
Fast and Secure Oblivious Stable Matching over Arithmetic Circuits

Arup Mondal
Department of Computer Science

Ashoka University
Haryana, India

arup.mondal phd19@ashoka.edu.in

Priyam Panda
Department of Computer Science

Ashoka University
Haryana, India

priyam.panda@alumni.ashoka.edu.in

Shivam Agarwal
Department of Computer Science

Georgia Institute of Technology
Georgia, USA

s.agarwal@gatech.edu

Abdelrahaman Aly
Cryptography Research Centre
Technology Innovation Institute

UAE
abdelrahaman.aly@tii.ae

Debayan Gupta
Department of Computer Science

Ashoka University
Haryana, India

debayan.gupta@ashoka.edu.in

Abstract—The classic stable matching algorithm of Gale
and Shapley (American Mathematical Monthly ’69) and
subsequent variants such as those by Roth (Mathematics of
Operations Research ’82) and Abdulkadiroglu et al. (Amer-
ican Economic Review ’05) have been used successfully in a
number of real-world scenarios, including the assignment
of medical-school graduates to residency programs, New
York City teenagers to high schools, and Norwegian and
Singaporean students to schools and universities. However,
all of these suffer from one shortcoming: in order to
avoid strategic manipulation, they require all participants
to submit their preferences to a trusted third party who
performs the computation. In some sensitive application
scenarios, there is no appropriate (or cost-effective) trusted
party. This makes stable matching a natural candidate for
secure computation. Several approaches have been proposed
to overcome this, based on secure multiparty computation
(MPC), fully homomorphic encryption, etc.; many of these
protocols are slow and impractical for real-world use.

We propose a novel primitive for privacy-preserving
stable matching using MPC (i.e., arithmetic circuits, for any
number of parties). Specifically, we discuss two variants of
oblivious stable matching and describe an improved oblivious
stable matching on the random memory access model based
on lookup tables. To explore and showcase the practicality
of our proposed primitive, we present detailed benchmarks
(at various problem sizes) of our constructions using two
popular frameworks: SCALE-MAMBA and MP-SPDZ.

1. Introduction

The Stable Matching Problem (SMP) was first for-
malized in the 1960s by Gale and Shapley [22]. SMP
has seen extensive real-world use in scenarios that require
the clearing of two-sided markets, including NRMP – the
assignment of graduating medical students to residency
programs1, the assignment of New York City teenagers
to high schools [1], and the assignment of Norwegian
and Singaporean students to schools and universities [50].

1. National Residency Matching Program, http://www.nrmp.org.

The SMP involves two sets of agents, such as schools
and students, or employees and factories, or, the most
common version, women and men2. It is assumed that
each participant has a predefined, ordered, “preference”
list (possibly empty) of participants belonging to the other
set: so, every woman will have a list of men in her order
of preference (vice versa for the men).

A valid solution must match men and women to
produce a list of pairs (man, woman) such that no man and
woman belonging to different pairs would both be willing
to break their current pairing in favour of each other. More
formally, we have a set M of male suitors, a set W of
female reviewers (with |M | = |W | and M ∩W = ∅), and
a strict preference ordering (or “ranking”) of W (resp. M)
for each m ∈ M (resp. w ∈ W); we say that “m prefers
w1 to w2” if m would rather marry w1 than w2. A solution
comprises a one-to-one correspondence between M and
W which is stable, i.e., it contains no pairs (m1, w1) and
(m2, w2) such that such that m1 prefers w2 to w1 and w2

prefers m1 to m2.
In the general SMP (defined in Sec. 3.1), the two

sets of participants (suitors who propose matches and
reviewers who may or may not accept the proposals) need
not be of the same size, and each participant may rank
only a proper subset of its potential “matches”. Gusfield
and Irving [28] provide a comprehensive overview of
stable matching algorithms.

Clearly, agents on both sides of these markets have
legitimate concerns about the privacy of their rankings
and the integrity of the computation, but straightforward
implementations of stable-matching algorithms may leak
participants’ preferences or the history of matches made
and broken on the path to a stable solution. Therefore, sta-
ble matching is a natural candidate for secure multiparty
computation (MPC), i.e., computation by a protocol that
leaks no information about the participants’ inputs (except
that which is logically implied by the output), even in
the presence of malicious (or “byzantine”) participants,
who may deviate from the protocol specification in order
to gain information about other participants’ inputs or to

2. For simplicity, we will use this example throughout this paper.

http://www.nrmp.org

manipulate the output. Previous works on MPC for stable
matching include [18], [20], [21], [26], [35], [42], [54].

Stable matching procedures exhibit additional useful
properties. Roth [43] proved that stable matchings always
exist and that there will always be a stable arrangement
weakly preferred by the men, and that there will always
be a stable arrangement weakly preferred by the women.
The algorithm proposed by Gale and Shapley will always
output a stable matching weakly preferred by the men; that
is, each man will be at least as well off under the Gale-
Shapley assignment as under any other. We say that such
an assignment is male-optimal. Abdulkadiroglu et al. [1]
and Roth [43] leveraged this property in designing the
New York City Match and revising the NRMP to favour
students and residents.

Prior work has shown that, in the traditional setting in
which all inputs are known by all players, stable matching
procedures are susceptible to manipulation by strategic
players [43], [50]. Although members of the suitor group
have no incentive to misrepresent their preferences [44],
and members of the reviewing group never benefit from
misrepresenting their first choices, a strategic player in
the reviewing group may misrepresent his or her prefer-
ences to change the outcome and can sometimes switch
the stable arrangement from suitor-optimal to reviewer-
optimal [43], [50]. For example, if partial lists are allowed,
a reviewer may simply list as “unacceptable” each suitor
that he or she prefers less than his or her reviewer-
optimal suitor. Reviewers may also cause “faux stability”
by misrepresenting their preferences; the algorithm might
output an assignment that is stable with respect to the
inputs it receives but unstable with respect to the true
preferences of the players. By enforcing input privacy,
we leave reviewers in a position in which they may still
be able to change the outcome by misrepresenting their
true preferences but will not be able to change it in a
predictable way; because lying about their preferences
may wind up making the outcome worse for them instead
of better, they are motivated simply, to tell the truth.

A naive solution to the privacy constraints presented
in these cases would involve the participation of a trusted
third party. Such an entity would be in charge of the
execution of the algorithm, using the private inputs of
the participants. In this setting, parties would submit their
sealed preferences and await for the answer from such
an entity. Furthermore, the parties would have to trust
correctness and non-collusion from his behalf, but more
importantly, finding such a party is not obvious.

The idea of using MPC to obviate a trusted third party
in the context of stable matching has been previously stud-
ied, leading to the development of new privacy-preserving
schemes to solve associated subproblems e.g. [18], [35],
[42]. The results have been mixed, with vastly different
set sizes and other settings.

1.1. Contributions

Our work centers around the design of black-box
primitives for Oblivious Stable Matching and all the
necessary supporting building blocks, in the context of
multiparty protocols. This includes a novel secret index
extraction protocol with constant cost inspired by [17],
[33]. Our focus is practical/realistic implementations for

generic MPC. Our constructions are mainly based on
arithmetic circuits 3. In this context, we divide our con-
tributions as:
• Theoretical Aspects: We provide a method to oblivi-
ously solve instances of the Stable Matching Problem via
variations of the Gale-Shapley algorithm [22], and offer
a security analysis of the problem. We achieve this via
the use of a generic Arithmetic Black Box FABB (refer
to Sec. 3.5). This allows us to abstract functionality and
decouple security proofs realizations, of the underlying
protocols. Our protocols are information theoretic – in
reality, it depends of the protocols used for their imple-
mentation.
• Technical Aspects. We benchmark our construc-
tions using the most commonly used frameworks for
the evaluation of arithmetic circuits over MPC(namely
SCALE-MAMBA [4] and, MP-SPDZ [31]). Out setup con-
siders different adversarial settings, number of parties,
and latencies. We go a step further and offer technical
recommendations, related to the implementation on both
tools in our discussion section. Finally, we make our
repositories publicly available4.

Besides these main points, we also include brief dis-
cussions on the state of the art and similar constructions,
as well as applications.

Organization. The paper is organized as follows: Sec. 2
discusses related work. Sec. 3 provides preliminaries
and technical background. Sec. 4 describes our proposed
oblivious stable matching algorithm and its variants. In
Sec. 5 we describe a novel protocol for private array access
(and using this protocol we describe an oblivious stable
matching algorithm on the random access model). Sec. 6
provides a security sketch of our proposed oblivious stable
matching algorithm and its variants. Sec. 7 discusses
experimental performance evaluations of our proposed
algorithm, and finally, Sec. 8 concludes.

2. Related Work

Brito and Meseguer [10] propose a distributed ap-
proach to the stable marriage problem with ties and incom-
plete lists with the aim of keeping preference lists private
for privacy reasons. They extend some specialized cen-
tralized algorithms (such as the Extended Gale-Shapley
algorithm [30]) to the distributed case, using a generic
distributed constraint programming model. However, their
proposed method is not cost efficient.

