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Abstract

Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy
secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the
first PAKE protocol with subversion resilience in the framework of universal composability (UC), where
the latter roughly means that UC security still holds even if one of the two parties is malicious and the
honest party’s code has been subverted (in an undetectable manner).

We achieve this result by sanitizing the PAKE protocol from oblivious transfer (OT) due to Canetti
et al. (PKC’12) via cryptographic reverse firewalls in the UC framework (Chakraborty et al., EU-
ROCRYPT’22). This requires new techniques, which help us uncover new cryptographic primitives
with sanitation-friendly properties along the way (such as OT, dual-mode cryptosystems, and signature
schemes).

As an additional contribution, we delve deeper in the backbone of communication required in the
subversion-resilient UC framework, extending it to the unauthenticated setting, in line with the work of
Barak et al. (CRYPTO’05).

Keywords: PAKE · subversion resilience · universal composability

1 Introduction

Authenticated Key Exchange (AKE) allows two parties to generate a shared high-entropy secret and mutually
authenticate themselves, by means of identifiers such as public keys, signatures or shared passwords. As such,
AKE allows two parties to establish a secure channel. Due to its sensitive nature, malicious actors may have
a particular interest in undermining the security of AKE protocols (e.g., by leaking the password of an
honest party, or by establishing a shared key without authentication). To this extent, AKE protocols are
typically designed in the setting of multi-party computation, where the adversary controls the communication
channels and can corrupt some of the parties. Corrupted parties either simply follow the protocol (so-called
semi-honest corruptions), or deviate arbitrarily from its intended execution (so-calledmalicious corruptions).

This threat model is widely adopted in the literature. However, it relies on the assumption of having access
to uncorrupted parties that run the protocol exactly as prescribed. Unfortunately, as shown by the shocking
Edward Snowden’s revelations, the latter assumption may not hold in practice, as the machine of honest
parties could have been compromised in an undetectable manner, both in the case of its hardware (e.g., by
means of backdoored components) or its software (e.g., algorithm-substitution attacks, purposefully designed
leaky constructions, or mistakenly instantiated protocols). A possible mitigation consists in equipping parties
with cryptographic reverse firewalls (RFs), as first defined by Mironov and Stephens-Davidowitz [24]. These
objects allow to sanitize inbound and outbound messages of the party they are attached to, thus destroying
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any potential side-channel while preserving functionality and security of the underlying protocol. The idea
here is that protocol designers can instantiate parties and their respective RF on different physical machines
on the same local network in order to achieve security in the presence of subversion attacks.

While the original formalism only accounted for standalone security, where each protocol is run in iso-
lation, the setting of RFs has recently been extended to the universal composability (UC) framework by
Chakraborty, Magri, Nielsen and Venturi [15]. The latter ensures that subversion resilience holds even under
arbitrary composition of the designed protocol with other protocols, without redoing the security analysis
from scratch, and thus yielding a modular design of subversion-resilient cryptographic protocols.

1.1 Password-Authenticated Key Exchange

In this work, we focus on instantiating Password-Authenticated Key Exchange (PAKE) in the subversion-
resilient UC framework, in which parties can derive a high-entropy secret key by simply verifying their
identities by means of a low-entropy common password. Given that passwords are considered to be low-
entropy, the security definition of PAKE must take into account the fact that the adversary can guess the
password with non-negligible probability. Thus, a protocol realizing PAKE is secure if no adversary is able to
break it with probability better than guessing the password. Moreover, the PAKE functionality restricts the
ideal adversary to only perform online password guesses: in other words, the transcript of a PAKE protocol
must not help the adversary to perform a dictionary (i.e., offline) attack.

1.2 Our Results

Our main contribution consists in constructing the first UC PAKE protocol with security in the presence of
(specious) subversion attacks, via RFs. Following [15], we consider a setting where each party is split into
a core (which has secret inputs and is in charge of generating protocol messages) and a RF (which has no
secrets and sanitizes the outgoing/incoming communication from/to the core using random coins). Both the
core and RF are subject to different flavours of corruption, modelling different kinds of subversion attacks.

Our PAKE protocol is obtained by sanitizing the UC randomized equality protocol from oblivious transfer
(OT) by Canetti et al. [10]. As we explain in the next subsection, obtaining this result requires essential
changes to the original protocols’ design, such as the definition and realization of sanitizable variants of
intermediate ideal functionalities, and the introduction of technical tools of independent interest.

One difficulty in the realization of PAKE is that one cannot rely on authenticated channels. As shown
by Barak et al. [5], this difficulty can be tackled generically by first designing a PAKE protocol assuming
authenticated channels, and then compiling it into another protocol without authenticated channels using
the concept of “split functionalities”. Such functionalities basically allow the adversary to disconnect parties
completely, and engage in separate executions with each one of the two parties, where in each execution the
adversary plays the role of the other party. We follow a similar recipe in the design of our PAKE protocol. In
particular, we first realize subversion-resilient PAKE assuming the existence of a functionality for sanitizable
authenticated communication (which already appeared in [15], and is denoted by FSAT). Following [5], we
then define a weaker split-authenticated variant sFSAT that allows the adversary to partition parties, and
prove that a modification of the transformation by Barak et al. allows to lift any protocol that realizes a
functionality G assuming authenticated channels to one that realizes the corresponding “split version” (i.e.,
sG) without any assumption on channels, even in the presence of subversion.

Finally, we realize sFSAT by sanitizing the protocol due to Barak et al. [5], introducing a new notion
of sanitizable signature schemes with a matching security property. This improves on an open problem
from [15], where the authors were only able to realize FSAT assuming the presence of a PKI and by moving
to a “three-tier model” variant of the framework, in which each party has an additional operative component
that may only be honest or malicious. Even if used exclusively throughout the setup phase of the protocol,
providing access to an operative component that is immune to subversion is a strong assumption that
definitely weakens any result achieved in the framework: indeed, the three-tier model provides a trivial
solution to counteract specious corruptions of the core for any functionality, as the operative is in principle
allowed to run any protocol on behalf of the core. On the contrary, we realize the backbone of communication
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among components in the two-tier model without assuming a PKI, although only for the unauthenticated
setting (i.e., sFSAT).

1.3 Technical Overview

Below, we provide an overview of the technical contributions, explaining the main ideas and tools behind
our subversion-resilient PAKE protocol.

1.3.1 Sanitizing OT.

Defining oblivious transfer in the presence of subversion attacks is a tricky task, as the (non-sanitized)
functionality would allow a (specious) receiver to obtain exactly one of the inputs of the sender, which may
act as a trigger if sampled maliciously. Similarly, it would allow a (specious) sender to sample the inputs
in a leaky manner and send them over to a corrupted party. For this reason, in our sanitizable OT ideal
functionality FsOT (depicted in Figure 1) both firewalls are allowed to blind the sender’s inputs by means of
a blinding operation. This way, the sender’s firewall can sanitize the sender’s randomly chosen inputs, and
the receiver’s firewall can sanitize the inbound inputs.

r′0, r
′
1

x0, x1 FsOT

σ

xσ ∗ r′σ ∗ r′′σ

r′′0 , r
′′
1

Figure 1: Our sanitizable OT functionality FsOT. r′i, r
′′
i values are sampled from firewalls, and ∗ is an appropriate

blinding operation for the input domain.

Here, we introduce a different technique compared to that of the seminal framework. Namely, the function-
ality allows firewalls to explicitly contribute to the sanitation, and disregard their contribution whenever the
overall party related to that firewall is corrupted. From a formal standpoint this is allowed, as there exists
a corruption translation table that maps corruptions of individual components of a party to a corruption
for the entire party, and currently the srUC framework only supports static corruptions, so the functionality
knows in advance which parties are corrupted. This also makes sense for what concerns simulation, as once
we have mapped components to a malicious party we shouldn’t be simulating anything that occurs within
that malicious party. In particular, the notion of blinding may not even be well defined at all, and it suffices
to extract from the malicious party only the actual functional inputs to the functionality (e.g., for sanitizable
OT it suffices to craft a query for the malicious receiver’s input bit, disregarding the blinding factors of its
firewall).

In order to instantiate FsOT, we introduce a new primitive that we call sanitizable homomorphic dual-
mode cryptosystems, that provides: (1) a procedure to carry out homomorphic operations on ciphertexts
(e.g., Enc(m1) ∗ Enc(m2) = Enc(m1 ∗ m2)), (2) a procedure to maul an encryption key pk to a different

encryption key p̃k, and (3) a procedure to maul a ciphertext under encryption key p̃k to a ciphertext of the
same message under encryption key pk. Item (1) allows firewalls to sanitize the messages input to the OT, and
items (2, 3) allow to first blind an inbound public key, introducing a layer of sanitation, and align encryptions
accordingly, stripping that layer of sanitation away to preserve correctness. The construction from DDH of
Peikert et al. [25] can be extended to verify our newly introduced properties in a straight-forward manner.

Finally, we instantiate the functionality by proposing an appropriate sanitation of the protocol of Peikert
et al. [25], which unfolds as follows. The receiver produces a key pair that may only be used to decrypt
values on the encryption branch matching the choice bit σ (out of the two). The key is sanitized twice by
firewalls, and the sender encrypts value xb on encryption branch b. Then, firewalls remove the layers of
sanitation appropriately, and the receiver can decrypt only the encryption on branch b = σ.
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In the security proof, we first show that the construction is strongly sanitizing, i.e., a specious core with
a honest firewall is indistinguishable from an incorruptible core with a honest firewall, by using the afore-
mentioned properties. After that, the simulation becomes extremely close to the one of the original protocol,
leveraging on the two (computationally indistinguishable) modes of the CRS to extract an adversary’s inputs
and produce a consistent query to FsOT.

1.3.2 Sanitizing Randomized Equality.

In the RE from OT protocol of Canetti et al. [10], for an n-bit password, each party runs FOT n-times as
the sender, inputting two random strings for each OT run, and n-times as the receiver, inputting the i-th
bit of their password. Intuitively, a party can choose the same random strings their peer has received only
if the passwords are the same, and these strings can all be combined to derive a common shared key.

After defining FsOT, we realize the regular randomized equality functionality FRE in the subversion setting
in a straight-forward manner. In order to thwart information leakage originating from a biased sampling of
the strings, as well as inbound input-triggering strings, both firewalls blind the sender’s inputs in both OT
batches with locally-sampled random strings. The trick to preserve correctness leverages on the symmetrical
structure of the protocol: namely, random strings used for the i-th OT in which a core acts as the sender
are re-used for the i-th OT in which the same core acts as the receiver.

Interestingly, we remark that explicit mutual authentication is not as simple to achieve as in settings
without subversion, in which common transformations involve equality testing of a part of the key (or a
function of it) suffice to achieve that property (e.g., by locally computing a PRF with key the output key on
a fixed value and mutually sending the output to the other party). Sanitizing these kind of transformations
comes at the cost of breaking correctness, and leaving them unchecked allows a malicious party to craft a
message that would trigger the subversion of the peer in an undetectable manner.

1.3.3 Split functionalities in the srUC model.

A PAKE protocol establishes (over an unauthenticated channel) a secret key among parties that share a
common password. Thus, it makes little sense to build a PAKE protocol in a setting that already assumes
the existence of authenticated channels, as the srUC model does in the form of the “sanitizable authenticated
transmission” FSAT functionality.

The problem of achieving any form of secure computation (including protocols such as PAKE) in the
UC unauthenticated channel setting was first described by Barak et al. [5]. In their setting, all the messages
sent by parties can be tampered with and manipulated by the adversary unbeknownst to honest parties.
The authors show that in this model it is not possible to achieve the same guarantees as with authenticated
channels, however meaningful guarantees can still be provided. Namely, the worst the adversary can do is to
split honest parties into independent execution sets, where the remaining parties of the protocol are controlled
by the adversary. In this way honest parties can run the entire protocol against the adversary without even
noticing it, however parties can rest assured that they will complete the entire run of the protocol interacting
with the same set of parties since the start, albeit without knowing the actual identities of the parties. In [5]
this notion is captured in what the authors call split functionalities. They then proceed to show that any
UC protocol realizing some functionality F relying on authenticated channels can be compiled into a similar
protocol that realizes the split functionality sF , but now just relying on unauthenticated channels.

