℓ3 · 2ℓ1) and M = O(2ℓ3), where a poly-logarithmic factor in
2ℓ1 is hidden in both O notation. Since we are not aware of the accurate hidden factors,
and as the time complexity of our attacks at the offline phase, which is already optimal
under this time-memory tradeoff, is close to that of brute force, we decide to only consider
the straightforward method. With it, we can explicitly understand the security margins of
HERA with different parameters, which is the main goal of this paper.

Online phase. At the online phase, we will construct low-degree equations in k. This is
based on a simple property of the power map x 7→ xα over the finite field F when it is a
permutation. Specifically, we have

∀x1, x2 ∈ F : (x1x2)α = xα
1 xα

2 .

As will be shown in Lemma 2, if two outputs (y1, y2) where y1 = xα
1 and y2 = xα

2 satisfy
y1 = βy2 and β ̸= 0, we will have x1 = β

1
α x2. If β ∈ F is a known constant, we then

obtain a linear equation in (x1, x2). This is our core idea to peel off the last nonlinear
layer and to set up low-degree equations from 2 chosen input-output pairs of HERA.

Solving equations. We rely on the linearization technique to solve an overdefined system
of equations. As already stated before, this is just to perform Gaussian elimination on
a large coefficient matrix. Abusing notation, let us assume that the matrix is of size
n × n. Then, Gaussian elimination on this matrix takes O(nω) field operations. The
straightforward way to perform Gaussian elimination will result in ω = 3. With Strassen’s
divide-and-conquer method [Str69] for Gaussian elimination, we have ω = log27 ≈ 2.8.
However, when designers evaluate the ciphers’ resistance against the linearization attack in
order to choose the secure number of rounds, ω = 2 is commonly used [DEG+18,HKC+20,
HL20,CHK+21,CIR22,HKL+22,DGH+23]. In this paper, we will give the corresponding
costs under the three different values of ω.

Our results: HERA is defined over a prime filed Fp where p > 216. In addition, there are 4
different security levels, namely it provides λ bits of security where λ ∈ {80, 128, 192, 256}.
By designers’ analysis, HERA is secure under ω = 2 for any p > 216. However, with our
new algebraic attack, we can violate this claim. The consequences of our new attacks are
briefly summarized as follows, and the detailed costs to break various parameters can be
referred to Table 1.

• The security of HERA with λ ∈ {80, 128} is not affected by this new attack.

• For λ = 192, we can break HERA for p ≤ 218 under ω = 2.

• For λ = 256, we can break HERA for p ≤ 228 under ω = 2.

• For λ = 192 and λ = 256, the security margin of HERA is reduced to 1 round from 2
rounds for p ≤ 221 and p ≤ 228 under ω = 2.8, respectively.

• For λ = 192 and λ = 256, the security margin of HERA is reduced to 1 round from 2
rounds for p ≤ 220 and p ≤ 226 under ω = 3, respectively.

Organization. The paper is organized as follows. In Sect. 2, we briefly introduce HERA.
Then in Sect. 3, we describe the straightforward linearization attack on HERA and how its
secure number of rounds was determined by designers. Next in Sect. 4, we explain the
strategy to peel off the last nonlinear layer by using a simple property of the power map.
In Sect. 5, the details of our attacks on HERA will be provided. At last, this paper is
concluded in Sect. 6.
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Table 1: Summary of the time complexity of our successful attacks on various parameters
of HERA under ω ∈ {2, 2.8, 3}.

λ Rounds ω
⌈log2p⌉

17 18 19 20 21 22 23 24 25 26 27 28

192
6 (full) 2 2185 2187 − − − − − − − − − −

5 2.8 2167 2175 2179 2180 2187 − − − − − − −
5 3 2179 2179 2183 2191 − − − − − − − −

256
7 (full) 2 2217 2224 2225 2226 2227 2228 2229 2243 2245 2247 2249 2251

6 2.8 2234 2234 2234 2234 2234 2234 2234 2235 2243 2249 2250 2251

6 3 2251 2251 2251 2251 2251 2251 2251 2251 2251 2251 − −

2 Description of HERA
A graphic illustration of HERA is shown in Figure 1, where M is a fixed invertible matrix
over F16×16

p , and S is the S-box defined by S(x) = x3 over Fp, where p > 216 is a prime
number. Since our algebraic attacks are irrelevant to M and we only exploit its invertibility,
we refer the interested readers to [CHK+21] for more details of how M is constructed.
Throughout this paper, we denote the set of integers i satisfying i0 ≤ i < i1 and i0 ≤ i ≤ i1
by [i0, i1) and [i0, i1], respectively.

