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Abstract. The Dual-Sieve Attack on Learning with Errors (LWE), or
more generally Bounded Distance Decoding (BDD), has seen many im-
provements in the recent years, and ultimately led to claims that it out-
performs the primal attack against certain lattice-based schemes in the
PQC standardization process organised by NIST. However, the work
of Ducas–Pulles (Crypto ’23) revealed that the so-called “Independence
Heuristic”, which all recent dual attacks used, leads to wrong predictions
in a contradictory regime, which is relevant for the security of cryp-
toschemes. More specifically, the stated distributions of scores for the
actual solution and for incorrect candidates were both incorrect.
In this work, we propose to use the weaker heuristic that the output
vectors of a lattice sieve are uniformly distributed in a ball. Under this
heuristic, we give an analysis of the score distribution in the case of an
error of fixed length. Integrating over this length, we extend this analysis
to any radially distributed error, in particular the gaussian as a fix for
the score distribution of the actual solution. This approach also provides
a prediction for the score of incorrect candidates, using a ball as an
approximation of the Voronoi cell of a lattice.
We compare the predicted score distributions to extensive experiments,
and observe them to be qualitatively and quantitatively quite accurate.
This constitutes a first step towards fixing the analysis of the dual-
sieve attack: we can now accurately estimate false-positives and false-
negatives. Now that the analysis is fixed, one may consider how to fix
the attack itself, namely exploring the opportunities to mitigate a large
number of false-positives.

Keywords: Lattices · Cryptanalysis · Heuristics · Learning with Errors
· Dual Attack · Bessel Functions

1 Introduction

Many post-quantum cryptoschemes base their security on the hardness of the
Learning with Errors (LWE) problem, introduced by Regev in 2005 [Reg09],
which is basically the Bounded Distance Decoding (BDD) problem in q-ary lat-
tices. One possible type of attack against BDD is the so-called dual attack dating
back to [AR04].

Specifically, the dual attack attacks the search-BDD problem by performing
a reduction to the decision-BDD problem, where one needs to determine if a
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target point in Euclidean space is either a uniform target, i.e. sampled uniformly
modulo the lattice, or a BDD target, i.e. sampled from a distribution that is
concentrated around lattice points. Here, short dual vectors are used to construct
a score function that assigns a high score to BDD targets and an expected
score of 0 to uniform targets. Then with high probability, the score function
will assign a score above a certain threshold to a BDD target, and below the
threshold to a uniform target, effectively solving decision-BDD. Many short dual
vectors are needed to separate the two distributions and to get a high success
probability. By using a lattice sieve [NV08,MV10,BDGL16], one gets many short
dual vectors rather efficiently [ADPS16]. To simplify the analysis of the score
distribution, [GJ21,MAT22] used the so-called Independence Heuristic, which
states that, given a set of dual vectors W, the inner products

(⟨w, t⟩)w∈W (mod 1),

are mutually independent variables [DP23, Heur. 3]. Recent works [AS22,CST22]
improved the dual attack of [MAT22] further against LWE, leading to the claim
that the dual attack outperforms the primal attack (which solely uses the pri-
mal lattice) when attacking certain NIST PQC standardization candidates, like
Kyber and Dilithium.

However, the Independence Heuristic was shown to be flawed in experiments
done in a regime relevant to cryptoschemes [DP23]. More specifically, [DP23]
concludes that an analysis using the Independence Heuristic overestimate the
success probability of the dual attack. The following two phenomena were ob-
served in experiments, but were not accounted for by the analysis derived under
the Independence Heuristic.

First, the probability of a uniform target giving a high score seems to be
much higher than predicted by a normal distribution, as there appears to be a
“waterfall-floor” phenomenon. It was presumed in [DP23] that this is caused by
rare events in which a uniform target lies very close to the lattice. Second, the
BDD score distribution for gaussian errors has a much bigger variance than the
prediction, and is also not normally distributed. In particular, the probability
on a low score seems more likely than expected from analyses used up to now.
Overall, they concluded that, as currently parametrized, the Dual-Sieve attack
would lead to a large number of false-positives, and also a somewhat larger rate
of a false-negative than predicted.

1.1 Contributions

The concluding section of the work of Ducas and Pulles [DP23, Sec. 6.3] mentions
various mitigation strategies to deal with the large number of false-positives, but
highlights the prior requirement of making accurate predictions of all the score
distributions at hand. This work aims precisely at fulfilling this prior require-
ment.

To this end, we propose a seemingly weaker assumption on the output distri-
bution of a lattice sieve, to overcome mispredictions caused by the Independence
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Heuristic illustrated in [DP23]. The mispredictions show there is some correla-
tion between the inner products ⟨w, t⟩ (mod 1), so the situation can be resolved
by identifying the confounding variable that causes the mutual dependence. In
this case, the confounding variable seems to be the target t, or more precisely its
length ∥t∥. For example, scaling the target by a factor α, multiplies all the inner
products by α together. Indeed, by fixing the confounding variable ∥t∥, one may
more reasonably hope the inner products ⟨w, t⟩ (mod 1) become independent
again. This leads very naturally to studying the score distribution for spherical
errors. While the case of spherical errors is of limited interest in our context, it
does allow to bootstrap an analysis for other radial distributions, e.g. uniform
in a ball, or gaussian.

Another alteration done differently than the existing literature is to stop
approximating the distribution of lattice sieve vectors by a gaussian distribution
(cf. [MAT22, Assumption 4.4]), but instead model them as being uniform in a
ball, as described in Heuristic 2. This somewhat complicates the Fourier analysis,
but is feasible thanks to the well-known Bessel functions.

The overall approach remains heuristic, but the previously identified is-
sues [DP23] have now been sidestepped, and we further confirm those score
distribution predictions with extensive experiments.

Individual Score Function (Section 3.1). First, for a fixed error, we derive an
analytic expression for the expectation value and variance of the score distribu-
tion for a single dual vector, in terms of Bessel functions, using our model of the
dual vectors.

Error Uniform from a Sphere (Section 3.2). Using the Independence Heuristic,
one could not add individual scores together because the expectation value of
each score was not fixed, since it depends on the length of error. Here, we fix
the length of the error, i.e. we look at errors drawn uniformly from a sphere.
Note that for every error, each individual score has the same individual score
distribution, we can resort to a central limit heuristic — which seems reasonable
as there are exponentially many dual vectors — to reason about the sum of
individual scores. This leads us to propose Heuristic 3 for BDD targets uniform
from a sphere.