Golle [26] first explored and proposed a secure version
of the classic Gale-Shapley [22] stable matching algo-
rithm. Golle’s variant introduces semi-honest “matching
authorities” and adds “dummy” men; it uses threshold
homomorphic encryption and re-encryption mixnets to
compute a stable matching in a privacy-preserving fashion.
Privacy and correctness are guaranteed when a majority
of the matching authorities are honest. Golle’s protocol
requires O(n5) public key operations. Soon after, Franklin
et al. [20] proposed two new protocols – the first protocol

3. Note that, for efficiency, our implementation rely on widely used
mixed-circuit protocols like [29], [34] via [6].

4. For ease of access, all of our code and experiments are available in
a repository: https://github.com/StableMatch/OblivSM.

https://github.com/StableMatch/OblivSM

was based on an XOR secret sharing scheme and used pri-
vate information retrieval to process bids, and the second
protocol used garbled circuits in combination with Naor-
Nissim’s protocol for secure function evaluation [39]. The
first protocol required O(n4) public key operations with
O(n2) communication rounds and the second protocol
required O(n4) computation complexity with O(n2) com-
munication rounds. In [21] Franklin et al.’s design an
efficient multiparty Look-Up Table (mLUT) protocol and
discussed a design of improved secure stable matching
protocol of the algorithm in [20]. However, both Golle’s
protocol and Franklin et al.’s protocols does not appear to
be practical and has never been implemented.

Teruya and Sakuma [51] proposed a protocol building
on Golle’s secure stable matching protocol using additive
homomorphic encryption to simplify the bidding process
which offers lower communication complexity rounds,
i.e., O(n2) than the Golle’s protocol. They shown an
implemented study of their protocol as a client-server
system, using hand-held devices running on a LAN.

Keller and Scholl [35] first proposed a secure version
of Gale-Shapley stable matching protocol using ORAM,
and implemented their protocol using Path ORAM [49]
and the SPDZ MPC protocol [16]. They reported that in
the worst case of their proposed protocol with 8k pairs can
be done in 1.5 × 1012 seconds but they did not provide
the implementation details. Further results in this area
were reported by Keller more recently [31] (see Table 7
for the results and comparison). Zahur et al. [54] present
an implement study of the classical Gale-Shapley stable
matching algorithm using Square-Root ORAM [55], and
reported a runtime of more than 33 hours for 512 pairs of
participants. The required computation and communica-
tion complexity of theirs protocol is O(n3 log2 n) which
limits the scalability of their approach significantly.

Riazi et al. [42] proposed a provably secure stable
matching protocol using Yao’s Garbled Circuits [53] and
introduce a sub-linear size circuit making the protocol
computationally efficient, and discussed three different
variations of their – a protocol without using ORAM
which required O(n4 log n) symmetric key operations,
using ORAM which required O(n2 log3 n) symmetric key
operations, and using ORAM and early termination tech-
nique (ETT) which required O(n2 log3 n) symmetric key
operations. They shows an implementation study of their
protocols for several problem sizes.

Doerner et al. [18] study the development of strategies
for RAM-based secure computation by modification to
the ORAM access protocol that enables efficient function
application within an ORAM access. Doerner et al. de-
signed an oblivious linked list structure that can be used
when the order in which data is accessed must be hid-
den. Using the aforementioned techniques, they developed
and evaluated the two secure stable matching algorithms.
They implemented a secure version of the modified Gale-
Shapley and Roth-Peranson stable matching algorithm and
achieved lower asymptotic complexity than the previous
design. Their secure version of Gale-Shapley algorithm
performs Θ(n2) operations upon a Θ(n)-length memory.
This results in a total complexity in Θ(n2.5 log1.5 n) when
using a Secure-Root ORAM and Θ(n2 log3 n) by using
Circuit ORAM. However, both papers [18], [42] imple-
mentation codes are not publicly available, so we cannot

provide a quantitative comparison.
We achieve an efficient method for solving secure

stable matching by proposing a novel secret index extrac-
tion protocol. See Table 4 for the asymptotic complexity
comparison between the existing works and our proposed
methods.

3. Preliminaries and Background

In this section, we present a detailed background of
the stable matching problem and cryptographic primitives
upon which our proposed primitive relies to achieve secure
oblivious stable matching.

3.1. The Basic Stable Matching Algorithm

In [22], Gale and Shapley showed that the stable
matching problem has a solution for all cases where the
number of suitors is equal to the number of reviewers.

3.1.1. Informal Description. The suitors propose to the
reviewers, in a series of rounds. In each round, an un-
matched suitor proposes to his most preferred reviewer to
whom he has not already proposed. If the chosen reviewer
is unmatched, she tells her suitor “maybe” and asks him to
wait. If she already has a partner, she says “no” to the less
preferred of her currently waiting suitor and her current
proposer, and she answers “maybe” to the other. When no
unmatched suitors exist, all reviewers accept their current
partner.

Thus, at the end of each round, a reviewer has said
“maybe” to her most preferred suitor and “no” to every-
one else. The suitors in the round, of course, have just
proposed to their most preferred reviewer.

The algorithm provides two main guarantees. First, if
the set of suitors and the set of reviewers are the same
size, it ensures that everybody gets matched, or married.
Once a reviewer has said maybe, at no point can she be
unmatched, or single, since she never says no to anyone
unless she is already matched via a previous maybe. At
the end of the protocol, there can be no suitor and reviewer
that are not matched, since an unmatched suitor eventually
proposes to everyone. (In this scenario, the reviewer, as
she isn’t already matched, must say maybe).

Second, it ensures that all the matches are stable.
Let there exist two pairings (Alice,X) and (Y,Bob) are
where Alice prefers Bob to X and Bob prefers Alice to
Y . Since Bob prefers Alice to Y , he must have proposed
to Alice before he proposed to Y . At this point, Alice can
say either maybe or no to Bob:

• Alice only says no to Bob if she prefers her current
match.

• If Alice says maybe to Bob, the only way in which
she can be separated from Bob is if she finds
someone she prefers more.

Thus, at the end of the protocol, if Alice is not matched
to Bob, she is with someone she prefers over Bob. So, the
two pairings (Alice,X) and (Y,Bob) cannot exist if Alice
prefers Bob to X and Bob prefers Alice to Y .

A stable assignment is considered optimal for a group
of suitors or reviewers if every member of the group is at
least as well off under that assignment as under any other

assignment. Roth [43] showed that stable assignments can
always be constructed for only one of the disjoint sets
involved in the matching, but not both.

3.1.2. Formal Description. We define S = {1, 2, . . . , n}
to be the set of suitors such that the i-th suitor is i, and
R = {1, 2, . . . , n} to be the set of reviewers such that j-th
reviewer is j, in the stable matching. MS,R describes a
stable matching as a binary relation in S × R such that
(i, j) ∈ M if (i, j)|i ∈ S, j ∈ R is a pair in the assigned
matching. S′ ⊆ S|S′ only suitors that are unmatched.

(i, ·) = {j | (i, j) ∈M}

(·, j) = {i | (i, j) ∈M}

ps and pr describes the set of preferences for each
suitor and reviewer for the members of the other party,
respectively. (ps)ij denotes the preference of i-th suitor for
j-th reviewer, and similarly (pr)ji denotes the preference
of j-th reviewer for the i-th suitor.

• (ps)i describes i’s preferences [k, l, . . .] such that
i’s preference for 1st reviewer is k, 2nd reviewer
is l, and so on. If k > l then suitor i prefers 1st

over 2nd.
• (pr)j describes j’s preferences [k, l, . . .] such that

j’s preference for 1st suitor is k, 2nd suitor is l,
and so on. If k > l then reviewer j prefers 1st

over 2nd.

The algorithm described in the previous paragraph is
formally presented in Algorithm 1. The protocol ΠGS
in Algorithm 1 always produces a stable matching (i.e.,
computes FGS, the ideal functionality for Gale-Shapley
stable matching).

Algorithm 1 Gale-Shapley Stable Matching
ΠGS(S,R, ps, pr)

1: S′ ← S
2: while ∃i ∈ S′ do
3: i← S′ . Pick a suitor i from the set S′

4: j ← (ps)i|(ps)ij ≥ (ps)ij′ ∀j′ ∈ R such that suitor i
has not already chosen the reviewer j, j′

5: if (·, j) then
6: M ′ ←M ′ ∪ {(i, j)}
7: S ← S′\{i}
8: else
9: i′ ← (·, j)

10: if (pr)ji > (pr)ji′ . i.e., reviewer j prefers suitor i
to i′ then

11: M ′ ←M ′\{(i′, j)}
12: S′ ← S′ ∪ {i′}
13: M ′ ←M ′ ∪ {(i, j)}
14: S ← S′\{i}
15: end if
16: end if
17: end while
18: return M ′

Theorem 3.1 (based on [22]). The stable matching proto-
col ΠGS always correctly computes and produces a correct
stable matching.

Proof (Sketch). The standard Gale-Shapley stable match-
ing protocol ΠGS described in Algorithm 1 is an iterative
procedure (each iteration has to two stages: proposal and

matching) that correctly computes and produces a stable
set of matching. The proof of Theorem 1 in [22] proves
that the end of the iterative procedure (at most n2−2n+2
stages) will produce a correct stable set. To avoid redun-
dancy we refer the reader to Section 3 (Theorem 1) in [22]
for detailed proofs of Theorem 3.1.

3.2. Other Matching Problems

Matching problems are not restricted to the version
just described. Indeed, depending on the objective func-
tion, matching problems can be used to interpret and solve
a great variety of applications, especially in graph the-
ory [19], [37], such as bipartite matching [38] optimizing
for maximum cardinality or weight, as well as oblivious
versions [9] of the same.

3.3. Cryptographic Building Blocks

3.3.1. Secret Sharing. In cryptography, secret shar-
ing [45] refers to the process of splitting a secret among n
parties such that each party does not learn anything about
the whole secret from the share it holds. The secret can
be reconstructed only if a certain minimum number of
parties, greater than or equal to a threshold, t, combine
their shares. The scheme is known as the (t, n) threshold
scheme or t-out-n secret sharing (or Shamir secret shar-
ing). In this work, we both Shamir secret sharing over
arithmetic fields (integer length is set to the default 64).