The HERA state is composed of 16 words in Fp. For r rounds HERA with λ bits of
security, it takes a nonce nc ∈ [0, 2λ), a counter cnt ∈ [0, 2 λ

2 ), a key k = (k1, . . . , k16) ∈ F16
p

and a predefined constant vector a = (a1, . . . , a16) = (1, . . . , 16) as input. The output of
HERA used as the keystream is denoted by z = (z1, . . . , z16) ∈ F16

p . For convenience, we
denote the concatenation of nc and cnt by nc||cnt, and we further let

IV = nc||cnt.

In this way, r rounds of HERA can be simply defined as follows:

z = HERAr(IV, k).

Similar to Rasta, the nonce nc and the counter cnt will be different for each keystream
generated under the same key k. The detailed procedure is described below.

c1,2k2

c1,1k1

c1,16k16

c0,2k2

c0,1k1

c0,16k16

round function f

r − 1 rounds

f f
· · ·

M

S

S

S

M

S

S

S

cr,2k2

cr,1k1

cr,16k16

M

a1

a2

a16

z1

z2

z16

the last round

w0 y0 wr−1 yr−1 wr yr

· · · · · ·
· · ·· · ·

Figure 1: Illustration of HERA

Generating random vectors (c0, . . . , cr). To compute the output z = (z1, . . . , z16),
first, IV is set as the input to an XOF and the outputs of the XOF are r + 1 vectors3

3Although it is not clearly clarified by the designers, each element in the vector should be nonzero.
Otherwise, there is an obvious weakness by having some ci,j = 0 via the offline computation.
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ci = (ci,1, . . . , ci,16) ∈ F16
p for 0 ≤ i ≤ r. For convenience, this procedure is represented as

follows:
(c0, . . . , cr) = XOF(IV).

Computing the output (z1, . . . , z16). As shown in Figure 1, denote the input and output
of the (i+1)-th linear layer M by wi = (wi,1, . . . , wi,16) ∈ F16

p and yi = (yi,1, . . . , yi,16) ∈ F16
p

for 0 ≤ i ≤ r, respectively. In this way, r rounds of HERA can be described by the following
formulas:

∀j ∈ [1, 16] : w0,j = aj + c0,jkj ,

∀i ∈ [0, r] : yi = M(wi),
∀i ∈ [1, r − 1], ∀j ∈ [1, 16] : wi,j = S(yi−1,j) + ci,jkj ,

∀j ∈ [1, 16] : wr,j = S(yr−1,j),
∀j ∈ [1, 16] : zj = yr,j + cr,jkj .

Number of rounds and data limit. The designers specified 4 different parameters of the
number of rounds r for different security levels λ, which are

(r, λ) = {(4, 80), (5, 128), (6, 192), (7, 256)}.

Moreover, each key can only be used to encrypt up to 2 λ
2 message blocks, which is why we

have cnt ∈ [0, 2 λ
2 ).

3 Straightforward Linearization Attack on HERA
The main feature of HERA is that the round keys are randomized by element-wise multi-
plying a random vector with the master key. Different from Rasta, its linear layers are
fixed and they are the same in each round, which is defined by a fixed matrix M . For such
a new way to randomize the cipher, many traditional techniques also failed for HERA since
each keystream z is computed under a different permutation for the same key. The most
effective attack against HERA, similar to the analysis of Rasta, is the linearization attack.

For r rounds of HERA, the keystream z can be trivially expressed as 16 equations over
Fp in 16 unknowns (k1, . . . , k16). The degree of these equations is 3r since the degree of
the S-box is 3. To crack r rounds of HERA with the linearization attack, the attacker first
collects

N0(r) =
(

16 + 3r

3r

)
(1)

equations by making about N0(r)
16 encryption queries under the same key, where IV will be

different for each query. Then, the time complexity to solve the key is estimated as

T0(r, ω) =
(

16 + 3r

3r

)ω

, (2)

where ω is the algebra constant for Gaussian elimination and it satisfies 2 ≤ ω ≤ 3.
To determine the secure number of rounds r for λ bits of security, the designers of

HERA choose the minimal r such that

T0(r, 2) > 2λ.

According to [CHK+21], the recommended parameters r for different λ are listed in Table 2.
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Table 2: The parameters for HERA
λ 80 128 192 256
r 4 5 6 7

Guess-and-determine attack. The designers also took into account the guess-and-
determine (GnD) attack. In this attack, the attacker can first guess j unknowns and then
solve the equations of degree 3r in 16 − j unknowns for r rounds of HERA. The time
complexity of this attack is

pj ×
(

16 − j + 3r

3r

)ω

.

It was shown by the designers that if p > 216, this GnD attack can never be faster than
the above straightforward linearization attack under ω = 2.