In this work, we extend the notion of split functionalities to the srUC model by showing how it can
be adapted to account for specious environments and adversaries, as required by the srUC model. More
specifically, we show that the generic transformation of [5] for split protocols carries over to our setting
whenever the underlying unauthenticated channel is sanitizable. In particular, the crucial component of
the transformation is the construction of a protocol realizing the split version of the FSAT functionality
of [15], that we call sFSAT. For that, we introduce a new primitive that we call sanitizable signatures that:

(1) provides a procedure to maul a verification key vk into ṽk, (2) a procedure to maul a signature under

verification key ṽk back into a signature under verification key vk, and (3) is equipped with a function f such

that f(vki, ṽkj) = f(ṽki, vkj), where ṽki and ṽkj being verification keys mauled under the same randomness.
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We show that the BLS [8] signature scheme is a sanitizable signature scheme where the function f is a
bilinear map. Our protocol allows the firewalls to sanitize an outbound verification key and later re-align
outbound signatures accordingly to preserve correctness. The bilinear map is used to allow parties to
recompute the same session ID (sid) for the protocol in the presence of firewalls mauling keys. Once this
“link initialization” phase is complete, components of parties exchange messages as in FSAT, except that
the adversary may now deliver arbitrary messages to parties within different authentication sets. We note
however that our instantiation of sFSAT is only for the 2-party setting, as the bilinear map only allows
for 2 parties to correctly compute the protocol sid in a consistent manner. This inevitably restricts the
transformation to only capture 2-party functionalities in the srUC model.

Once a protocol for sFSAT is in place, we simply white-box inspect the proofs of [5] adapting them for
specious environments and adversaries as needed. The final result is a theorem stating that any 2-party split
functionality can be realized in the srUC model using only unauthenticated channels (in the sFSAT-hybrid
model).

1.4 Related Work

Next we discuss related works on the topics of reverse firewalls and subversion-resilient cryptography in
general, and on PAKE protocols.

Reverse Firewalls and Subversion. Reverse firewalls were introduced by Mironov and Stephens-Davidowitz
[24], who showed how to construct reverse firewalls for oblivious transfer (OT) and two-party computa-
tion with semi-honest security. Follow up works showed how to construct reverse firewalls for many other
cryptographic primitives and protocols including: secure message transmission and key agreement [18, 16],
interactive proof systems [21], and maliciously secure MPC for both the case of static [13] and adaptive [14]
corruptions. However, most of these constructions lack modularity, as the security of each firewall is proven
in isolation and does not extend to larger protocols when combined with other firewalls. This was addressed
by Chakraborty, Magri, Nielsen and Venturi [15] with the proposal of the Subversion-Resilient Composability
framework (srUC). The srUC allowed for the first time to build and to analyse subversion-resilient protocols
under composition. [15] shows how to sanitize the classical GMW compiler [22] for MPC under subversion.
Towards that, it also introduces the concept of sanitizable commitment and sanitizable commit-and-prove.

Additional work on subversion includes algorithm substitution attacks [7, 4, 17], parameter subversion [6,
1, 20, 2], Cliptography [3, 27, 26], and subliminal channels [28, 29] to list a few.

PAKE. The seminal work by Canetti et al. [11] formalizes PAKE as an ideal functionality, and proposes
an efficient protocol securely realizing this functionality in the setting of malicious corruptions and under
universal composability [9], i.e., when protocols can be arbitrarily composed with other protocols. The
description was later extended to explicit mutual authentication in [23] and [10], in which parties are able
to tell whether they effectively authenticated or not.

Prior to our work, the only alternative to achieve subversion-resilient PAKE in the UC framework was the
sanitized version of the GMW compiler of [15]. However, this solution is highly impractical. Our solution is
much more efficient and presents little sanitation overhead, with the drawback of being functionality-specific.
We refer the reader to [24, 15] for alternative approaches to counter subversion attacks, such as watchdogs
and self-guarding.

1.4.1 Organization.

In Section 2, we give a concise introduction to the subversion-resilient UC framework of [15]. In Section
3, we define and instantiate sanitizable oblivious transfer. In Section 4, we instantiate a sanitized protocol
for the randomized equality ideal functionality. In Section 5, we define and instantiate the sanitizable
split-authenticated functionality, and port the transformation of Barak et al. [5] that allows to remove
authenticated channels in our framework. In Section 6, we combine the results of previous sections to
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achieve PAKE. Finally, in Section 7, we conclude the paper with a few related open problems for further
research.

2 A Brief Recap of Subversion-resilient UC

We give a brief overview of the definition of subversion resilience in the UC framework (srUC for short). We
refer the reader to [15] for a complete treatment of the model, and to Appendix A for a brief introduction
to the UC framework [9].

2.1 Corruption Types

Each party Pi in the protocol is modelled as two independent parties: a core Ci, which hosts the code
associated with the protocol (and may contain secrets), and a firewall Fi, which may intervene on all the
messages associated with their respective core (both inbound and outbound). Since cores and firewalls are
independent parties, they may also be corrupted independently. The model of [15] specifies that the relevant
corruption cases for the core are Honest, Malicious or Specious, while the ones for the firewall are
Honest, SemiHonest or Malicious. Mapping the corruption possibilities for the parties Pi = (Ci,Fi) in
a regular UC functionality gives rise to the following corruption table:

Core C Firewall F Party P in F
Honest SemiHonest Honest
Specious Honest Honest
Honest Malicious Isolate

Malicious Malicious Malicious

Specious corruption. A specious corruption is a type of subversion where the subverted core looks
indistinguishable from the honest core to any efficient test. The main idea is that we consider corruptions
where a core Ci has been replaced by another implementation C̃i which cannot be distinguished from Ci

by black-box access to C̃i or Ci. Intuitively, a specious corruption can be thought of as a subversion that
remains undetectable.

Isolate corruption. Isolate is a weaker type of corruption that models the setting where a malicious
firewall simply cuts the communication of an honest core with the outside world. This is typically modelled
as a Malicious corruption and can be safely dropped from the analysis.

Strong sanitation. A firewall is strongly sanitizing if an adversary is unable to distinguish an execution
of the protocol with a specious core equipped with an honest firewall from an execution of the protocol
with an honest core equipped with an honest firewall. As shown in [15], whenever the firewalls are strongly
sanitizing, the Specious core and Honest firewall case boils down to an Honest party in the functionality.

2.2 Ideal Functionalities

There are two types of ideal functionalities in srUC: sanitizable functionalities and regular functionalities.
Sanitizable functionalities are the ones where cores and firewalls explicitly interact with the functionality. For
that, sanitizable functionalities expose, for each party Pi, an input-output interface IOi that interacts with
the core Ci, and a sanitation interface Si that interacts with the firewall Fi. Regular functionalities have the
same flavor of the functionalities used in the UC framework, where the functionality will only communicate
with parties and is not aware of cores and firewalls. The goal of considering regular functionalities is that
it is perfectly valid and desirable to be able to build protocols that realize a regular functionality (e.g.,
coin tossing) under subversion attacks. However, since there is no support for sanitation interfaces in
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regular functionalities, the model considers a wrapped version of the functionality F denoted by Wrap(F),
that handles all the boilerplate code of translating the combinations of corruptions of cores and firewalls to
corruptions of parties in F . The wrapper also passes any message coming from the functionality and directed
to party Pi, to the corresponding core Ci and firewall Fi, and it is needed to avoid trivial distinguishing attacks
in the UC framework, since the actual protocol will be implemented with cores and firewalls.

The definition below captures security of a sanitizing protocol1 Π that instantiates cores and firewalls
interacting with the interfaces exposed by a sanitizable ideal functionality G in order to UC-realize a wrapped
regular functionality Wrap(G) in the G-hybrid model. This yields so-called wrapped subversion-resilient UC
security (wsrUC).

Definition 1 (Wrapped subversion-resilient UC security [15]). Let F be an ideal functionality for n parties
P1, . . . ,Pn. Let Π be a sanitizing protocol with n cores C1, . . . ,Cn and n firewalls F1, . . . ,Fn. Let G be a
sanitizable ideal functionality which can be used by the sanitizing protocol Π. We say that Π wsrUC-realizes
F in the G-hybrid model if Π UC-realizes Wrap(F) in the G-hybrid model, with the restriction that we only
quantify over specious environments and specious adversaries.

For completeness, we also report the more general definition of srUC security, as we will instantiate both
wrapped functionalities and sanitizable functionalities.

Definition 2 (Subversion-resilient UC security [15]). Let F be an ideal functionality for n parties P1, . . . ,Pn.
Let Π be a sanitizing protocol with n cores CF

1 , . . . ,C
F
n and n firewalls FF

1 , . . . ,F
F
n . Let G be a sanitizable

ideal functionality which can be used by a protocol Π interacting on IO interfaces and sanitation interfaces.
We say that Π srUC-realizes F in the G-hybrid model if F can be written as a well-formed sanitizable ideal
functionality2, and Π UC-realizes F in the G-hybrid model, with the restriction that we only quantify over
specious environments and specious adversaries.

2.3 Communication channels

In all protocols in [15], communication is mediated by means of a sanitizable ideal functionality for authen-
ticated communication FSAT, which fundamentally includes three behaviours:

• It allows to distribute a setup (e.g., a CRS) by means of a Setup algorithm.

• It provides secure channels between cores and their respective firewall.

• It provides authenticated channels between firewalls.

We report a variant of the description of FSAT in what follows that does not include the possibility for
distributing a setup. This is a design choice that allows to better separate the component for setup from
the component of communication, since not all protocols may require both components at once. The former
may be represented by means of a separate ideal functionality Fcrs.

Functionality FSAT

� On input (Send, a,Pj) on IOi, it forwards the tuple on Si. As in the original description, we assume that a is sent
at most once from honest parties.

� On input (Send, b,Pk) on Si, it leaks the tuple to the adversary S, along with its sender Pi, and internally stores
the tuple.

� On input (Deliver, (Send,Pi, b,Pk)) from the adversary, where the Send tuple is stored, it outputs (Receive,Pi, b)
on Sk and deletes the tuple.

� On input (Receive,Pm, c) on Sk, it outputs (Receive,Pm, c) on IOk.

1We use the terms “sanitizing protocol” and “sanitized protocol” interchangeably to refer to subversion-resilient protocols
realizing a regular UC functionality.

2A well-formed sanitizable ideal functionality can be decomposed into a central part that does the computation and interacts
with parties, and an outer layer exposing IO and sanitation interfaces, similarly to a wrapped ideal functionality.
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Our protocols in Sections 3 and 4 assume this functionality as the backbone for communication. Unfortu-
nately, this definition induces a core-to-core authenticated channel between parties, making any instantiation
for PAKE relying on FSAT redundant. In Section 5, we overcome this limitation by defining a weaker func-
tionality sFSAT that allows the adversary to partition parties, in line with the work of Barak et al. [5].

3 Sanitizing Oblivious Transfer

In this section, we first propose a sanitizable ideal functionality for oblivious transfer that will be used
as a building block for the sanitation of randomized equality in Section 4. Secondly, we recap dual-mode
cryptosystems and define sanitizable homomorphic dual-mode cryptosystems. Finally, we use the latter
notion to sanitize the generic framework to instantiate FOT of Peikert et al. [25], and extend their concrete
instantiation from DDH to verify the newly introduced properties.

3.1 Sanitizable OT

Following the ideas presented in the technical overview in Section 1.3, we report our sanitized ideal func-
tionality for oblivious transfer FsOT in which both firewalls may intervene in the sanitation of the sender’s
inputs.

Functionality FsOT

FsOT is a sanitizable ideal functionality that interacts with the sender S = (CS,FS) and the receiver
R = (CR,FR), parameterized by input domain I ⊆ {0, 1}n and a blinding operation ∗ : I2 → I.