3.3.2. Secure Multiparty Computation. Secure Multi-
party Computation (MPC) [24], [53] in its most general
form allows a set of parties to interact and compute a joint
function of their private inputs while revealing nothing but
the output. A MPC set-up assumes that there are n parties,
{P1, P2, . . . , Pn}, each with private input xi, to jointly
compute a function (y1, y2, . . . , yn) = f(x1, x2, . . . , xn),
where each party Pi receives yi as output and doesn’t
learn anything about inputs or outputs that is not logically
implied by xi and yi. MPC can be achieved using different
techniques such as garbled circuit with oblivious transfer,
secret sharing, fully or partially homomorphic encryption,
and functional encryption.

In this work, we use general model of MPC is the so-
called generic Arithmetic Black Box FABB , which is an
ideal functionality that allows parties to input and output
values to be secret-shared, and performs basic arithmetic
operations on these secret values over a finite field Fp.
Concretely, the MPC protocol we use to implement FABB

is the SPDZ protocol. The main arithmetic operations
in FABB have roughly the following complexity when
implemented in SPDZ.

We used two popular MPC frameworks
SCALE-MAMBA [4] and MP-SPDZ [31] for benchmarking
of our various oblivious stable matching constructions.

3.4. Technical Notation

3.4.1. Basic Notation. We denote |S| size of the suitors
and reviewers. We use the notation 〈x〉 to denote a secret
shared value. We used the notation defined in Table 1
throughout our paper.

TABLE 1: We use this notation throughout all algorithms.

Notation Description
〈sp〉i Suitor i’s preference For current

match.
〈sm〉i Suitor i’s current match.
〈rp〉i Reviewer i’s preference For current

match.
〈rm〉i Reviewer i’s current match.
〈us〉i Matched status For suitor i (0 for

matched and 1 for unmatched).
〈ps〉ij Suitor i’s preference For Reviewer

j.
〈pr〉ij Reviewer i’s preference For Suitor

j.
〈tp〉, 〈tm〉 To store current reviewer prefer-

ence and current match.
〈pus〉i To store preference For the ith re-

viewer.

3.4.2. Conditional Operator. Given the intrinsic limita-
tions on flow branching (e.g., control sentence if), the
mechanism shown in Algorithm 2 allows us to simulate
conditional assignments to variables, based on a secret
shared binary value 〈c〉. Such approach has been previ-
ously used in other applications such as [3], [7], [13],
[41].

Algorithm 2 Conditional Operator 〈z〉 ←〈c〉 〈x〉 : 〈y〉
1: 〈z〉 ← 〈c〉.(〈x〉 − 〈y〉) + 〈y〉
2: return 〈z〉

Input Data. We assume all input data to be elements of a
finite field Zq bounded by some sufficiently large prime
or RSA modulus q, such that no overflow occurs. This,
let us treat all input values as plain integers, as long as
their size is bounded by q such that x� q for any input
x.

Complexity. We measure complexity in communication
rounds i.e., the number of operations that require infor-
mation exchange in between the parties performing the
computations.

3.5. Arithmetic Black Box FABB

An Arithmetic Black Box (FABB), is an abstraction
technique used to simplify theoretical analysis in regards
to security under composition (UC model [11]). First
introduced by Damgåd and Nielsen [15], it encapsulates
an ideal functionality and can be extended, as long as
secure realizations are provided. We name ours FABB ,
and use it to decouple the analysis of our constructions
from the underlying MPC protocols.

Table 2, defines our arithmetic black box FABB ,
and provides the round complexity and the corresponding
UC secure realizations of any given functionality.

• extract(〈i〉, 〈V 〉). In Algorithm 5, we show how
to secretly extract the 〈i〉-th element in constant round,
by shifting the elements of the shared vector 〈V 〉 by a
uniformly random secret mask 〈r〉, without leaking any
information about the secret index 〈i〉.

3.6. Oblivious Random Access Memory

Oblivious RAM (ORAM) was first introduced by
Goldreich and Ostrovsky [23], [25] in the context of
protecting software from piracy, and efficient simulation
of programs on oblivious RAMs which allow a client
to conceal its access pattern to the remote storage by
continuously shuffling and re-encrypting data as they are
accessed. An adversary can observe the physical storage
locations accessed, but the ORAM algorithm ensures that
the adversary has negligible probability of learning any-
thing about the true (logical) access pattern. Goldreich and
Ostrovsky [25] showed that the lower bound for the cost
of accessing a single entry in the storage is sub-linear
with respect to the size of the storage. Linear ORAM
is a naı̈ve approach of ORAM which linearly searches
the entire storage for each access such that the client
can choose the desired entry using multiplexer. Gordon et
al. [27] proposed to use ORAM mechanism inside two-
party secure computation (e.g., GC) in order to reduce the
amortized cost of accessing a memory entry from linear to
sub-linear. There are several improvements on the original
idea of ORAM, including [40], [46], [48] which reduced
the amortized per-access complexity to O(log3 n).

An ORAM scheme uses an oblivious data structure in
order to hide the access pattern, and it must implement
two protocols: initialization protocol and access protocol.
Initialization protocol is used to create and initialize the
oblivious data structure from the given array of data.
Access protocol is used to implement the actual access
to the data structure. It translates the logical address
that is created in the MPC protocol to the sequence of
physical addresses. In RAM based secure computation, the
memory accesses are handled by ORAM. Once the secret
logical address is generated inside the MPC protocol, it is
translated into multiple physical addresses by the access
protocol (client side) that are revealed to both parties. Both
parties then provide the requested memory entities back to
the MPC protocol. At the end, the MPC protocol changes
all the memory entities’ data to hide which element was
accessed and how it was changed and then it sends them
to two parties to store them. There are different data
structures for ORAM. Goldreich and Ostrovsky [23], [25]
introduced two hierarchical layered structure ORAMs:
Square-Root ORAM and Hierarchical ORAM. Shi et
al. [46] initiated a tree-based ORAM scheme.

ORAM For MPC. Launchbury et al. [36] describe a
protocol for obliviously searching an array of size N
without revealing indices, with linear overhead (i.e., the
cost of the procedure is O(N)). It involves expanding the
secret-shared index i < N to a vector of size N that
contains a one in the i-th position and zeroes elsewhere.
The inner product of this index vector and the array of
field elements gives the desired field element. The index
vector can likewise be used to replace this field element
with a new one while leaving the other field elements
intact.

More relevant for us, Keller and Scholl [35] proposed
a protocol with polylogarithmic overhead (i.e., the cost of
the procedure is O(poly(logN))), in the context of MPC,
for oblivious implementations of an oblivious array using
both the Binary Tree ORAM [46] and a variation of Path

TABLE 2: Secure Arithmetic operations provided by the Arithmetic Black Box FABB .
Functionality Description Rounds Protocol
x← open(〈x〉) Opening secret field elements 1 e.g. [8], [16], [47]
〈x〉 ← x Strong public input in a secret field elements 1 e.g. [8], [16], [47]
〈z〉 ← 〈x〉+ 〈y〉 Addition of secret field elements 0 e.g. [8], [16], [47]
〈z〉 ← 〈x〉+ y Addition of secret field element and public element 0 e.g. [8], [16], [47]
〈z〉 ← 〈x〉 · 〈y〉 Multiplication of secret field elements 1 e.g. [8], [16], [47]
〈z〉 ← 〈x〉 · y Multiplication of secret field element and public element 0 e.g. [8], [16], [47]
〈b〉 ← 〈x〉 < 〈y〉 Comparison of secret field elements 4 or (1 + log2(`)) e.g. [5], [12]
〈b〉 ← 〈x〉 < y Comparison of secret field element and public element 4 or (1 + log2(`)) e.g. [5], [12]

〈b〉 ← 〈x〉 ?
= 0 Equality test of secret field element and zero 4 or (1 + log2(`)) e.g. [5], [12]

〈b〉 ← 〈x〉 ?
= 〈y〉 Equality test between two secret field elements 4 or (1 + log2(`)) e.g. [5], [12]

〈b〉 ← 〈x〉 ?
= y Equality test of a secret field element and a public element 4 or (1 + log2(`)) e.g. [5], [12]

〈x〉 $← random(size) Sample a some randomness in [0, 2size) 1 [12], [14]
〈V 〉′ ← permute(〈V 〉) Secretly permutes 〈V 〉 s.t. elements are uniformly distributed in |〈V 〉| 8 or (1 + log2(l)) [17], [33]
〈V 〉〈i〉 ← oram_array(〈i〉) Secretly extract the 〈i〉-th element of a secret vector 〈V 〉 using ORAM log3(|V |) [35]
〈x〉 ← oram_priority_queue(〈y〉) Secretly add and remove an element from a secret shared priority queue log5(|V |) [35]

ORAM [49] schemes, as a secret shared array that can
be accessed using a secret index, without revealing this
index. In other words, Keller and Scholl [35] improved
the protocol in [36] by improving the position map of
the elements using tree ORAM, i.e, storing several field
elements in the same memory cell and packing several po-
sitions per field element. We refer the reader to Section 4
in [35] for the more detailed construction of the protocol.

ORAM based Stable Matching. Riazi et al. [42] con-
struct a secure stable matching protocol using the combi-
nation of Yao’s GC [53] and ORAM (Circuit ORAM [52]
and Square-root ORAM [54]). Doerner et al. [18] study
the development of strategies for RAM based secure
computation by modification to the ORAM access pro-
tocol that enables efficient function application within an
ORAM access. In this work, we mainly study and design
of the primitives for Oblivous Stable Matching, in the
context of MPC.

4. Oblivious Stable Matching

In this section, we describe a variant of oblivious
Gale-Shapley [22] stable matching protocol, without re-
vealing user private inputs, and briefly discuss correctness
and complexity.