Table 3: The time complexity to break r rounds of HERA with different (r, ω)
λ 80 128 192 256
r 4 5 6 7

brute force p16 p16 p16 p16

T0(r, 2) 2119 2167 2217 2267

T0(r − 1, 2) 276 2119 2167 2217

T0(r, 2.8) 2167 2234 2303 2374

T0(r − 1, 2.8) 2107 2167 2234 2303

T0(r − 2, 2.8) 259 2107 2167 2234

T0(r, 3) 2179 2251 2325 2401

T0(r − 1, 3) 2114 2179 2251 2325

T0(r − 2, 3) 263 2114 2179 2251

Concrete time complexity. For the parameters in Table 2, we can do some simple
calculations for T0(r, ω) with different (r, ω), as shown in Table 3. Therefore, with ω = 2,
the security margin for all versions of HERA is only 1 round. With ω ∈ {2.8, 3}, the
security margins are 2 rounds. We also calculated the time complexity of the linearization
attacks on HERA under ω = {2.8, 3} by considering the GnD strategy, which still suggests
that the security margins are 2 rounds, i.e., it cannot help improve the straightforward
linearization attack4.

In this sense, if we can peel off the last nonlinear layer with negligible extra costs, i.e.,
set up equations of degree 3r−1 for r rounds of HERA, attacking r rounds is equivalent to
attacking r − 1 rounds with the linearization technique. In this way, it is possible to break
HERA under ω = 2, and reduce the security margins to only 1 round under ω = {2.8, 3}.

4 Peeling off the Last Nonlinear Layer
In this section, we start explaining how to set up equations of degree 3r−1 for r rounds of
HERA. Our attacks on HERA intensively rely on the following two trivial lemmas.

Lemma 1. Let P (x) be a permutation over a finite field F. For two inputs x1 and x2, if
P (x1) = P (x2), we have x1 = x2.

4We note that if p is small, e.g., p ≈ 216, the best attack on HERA with 256-bit security is the brute
force attack, not the linearization attack.
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Lemma 2. Let P (x) = xα be a permutation over a finite field F. For two inputs x1 and
x2, if P (x1) = βP (x2) where β ∈ F and β ̸= 0, we have x1 = β

1
α x2.

Proof. First, we have (β 1
α x2)α = βxα

2 . Since

P (x1) = βP (x2) = βxα
2 = P (β 1

α x2)

and that P (x) is a permutation, we have

x1 = β
1
α x2.

Based on Lemma 1 and Lemma 2, a linear relation inside an input pair of P (x) can be
derived according to the corresponding output pair, even if the outputs are masked with a
secret. For example, we consider

y1 = P (x1) + t1ν, y2 = P (x2) + t2ν,

where (t1, t2) ∈ F2 are randomly generated public constants and ν ∈ F is the secret. If we
can generate (t1, t2) such that t1 = t2, and observe y1 = y2 in this case, we directly obtain
x1 = x2, which is a linear relation inside (x1, x2). Moreover, if P (x) = xα, we can further
relax the conditions on (t1, t2, y1, y2) in order to derive a linear relation inside (x1, x2).
Specifically, if t1 = βt2 and y1 = βy2, where β ∈ F is a known nonzero value, we will have
x1 = β

1
α x2, which also corresponds to a linear relation.

4.1 Application to HERA
Based on the above simple observations, we describe how to peel off the last nonlinear
layer and set up equations of degree 3r−1 for r rounds of HERA.

Consider a pair of keystreams (z, z′) defined by

z = HERAr(IV, k), z′ = HERAr(IV′, k).

Furthermore, let

(c0, . . . , cr) = XOF(IV), (c′
0, . . . , c′

r) = XOF(IV′).

For convenience, for the keystream z′ generated with the input (r, k, IV′), the input to the
(i + 1)-th M is denoted by w′

i = (w′
i,1, . . . , w′

i,16) ∈ F16
p where 0 ≤ i ≤ r. In addition, we

define z′ = (z′
1, . . . , z′

16) ∈ F16
p , and c′

i = (c′
i,1, . . . , c′

i,16) ∈ F16
p for 0 ≤ i ≤ r.

For the matrix M over F16×16
p , denote its inverse by M−1. Moreover, we denote the

element at the i-th row and the j-th column of M−1 by M−1[i][j], where i, j ∈ [1, 16]. For
the output pair (wr, w′

r) of the last nonlinear layer, we then have

wr,i =
16∑

j=1
M−1[i][j](zj − cr,jkj) =

16∑
j=1

M−1[i][j]zj −
16∑

j=1
M−1[i][j]cr,jkj ,

w′
r,i =

16∑
j=1

M−1[i][j](z′
j − c′

r,jkj) =
16∑

j=1
M−1[i][j]z′

j −
16∑

j=1
M−1[i][j]c′

r,jkj ,

where i ∈ [1, 16].
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Linearization via Lemma 1. If

∃î ∈ [1, 16] :
16∑

j=1
M−1 [̂i][j]zj =

16∑
j=1

M−1 [̂i][j]z′
j ,

∀j ∈ [1, 16] : cr,j = c′
r,j ,

there will be
wr,̂i = w′

r,̂i
.