Interfaces IOi

Upon receiving a query (sender, sid, (x0, x1)) from CS on IOS:

Record (sender, sid, (x0, x1)) and forward the tuple on Si. Ignore subsequent commands of the
form (sender, sid, ·).

Upon receiving a query (receiver, sid, σ) from CR on IOR:

Check if a record (sender, sid, (x̂0, x̂1)) exists. If this is the case, check the following:

* The message (blind, sid, ·) was sent to FsOT on SS. If PS is malicious according to the
corruption translation table, mark this check as passed.

* The message (blind, sid, ·) was sent to FsOT on SR. If PR is malicious according to the
corruption translation table, mark this check as passed.

If the conditions above hold, output (sid, x̂σ) to R, sid to the adversary S, and halt. Otherwise,
send nothing to R but continue running.

Interfaces Si

Upon receiving a query (blind, sid, (x′
0, x

′
1)) from FS on SS:

If PS is malicious according to the corruption translation table, do nothing. Otherwise, check
if a record (sender, sid, (x0, x1)) exists. If so, update the tuple to (sender, sid, (x̃0, x̃1)), with
x̃b = xb ∗ x′

b. Otherwise, do nothing. Ignore future commands of the form (blind, sid, ·) on SS

Upon receiving a query (blind, sid, (x′′
0 , x

′′
1)) from FR on SR:

If PR is malicious according to the corruption translation table, do nothing. Otherwise, check
the following:
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* A record (sender, sid, (x̃0, x̃1)) exists.

* Amessage (blind, sid, ·) was sent to FsOT on SS. If PS is malicious according to the corruption
translation table, mark this check as passed.

If the conditions above hold, update the tuple to (sender, sid, (x̂0, x̂1)), with x̂b = x̃b ∗ x′′
b .

Otherwise, do nothing. Ignore future commands of the form (blind, sid, ·) on SR.

We parameterize the blinding operation, yielding a more expressive functionality whose blinding operations
may be tailored to the specific input domains of choice (e.g., for additive blinding, x0 ∗ x′

0 = x0 ⊕ x′
0; for

multiplicative blinding, x0 ∗ x′
0 = x0x

′
0).

Furthermore, the functionality disregards blinding inputs sent by corrupted parties (according to the
corruption translation table) on behalf of their firewalls. As discussed throughout the technical overview in
Section 1.3, this is reasonable, since we are modelling static corruptions and we can represent the components
making a corrupted party as a unique party, and we do not want to simulate anything related to messages
internally exchanged by the adversary.

3.2 Sanitizable Homomorphic Dual-Mode Encryption

Dual-mode cryptosystems operate like traditional public-key cryptosystems, except for the following differ-
ences. First, they introduce the notion of encryption branches, in which the key generation algorithm takes
as an additional input a branch σ ∈ {0, 1}. The party encrypting the message can choose either branch
b ∈ {0, 1} over which to encrypt the message. The party receiving the ciphertext is able to decrypt success-
fully only if σ = b. Secondly, they rely on a common-reference string that may be setup either in messy mode
or decryption mode. These modes are computationally indistinguishable and induce different algorithms for
the generation of a trapdoor, yielding different security guarantees: in messy mode, the sender has statistical
security and the receiver has computational security, whereas in decryption mode the security properties
are mirrored. We refer to Peikert et al. [25] for further details and report their description of dual-mode
cryptosystems in what follows.

Definition 3 (Dual-Mode Cryptosystems). A dual-mode cryptosystem consists of a tuple of algorithms
(Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen) with the following properties:

1. Completeness for decryptable branch: For every µ ∈ {mes, dec}, every (crs, t) ←$ Setup(1λ, µ),
every σ ∈ {0, 1}, every (pk, sk)←$ KeyGen(σ), and every m ∈ {0, 1}k, decryption is correct on branch
σ, i.e., Dec(sk,Enc(pk, σ,m)) = m. It also suffices for decryption to be correct with overwhelming
probability over the randomness of the entire experiment.

2. Indistinguishability of modes: Let SetupMessy(1λ) = Setup(1λ,mes) and SetupDec(1λ) = Setup(1λ, dec).

The first outputs of SetupMessy and SetupDec are computationally indistinguishable, i.e., SetupMessy1(1
λ)

c
≈

SetupDec1(1
λ).

3. (Messy mode) Trapdoor identification of a messy branch: For every (crs, t)←$ SetupMessy(1λ)
and every (possibly malformed) pk, FindMessy(t, pk) outputs a branch value b ∈ {0, 1} such that

Enc(pk, b, ·) is messy. Namely, for every m0,m1 ∈ {0, 1}k, Enc(pk, b,m0)
s
≈ Enc(pk, b,m1).

4. (Decryption mode) Trapdoor generation of keys decryptable on both branches: For ev-
ery (crs, t) ←$ SetupDec(1λ), TrapKeyGen(t) outputs (pk, sk0, sk1) such that for every σ ∈ {0, 1},
(pk, skσ)

s
≈ KeyGen(σ).

3.2.1 Sanitizable Homomorphic Dual-Mode Cryptosystems.

Looking ahead, we need to augment dual-mode cryptosystems to allow the sanitation of public keys, ci-
phertexts, and plaintexts related to ciphertexts. We therefore introduce algorithms to enable firewalls to
neutralize attacks coming from these attack vectors as follows:
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• HomOp(c0, c1), given two ciphertexts c0, c1 for messages m0,m1 respectively, and an hard-coded oper-
ator ∗, outputs a new ciphertext for the message m0 ∗m1.

• (MaulPK(pk, ρ),AlignEnc(c, ρ)). On input a public key pk and a random value ρ, MaulPK produces a

new encryption key p̃k. Any ciphertext c̃ for message m produced under (mauled) encryption key p̃k
may be transformed with AlignEnc(c̃, ρ) into an encryption c of m under (non-mauled) public key pk.
Crucially, the randomness has to be the same for consistency to hold.

Intuitively, MaulPK and AlignEnc are defined as a (symmetric) tuple of algorithms as firewalls will first
sanitize the outbound encryption key. Upon receiving messages encrypted under mauled new public key, the
firewall will “strip” the layer of sanitation. We are now ready to formally define sanitizable homomorphic
dual-mode cryptosystems.

Definition 4 (Sanitizable Homomorphic Dual-Mode Cryptosystems). A sanitizable homomorphic dual-mode
cryptosystem consists of a tuple of algorithms (Setup, KeyGen, Enc, Dec, FindMessy, TrapKeyGen, HomOp,
MaulPK, AlignEnc) with the following properties:

1. Dual-mode cryptosystem: The tuple of algorithms (Setup,KeyGen,Enc, Dec,FindMessy,TrapKeyGen)
constitutes a dual-mode cryptosystem.

2. Homomorphic ciphertexts: For every (pk, sk)←$ KeyGen(σ), for every ci ←$ Enc(pk, σ,mi), with
i ∈ {0, 1} and mi ∈ {0, 1}n, HomOp(m0,m1) produces a new ciphertext of message m0 ∗ m1, i.e.,
HomOp(c0, c1) = Enc(pk, σ, (m0 ∗m1)).

3. Consistent key sanitation: For every σ ∈ {0, 1}, for every (pk, sk) ←$ KeyGen(σ), for every

ρ ∈ {0, 1}n, MaulPK(pk, ρ) outputs a new encryption key p̃k with the following property. For every

c̃ ←$ Enc(p̃k, σ,m), with i ∈ {0, 1} and m ∈ {0, 1}n, AlignEnc(c, ρ) produces a new ciphertext c under
public key pk, i.e., AlignEnc(c̃, ρ) = c, where c = Enc(pk, σ,m).

Remark 1. The MaulPK, AlignEnc, HomOp algorithms are outputting keys and ciphertexts implicitly com-
bining the randomness of their inputs. This property is particularly useful in the context of sanitation, as it
allows a firewall to run these algorithms to combine their ”good randomness” to destroy subliminal channels
stemming from values output by their core with ”bad randomness”.

3.3 A Generic Framework

As shown in the generic framework of Peikert et al. [25], having access to a dual-mode cryptosystem allows
the instantiation of FOT in a natural manner: the receiver uses its choice bit σ as the selected decryption
branch, and the sender encrypts each of its inputs xb on a separate encryption branch b. The receiver will
be able to decrypt only on branch σ = b.

3.3.1 Sanitizing the framework.

From a high-level perspective, our sanitized protocol leverages on homomorphic ciphertexts to blind the
sender’s inputs and using consistent key sanitation to sanitize the receiver’s outbound encryption key and
realign the inbound ciphertexts for decryption purposes. These operations also destroy any potential sublim-
inal channel linked to the original ciphertexts or to the keys. In Figure 2, we depict a protocol run showing
only the firewall of the sender, since the firewall of the receiver behaves exactly the same way.

Theorem 1. The protocol in Figure 2, parameterized by a mode mode ∈ {mes, dec}, realizes the sanitizable
functionality FsOT in the (FSAT,Fcrs)-hybrid model under static corruptions. For mode = mes, the sender’s
security is statistical and the receiver’s security is computational; for mode = dec, the security properties are
reversed.
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Core CS (x0, x1) Firewall FS (x′
0, x

′
1) Core CR (σ)

CRS = crs
(sk, pk)←$ KeyGen(crs, σ)

pk

ρS ←$ {0, 1}λ

p̃k = MaulPK(pk, ρS)

p̃k

ỹb ←$ Enc(p̃k, b, xb)

(ỹ0, ỹ1)

ỹ′b ←$ Enc(p̃k, b, x′
b)

ỹ′′b = HomOp(ỹb, ỹ
′
b)

yb = AlignEnc(ỹ′′b , ρ
S)

(y0, y1)

Output Dec(sk, yσ)

Figure 2: A sanitation of the generic framework of Peikert et al. [25], realizing FsOT. The receiver’s firewall is not
explicitly shown, as it runs the same code as FS.

We first show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which
the same core is incorruptible and their firewall is honest.

Lemma 1. The firewall FS of the sender CS in Figure 2 is strongly sanitizing.

Proof (Lemma 1). We show that no environment E , which allows specious corruptions for the core CS but
does not corrupt the respective firewall FS, is able to distinguish between an execution of the protocol in
Figure 2 with an incorruptible CS from one that accepts the corruption C̃S.

We first argue that no input-trigger attacks are possible. The only message the sender receives from a
(potentially malicious) receiver is the public key pk used in the encryption scheme, which may be crafted in a
way to trigger a specious corruption in CS in an undetectable manner. However, FS randomizes the inbound
key by means of algorithm MaulPK, producing a new uniformly distributed key. If the message cannot be
parsed as a public key for the encryption scheme, the message is dropped.

We now show that CS is unable to leak any information. Since the only outbound message of the sender
is a tuple of ciphertexts of a dual-mode cryptosystem (y0, y1), C̃S can modify how this tuple is generated.
In order to establish a side-channel, the specious core may (i) produce signaling ciphertexts distributed as
valid ciphertexts (e.g., by means of rejection sampling), or (ii) produce a different message. E is unable to
determine whether the specious corruption had effect or not, as:

• In case (i) the ciphertext gets replaced by Fi with a fresh ciphertext that is side-channel free, as the
firewall the random coin ρ used in AlignEnc and the internal coins tossed in the computation of (y′0, y

′
1)

are sampled uniformly at random.

• In case (ii), if the message cannot be parsed as a tuple of ciphertexts, the message is dropped. Otherwise,
the HomOp and AlignEnc algorithms produce a uniformly distributed value as y0, y1 are not valid
ciphertexts.

Lemma 2. The firewall FR of the receiver CR in Figure 2 is strongly sanitizing.
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Proof (Lemma 2). We show that no environment E , which allows specious corruptions for the core CR but
does not corrupt the respective firewall FR, is able to distinguish between an execution of the protocol in
Figure 2 with an incorruptible CR from one that accepts the corruption C̃R.