Radial Error Distributions (Section 3.3). Lattice-based schemes normally do not
use errors that are sampled uniformly from a sphere, but instead according to
a (discrete) gaussian distribution. Hence, we extend the score prediction to any
error distribution that is radial, i.e. where the PDF is invariant under rotations.
Any radial distribution can be seen as first sampling a radius from some distri-
bution, and then sampling a point uniformly from a sphere of that radius. Thus,
there is a natural way to predict the score distribution for any radial distribution
for BDD targets, by integrating the sphere prediction as a function of the ra-
dius, taking the probability of such radius into account. In particular, examples
are given for gaussian errors, and errors uniformly from the ball. The obtained
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predictions for the Cumulative Distribution Function (CDF) can be computed
numerically.

Errors Uniform Modulo Lattice (Sections 3.4). Moreover, we provide a predic-
tion of the score distribution for targets from the uniform distribution modulo
the lattice. Alternatively, these targets are sampled uniformly from the Voronoi
cell of a lattice. Although determining the exact shape of the Voronoi cell is a
notoriously hard problem, we simply approximate the Voronoi cell by a ball of
the same volume as that of the lattice. This allows us to predict the score dis-
tribution for uniform targets, using the prediction for radial error distributions.

Experiments (Section 4). All the predictions that are made in this paper, have
been extensively tested by large experiments, to verify whether the proposed
heuristics are reasonable in the context of solving decision-BDD.

The predicted score distributions for sphere, ball and gaussian BDD targets
are shown in Figure 1, in dimension 90. In addition, the predicted score distribu-
tions for targets modulo the lattice is shown in Figure 2, which ran in dimensions
40, 50, 60 and 70, each based on 248 samples. Lastly, Figure 3 shows the score
distribution for uniform targets, using a larger saturation radius inside the sieve.
Here, our prediction claims that the “waterfall-floor” phenomenon could be ob-
served with fewer samples than normal, which the experiments confirm.

All in all, the experiments make a strong case that the heuristic proposed in
this paper are very reasonable for analysing dual attacks.

Open data. All the used Python and C/C++ code and obtained data to generate
the figures, can be found in the following GitHub repository:

https://github.com/ludopulles/AccurateScorePredictionDualSieveAttacks.

1.2 Concurrent Work

During the writing process of this paper, we became aware of several concurrent
works [WE23,PS23a,PS23b,CDMT23].

The work of Wiemer and Ehlen [WE23] proposed an analysis of the variance
of the score of the actual BDD target. They use a significantly different approach,
and obtain predictions compatible with the experimental data from [DP23]. This
does not directly allow to conclude on false-negative rates, as it does not fully
characterize the distribution.

The work of Pouly and Shen [PS23a] proposed a provable variant of a varia-
tion of the dual attack, using discrete gaussian sampling in place of sieving vec-
tors. Notably, their provable regime does not intersect the heuristic contradictory
regime of [DP23]. In fact, and quite interestingly, both regime are separated by
a constant factor of 2 on the length of the BDD target. In a follow-up work in
progress, they are also considering uniform dual vectors in a ball [PS23b].

The work of Carrier, Debris, Meyer-Hilfiger and Tillich, while mostly focusing
on the case of statistical decoding for codes, also includes a short section on the
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case of lattices [CDMT23, Sec. 8]. More specifically, they propose a prediction for
the floor phenomenon for uniform targets modulo the lattice, also using Bessel
functions. They use a somewhat comparable but not identical reasoning and
derivations as that of our Section 3.4.

1.3 Analogies with Coding Theory

The dual attack in lattices, is called “statistical decoding” in coding theory and
dates back to the work of [Al 01]. Here, with the use of many low-weight parity-
check equations H (analogous with short dual vectors for lattices), similarly one
can decide whether a target t in Fn

q is close to some codeword or not, based on
a similar scoring function.

Recently, [CDMT22] claim to have an improved Statistical Decoding algo-
rithm outperforming the state-of-the-art Information Set Decoding algorithm
of [BM18] on sparse binary codes. However, this work was based on the coding-
theory analogue of the Independence Heuristic [CDMT22, Assumption 3.7],
which states that individual scores (⟨h, t⟩)h∈H are i.i.d. Bernoulli variables. Here,
similarly it was soon realized this heuristic leads to a flawed analysis, and the
problems were overcome, by proposing two fixes [MT23]. One is that, for any
uniformly random t ∈ Fn

2 , they model the number of weight w elements in a
coset C+t as a Poisson process with parameter λ =

(
n
w

)
/2n−k, when C is a [n, k]

code.1 With the other fix of using Fourier analysis on the score function, they
show the runtime complexity of the corrected algorithm is asymptotically only
increased by logarithmic factors.

Acknowledgments. We would like to thank Kevin Carrier, Thomas Debris-
Alazard, Charles Meyer-Hilfiger, Amaury Pouly, Yixin Shen en Jean-Pierre Tillich
for insightful conversations, and for sharing their early drafts [CDMT23,PS23b].
Authors Léo Ducas and Ludo Pulles are supported by ERC Starting Grant
947821 (ARTICULATE).

2 Preliminaries

Notation. For any set S ⊆ Rn, the indicator function of S is denoted by 1S(x),
and is equal to 1 when x ∈ S and 0 for x ∈ Rn \S. The n−1-dimensional sphere,
embedded in n-dimensional Euclidean space, is denoted by Sn−1 ⊂ Rn, and the
n-dimensional ball is denoted by Bn. The n-dimensional ball has volume

Voln(Bn) =
πn/2

Γ
(
n
2 + 1

) .
1 Note that the coding theory dual attack also has an enumeration part, after which

one tries to solve the decisional problem on a subcode. Here, we phrase the model
with C as the subcode, whereas the model in [MT23] is written in terms of the
[n− s, k − s]-subcode there.
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The n-dimensional gaussian of width s ∈ R>0 is defined by

ρs(x) = exp

(
−π ∥x∥

2

s2

)
(x ∈ Rn).

The n-dimensional gaussian (or, normal distribution), N
(
0, σ2

)n, with standard
deviation σ > 0 is the distribution with a Probability Density Function (PDF)
proportional to ρ√2πσ(x).