4.1. Threat Model

Semi-honest Participants: A semi-honest (also
known as honest-but-curious) adversary follows the pro-
tocol specifications honestly, but may try to learn infor-
mation about the private input data by inspecting the
shared inputs sent by the participants in the process. Our
approach ensures that the adversary (colluding with any
subset of participants) can’t learn any information about
the private inputs of the honest participants when any
subset of participants are semi-honest corruption. We note
that these protocols achieve the same security level than
the underlying protocol on any given setting. This includes
security with abort, where parties would be susceptible to
the same kind of reconstruction attacks already present in
MPC protocols.

4.2. Näive Oblivious Stable Matching

We have adapted the standard Gale-Shapley [22] stable
matching protocol ΠGS in Algorithm 1 so that its flow does

Functionality 1: Ideal Functionality for Näive and Optimized
Oblivious Gale-Shapley Stable Matching FOblivGS

• Parameters: This functionality has all of the features of
FABB , and receives suitors’ and reviewers’ secret shared
preference list 〈ps〉 and 〈pr〉 respectively.
• Stable Match: On receiving the aforementioned preference
shares (〈ps〉, 〈pr〉)) from all parties, it computes a stable
matching (〈sm〉, 〈rm〉) which stores matched reviewer index
and suitor index respectively.

not depend on the input data (obliviousness) as reflected
in the oblivious stable matching protocol ΠOblivGS in Al-
gorithm 3. Hence, our focus in protocol ΠOblivGS realizes
the functionality FOblivGS shown in Functionality 1.

Suitors propose to reviewers in a series of rounds. In
each round, a suitor proposes to every reviewer. Since
whether a suitor is unmatched or matched is oblivious
and reviewers can’t be accessed in the list of preference,
every suitor HAS to propose to every reviewer. A proposal
checks whether matching the current suitor and reviewer
would result in a more stable match than their existing
matches. In other words, we check whether the suitor and
reviewer prefer each other over their existing matches.
This check is also done in an oblivious manner so the
result is stored in a shared value. Using conditional as-
signment operator (see Algorithm 2), the matches of the
suitor and the reviewer are either updated or kept the same.

Algorithm 3 is almost identical to the original Gale-
Shapley protocol ΠGS (see Algorithm 1). In the original
protocol, each suitor (unless already matched) proposes to
the unmatched reviewer whom it prefers the most in every
iteration. In the oblivious version of the Gale-Shapley
stable matching protocol ΠOblivGS, the suitor has to be
checked against each reviewer for a new stable match.
The last reviewer that the suitor’s match is updated against
becomes the final match of that suitor from that iteration
of the algorithm. It can be proven (refer to Section 3
Theorem 1 in [22]; Theorem 3.1) that the final match
formed will always be the match of highest preference that
could be made for the suitor in that iteration. Thus, our
proposed oblivious stable matching protocol ΠOblivGS in
Algorithm 3 achieves the same output as a regular iteration
of the Gale-Shapley protocol would have. After checking
the suitor against every reviewer, we update the match

of the last reviewer5 that was matched to the suitor and
update the suitor that this reviewer was matched to, if
it was matched to someone, as unmatched. The protocol
keeps track (obliviously) of single suitors by means of
vector 〈us〉i (the same that is used to identify non-matched
suitors). The final two for loops obliviously update the
suitors’ and reviewers’ current matches & preference for
current matches.

The algorithm can be constructed by replacing all
basic operations with their secure equivalents (provided
by the underlying multiparty functionality); replacing con-
ditional blocks by using oblivious assignments ←〈c〉; and
limiting the number of iterations to the protocol iteration
upper bound. We note that our time complexity is O(n3)
on the number of comparisons and multiplications as
reflected in Algorithm 3.

The intuition of protocol ΠOblivGS in Algorithm 3 is as
follows: at the core of the protocol there is a decisional
procedure that allows us to retain or disregard a matched
tuple. This is achieved, in part by the two inner loops,
which identify a new preference pairing, each iteration,
allowing us to contrast them with the current best match-
ings stored by the 〈sm〉 and the 〈rm〉 vectors. We do this
at least as many times as elements on the suitors and
reviewers. At the end of the last iteration, vectors 〈sm〉
and 〈rm〉 will contain the stable match.

4.2.1. Correctness. The protocol ΠOblivGS in Algorithm 3
is an oblivious adaptation of the Galey-Shapley protocol
ΠGS. In their seminal result [2], [22], it is proven that
at least one stable match is fixed per protocol iteration,
giving an upper bound of at most the size of the matching
vectors on the number of iterations. Using this principle,
we can run the internal inner workings of the protocol,
further adapted to work in an oblivious fashion guaran-
teeing correctness. As proved in Theorem 3.1 the standard
stable matching protocol ΠGS always produces a correct
stable set of matching, then our proposed oblivious stable
matching protocol ΠOblivGS also always produces a correct
stable set of matching.

4.2.2. Complexity. Time complexity of ΠOblivGS is
O(n3), on the number of secure comparisons and mul-
tiplications as reflected in Algorithm 3.

4.3. Optimized Oblivious Stable Matching

The proposed oblivious stable matching protocol
ΠOblivGS in Algorithm 3 can be further optimized to
achieve a reduction of the asymptotic complexity on the
number of comparisons. Such changes are reflected on
optimized oblivious stable matching protocol ΠOptOblivGS
in Algorithm 46. Our focus in protocol ΠOptOblivGS is to
realize the functionality FOblivGS shown in Functionality 1.

This optimized version of the protocol is an extension
of our initial construction, but with a more sophisticated
mechanism for stopping the protocol. Here, the protocol
checks whether there exists a suitor with no match. In case

5. Removing the dependence on the last match would allow us to
run all the internal loops in parallel, considerably speeding up execution
time. We leave this for future work.

6. The differences between Algorithm 3 and Algorithm 4 are only in
lines 6-14 of Algorithm 4.

Algorithm 3 Näive Oblivious Gale-Shapley Stable Match-
ing ΠOblivGS(〈ps〉, 〈pr〉)

1: {(〈sp〉i, 〈sm〉i), · · · , (〈sp〉|S|, 〈sm〉|S|)} ← 〈⊥〉
2: {(〈rp〉i, 〈rm〉i), · · · , (〈rp〉|S|, 〈rm〉|S|)} ← 〈⊥〉
3: {〈us〉i, · · · , 〈us〉|S|} ← 〈1〉 . initially, all suitors are

unmatched.
4: {〈tp〉, 〈tm〉} ← 〈⊥〉
5: while i < |S| do
6: for j ∈ S do
7: us ← 〈0〉
8: rr ← 〈0〉
9: um ← 〈us〉j . match status of suitor j.

10: for k ∈ R do
11: 〈c〉 ← (〈sp〉j

?
< 〈ps〉jk) × (〈rp〉k

?
< 〈pr〉kj) ×

〈um〉
12: 〈us〉 ←〈c〉 〈rm〉k : 〈us〉 . current match of

reviewer k.
13: 〈sm〉j ←〈c〉 k : 〈sm〉j . update suitor j’s

current match.
14: 〈sp〉j ←〈c〉 〈ps〉jk : 〈sp〉j . update suitor j’s

preference.
15: 〈us〉j ←〈c〉 〈0〉 : 〈us〉j . update suitor j’s

match status.
16: 〈rr〉 ←〈c〉 k : 〈rr〉 . store current reviewer.
17: 〈tm〉 ←〈c〉 j : 〈tm〉 . reviewer’s new match.
18: 〈tp〉 ←〈c〉 〈pr〉kj : 〈tp〉 . reviewer’s new

preference.
19: end for
20: for z ∈ |S| do
21: 〈c〉 ← z

?
= 〈us〉 . previously matched suitor.

22: 〈us〉z ←〈c〉 〈1〉 : 〈us〉z . update matched to
unmatched.

23: 〈sm〉z ←〈c〉 〈0〉 : 〈sm〉z . update current match.
24: 〈sp〉z ←〈c〉 〈0〉 : 〈sp〉z . update current

preference.
25: end for
26: for z ∈ |R| do
27: 〈c〉 ← z

?
= 〈rr〉 . currently matched reviewer.

28: 〈rm〉z ←〈c〉 〈tm〉 : 〈rm〉z . update current
match.

29: 〈rp〉z ←〈c〉 〈tp〉 : 〈rp〉z . update current
preference.

30: end for
31: end for
32: i++
33: end while
34: return 〈sm〉, 〈rm〉

no more single suitors are to be found the protocol has to
be stopped, hence the break. This means that parties learn
the result of 〈m〉 == 0, to determine whether or not the
protocol should be stopped. Again, in each round, a suitor
proposes to every other reviewer. The protocol follows
this by performing the same comparison introduced by
our initial approach from Algorithm 3.

The advantage is that, although the worst case sce-
nario complexity matches our previous algorithm (in the
number of multiplications), the actual number of iterations
depends on the inputs. The evident drawback is that some
leakage is produced, in this case the number of iterations
that were needed to obtain the result of the computation.

4.3.1. Correctness. The protocol ΠOptOblivGS in Algo-
rithm 4 is the optimized version of our proposed oblivious
stable matching protocol ΠOblivGS in Algorithm 3, which is
an oblivious adaptation of the standard Galey-Shapley pro-

Algorithm 4 Optimized Oblivious Gale-Shapley Stable
Matching ΠOptOblivGS(〈ps〉, 〈pr〉)

1: {(〈sp〉i, 〈sm〉i), · · · , (〈sp〉|S|, 〈sm〉|S|)} ← 〈⊥〉
2: {(〈rp〉i, 〈rm〉i), · · · , (〈rp〉|S|, 〈rm〉|S|)} ← 〈⊥〉
3: {〈us〉i, · · · , 〈us〉|S|} ← 〈1〉
4: {〈tp〉, 〈tm〉} ← 〈⊥〉
5: while true do
6: 〈v〉 ← 〈0〉
7: 〈m〉 ← 〈0〉
8: for j ∈ S do . check if there exists an unmatched

suitor.
9: 〈v〉 ← ((〈1〉 − 〈v〉) · 〈us〉j)

10: 〈m〉 ←〈v〉 j : 〈m〉
11: end for
12: if open(〈m〉 ?