We first argue that no input-trigger attacks are possible. The only message the receiver receives from a
(potentially malicious) sender is the tuple of ciphertexts (y0, y1), which may be crafted in a way to trigger a
specious corruption in CR in an undetectable manner. However, FR randomizes the inbound tuple by means
of algorithms HomOp and AlignEnc, producing a new uniformly distributed tuple. If the message cannot be
parsed as a tuple of ciphertexts, the message is dropped.

We now show that CS is unable to leak any information. Since the only outbound message of the receiver
is a public key pk of a dual-mode cryptosystem, C̃R can modify how pk is generated in order to exfiltrate
information. The specious core may (i) produce a signaling key distributed as a valid key (e.g., by means
of rejection sampling), or (ii) produce a different message. E is unable to determine whether the specious
corruption had effect or not, as:

• In case (i), the key is mauled by FR to a different key, as the firewall samples the random coin ρ used
in MaulPK uniformly at random, and the output key is uniformly distributed.

• In case (ii), if the message cannot be parsed as a public key for the encryption scheme, the message is
dropped. Otherwise, the MaulPK algorithm produces a uniformly distributed value, since pk is not a
valid key.

Lemma 3. For every adversary A corrupting either party maliciously and the firewall of the other (honest)
party semi-honestly in an execution of the protocol Π as in Figure 2 in the (FSAT,Fcrs)-hybrid model, there
exists a simulator S such that, for all environments E, the following holds:

Exec
(FSAT,Fcrs)
Π,A,E ≈ ExecFsOT,S,E

Proof (Lemma 3). The proof of this lemma follows closely the proof of the original generic framework of
Peikert et al. (Proof of Theorem 4.1, [25]): the dual-mode cryptosystem induces statistical security for the
sender in messy mode and statistical security for the receiver in decryption mode. The indistinguishability
of modes induces computational security for the specific party in the protocol run.

In the context of our framework, for each corruption scenario, the adversary can semi-honestly corrupt the
firewall of the matching honest core. Intuitively, revealing this information does not provide the adversary
any advantage, as semi-honestly corrupting the firewall only reveals blinding factors and the matching core
is honest.

We analyze corruption scenarios separately, interacting with FsOT and the environment E , and simulating
a run of the protocol Π for the core of the honest party. We show the proof for mode = mes; the proof for
mode = dec only varies in the generation of the common reference strings by the simulator.

Malicious Receiver. The receiver R is corrupted, so the core of the sender CS is honest and its firewall
FS is semi-honest. S generates the CRS in messy mode, obtaining a trapdoor t that enables it to find a
messy branch related to a (possibly malformed) public key pk. It then initializes the real-world adversary A
with crs.

When A sends a message containing public key pk, S extracts a messy branch b = FindMessy(crs, t, pk).
Then, it sends to FsOT the following queries:

1. (blind, sid, x′
0, x

′
1) on SS.

2. (receiver, sid, 1− b) on IOR, receiving x̂1−b = x1−b ∗ x′
1−b.
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Notice that the blind query on SS is allowed, as the firewall of the sender FS is semi-honestly corrupted, so
its inputs (x′

0, x
′
1) are known to S. On the other hand, the query on SR is not needed, as PR is corrupted

according to the corruption translation table.
Finally, whenever the dummy S is activated for session sid, S first computes x1−b = x̂1−b ∗−1 x′

1−b
3,

computes y1−b ←$ Enc(pk, 1− b, x1−b) and yb ←$ Enc(pk, b, 0n), and sends (sid, y1−b, yb) to A.
Since the only difference between the real world and ideal world is in the generation of yb, and b is the

messy branch correctly identified by the trapdoor, Enc(pk, b, 0n)
s
≈ Enc(pk, b, xb). The two experiments are

therefore statistically indistinguishable.

Malicious Sender. The sender S is corrupted, so the core of the receiver CR is honest and its firewall FS

is semi-honest. S generates the CRS in decryption mode, generating a tuple of keys (pk, sk0, sk1) with skb
being the decryption key of the b-th branch for b ∈ {0, 1}.

Whenever A sends (sid, ŷ0, ŷ1), S computes xb = Dec(skb, ŷb). Then, it sends to FsOT the following
queries:

1. (Send, sid, x0, x1) on IOS.

2. (blind, sid, x′′
0 , x

′′
1) on SR.

Notice that the blind query on SR is allowed, as the firewall of the receiver FR is semi-honestly corrupted,
so its inputs (x′′

0 , x
′′
1) are known to S. On the other hand, the query on SS is not needed, as PS is corrupted

according to the corruption translation table.
Since the only difference between the real world and ideal world is in the generation of the keys, and

(pk, skσ)
s
≈ KeyGen(crs, σ) by trapdoor key generation. However, crs was generated in decryption mode,

whereas the protocol expects messy mode. Since SetupMessy1
c
≈ SetupDec1, the two experiments are only

computationally indistinguishable.

Proof (Theorem 1). The theorem statement follows by looking at the standard corruption translation table.
Since the adversary maliciously corrupts either the sender or the receiver, the remaining honest party has
either (i) a Honest core and a SemiHonest firewall, or (ii) a Specious core and a Honest firewall. Since
both firewalls are strongly sanitizing, as shown in Lemma 1 and Lemma 2, the core in case (ii) can be
considered Honest (Lemma 2 of [15]). Hence, the statement follows directly by Lemma 3. We consider
Isolate corruptions as Malicious corruptions.

3.4 Construction from DDH

We briefly recap the instantiation from DDH of Peikert et al. [25] of dual-mode cryptosystem (Section 5,
[25]). In what follows, we denote G as the group description on a cyclic group G of prime order p for which
DDH is hard, with generators g, h.

• The CRS is a tuple (g0, h0, g1, h1), with different trapdoors according to the mode of operation.

• KeyGen(σ) = ((grσ, h
r
σ), r) = ((pk1, pk2), sk) = (pk, sk).

• Enc(pk,m, b) = (gsbh
t
b, pk

s
1pk

t
2m) = (c1, c2).

• Dec(sk, c) = c2/c
r
1.

It turns out that the the DDH cryptosystem is compatible with all the additional interfaces we introduced
in Definition 4, and we can define algorithms matching the newly introduced properties in a straight-forward
manner:

3We assume the operator supports the inverse operation. This is the case for additive blinding (⊖), and multiplicative
blinding (multiplicative inverse).
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• MaulPK(pk, ρ): Output pkρ.

• AlignEnc(c, ρ): Parse c = (c1, c2). Output c̃ = (cρ1, c2).

• HomOp(c0, c1): Output c0c1.

Theorem 2. The DDH cryptosystem of Peikert et al. [25] with the additional algorithms specified above is
a malleable dual-mode cryptosystem, assuming that DDH is hard for G.

Proof (Theorem 2). Correctness and all the properties related to the original dual-mode cryptosystem are
unchanged (Theorem 5.2 [25]). It remains to show that the cryptosystem has homomorphic ciphertexts and
consistent key sanitation.

The homomorphic ciphertexts property follows by observing that the underlying DDH cryptosystem

is multiplicative homomorphic. In the following, crs = (g0, g1, h0, h1), (pk, sk) = ((grσ, h
r
σ), r), p̃kDDH,b =

(gb, hb, p̃k0, p̃k1) = (gb, hb, g
r
σ, h

r
σ), and s, s′, t, t′ are random coins sampled by the DDHEnc algorithm.

Enc(pk, b,m0)Enc(pk, b,m1) = DDHEnc(p̃kDDH,b,m0)DDHEnc(p̃kDDH,b,m1)

= (gsbh
t
b, g

rs
σ hrt

σ m0)(g
s′

b ht′

b , g
rs′

σ hrt′

σ m1)

= (g
(s+s′)
b h

(t+t′)
b , gr(s+s′)

σ hr(t+t′)
σ m0m1)

= DDHEnc(p̃kDDH,b,m0m1)

= Enc(pk, b,m0m1)

The consistent key sanitation property follows by inspection. In the following, crs = (g0, g1, h0, h1), (pk, sk) =

((grσ, h
r
σ), r), p̃k = MaulPK(pk, ρ) = (grρσ , hrρ

σ ), and c←$ Enc(p̃k, σ,m), and s, t are random coins sampled by
the DDHEnc algorithm.

Dec(sk,AlignEnc(c, ρ)) = Dec(sk, (cρ1, c2))

= c2/(c
ρ
1)

r

= grρsσ hrρt
σ m/gsρrσ htρr

σ

= m

4 Sanitizing Randomized Equality

In this section, we present our sanitized protocol for the (regular) randomized equality ideal functionality
FRE that relies on authenticated channels (i.e., FSAT) and FsOT, following the construction of Canetti et
al. [10].

4.1 Randomized Equality and PAKE

We describe a variation of the randomized equality ideal functionality FRE of Barak et al. [5] which we
will realize, and point out its differences with respect to PAKE. Crucially, we discuss both RE and PAKE
without explicit mutual authentication. As discussed in the technical overview in Section 1.3, we stress that
this property is not as trivial to achieve as in MPC without subversion.

4.1.1 Randomized Equality.

FRE features an initiator I and a responder R who obtain the same random high-entropy value skey only if they
have input the same passwords. More specifically, the initiator declares its intention to run the functionality
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with the responder by means of an Init query with password wI. The adversary S is notified of this
interaction, and controls the delivery time of the initialization message destined to the receiver. Whenever
this occurs, the responder inputs its own password wR with a Respond query, and the functionality prepares
the output for both parties depending on whether wR = wI or not. In the former case, the output will be the
same random key skey for both parties; in the latter, two keys sampled independently at random. Finally,
the adversary controls the delivery of the output of parties by means of an Out query, in which it also
specifies a key K. If either party involved in the interaction is corrupted and the passwords match, both
parties will receive the adversarially-generated key K. Otherwise, they will receive whatever has been stored
in outP.

Functionality FRE

The functionality FRE is parameterized by a security parameter λ and a dictionary D. It interacts with
an initiator I, a responder R, and the adversary S via the following messages:

Upon receiving a query (Init, sid, I,R, wI), wI ∈ D from I:

Record (I,R, wI) and send a message (sid, I,R) to S. Ignore all future messages from I.

Upon receiving a query (ok, sid) from S:

Send a message (wakeup, sid, I,R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I,R, wR) from R:

• If wR = wI, choose skey←$ {0, 1}λ and store outI = outR = skey.

• If wR ̸= wI, then set outI ←$ {0, 1}λ, outR ←$ {0, 1}λ.
In both cases, ignore subsequent inputs from R.

Upon receiving a query (Out, sid,P,K), P ∈ {I,R} from S:

• If wI = wR and either I or R are corrupted, or P is corrupted, output (sid,K) to party P.

• Otherwise, output (sid, outP) to party P.

Ignore all subsequent (Out,P) queries for the same party P.

4.1.2 Password-Authenticated Key Exchange

The interaction is conceptually close to that of FRE, with the important difference that the adversary is
now allowed to perform (online) password guesses. In FRE, the output of parties was determined as soon as
the responder had input its password, with the possibility for the adversary to force the output of its own
adversarially-generated key K only by actively controlling a party and knowing the password of its peer.
Here, the adversary can also attempt to guess the password of either party by means of TestPwd queries
to the functionality without even corrupting them!

Compared to FRE, each record now has a status associated with it. If the adversary performs a password
guess against party P and fails, the target record is marked as interrupted. If instead the password guess
succeeds, the target record is marked as compromised, and P will output the adversarially-generated key
K. The adversary can now disclose the output of the functionality first to the initiator and then to the
responder: the same (random) key is returned to both parties only if they have the same password and the
following conditions hold: (i) the initiator’s record is fresh and is queried first, and (ii) the responder’s record
is fresh. In any other case, the functionality outputs random keys.
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Functionality FPAKE

The functionality FPAKE is parameterized by a security parameter λ. an initiator I, a responder R, and
the adversary S via the following queries:

Upon receiving a query (NewSession, sid, I,R, wI) from I:

Record (I,R, wI), mark it as fresh, and leak (sid, I,R) to S. Ignore all future messages from I.

