
Breach Extraction Attacks: Exposing and Addressing the Leakage in
Second Generation Compromised Credential Checking Services∗

Dario Pasquini†

SPRING lab, EPFL
dario.pasquini@epfl.ch

Danilo Francati†

Aarhus University
dfrancati@cs.au.dk

Giuseppe Ateniese
George Mason University
ateniese@gmu.edu

Evgenios M. Kornaropoulos
George Mason University
evgenios@gmu.edu

Abstract—Credential tweaking attacks use breached passwords
to generate semantically similar passwords and gain access to
victims’ services. These attacks sidestep the first generation
of compromised credential checking (C3) services. The second
generation of compromised credential checking services, called
“Might I Get Pwned” (MIGP), is a privacy-preserving protocol
that defends against credential tweaking attacks by allowing
clients to query whether a password or a semantically similar
variation is present in the server’s compromised credentials
dataset. The desired privacy requirements include not revealing
the user’s entered password to the server and ensuring that
no compromised credentials are disclosed to the client.

In this work, we formalize the cryptographic leakage of
the MIGP protocol and perform a security analysis to assess
its impact on the credentials held by the server. We focus
on how this leakage aids breach extraction attacks, where an
honest-but-curious client interacts with the server to extract
information about the stored credentials. Furthermore, we dis-
cover additional leakage that arises from the implementation
of Cloudflare’s deployment of MIGP. We evaluate how the
discovered leakage affects the guessing capability of an attacker
in relation to breach extraction attacks. Finally, we propose
MIGP 2.0, a new iteration of the MIGP protocol designed to
minimize data leakage and prevent the introduced attacks.

1. Introduction

In the evolving cyber threat landscape, attackers target
user credentials, particularly those stored in plaintext, ex-
ploiting system vulnerabilities to compromise and post them
online, thereby breaching user privacy and enabling creden-
tial stuffing attacks [1]. In these attacks, adversaries exploit
widespread password reuse [2], [3], [4], [5] by using cre-
dentials exposed from a data breach to attempt unauthorized
access to another unrelated domain. Services like “Have
I Been Pwned” [6], Google Password Checkup [7], and
Microsoft Password Monitor [8]—known as Compromised
Credential Checking (C3) services— aim to alert users about
the possibility of a credential stuffing attack. Specifically,
they allow users to check if their active credentials appear
in breach datasets. To accomplish this, C3 services use

∗Appearing in the proceedings of the 45th IEEE Symposium on Security
and Privacy (S&P’24).
†Equal contribution.

cryptographic tools to create a privacy-preserving protocol,
ensuring that the queried password of the user (which may
not be breached) is not disclosed to the server and the
sensitive breached credentials are not shared with the client.

However, these services cannot cover an increasingly
common type of attack: credential tweaking attacks [2], [9],
[10]. In these attacks, cybercriminals employ sophisticated
techniques to generate slight variants of known breached
passwords, enabling them to make distinct educated pass-
word guesses towards unauthorized access to the target’s
services. Unfortunately, credential tweaking attacks are not
covered by C3 services since they only check for an exact
match against the breached credentials. To address these
shortcomings, Pal et al. [11] proposed Might I Get Pwned
(MIGP), a second-generation C3 service. MIGP extends the
capabilities of conventional C3 by checking not only for
exact password matches but also for semantic similarity
with breached credentials. To achieve this, MIGP uses a
password-generating function called τ to generate seman-
tically similar passwords during the initialization phase.

The Role of Cryptographic Leakage in MIGP. It is
important to note that the privacy-preserving design of MIGP
serves (in part) the purpose of safeguarding the collection of
breached credential data from being exposed to MIGP query
issuers. Paradoxically, despite the MIGP server’s data collec-
tion being labeled as “breached credentials,” it can contain
credentials that have been breached but are not publicly
available. In April 2023 [12], the FBI took down a stolen
identity marketplace that was selling non-publicly available
breached credentials. To combat credential stuffing attacks,
the FBI shared in confidence millions of non-publicly avail-
able compromised credentials with HIBP. Thus, real-world
C3 services work with breached credentials that should not
be exposed under any circumstances.1

Our work sheds light on an unexplored aspect of the
MIGP protocol: the existence of cryptographic leakage over
the stored credentials. This leakage is a controlled dis-
closure intentionally designed into the protocol. The term

1. We note that if the breached credentials of the server are all considered
public, then there is no point in deploying a privacy-preserving C3; the
server can simply return a subset (i.e., a bucket) of the credentials in
plaintext. This change enhances efficiency by forgoing cryptographic oper-
ations for non-interactive queries. Additionally, it fortifies defenses against
tweaking attacks, allowing users to apply arbitrary similarity functions to
leaked passwords.

breach extraction attack describes the attack vector in which
an honest-but-curious user interacts with the MIGP server
through its protocols and uses the leakage to infer the
breach credentials stored within it. In this work, we focus
on examining how MIGP’s leakage impacts the security of
the breached credentials stored in the MIGP server.

On Cryptographic Leakage in Encrypted Systems.
In order for the MIGP protocol to scale to the necessary
performance requirements, i.e., resolving privacy-preserving
queries on datasets with billions of breached credentials,
the designers allowed some information to be revealed by
design. This is not the first instance where a cryptographic
primitive has allowed controlled disclosure; well-known ex-
amples include Searchable Encryption [13] and Structured
Encryption [14]. Our work is inspired by the cryptanalysis
of the leakage in searchable encryption [15], [16], [17], [18],
[19], [20], where leakage attacks are mounted by the server
to reconstruct the client’s data through leakage. A promising
step forward in this area is the use of a privacy quantification
technique called leakage inversion [21] that has the ability
to formally capture how leakage affects the reconstruction
ability of an attacker. However, in our work, the leakage
attacks are mounted by the client to extract information
about the credentials stored on the server.

Where Does the Leakage Come From? Interestingly,
the password-generating function τ can output the same
password from different inputs. We call this phenomenon
a τ -collision. Unfortunately, our findings show that the
design of MIGP [11] reveals to the client several types
of τ -collisions through the initialization of the protocol.
When multiple τ -collisions occur, they reveal a network
of connections between passwords, enabling the attacker to
significantly reduce the search space. Simply switching to
a different τ function is not a viable solution. The reason
is that τ ’s role is to accurately predict password variations
that a user would come up with; however, the more accurate
the τ function becomes, the higher the occurrence of τ -
collisions, leading to increased leakage in the protocol.

More Leakage from Cloudflare’s Implementation.
MIGP is currently deployed by Cloudflare and offers (1)
a public-facing API similar to HIBP, as well as (2) a new
breach alerting feature within Cloudflare’s Web Application
Firewall (WAF) product.2 WAF acts on behalf of a client and
communicates with the MIGP server to check if the queried
credential (or a similar counterpart) has been compromised.
However, our research shows that the current implementa-
tion of MIGP by Cloudflare [22] causes additional leakage,
which assists in breach extraction attacks. We clarify that
breach extraction attacks concern the data held by the MIGP
server and not the query issued by the MIGP client.

Our Contributions. Our work advances the understand-
ing of Compromised Credential Checking (C3) services by
uncovering leakage-based vulnerabilities both within the
MIGP protocol and in its implementation [22]:
• Formalizing Leakage in MIGP: We identified an unex-

plored cryptographic leakage over stored credentials in

2. A running demo can be found at: https://migp.cloudflare.com.

the MIGP protocol. This leakage, amplified by specific
decisions in Cloudflare’s MIGP implementation, reveals
significant structural information about the stored cre-
dentials (Section 3 and Section 5).

• Examination of τ -collisions: We provide a taxonomy
of τ -collisions (events where the password-generating
function τ generates the same result from distinct in-
puts) and the means to identify them from the client’s
view of MIGP. The observed τ -collisions serve as the
core ingredient towards breach extraction attacks.

• Breach Extraction Attacks via Leakage: We present
three approaches that exploit the observed leakage to
infer information about the breached credentials of the
server. The first attack (Section 4) assumes knowledge
of all but one password of the target user and uses
cryptographic leakage to narrow down the possible
guesses based on the observed pattern. The second
attack (Section 6) assumes knowledge of a single pass-
word of the target user and leverages both crypto-
graphic leakage and implementation leakage to guess
the remaining passwords of the target user. The third
attack (Section 7) assumes no knowledge about the
target’s passwords and uses the cryptographic leakage
and the implementation leakage to infer a template of
the unknown passwords, e.g., consisting of numbers.

• Proposal of MIGP 2.0: We propose MIGP 2.0 as a
response to the identified security issues in the original
MIGP protocol. This new protocol minimizes leakage
and eliminates the risk of τ -collisions (Section 8).

Vulnerability Disclosure. We disclosed our findings about
the leakage (see Sections 3 and 5) and our techniques for
using the leakage toward breach extraction attacks (see Sec-
tions 4, 6, and 7) to the Cloudflare team on May 24th, 2023.
Cloudflare acknowledged receipt the next day. On August
2nd, the company confirmed the validity of our findings.
The Cloudflare team informed us that the public-facing
API of the breach-extraction-prone implementation [22] is
considered a demo, and there is no threat with respect to the
WAF as it only acts as the client part of the protocol and,
thus, does not leak any information. We, therefore, consider
the presented attacks orthogonal to Cloudflare’s WAF.
Ethical Considerations The MIGP server deployed by
CloudFlare uses only publicly known breached credentials
from the 2017 “BreachCompilation” dataset (4IQ); thus,
in this instance, our extraction techniques cannot expose
private data due to its absence. To carry out our security
analysis, we used plaintext credentials from the 4IQ leak,
raising ethical concerns. Yet, our analysis does not further
the damage initially inflicted on users by the 4IQ leak.
We refrained from linking the 4IQ data with other publicly
available information or preprocessing it in a manner that
could offer more insights to potential adversaries.

2. Overview of the MIGP Protocol

The following exposition describes the “Might I get
Pwned” (MIGP) protocol that was originally proposed
in [11]. This protocol is run between a client and a server.

https://migp.cloudflare.com

The desired functionality is that the client wants to check
if (i) her input password currently appears in a breached
dataset, (ii) a password that is “similar” to her original
password appears in a breached dataset, or (iii) none of
the above. The server holds a collection of breached cre-
dentials (augmented by tweaked passwords) and assists in
this computation by returning the client an encoded subset
of the password collection. The desired privacy guarantees
are (A) the server does not infer the queried credential, and
(B) the client does not infer the encoded credentials (which
may not be publicly available) received from the server.
Jumping ahead, the next section describes the security-
efficiency trade-off as leakage functions in order to make
the system scalable.

Notation. The term G denotes a cyclic group of prime
order, and Zp is the set of integers modulo p. The notation
x←$ X denotes sampling at random from the set X . The
term |X | denotes the cardinality of the set X . We define
as D = {(u1, w̃1), . . . , (u|D|, w̃|D|)} a dataset of breached
username-password pairs (i.e., credentials). The term Z
denotes a set (i.e., bucket) computed by the server. The term
τn defines an algorithm with input a user’s password (also
called an original/real password) and output n synthetic
passwords that are similar to the input (under a notion of
similarity). On input the i-th password w̃i of the user u,
τn(w̃i) outputs n passwords (w1

i , . . . , w
n
i) that are similar to

the real password w̃i. For several users, say u1, u2, then the
notation for the i-th password of u1 and the j-th password
of u2 becomes w̃1,i where τn(w̃1,i) outputs (w1

1,i, . . . , w
n
1,i)

and for w̃2,j we have τn(w̃2,j) that outputs (w1
2,j , . . . , w

n
2,j).

Pre-preprocessing phase Πτn,ℓ
init

Parameters: 2HashDH OPRF F, password generator τn, number of buckets ℓ,

and hash function Ĥ : {0, 1}∗ → {0, 1}log ℓ
.

Server Input: Compromised Dataset D = {(u1, w̃1), . . . , (u|D|, w̃|D|)}.
Server Output: OPRF key k and ℓ sets/buckets Z1, . . . ,Zℓ.