In other words, when generating such a keystream pair (z, z′), the inputs to the î-th S-box
at the last nonlinear layer are identical. Hence, we can set up an equation of degree 3r−1

in terms of k to describe this property.

Linearization via Lemma 2. Since the power map S(x) = x3 is used in HERA, and
the prime number p > 216 is chosen such that S(x) is a permutation over Fp, we can
further use Lemma 2 to relax the conditions to linearize the last nonlinear layer based on
a keystream pair. Specifically, if there exists a nonzero β ∈ Fp such that

∃î ∈ [1, 16] :
16∑

j=1
M−1 [̂i][j]zj = β · (

16∑
j=1

M−1 [̂i][j]z′
j),

∀j ∈ [1, 16] : cr,j = βc′
r,j ,

there will be
wr,̂i = βw′

r,̂i
.

In other words, for such a keystream pair (z, z′), the input pair denoted by (yr−1,̂i, y′
r−1,̂i

)
to the î-th S-box at the last nonlinear layer satisfy

yr−1,̂i = β
1
3 y′

r−1,̂i
.

Therefore, we can also set up an equation of degree 3r−1 in terms of k to describe the
above relation inside (yr−1,̂i, y′

r−1,̂i
).

Linearization via Lemma 2 and guessing strategies. It is possible to observe that the
following conditions are too strict as they correspond to about 16 log2 p bit conditions:

∀j ∈ [1, 16] : cr,j = βc′
r,j .

To relax these conditions, we can guess n1 words in k, e.g., we can guess (k1, . . . , kn1). For
each guess, we can compute

δ =
n1∑

j=1
M−1[i][j]cr,jkj , δ′ =

n1∑
j=1

M−1[i][j]c′
r,jkj .

Then, we only need to consider the following conditions for each guess in order to linearize
the last nonlinear layer:

∃î ∈ [1, 16] :
16∑

j=1
M−1 [̂i][j]zj − δ = β · (

16∑
j=1

M−1 [̂i][j]z′
j − δ′),

∀j ∈ [n1 + 1, 16] : cr,j = βc′
r,j ,

Specifically, under these conditions, for the corresponding keystream pair (z, z′), we will
again have

wr,̂i = βw′
r,̂i

, yr−1,̂i = β
1
3 y′

r−1,̂i
.
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5 Algebraic Attacks on HERA

In our attacks, we assume that the attacker has full control over IV ∈ F
3λ
2

2 , which
corresponds to a chosen-IV attack. According to the above analysis, we always have two
types of conditions to satisfy:

Type-1: conditions on the concrete keystream pair (z, z′);

Type-2: conditions on the randomly sampled vectors cr and c′
r.

Observe that Type-2 conditions can be satisfied at the offline phase, as they are
irrelevant to k, and only depend on a public extended output function XOF with a
controllable input IV. As for Type-1 conditions, we need to check the conditions on the
keystream and computing it requires the knowledge of k. Therefore, Type-1 conditions can
only be checked at the online phase. In the following, we provide the complexity analysis
of the offline and online phases, respectively.

5.1 Offline Phase
We consider the linearization of the last nonlinear layer via Lemma 2 and guessing strategies,
as it also covers the case when only Lemma 2 is used by setting n1 = 0. Specifically, we
consider the cost to generate 2b pairs (cr, c′

r) satisfying the following conditions where
β ∈ Fp can be any nonzero value:

∀j ∈ [n1 + 1, 16] : cr,j = βc′
r,j .

For such a pair, we have

(cr,n1+1, cr,n1+2, . . . , cr,16) = (βc′
r,n1+1, βc′

r,n1+2, . . . , βc′
r,16).

Hence, we can consider the following pair

(1,
cr,n1+2

cr,n1+1
, . . . ,

cr,16

cr,n1+1
), (1,

c′
r,n1+2

c′
r,n1+1

, . . . ,
c′

r,16

c′
r,n1+1

).

If there is

∀j ∈ [n1 + 2, 16] : cr,j

cr,n1+1
=

c′
r,j

c′
r,n1+1

, (3)

there must exist β = cr,n1+1
c′

r,n1+1
such that

∀j ∈ [n1 + 1, 16] : cr,j = βc′
r,j .