= 0) then . if no unmatched suitor exists
then break.

13: break
14: end if
15: for j ∈ S do
16: us ← 〈0〉
17: rr ← 〈0〉
18: um ← 〈us〉j
19: for k ∈ R do
20: 〈c〉 ← (〈sp〉j

?
< 〈ps〉jk) × (〈rp〉k

?
< 〈pr〉kj) ×

〈um〉
21: 〈um〉 ←〈c〉 〈rm〉k : 〈um〉
22: 〈sm〉j ←〈c〉 k : 〈sm〉j
23: 〈sp〉j ←〈c〉 〈ps〉jk : 〈sp〉j
24: 〈us〉j ←〈c〉 〈0〉 : 〈us〉j
25: 〈rr〉 ←〈c〉 k : 〈rr〉
26: 〈tm〉 ←〈c〉 j : 〈tm〉
27: 〈tp〉 ←〈c〉 〈pr〉kj : 〈tp〉
28: end for
29: for z ∈ |S| do
30: 〈c〉 ← z

?
= 〈us〉

31: 〈us〉z ←〈c〉 〈1〉 : 〈us〉z
32: 〈sm〉z ←〈c〉 〈0〉 : 〈sm〉z
33: 〈sp〉z ←〈c〉 〈0〉 : 〈sp〉z
34: end for
35: for z ∈ |R| do
36: 〈c〉 ← z

?
= 〈rr〉

37: 〈rm〉z ←〈c〉 〈tm〉 : 〈rm〉z
38: 〈rp〉z ←〈c〉 〈tp〉 : 〈rp〉z
39: end for
40: end for
41: end while
42: return 〈sm〉, 〈rm〉

tocol ΠGS. We discussed in §4.2.1 the correctness of the
protocol ΠOblivGS and, using the same principle, we argue
that the optimized version of oblivious stable matching
protocol ΠOptOblivGS also produces correct output.

4.3.2. Complexity. Time complexity of our optimized
oblivious stable matching protocol ΠOptOblivGS is O(n3).

5. Oblivious Stable Matching based on Ran-
dom Access Memory

Let us consider the oblivious nature of the protocols in
Algorithm 3 and Algorithm 4. To achieve oblivious vector
access on a secret index, we are required to explore all
elements contained in our matrices and vectors. In this
section, we explore an alternative way, where we make
use of techniques to operate over secret shared memory.

In other words, private array access at a private index
location.

To achieve this, we propose two alternative paths.
First, the use of ORAM (in §5.1) and second, a novel
constant round lookup table-based method for random
memory access (in §5.2); these are both realizations of the
extraction functionality described in 2. We then describe
a novel oblivious Gale-Shapley stable matching algorithm
based on the random memory access model (in §5.3), that
can be implemented using any of these realizations.

The variants of extract functionality defined in
Table 3 can be trivially derived from the extract func-
tionality in the First row from the same table, which is
our focus henceforward.

Functionality 2: Ideal Functionality for private array access
Fextract

• Parameters: Receives a secret index positions 〈i〉 and 〈j〉,
and secret shared vector 〈V 〉 and 〈M〉.
• Memory Access: On receiving (〈i〉, 〈j〉) from all parties,
where either (〈V 〉, 〈M〉) are stored in memory, retrieves
either 〈V 〉〈i〉 or 〈M〉〈i〉,〈j〉 according to Table 3.

5.1. ORAM Based Random Access

As shown in our Related Work, the more typical
approach in the literature is to instantiate our Ideal Func-
tionality is via ORAM. Keller and Scholl [35] for instance,
provided several UC secure data structures based on
ORAM for MPC. The extract functionality, introduced
in the first row in Table 3 can be trivially implemented
using their Oblivious Array (oram_array) construction.
This comes at the additional cost7 of some logarithmic
overhead on the vector size.

The extraction of a secret element from a vector 〈V 〉
is trivially obtained via invoking:

〈V 〉〈i〉 = extract(〈i〉, 〈V 〉) = oram array(〈i〉, 〈V 〉) .

Whereas, the extraction of an element from a secret shared
matrix 〈M〉 using the same ORAM construction can be
then defined as follows:

〈M〉〈i〉〈j〉 = extract(〈i〉, 〈j〉, 〈M〉) =
oram array(〈i〉 × |M0|+ 〈j〉, 〈M〉).

|M0| is the size of the first row of the matrix M .

Finally, note that as Keller and Scholl pointed out, there
are scenarios on which their protocols underperform ac-
cessing every element to extract an specific index.

5.2. Lookup Table Random Access

Given the loss of performance in the above, and in-
spired by [17], [33], we propose a constant round con-
struction, based on lookup tables in Algorithm 5. Our
formulation is black box: its main advantage is that it

7. On the number of communication rounds.

TABLE 3: The operations provided by Fextract.

Functionality returns The:
〈V 〉〈i〉 ← extract(〈i〉, 〈V 〉) 〈i〉-th element of a secret vector 〈V 〉
〈M〉〈i〉〈j〉 ← extract(〈i〉, 〈j〉, 〈M〉) 〈i〉-th row and 〈j〉-th column element of a secret matrix 〈M〉
〈M〉i〈j〉 ← extract(i, 〈j〉, 〈M〉) i-th row and 〈j〉-th column element of a secret matrix 〈M〉
〈M〉〈i〉j ← extract(〈i〉, j, 〈M〉) 〈i〉-th row and j-th column element of a secret matrix 〈M〉
〈M〉〈i〉 ← extract(row, 〈i〉, 〈M〉) 〈i〉-th row of a secret matrix 〈M〉
〈M〉〈j〉 ← extract(column, 〈j〉, 〈M〉) 〈j〉-th column of a secret matrix 〈M〉

does not require function dependant pre-processing – nor
it is tied to a specific party setup or configuration.

We describe the extract functionality, to secretly
extract the 〈i〉-th element, by shifting the elements of the
shared vector 〈V 〉 by a uniformly random secret mask 〈r〉,
without leaking any information about the secret index 〈i〉.
From this point on in this section, we assume w.l.g. the
size of the vector shareV is a power of 2. A brief sketch
of the Algorithm 5 is as follows:

First, we sample some random secret 〈r〉 and use it
to mask 〈i〉, such that: 〈i〉+ 〈r〉 (mod |V |). We note the
result is uniform in |V |, hence it can be securely disclosed
(on lines 1. and 2.). To be able to use our masked index,
we require to shift the entries of V by r. We achieve this
by constructing a 1 hot vector of size |v| for 〈r〉 and multi-
plying it by publicly available shift permutation matrices
{I0, · · · , I |V |}. They are designed to shift the elements
by any number between 0 and (|V | − 1). Given that the
aim of this work is practicality and implementation, we
propose to achieve this by means of an equality test (which
is widely available on commonly used MPCframeworks).
However, this 1 hot vector could be part of a pre-computed
tuple (〈r〉, {br0, ..., br|V |) or created via some DPF. Given
the non-input data related nature of this process, the selec-
tion the rotating permutation could be also pre-computed.

The shifting of the shared vector 〈V 〉 is achieved
by multiplying it with the rotation/permutation matrix
selected via the steps described above – these matrices are
public and are stored in a lookup table. The lookup table
is accessed via the secret value 〈r〉 and the matrix I ′ is
obtained. Finally, we obtain the shifted shared vector 〈V ′〉
by multiplying 〈V 〉 with I ′, we then can simply return the
secret shared element at index i′.

Algorithm 5 extract(〈i〉, 〈V 〉)

1: Sample 〈r〉 R← Z|V | . Here |V | is power of 2.
2: i′ ← open(〈i〉+ 〈r〉 mod |V |)
3: I ← {I0, · · · , I |V |} . dim(Ij) = |V | × |V | ∀j ∈ |V |.
4: for j = 0 to |V | do
5: Cj ← 〈(〈r〉

?
= j)〉

6: end for
7: I ′ ←

∑|V |
j=0 Cj × Ij

8: 〈V ′〉 ← 〈V 〉 × I ′

9: return〈V ′〉i′

5.2.1. Complexity. Now, we describe the round complex-
ity of our proposed extract protocol (step-wise) as
follows:

The operation open(〈i〉 + 〈r〉 mod |V |) (Step 2) is
required 1 round of complexity. Then, all the comparison
inequalities 〈(〈r〉 ?

= j)〉 (Step 5) can be performed in
parallel, and at the same time than the modulo operation.

Furthermore, obtaining the module requires 4 rounds of
complexity using the same approach as in [5]. If we
were to use Catrina and De Hoogh’s modulo operation
from [12], complexity would be sublinear on the input
size, but constant on the vector size. Note that we assume
the complexity of the modulo function dominates over
the equality test. Finally, the protocol requires 1 round
complexity for point-to-point multiplications Cj×Ij (Step
7) and one secret multiplication 〈V 〉 × I ′ (Step 8). So, in
total is 1 round for opening + 4 rounds for the equality
tests + 1 round for the matrix multiplication.