1 : Sample key k←$ Zq

2 : Initialize the sets/buckets Z1 = ⊥, . . . ,Zℓ = ⊥
3 : For every username-password pair (u, w̃) ∈ D :

4 : Compute the set/bucket label j = Ĥ(u)

5 : Add the PRF evaluation Fk(u, w̃) to set/bucket Zj+1

6 : For every similar password w ∈ τn(w̃) :

7 : Add Fk(u,w)⊕ 1 to set/bucket Zj+1

8 : Return k,Z1, . . . ,Zℓ to Server

Figure 1: Pre-processing phase of MIGP. The OPRF F
corresponds to the 2HashDH construction. τn corresponds
to an arbitrary function that, on input an original password
w̃, it generates n similar passwords (w1, . . . , wn).

2HashDH OPRF of Jarecki et al. [23], [24]. A PRF
F is an efficiently computable function that produces pseu-
dorandom outputs. Let G be a cyclic group of prime order
p and H1 : {0, 1}∗ → G,H2 : {0, 1}∗ × G → {0, 1}λ
be two hash functions. An oblivious PRF (OPRF) F is a
PRF with an efficient protocol Πoprf which allows a client
(holding an input x) and a server (holding a key k) to
compute Fk(x) without revealing any information about the
input of the other party. The 2HashDH OPRF [23], [24]

construction F : Zp × {0, 1}∗ → {0, 1}λ is defined as
Fk(x) = H2(x,H1(x)

k) where x ∈ {0, 1}∗ and k is a
random PRF key k←$ Zp. The protocol Πoprf is defined
in Figure 13 (see Section A). We abstract OPRF calls as
invocations of the ideal functionality Foprf .

Pre-processing Phase Πτn,ℓ
init (Server-side Only). Let ℓ

be an integer denoting the number of buckets and τn be
a fixed and publicly known algorithm that computes sim-
ilar passwords. The MIGP protocol starts with an offline
pre-processing phase Πτn,ℓ

init in which the server process
the dataset D = {(u1, w̃1), . . . , (u|D|, w̃|D|)} composed
of breached username and password pairs. The protocol
Πτn,ℓ

init is depicted in Figure 1. First, the server samples a
random PRF key k←$ Zp for the OPRF F and initializes
ℓ empty buckets Z1, . . . ,Zℓ, implemented as sets (i.e., no
repetitions). Then, for every pair (u, w̃) ∈ D, it encodes
(u, w̃) by evaluating Fk(u, w̃) and it adds the latter to
the (j + 1)-th bucket Zj+1 selected as j = Ĥ(u) where
Ĥ : {0, 1}∗ → {0, 1}log ℓ is an hash function. We note here
that buckets Z are indexed from 1 to ℓ, while the hash
function outputs bit labels from {0, 1}log ℓ, which is why we
assign each user to the (j + 1)-th bucket (as opposed to j-
th). In order to deal with similar passwords, the server holds
a password generator algorithm τn(·) (we assume τn(·) is
a publicly known parameter of the protocol) such that on
input, a real password w̃, it generated n synthetic variants
(w1, . . . , wn) = τn(w̃) of w̃. This algorithm is applied
to every original password w̃ contained in D in order to
generate variants that, in turn, will be encoded as described
before, except that the last bit of the PRF’s output is flipped
in order to denote that this is a similar password (see Line
7 of Figure 1). Then, the server stores the PRF key k and
the pre-processed buckets Z1, . . . ,Zℓ.

Query phase Πℓ
query

Parameters: 2HashDH OPRF F (represented as Foprf), number of buckets ℓ,

and a hash function Ĥ such that Ĥ : {0, 1}∗ → {0, 1}log ℓ
.

Client Server
Input: Username u and Input: OPRF key k and

password w̃ ℓ buckets Z1, . . . ,Zℓ.

Output: match, similar, or none Output: ⊥

1 : j = Ĥ(u)

2 : (u, w̃)
Invoke Foprf (OPRF execution)

y = Foprf((u, w̃), k)

k

3 : y

4 : Send bucket index j + 1

5 : Send the content of the (j + 1)-th bucket Zj+1

6 : If y ∈ Zj+1 : return match

7 : If y ⊕ 1 ∈ Zj+1 : return similar

8 : Else return none

Figure 2: The query phase of MIGP. Foprf is the ideal OPRF
functionality that is instantiated with 2HashDH.

Query Phase Πℓ
query. The query phase is executed each

time a client wants to check whether her password w (associ-

ated to an username u) appears in the pre-processed server’s
buckets. The client and the server invoke the ideal OPRF
functionality Foprf on client’s input (u, w̃) and server’s
input k (this is denoted as y = Foprf((u, w̃), k) in Figure 2).
As a result, the client will obtain y = Fk(u, w̃). Moreover,
the client sends the bucket index j+1 corresponding to her
username u, i.e., j = Ĥ(u). In turn, the server will reply with
the entire (j + 1)-th bucket Zj+1. With y = Fk(u, w̃) and
Zj+1, the client can locally check if y ∈ Zj+1. If this is the
case, the client outputs match, meaning that her password w̃
appears in the password dataset of the server. On the other
hand, if y ̸∈ Zj+1, the client checks if w̃ matches a similar
password wi generated by the server using her password
generator function τn. This can be done by checking that
y ⊕ 1 ∈ Zj+1 (recall that similar passwords are encoded
with the last bit flipped). If true, then the client outputs
similar. If all the above checks fail, then the client outputs
none, meaning that w̃ does not match any of the original and
similar passwords. We simplified [11] by excluding client-
side generation of similar passwords (see Section B).

Similarity Function τ . To model similarity among pass-
words, MIGP relies on models originally designed to per-
form credential tweaking [2], [9]. These generative models
take a password as an input and produce a set of similar
passwords that are variations that the user may come up
with (e.g., “pass0word” → “Pass0word!”). Formally, func-
tion τn(w̃) generates a set of n similar passwords to w̃,
with w /∈ τn(w). We note that τ is not necessarily symmet-
ric, that is if w1 ∈ τn(w2) it doesn’t mean that w2 ∈ τn(w1).
Pal et al. [11] considers two similarity functions.

Das-r model uses a set of hand-crafted mangling rules
introduced by Das et al. [2]. The above rules encode basic
string transformations based on deleting, appending, and
substituting characters. Pal et al. [11] choose to rank the
output of the mangling rules with respect to their effec-
tiveness, an approach denoted as “Das-r”. For reference,
in Table 2, we report the first 10 entries. Das-r model is
fast and accurate enough [11], which is why MIGP chooses
Das-r as its τ function in the main implementation [22].

P2P model uses a neural network [9]. Specifically, an
encoder-decoder RNN-based architecture is employed to
model credential tweaking attacks. Given a target password
as input, the network conditionally defines a set of trans-
formations by composing over a vocabulary of predefined
atomic instructions [9]. While this model generally performs
better than simpler rule-based approaches such as Das-r,
this is currently not employed by any of the MIGP imple-
mentations, given its inherent computational complexity.

3. The Cryptographic Leakage Profile

The MIGP protocol is designed to be efficient in practice.
This efficiency comes with the price of weakening the over-
all security; this tradeoff is captured by a leakage function.
The security definition guarantees that nothing else is re-
vealed to the participating parties except these well-defined
leakage functions (also called leakage profile). We note that
the original MIGP protocol [11] was not presented using

a leakage-based security definition (but previous works on
compromised credentials checking services did follow this
security framework [25]). In this section, we refactor the
same security guarantees of the original MIGP under a
leakage-based framework so as to (i) formally identify the
shortcomings of the proposed leakage profile [11], and (ii)
use our cryptanalysis to motivate a new leakage profile (and
a protocol) that is not vulnerable to our attacks.

The MIGP Leakage Profile. We say that the MIGP
protocol is (Lclient, Lserver)-secure if the server and the
client (holding inputs D and (u, w̃), respectively) obtain
no more information than the leakage Lclient(D, (u, w̃))
(i.e., a disclosure function over the server’s dataset D)
and Lserver(D, (u, w̃)) (i.e., a disclosure function over the
client’s queried credentials (u, w̃)), respectively. This is for-
malized by requiring that there exists an efficient simulator
that simulates the protocol by using only the correspond-
ing leakage. To capture a more realistic interaction with
MIGP, the simulator must be able to simulate q rounds of
query phase executions, i.e., (u1, w̃1), . . . , (uq, w̃q). Hence,
in the case of multiple queries, we say that the MIGP
protocol is (q, Lclient, Lserver)-secure where the leakage is
a function computed over D and {(ui, w̃i)}i∈[q] (i.e., the
q inputs of the client), i.e., Lclient(D, {(ui, w̃i)}i∈[q]) and
Lserver(D, {(ui, w̃i)}i∈[q]). The discussed security definition
(the formal treatment of which can be found in Section C)
captures the case of semi-honest security.

A first look at the design of MIGP (ignoring the client-
side similar password generation) may imply that the best
possible security that any3 second-generation C3 service can
offer is defined by the following two leakage functions:

Lserver(D, {(ui, w̃i)}i∈[q]) = (Ĥ(ui) + 1)i∈[q]
Lclient(D, {(ui, w̃i)}i∈[q]) = (resulti, |ZĤ(ui)+1|)i∈[q] (1)

where D is the server’s dataset, (ui, w̃i) is the i-th credential
queried by the client, Ĥ(ui)+ 1 is the bucket index queried
by the client during the i-th execution, |ZĤ(ui)+1| is the
size of the bucket returned by the server during the i-th
execution, and resulti is the final output of the i-th query
phase execution which is defined as follows:

resulti =

match , if (ui, w̃i) ∈ D
similar ,∃(ui, w̃j) ∈ D : w̃i ∈ τn(w̃j)
match+ similar , if (ui, w̃i) ∈ D and

∃(ui, w̃j) ∈ D : w̃i ∈ τn(w̃j)
none , otherwise

(2)

We emphasize that the result “match + similar” is not
explicitly mentioned in [11] as part of their desired function-
ality. However, it can be inferred from the design choices
of their protocol, as the same password w′ may appear as
both Fk(u,w

′) and Fk(u,w
′)⊕ 1 in the same bucket.

τ -Collisions: A Subtle Disclosure of MIGP. The MIGP
protocol models each bucket as a set. It is known that every
member of a set must be unique, i.e., no two members are

3. In Section 4 we show that the leakage profile from Equation (1) is
vulnerable to attacks and in Section 8 we show that there exists a leakage
profile that reveals significantly less and is not vulnerable to our attacks.

identical. We stress that this modeling is a design choice,
not an inherent characteristic of the functionality.

One implication of this design choice is the following:
inserting a duplicate PRF evaluation in bucket Z leads to
creating a “hole”4. Specifically, it is possible that Line 7
of Figure 1 attempts to insert the same synthetic password
multiple times to Z . Thus, a curious client can detect the
absence of a password, given that both τ and n are public.
With the term τ -collision, we refer to the phenomenon of τ
generating the same password for two different inputs. The
next subsection details the different ways that τ -collisions
may occur. A τ -collision is illustrated in Figure 3 for pass-
words “mkm123” and “123123001”. Applying the τ function
to both passwords generates the same entry “123123” once
for τ(“mkm123”) and once for τ(“123123001”).

Figure 3: Example of a τ -collision between two passwords.
Function τ generates the same output, namely 123123, for
two different inputs, namely mkm123 and 123123001.

When Do We Have τ -collisions? A τ -collision between
two original passwords occurs when the passwords are
semantically similar. Informally, the very nature of the τ
function is to enable the arrow direction “semantically
similar passwords”⇒“collision”. To better understand the
implications of this leakage, we need to analyze whether an
attacker can traverse this relation in the reverse direction,
i.e., “semantically similar passwords”⇐“collision”, i.e., re-
cover one original password by observing a collision.

3.1. Taxonomy of τ -collisions

In our analysis, we identify three types of τ -collisions.
Each of them can be detected using a different mechanism.
Hereafter, we refer to them as Type-0, Type-1a, and Type-1b.