Upon receiving a query (ok, sid) from S:

Send a message (NewSession, sid, I,R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I,R, wR) from R:

Record (R, I, wR) and mark it as fresh.

Upon receiving a query (TestPwd, sid,P, w′) from the adversary S:

If P ∈ {I,R} and there is a record of the form (P, ·, w) which is fresh, then:

• If w′ = w, mark the record as compromised and return ”correct guess” to S.
• If w′ ̸= w, mark the record as interrupted and return ”wrong guess” to S.

Upon receiving a query (NewKey, sid,P,K) from S, where |K| = λ:

If P ∈ {I,R} and there is a record of the form (P, ·, w) that is not marked as completed then:

• If this record is compromised, or either wI = wR and I or R is corrupted, or P is corrupted,
then output (sid,K) to party P.

• If this record is fresh, P = I, and there exists a record (R, I, wR) with wR = w, choose
skey←$ {0, 1}λ. Output skey to I, and append skey to the record (I,R, wI).

• If this record is fresh, P = R, and there exists a record (I,R, wI, skey) with wI = w, output
skey to R.

• If none of the above rules apply, choose skey′ ←$ {0, 1}λ and output it to party P.

In any case, mark the record (P, ·, w) as completed.

4.2 Randomized Equality from OT

We sanitize the RE from OT protocol of Canetti et al. [10] by using FsOT. Compared to the non-sanitized
protocol, we parameterize the input domain I and the respective blinding operation ∗, in line with the
description of FsOT. For the ease of exposition, we depict the protocol in Figure 3 assuming 1-bit passwords.
The n-bit password case runs exactly in the same way except that (i) it requires n OTs, and (ii) it computes
keys using operator ∗ with n random coins rather than only one.

In order to preserve correctness, we leverage on the symmetry of the protocol. In particular, the values
each party retrieves from the batch of OTs in which they act as receivers embeds the random strings that
are used by both firewalls, and these strings are the same also for the other OT batch. This also thwarts
both input triggering attacks, as well as information leakage.

Theorem 3. The protocol in Figure 3 wsrUC-realizes the FRE ideal functionality in the (FsOT,FSAT)-hybrid
model under static corruptions.

First of all, we argue that the protocol is correct.

Lemma 4. The protocol in Figure 3 is correct.
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Core CI (wI) Firewall FI Firewall FR Core CR (wR)
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I
1)←$ I2λ (ρI0, ρ

I
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R
1 )←$ I2λ (rR0 , r

R
1 )←$ I2λ

(ρI0, ρ
I
1)

(rI0, r
I
1) FsOT

wR

r̃′ = rIwR ∗ ρIwR ∗ ρRwR

(ρR0 , ρ
R
1 )

(ρR0 , ρ
R
1 )

wI

r̃′′ = rRwI ∗ ρRwI ∗ ρIwI
FsOT

(rR0 , r
R
1 )

(ρI0, ρ
I
1)

KI = rIwI K̃ ′ = r̃′

K̃ ′′ = r̃′′ KR = rRwR

skey = KI ∗K ′′ skey′ = K ′ ∗KR

Output skey. Output skey′.

Figure 3: A sanitizing protocol for FRE from sanitizable OT with a 1-bit password.

Proof (Lemma 4). If wI = wR, then KI ∗ K̃ ′′ = K̃ ′ ∗KR (i.e., parties output the same key):

KI ∗ K̃ ′′ = (rIwI) ∗ (rRwI ∗ ρRwI ∗ ρIwI)

= (rIwI ∗ ρIwI ∗ ρRwI) ∗ rRwI

= (rIwR ∗ ρIwR ∗ ρRwR) ∗ rRwR

= K̃ ′ ∗KR

We now show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which
the same core is incorruptible and their firewall is honest.

Lemma 5. The firewall FP in Figure 3, for P ∈ {I,R}, is strongly sanitizing.

Proof (Lemma 5). We show that no environment E , which allows specious corruptions for the core CP but
does not corrupt the respective firewall FP, is able to distinguish between an execution of the protocol in
Figure 3 with an incorruptible CP from one that accepts the corruption C̃P. We consider the case P = I.
Since the protocol is symmetric, the proof is the same for both parties.

We first argue that no input-trigger attacks are possible. The only source of input-triggers comes from
the inbound values of the second batch of FsOT, as the inputs of the (malicious) responder may have been
crafted in a way to trigger a specious corruption in CI in an undetectable manner. Since FI samples coins ρIb
uniformly at random from the input space I, the output of the operation ∗ is uniformly random in I, even
in the presence of a biased distribution sampled by a malicious responder.

We now show that CI is unable to leak any information. The initiator’s outbound communication consists
of choosing random coins and sending them through FsOT. Since FI samples coins ρIb uniformly at random
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from the input space I, the output of the operation ∗ is uniformly random in I, even in the presence of a
biased distribution sampled by the specious core C̃I.

Lemma 6. For every adversary A corrupting either party maliciously and the firewall of the other (honest)
party semi-honestly in an execution of the protocol Π as in Figure 2 in the (FsOT,FSAT)-hybrid model, there
exists a simulator S such that, for all environments E, the following holds:

Exec
(FsOT,FSAT)
Π,A,E ≈ ExecWrap(FRE),S,E

Proof (Lemma 6). The proof of this lemma follows closely the proof of the non-sanitized protocol of Canetti
et al. (Proof of Theorem 1, [25]), restricted to the case of static corruptions.

We analyze corruption scenarios separately, interacting with FRE and the environment E , and simulating
a run of the protocol Π for the core of the honest party.

Malicious Initiator. The initiator I is corrupted, so the core of the receiver CR is honest and its firewall
FR is semi-honest. The simulator S can simulate the ideal functionality FsOT, hence it can obtain whatever
the adversary A inputs on behalf of corrupted parties (honest parties are still dummy parties as per the UC
framework). More specifically, it simulates the first batch of OTs (in which I acts as the sender) as follows:

1. Whenever A sends inputs (rI0, r
I
1) to FsOT acting as a malicious initiator in the first OT, S records the

tuple.

2. Whenever A sends inputs (ρR0 , ρ
R
1 ) to FsOT acting as the receiver’s firewall FR in the first OT, S updates

the tuple as the functionality would, provided it has received a message as in (1). Otherwise, it does
nothing.

Notice that step (1) is still necessary, as the functionality still expects the semi-honest FR to blind the
sender’s inputs of the OT (as the overall party is honest). It then simulates the second batch of OTs (in
which I acts as the receiver) as follows:

1. Whenever A sends inputs (ρR0 , ρ
R
1 ) to FsOT acting as the responder’s firewall FR in the second OT, S

locally tracks that it has received such a query but drops the actual values.

2. Whenever A sends input w to FsOT acting as a malicious initiator in the second OT, if S had received
a message as in (1), it records the input w, and returns a random value r′ ←$ I to A. Otherwise, it
does nothing.

This is allowed, as r′ is a uniformly random value generated by S independently from ρRw (and this would
be the expected behaviour of the CR).

After this preliminary phase, S sends message (Init, sid, I,R, w) to FRE. It also sends message (ok, sid)
to FRE, prompting the (dummy) receiver to input its password. Then, it computes the key as the initiator
would in the protocol by using the password w it extracted from the adversary. More specifically, KI = rIw,

and K̃ ′′ = r′. S then sends an Out query containing K = KI ∗ K̃ ′′ to FRE for both parties, receiving outI
(i.e., the output of the corrupted initiator).

Malicious Receiver. S initially waits for a message (sid, I,R) from FRE. As soon as the message is
received, it inputs (ok, sid) to FRE, receiving a matching (wakeup, sid, I,R) message. From this point on, it
simulates the Respond query exactly as the simulation for the malicious initiator.

Proof (Theorem 3). The theorem statement follows by looking at the standard corruption translation table.
Since the adversary maliciously corrupts either the initiator or the responder, the remaining honest party has
either (i) a Honest core and a SemiHonest firewall, or (ii) a Specious core and a Honest firewall. Since
both firewalls are strongly sanitizing, as shown in Lemma 5, the core in case (ii) can be considered Honest
(Lemma 2 of [15]). Hence, the statement follows directly by Lemma 6. We consider Isolate corruptions as
Malicious corruptions.
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5 Subversion-Resilient Split Functionalities

In this section, we extend the notion of split functionalities of Barak et al. [5] to the srUC framework. Infor-
mally, we want to show that any protocol π wsrUC-realizing a 2-party functionality F assuming authenticated
channels can be compiled into another protocol Π that wsrUC-realizes the 2-party split functionality sF in
the unauthenticated channel setting.4 More formally, the goal of this section is to prove the following theorem.

Theorem 4. Let F be a (regular) 2-party UC functionality that can be realized in the wsrUC model given
authenticated communication (i.e., FSAT). Then, assuming the existence of sanitizable signatures, there exists
a protocol ΠF that securely realizes the 2-party split functionality sF in the wsrUC model.

Towards that, we follow the same strategy as [5] and proceed in the following three stages:

� Link initialization: The first step consists in building the sanitizable split-authenticated functionality
sFSAT that parties will use to communicate on. The sFSAT functionality can be seen as the split version
of the FSAT functionality.

� Multi-session security : As the second step, we show that when authenticated channels are available,
any functionality can be “poly-realized” in the wsrUC model. Here, poly-realizing a functionality
informally means that security of the protocol implementing the functionality still holds even when
multiple (i.e., poly-many) instances of the protocol share the same setup. For that, we show that the
subversion-resilient GMW protocol from [15] poly-realizes any functionality in the wsrUC model.

� Unauthenticated channels: Finally, we show that the generic transformation of [5] from any protocol
π that 2-realizes a 2-party functionality F given authenticated channels in the srUC model into a
protocol Π that realizes sF given access to sFSAT in the srUC model. This is achieved by adapting the
transformation of [5] to the srUC model.

Next, we look at each of these stages individually towards demonstrating Theorem 4.

5.1 Building Link Initialization

In this section we formally define sFSAT (i.e., the split version of the sanitizable authenticated channel
functionality FSAT of [15]) and we build a protocol that realizes it in the 2-party setting in the srUC model.
For that, we introduce the notion of sanitizable signatures and show that it can be instantiated with the
BLS signature scheme [8].

5.1.1 Description of sFSAT.

The sFSAT functionality only guarantees that each party will be interacting with the same entity throughout
the entire protocol run. The party could either be communicating with the expected party or with the
adversary itself. The sFSAT functionality has a similar structure to FSAT, with the addition of having a link
initialization phase. We describe sFSAT next.

Functionality sFSAT

sFSAT is a sanitizable ideal functionality that interacts with a set of parties P, each composed of a core
Ci and a firewall Fi, and an adversary S. The functionality consists of the following communication
interfaces for the cores and the firewalls respectively.

Initialization

4Note that we restrict our theorem to 2-party functionalities (in contrast to [5]) as the theorem relies on the sanitizable
sFSAT functionality that we will only show how to realize for the 2-party setting.

19



� Upon activation with input (Init, sid), parse sid = (P, sid′) where P is a set of parties, record (P, sid′)
and forward it to the adversary S.

� Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that party P = (C,F) ∈ P, that
the list H of party identities includes P, and that for all recorded sets H ′, either H ∩ H ′ contains
only corrupted parties (as defined in the standard corruption transition table) and sidH ̸= sidH′ , or
H ′ = H and sidH = sidH′ . If so, output (Init, sid, sidH) to P and record (H, sidH) if not yet recorded.
Else, do nothing.

Message Authentication

� Upon receiving the message (Send, sid,Pj ,m) on IOi where Pi ∈ P, output the tuple on Si.

� Upon receiving the message (Send, sid,Pj , m̃) on Si, add the tuple to an (initially empty) list W of
waiting messages. The same triple can appear multiple times in the list. Then, leak the tuple to S.

� Upon receiving the message (Deliver, (Send, sid,Pi, m̃)) from S:

– If Pj did not previously receive an (Init, sid, sidH) output then do nothing.