Lattices. The R-linear span of a set S ⊂ Rn is denoted by span (S). A basis for a
lattice Λ ⊂ Rn consists of R-linearly independent column vectors b1, . . . ,bk ∈ Rn

such that Λ = Zb1 + · · · + Zbk. The dual of a lattice Λ ⊂ Rn, denoted by Λ∨,
consists of all vectors x ∈ span (Λ) for which ⟨x, Λ⟩ ⊆ Z holds. We refer to Λ
as the primal lattice and Λ∨ as the dual lattice. The Voronoi cell of Λ, denoted
by V(Λ), is the set of points that are not closer to any lattice point than to the
origin, i.e.

V(Λ) = {x ∈ Rn
∣∣ ∀v ∈ Λ : ∥x∥ ≤ ∥x− v∥}.

The volume of a lattice is det(Λ) = Voln(V(Λ)).

Gaussian Heuristic. The Gaussian Heuristic states that for a lattice Λ, the
number of lattice points lying in a measurable set S ⊂ Rn is approximately
Voln(S) /det(Λ). This leads to the following heuristic on the length of a shortest
vector.

Heuristic 1 (Gaussian Heuristic) Given a random lattice Λ ⊂ Rn, the length
of the shortest non-zero vector in Λ, denoted λ1(Λ), is approximately equal to
GH(n) · n

√
det(Λ), where

GH(n) = Voln(Bn)−1/n .

Bessel functions. The class of Bessel functions is defined as follows, and will be
useful for the expected score of spherical errors later on.

Definition 1. For any α > − 1
2 , the Bessel function (of the first kind) of order

α is given by

Jα(t) =
(t/2)α√

π · Γ
(
α+ 1

2

) ∫ 1

−1
eits(1− s2)

α− 1
2 ds,

for t > 0.

It is well known that the Bessel function of some order α has an infinite
number of positive roots. Let us denote with jα,n, the nth positive root of the
Bessel function of order α.
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Lemma 1 ([Wat22, §15.81]). The first positive root of the Bessel function
satisfies

jα,1 = α+ 1.855757 . . . · 3
√
α+O(α−1/3),

as α → ∞, where 1.855757 . . . can be computed numerically up to arbitrary
precision. In addition, we have Jα(x) > 0 for all 0 < x < jα,1.

For convenience later on, let us define for all x > 0 and α > − 1
2 ,

ξ(α, x) =
Γ(α+ 1)

(πx)α
Jα(2πx) = 0F1

(
;α+ 1;−π2x2

)
,

where 0F1 is the confluent hypergeometric function. The function x 7→ ξ(α, x)
has an image within the interval [−1, 1].

Remark 1. By using [AS64, 9.1.10], and the crude approximation Γ(α+k+1) =
(α+ 1) · (α+ 2) · · · · · (α+ k)Γ(α+ 1) ≈ (α+ 1)kΓ(α+ 1), we get the following
approximation for small x:

ξ(α, x) =

∞∑
k=0

(−π2x2)k

k!(α+ 1)(α+ 2) . . . (α+ k)
≈
∞∑
k=0

(−π2x2)k

k!(α+ 1)
k
= e−

π2x2

α+1 .

Remark 2. In high dimensions, one may get some numerical errors when comput-
ing ξ directly with Bessel functions. These issues are circumvented by comput-
ing ξ using the confluent hypergeometric function 0F1. For example, the Python
package ‘mpmath’ implements 0F1 with the function hyp0f1.

2.1 Lattice Sieve

Lattice sieves provide a way to efficiently produce a list of many short lattice vec-
tors [NV08,MV10,BDGL16]. Although there are many variations, e.g. [BLS16],
one may think of a sieve as initially generating a list L of random linear com-
binations of some basis vectors defining a lattice Λ ⊂ Rn, and then iteratively
sieving, i.e. finding reductions that replace v ∈ L by a shorter v −w for some
w ∈ L.

Throughout this paper, we assume a lattice sieve will never return both
w and −w, since this optimization is used in most implementations, and ac-
counting for a factor of 2 in the number of dual vectors is relevant for the dual
attack, cf. [DP23, App. A.4].

To be able to work with the output of a lattice sieve in our analysis, we will
make a heuristic assumption about the distribution of the lattice vectors that a
lattice sieve algorithm outputs.

Heuristic 2 Given a unit-volume lattice Λ, the output distribution of a lattice
sieve with a saturation radius of rsat ≥ 1 and a saturation ratio of fsat ∈ (0, 1],
is a list of vectors W ⊂ Rn of size N = 1

2fsatr
n
sat, where its elements are inde-

pendently sampled uniformly at random from the ball of radius rsatGH(n).

7



This heuristic makes two simplifications on the output of a lattice sieve.
The first simplification made in the heuristic is that not much changes when
going from a list of N vectors that are the output of a sieve, to a list of N
vectors that are each sampled uniformly from Λ ∩ rsatGH(n)Bn. Although the
heuristic allows for duplicates, many distinct values will be sampled, which gives
a motivation for this simplification. As an illustration, consider the following:
sampling n times uniformly from a set of size n yields in expectation a set of
size n(1− 1/e) ≈ 0.63n as n→∞.2

The second simplification is that the lattice structure W ⊂ Λ is ignored in
the output. The Gaussian Heuristic predicts that the norm of the lattice vectors
follows a similar distribution as the norm distribution of points uniformly from
the ball. When running a sieve on a random lattice, this assumption seems fair,
because we do not expect the lattice to be distorted in any particular direction.

Note that this heuristic does not assume all vectors are of the same length
rsat
√
n, as done in e.g. [GJ21]. Instead the heuristic predicts there may be some

shorter vectors w, albeit with smaller probability, but still most of the vectors
are close to the boundary of the ball. The very short vectors are more beneficial
in the dual attack than longer vectors, so the analysis will be more conservative
when taking shorter vectors into account.

Normally, a lattice sieve is run with a saturation radius of rsat =
√

4/3,
because in that case enough vectors are initially generated to reduce vectors in
the sieve in each step [NV08]. Although in theory, one sometimes assumes a
lattice sieve finds all lattice vectors inside a ball of radius rsatGH(n) (i.e. fsat =
1), in practice a much lower saturation ratio is chosen for efficiency. For instance,
the G6K software [ADH+19] uses a saturation ratio of 0.5 by default, and even
lower saturation ratios of 0.375 were used for sieves used to break certain SVP
challenges with GPUs [DSvW21].