Type-0 Collisions. Type-0 collisions do not appear very
often (according to our experiments), but they disclose a lot
of information about the structure of colliding passwords.
On a high level, this collision inserts the same password
w twice in the bucket without leaving a “hole”. A Type-0
collision takes place when a user has at least one real
password w̃i that is identical to a password generated by
τ with w̃j as an input. This can be formally expressed as:

∃(u, w̃i), (u, w̃j) ∈ D : w̃i ∈ τ(w̃j). (3)

Collision Detection Mechanism. Type-0 collisions are
revealed in an explicit way, i.e., Z has a Type-0 collision,
if it contains two PRF outputs with the last bit flipped:

∃Fk(u, w̃i),Fk(u,w
t
j) ∈ Z : Fk(u, w̃i) = (Fk(u,w

t
j)⊕ 1).

4. Let q be the number of real passwords in Z . With the term “hole”
we refer to the fact that there is a discrepancy between |Z| and q · n. We
do not imply that the memory allocation of the bucket is fragmented.

Indeed, following Line 7 of the protocol Figure 1, every
similar password generated through τ is flagged by XORing
the last bit with 1 before inserting it in the bucket. Given
that the two PRF outputs are not identical (i.e., the last bit is
different), this “repetition” is not eliminated (see Figure 4a).

Type-1 Collisions. Type-1 collisions are the most preva-
lent form of τ -collisions. We differentiate between two types
of Type-1 collisions, i.e., Type-1a and Type-1b. On a high
level, both types of collisions leave an “hole” in the bucket
due to inserting the same PRF evaluation twice into a set.
Type-1a collision occurs when (at least) two passwords
associated with the same user generate the same similar
password through the application of τ . Formally, we have a
Type-1a τ -collision in a bucket Z given a user u when:

∃(u, w̃i), (u, w̃j) ∈ D : |τ(w̃i) ∩ τ(w̃j)| ≠ 0. (4)

An illustration of Type-1a is in Figure 4b. On the other hand,
Type-1b collisions occur when two passwords associated
with the same user generate the same similar password w′

through the application of τ , and additionally, this password
w′ also appears as a real password, see Figure 4c.

Collision Detection Mechanism. In the case of a Type-1
collision, the initialization of the bucket in Figure 1 results
in the existence of at least two different PRF evaluations of
synthetic passwords wk

i ∈ τ(w̃i) and wt
j ∈ τ(w̃j), such that

Fk(u,w
k
i) = Fk(u,w

t
j) for i ̸= j. Given that each bucket is

modeled as a set, only one entry eventually appears in the
bucket, which ultimately affects the total number of PRF
evaluations in the bucket. The above observation holds for
both Type-1a and Type-1b. The difference between Type-
1a and Type-1b is that for the case of Type-1a, the repeated
password w appears only as Fk(u,w)⊕1 in the bucket, while
for the case Type-1b the repeated password w appears both
as Fk(u,w) ⊕ 1 and as Fk(u,w) in the bucket. Let q be
the number of real passwords in Z . Formally, the sum of
Type-1a and Type-1b collisions is disclosed as q · n − |Z|,
where |Z| is the number of PRF evaluations present in Z .
From an adversarial point of view, the absence of passwords
from the bucket reveals a Type-1 collision, but it does not
reveal whether the cause is a Type-1a or a Type-1b collision.

Successful Choice of τ ⇒ Increased Leakage. There
is an intrinsic tension between choosing an accurate similar-
password generating function τ and minimizing leakage.
Recall that the objective of the τ function is to take as input
a single real password and guess a collection of passwords
that are likely to be chosen by this user. Suppose that a
user u has multiple compromised credentials, then if τ
serves its purpose, it would generate synthetic passwords,
all of which were also generated by user u and, potentially,
were breached at some point in the past. Thus, all the
configurations (choice of n and τ) for which MIGP provides
strong protection against tweaking attacks are also the
configurations that maximize the number of collisions, and
consequently, increase the leakage. Therefore, the proposed
leakage profile [11] cannot admit a parameterization of τn
that simultaneously offers strong protection against tweaking
attacks and minimal risk of exposing the stored credentials.

w̃=0001001. . . 0100010

Bucket Z

1101111. . . 0111000

1011101. . . 0010101

w̃ ⊕ 1=0001001. . . 0100011

1111011. . . 1101100

(a) Type-0

0001001. . . 0100010

Bucket Z

0101111. . . 0111000

0011101. . . 0010101

0101001. . . 0100000

0101001. . . 0100000

(b) Type-1a

w̃=0001001. . . 0100010

Bucket Z

1101111. . . 0111000

1011101. . . 0010101

w̃ ⊕ 1=0001001. . . 0100011

w̃ ⊕ 1=0001001. . . 0100011

(c) Type-1b
Figure 4: The three types of τ -collisions. The left side of each panel shows a graph representation of the collision (red
nodes are real passwords, green nodes are generated through τ), while the right side of each panel shows the effect of the
collision on the bucket. A “hole” in the bucket (depicted in red diagonal lines) may come either from Type-1a or Type-1b.

Overall, while the existence of a single collision seems
harmless at first sight, multiple collisions reveal a network
of “semantic” relations across different passwords. This
information-rich structure, see Figure 14, can be used to
learn a lot of privacy-sensitive information about the char-
acters of an encrypted password. Our attacks show that it is
possible for an attacker to perform the reconstruction step
“collision”⇒“semantically similar passwords”.

Empirical Analysis of τ -collision Next, we provide
statistics on the appearance of τ -collision in a real pass-
word dataset. For the evaluation, we use the same dataset
employed in MIGP paper [11], i.e., the 4iQ password leaks
collection [26]. This is a dataset of 1.4 billion unique
email-password pairs. As τn function, we consider Das-r
and P2P, where n is either 10 or 100 (the most common
parameters used in the original MIGP [11]). We then run the
processing protocol on the above four configurations, i.e.,
Das-r10,Das-r100,P2P10,P2P100, and count the number
and type of collisions for each user in D. By using Das-r
as our τ function and n=10, we recorded the percentage
of users with at least two passwords with τ -collision to
be 21.0%. This percentage of users goes up to 23.2% for
n=100. On the other hand, for P2P the percentage of
users with at least two passwords with τ -collision slightly
drops to 20.2% for n=10, but it reaches 24.6% at n=100.
Interestingly, Type-0 collisions never occur in isolation in
4iQ; that is, whenever there is a Type-0 collision within
the passwords of a user, there will also be a Type-1

4. Breach Extraction Attack: Filtering Guesses
Based On the Cryptographic Leakage

In this section, we present a “warm-up” leakage attack
with the goal of extracting the non-publicly available portion
of the dataset, i.e., a breach extraction attack. This first
attack uses the exact number of τ -collisions to impose
constraints and filter out password guesses that do not
fit the observed leakage; that is, if the attacker observes
X Type-0 collisions and Y Type-1 collisions, then he goes
down a list of potential password guesses and discards all
guesses that do not give X Type-0 and Y Type-1. Despite
the simplified setting (where the target user is the only one
hashing to this bucket), this attack highlights the advantage
gained by the attacker through τ -collisions—an advantage
overlooked in the design of MIGP [11].

On the Simplified Setting. This attack considers a
simplified setting where (i) multiple credentials of the target
user utrgt have been compromised, (ii) the attacker has
access to all compromised passwords of the user except the
target password wtrgt, and (iii) the target user utrgt is the
only user of D in the bucket. The attack in this subsection
relies on a simplified setting as conditions (ii) and (iii) may
not always be applicable. However, it is worth mentioning
that due to MIGP’s parameterization, D can assign only
a single user to a bucket, thus fulfilling condition (iii).
Condition (ii) is met in the following scenario: when the
target user utrgt is initially present in a publicly disclosed
dataset within MIGP, and subsequently, a new unseen pass-
word wtrgt from a non-public dataset is added to D. While
not universally applicable, this scenario is realistic, wherein
the attacker is aware of all but one of utrgt’s compromised
credentials. We believe that privacy guarantees should hold
regardless of the likelihood of the setting. Overall, this attack
in the simplified setting illustrates the problematic nature of
the leakage profile described in Equation (1).

Threat Model. The attacker is a user A of MIGP who
aims to infer the credentials of another target user utrgt.
The set of credentials Wtrgt of the target user stored in
MIGP is a combination of publicly available compromised
passwords and a single compromised password that is not
publicly available, i.e., Wtrgt={w̄1, . . . , w̄m, wtrgt}. Given
the knowledge of the m public passwords, A’s objective is
to guess the unknown target password wtrgt with a small
number of queries. We operate in a simplified model where
the bucket that contains utrgt credentials contains onlyWtrgt

(and their synthetic password counterparts).
Attack Overview. The basic premise of this attack is

that the τ -collision can be utilized by the adversary to
impose constraints on how wtrgt relates to the publicly
known passwords and their synthetic generations via τ . By
doing so, the attack filters out all guesses that do not match
the pattern of τ -collisions and reduce the search space for
wtrgt. The attack follows a two-step offline strategy:

(1) Setup phase: The attacker A starts with a list of
guesses G = [g1, . . .] to use as candidates for the target
password wtrgt (i.e., the hypothesis space). A uses the tar-
get’s username utrgt to compute the bucket index and issues
a query to obtain the bucket Zj associated to utrgt from the
server, following Figure 2. Then, A queries the server with
utrgt’s public passwords [w̄1, . . . , w̄m] learning the mapping
between the PRF evaluation and its plaintext counterpart;

that is: {t1 ↔ Fk(utrgt, w̄1), . . . , tm ↔ Fk(utrgt, w̄m)}.

Algorithm 1: FILTERINGATTACK

Data: Guess list G, target’s username utrgt, target’s public
passwords {w̄1, . . . , w̄m}.

Result: An updated guess list G.
// Setup Phase

1 Compute label j = Ĥ(utrgt) and request Zj from Server;
2 Query the Server on pairs (utrgt, w̄1), . . . , (utrgt, w̄m) to

retrieve t1 = Fk(utrgt, w̄1), . . . , tm = Fk(utrgt, w̄m);
// Offline Phase

3 Compute plaintext bucket based on public passwords, i.e.,
multiset PPass← {w̄1, . . . , w̄m}∪{τn(w̄1), . . . , τn(w̄m)};

// Type-0 Public2Target (P2T) Filtering
4 Find the pairs FlipPr← {PRFout,PRFout⊕ 1} of Type-1

collisions in Zj ;
5 If a pair from FlipPr is not in
{t1, t1 ⊕ 1}, . . . , {tm, tm ⊕ 1}, there is a Type-0 collision
from a public password to wtrgt;

6 Filter out all guesses g from G such that g /∈
⋃m

i=1 τn(w̄i);
// Type-0 Target2Public (T2P) Filtering

7 If there is a public password w̄i that does not appear as a
Type-0 collision in PPass but its PRF evaluation ti appears
as a Type-0 collision in FlipPr, then we have a Type-0
collision from wtrgt to a public password;

8 Filter out all guesses g from G such that w̄i /∈ τn(g);
// Type-1 Filtering

9 for every g in G do
10 Define Dg = {(utrgt, w̄1), . . . , (utrgt, w̄m)} ∪ {(utrgt, g)};
11 Run locally the protocol from Figure 1 on Dg to get bucket

Z′
j that captures the collisions of g with public passwords;

12 If |Z′
j | ̸= |Zj |, the number of Type-1 collisions that wtrgt

is involved in does not match, filter out g from G;
13 end
14 return the updated password list G;

(2) Offline phase: A, accessing the bucket Zj , enumer-
ates all the collisions involving wtrgt. Based on the type of
collision, the attacker A filters out guesses from the input
list G. The first filtering step (Lines 4−6 in Algorithm 1)
concerns the case where there is a Type-0 collision from a
publicly known password of the user to the (unknown) target
password wtrgt. In this case, the bucket Zj will contain a
PRF evaluation that appears once in its regular form and
once with its last bit flipped while also being absent from
{t1, . . . , tm}. The attacker can filter out all guesses from G
that do not satisfy the above detectable pattern. The second
filtering step (Lines 7−8) concerns the case where there is a
Type-0 collision from the (unknown) target password wtrgt

to a publicly known password and, additionally, this public
password does not have another Type-0 collision with the
set {w̄1, . . . , w̄m}. In this case, the attacker can verify that
one of the PRF evaluations {t1, . . . , tm} also appears in Zj

with its last bit flipped, while the corresponding underlying
plaintext password does not participate in a Type-1 collision
with {w̄1, . . . , w̄m}. The attacker can filter out all guesses
that do not satisfy the above detectable pattern. Finally, as
we detailed in Subsection 3.1, there is no way for an attacker
to differentiate between Type-1a and Type-1b. Luckily, both
of these collisions result in a “hole” in the bucket, and since
the aggregate number of absent passwords is observable,
the attacker can filter out all guesses that do not satisfy this
number (see Lines 9−13 in Algorithm 1).