In other words, we can equivalently consider the problem to generate 2b collisions in
(15 − n1) × ⌈log2 p⌉ output bits of the used XOF seeded with IV of 3λ

2 bits.

Costs of generating multiple collisions. Let

ℓ = (15 − n1) × ⌈log2 p⌉. (4)

To generate 2b collisions in ℓ bits of the output of a hash function, whose input length is
3λ
2 bits, the following condition should hold:

3λ ≥ b + ℓ + 1. (5)
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As previously mentioned, the time complexity to find these 2b collisions is 2 b+ℓ+1
2 . Here,

we only consider the straightforward method to find multiple collisions for its simplicity,
which requires memory complexity of 2 b+ℓ+1

2 . Therefore, the time complexity denoted by
Toffline and memory complexity denoted by Moffline of the offline phase are as follows:

Toffline = 2
b+ℓ+1

2 , Moffline = 2
b+ℓ+1

2 .

Specifically, we can prepare 2 b+ℓ+1
2 different randomly chosen values of IV. For each of

them, compute the corresponding r + 1 vectors (c0, . . . , cr) , and store the corresponding
vector cf

r as well as its associated IV, where cf
r is defined by

cf
r = (cr,n1+2

cr,n1+1
, . . . ,

cr,16

cr,n1+1
) ∈ F15−n1

p .

Then, it is expected to obtain 1
2ℓ × 2ℓ+b = 2b collisions in cf

r , since there are in total 2ℓ+b

pairs formed by 2 b+ℓ+1
2 different IV.

5.2 Online Phase
After the offline phase, we have collected 2b pairs (IV, IV′) such that the corresponding
pair (cr, c′

r) satisfies Equation 3. We should emphasize that for each different pair (cr, c′
r),

the corresponding constant scalar β = cr,n1+1
c′

r,n1+1
may be different, but this does not affect

the attack.

Generating keystreams. For each pair (IV, IV′), the following procedure is performed.

Step 1: Compute
(c0, . . . , cr) = XOF(IV), (c′

0, . . . , c′
r) = XOF(IV′)

and
β = cr,n1+1

c′
r,n1+1

.

Step 2: Compute the keystream pair (z, z′), and get the corresponding 16 pairs (hi, h′
i)

for i ∈ [1, 16], where

hi =
16∑

j=1
M−1[i][j]zj , h′

i =
16∑

j=1
M−1[i][j]z′

j .

Store (cr, c′
r, β, h1, h′

1, . . . , h16, h′
16) in a table denoted by TAB.

Constructing equations. After constructing TAB which contains 2b entries, we then guess
(k1, . . . , kn1). For each guess, the following procedure is performed:

Step 1: For each element (cr, c′
r, β, h1, h′

1, . . . , h16, h′
16) in TAB, compute

δ =
n1∑

j=1
M−1[i][j]cr,jkj , δ′ =

n1∑
j=1

M−1[i][j]c′
r,jkj .

If
∃i ∈ [1, 16] : hi − δ = β(h′

i − δ′), (6)

move to Step 2. Otherwise, pick another element in TAB and repeat.
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Step 2: Set up an equation in terms of 16 − n1 unknowns (kn1+1, . . . , k16) of degree 3r−1

since the input pair (yr−1,i, y′
r−1,i) for the i-th S-box at the last nonlinear layer

satisfies:
yr−1,i = β

1
3 y′

r−1,i.

Since Equation 6 holds with probability of about 16
p , for each guess of (k1, . . . , kn1), we

can expect to set up about 16
p × 2b equations in 16 − n1 unknowns of degree 3r−1.

Solving equations with the linearization technique. To solve equations in 16 − n1
unknowns of degree 3r−1 with the linearization technique, we need(

16 − n1 + 3r−1

3r−1

)
equations. Therefore, the following condition should hold:

16
p

× 2b ≥
(

16 − n1 + 3r−1

3r−1

)
. (7)

The time complexity to solve such a system of equations is estimated as(
16 − n1 + 3r−1

3r−1

)ω

.

For each solution of (kn1+1, . . . , k16) obtained under the guess of (k1, . . . , kn1), we need
to further check the correctness of (k1, . . . , k16) by using 2 keystreams and this cost is
negligible. Therefore, the time complexity of the online phase5 is

Tonline = pn1 × 2b+1 + pn1 ×
(

16 − n1 + 3r−1

3r−1

)ω

.

For the memory complexity of the online phase, it is simply the cost to store the(16−n1+3r−1

3r−1

)
equations in 16 − n1 variables of degree 3r−1, and the cost to store the 2b

collisions. Hence, its memory complexity is

Monline = 2b +
(

16 − n1 + 3r−1

3r−1

)2

.