2.2 Fourier Transformation

A function f : Rn → R is called “square integrable” whenever
∫
Rn f(x)

2
dx is a

finite value.

Definition 2. The Fourier transform of a square-integrable function f : Rn → R
is given by

f̂ (y) =

∫
Rn

e−2πi⟨x,y⟩f(x)dx,

for all y ∈ Rn.

For example, the Fourier transform of ρs is ρ̂s = snρ1/s. The well-known
Fourier inversion theorem states that, under certain convergence conditions, one
may recover f from f̂ by:

f(x) =

∫
Rn

e2πi⟨x,y⟩f̂(y)dy.

2 One can easily derive this result using linearity of expectation.
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When f is a radial function, i.e. there exists g : R → R such that f(x) =

g(∥x∥), then f̂ is also a radial function, and vice versa [SW71, Thm. 3.3].

Theorem 1 (Poisson Summation Formula, [SW71, Chapter VII]). Given
a full-rank lattice Λ and a function f : Rn → R satisfying certain decaying con-
ditions, for all t ∈ Rn one has∑

v∈Λ
f(v + t) =

1

det(Λ)

∑
w∈Λ∨

e2πi⟨t,w⟩f̂(w).

Bessel functions occur very naturally in the context of Fourier transforma-
tions, in particular as the Fourier transformation of the indicator function of a
sphere or a ball.

Lemma 2. The Fourier transform of f = 1rBn is given by

f̂(x) =

(
r

∥x∥

)n
2

· Jn/2(2πr ∥x∥) = Voln(rBn) · ξ
(n
2
, r ∥x∥

)
.

The proof is based on [Fis13].

Proof. First, since f is radial, f̂ is also radial. Hence, let us do the proof only
for x = (s, 0, . . . , 0). Then,

f̂(x) =

∫
rBn

e−2πisy1dy =

∫ r

−r
e−2πistVoln−1

(√
r2 − t2Bn−1

)
dt

=
rnπ

n−1
2

Γ
(
n
2 + 1

2

) ∫ 1

−1
e2πirsu(1− u2)

n−1
2 du =

(r
s

)n/2
Jn

2
(2πrs).

For the last equality, note that we have(
r

∥x∥

)n
2

Jn
2
(2πr ∥x∥) =

(
r

∥x∥

)n
2 (πr ∥x∥)n

2

Γ
(
n
2 + 1

) ξ(n
2
, r ∥x∥

)
= Voln(rBn) ξ

(n
2
, r ∥x∥

)
.

2.3 Dual Attack

The hard problem that we consider is the so-called Bounded Distance Decoding
problem.

Definition 3. Let χ : Rn → [0, 1] be some distribution and Λ ⊂ Rn be a full-rank
lattice.

– Decision χ-BDD problem is the problem of deciding correctly (with high prob-
ability) whether an input t (mod Λ) is sampled from χ or U(Rn/Λ).

– Search χ-BDD problem is the problem of finding v ∈ Λ on input t = v + e
and Λ, where v ∈ Λ and e← χ.
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The distribution χ is usually chosen as one that is concentrated around zero,
for example a uniform distribution on a sphere or ball of some radius r, or a
gaussian of some width s. For these distributions, the hardness of the problem
depends on the radius or width, because taking this value too small makes the
problems easy to solve, while taking it too large makes the decision-BDD problem
impossible to solve [DP23, Sec. 4.1].

Decision-BDD. The most common way to solve decision-BDD is to use a dis-
tinguisher, i.e. a Λ-periodic function f : Rn → R for which f(t) is large when
t← χ, while f(t) ≈ 0 whenever t← Rn/Λ. One can then decide correctly from
which distribution t comes based on f(t) with a high success probability.

For example, the periodic gaussian, i.e.
∑

v∈Λ ρs(v+t), would be a very good
distinguisher, since the gaussian decays rapidly, but evaluating this function is
hard. However, using Theorem 1 we can approximate the periodic gaussian with
the following identity.∑

v∈Λ
ρs (v + t) =

sn

det(Λ)

∑
w∈Λ∨

ρ1/s(w)e2πi⟨t,w⟩.

Now, by summing the right hand side for a large set W of short dual vectors,
one can efficiently compute a decent approximation of the above, allowing one
to solve decision-BDD with high probability [AR04].

One can use the output of a lattice sieve algorithm on Λ∨ [ADPS16] to
efficiently obtain such a large set W. In such a situation, all the nonzero dual
vectors have approximately the same weight, and [LW21] shows that the score
function

fW(t) =
∑
w∈W

cos (2π ⟨w, t⟩) , (1)

which is easier to compute, works asymptotically almost as good as the [AR04]
original score function

∑
w∈W ρ1/s(w) cos(2π ⟨w, t⟩) for distinguishing between

BDD and uniform targets.
By linearity of expectation we get Et [fW(t)] = 0 for uniform targets t.

On the other hand, for BDD targets t, the expected score is approximately
ξ(n/2, rd ∥t− v1∥) where t is closest to v1 ∈ Λ.

Search-BDD to Decision-BDD. Recent dual attacks [EJK20,GJ21,MAT22] and
all follow-up works reduce search-BDD on Λ to decision-BDD on a sublattice as
follows. First, a sparsification Λ′ ⊂ Λ is chosen. Then decision-BDD is solved on
the sublattice Λ′ with the targets (t− g)g∈Λ/Λ′ . If decision-BDD was successful,
the solution v ∈ Λ to the search problem is solved modulo Λ′, i.e. v ≡ g′

(mod Λ′), where t−g′ was a BDD target according to the decision-BDD solver.
Having found the “correct guess” g′, one can then solve the easier search-BDD
problem on Λ′ with target t− g′, and after some iterations, v is finally found.