The Filtering Attack algorithm outputs an updated list
of guesses that meet all observed collisions simultaneously.
The attacker can now start an online attack using this
updated list to significantly increase the effectiveness of his
guesses based on the observed leakage from τ -collisions.

Our description in this Section focuses on the algorith-
mic intuition of this warm-up breach extraction attack. We
present its evaluation in Appendix D.

In conclusion, this warm-up attack exemplifies how an
attacker can exploit τ -collisions to glean information about
stored passwords. Building on this foundation, we broaden
our investigation, relaxing our threat model and introducing
practical attacks against protocol implementations.

5. Additional Leakage from Cloudflare’s MIGP
Implementation Design Choices

In the following, we conduct a security analysis of the
implementation of the MIGP protocol by Cloudflare [22],
which we refer to as MIGPCF. According to [11], the
implementation MIGPCF is currently deployed and openly
available and offers a (1) public-facing API similar to HIBP,
and (2) a new breach alerting feature within Cloudflare’s
web application firewall (WAF) product. This service is
an opt-in feature in WAF, which detects login requests to
Cloudflare customer websites. We note that there is also a
Python code [27] with the same leakage as MIGPCF while
introducing additional vulnerabilities (see Appendix C.1).

The running instance of MIGPCF uses Das-r as a τ
function with parameter n=8. Our interaction with the
Cloudflare team confirmed our initial analysis that the
public-facing API database of MIGPCF has been populated
only with the credentials from the 4iQ [26] collection.
MIGPCF implements a different preprocessing step than the
one formalized in Figure 1 (and, so in [11]), which results
in additional leakage compared to what was reported in
the previous section. The most significant difference is that
MIGPCF [22] defines each bucket as a List Abstract Data
Type (ADT) while the original protocol [11] instructed that
each bucket is a Set ADT.

We briefly summarize the impact of these implementa-
tion choices in the following:

(1) Preserved PRF Duplicates. Duplicate PRF eval-
uations remain in a bucket modeled as a List, rather
than being eliminated by the Set. The attacker can now
infer Type-1 collisions with certainty, no guesswork needed.
The attacker can not only identify which PRF outputs had
a collision but also count how many times each collision
occurred. Additionally, the attacker does not need to have
any prior knowledge of the number of passwords in the
bucket (a simplifying assumption we made in the warmup
attack). In MIGPCF, the number of passwords for bucket Zi

can be computed as di=
|Zi|

(n+1)+1 . The denominator captures
the fact that the list stores the original password plus the n
passwords generated by τ . As we discuss next, the extra +1
term is due to storing the PRF evaluation of the username.

(2) PRF Evaluation of the Username. For every real
password in D, MIGPCF appends an additional entry in

Fk(u1, w̃1,1)

Fk(u1)

Fk(u1, w
1
1,1)

. . .

Fk(u1, w
n
1,1)

Fk(u1, w̃1,2)

Fk(u1)

Fk(u1, w
1
1,2)

. . .

Fk(u1, w
n
1,2)

Fk(u2, w̃2,1)

Fk(u2)

Fk(u2, w
1
2,1)

. . .

Fk(u2, w
n
2,1)

. . .

u
1 ’s

first
passw

ord
block

u
1 ’s

block

Real password:
Username only:

1-st generated password:
...

n-th generated password:
...

Figure 5: Structure of a bucket in MIGPCF implementation.

the bucket that corresponds to the PRF evaluation of the
username alone, denoted as Fk(ui) (see the yellow entries
in Figure 5). This entry allows a user to verify if her email
address is included in D without needing to input their
password. Note that Fk(ui) is replicated for every password
of user ui. Ultimately, the feature unintentionally exposes
both the number of distinct users in the bucket and the
exact number of passwords per user at no query cost for
the attacker. If each bucket had been implemented as a set,
this feature (that is not part of the original protocol [11])
would not have resulted in additional leakage.

(3) Preserved Ordering. When processing the j-th
password of ui, the protocol appends the PRF evaluation of
wui,j followed by the n PRF evaluations on the correspond-
ing similar passwords [Fk(ui, w

1
ui,j

), . . . ,Fk(ui, w
n
ui,j

)]. We
emphasize that MIGPCF follows strictly the aforementioned
order of appending actions.5 Since each bucket is imple-
mented as a list, the order in which elements are added
is maintained. Thus, for every element in the bucket, an
adversary can use the position of this entry to determine
whether it corresponds to a real password evaluation or a
similar password generated through τ . More critically, in the
case of a similar password, the attacker can determine the
rank in which τ produced the corresponding password. This
bucket structure is depicted in Figure 5. Hereafter, with the
term “password block”, we refer to the consecutive n = 10
PRF evaluations generated for a single real password w̃.

While this additional leakage is seemingly harmless on
its own, it significantly aids the inferences from τ -collisions.

Collision Graphs. We abstract the implementation leak-
age using a special graph-based representation that we refer
to as a collision graph. Figure 4 shows a graph-based repre-
sentation where there is an edge for every pair of original-
synthetic passwords. On a high level, a collision graph is
the above graph but with only the edges that participate in

5. If ui has multiple passwords, this process is repeated for every other
ui’s passwords, before moving to the next user ui+1.

a τ -collision. More formally, a collision graph G=(V,E)
of a user ui is a direct graph with labeled edges, where
each node represents the PRF evaluation of a password of
ui from bucket Ĥ(ui). When it comes to edges, we have
three cases: (i) If there is a Type-0 collision between w̃i

and w̃j , then edge (w̃i, w̃j) is in E, (ii) If there is a Type-
1a collision from w̃i and w̃j to synthetic password w, then
edges (w̃i, w) and (w̃j , w) are in E, and (iii) If there is a
Type-1b collision from w̃i and w̃j to real password w̃k, then
edges (w̃i, w̃k) and (w̃j , w̃k) are in E. Every edge comes
with a label in [1, n] reporting the rank of the application
of τn that generated w′. See Figure 6 for an illustrative
example. Hereafter, to denote such direct edges, we also
use the notation w

r−→ w′. Given a bucket Z , the attacker
can build one collision graph per user in Z . This operation
does not require any external information or query to the
server. Once a collision graph is built, its structure is used
to infer information about the underlying passwords.

Responsible Experimental Setup. Our attacks require
some degree of interaction with the MIGPCF production
server via API calls. To minimize the risk of any adverse
effects on the server and avoid exposing any non-public
credentials (if any) we conducted the attacks on a simulated
environment. Specifically, we used an instance of [22] with
identical parameters to those of the production server. How-
ever, we stress that the introduced attacks would have been
equally effective on the MIGPCF production server without
any required modifications.

Figure 6: Left: A graph-based representation of the relation
across all passwords. Middle: The collision graph where
each edge is part of a τ -collision. Right: All τ -collisions
and their participating edges.

6. Breach Extraction via Collision Graphs:
One Known Password and τ Inversion

In this section, we introduce a refined version of the
warm-up attack described in Section 4. This new breach
extraction attack exploits the additional leakage provided
by the MIGP implementation (see Section 5).

A More Realistic Setting. Shifting towards a more
realistic setting, we relax the conditions described in the
warmup attack. Unlike the conditions in Section 4, where
the target user utrgt must be the only one hashing in the
bucket, we now allow for an arbitrary number of users in
the bucket. Furthermore, while the warmup attack assumed
knowledge of all but one of the utrgt’s passwords, in this
new setting, the attacker knows only one password of utrgt.

Threat Model. Much like Section 4, the attacker is a
user A who aims to infer the credentials of another target

user utrgt. The target user’s credential setWtrgt in D consists
of one publicly available compromised password and an
undisclosed number of not publicly known compromised
passwords. Given the knowledge of a single password, A’s
objective is to guess the rest of the passwords of utrgt with
as few queries to the server as possible.

Attack Objective. For this attack, we switch to the
graph representation of the passwords of utrgt, i.e., the
collision graph. Let G be the the collision graph of utrgt

(e.g., Figure 7). A node is considered visited when the
attacker successfully reconstructs its plaintext password. The
objective of the attack is to visit all nodes in G.

Thus, attacker A has to handle two cases: (i) given a
known password w, traverse edge w

r−→ w′ in its natural
direction to derive the unknown password w′, and (ii) given
a known password w, traverse edge w

r←− w′ in its opposite
direction to derive the unknown password w′. In the first
case, the attacker can trivially derive the unknown password
w′ by applying τ on the known password w and selecting
the output with rank r, i.e., w′=τn(w)r. The edges of
(i) are referred to as “natural edges”. Traversing natural
edges does not require any queries to the server since τ
is applied locally. In the second case, the attacker must
traverse an edge in the opposite direction, requiring the
inversion of the application of τ of rank r denoted as
w′=τ−1n (w, r). However, since τ is non-invertible in the
general case, the attacker needs to use an approximation of
the inverse function τ−1n in this scenario. Our approximation
is a generative model that produces candidate pre-images
offline, which can be validated by querying the server.

Figure 7: Traversal of a collision graph. Transparent
nodes are unknown passwords, while non-transparent are
known/reconstructed passwords. Red-highlighted edges are
inputs to the τ−1n model for guessing the red-circled target.

Approximate τ−1n via Deep Learning. The above dis-
cussion on edge traversals focuses on a single edge, but,
in reality, an unknown original password w′ may be neigh-
boring with multiple known/reconstructed passwords due to
τ -collisions. This redundancy benefits the attacker, allowing
them to synthesize several (known-password, rank) pairs
that are adjacent to target password w′ and thus derive the
plaintext value of w′. An illustrative example is presented in

Step 2 of Figure 7, where the unknown node w̃1 has three
red edges to known neighboring passwords: w̃0, w1

0 , and
w2

0 . Formally, the proposed inversion model is a function
that takes as an input a collection of (known-password,
rank) pairs of nodes that neighbor to target w′ and outputs
an ordering of guesses for the unknown password w′, i.e.,
τ−1n : {(W, [1, n])}∗ → [W], where W is the password
space and [W] is an ordering on the latter. The ordering gives
a smaller rank to passwords with a higher probability of
being the pre-image of the input pairs. The attack might be
further improved by incorporating auxiliary information on
the target; for instance, by conditioning the model generation
on the user’s email address [28].

L
S
T
M
in

L
S
T
M
in

“1
ph

ill
ip

”

“p
hi

l”

L
S
T
M
in

Emb.Emb.

53

Multi-Head-Attention

LSTMout “phillip”

?

“phil”
“1phillip”

3
5 ⇄

Figure 8: The deep learning pipeline for approximating τ−1.
The origin of each⇒ is used as the initial state in an LSTM.

Deep Learning Architecture. We approximate τ−1n

using a deep neural network. A representation of the ar-
chitecture is depicted in Figure 8. For a known password
(wknown, rknown), the model first maps the scalar value of the
rank rknown to a dense vector using an embedding matrix
(depicted as a black-striped box in Figure 8). This vector
initializes the state of a Long Short-Term Memory net-
work [29] LSTMin (blue-striped box), which processes the
characters of wknown one-by-one and outputs a vector after the
last character. This procedure is applied in parallel for every
known password-rank pair neighboring the target password,
generating a collection of vectors. A Multi-Head Attention
mechanism [30] combines these vectors through a learned
parametric transformation to produce dense vectors as an
output. These vectors initialize the state of the final 2-layers
LSTMout (green-striped box). LSTMout generates a guess
for the unknown target password based on the inputs. In
essence, LSTMout can be regarded as a conditional variant
of the model proposed by Melicher et al. [31].