– Else, if Pi is in the authentication set H of Pj , and Pi is uncorrupted, then: if there
is a tuple (sid,Pi,Pj , m̃) ∈ W, remove one appearance of the triple from W and output
(Receive, sid,Pi, m̃) on Sj . Otherwise do nothing.

– Else (i.e., Pj received (Init, sid, sidH), and either Pi is corrupted or Pi /∈ H), output
(Receive, sid,Pi, m̃) on Sj , regardless of W.

� Upon receiving the message (Receive, sid,Pi, m̂) on Sj , output the tuple on IOj .

The functionality is divided into a preliminary initialization phase and the actual message authentication
phase. In the initialization phase, the adversary controls how parties will be partitioned in the respective
authentication sets. Intuitively, parties within the same authentication set will be able to communicate as if
there was an authenticated channel between them. It is however possible for the adversary to participate in
different authentication sets on behalf of all corrupted parties, and any party outside of that authentication
set. In the message authentication phase, honest parties will transmit messages in an authenticated fashion
within the same authentication set. However, they may very well receive messages out of the blue from the
adversary on behalf of any party that is corrupted or outside the authentication set.

With respect to sanitation, whenever a core sends a message m with destination Pj on IOi, the message
is output on Si. This means that m is output to a firewall that will decide if/how to sanitize m to m̃ in any
arbitrary way, without involving the functionality in the sanitation process. Once the firewall determines
the message m̃ to send to Pj , m̃ is leaked to the adversary. According to the partition of parties performed
in the link authentication phase, the adversary has different capabilities:

• If the recipient party is within the same authentication set, the adversary can exclusively control its
delivery time. This behaviour is indeed equivalent to FSAT, in which the message is stored and then
output to the recipient party whenever the adversary decides to do so.

• If Pi is corrupted or the parties are in different authentication sets, the adversary may deliver arbitrary
messages to Pj , disregarding the message queue.

Whenever the adversary allows the delivery of a message, that message is output to the firewall Fj . Similarly
to the sending phase, Fj may now modify the message arbitrarily without involving the functionality. Once
a (potentially different) message m̂ is determined by Fj , it is delivered by the functionality to Cj .

We stress that, as it was the case for FSAT, cores and their respective firewall are allowed to freely
communicate through secure channels. This is achieved by means of Send messages (from a core to its
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firewall), and Receive messages (from a firewall to its core). In principle, a firewall may send back any
message to its core, even if it was not related to any Deliver message of the adversary.

5.1.2 Comparing channel assumptions.

In Figure 4, we compare the backbone of communication offered by FSAT and sFSAT. We remark that having
secure channels between cores and their respective firewall is still required, as otherwise the adversary could
simply speciously corrupt a core Ci and analyze the traffic from Ci to Fi, nullifying any sanitation the firewall
may have introduced. From a practical standpoint, this assumption is perfectly reasonable. In close-range
environments, such as LANs in enterprises or home networks, a user may have its machine connected to a
firewall (which could very well be the router itself) by means of a physical cable, and it is reasonable to
assume that no wiretapping will occur.

The framework would still hold even in the presence of remote firewalls: a core could establish a secure
channel with its firewall via a maliciously-secure 2PC protocol (e.g., by running a maliciously secure 2PC-
PAKE) in a preliminary setup phase. Notice that this still makes sense in our threat model, as the adversary
would have to mount an attack against a honest party, which is constituted of either a specious core and
an honest firewall or an honest core and a semi-honest firewall. In either case, one of the two components
remains honest throughout the setup of the secure channel.

Party Pi Party Pj

Ci

FSC

Fi FAC

Fj

FSC

Cj

Party Pi Party Pj

Ci

FSC

Fi Fj

FSC

Cj

Figure 4: On the left, communication as in FSAT. On the right, communication as in sFSAT. FSC, FAC represent
secure channels and authenticated channels, respectively.

5.1.3 Sanitizable Signature Schemes.

In the construction of FSA of Barak et al. [5], parties exchange locally-generated keys and sign their messages
in order to preserve the split-authenticated security of the communication channel. However, in order to
avoid subversion attacks, both inbound and outbound verification keys have to be appropriately sanitized
by firewalls, breaking correctness in the verification of the signature. In order to overcome this limitation,
we introduce a new notion that we call sanitizable signature schemes.

Informally, a sanitizable signature scheme allows to maul the verification key from vk to ṽk by means
of an algorithm MaulVK that takes as input randomness ρ. The same randomness may be re-used by an
algorithm AlignSig to align an (accepting) signature σ produced under key sk, producing a signature σ̃ that

verifies with mauled key ṽk. The latter operation should also be invertible, meaning that the signature σ
may be re-computed from σ̃ and ρ. We formally define this notion as a natural extension of EUF-CMA
signatures in Definitions 5 and 6, and show that EUF-CMA implies the new security notion in a black-box
manner.
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Definition 5 (Sanitizable signature schemes). A sanitizable existentially unforgeable under chosen message
attack signature scheme consists of a tuple of algorithms (KeyGen,Sign,Vrfy,MaulVK,AlignSig,UnAlignSig)
with the following properties:

1. Correctness: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m) with m ∈ {0, 1}n,
Vrfy(vk, (m,σ)) = 1.

2. Consistent key sanitation: For every (vk, sk)←$ KeyGen(1λ), for every ρ ∈ {0, 1}n, MaulVK(vk, ρ)

outputs a new verification key ṽk with the following property. For every σ ←$ Sign(sk,m) with m ∈
{0, 1}n, AlignSig((vk, σ,m), ρ) produces an accepting signature σ̃ for message m verifiable by verification

key ṽk, i.e., Vrfy(ṽk,AlignSig((vk, σ,m), ρ)) = 1, where ṽk = MaulVK(vk, ρ) and σ = Sign(sk,m).

3. Alignment invertibility: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m) with m ∈
{0, 1}n, for every ρ ∈ {0, 1}n, for every ṽk = MaulVK(vk, ρ), for every σ̃ = AlignSig((vk, σ,m), ρ), the

algorithm UnAlignSig returns the original signature σ, i.e., σ = UnAlignSig((ṽk, σ̃,m), ρ)

Definition 6 (Sanitizable EUF-CMA security). A sanitizable signature scheme is sanitizable existentially
unforgeable under chosen message (SAT EUF-CMA) if the probability of the adversary A winning the fol-
lowing game is negligible:

� Sample (vk, sk) ←$ KeyGen(1λ) and a blinding factor ρ ←$ {0, 1}n, and run A(vk, ρ). Compute

ṽk = MaulVK(vk, ρ).

� Upon receiving a query from A with message m, compute σ = Sign(sk,m) and AlignSig((vk,m, σ), ρ).
Respond with σ̃ and add m to a listM.

� Challenge A to produce a signature σ̃∗ on message m∗ /∈M that verifies under ṽk.

� Upon receiving a response (m∗, σ̃∗), A wins if Vrfyṽk(m
∗, σ̃) = 1.

Theorem 5. Any EUF-CMA signature scheme is also SAT EUF-CMA.

Proof. We build a reduction in Figure 5.

5.1.4 Combining verification keys.

Looking ahead, the link initialization phase of the protocol realizing sFSAT relies on the determination of
session IDs via (identifying) verification keys of parties, which get sanitized by firewalls in different directions.

More specifically, core Ci has access to vki and ṽkj , and core Cj has access to ṽki and vkj , with ṽki, ṽkj being
appropriate sanitations of vki, vkj using the same randomness. For this reason, we additionally define an
appropriate generic algorithm that allows to combine these keys either way to output the same value.

Definition 7 (Consistent identity combinability). A sanitizable signature scheme has consistent identity
combinability if it supports an algorithm IDComb with the following property:

IDComb(vki,MaulVK(vkj , ρ)) = IDComb(MaulVK(vki, ρ), vkj)

5.1.5 Construction from BLS.

We report the BLS signature scheme [8] in the following.

• KeyGen(1λ) = (sk, vk) = (x, gx)

• Sign(sk,m) = H(m)sk

• Vrfy(vk, (m,σ)): Check ê(σ, g) = ê(H(m), vk)
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A′ A C

(sk, vk)←$ KeyGen(1λ)

vk

ρ←$ {0, 1}n

ṽk = MaulVK(vk, ρ)

(vk, ρ)

m

m

σ = Sign(sk,m)
σ

σ̃ = AlignSig((vk, σ,m), ρ)

σ̃

m∗, σ̃∗

σ∗ = UnAlignSig((ṽk, σ,m), ρ)

m∗, σ∗

Figure 5: A reduction proving Theorem 5. A′ is the algorithm who breaks SAT EUF-CMA with non-negligible
probability. A acts as the challenger for A′ and as the adversary for EUF-CMA. C is the challenger for EUF-CMA.

The BLS signature scheme is already compatible with all the additional interfaces required by a sanitizable
signature scheme, and has the consistent identity combinability property:

• MaulVK(vk, ρ) = vkρ

• AlignSig((vk, σ,m), ρ) = σρ

• UnAlignSig((vk, σ̃,m), ρ) = σ̃ρ−1

• IDComb(vki, vkj) = ê(vki, vkj)

Theorem 6. The BLS signature scheme [8] with the additional algorithms specified above is a sanitizable
signature scheme with consistent identity combinability, assuming that H is a random oracle and that CDH
is hard for G.

Proof. It has already been shown that the BLS signature scheme is EUF-CMA [8]. Using Theorem 5, we
know that it is also SAT EUF-CMA as defined in Definition 6. It remains to show that the signature scheme
has consistent key sanitation and alignment invertibility, as formalized in Definition 5.

Consistent key sanitation is immediate from inspection. Denoting (sk, vk) = KeyGen(1λ) = (x, gx), σ =

Sign(sk,m) = H(m)x with m ∈ {0, 1}n, ṽk = MaulVK(vk, ρ) = gxρ, σ̃ = AlignSig(vk, σ,m, ρ) = (H(m)x)ρ,

the verification of signature σ̃ for message m under ṽk (i.e., Vrfy(ṽk, (σ̃,m)) : ê(σ̃, g)
?
= ê(H(m), ṽk)) succeeds:

ê(σ̃, g) = ê(H(m)xρ, g)

= ê(H(m), gxρ)

= ê(H(m), ṽk)
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Alignment invertibility also follows by inspection:

UnAlignSig(ṽk, σ̃,m, ρ) = (H(m)xρ)ρ
−1

= H(m)x = σ

Finally, we show consistent identity combinability:

IDComb(vki,MaulVK(vkj , ρ)) = ê(gxi , gxjρ)

= ê(gxiρ, gxj )

= IDComb(MaulVK(vki, ρ), vkj)

5.1.6 Realizing sFSAT.

We now describe a protocol that realizes sFSAT in the 2-party setting. The link initialization phase is depicted
in Figure 6, and the message authentication phase in Figure 7. In particular:

Core Ci Firewall Fi

(ski, vki)←$ KeyGen(1λ)

vki

ρi ←$ {0, 1}λ

ṽki = MaulVK(vki, ρi)

ṽki

vkj

ṽkj = MaulVK(vkj , ρi)

ṽkj

s̃idi = IDComb(vki, ṽkj)

σi = Sign(ski, s̃idi)

(s̃idi, σi)

σ̃i = AlignSig((vki, (s̃idi, σi)), ρi)

(s̃idi, σ̃i)

(sidj , σj)

Drop the message if either holds:

• sidj ̸= s̃idi.
• Vrfy(vkj , (sidj , σ̃j)) = 0.

Else, continue.

σ̃j = AlignSig((vkj , (s̃idi, σi)), ρi)
Set cnt = 0.

(sidj , σ̃j)

If s̃idi ̸= sidj , abort.

If Vrfy(ṽkj , (sidj , σ̃j)) = 0, abort.

Figure 6: Diagram of the protocol implementing the link initialization phase of sFSAT.

• In the link initialization phase, the firewall blinds the (identifying) verification key vki to ṽki using
blinding factor ρi, and forwards it (supposedly) to party Pj . Upon receiving the verification key
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Core Ci Firewall Fi

Input: (Send, sid,Pj ,mi)
Output (Send, sid,Pj ,mi) on Si.