5.3 Impact on the Security of HERA
According to the above analysis, to crack r rounds of HERA with the security level
λ ∈ {80, 128, 192, 256}, the total time complexity and memory complexity can be formulated
as follows:

Toffline + Tonline = 2
b+ℓ+1

2 + pn1 × 2b+1 + pn1 ×
(

16 − n1 + 3r−1

3r−1

)ω

,

Moffline + Monline = 2
b+ℓ+1

2 + 2b +
(

16 − n1 + 3r−1

3r−1

)2

,

where ℓ = (15 − n1) × ⌈log2 p⌉. It is clear that the memory complexity is always smaller
than the time complexity due to ω ≥ 2.

5We do not consider the equivalent cost to perform r rounds of HERA, as this is what the designers
used to estimate the time complexity of the linearization attack. If taking this into account, our time
complexity only becomes lower.
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In addition, the following conditions should hold:
3λ ≥ b + ℓ + 1
16
p

× 2b ≥
(

16 − n1 + 3r−1

3r−1

)
b + 1 ≤ λ

2

(8)

The last condition is caused by the restriction that the same key can only be used to
generate at most 2 λ

2 keystreams.
To achieve the optimal time complexity of the key-recovery attack, (b, n1) should be

carefully chosen according to different (r, λ, log2 p). For this purpose, we can iterate 16
choices6 of n1, namely n1 ∈ [0, 15], and compute the corresponding minimal b such that

16
p

× 2b ≥
(

16 − n1 + 3r−1

3r−1

)
.

Then, we check the conditions b + 1 ≤ λ
2 an 3λ ≥ b + ℓ + 1. If they hold, compute the

corresponding Toffline+Tonline. Finally, choose valid (b, n1) that can minimize Toffline+Tonline.
Our calculation results are shown in Table 4. The corresponding (b, n1) are given in Table 5.
Note that the accurate value of pn1 depends on p. However, in our calculations, if p satisfies
⌈log2 p⌉ = µ, we simply treat p as 2µ and hence pn1 will be directly 2µ+n1 .

Impacts of our attacks. Although we can peel off the last nonlinear layer via multiple
collisions, it should be emphasized that in most cases, finding these collisions at the offline
phase is much more costly than that of solving the key at the online phase. For this reason,
the feasibility of our attacks is closely related to the length of p. According to Table 4, we
can draw the following conclusions for the security of HERA:

• For HERA with λ ∈ {80, 128}, the security is not affected by our attacks.

• Under ω = 2 which is used by designers to determine the secure number of rounds,
we show that HERA is insecure when i) λ = 192 and p ≤ 218; ii) λ = 256 and p ≤ 228.

• Under ω = 2.8, the security margins of HERA with the following parameters are
reduced to 1 round: i) λ = 192 and p ≤ 221; ii) λ = 256 and p ≤ 228.

• Under ω = 3, the security margins of HERA with the following parameters are
reduced to 1 round: i) λ = 192 and p ≤ 220; ii) λ = 256 and p ≤ 226.

Hence, our attacks significantly improve the linearization attacks on HERA with more
than 192 bits of security, if p is not that large. In addition, as shown in Table 5, in
some cases, the optimal time complexity is obtained with n1 > 0. This suggests that the
GnD strategy can be successfully used to improve the linearization attack, which further
contradicts the designers’ claim.

5.4 Experimental Verification
We provide a proof-of-concept attack to verify the correctness of our technique. It is worth
noting that the number of potential monomials grows rapidly as the number of rounds
increases, and the cost to generate multiple collisions increases exponentially as the length
of p increases. For the sake of efficiency, we only consider 2 rounds of HERA over a small
prime field F17. The primary focus of the linearization attack centers around verifying the

6If n1 = 16, it is simply the brute force attack.



Fukang Liu, Abul Kalam, Santanu Sarkar, Willi Meier 13

Table 4: The time complexity to break r rounds of HERA, where - represents that our
new attacks cannot work due to Equation 8. For simplicity, we give the logarithm of the
time complexity to base 2 in this table. Moreover, the successful full-round attacks under
ω = 2 are colored in red, while the successful reduced-round attacks under ω ∈ {2.8, 3} are
colored in blue.