However, to solve decision-BDD, many of the recent dual attacks (for exam-
ple [GJ21,MAT22] and follow-up works) run a sieve on a lattice L ⊂ (Λ′)∨ of

10



much lower rank, from which a set of dual vectors W ⊂ L is obtained. Observe
that the distinguisher function now satisfies

fW(t) = fW(πspan(L)(t)),

where πV denotes the projection map onto the vector space V . This shows that
f is now merely a distinguisher for L∨: it assigns high scores to all targets t ∈ Rn

which have a projection πspan(L)(t) close to L∨.
More specifically, in the dual attacks first some lattice reduction is performed

on Λ′ to obtain some (BKZ-reduced) basis D for (Λ′)∨. Then, L is chosen to be
the lattice generated by the first k (column) vectors of D. By duality, L∨ is then
obtained by projecting Λ′ away from the last n − k (column) vectors of D−T.
Note, when e follows an n-dimensional gaussian distribution of width s, then
πspan(L)(e) also follows a k-dimensional gaussian distribution of width s.

On the other hand, suppose we are given a target t = v + e and we have a
guess g ̸∈ v+Λ′. Then, the reduction from search-BDD to decision-BDD yields
a target t− g ≡ e+ (v − g) (mod Λ′) in the lattice Λ′. In that case, the score
fW(t− g) is high when the point

πspan(L)(e) + πspan(L)(v − g), (2)

is close to L∨. Since the lower rank lattice L was only picked after some BKZ
reduction, and v−g is nonzero, we presume that πspan(L)(v−g) acts as a uniform
point in span (L) /L. Now, because the distinguisher is only distinguishing for
L∨, we see that the target in (2) corresponds to a BDD sample if g ∈ v + Λ′,
and else to a uniform sample modulo L∨.

We note that the work of [PS23a] sidestepped the uniform model for incorrect
targets, by making the a-priori assumption that ∥e∥ < 1

2λ1(Λ); in that case
the incorrect target can be proved to be far enough from the lattice in the
worst-case, without any statistical nor heuristic argument (as it was already the
case in [AR04]). This is however not the regime used in recent concrete attack
claims [GJ21,MAT22], and is in fact separated from the contradictory regime
of [DP23] by a factor 2 on the error length ∥e∥.

3 Score Distribution Models

Experiments in [DP23] reveal that the Independence Heuristic, which is used
in [GJ21,MAT22], leads to an incorrect prediction for the score distribution of
both BDD and uniform targets. In particular, it leads to an overestimation of
the probability that a BDD target is distinguished from uniform targets. More
precisely, there are two issues with the modelling of the score, based on the
Independence Heuristic:

– Uniform targets have a much larger probability to have a high score than
what is predicted under the Independence Heuristic. The root cause is that
the probability to get a high score because a uniform point may be close to
the lattice, is not considered.
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– The score distribution for gaussian BDD targets was shown to not be nor-
mally distributed, because the median score was significantly smaller than
the mean score. Moreover, the variance of the score was much larger than
predicted under assumption of the Independence Heuristic.

The goal of this section is to develop new score predictions that match prac-
tice more accurately than what was previously achieved under the Independence
Heuristic.

In Subsection 3.1, we derive analytic expressions for the mean and variance
of fu(v). This is the first dual attack paper giving an exact expression for this.
In Subsection 3.2, we get the exact mean and variance for the score distribution
of spherical BDD targets, based on Heuristic 2. Here, we present a new heuristic
that says the spherical targets do give a normally distributed score distribution.
This then allows one to derive score distributions for different target distribu-
tions, such as uniform in a ball and gaussian, which is done in Subsection 3.3. In
particular, we use the prediction for errors uniformly from a ball, to arrive at a
prediction for uniform errors, because the Voronoi cell can be approximated by
a ball of volume det(Λ).

Throughout this section, we will assume det(Λ) = 1 without loss of generality.
Note that this is not a restriction on the class of lattices to which the model
applies, because one can reduce to a unit-volume lattice by rescaling Λ.

3.1 Individual Score Function

First, let us look at the score distribution fu(v) = cos(2π ⟨u,v⟩), when given
some fixed vector u ∈ Rn. The score distribution for points uniform on a sphere
can be easily numerically computed with the following lemma.

Lemma 3. Given a fixed u ∈ Rn, when the random variable v follows the uni-
form distribution over the sphere of radius r, we have

E [fu(v)] = ξ
(n
2
− 1, ∥u∥ r

)
,

V [fu(v)] =
1

2
+

1

2
ξ
(n
2
− 1, 2 ∥u∥ r

)
− ξ

(n
2
− 1, ∥u∥ r

)2
.

Proof. The expectation value follows directly from a classic result from Fourier
Analysis, see e.g. [GS64, p. 198] or [SW71, p. 154], as we have

E [fu(v)] =
1

Voln(rSn−1)

∫
rSn−1

e2πi·⟨u,v⟩dv =
Γ(n2 ) · Jn

2−1 (2π ∥u∥ r)
(π ∥u∥ r)n

2−1
.

Making use of the trigonometric identity fu(v)
2
= 1

2 + 1
2 cos (4π ⟨u,v⟩) = 1

2 +
1
2f2u(v), the variance is then given by,

V [fu(v)] = E
[
fu(v)

2
]
− E [fu(v)]

2
=

1

2
+

1

2
E [f2u(v)]− E [fu(v)]

2
.
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Remark 3. Note that spherical errors were studied before [LW21, Section 5.1].
However, there they actually approximate an error uniformly from the (n− 1)-
dimensional sphere as a sample from the gaussian with parameter σ = n−1/2.
Here, we give exact expressions. For small arguments 0 < x ≪

√
α+ 1, the

Bessel function has the approximation Jα(x) ∼ (x/2)
α
/Γ (α+1), which leads to

the same approximations for the expectation and variance.

This result can be translated easily to a uniform distribution over a ball,
because sampling uniformly from the n-dimensional ball can be done by first
sampling from a (n + 2)-dimensional sphere and then dropping the last two
coordinates [VGS17].

Corollary 1. Given a fixed u ∈ Rn, when the random variable v follows the
uniform distribution over the ball of radius r, we have

E [fu(v)] = ξ
(n
2
, ∥u∥ r

)
,

V [fu(v)] =
1

2
+

1

2
ξ
(n
2
, 2 ∥u∥ r

)
− ξ
(n
2
, ∥u∥ r

)2
.

Let us now look into three possible error distributions: uniform from a sphere,
uniform from a ball and gaussian.

3.2 Error Uniform from a Sphere

Assuming Heuristic 2, we can now use the above corollary with all the dual
vectors that one gets by running a sieve, since these are assumed to be uniform
in the ball of radius rd = rsatGH(n). Then the independence of the dual vectors
from the sieve allows us to say something about the score distribution. This
corollary allows us to model the score fW(t), when we have dual vectors W
from a sieve.