Deep Learning Training/Inference. Following the
setup of [11], we split the breached collection 4iQ [26] in
two equal-sized sets: D0 and D1, ensuring that no user has
credentials in both sets simultaneously. We use D0 to popu-
late the MIGPCF server, reserving D1 as training data for the
model of our attack. We train the model in a supervised man-
ner. That is, for each user in D1, we build a collision graph
by the leakage from MIGPCF. Subsequently, for each node
w′ in the collision graph with at least one outgoing edge,
we generate a collection of one-hop neighbors, denoted as
(w1, r1), This collection of input (w1, r1), . . ., along
with the desired output w′, constitutes a single labeled input

data point for the training process. The entire model is then
end-to-end jointly trained as a single network. Once trained,
we obtain an autoregressive and conditional model that
assigns probabilities to passwords in the password space.
During inference, the model generates guesses by exploring
the password space in decreasing probability order using
Beam search or ancestral sampling.

On Prioritizing Node Visits. The last piece of the
puzzle is to decide how to prioritize the use of τ−1n when the
traversal is presented with more than one potential input tar-
get (i.e., unknown passwords with outgoing edges to known
passwords). Depending on the strategy for prioritizing the
input targets, we may have a different number of queries
from the attacker to the server. We present a greedy strategy
for reducing the number of queries to the server.

We illustrate the traversal algorithm based on Figure 7.
Given a collision graph G and an initial known password
w̃0, attacker A starts by visiting all the nodes reachable from
w̃0 by traversing the black-colored natural edges in Step 1;
thus, A derives w0

0, w
1
0, and w2

0 by locally applying τ and
without interacting with the server. In general, A can use
any graph traversal algorithm on natural edges e.g., BFS
rooted in w̃0. If the graph has not been fully visited after the
traversal algorithm, it means the attacker has to traverse non-
natural edges incident to a known password. When faced
with multiple candidate nodes, the attacker employs a score
function to determine the next target node. Specifically, A
applies τ−1n to all candidate nodes and picks the one with
the highest confidence, defined as the probability assigned
by the model to the first ranked element of the password
space. For example, in Step 2 of Figure 7, the attacker
chooses w̃1 over w̃2 and w̃3 partly because w̃1 has three
known neighbors and, thus, a higher confidence on the first
guess. Once the next target node is determined, the attacker
uses τ−1n to generate guesses and validates them against the
server through queries. Upon a successful match for w̃2, the
attacker updates the set of known passwords and continues
the traversal of as many natural edges as possible e.g., edge
(w̃1, w̃2) in Step 3. The attack ends when all the nodes
in the collision graph have been visited. This protocol is
formalized in Algorithm 2. We note here that when initiating
the attack, the attacker must execute a single setup query to
the server using w to identify which PRF evaluation in the
bucket corresponds to the w entry.

Evaluation: Attack Effectiveness. For each user in
D0 with τ -collisions, we construct a collision graph using
the MIGPCF implementation leakage. Randomly selecting a
real password as the known initial password, we execute
the breach extraction attack algorithm until all unknown
passwords are reconstructed. The average number of queries
needed by the attacker to reconstruct an (unknown) real
password is shown in Figure 9a. Remarkably, around 42%
of the real passwords within a collision graph can be recon-
structed without requiring any queries to the server, i.e., via
natural edge traversals which are implemented with a local
application of the τ function. Approximately 61% of the
unknown passwords in the collision graphs can be guessed
with at most one query. This percentage increases to 74.2%

012 5 10 20 50
Number of Queries to the Server

42.61%

61.69%
67.80%
74.07%
80.07%85.13%
90.89%

Re
co

ns
tru

ct
ed

 R
ea

l P
as

sw
or

ds
(P

er
ce

nt
ag

e)

(a) The effectiveness of the breach extraction attack measured as
the number of queries per password (X-axis) that are needed to
reconstruct the plaintext password from the leakage (Y-axis).

1 4 7 10 13 16 19 22 25 28
Number Of -collisions In The Collsion Graph

0

50

100

150

Nu
m

be
r o

f Q
ue

rie
s

(b) Analysis on how the number of τ -collisions in a collision graph
(X-axis) affects the breach extraction within a graph (Y-axis).

Figure 9: Evaluation of the breach extraction attack using
the leakage from MIGPCF and a single known password.

after only five queries and to 90.4% after 50 queries. The
high number of queries is due to rules of Das-r that remove
characters from the original password. In such cases, the
model of τ−1n needs to generate the deleted characters with
very little context (see rules 2− 4 in Table 2)

Evaluation: The Impact of Collisions. In the next
experiment, we study how the number of τ -collisions in
a collision graph affects the effectiveness of the breach
extraction within this graph. Intuitively, graphs with more
τ -collisions offer either (i) more inputs for the model τ−1n

and, consequently, more confident guesses for τ−1n , or (ii)
more candidate unknown passwords when τ−1n has to choose
its next target, or (iii) both of the above. This relationship is
depicted in Figure 9b, where the number of queries required
to reconstruct a password is plotted against the number of
collisions. Interestingly, the number of queries to the server
drops from 100 to less than 10 after only five τ -collisions.
Users with more τ -collisions revealed through the leakage
of MIGPCF are found to be more vulnerable to our attack.

7. Extracting Password Templates: A Neural
Network Approach With No Known Passwords

In this section, we provide the most general breach
extraction attack that uses both the leakage from the crypto-
graphic design as well as the leakage from Cloudflare’s im-
plementation to extract “templates” of the unknown server’s
passwords by solely exploiting the topology of their colli-
sion graph from the bucket, i.e., the attacker doesn’t know
any password of the target user. In this context, the term

Table 1: Set of properties/classes inferred by the Graph Neural Network.

Regex: (1) “\d+$” (2) “0.+” (2) “1.+” (4) “.+a$” (5) “[a-zA-Z]+$” (6) “[A-Z].+$” (7) “.+0$” (8) “[ˆ\d]+\d$” (9) “[ˆ\d]+\d\d$”

Description: It consists solely
of digits. It starts with “0” It starts with “1” It ends with “a” It consists solely of

alphabetic characters
It starts with

a capital letter It ends with “0” It ends with
a digit

It ends with
two digits

“template” refers to a generalized description of the underly-
ing string, such as specifying that the password begins with
the character “0” or consists entirely of numeric characters.
After successfully mounting the attack, the adversary gains
knowledge of password templates, allowing them to narrow
down the search space by considering only guesses that align
with the extracted templates or directly using template-based
password generation techniques [32], [33]. Similar to previ-
ous attacks, an online phase follows, where each template-
agreeing guess is issued to the server for verification by
comparing its OPRF evaluation to the corresponding entry
in the bucket. Interestingly, once the adversary correctly
guesses a single password, the adversarial setting can be
reduced to the one of Section 6. Consequently, the adversary
can also use the model for τ−1n .

Threat Model. Much like in previous Sections, the
attacker is a user A who aims to infer the credentials of
another target user utrgt. The target user’s credential set
Wtrgt in D consists of an undisclosed number of not publicly
known compromised passwords. Given the knowledge of no
passwords of utrgt, A’s objective is to guess the passwords
of utrgt with as few queries to the server as possible.

Graph Neural Networks (GNNs). At the core of our
attack is the use of Graph Neural Networks (GNNs) [34].
On a high level, a GNN is a neural model that operates
over graphs. GNNs can be viewed as learning techniques
that capture the topological information inherent in graph-
like data. This is accomplished through a message-passing
algorithm, which iteratively propagates information among
neighboring nodes and edges, thereby updating their inter-
nal representations. Once an appropriate representation has
been attained, the GNN’s output is fed into a conventional
machine learning architecture, such as a fully-connected
network, to execute the classification task. The main char-
acteristic and pivotal property of a GNN is that it is input
permutation-invariant. That is, if the model is applied to
two isomorphic graphs, it will produce the same output
irrespective of the original representation of the graphs.

Attack Objective. In this attack, we train a GNN to
perform a node classification task. Taking as input a whole
collision graph, the GNN’s objective is to infer a password
template for each real password6 in the graph (e.g., the red
nodes in Figure 6). In our setting, we define a password
template as a composition of the 9 structural properties listed
in Table 1. We treat each property as a binary variable,
with a value of 1 indicating that the GNN determines the
collision graph’s structure implies the corresponding tem-
plate, and 0 indicates otherwise. For instance, the password
“Password10” would have template [0, 0, 0, 0, 0, 1, 1, 0, 1]
with respect to the templates of Table 1, where the value

6. Once recovered the real password, similar passwords can be simply
generated by applying τ on it.

of the i-th bit signals the presence or absence of the i-th
property. Even when a bit is set to 0, it provides information
about the underlying password by excluding all passwords
with that specific property from the search space. It must
be noted that some properties are not independent of each
other; for instance, the presence of property 1 (only digits)
automatically excludes properties 3, 4, and 5 from being
present. The properties in Table 1 are derived manually,
considering the transformations induced by the τ function
used in MIGPCF, with n=8 (the value used by the MIGPCF
production server). If we were to increase the value of n,
more properties would emerge, providing the attacker with
greater discriminative power and allowing them to infer
more complex templates from the collision graphs.

Modeling. Given a collision graph, the GNN initializes
the states of the nodes and edges as follows. Nodes receive
one of three possible feature vectors, depending on whether
they represent (1) a real password, (2) a generated password,
or (3) both simultaneously (e.g., in the case of a Type-0
and Type-1b collision). Similarly, edges are initialized with
one of eight possible values that correspond to their label,
representing the rank r of the application of the τ function
that resulted in the edge. Both node and edge feature vec-
tors are initialized randomly at the outset and subsequently
optimized during the training process. Once the graph is
initialized, we conduct 6 rounds of message passing, during
which both node and edge representations are updated. As
an update function, we employ a fully connected-based ar-
chitecture alternated with batch-normalization and a simple
average pooling mechanism. Finally, following the message
passing iterations, the nodes’ representations serve as input
for a fully-connected network. This network generates the
final prediction, producing disjointed probability values for
each class listed in Table 1.

Training. The model is trained following the same
general procedure used for the first attack in Section 6.
Given the plaintext passwords in D1, we extract collision
graphs from the buckets generated by the MIGPCF setup
phase. Then, for each collision graph G, we collect the set
of labels by deriving the templates (i.e., classes) for each
real password in G. After having generated the training set,
we fit the model in a supervised way. That is, given an input
collision graph, we train the GNN to assign the right set of
classes to each real password.

Evaluation. During our evaluation, we trained the GNN
on D1 and tested it by running the setup phase of MIGPCF
on D0 to derive collision graphs for users with at least one
τ -collision. We then applied the GNN to each graph and
tested its accuracy in inferring the properties from Table 1.

The model predicts a property with an average accuracy
of 90.6%. Figure 10 shows the model’s individual class ac-
curacies. The lowest accuracy class (79%) is for passwords

\d+$ 0.+ 1.+ .+a$
[a-zA-Z]+$

[A-Z].+$.+0$
[^\d]+\d$

[^\d]+\d\d$

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 10: GNN’s accuracy per individual property. The Red
lines denotes average accuracy.

5 10 15 20 25 30 35
Number of -collisions in the collision graph

0.6

0.8

Pr
ob

ab
ilit

y
of

te
m

pl
at

e
pe

rfe
ct

 m
at

ch

Figure 11: Analysis on how the number of τ -collisions in a
collision graph (X-axis) affects the probability of the GNN
predicting the exact password template (Y-axis).

solely of alphabetic characters.
In 61% of instances, the model perfectly matches the

password template, accurately guessing all binary properties
simultaneously. The template with the highest accuracy in
GNN’s predictions is [0, 0, 0, 0, 1, 0, 0, 0, 0], with 82.2% ac-
curacy. The all-zeros template [0, 0, 0, 0, 0, 0, 0, 0, 0], follows
closely at 79.5%. The most complex template the model can
perfectly match is [0, 0, 0, 1, 1, 1, 0, 0, 0], accounting for only
0.32% of all passwords in 4iQ [26].

Most model errors are false negatives, resulting from
missing edges in collision graphs.7 The likelihood of en-
countering the required τ -collision increases with the num-
ber of τ -collisions in the collision graph. This correlation is
shown in Figure 11.

In summary, this attack further highlights that τ -
collisions lead to information leakage about the passwords
in MIGP. We will introduce a novel MIGP protocol that
offers ideal security without practical cost next.