(⌈log2 p⌉, ω)
(r, λ) (3, 80) (4, 80) (4, 128) (5, 128) (5, 192) (6, 192) (6, 256) (7, 256)

(17, 2) - - 128 188 147 185 176 217
(17, 2.8) - - 138 222 167 245 234 283
(17, 3) - - 140 230 179 260 251 284
(18, 2) - - 135 194 154 187 177 224

(18, 2.8) - - 145 228 175 247 234 299
(18, 3) - - 145 236 179 262 251 299
(19, 2) - - 140 200 160 200 183 225

(19, 2.8) - - 151 234 179 256 234 307
(19, 3) - - 152 242 183 271 251 315
(20, 2) - - 144 219 163 203 191 226

(20, 2.8) - - 154 251 180 259 234 308
(20, 3) - - 159 259 191 274 251 328
(21, 2) - - 148 226 166 206 193 227

(21, 2.8) - - 157 258 187 262 234 309
(21, 3) - - 164 266 192 277 251 329
(22, 2) - - 189 278 170 209 195 228

(22, 2.8) - - 212 301 194 265 234 310
(22, 3) - - 218 307 194 280 251 330
(23, 2) - - 335 358 176 226 200 229

(23, 2.8) - - 335 358 198 279 234 311
(23, 3) - - 335 358 202 293 251 331
(24, 2) - - - - 183 230 207 243

(24, 2.8) - - - - 200 283 235 320
(24, 3) - - - - 209 297 251 340
(25, 2) - - - - 189 234 214 245

(25, 2.8) - - - - 203 287 243 322
(25, 3) - - - - 213 301 251 342
(26, 2) - - - - 196 238 221 247

(26, 2.8) - - - - 210 291 249 324
(26, 3) - - - - 215 305 251 344
(27, 2) - - - - 202 242 224 249

(27, 2.8) - - - - 217 295 250 326
(27, 3) - - - - 217 309 259 346
(28, 2) - - - - 209 265 227 251

(28, 2.8) - - - - 224 315 251 328
(28, 3) - - - - 224 327 266 348
(29, 2) - - - - 214 270 230 270

(29, 2.8) - - - - 231 320 258 343
(29, 3) - - - - 231 332 267 361
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Table 5: The corresponding (b, n1) for results in Table 4.

(⌈log2 p⌉, ω)
(r, λ) (4, 128) (5, 128) (5, 192) (6, 192) (6, 256) (7, 256)

(17, 2) (51, 3) (60, 6) (72, 2) (93, 2) (97, 1) (126, 0)
(17, 2.8) (53, 2) (60, 6) (77, 0) (93, 2) (101, 0) (27, 15)
(17, 3) (53, 2) (60, 6) (77, 0) (93, 2) (101, 0) (27, 15)
(18, 2) (52, 3) (61, 6) (73, 2) (94, 2) (98, 1) (121, 1)

(18, 2.8) (54, 2) (61, 6) (78, 0) (94, 2) (102, 0) (28, 15)
(18, 3) (54, 2) (61, 6) (78, 0) (94, 2) (102, 0) (28, 15)
(19, 2) (51, 4) (62, 6) (71, 3) (91, 3) (99, 1) (122, 1)

(19, 2.8) (53, 3) (62, 6) (76, 1) (91, 3) (103, 0) (122, 1)
(19, 3) (55, 2) (62, 6) (79, 0) (91, 3) (103, 0) (29, 15)
(20, 2) (52, 4) (60, 7) (72, 3) (92, 3) (100, 1) (123, 1)

(20, 2.8) (54, 3) (60, 7) (77, 1) (92, 3) (104, 0) (123, 1)
(20, 3) (56, 2) (60, 7) (80, 0) (92, 3) (104, 0) (123, 1)
(21, 2) (53, 4) (61, 7) (73, 3) (93, 3) (97, 2) (124, 1)

(21, 2.8) (55, 3) (61, 7) (78, 1) (93, 3) (105, 0) (124, 1)
(21, 3) (55, 3) (61, 7) (78, 1) (93, 3) (105, 0) (124, 1)
(22, 2) (51, 6) (51, 10) (74, 3) (94, 3) (98, 2) (125, 1)

(22, 2.8) (51, 6) (51, 10) (79, 1) (94, 3) (106, 0) (125, 1)
(22, 3) (51, 6) (51, 10) (79, 1) (94, 3) (106, 0) (125, 1)
(23, 2) (35, 13) (35, 14) (75, 3) (90, 4) (99, 2) (126, 1)

(23, 2.8) (35, 13) (35, 14) (78, 2) (90, 4) (107, 0) (126, 1)
(23, 3) (35, 13) (35, 14) (80, 1) (90, 4) (107, 0) (126, 1)
(24, 2) - - (76, 3) (91, 4) (100, 2) (122, 2)

(24, 2.8) - - (79, 2) (91, 4) (108, 0) (122, 2)
(24, 3) - - (81, 1) (91, 4) (108, 0) (122, 2)
(25, 2) - - (77, 3) (92, 4) (101, 2) (123, 2)