Input: (Send, sid,Pj , m̃i)

(Pj , m̃i, cnt)

σi = Sign(ski, (s̃idi,Pj , m̃i, cnt))
σi

σ̃i = AlignSig((vk, (s̃idi,Pj , m̃i, cnt)), ρi)
cnt = cnt+ 1

((sid,Pj , m̃i, cnt), σ̃i)

((sidj ,Pi,mj , cnt), σj)

Drop the message if any holds:

• sidj ̸= s̃idi.
• cnt was already received.
• Vrfy(vkj , ((sidj ,Pi,mj , cnt), σj)) = 0.

Else, output (Receive, sid,Pj ,mj) on Sj .

Input: (Receive, sid,Pi, m̃j)
Output (Receive, sid,Pj , m̃j) on IOj .

Figure 7: Diagram of the protocol implementing the message authentication sFSAT, split in each of the interfaces.

vkj (supposedly) from party Pj , the firewall blinds it to ṽkj with ρi and returns it to its core. The

core then uses ski to sign its SID s̃idi, computed from vki and ṽkj in such a way that it is equal

to an SID computed from ṽki and vkj (using the consistent identity combinability property of the
sanitizable signature scheme). Then, the firewall aligns the signature to verify under verification key

ṽki and outputs it (supposedly) to party Pj , along with s̃idi. Whenever the firewall receives a message

(sidj , σj), it first checks whether sidj is consistent with s̃idi, and whether the signature verifies. If
not, the message is dropped, as it may be input triggering. Otherwise, it aligns σj to σ̃j with ρi and

forwards (sidj , σ̃j) to its core, who checks whether s̃idi = sidj (i.e., both parties agree on a consistently
computed SID), and whether the signature is valid. If so, the message authentication phase may be
carried out.

• In the message authentication phase, we distinguish the four interfaces in different interactions:

1. Whenever the core of the calling protocol inputs a message (Send, sid,Pj ,m) on IOi, Ci outputs
the message on Si (i.e., to the firewall of the calling protocol).

2. Whenever the firewall of the calling protocol inputs a message (Send, sid,Pj , m̃) on Si, Fi sends
the message back to its core Ci, who produces a signature σi using secret key ski and forwards σi

to Fi. Fi then aligns the signature to σ̃i using the same ρi of the link initialization phase, updates
the counter and sends the message and the signature (supposedly) to party Pj .

3. Whenever Fi receives a message m̃ (supposedly) coming from party Pj , it first checks whether the
signature is valid, whether the SID matches the one of the core, and whether a message with the
same counter was already sent. If any check fails, the message is dropped. Otherwise, it is output
on Si (i.e., to the firewall of the calling protocol).

4. Whenever the firewall of the calling protocol inputs a message (Receive, sid, Pj , m̂) on Si, Ci

outputs the message on IOi (i.e., to the core of the calling protocol).
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Theorem 7. The protocol depicted in Figures 6, 7 realizes the sFSAT functionality, assuming a sanitiz-
able EUF-CMA signature scheme with consistent identity combinability and the presence of secure channels
between cores and their respective firewall.

We first show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which
the same core is incorruptible and their firewall is honest.

Lemma 7. The firewall Fi in Figure 3, is strongly sanitizing.

Proof (Lemma 7). We show that no environment E , which allows specious corruptions for the core Ci but
does not corrupt the respective firewall Fi, is able to distinguish between an execution of the protocol
in Figures 6, 7 with an incorruptible Ci from one that accepts the corruption C̃i. We analyze the link
initialization and the message authentication phases separately.

Link Initialization. We first argue that no input-trigger attacks are possible. The inbound values for Ci

are vkj and (sidj , σj), all of which are sanitized as follows:

• vkj is sanitized to a fresh verification key by means of algorithm MaulVK with randomness ρi.

• sidj is publicly verifiable and it matches a known sanitized value, so any different message is dropped

(in particular, it should match the outbound s̃idi).

• σj is sanitized to a new signature using the same blinding factor ρi.

We now show that Ci is unable to leak any information. The core sends a verification key vki and session

ID s̃idi with a matching signature σi, all of which are sanitized as follows:

• vki is sanitized to a fresh verification key by means of algorithm MaulVK with randomness ρi.

• s̃idi is publicly verifiable and is a sanitized value, so any different message is dropped.

• σi is sanitized to a new signature using the same blinding factor ρi.

Message Authentication. The only inbound message to Ci is the tuple (Pj , m̃i, cnt), which is output by
the honest Fi, so no triggering exists.

The only message outbound from Ci is the signature σj , which gets sanitized by means of algorithm
AlignSig with the same randomness ρi used in the link initialization phase.

The sanitation of all other messages (both inbound and outbound) is taken care of by the calling protocol.

Lemma 8. For every adversary A corrupting any subset of parties maliciously and the firewall of honest
parties semi-honestly in an execution of the protocol Π as in Figures 6, 7, there exists a simulator S such
that, for all environments E, assuming secure channels between cores and their firewall and a sanitizable
EUF-CMA signature scheme with consistent identity combinability, the following holds:

ExecΠ,A,E ≈ ExecsFSAT,S,E

Proof (Lemma 8). The proof runs similarly to the one of Barak et al. (Proof of Theorem 11, [5]): the
simulator S partitions parties according to the SID they compute, and the unforgeability of the signature
scheme prevents the adversary from forcing inconsistent authentication sets among honest parties or injecting
arbitrary messages in the channel.

Intuitively, the main differences consist in (i) the core combining verification keys to a single value, (ii)
the adversary controlling the blinding factor used by the (semi-honest) firewall to sanitize the verification key
and to align signatures, (iii) the presence of additional communication between a core and its firewall. Item
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(i) is covered by consistent identity combinability. Item (ii) is covered by assuming a sanitizable EUF-CMA
signature scheme, so knowing the blinding factor does not help towards producing a valid forgery. Item (iii)
is covered by the assumption of secure channels between a core and its firewall.

We refer to the 2-party setting in which both parties are composed of an honest core and a semi-honest
firewall. The simulator internally simulates the behaviour of the honest cores in the link initialization phase
by producing keys vki and vkj respectively. The simulator also stores keys ṽkj , ṽki received from A. Now,

the simulator checks whether IDComb(vki, ṽkj) = IDComb(ṽki, vkj) (i.e., whether the locally-received keys

have been blinded consistently), and whether the signatures generated on s̃idi and s̃idj verify. If so, it places
Pi and Pj in the same authentication set H. In any other case, it places Pi and Pj in different authentication
sets.

Compared to the original proof, the output of IDComb now immediately identifies the identification
set and its related SID in a correct manner (as we are in the 2-party case) due to the consistent identity
combinability property.

For what concerns the simulation of communication between firewalls, the strategy is the same as the
original proof. The only way their simulation fails in the message authentication phase is by having a
Receive message from party Pj to party Pi coming out of the blue from A. This occurs only by considering
two honest cores with semi-honest firewalls, as otherwise the signature would have been generated by S. In
this case, if A forges a signature on behalf of the honest core Cj , even by knowing the randomness used to
maul the respective verification key, it may be used to break sanitizable EUF-CMA.

The communication between cores and their firewall is immediate, due to the presence of a secure channel
between said components: Send or Receivemessages coming from sFSAT (on behalf of dummy components)
are forwarded to the appropriate component; Send from (corrupted) cores or Receive from (corrupted)
firewalls messages are forwarded to sFSAT.

Proof (Theorem 7). The theorem statement follows by looking at the standard corruption translation table.
Since both parties are honest, they are either composed of (i) a Honest core and a SemiHonest firewall,
or (ii) a Specious core and a Honest firewall. Since both firewalls are strongly sanitizing, as shown in
Lemma 7, the core in case (ii) can be considered Honest (Lemma 2 of [15]). Hence, the statement follows
directly by Lemma 8. We consider Isolate corruptions as Malicious corruptions.

5.2 Multi-Session Ideal Functionalities in srUC

In this section we first recap the notion of a UC “multi-session” functionality F , and then we show that this
notion can be cast in the srUC model. Finally, we prove that in the srUC model with FSAT any functionality
can be poly-realized.

Informally, a multi-session ideal functionality in UC is an ideal functionality that allows “multiple runs”
of the functionality using the same setup. As a concrete example, the commitment functionality FCOM allows
a committer to commit to a single value; to produce another commitment a new and independent instance
of (the protocol realizing) FCOM must be spawn with a brand new setup. In contrast, the multi-session
functionality FMCOM allows a committer to perform poly-many commitments using the same setup. More
formally, in UC we say that a protocol π n-emulates a protocol ϕ if for any adversary A there exists an
adversary S such that for any n-instance environment E we have that Execπ,A,E ≈ Execϕ,S,E . An n-
instance environment is one that interacts with n concurrent instances of the protocol, i.e., it is allowed to
invoke ITIs with up to n different SIDs.

Casting this notion into the srUC model, one simply needs to consider the same definition as above
but replacing the n-instance environment E with a specious n-instance environment E ′ and replacing the
adversary A with a specious adversary A′. Now we are ready to state the lemma.

Lemma 9. For any regular (well-formed)5 ideal functionality F there exists a protocol π that n-realizes F
in the wsrUC model assuming authenticated channels in the presence of static and malicious adversaries for
n = poly(λ). Moreover, the protocol π is such that all instances of π use a single instance of Fcrs.

5The “well-formed” property is to rule out unrealistic functionalities as explained in [12, 5].
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Proof (sketch). We follow the proof of [5] adjusting to our setting when necessary. Let ΦF be the protocol
of [15] realizing functionality F in the wsrUC model. The structure of ΦF can roughly be broken down into
two main components: (1) a protocol πF̂C&P

for realizing a multi-instance commit-and-prove functionality

F̂C&P that provides multiple independent commit-and-prove operations making (implicit) use of a single CRS
functionality Fcrs, and (2) a protocol ΠF for realizing functionality F assuming access to F̂C&P. We can

express the protocol ΦF as ΦF = Π
πF̂C&P

F . Observe that πF̂C&P
produces each commit-and-prove operation

in a separate subroutine, and the only state that is shared is the access to the CRS. Thus, we conclude that
for any n, running n independent instances of ΦF where each instance uses a different instance of F̂C&P is
exactly the same as running the same n instances of ΦF where all instances use a single joint instance of
F̂C&P. Then, we can invoke the composition theorem of the srUC model and replace the the joint instance
of F̂C&P by a single instance of a protocol that realizes F̂C&P. We end up with a protocol that realizes n
independent instances of F and uses a single instance of Fcrs.

5.3 Realizing Generic Split Functionalitites

In this section we finally show that any protocol π that realizes a 2-party functionality F in the FSAT-hybrid
model (i.e., using authenticated channels) can be compiled into a protocol Π that realizes the split 2-party
functionality sF in the sFSAT-hybrid model (i.e., using unauthenticated channels).

5.3.1 Description of a Generic Split Functionality.

Below we give a formal description of a generic split functionality. Informally, a split functionality is a
wrapper of a functionality F where the adversary can separate parties (each made of a core and a firewall)
into disjoint execution sets.

Functionality sF

sF is a split sanitizable ideal functionality that interacts with a set of parties P, each composed of a
core C and a firewall F, and an adversary S. The functionality consists of the following communication
interfaces for the cores and the firewalls respectively.

Initialization

� Upon activation with input (Init, sid), parse sid = (P, sid′) where P is a set of parties, record (P, sid′)
and forward it to the adversary S.

� Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that party P = (C,F) ∈ P, that
the list H of party identities includes P, and that for all recorded sets H ′, either H ∩ H ′ contains
only corrupted parties (as defined in the standard corruption transition table) and sidH ̸= sidH′ , or
H ′ = H and sidH = sidH′ . If any check fails, do nothing. Otherwise, output (Init, sid, sidH) to P
and initialize an instance of the ideal functionality F with SID sidH , denoted as FH . The adversary
plays the role of parties P −H in FH , and any sub-components of the remaining (honest) parties in
H can be corrupted consistently with the standard corruption translation table (i.e., specious cores
or semi-honest firewalls).