Consider an error t uniformly sampled from a sphere of a radius rp, and dual
vectors acquired from a sieve with saturation radius rsat. Under assumption of
Heuristic 2, we can apply Corollary 1 on the fixed t and with random variable w
for each dual vector w ∈ W that is assumed to be an i.i.d. sample from U(rdBn).
Then, as there are N dual vectors, the expected score is given by

ES(rp) = N E
w←U(rdBn)

[fw(t)] = Nξ
(n
2
, rp · rd

)
,

and the variance is

VS(rp) = N

(
1

2
+

1

2
ξ
(n
2
, 2rprd

)
− ξ
(n
2
, rprd

)2)
.

Based on experiments, we propose the following heuristic.

Heuristic 3 Fix a set W of dual vectors from a lattice sieve. Then, errors t←
U
(
rdSn−1

)
have a score distribution fW(t) that is gaussian with mean ES(rp)
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and variance VS(rp). In particular, the score distribution is described by the
following CDF,

P
t←U(rpSn−1)

[fW(t) ≤ x] =
1

2
+

1

2
erf

(
x− ES(rp)√

2VS(rp)

)
. (3)

Heuristic Justification. By combining the linearity of expectation with Corol-
lary 1, for a particular t, the mean and variance of fW(t) are respectively ES(rp)
and VS(rp), taken over the randomness of the dual vectors.

Since for all t ∈ rpBn, we have ∥t∥ = rp, the mean and variance are the same
for all t ∈ rpBn. Therefore, the score distribution over the randomness of t, is
expected to be gaussian by a central limit heuristic.

Interestingly, the expected score is very similar to the score when one takes
W = rdBn ∩ Λ∨. In this case, Theorem 1 and Lemma 2 yield the following:

fW(t) =
∑

w∈Λ∨

1rdBn(w) e2πi⟨w,t⟩ = Voln(rdBn) ·
∑
v∈Λ

ξ
(n
2
, rd ∥v + t∥

)
.

For rp ≪ GH(n), the vector v = 0 gives a main contribution of ξ
(
n
2 , rdrp

)
to

the summation, because ξ(n/2,−) is a rapidly decaying function.
At this point, one could argue that one still assumes a central limit heuristic

to obtain the score distribution. However, the crucial difference between Heuris-
tic 3 and the Independence Heuristic of [DP23], is that Heuristic 3 takes a central
limit of i.i.d. fW(t) over the choice of t ∈ rpBn. However, irrespective of the tar-
get distribution, the Independence Heuristic uses a central limit heuristic for
the score fW(t), and neglects the dependence of ∥t∥ on the mean score. This
makes Heuristic 3 a sensible heuristic, although large experiments are ultimately
needed to gain confidence in this heuristic. This can be found in Section 4.2.

Lastly, the following result shows that there is a limit to the radius of a sphere
where reasonable distinguishing can still be expected.

Lemma 4. Given a set W of dual vectors in a ball of radius Rd = rsatGH(n),
obtained according to Heuristic 2, we have E [fW(t)] > 0 as n → ∞ when a
target is drawn uniformly from the sphere of radius Rp = rpGH(n) satisfying
RpRd ≤ n

4π (e.g. when rp · rsat ≤ e
2).

Proof. First note that rp · rsat ≤ e
2 implies we have

Rp ·Rd = rprsatGH(n)
2 ≤ rprsat ·

n

2πe
≤ n

4π
.

Based on Heuristic 2 and Corollary 1, we get E [fW(t)] = Nξ
(
n
2 , RpRd

)
> 0,

since the first zero of ξ(n2 , x) is at 1
2π jn/2,1 > n

4π , using Lemma 1.

Note that this Corollary is sharp, i.e. if you take rp > e
2rsat

, there exists some
n ∈ N such that RpRd > 1

2π jn/2,1, resulting in a negative expected score.
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3.3 Radial Error Distributions

The result for spherical errors can now be extended to any error distribution χ
that is radial. Consider the case where we have the following PDF f(r) indicating
the density function of getting a particular radius r when e is sampled from some
radial distribution. Note that we have,

f(r) =
d

dr
P

t←χ
[∥t∥ ≤ r] .

Based on Heuristic 3 we arrive at the following claim.

Heuristic Claim 1 Fix a set W of dual vectors from a lattice sieve, and a
radial error distribution χ, such that the norm distribution of samples from χ
has PDF f(r) at radius r ≥ 0. Then, errors t ← χ have a score distribution
fW(t) with the following CDF:

P
t←χ

[fW(t) ≤ x] =
1

2
+

1

2

∫ ∞
0

erf

(
x− ES(r)√

2VS(r)

)
f(r)dr. (4)

There are now two radial distributions of particular interest: gaussian and
the uniform distribution on the ball.

Gaussian Error. Let us use the score distribution for spherical errors as a step-
ping stone for that of gaussian errors. The norm distribution of samples from
N (0, 1)

n, follows the χ-distribution,3 which has a PDF given by:

f(r;n) =
rn−1 exp

(
− r2

2

)
2

n
2−1Γ

(
n
2

) (r ∈ R>0).

Now consider the error distribution N
(
0, σ2

)n for some σ > 0. In this case,
under Heuristic 3, the score distribution is as follows for gaussian errors.

Heuristic Claim 2 Fix some σ > 0, and a set W of dual vectors from a lattice
sieve. Then, errors t ← N

(
0, σ2

)n have a score distribution fW(t) with the
following CDF:

P
t←N(0,σ)n

[fW(t) ≤ x] =
1

2
+

1

2

∫ ∞
0

erf

(
x− ES(r)√

2VS(r)

)
· f
( r
σ
;n
) dr

σ
. (5)

Note that the χ-distribution has most weight concentrated around σ
√
n, so

the best numerical approximations are obtained when the numerical integration
is giving special attention to the region around σ

√
n (see Section 4.1).

3 More well-known is the PDF of the square norm, given by the χ2-distribution.
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Error Uniform from a Ball. Consider the distribution χ = U(rpBn) for some
rp > 0. Here, Pt←χ [∥t∥ ≤ x] = xn/rnp for any x ∈ [0, rp], and equals 1 for x ≥ rp.
Strictly speaking, this CDF is not differentiable at rp, so the PDF is not defined
there. Still, one can mitigate this issue by integrating until rp in (4). This yields
the following claim.