8. MIGP 2.0: A New Leakage Profile

In this Section, instead of proposing a protocol and
then defining its leakage profile, we first establish a desired
leakage profile that is not susceptible to the newly found
attacks and then propose a protocol that achieves it.

The Achilles’ heel of the leakage described in Equa-
tions (1) and (2) is that it reveals τ -collisions within
each bucket. We have identified two reasons that cause τ -
collisions. First, the resulti = match + similar of Equa-
tion (2) is responsible for Type-0 collisions (see Figure 4

7. While a password may possess a particular property, the τ -collision(s)
required to manifest that specific property in the collision graph might be
absent, rendering the model unable to infer its existence.

(a)) since the same password appears both as Fk(u, w̃i) and
Fk(u, w̃i)⊕1 in the bucket. Second, Equation (1) reveals the
size of the set, i.e., argument |ZĤ(ui)+1| in Lclient, which
reveals the repetition of synthetic passwords through the
“holes” left in the bucket. Type-1a and Type1-b collisions
are observable due to the aforementioned “holes”. We fix
both these issues in our new leakage profile for MIGP 2.0.

A Better Leakage Profile for MIGP. We observe that
the result match+ similar is not only problematic for secu-
rity reasons but also redundant to the querier. The crucial
information that MIGP must convey is that the queried
password “appears as is” in the breached credential dataset;
the additional fact that it also appears as a similar password
does not escalate the severity of the breach. Therefore, in
the case of a match+ similar, our newly proposed leakage
profile returns just resulti = match. The new options are:

resulti =

match , if (ui, w̃i) ∈ D
similar ,∃(ui, w̃j) ∈ D : w̃i ∈ τn(w̃j)

and (ui, w̃i) /∈ D
none , otherwise

(5)

The updated set of resulti options is crucial to eliminate
the presence of Type-0 collisions. Toward fixing the re-
maining τ -collisions, we observe that the size of the bucket
|ZĤ(ui)+1| varies depending on the number of repetitions of
synthetic passwords. To fix this, we propose a new leakage
profile for the client Lclient where the information disclosed
is independent of the number of repetitions. We achieve this
by replacing the number of entries of the queried bucket
(|Zj | of Equation (1)) with ti which is the number of
original breached credentials (u, w̃) ∈ D that are mapped in
the queried bucket ZĤ(ui)+1 (where ui is the username of
the i-th client query). The new leakage profile is:

Lserver(D, {(ui, w̃i)}i∈[q]) as defined in Equation (1)
Lclient(D, {(ui, w̃i)}i∈[q]) = (resulti, ti)i∈[q] (6)

where ti = |{(u, w̃)|(u, w̃) ∈ D and Ĥ(ui) = Ĥ(u)}| and
resulti as defined in Equation (5). Our new leakage profile
(Equations (5) and (6)) does not disclose any τ -collisions
and, in fact, is not affected by which similar passwords
are generated or by what is their relationship to the real
passwords. This implies that the security of a protocol that
achieves our new leakage profile is not affected by the
presence of similar passwords. This is because the leakage
profile for n = 0 is identical to the one for n > 0, i.e.,
similar passwords do not increase the leakage.

Our MIGP 2.0 Protocol. Our new MIGP protocol ad-
dresses the τ -collisions by using a new preprocessing phase
Πτn,ℓ

new-init that produces ℓ buckets differently than [11]. The
absence of τ -collisions in our new design eliminates the
offline attacks described in 4 and allows us to prove the se-
curity with respect to the leakage functions of Equation (6).

New Pre-Processing Phase Πτn,ℓ
new-init. The formal de-

scription of our new pre-processing phase Πτn,ℓ
new-init is de-

picted in Figure 12. This procedure is divided into two
parts: A first part in which the original pairs (u, w̃) of the
breached dataset D are encoded into buckets Z1, . . . ,Zℓ

Pre-preprocessing phase Πτn,ℓ
new-init

Parameters: 2HashDH OPRF F, password generator τn, number of buckets ℓ,

and hash function Ĥ : {0, 1}∗ → {0, 1}log ℓ
.

Server
Input: Dataset D = {(u1, w̃1), . . . , (u|D|, w̃|D|)}.
Output: OPRF key k and ℓ buckets Z1, . . . ,Zℓ.

1 : Sample k←$ Zq

2 : Initialize the lists Z1 = ⊥, . . . ,Zℓ = ⊥

. Part one: Encoding of original credentials

3 : For every (u, w̃) ∈ D :

4 : j = Ĥ(u)

5 : Add Fk(u, w̃) to Zj+1

.Part two: Encoding of similar credentials

6 : Initialize the sets L1 = ⊥, . . . ,Lℓ = ⊥
7 : For every (u, w̃) ∈ D and for every w ∈ τn(w̃) :

8 : j = Ĥ(u)

9 : If (u,w) ∈ D or (u,w) ∈ Lj+1 :

10 : Sample v←$ {0, 1}λ and add Fk(u, v) to Zj+1

11 : Else :

12 : Add Fk(u,w)⊕ 1 to Zj+1 and (u,w) to Lj+1

13 : For every i ∈ [ℓ] : Shuffle the entries of Zi

14 : Return k,Z1, . . . ,Zℓ

Figure 12: Our new pre-processing phase of MIGP produces
buckets that do not disclose relations between original and
similar credentials. The first part of the protocol encodes
original credentials. The second part of the protocol encodes
similar credentials while hiding collisions.

much like the original MIGP protocol, and a second part in
which the server carefully adds similar passwords (generated
through τn) to their corresponding buckets by taking into
account repetitions. In particular, during the second part
of the pre-processing, the server compares the about-to-be-
inserted synthetic password against the original credentials
and against the similar credentials already encoded in the
buckets. If τn(w̃) produces a collision with either of the two,
then the server adds a dummy entry in the corresponding
bucket by adding Fk(u, v) where v is random λ-bits long
string. Intuitively, this dummy entry has the role of simulat-
ing the addition of a non-colliding password. We represent
the buckets as lists that we randomly shuffle at the end of
the initialization.8

Part one of Figure 12 is straightforward, and it is iden-
tical to the pre-processing of the original passwords of the
original MIGP protocol. The server samples a random PRF
key k←$ Zq and, for every original pair (u, w̃) ∈ D, it adds
Fk(u, w̃) to the j + 1-th bucket Zj+1 where j = Ĥ(u). At
the end of this first part, the encoding (i.e., PRF evaluation)
of all the original pairs is distributed across the ℓ buckets,
where the distribution depends on the hash function Ĥ(·).
In part two of Figure 12, the server adds to the buckets

8. With an ideal set implementation, the shuffle operation becomes
superfluous. However, we intentionally include it to emphasize its critical
importance and proactively mitigate potential implementation errors.

the similar passwords generated through τn. To avoid τ -
collisions, a similar password w is encoded and added to
a bucket Zj if and only if the bucket Zj does not already
contain the encoding of (u,w). Pair (u,w) can be already
encoded into bucket Zj if either (i) (u,w) is in D, or
(ii) there exists an (already pre-processed) original pair
(u, w̃) ∈ D whose similar password generation produces w
and, in turn, passwords τn(w̃) have been already encoded
into the Zj . Hence, the server needs to keep track of
similar passwords that have already been encoded in each
bucket (via L sets). Finally, the server shuffles the entries of
every bucket Z1, . . . ,Zℓ to uniformly distribute the dummy
entries with the original/similar ones. The output of the pre-
processing protocol is the OPRF key k and the buckets
Z1, . . . ,Zℓ, which will be stored by the server.

Query phase Πℓ
query. Clients can query the server by

using the exact same query protocol Πℓ
query of the original

MIGP (Figure 2). Our way of pre-processing the dataset D
achieves the functionality described in Equation (5). This is
because a similar credential (u,w) (where w ∈ τn(w̃) for
some (u, w̃) ∈ D) is encoded as a random dummy entry in
a bucket Zj only if there is (u′, w̃′) that has been already
encoded in Zj and (u′, w̃′) = (u,w). Now, if (u′, w̃′) ∈ D,
the corresponding entry for (u′, w̃′) is encoded as Fk(u

′, w′)
(i.e., no bit flipped). On the other hand (if (u′, w̃′) ̸∈ D),
the credentials (u′, w̃′) is encoded as Fk(u

′, w̃′)⊕1 (i.e., bit
flipped since w̃′ must be generated using τn).

Security. Because of our new pre-processing phase,
our new MIGP protocol is (q, Lclient, Lserver)-secure (Defi-
nition 1) for every q ∈ N, where Lclient and Lserver are the
new leakage functions we defined in Equation (6). We refer
the reader to Section C for the formal result.

We highlight that, to prove the security of our protocol, it
is fundamental to simulate the queried buckets only using ti.
This is possible thanks to our pre-processing phase that al-
ways produces buckets (composed of pseudorandom entries)
of size ti ·n (i.e., multiple of n) when n > 0,9 independently
from the dataset D and similar passwords generator τn used
by the server. The old protocol [11] produces buckets of
different sizes depending on the number of collisions, which
may not be a multiple of n. Hence, the simulator (of the
security proof) needs to know the exact number of entries
in each bucket (i.e., |Zj | is part of the leakage). However,
as we have demonstrated, |Zj | reveals sensitive information
about the original passwords when collisions are present.

Overhead of MIGP 2.0. MIGP 2.0 adds only negligible
overhead on top of the old version [11]. Checking if a
password is already present in the bucket adds minimal cost.
[11] performs an addition of an element using the API of the
set-insertion function, and whether the element is actually
inserted or not is controlled/decided by the implementation
of the insertion-function. One can verify whether a given
insertion resulted in an addition by checking if the size of
the set increased by one.

9. If no similar passwords are generated (i.e., n = 0), bucket Zi will
be of size ti.

Second, regarding shuffling, this can be done incremen-
tally while building the buckets. For example, if the bucket
is implemented as an array, we can insert each new element
in the leftmost empty cell x, and randomly choose any
occupied cell y to swap with x, guaranteeing a permuted
array in the end.

9. Conclusion

The findings of this work confirm that designing crypto-
graphic protocols with controlled disclosure is challenging,
as it requires a thorough understanding of the implications of
the proposed leakage profile. Interestingly, the vulnerabili-
ties that we discovered are not due to errors in cryptographic
proofs or algorithms, e.g., the private set intersection and the
OPRF work as they are supposed to. The issue is that design
choices may or may not be problematic based on the appli-
cation’s context. In the application of similarity-based C3,
a set-based formulation inadvertently reveals the absence
of duplicate entries, which in turn reveals hidden connec-
tions between the passwords that were encoded. Overall,
these findings have the potential to help future controlled-
disclosure designs to balance their scalability with well-
understood leakage implications. This sets the stage for a
new wave of cryptosystem designs that are not only more
robust but also cognizant of the intricate dance between data
privacy and system efficiency.

Acknowledgments

The second author was supported by the Carlsberg Foun-
dation under the Semper Ardens Research Project CF18-112
(BCM). The third author was supported in part by grants
from the Commonwealth Cyber Initiative (CCI) and the
Commonwealth Commercialization Fund (CCF), as well as
corporate gifts from Accenture, Lockheed Martin Integrated
Systems, and Protocol Labs. The last author was supported
in part by the NSF award CNS-2154732 and the Meta
Security Research Award.

References

[1] V. Enterprise, “2020 Databreach Investigation Report,”
https://enterprise.verizon.com/resources/reports/2020/2020-data-
breach-investigations-report.pdf, 2020, accessed: December 1, 2023.

[2] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The
tangled web of password reuse,” in NDSS, vol. 14, 2014, pp. 23–
26.

[3] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:
Observing passwords in their natural habitat,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 295–310.

[4] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: An algorithmic framework and empirical anal-
ysis,” in Proceedings of the 17th ACM conference on Computer and
communications security, 2010, pp. 176–186.

[5] M. Islam, M. S. Bohuk, P. Chung, T. Ristenpart, and R. Chatterjee,
“Araña: Discovering and Characterizing Password Guessing Attacks
in Practice,” in 32nd USENIX Security Symposium (USENIX Security
23), (To appear).

[6] “Have i been pwned?: Check if your email or phone is in a data
breach,” https://haveibeenpwned.com/, accessed: December 1, 2023.