• Round 1 : i′ ← open(〈i〉+ 〈r〉 mod |V |).
• Round 2 – 5 : C0 ← 〈(〈r〉

?
= 0)〉, . . . , C|V | ← 〈(〈r〉

?
=

|V |)〉.
• Round 6 : 〈V ′〉 ← 〈V 〉 × I ′.

5.3. Stable Matching on the RAM Model

The proposed optimized oblivious stable matching
protocol ΠOptOblivGS in Algorithm 4 can be further op-
timized using the constructions above. Indeed, we can
achieve a reduction of the asymptotic round complexity
and on the number of comparisons. In Algorithm 6, we
present an improved protocol for Gale-Shapely Stable
Matching on the RAM Model.

This is achieved by employing any of the previous
realization of the Fextract, for the selection of suitors. This
allows us to avoid iterating over each suitor in every
round instead obliviously selecting a single unmatched
suitor in each round. We do this after the initial check
for unmatched suitors itself. More precisely, the suitor’s
currently matched preference, its preference list and re-
viewers preferences for suitor are all obliviously accessed.
Thereafter, the for loops are a direct extension of the
optimized oblivious stable matching protocol Algorithm 4.
The time complexity of Algorithm 6 is O(n2).

Functionality 3: Ideal Functionality for Gale-Shapley Stable
Matching on the RAM Model FLutOblivGS

• Parameters: This functionality has all of the features
of FABB , all the features of the functionality Fextract, and
receives suitors’ and reviewers’ secret shared preference list
〈ps〉 and 〈pr〉 respectively.
• Stable Match: On receiving the aforementioned preference
shares (〈ps〉, 〈pr〉)) from all parties, it computes a stable
matching (〈sm〉, 〈rm〉) which stores matched reviewer index
and suitor index respectively.

Algorithm 6 (Non-Amortized) Gale-Shapely Stable
Matching on the RAM Model ΠLutOblivGS(〈ps〉, 〈pr〉)

1: {(〈sp〉i, 〈sm〉i), · · · , (〈sp〉|S|, 〈sm〉|S|)} ← 〈⊥〉
2: {(〈rp〉i, 〈rm〉i), · · · , (〈rp〉|S|, 〈rm〉|S|)} ← 〈⊥〉
3: {〈us〉i, · · · , 〈us〉|S|} ← 〈1〉
4: {〈tp〉, 〈tm〉} ← 〈⊥〉
5: while true do
6: 〈v〉 ← 〈0〉
7: 〈m〉 ← 〈0〉
8: for j ∈ S do
9: 〈v〉 ← ((〈1〉 − 〈v〉) · 〈us〉j)

10: 〈m〉 ←〈v〉 j : 〈m〉
11: end for
12: if open(〈m〉 ?

= 0) then
13: break
14: end if
15: 〈us〉 ← 〈0〉
16: 〈rr〉 ← 〈0〉
17: 〈sp〉 ← 〈0〉
18: 〈sp〉〈m〉 = extract(〈m〉, 〈sp〉)
19: 〈ps〉〈m〉 = extract(row, 〈m〉, 〈ps〉)
20: 〈pr〉〈m〉 = extract(column, 〈m〉, 〈pr〉)
21: for k ∈ R do
22: 〈c〉 ← (〈sp〉〈m〉

?
< 〈ps〉〈m〉k)× (〈rp〉k

?
< 〈pr〉〈m〉k)

23: 〈us〉 ←〈c〉 〈rm〉k : 〈us〉
24: 〈rr〉 ←〈c〉 k : 〈rr〉
25: 〈sp〉 ←〈c〉 〈ps〉〈m〉k : 〈sp〉
26: 〈tm〉 ←〈c〉 〈m〉 : 〈tm〉
27: 〈tp〉 ←〈c〉 〈pr〉〈m〉k : 〈tp〉
28: end for
29: for z ∈ S do
30: 〈c〉 ← z

?
= 〈us〉

31: 〈us〉z ←〈c〉 〈1〉 : 〈us〉z
32: 〈sm〉z ←〈c〉 〈0〉 : 〈sm〉z
33: 〈sp〉z ←〈c〉 〈0〉 : 〈sp〉z
34: 〈c′〉 ← z

?
= 〈m〉

35: 〈us〉z ←〈c′〉 〈0〉 : 〈us〉z
36: 〈sm〉z ←〈c′〉 〈rr〉 : 〈sm〉z
37: 〈sp〉z ←〈c′〉 〈sp〉 : 〈sp〉z
38: end for
39: for z ∈ R do
40: 〈c〉 ← z

?
= 〈rr〉

41: 〈rm〉z ←〈c〉 〈tm〉 : 〈rm〉z
42: 〈rp〉z ←〈c〉 〈tp〉 : 〈rp〉z
43: end for
44: end while
45: return 〈sm〉, 〈rm〉

6. Security Proof Sketch

In this section, we model and prove the security (we
provide only a proof sketch for brevity) of our con-
structions using the real/ideal paradigm. For our proofs,
security is modelled by defining two interactions: a real
interaction where the parties execute a protocol in the
presence of an adversary A and the environment E , and
an ideal interaction where parties send their inputs to a
trusted functionality F that conducts the desired compu-
tation truthfully. Security requires that for every adversary
A in the real interaction, there is a simulator Sim in
the ideal interaction, such that no environment E can
distinguish between real and ideal interactions. A protocol
Π is said to securely realize a functionality F if for every
adversary A in the real interaction, there is a simulator
Sim in the ideal interaction, such that no environment E ,

on any input, can tell apart the real interaction from the
ideal interaction, except with negligible probability (in the
security parameter λ).

We show that our protocols are secure under a mali-
cious adversary. If a protocol invokes another sub-protocol
for a functionality F , we prove the security by replacing
the sub-protocol invocation with the corresponding func-
tionality call. This refers to F-hybrid model.

Theorem 6.1. The protocol ΠOblivGS(〈ps〉, 〈pr〉) in Algo-
rithm 3, securely realizes the functionality FOblivGS (in
Functionality 1) in the FABB-hybrid model.

Proof Sketch of Theorem 6.1. The computing party of the
Algorithm 3 learn the following information:

• For each suitor j ∈ S secretly choose a perfect
match reviewer k ∈ R by checking the condition
〈c〉, and then update the current match, current
preference and match status for the suitor j by
checking the same condition 〈c〉. A fresh share of

the condition 〈c〉 is computed as 〈c〉 ← (〈sp〉j
?
<

〈ps〉jk)× (〈rp〉k
?
< 〈pr〉kj)× 〈um〉 (Step 11).

• Update the current match, current preference and
match status for previously matched suitor of re-
viewer k by computing and checking a fresh share
of the condition 〈c〉 ← z

?
= 〈us〉 (Step 21). Then,

update the current match and current preference
for the reviewer k by computing and checking a
fresh share of the condition 〈c〉 ← z

?
= 〈rr〉 (Step

27).
• Finally, once all the suitor finds the perfect

match, it outputs a fresh share of stable matching
(〈sm〉, 〈rm〉) which stores matched reviewer index
and suitor index respectively.

However, these are all fresh shares of these values and
hence can be perfectly simulated by sending random fresh
shares of 0.

Theorem 6.2. The protocol ΠOptOblivGS(〈ps〉, 〈pr〉) in Al-
gorithm 4, securely realizes the functionality FOptOblivGS
(see section 4.3) in the FABB-hybrid model.

Proof Sketch of Theorem 6.2. The computing party of the
Algorithm 4 learn the following information:

• For each suitor j ∈ S choose a perfect match
reviewer k ∈ R by checking the condition 〈c〉, and
then update the current match, current preference
and match status for the suitor j by checking the
same condition 〈c〉. A fresh share of the condition

〈c〉 is computed as 〈c〉 ← (〈sp〉j
?
< 〈ps〉jk) ×

(〈rp〉k
?
< 〈pr〉kj)× 〈um〉 (Step 22).

• Then, update the current match, current preference
and match status for the previously matched suitor
of reviewer k by computing and checking a fresh
share of the condition 〈c〉 ← z

?
= 〈us〉 (Step 30).

And then, update the current match and current
preference for the reviewer k by computing and
checking a fresh share of the condition 〈c〉 ← z

?
=

〈rr〉 (Step 40).

• Finally, once all the suitor finds the perfect
match, it outputs a fresh share of stable matching
(〈sm〉, 〈rm〉) which stores matched reviewer index
and suitor index respectively.

However, these are all fresh shares of these values and
hence can be perfectly simulated by sending random fresh
shares of 0. The only information that the computing party
learns is from open(〈m〉 ?

= 0) (Step 12); this reveals only
whether or not there are any unmatched suitors. It does not
reveal any information about said unmatched (or matched)
suitor to the adversary. Hence, the revealed information by
open(〈m〉 ?

= 0) is uniformly random from the computing
party’s view, so the information learned by the computing
party can be perfectly simulated.

Theorem 6.3. The extract protocol in Algorithm 5,
securely computes the functionality Fextract (in Function-
ality 2) in the FABB-hybrid model.

Proof Sketch of Theorem 6.3. Now, we prove the secu-
rity of our extract protocol. The computing party of
Algorithm 5 learn a fresh share of following informa-
tion: Cj ← 〈(〈r〉 ?

= j)〉 ∀j = 0 to |V | (Step 4 – 6),
I ′ ←

∑|V |
j=0 Cj × Ij (Step 7), 〈V ′〉 ← 〈V 〉 × I ′ (Step 8)

and 〈V ′〉i′ (Step 9). However, these are all fresh shares
of these values and hence can be perfectly simulated by
sending random fresh share of 0.