Heuristic Claim 3 Fix some rp > 0, and a set W of dual vectors from a
lattice sieve. Then, errors t← U(rpBn) have a score distribution fW(t) with the
following CDF:

P
t←U(rpBn)

[fW(t) ≤ x] =
1

2
+

1

2

∫ rp

0

erf

(
x− ES(r)√

2VS(r)

)
· nr

n−1dr

rnp
. (6)

3.4 Error Uniform Modulo Lattice

Given N dual vectors, prior analysis on the score distribution of targets uniform
in the torus Rn/Λ modelled it as a gaussian with mean 0 and variance 1

2N .
However, when a dual attack is in the contradictory regime of [DP23], the “floor”
phenomenon should be taken into account. This means that one cannot assume
the score distribution is normally distributed, as the probability of getting a high
score is much higher than what a normal gaussian tail would say.

The higher score is mainly driven by the high average score for points that
lie close to the lattice, and therefore as a fix, we consider the probability of a
point t uniform modulo Λ to be at some distance r from Λ, and use the score
distribution of the sphere of radius r for such points. In particular, by Heuristic 2,
the rotational invariance of the dual vectors allows us to focus on the distribution
of the norm of uniform points in the Voronoi cell V(Λ). Specifically, if we would
know the function

F (r) = P
t←U(Rn/Λ)

[d(t, Λ) ≤ r] = Voln(V(Λ) ∩ rBn) , (7)

for any lattice Λ, we would be able to make a prediction for scores of uniform
targets by integrating the score distribution of points uniformly from a sphere
over the radius r, ranging from 0 to µ(Λ), where µ(Λ) is the covering radius of the
lattice. Note that we have 1

2λ1Bn ⊆ V(Λ) ⊆ µ(Λ)Bn. Hence, F (r) = Voln(rBn)
for r ≤ 1

2λ1. For radii r ∈ ( 12λ1(Λ), µ(Λ)), there is no easy expression for f(r)
because the ball of radius r is not necessarily contained in the Voronoi cell.
However, we still have the upper bound,

F (r) ≤ Voln(rBn) . (8)

In [DP23, Heuristic Claim 4], the following equation is derived from the Gaussian
Heuristic, which holds for all r ∈ (0,GH(n)):

F (r) = Voln(rBn)
(
1− nO(1) ·Voln(rBn)

)
. (9)

The upper bound in (8) can thus be seen as a first order approximation of F (r).
The following heuristic implies F (r) equals the first order approximation of (9).
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Heuristic 4 Let Λ ⊂ Rn be a random full-rank (unit-volume) lattice. Then,

V(Λ) = GH(n) · Bn.

Based on Heuristics 3 and 4, we get the following claim by taking rp = GH(n)
in Heuristic Claim 3:

Heuristic Claim 4 Fix a set W of dual vectors from a lattice sieve. Then,
errors t← U(Rn/Λ) have a score distribution fW(t) with the following CDF:

P
t←U(Rn/Λ)

[fW(t) ≤ x] =
1

2
+

1

2

∫ GH(n)

0

erf

(
x− ES(r)√

2VS(r)

)
· nr

n−1dr

GH(n)
n . (10)

This claim will predict the “waterfall-floor” phenomenon in the score distri-
bution of uniform targets:

– For scores x ≈ 0, the integrand is biggest around r ≈ GH(n) because then
ES(r) ≈ 0, but ES(r) ≫ x when r ≪ GH(n). Because here VS(r) ≈ N/2,
we expect approximately a normal distribution around 0 with variance N/2,
which is precisely the “waterfall” part of the score distribution.

– When x becomes somewhat large, i.e. c
√
N/2 for some constant c, the inte-

grand is negligible for r ≈ GH(n), as x is many standard deviations above
the expected score for a target of radius r. Instead, the integrand is biggest
around r with ES(r) ≈ x, because the error function is close to 1

2 here. This
is exactly the point where we expect the “floor phenomenon”: at the point
where being closer to the lattice is much more likely than predicted by a
simple normal distribution. The value for r where the integrand is biggest
in (10) may be somewhere in the range ( 12GH(n) ,GH(n)), and strongly de-
pends not only on x but also on the dimension.

Note here that, informally speaking, assuming Heuristic 4 incorrectly pre-
dicts a larger fraction of the points to be at distance at most some r from the
lattice, instead of the actual F (r). Because ES(r) is decreasing as a function of
r, Heuristic Claim 4 predicts the probability to get a score above some x to be
larger than what it actually is. That is, the right hand side of (10) is a lower
bound for the CDF on the left hand side. This is beneficial for establishing a
lower bound on the dual attack, as it upper bounds the probability of a uniform
target being a false-positive, i.e. having a score above a certain threshold value.

4 Experiments

In this section, we provide further substantiation of the concrete predictions
made in Section 3, in particular the predictions in (3), (6) and (5), with ex-
perimental support. With the experiments, we want to verify whether the used
heuristics lead to conclusions that precisely match practice.

In the experiments, we take the full output of a lattice sieve on Λ∨, containing
almost as many as 1

2

(
4
3

)n/2 dual vectors of length at most
√
4/3GH(n), similar

to [DP23].
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We will compare three possible BDD distributions with their respective pre-
diction from Section 3: uniform from a sphere, uniform from a ball and gaussian.

Moreover, we compare the distribution of uniform scores from [DP23], which
was obtained by running extensive experiments, with the prediction that was
made in Subsection 3.4 with (10).

4.1 Implementation Details.

We used the G6K software [ADH+19] for running the experiments, using Python
on a high-level, but with a binding to some C/C++ code for speeding up BDD
sampling.

The script bdd_sample.py samples the three BDD score distributions by
first sampling a random q-ary lattice from a matrix of dimension n× n/2 (n is
only even), then running a lattice sieve to acquire 1

2 (4/3)
n/2 vectors, and finally

computing scores for many samples. Here, q = 3329 and a saturation ratio of
0.99 was used, so ⌈0.495(4/3)n/2⌉ vectors were taken from the G6K database,
since only one of w,−w is used.