Computation

� Upon receiving an input (input, sid, v) from a honest component of party P ∈ P on any interface
I ∈ {IO,S}, find the set H such that P ∈ H, and forward the message v from P to FH on interface
I.

� Upon receiving an input (input, sid, H,P, comp, v) from S, for comp ∈ {C,F}, if FH is initialized
and either P ∈ P −H or P ∈ P but comp is a corrupted component, forward v to FH as if coming

28



from comp on interface IO if comp = C (resp. interface S if comp = F). Otherwise, ignore the
message.

� When an instance FH generates an output v for a honest component of party P ∈ H on any
interface I ∈ {IO,S}, output v on I. When the output is for a party P ∈ P −H, for a corrupted
component of party P ∈ P, or for S, send the output to S.

5.3.2 Compiler for Split Protocols.

Barak et al. [5] show a compiler for transforming a protocol π realizing functionality F in the UC FMAUTH-
hybrid model into a protocol Π realizing functionality sF in the UC FSA-hybrid model. This result can be
mapped to our framework by replacing FMAUTH with FSAT, and FSA with sFSAT, with the additional detail
that messages coming from sFSAT are forwarded to the instance of the protocol π on the respective interface
(i.e., IO or S), rather than having a single interface for each party.

Lemma 10. Let G be a setup functionality, let F be an 2-party ideal functionality, and let π be a protocol
that securely 2-realizes F in the wsrUC model with authenticated communication (i.e., FSAT) and a single
instance of G. Then, protocol Π realizes the split functionality sF in the wsrUC model using a single instance
of sFSAT and a single instance of G.

Proof (sketch). The idea of the proof is to show that for any specious adversary A there exists a simulator
S such that no specious environment E can tell with non-negligible probability whether it is interacting with
adversary A and parties running protocol Π or with the simulator S and the ideal functionality sF . For
that, we simply extend the proof of [5, Lemma 4.2] to account for the srUC model. The outline of the proof
of [5] in the UC framework is as follows: (1) Given an adversary A that interacts with (a single instance of)
protocol Π on unauthenticated channels construct an adversary A′ that interacts with (up to n concurrent
instances of) protocol π on authenticated channels. (2) Since π securely n-realizes F then there exists a
simulator S ′ such that the output of any UC n-instance environment E ′ that interacts with S ′ and multiple
instances of F is indistinguishable from the output of E ′ when interacting with A′ and π. (3) Transform
the simulator S ′ into a simulator S for the ideal execution of sF . (4) Finally, given an environment E (that
interacts with A and Π), construct an n-instance environment E ′ (that interacts with A′ and π) such that
E ′ distinguishes between an interaction with A′ and π from an interaction with S ′ and F with the same
probability that E distinguishes between an interaction with A and Π from an interaction with S and sF .

The main difference between the standard UC model and the srUC model is that in srUC the environment
and the adversary can be specious. Namely, a specious environment is one that upon its first activation writes
(Specious,D) on a special tape, where D is an efficiently sampleable distribution of specious cores. Then, it

samples (C̃1, . . . , C̃m, a)← D and writes this on the special tape too. Finally, it inputs (Specious, C̃1, . . . , C̃m)
to the adversary.

One crucial point in the proof is to note that environment E ′ is specious whenever E is specious; since E ′ is
constructed black-box from E , it runs E as its first step, and thus correctly samples and writes (C̃1, . . . , C̃m, a)
to a special tape as the first thing it does. The second point is that if A is specious then A′ is also specious,
since A′ will run an instance of A internally and can relay any specious corruption instruction. As our
instantiation of sFSAT is only for the 2-party case, the lemma must be cast to the specialized 2-party
setting.

Putting it all together. We show that the split functionalities notion of [5] can be cast in the subversion-
resilient UC model in the same way as in standard UC. Namely, one can build protocols for the authenticated
channel setting and simply invoke Theorem 4 for claiming security of the split version of the protocol in the
unauthenticated channel setting (albeit only for 2-party functionalities).
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6 Sanitizing PAKE

So far we have only realized the FRE functionality, in which the adversary is unable to perform any (online)
password guesses. Similarly to the work of Canetti et al. [10], we can immediately obtain FPAKE by weakening
authenticated channels among firewalls just to be split authenticated, using the results we presented in Section
5.

Corollary 1. The protocol in Figure 3 wsrUC-realizes the sFRE ideal functionality in the (FsOT, sFSAT)-
hybrid model under static corruptions.

Corollary 1 follows from Theorem 4, which allows us to replace FSAT with sFSAT in the protocol so that
it instantiate the split version of randomized equality sFRE. Finally, we remark that sFRE is equivalent to
FPAKE, as shown in prior work such as [19, 5].

7 Conclusions

We presented the first subversion-resilient UC protocol for PAKE. We formalized oblivious transfer in the
subversion setting, and extended the framework to the unauthenticated setting, providing an implementation
for its respective backbone of communication (i.e., sFSAT) in the two-tier model without assuming a PKI.
Finally, we instantiated FPAKE by replacing, in a sanitized protocol for FRE, the FSAT assumption with
sFSAT. Several interesting research questions remain open, such as fully instantiating FSAT in the two-tier
model, expanding the notion of split functionalities in the srUC model to the n-party setting, extending
the framework to adaptive corruptions, weakening trusted setups to be subvertable, and achieving explicit
mutual authentication for randomized equality and PAKE.
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A Basics of the UC framework

We briefly recap the UC framework from [9]. A protocol Π consists of code for each of the parties P1, . . . ,Pn.
The parties can in turn make calls to ideal functionalities G. More precisely, the code of the program is
a single machine. As part of its input, it gets a party identifier pid which tells the code which party it
should be running the code for. This allows more flexibility for dynamic sets of parties. Below, we will only
consider programs with a fixed number of parties. We are therefore tacitly identifying n parties identifiers
pid1, . . . , pidn with the n parties P1, . . . ,Pn, i.e., Pi = pidi. We prefer the notation Pi for purely idiomatic
reasons.

A party Pi can call an ideal functionality. To do so it will specify which G to call (technically it writes
down the code of G and a session identifier sid distinguishing different calls), along with an input x. Then,
(sid, pid, x) is given to G. If G does not exists, then it is created from its code.

There is an adversary A which attacks the protocol. It can corrupt parties via special corruption com-
mands. How parties react to these corruptions is flexible; the parties can in principle be programmed to react
in any efficient way. As an example, in response to input active-corrupt, we might say that the party in
the future will output all its inputs to the adversary, and that it will let the adversary specify what messages
the party should send. The adversary can also control ideal functionalities, if the ideal functionalities expose
an interface for that. It might for instance be allowed to influence at what time messages are delivered on
an ideal functionality of point-to-point message transmission.

There is also an environment E which gives inputs to the parties and sees their outputs. The environment
can talk freely to the adversary. A real world execution ExecΠ,A,E is driven by the environment which can
activate parties or ideal functionalities. The parties and ideal functionalities can also activate each other.
The details of activation are not essential here, and can be found in [9].

The protocol Π is meant to implement an ideal functionality F . This is formulated by considering a run
of F with dummy parties which just forward messages between E and F . In addition, there is an adversary
S, called the simulator, which can interact with F on the adversarial interface, and which can interact freely
with E as an adversary can. The simulation is the process ExecF,S,E , where we do not specify the dummy
protocol but use F for the dummy protocol composed with F . We say that Π UC-realizes F if there exists an
efficient simulator which makes the simulation look like the real world execution to any efficient environment:

∃S∀E : ExecΠ,A,E ≈ ExecF,S,E ,

where A is the dummy adversary (that simply acts as a proxy for the environment), and where the quan-
tifications are over poly-time interactive Turing machines.

Consider a protocol Π that realizes an ideal functionality F in a setting where parties can communicate
as usual, and additionally make calls to an unbounded number of copies of some other ideal functionality
G. (This model is called the G-hybrid model.) Furthermore, let Γ be a protocol that UC-realizes G as
sketched above, and let ΠG→Γ be the composed protocol that is identical to Π, with the exception that
each interaction with the ideal functionality G is replaced with a call to (or an activation of) an appropriate
instance of the protocol Γ. Similarly, any output produced by the protocol Γ is treated as a value provided
by the functionality G. The composition theorem states that in such a case, Π and ΠG→Γ have essentially
the same input/output behavior. Namely, Γ behaves just like the ideal functionality G even when composed
with an arbitrary protocol Π. A special case of this theorem states that if Π UC-realizes F in the G-hybrid
model, then ΠG→Γ UC-realizes F .

B Non-sanitized protocols and ideal functionalities

In this section, we report some of the descriptions for ideal functionalities and non-sanitized variants of
protocols that are already known in the literature.
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B.1 Split Authentication

Functionality FSA

FSA is an ideal functionality that interacts with a set of parties P and an adversary S.

Initialization

Upon receiving query (Init, sid), where sid = (P, sid′):

Record P and forward it to S.

Upon receiving query (Init, sid,P, H, sidH), from S:

Verify that party P ∈ P, that the listH of party identities includes P, and that for all recorded sets
H ′, either H∩H ′ contains only corrupted parties and sidH ̸= sidH′ , or H ′ = H and sidH = sidH′ .
If so, output (Init, sid, sidH) to P and record (H, sidH) if not yet recorded. Else, do nothing.

Message authentication

Upon receiving query (Send, sid,P,P′,m), where P ∈ P:

Send (P,P′,m) to S and add (P,P′,m) to an (initially empty) list W of waiting messages. The
same triple can appear multiple times in the list.

Upon receiving query (Deliver, sid,P,P′,m) from S:

• If P′ did not previously receive an (Init, sid, sidH) output then do nothing.

• Else, if P is in the authentication set H of P′, and P is uncorrupted, then: if there
is a triple (P,P′,m) ∈ W, remove one appearance of the triple from W and output
(Received, sid,P,P′,m) to P ′. Otherwise do nothing.

• Else (i.e., P′ received (Init, sid, sidH), and either P is corrupted or P /∈ H), output
(Received, sid,P,P′,m) to P′, regardless of W.

As shown in Barak et al. [5], the protocol depicted in Figure 8 instantiates FSA.

B.2 Oblivious Transfer

We report the generic framework of Peikert et al. [25] in Figure 9.

B.3 Randomized Equality

We depict in Figure 10 a variant of the construction of RE from OT of Canetti et al. [10] using a 1-bit
password.
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Client Pi

(ski, vki)←$ KeyGen(1λ)

vki

vkj

sidi = (vki, vkj)
σi = Signski(sidi)

(σi, sidi)

(σj , sidj)

If sidi ̸= sidj , abort.
If Vrfyvkj (sidj , σj) = 0, abort.

Input: mi

σ = Signski(sidi,mi, Pj , cnt = 0)

((sidi,mi, Pj , 0), σi)

((sidj ,mj ,Pi, 0), σj)

If Vrfyvkj ((sidj ,mj ,Pi, 0), σj) = 0, drop the message.

Output mj .

Figure 8: Session-authenticated channel of Barak et al. [5]. On the top half, the setup phase. On the bottom half,
the message authentication phase, consisting of sending a message, and receiving and verifying an inbound message.

Sender S(x0, x1) Receiver R(σ)

CRS = crs
(sk, pk)←$ KeyGen(σ)

pk

yb ←$ Enc(pk, b, xb)

(y0, y1)

Output Dec(sk, yσ)

Figure 9: The generic framework for FOT of Peikert et al. [25].
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Initiator I (wI) Responder R (wR)

(rI0, r
I
1)←$ {0, 1}2λ (rR0 , r

R
1 )←$ {0, 1}2λ

(rI0, r
I
1) FOT

wR
i

r′ = rIwR

wI

r′′ = rRwI
FOT

(rR0 , r
R
1 )

KI = rIwI K ′ = r′

K ′′ = r′′ KR = rRwR

Output skey = KI ⊕K ′′ Output skey′ = K ′ ⊕KR

Figure 10: FRE from OT [10] with a 1-bit password.
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