The only information that the computing party learns
is i′ ← open(〈i〉 + 〈r〉 (mod |V |)) (Step 2), where 〈i〉
is a secret index and 〈r〉 is secret random value unknown
to the computing party. It does not reveal any information
to the adversary, beyond indexes of a permuted vector
(or matrix). Hence, the distribution of i′ is uniformly
random from the computing party’s point of view, so
the information learned by the computing party can be
perfectly simulated.

Theorem 6.4. The protocol ΠLutOblivGS(〈ps〉, 〈pr〉) in Al-
gorithm 6, securely realizes the functionality FLutOblivGS
(in Functionality 3) in the (Fextract, FABB)-hybrid model.

Proof Sketch of Theorem 6.4. The computing party of
Algorithm 6 learns the following information:

• Throughout all suitors j ∈ S, first it calculates a
fresh share of condition 〈v〉 ← ((〈1〉−〈v〉) ·〈us〉j)
(Step 9), and find an unmatched suitor 〈m〉 ←〈v〉
j : 〈m〉 (Step 10) by checking 〈v〉.

• Then, extracting a fresh share of suitor 〈m〉’s
preference for the current match (Step 18), suitor
〈m〉’s preference for each reviewer (Step 19), and
each reviewer’s preference for suitor 〈m〉 (Step 20)
using extract (as Fextract functionality provides
the perfect security; see Theorem 6.3).

• For the suitor 〈m〉 choose a perfect match re-
viewer k ∈ R by checking the condition 〈c〉,
and a fresh share of the condition is computed as

〈c〉 ← (〈sp〉〈m〉
?
< 〈ps〉〈m〉k)× (〈rp〉k

?
< 〈pr〉〈m〉k)

(Step 22).
• Then update the current match, current preference

and match status for previously matched suitor of
reviewer k by computing and checking a fresh

share of the condition 〈c〉 ← z
?
= 〈us〉 (Step

30), update the current match, current preference
and match status for the suitor j by computing
and checking a fresh share of the same condition
〈c〉′ ← z

?
= 〈m〉 (Step 34), and update the current

match and current preference for the reviewer k
by computing and checking a fresh share of the
condition 〈c〉 ← z

?
= 〈rr〉 (Step 40).

• Finally, once all the suitor finds the perfect match
by checking open(〈m〉 ?

= 0) (Step 12). This
reveals only whether or not there are any un-
matched suitors. It does not reveal any infor-
mation about the unmatched (or matched) suitor
to the adversary. The revealed information from
open(〈m〉 ?

= 0) is uniformly random from the
computing party’s point of view and can be per-
fectly simulated. In the end, it outputs a fresh
share of stable matching (〈sm〉, 〈rm〉) which stores
matched reviewer index and suitor index respec-
tively.

However, these are all fresh shares of these values and
hence can be perfectly simulated.

7. Empirical Evaluation

In this section, we experimentally evaluate and com-
pare our proposed oblivious variants and random memory
access based Gale-Shapley [22] stable matching.

7.1. Asymptotic Complexity Comparison

In, Table 4 we show an asymptotic complexity com-
parison between our proposed protocols and the existing
state-of-the-art secure stable matching approaches. The
main drawback of existing work is the high computation
and round complexity, which limits scalability.

TABLE 4: Round complexity for our proposed protocols
vs existing work, where n is the set size.

Paper Round Complexity
Golle [26] O(n3poly(logn)))
Franklin et al. [20] O(n2poly(logn)))
Franklin et al. [21] O(n2poly(logn))
Zahur et al. [54] O(n2poly(logn))
Keller et al. [35] O(n2poly(logn))
Riazi et al. [42] O(n2poly(logn))
Doerner et al. [18] O(n2poly(logn))
Algorithm 3 O(n3)
Algorithm 4 Ω(n2)
Algorithm 6 O(n2)

7.2. Setup and Implementation Details

We implemented and conducted benchmarking of our
secure stable matching algorithms on top of the two most
commonly used MPC frameworks SCALE-MAMBA [4]
version 1.148 and MP-SPDZ [31] version 0.3.29. We

8. https://github.com/KULeuven-COSIC/SCALE-MAMBA
9. https://github.com/data61/MP-SPDZ

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/data61/MP-SPDZ

have used the SCALE-MAMBA and MP-SPDZ Shamir [45]
secret sharing based protocol in malicious adversarial
settings in variations of number of parties. We have also
used the existing ORAM module in MP-SPDZ framework.

The tests have been run on three Amazon AWS
c4.2xlarge nodes and all the nodes were located in the
same region. These nodes are provided with 15GiB DDR4
memory and an Intel Xeon E5-2666 v3 processor con-
taining 4 cores and running at 2.9GHz. The latency be-
tween the nodes was measured to be roughly 150µs,
and the bandwidth between the nodes was measured to
be 2.58Gbps. For ease of access, we have made our
code and experiments available in a repository: https:
//github.com/StableMatch/OblivSM.

MP-SPDZ [31]. Our experiments in MP-SPDZ utilise
Shamir-Secret Sharing over Arithmetic Fields (integer
length is set to the default 64).

SCALE-MAMBA [4]. Our SCALE-MAMBA implementation
uses the default secret-sharing and network settings.

7.3. Experimental Results and Analysis

In Table 5, we show the total execution time (in
seconds) of our proposed oblivious stable matching and its
variants for various set sizes using MP-SPDZ framework
in 3-Party settings. For all set sizes, Algorithm 6 provides
the best results (Algorithm 6 is nearly two orders of
magnitude faster than the Näive oblivious Gale-Shapley
stable matching in Algorithm 3).

TABLE 5: Timing (sec) results: MP-SPDZ

Set
Size

Näive Oblivious
Gale-Shapley
(Algorithm 3)

Optimized Oblivious
Gale-Shapley
(Algorithm 4)

Lookup Table
Gale-Shapley
(Algorithm 6)

21 0.06 0.05 0.04
22 0.49 0.28 0.19
23 4.23 1.44 0.70
24 25.31 5.35 3.07
25 216.39 18.68 9.92
26 1589.01 82.36 36.48
27 8658.98 218.56 132.09

In Table 6, we show the total execution time (in
seconds) of our proposed oblivious stable matching and its
variants for various set sizes using SCALE-MAMBA frame-
work in 3-Party settings. For all set sizes, Algorithm 6
provides the best results (Algorithm 6 is nearly two orders
of magnitude faster than the Näive oblivious Gale-Shapley
stable matching in Algorithn 3).

TABLE 6: Timing (sec) results: SCALE-MAMBA

Set
Size

Näive Oblivious
Gale-Shapley
(Algorithm 3)

Optimized Oblivious
Gale-Shapley
(Algorithm 4)

Lookup Table
Gale-Shapley
(Algorithm 6)

21 0.07 0.07 0.05
22 0.51 0.42 0.29
23 5.24 1.92 1.21
24 30.10 7.44 4.35
25 280.22 24.11 16.74
26 2031.44 191.69 76.61
27 12852.22 576.69 298.01

7.3.1. Comparison. In Table 7, we show a running time
comparison between gale-shapley tutorial [32] and our
lookup table based Gale-Shapley stable matching (Algo-
rithm 6) using MP-SPDZ. For all set sizes beyond 2,
Algorithm 6 is better (in the case of set size 27, we are
nearly two orders of magnitude faster).

TABLE 7: Timing (sec) comparison between gale-
shapley tutorial [32] and Algorithm 6.

Set Size gale-shapley tutorial [32] Algorithm 6
21 0.03 0.04
22 0.24 0.19
23 2.01 0.70
24 20.37 3.07
25 264.55 9.92
26 1679.87 36.48
27 10863.76 132.09

8. Conclusion

We present a set of novel secure stable matching
algorithms. We implement and benchmark our algorithms
using two popular MPC frameworks, SCALE-MAMBA and
MP-SPDZ, for various set sizes. Our experiments show
that our proposed “lookup table based oblivious stable
matching” protocol (see Algorithm 6) is the most efficient.

References

[1] Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. The
new york city high school match. American Economic Review,
95(2):364–367, 2005.

[2] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin.
Network flows. 1988.

[3] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier
Pereira, and Mathieu Van Vyve. Securely solving simple combina-
torial graph problems. In Ahmad-Reza Sadeghi, editor, Financial
Cryptography and Data Security - 17th International Conference,
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers, volume 7859 of Lecture Notes in Computer Science, pages
239–257. Springer, 2013.

[4] Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Peter Scholl, Nigel P. Smart, and Tim Wood. SCALE
and MAMBA documentation, 2018. https://homes.esat.kuleuven.
be/∼nsmart/SCALE/.

[5] Abdelrahaman Aly, Kashif Nawaz, Eugenio Salazar, and Victor
Sucasas. Through the looking-glass: Benchmarking secure multi-
party computation comparisons for relu’s. IACR Cryptol. ePrint
Arch., page 202, 2022.

[6] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P.
Smart, and Tim Wood. Zaphod: Efficiently combining lsss and
garbled circuits in scale. In Proceedings of the 7th ACM Workshop
on Encrypted Computing & Applied Homomorphic Cryptography,
WAHC’19, page 33–44, New York, NY, USA, 2019. Association
for Computing Machinery.

[7] Abdelrahaman Aly and Mathieu Van Vyve. Securely solving
classical network flow problems. In Jooyoung Lee and Jongsung
Kim, editors, Information Security and Cryptology - ICISC 2014
- 17th International Conference, Seoul, Korea, December 3-5,
2014, Revised Selected Papers, volume 8949 of Lecture Notes in
Computer Science, pages 205–221. Springer, 2014.

[8] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using TopGear
in overdrive: A more efficient ZKPoK for SPDZ. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959
of LNCS, pages 274–302. Springer, Heidelberg, August 2019.

https://github.com/StableMatch/OblivSM
https://github.com/StableMatch/OblivSM
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/

(a) Algorithm 3 vs. Algorithm 4. (b) Algorithm 4 vs. Algorithm 6.