[7] “Google Blog: Protecting your data, no matter where you go
on the web,” https://blog.google/technology/safety-security/google-
password-checkup-cross-account-protection/, accessed: December 1,
2023.

[8] S. Kannepalli, K. Laine, and R. C. Moreno, “Password
Monitor: Safeguarding Passwords in Microsoft Edge,”
https://www.microsoft.com/en-us/research/blog/password-monitor-
safeguarding-passwords-in-microsoft-edge/, 2021, accessed:
December 1, 2023.

[9] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp.
417–434.

[10] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proceedings of the
2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 1242–1254.

[11] B. Pal, M. Islam, M. S. Bohuk, N. Sullivan, L. Valenta, T. Whalen,
C. Wood, T. Ristenpart, and R. Chatterjee, “Might I Get Pwned: A
Second Generation Compromised Credential Checking Service,” in
31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Aug. 2022, pp. 1831–1848.

[12] T. Hunt, “Seized Genesis Market Data is Now Searchable in
Have I Been Pwned, Courtesy of the FBI and ”Operation Cookie
Monster”,” https://www.troyhunt.com/seized-genesis-market-data-
is-now-searchable-in-have-i-been-pwned-courtesy-of-the-fbi-and-
operation-cookie-monster/, 2023, accessed: December 1, 2023.

[13] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient Construc-
tions,” in Proc. of the 13th ACM CCS, 2006, pp. 79–88.

[14] M. Chase and S. Kamara, “Structured Encryption and Controlled
Disclosure,” in Proc. of the 16th IACR ASIACRYPT, 2010.

[15] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Response-
Hiding Encrypted Ranges: Revisiting Security via Parametrized
Leakage-Abuse Attacks,” in Proc. of the 42nd IEEE S&P, 2021.

[16] ——, “Data Recovery on Encrypted Databases With k-Nearest
Neighbor Query Leakage,” in Proc. of the 40th IEEE S&P, 2019.

[17] ——, “The State of the Uniform: Attacks on Encrypted Databases
Beyond the Uniform Query Distribution,” in Proc. of the 41th IEEE
S&P, 2020.

[18] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-Abuse
Attacks Against Searchable Encryption,” in Proc. of the 22nd ACM
CCS, 2015, pp. 668–679.

[19] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern,
and R. Tamassia, “Full Database Reconstruction in Two Dimensions,”
in Proc. of the 27th ACM CCS, 2020.

[20] E. A. Markatou, F. Falzon, R. Tamassia, and W. Schor, “Reconstruct-
ing with Less: Leakage Abuse Attacks in Two Dimensions,” in Proc.
of the 28th ACM CCS, 2021.

[21] E. M. Kornaropoulos, N. Moyer, C. Papamanthou, and A. Psomas,
“Leakage Inversion: Towards Quantifying Privacy in Searchable En-
cryption,” in Proc. of the 29th ACM CCS, 2022, pp. 1829–1842.

[22] CloudFlare, “MIGP go,” https://github.com/cloudflare/migp-go,
2022, accessed: December 1, 2023.

[23] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal Password-
protected Secret Sharing and T-PAKE in the Password-only Model,”
in Advances in Cryptology–ASIACRYPT 2014: 20th International
Conference on the Theory and Application of Cryptology and In-
formation Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014,
Proceedings, Part II 20. Springer, 2014, pp. 233–253.

https://enterprise.verizon.com/resources/reports/2 020/2020- data- breach- investigations- report.pdf
https://enterprise.verizon.com/resources/reports/2 020/2020- data- breach- investigations- report.pdf
https://haveibeenpwned.com/
https://blog.google/technology/safety-security/google-password-checkup-cross-account-protection/
https://blog.google/technology/safety-security/google-password-checkup-cross-account-protection/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.troyhunt.com/seized-genesis-market-data-is-now-searchable-in-have-i-been-pwned-courtesy-of-the-fbi-and-operation-cookie-monster/
https://www.troyhunt.com/seized-genesis-market-data-is-now-searchable-in-have-i-been-pwned-courtesy-of-the-fbi-and-operation-cookie-monster/
https://www.troyhunt.com/seized-genesis-market-data-is-now-searchable-in-have-i-been-pwned-courtesy-of-the-fbi-and-operation-cookie-monster/
https://github.com/cloudflare/migp-go

[24] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Highly-efficient and
composable password-protected secret sharing (or: How to protect
your bitcoin wallet online),” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2016, pp. 276–291.

[25] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein,
“Protecting Accounts from Credential Stuffing with Password Breach
Alerting,” in USENIX Security Symposium, 2019, pp. 1556–1571.

[26] “Over 1.4 Billion Clear Text Login Credentials Found in Sin-
gle Database on Dark Web,” https://infowatch.com/analytics/leaks
monitoring/97798.

[27] M. Islam, “MIGP python,” https://github.com/islamazhar/MIGP
python, 2022, accessed: December 1, 2023.

[28] D. Pasquini, G. Ateniese, and C. Troncoso, “Universal Neural-
Cracking-Machines: Self-Configurable Password Models from Aux-
iliary Data,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE, 2024 (To appear).

[29] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neu-
ral Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,”
in Advances in Neural Information Processing Systems (NeurIPS),
vol. 30, 2017.

[31] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer,
N. Christin, and L. F. Cranor, “Fast, Lean, and Accurate: Modeling
Password Guessability Using Neural Networks,” in 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association,
Aug. 2016, pp. 175–191.

[32] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
1382–1399.

[33] M. Xu, J. Yu, Z. Xinyi, C. Wang, S. Zhang, H. Wu, and W. Han,
“Improving Real-world Password Guessing Attacks via Bi-directional
Transformers,” in 32nd USENIX Security Symposium (USENIX Secu-
rity 23), (To appear).

[34] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The Graph Neural Network Model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

Appendix A.
2HashDH OPRF

2HashDH oblivious evaluation protocol Πoprf

Parameters: Group G of prime order p and two hash functions

H1 : {0, 1}∗ → G and H2 : {0, 1}∗ × G→ {0, 1}λ.
Client Server
Input: Value x Input: OPRF key k

Output: Fk(x) = H2(x,H1(x)
k
) Output:⊥

1 : Sample r←$ Zq

2 : h1 = H1(x)
r

3 : h2 = h
k
1

4 : Return H2(x, h
1/r
2)

Figure 13: Oblivious evaluation protocol for the 2HashDH
OPRF Fk(x) = H2(x,H1(x)

k).

The original work of Jarecki et al. [23], presented such
a construction for the case of verifiable OPRF. The pro-
tocol we described above is essentially identical to that
of [23] except that we ignore verifiability property. This
latter costruction (without verifiability) is formally studied
in [24].

The security of OPRF is defined as usual for multi-party
computation protocols, i.e., the view of an adversary (client
or server) can be simulated by having access to the input
of the adversarial party and the ideal OPRF functionality
Foprf (see [24, Figure 1]) which, on input x and k, it returns
Fk(x) = y to the client (and nothing to the server). When
an OPRF protocol is secure (as described above) is said to
realize the ideal functionality Foprf . [24] have demonstrated
that the protocol of Figure 13 realizes the ideal functionality
Foprf under the (n, q)-one-more DH assumption (we refer
the reader to [24] for the formal definition of the assump-
tion). Moreover, [24] proves the security of the protocol
in the universal composability (UC) setting which allows
protocol composition in a secure fashion. Below, we recall
the result of [24].

Theorem 1 ([24, Theorem 1]). Let H1 and H2 be two hash
functions modeled as random oracles. Also, let q and q1 be
the number of OPRF evaluations and the number of random
oracle queries for H1, respectively. For n = q+q1, if (n, q)-
one-more DH assumption ([24, Section 3]) holds for G, then
the protocol 2HashDH (Figure 13) realizes the functionality
Foprf in universal composability setting and random oracle
model.

Appendix B.
Client-side Similar Passwords Generation

The query phase protocol we described in Section 2 is a
simplification of [11] since we do not consider the possibil-
ity of generating similar passwords on client-side. For com-
pleteness, we describe how client-side generation is imple-
mented in the original MIGP protocol. Let τ clientn be a similar
password generator held by the client (this generator can ei-
ther identical or different to the one used on the server-side).
The objective is to allow the client to generate similar pass-
words (w̃1, . . . , w̃m) = τ clientm (w) and see if the latter match
any of the (either original or similar) passwords stored by the
server. This is accomplished by allowing the client to com-
pute (w̃1, . . . , w̃m) = τ clientm and invoke m times the ideal
OPRF functionality Foprf((u, w̃1), k), . . . ,Foprf((u, w̃m), k)
where Foprf((u, w̃i), k) denotes the invokation of Foprf on
client’s input (u, w̃i) and server’s input k. As a result, the
client obtains y1 = Fk(u, w̃1), . . . , ym = Fk(u, w̃m). This is
sufficient to check membership as we described in Figure 2.
In particular, the client returns similar if there exists i ∈ [m]
such that yi ∈ Zj+1 or yi ⊕ 1 ∈ Zj+1, and none otherwise.
Observe that for the case of similar passwords τ clientm (w)
generated on client-side, the protocol only returns similar
(and not match) since the check is evaluated over the similar
passwords (w̃1, . . . , w̃m) = τ clientm (w). For more details, we
refer the reader to [11].

https://infowatch.com/analytics/leaks_monitoring/97798
https://infowatch.com/analytics/leaks_monitoring/97798
https://github.com/islamazhar/MIGP_python
https://github.com/islamazhar/MIGP_python

Appendix C.
Leakage-based Security Definition of MIGP

Definition 1 ((q, Lclient, Lserver)-security of MIGP). Fix the
public parameters ℓ and τn of the MIGP protocol. Let Lclient
be a function that, on input the server’s dataset D and the
client’s credential (u,w), it defines the leakage revealed to
the client. Similarly, let Lserver be a function that, on input
the server’s dataset D and the client’s credentials (u,w),
it defines the leakage revealed to the server. The MIGP
protocol is (q, Lclient, Lserver)-secure if there exists a pair of
PPT simulators (Sclient,Sserver) such that, for every D =
{(u1, w1), . . . , (u|D|, w|D|)} of original breached credentials
and for every q credential queries (u′1, w

′
1), . . . , (u

′
q, w

′
q), the

following two conditions hold:

• Client-side leakage: The distri-
butions Viewclient

{(u,′iw′
i)}i∈[q],D =

(Viewclient
u′
1,w

′
1,D, . . . ,Viewclient

u′
q,w

′
q,D) and

Sclient({(u′i, w′i)}i∈[q], Lclient(D, {(u′i, w′i)}i∈[q])) are
computationally indistinguishable where Viewclient

u′
i,w

′
i,D

denotes the view of a client (i.e., internal states and
messages exchanged with the honest server) during the
i-th execution of the protocol Πℓ

query on client’s input
(u′i, w

′
i) and server’s inputs Z1, . . . ,Zℓ, k (generated

through Πτn,ℓ
init (D)).

• Server-side leakage: The distri-
butions Viewserver

{(u,′iw′
i)}i∈[q],D =

(Viewserver
u′
1,w

′
1,D, . . . ,Viewserver

u′
q,w

′
q,D) and

Sserver(D, Lserver(D, {(u′i, w′i)}i∈[q])) are computa-
tionally indistinguishable where Viewserver

u′
i,w

′
i,D denotes

the view of a server (i.e., internal states and messages
exchanged with the honest client) during the i-th
execution of the protocol Πℓ

query on client’s input
(u′i, w

′
i) and server’s inputs Z1, . . . ,Zℓ, k (generated

through Πτn,ℓ
init (D)).

C.1. Leakage in the Python implementation

The implementation of the τ function in [27] is prob-
lematic. Specifically, it can generate as output the input
password, in which case it creates self-loops according to the
graph-theoretic formulation. Another issue is that a single
output set of τ function may contain the same similar pass-
word multiple times. Interestingly, the above points imply
that this faulty implementation creates collisions even if
there is a single breached credential (collisions are possible
with itself). For example, when utilizing Das-r, a Type-
0 collision that is also a self-loop reveals that the real
password does not contain any characters that can be made
uppercase (i.e., numbers, special characters, and uppercase).
Conversely, the absence of such a collision informs us that
the password includes lowercase characters.