For a gaussian sample, we simply sample x ← N(0, fGH · GH(n) /
√
n · q),

where we have considered values of fGH ∈ {0.1, 0.2, . . . , 1.0}. Note the normal-
ization 1/

√
n is needed to get target length fGH · GH(n) /

√
q and the normal-

ization 1/
√
q is to compensate for the scaling of the primal lattice, which has

determinant qn/2. We took q = 3329. For a sample uniform on the sphere, we
reuse the same gaussian sample x, and create the sample

y = x · fGH ·GH(n)√
nq ∥x∥ ,

which is then uniformly on the sphere of radius fGH ·GH(n) /
√
nq. For a sample

uniform in the ball, we take a sample uniformly from the n+1-dimensional sphere
in dimension n + 2 and drop the last two coordinates, making use of [VGS17].
We only generated 2 more gaussian samples, and reused the n from x here. The
script bdd_sample.py ran to collect 100 000 samples.

This data was then used by the script bdd_predict.py which plotted the
both experimental data, and the predictions. The predictions require evaluating
the Bessel function and an integration, for which we used hyp0f1 and quad re-
spectively from the Python package mpmath. Specifically, the gaussian prediction
was numerically more accurate when the interval (0,∞) was split into two with
the split happening at the expected length.4 The integration for the uniform ball
was performed from 0.001 up to 1 times the radius of the ball, to prevent the
singularity around 0.

4.2 Experiments for BDD Targets

The experiments for the BDD score are in Figure 1. It is clear that the predictions
made in Section 3 give accurate estimates on the score distribution for BDD
4 For more details, see “Highly variable functions” from the documentation (https:
//mpmath.org/doc/current/calculus/integration.html)
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(a) Score distribution for errors uniform from a
sphere of radius 0.7GH(n).
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(b) Score distribution for errors uniform from a ball
of radius 0.7GH(n).
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(c) Score distribution for gaussian errors with σ = 0.7GH(n) /
√
n.

Fig. 1. The CDF of the BDD score distribution for sphere, ball and gaussian error dis-
tributions, in dimension n = 90. The heuristic prediction for gaussian errors is based on
the Independence Heuristic, used in prior works [EJK20,GJ21,MAT22]. Experimental
data is based on 105 samples, and ⌈ 1

2
0.99

(
4
3

)45⌉ = 207419 dual vectors.

targets that are from a sphere, from a ball or gaussian. It also shows again that
the heuristic is completely off and enormously underestimates the probability on
a low score when the target distribution is gaussian.

19



4.3 Experiments for Uniform Targets
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(a) n = 40 (samples scoring ≤ 60 are in buckets)
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(b) n = 60
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(c) n = 50
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(d) n = 70

Fig. 2. Score distribution for uniform targets. x-axis: score, y-axis: log2(1− CDF(x)).
Experimental data consists of T = 248 uniform samples, saturation radius for dual
sieve was rsat =

√
4/3.

Figure 2 compares the prediction of the score distribution for uniform targets,
versus experiments. Here, a saturation ratio of fsat = 0.9 and saturation radius
of rsat =

√
4/3 was used. Thus, 0.5fsatrnsat (pairs of) dual vectors were used in

the calculation of a score.
The experimental data for the uniform scores was acquired independently

from the earlier work [DP23].
Note that in dimension 50, 60 and 70, the uniform prediction seems to be very

close to the experimental data. The right tail of the experimental data depends
on extremely rare events (happening once in 248 trials), so a small number of the
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most-right data points can change a little bit in another run. We believe if more
samples were taken, the experimental data would get closer to the prediction,
however, the experiment would have to run for multiple days in that case on our
server.

In dimension 40, it seems that the experiments give scores higher than ex-
pected by our prediction. Because 142 dual vectors were used, we believe that
this is only a low-dimensional phenomenon.
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(a) n = 50, rsat = 1.18, N = 1768
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(b) n = 70, rsat = 1.2 and N = 157001
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(c) n = 60, rsat = 1.18 and N = 9250
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(d) n = 80, rsat = 1.2 and N = 972103

Fig. 3. Score distribution for uniform targets, with different saturation radius. x-axis:
score, y-axis: log2(1−CDF(x)). Experimental data consists of T = 240 uniform samples.

Each of the subfigures of Figure 2 has experimental data, that is obtained
on a server with 40 physical CPUs running for a bit over one day. Hence, we
also considered running a lattice sieve with a different saturation radius, which
produces more (and therefore a bit longer) dual vectors than the standard satura-
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tion radius of
√
4/3 ≈ 1.1547. In these scenarios, the floor phenomenon happens

with a much higher probability. Thus fewer samples are needed to observe the
floor phenomenon in the experimental data. This eases the computational power
required to get the experiments, but the analysis should of course still hold in
a situation where the saturation radius is not

√
4/3. This motivates Figure 3.

This figure shows the predictions for a larger saturation radius. In these cases
the floor phenomenon can be seen after a decent computation time, and it shows
that the new predictions match the experimental data very accurately.

5 Conclusion

This paper proposed heuristics that can be used in the analysis of attacks against
the decision-BDD problem. Specifically, Heuristic Claim 2 and Heuristic Claim 4
experimentally show better predictions regarding BDD and uniform targets than
the Independence Heuristic, which was used previously. Thus, we can conclude
that these heuristics may be used confidently in the analysis of dual attacks on
search-BDD.

However, the effectiveness of the state-of-the-art dual attacks remains as
future work. In particular, note that existing dual attacks, e.g. [GJ21], will
most likely require a different parametrization to achieve the best runtime, while
having a constant success probability. Moreover, there will be other aspects to
the costing of the attack that may still require some attention, as highlighted
in [DP23, App. A].

In addition to handling false-positives as suggested in [DP23, Sec. 6.3] or
adapting the strategy for the same issue in statistical decoding [MT23, Alg.
4.1], one could potentially improve the dual attack further by applying different
weights to the individual scores, to achieve better separation between the BDD
and uniform distributions [AR04,LW21,PS23b].

On another note, theoretically it would be interesting to predict the scores of
uniform targets from Section 3.4: instead of relying on a ball approximation of the
Voronoi cell, it could be more satisfactory to adapt the Poisson model of [MT23,
Assumption 8]. Indeed, one expects on average to have Voln(rBn) / det(Λ) many
lattice points at distance at most r from a target t sampled uniformly modulo a
lattice. Whereas the code had a Poisson process for each weight w = 0, 1, . . . , n,
the situation is a bit more complex for lattices, as there are is a continuum of
processes to consider.
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