Figure 1: Execution Time (sec) using MP-SPDZ framework in 3-Party settings. x-axis denotes set size and y-axis
denotes times.

(a) Algorithm 3 vs. Algorithm 4. (b) Algorithm 4 vs. Algorithm 6.

Figure 2: Execution Time (sec) using SCALE-MAMBA (3-Party). x-axis denotes set size and y-axis denotes time.

[9] Marina Blanton and Siddharth Saraph. Oblivious maximum bipar-
tite matching size algorithm with applications to secure fingerprint
identification. In European Symposium on Research in Computer
Security, pages 384–406. Springer, 2015.

[10] Ismel Brito and Pedro Meseguer. Distributed stable marriage
problem. In 6th Workshop on Distributed Constraint Reasoning
at IJCAI, volume 5, pages 135–147. Citeseer, 2005.

[11] Ran Canetti. Security and composition of multiparty cryptographic
protocols. J. Cryptol., 13(1):143–202, 2000.

[12] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives
for secure multiparty integer computation. In Juan A. Garay
and Roberto De Prisco, editors, Security and Cryptography for
Networks, 7th International Conference, SCN 2010, Amalfi, Italy,
September 13-15, 2010. Proceedings, volume 6280 of Lecture
Notes in Computer Science, pages 182–199. Springer, 2010.

[13] Octavian Catrina and Sebastiaan de Hoogh. Secure multiparty
linear programming using fixed-point arithmetic. In Dimitris
Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, Com-
puter Security - ESORICS 2010, 15th European Symposium on
Research in Computer Security, Athens, Greece, September 20-22,
2010. Proceedings, volume 6345 of Lecture Notes in Computer
Science, pages 134–150. Springer, 2010.

[14] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and
Tomas Toft. Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponentiation. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 285–304. Springer, Heidelberg, March 2006.

[15] Ivan Damgård and Jesper Buus Nielsen. Universally compos-
able efficient multiparty computation from threshold homomorphic
encryption. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 247–
264. Springer, 2003.

[16] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 643–
662. Springer, 2012.

[17] Siemen Dhooghe. Applying multiparty computation to
car access provision. URL: https://www. esat. kuleuven.
be/cosic/publications/thesis-296. pdf, last checked on, pages 08–
4, 2018.

[18] Jack Doerner, David Evans, and Abhi Shelat. Secure stable match-
ing at scale. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1602–1613,
2016.

[19] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of
Mathematics, 17:449–467, 1965.

[20] Matthew Franklin, Mark Gondree, and Payman Mohassel. Im-
proved efficiency for private stable matching. In Cryptographers’
Track at the RSA Conference, pages 163–177. Springer, 2007.

[21] Matthew Franklin, Mark Gondree, and Payman Mohassel. Multi-
party indirect indexing and applications. In International Confer-
ence on the Theory and Application of Cryptology and Information
Security, pages 283–297. Springer, 2007.

[22] David Gale and Lloyd S Shapley. College admissions and the sta-
bility of marriage. The American Mathematical Monthly, 69(1):9–
15, 1962.

[23] Oded Goldreich. Towards a theory of software protection. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS,
pages 426–439. Springer, Heidelberg, August 1987.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred V. Aho, editor, Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 218–229. ACM, 1987.

[25] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, 1996.

[26] Philippe Golle. A private stable matching algorithm. In Interna-
tional Conference on Financial Cryptography and Data Security,
pages 65–80. Springer, 2006.

[27] S Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando
Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure
two-party computation in sublinear (amortized) time. In Proceed-
ings of the 2012 ACM conference on Computer and communica-
tions security, pages 513–524, 2012.

[28] Dan Gusfield and Robert W Irving. The stable marriage problem:
structure and algorithms. MIT press, 1989.

[29] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost
constant round MPC combining BMR and oblivious transfer. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidel-
berg, December 2017.

[30] Robert W Irving. Stable marriage and indifference. Discrete
Applied Mathematics, 48(3):261–272, 1994.

[31] Marcel Keller. MP-SPDZ: A Versatile Framework for Multi-Party
Computation. Association for Computing Machinery, New York,
NY, USA, 2020.

[32] Marcel Keller. gale-shapley tutorial.mpc, Accessed: 30-11-
2022. https://github.com/data61/MP-SPDZ/blob/master/Programs/
Source/gale-shapley tutorial.mpc.

[33] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl,
Eduardo Soria-Vazquez, and Srinivas Vivek. Faster secure multi-
party computation of AES and DES using lookup tables. In
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors,
Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017,
Proceedings, volume 10355 of Lecture Notes in Computer Science,
pages 229–249. Springer, 2017.

[34] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

[35] Marcel Keller and Peter Scholl. Efficient, oblivious data structures
for mpc. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 506–525.
Springer, 2014.

[36] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy
Adams-Moran. Efficient lookup-table protocol in secure multi-
party computation. In Peter Thiemann and Robby Bruce Findler,
editors, ACM SIGPLAN International Conference on Functional
Programming, ICFP’12, Copenhagen, Denmark, September 9-15,
2012, pages 189–200. ACM, 2012.

[37] Aleksander Madry. Navigating central path with electrical flows:
From flows to matchings, and back. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 253–262.
IEEE, 2013.

[38] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with
random arrivals: an approach based on strongly factor-revealing
lps. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 597–606, 2011.

[39] Moni Naor and Kobbi Nissim. Communication preserving proto-
cols for secure function evaluation. In Jeffrey Scott Vitter, Paul G.
Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 590–599. ACM, 2001.

[40] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In
Annual cryptology conference, pages 502–519. Springer, 2010.

[41] Prashanthi Ramachandran, Shivam Agarwal, Arup Mondal, Aastha
Shah, and Debayan Gupta. S++: A fast and deployable secure-
computation framework for privacy-preserving neural network
training. CoRR, abs/2101.12078, 2021.

[42] M Sadegh Riazi, Ebrahim M Songhori, Ahmad-Reza Sadeghi,
Thomas Schneider, and Farinaz Koushanfar. Toward practical se-
cure stable matching. Proc. Priv. Enhancing Technol., 2017(1):62–
78, 2017.

[43] Alvin E Roth. The economics of matching: Stability and incentives.
Mathematics of operations research, 7(4):617–628, 1982.

[44] Alvin E Roth. Misrepresentation and stability in the marriage
problem. Journal of Economic theory, 34(2):383–387, 1984.

[45] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[46] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li.
Oblivious ram with o ((logn) 3) worst-case cost. In International
Conference on The Theory and Application of Cryptology and
Information Security, pages 197–214. Springer, 2011.

[47] Nigel P. Smart and Tim Wood. Error detection in monotone span
programs with application to communication-efficient multi-party
computation. In Mitsuru Matsui, editor, CT-RSA 2019, volume
11405 of LNCS, pages 210–229. Springer, Heidelberg, March 2019.

[48] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical
oblivious ram. arXiv preprint arXiv:1106.3652, 2011.

[49] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W.
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path
ORAM: an extremely simple oblivious RAM protocol. IACR
Cryptol. ePrint Arch., page 280, 2013.

[50] Chung-Piaw Teo, Jay Sethuraman, and Wee-Peng Tan. Gale-
shapley stable marriage problem revisited: strategic issues and
applications. In International Conference on Integer Programming
and Combinatorial Optimization, pages 429–438. Springer, 1999.

[51] Tadanori Teruya and Jun Sakuma. Round-efficient private stable
matching from additive homomorphic encryption. In Yvo Desmedt,
editor, Information Security, 16th International Conference, ISC
2013, Dallas, Texas, USA, November 13-15, 2013, Proceedings,
volume 7807 of Lecture Notes in Computer Science, pages 69–86.
Springer, 2013.

[52] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tight-
ness of the goldreich-ostrovsky lower bound. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 850–861, 2015.

[53] Andrew C Yao. Protocols for secure computations. In 23rd annual
symposium on foundations of computer science (sfcs 1982), pages
160–164. IEEE, 1982.

[54] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack
Doerner, David Evans, and Jonathan Katz. Revisiting square-root
oram: efficient random access in multi-party computation. In 2016
IEEE Symposium on Security and Privacy (SP), pages 218–234.
IEEE, 2016.

[55] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack
Doerner, David Evans, and Jonathan Katz. Revisiting square-root
ORAM: efficient random access in multi-party computation. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, pages 218–234. IEEE Computer Society,
2016.

https://github.com/data61/MP-SPDZ/blob/master/Programs/Source/gale-shapley_tutorial.mpc
https://github.com/data61/MP-SPDZ/blob/master/Programs/Source/gale-shapley_tutorial.mpc

	Introduction
	Contributions

	Related Work
	Preliminaries and Background
	The Basic Stable Matching Algorithm
	Informal Description
	Formal Description

	Other Matching Problems
	Cryptographic Building Blocks
	Secret Sharing
	Secure Multiparty Computation

	Technical Notation
	Basic Notation
	Conditional Operator

	Arithmetic Black Box FABB
	Oblivious Random Access Memory

	Oblivious Stable Matching
	Threat Model
	Näive Oblivious Stable Matching
	Correctness
	Complexity

	Optimized Oblivious Stable Matching
	Correctness
	Complexity

	Oblivious Stable Matching based on Random Access Memory
	ORAM Based Random Access
	Lookup Table Random Access
	Complexity

	Stable Matching on the RAM Model

	Security Proof Sketch
	Empirical Evaluation
	Asymptotic Complexity Comparison
	Setup and Implementation Details
	Experimental Results and Analysis
	Comparison

	Conclusion
	References