(25, 2.8) - - (80, 2) (92, 4) (109, 0) (123, 2)
(25, 3) - - (80, 2) (92, 4) (109, 0) (123, 2)
(26, 2) - - (78, 3) (93, 4) (102, 2) (124, 2)

(26, 2.8) - - (81, 2) (93, 4) (106, 1) (124, 2)
(26, 3) - - (81, 2) (93, 4) (110, 0) (124, 2)
(27, 2) - - (79, 3) (94, 4) (99, 3) (125, 2)

(27, 2.8) - - (82, 2) (94, 4) (107, 1) (125, 2)
(27, 3) - - (82, 2) (94, 4) (111, 0) (125, 2)
(28, 2) - - (80, 3) (91, 5) (100, 3) (126, 2)

(28, 2.8) - - (83, 2) (91, 5) (108, 1) (126, 2)
(28, 3) - - (83, 2) (91, 5) (108, 1) (126, 2)
(29, 2) - - (78, 4) (92, 5) (101, 3) (121, 3)

(29, 2.8) - - (84, 2) (92, 5) (109, 1) (121, 3)
(29, 3) - - (84, 2) (92, 5) (109, 1) (121, 3)
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linear independence of the constructed equations. Therefore, the primary purpose of these
experiments is to confirm the linear independence of the equations constructed with our
method.

In the experiments, we guess 10 coordinates out of 16 key coordinates. Based on our
method, we need to collect

(6+3
3

)
−1 = 83 equations since there are at most 83 non-constant

terms of degree upper bounded by 3 in 6 variables. In this case, we need about 83× 17
16 ≈ 89

collisions, i.e., b ≈ 7. We perform 100 random tests with a number of 214 random values
IV in each test, since we need to generate about 2b = 27 collisions in 5 nonzero words in
F17 and we have 214+13 × 1

165 = 27.
The aim of our experiments is to compute the number of linearly independent equations

for Gaussian elimination, i.e. the rank of the coefficient matrix. For the number of 214

choices of IV, we are getting collisions in the range at around 98 to 155. In a test round
when the number of collisions is less than 27, we take all collisions. When the number of
collisions is ≥ 27, we take exactly 27 collisions. In these 100 tests, the coefficient matrix is
full-rank for 98 times. In the 68-th test, the number of collisions is 98, and the rank of the
coefficient matrix is 81. In the 62-th test, the number of collisions is 108, and the rank of
the coefficient matrix is 82.

5.5 Application to Rubato
The FHE-friendly cipher Rubato proposed at EUROCRYPT 2022 shares a similar structure
with HERA. However, its design strategy for FHE-friendly ciphers further evolves, since it
introduces Gaussian noise in the keystream. Specifically, the keystream of Rubato denoted
by z can be simply described as follows:

z = Truncatet

(
Rubator(IV, k)

)
+ (e1, . . . , et),

where the r-round permutation Rubator(IV, k) is very similar to HERAr(IV, k), which uses
the same way to randomize the round keys. In addition, it has a small number of rounds,
i.e., r ∈ {2, 3, 5}. As can be observed from the above formula, different from HERA, only
t output words of the permutation are truncated for generating the keystream, which
somehow prevents the application of our strategy to peel off the last nonlinear layer. What
is worse, to generate the final keystream, these t truncated output words will be added to
t elements (i.e., noise) independently sampled from a Gaussian distribution. The attacker
cannot know this Gaussian noise, and hence he has to guess it if he wants to know the
t truncated output words of the permutation Rubato(IV, k), which further increases the
difficulty to apply our techniques to Rubato. Moreover, Rubato is defined over a prime field
Fp with ⌈log2p⌉ ∈ {25, 26} and only parameters providing 80 and 128 bits of security are
defined. In some versions, its state size is even larger than 16, e.g., 36 and 64, while the
state size of HERA is always 16. Such features of Rubato also make finding collisions in
round keys much more costly.

6 Conclusion and Open Problems
As another novel strategy to securely randomize the FHE-friendly ciphers, randomizing
the key schedule has not yet been well-understood, though it has been used in two highly
efficient CKKS-friendly ciphers HERA and Rubato for the RtF framework. By this research,
we reveal a weakness of HERA caused by its special randomized key schedule. The main
technique is to peel off the last nonlinear layer via multiple collisions, which then allows
us to construct low-degree equations in the secret key, and results in improved algebraic
attacks. As a consequence, we contradicted some claims made by the designers, and
successfully reduced the security margins of some variants of HERA to only 1 round.
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Although Rubato is similar to HERA, due to its usage of Gaussian noise, truncation
mode and a larger state size, a direct application of the above attack strategy will fail for
Rubato. However, we believe it is an interesting problem to devise a smarter attack on
Rubato by taking our observations on HERA’s randomized key schedule into account.
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