Rank Description Example (input:
“passw0rd”)

1 Capitalize the string “PASSW0RD”

2 Delete last character “passw0r”

3 Delete last 2 character “passw0”

4 Delete last 3 character “passw”

5 Append “0” “passw0rd0”

6 Prepend “1” “1passw0rd”

7 Append “a” “passw0rda”

8 Prepend “0” “0passw0rd”

9 Delete second character “pssw0rd”

10 Prepend “a” “apassw0rd”

Table 2: Top-10 Das-r rules.

Appendix D.
Evaluation of the Filtering Attack

Next, we empirically demonstrate that τ -collisions re-
duce the entropy of the passwords in MIGP.

Data: We conduct the experiment on a randomly sam-
pled subset (10%) of the 4iQ dataset [26]. Henceforth, we
refer to this subset as S. For each user in S with e + 1
credentials, we randomly select a password as the target
one (i.e., wtrgt), while using the remaining e entries as the
public passwords [w̄1, . . . w̄e]. Then, we utilize MIGP’s setup
protocol of Figure 1 to initialize the buckets. We test two
different configurations of τn: Das-r10 and Das-r100. We
focus on Das-r as it is the similarity function used in MIGP
implementations.

Baseline attack strategy: We compare the success of
the guessing strategy from Section 4 with a baseline attack.
This captures an attack on the ideal functionality of MIGP
with a leak function, where τ -collisions are not present.
Hence, the attacker can only perform the third step (online
phase) of the attack from Section 4. This means the attacker
traverses the unfiltered search space until the target password
wtrgt is guessed.

Search space: In our setup, we generate the search
space as: G =

⋃e
i=1 τq(w̄i). In other words, we apply the

similarity function to all known public passwords for the
user and merge them into a single list that is then sorted
based on password probability. This ensures the auxiliary
information provided by the public password on the target
one is exploited also in the baseline attack, providing a
more fair comparison. To compute G =

⋃e
i=1 τq(w̄i), we use

q=323, i.e., all the available rules for Das-r are applied.
Additionally, we append all unique passwords in S, sorted
by decreasing frequency, to G. Intuitively, this represents the
best guessing ordering when auxiliary information on the
target password is exhausted. Moreover, this ensures that
the target wtrgt is always in the search space G, simplifying
the results presentation and interpretation.

Results: We run the baseline attack and collisions-based
one on the same data and with the same initial conditions. In

Figure 14: Example of (large) collision graph extracted from the MIGPCF production server. Red nodes depict real passwords,
whereas green nodes are passwords generated through τ . Black edges represent type-1-induced collisions, whereas red ones
are induced by type-0 collisions. Gray ones depict standard non-collision edges generated by the application of the τ function
on real passwords during the MIGPCF setup phase. For the sake of clarity, we chose not to report the rank on edges.

the evaluation, we only report results for users that present
τ -collisions. For users with no τ -collision, the two attacks
are equivalent. The average number of guesses required by
the attacks is listed in Table 3 (column (a)) for the different
setups. For the τ -collisions-based attack, the average setup
cost is reported in parentheses. Column (b) reports the
reduction factor in the number of queries compared to the
baseline. For the considered setups, the attack strategy that
exploits τ -collisions results in a reduction of guesses by
three orders of magnitude. Column (c) reports the relative

size of the search space after pruning via τ -collisions; that
is, after the offline phase, the search space is pruned to be
2 · 10−5% of the original size.

We emphasize that the ordering of guessing list G may
not be optimal, and overall better guessing strategies can
be exploited to reduce the expected number of guesses (for
instance, by exploiting the match of similar passwords [11]).
However, we employ the same search space for both the
baseline and the attack outlined in Section 4. This ensures
that any advantage gained by the baseline attack also benefits

Attack strategy (a) Avg. Num.
Guesses

(b) Avg. Gain
over Baseline

(c) Avg. Search space
reduction

τ -collision-based (Das-r10) 57.54 (+1.68) 3754.94 1.92 · 10−5

τ -collision-based (Das-r100) 74.46 (+1.68) 2864.84 2.13 · 10−5

Baseline (Das-r) 216077.41 / /

Table 3: Average number of queries required to recover
the target password using two approaches: one that exploits
τ -collisions (referred to as τ -collision-based), and another
approach that does not utilize τ -collisions (referred to as
baseline). These comparisons are conducted based on the
guessing strategy outlined in Appendix D.

the τ -collisions-based attack strategy, thus maintaining the
gap between the two attacks. Indeed, regardless of the
guessing strategy used, an attacker would always be able to
exploit τ -collisions to exclude passwords from the search
space and reduce the expected number of guesses.

Algorithm 2: greedy-visit

Data: Collision graph: G : (V,E), Set of known passwords: V̄
// traverse all the natural edges.

1 V̄ =V̄ ∪ BFS(V̄);
2 if |V̄ | == |V | then

// Stop, if everything has been guessed.
3 return V̄ ;
4 end
// Set of nodes in G reachable from V̄ .

5 U={v ∈ V̄ /V s.t. ∃u∈V̄ : (v
r−→ u) ∈ E};

// Pick best candidate to guess.
6 v∗ = argmaxv∈Uscore(v, τ

−1
n (c)

// Get known child nodes for v∗.

7 c={(r, u)|u ∈ V̄ ∧ (v∗
r−→ u) ∈ E};

// Guess v∗ using τ−1
n .

8 for g ∈ τ−1
n (c) do

9 o=queryserver(g);
10 if o == match then

// v∗ guessed! Guess the next one.
11 return greedy-visit(G, V̄ ∪ g);
12 end
13 end

Appendix E.
Security of MIGP 2.0

Theorem 2. Given the ideal functionality Foprf , for every
q ∈ N, for every ℓ ∈ N, and for every similar password
generator τn, the MIGP protocol composed of the pre-
processing phase Πτn,ℓ

new-init (Figure 12) and query phase
Πℓ

query (Figure 2) is (q, Lclient, Lserver)-leakage secure (Def-
inition 1) where Lclient and Lserver are the ideal leakage
functions defined in Equation (6)

Proof. Fix ℓ, τn, and q. Also, let D and {(u′i, w̃′i)}i∈[q] be
the server’s breached credentials dataset and the q creden-
tials queried by a honest client, respectively. We prove the
client-side and server-side leakage (Definition 1) individu-
ally.

(Server-side leakage). To prove the server-side leakage,
we need to build a simulator Sserver that, on input D and

Lserver(D, {(u′i, w̃′i)}i∈[q]), simulates the view of an adver-
sarial server. It is easy to see that Sserver can be straightfor-
wardly constructed given the ideal functionality Foprf since
Sserver has access to all the information necessary to hon-
estly execute the MIGP protocol over the q client’s queries
{(u′i, w̃′i)}i∈[q]. Indeed, the only messages (of the server’s
view Viewserver

{(u,′iw̃′
i)}i∈[q],D) that depends on the client’s in-

puts (not known by the simulator) are the bucket indexes
{Ĥ(u′i) + 1}i∈[q]. Still, the latter are part of the leakage
function Lserver(D, {(u′i, w̃′i)}i∈[q]) (see Equation (6)). Note
that we do not need to simulate the OPRF messages since
the latter is modeled as an ideal functionality Foprf , i.e., the
simulator only needs send to Foprf the sampled OPRF key
k. Also, note that Foprf does not return any output to the
server.

(Client-side leakage). Consider the following simula-
tor Sclient that, given the ideal functionality Foprf and in-
puts {(u′i, w̃′i)}i∈[q] and Lclient(D, {(u′i, w̃′i)}i∈[q]) (see Equa-
tion (6)), simulates the client’s view Viewclient

{(u,′iw̃′
i)}i∈[q],D as

follows:
1) Initialize the buckets ZĤ(u′

1)+1 = ⊥, . . . ,ZĤ(u′
q)+1 = ⊥.

Note that this are the only buckets queried by the adversarial
client.
2) For every i ∈ [q], the simulator sends (u′i, w̃

′
i) to Foprf

and receive the output yi. If resulti = similar set yi = yi⊕1
where resulti is the output (contained in the leakage function
Lclient(D, {(u′i, w̃′i)}i∈[q])) of the MIGP protocol of the i-th
client query (u′i, w̃

′
i). If resulti ̸= none, add yi to the bucket

Zj+1 where j = Ĥ(u′i).
3) For i ∈ [q], let ti (which is part of the leakage function
Lclient(D, {(u′i, w̃′i)}i∈[q])) be the number of original creden-
tials mapped to the bucket ZĤ(u′

i)+1, and n be the publicly
known number of similar passwords generated by τn. For
i ∈ [q], set si = ti · n if n > 0, and si = ti otherwise (i.e.,
n = 0).
4) For every i ∈ [q], add randomly sampled strings (of the
same length of the OPRF output) to the bucket ZĤ(u′

i)+1

until it reaches the size si.10 Finally, shuffle the entries of
the bucket ZĤ(u′

i)+1.

5) Simulate the client’s view Viewclient
{(u,′iw̃′

i)}i∈[q],D by hon-
estly following the protocol while using the elements com-
puted above. Indeed, the information computed in Items 1,
2 and 4 are sufficient to simulate the view of the client.
In particular, for every i ∈ [q], (i) when the client invokes
Foprf on (u′i, w̃

′
i), the simulator returns yi and, (ii) when the

client asks for the bucket j + 1 = Ĥ(u′i) + 1, the simulator
returns the simulated bucket Zj+1.

What we need to show is that the entries of the queried
buckets are simulated correctly.

10. Observe that the value ti is not sufficient to simulate the buckets of
the old MIGP protocol of Pal et al. [11]. This is because the number of
entries si of the bucket ZĤ(u′

i)+1 may change according to the number
of collisions. Hence, to prove the security of [11], the number of entries
of each queried bucket must be part of the leakage function. However,
when collisions occur, this leaks sensitive information regarding the similar
passwords.

First, for every i ∈ [q], the queried bucket ZĤ(u′
i)+1 has

cardinality si which, in turn, is defined as either si = ti·n (if
n > 0) or si = ti (if n = 0). Hence, the cardinalities of the
queried buckets are identical as that of an honest protocol
execution.

Second, if a client’s query (u′i, w̃
′
i) yields either match

or similar, then the matched entry contained in the corre-
sponding bucket ZĤ(u′

i)+1 is computed as in the original
protocol.

Lastly, each unmatched entry of each bucket is simulated
by sampling it at random (instead of evaluating the PRF
on the correct credential/dummy value). By using a hybrid
argument, we can easily demonstrate that these simulated
(random) entries are indistinguishable from the real PRF
evaluations. This follows from the security of the PRF. The
proof is standard so we omit it.

By combining Theorem 2 and Theorem 1, we obtain the
following corollary.

Corollary 1. Let H1 and H2 be two hash functions modeled
as random oracles. Also, let q1 be the number of random
oracle queries submitted to H1. If (q+ q1, q)-one-more DH
assumption [24, Section 3] holds for G, then for every
ℓ ∈ N, and for every similar password generator τn,
the MIGP protocol composed of the pre-processing phase
Πτn,ℓ

new-init (Figure 12) and query phase Πℓ
query (Figure 2) is

(q, Lclient, Lserver)-leakage secure (Definition 1) in the ran-
dom oracle model where Lclient and Lserver are the ideal
leakage functions defined in Equation (6).

	Introduction
	Overview of the MIGP Protocol
	The Cryptographic Leakage Profile
	Taxonomy of -collisions

	Breach Extraction Attack: Filtering Guesses Based On the Cryptographic Leakage
	Additional Leakage from Cloudflare's MIGP Implementation Design Choices
	Breach Extraction via Collision Graphs: One Known Password and Inversion
	Extracting Password Templates: A Neural Network Approach With No Known Passwords
	MIGP 2.0: A New Leakage Profile
	Conclusion
	Acknowledgment
	References
	Appendix A: 2HashDH OPRF
	Appendix B: Client-side Similar Passwords Generation
	Appendix C: Leakage-based Security Definition of MIGP
	Leakage in the Python implementation

	Appendix D: Evaluation of the Filtering Attack
	Appendix E: Security of MIGP 2.0

