
Design of a Linear Layer Optimised for
Bitsliced 32-bit Implementation

Gaëtan Leurent and Clara Pernot

Inria, Paris, France

Abstract. The linear layer of block ciphers plays an important role in their security.
In particular, ciphers designed following the wide-trail strategy use the branch number
of the linear layer to derive bounds on the probability of linear and differential trails.
At FSE 2014, the LS-design construction was introduced as a simple and regular
structure to design bitsliced block ciphers. It considers the internal state as a bit
matrix, and applies alternatively an identical S-Box on all the columns, and an
identical L-Box on all the lines. Security bounds are derived from the branch number
of the L-Box.
In this paper, we focus on bitsliced linear layers inspired by the LS-design construction
and the Spook AEAD algorithm. We study the construction of bitsliced linear
transformations with efficient implementations using XORs and rotations (optimized
for bitsliced ciphers implemented on 32-bit processors), and a high branch number.
In order to increase the density of the activity patterns, the linear layer is designed
on the whole state, rather than using multiple parallel copies of an L-Box.
Our main result is a linear layer for 128-bit ciphers with branch number 21, improving
upon the best 32-bit transformation with branch number 12, and the one of Spook
with branch number 16.

Keywords: Bitsliced cipher · Linear layer · Branch number

1 Introduction

Block ciphers are one of the most versatile primitives in symmetric cryptography. In par-
ticular, the AES [AES01] is currently used to secure the majority on online communication.
Most block ciphers are constructed with linear layers and SBoxes: the linear layer mixes
the state to provide diffusion; while the SBoxes apply a non-linear operation in parallel to
small chunks of the state to provide confusion. This echoes the confusion and diffusion
properties of Shannon [Sha45].

A common strategy to design a block cipher is to alternate substitution layers, linear
layers, and key additions. This is denoted SPN, and many common ciphers follow this
construction: AES [AES01], PRESENT [BKL+07], Skinny [BJK+16], GIFT [BPP+17], ...
In order to evaluate the security of those ciphers against differential and linear cryptanalysis,
designers typically show bounds on the number of active SBoxes in a differential or linear
trail. Combined with the cryptographic properties of the SBox (differential uniformity and
linearity), this implies bounds on the probability (or bias) of linear and differential trails.
Over the years, various methods have been proposed to obtain bounds on the number of
active SBoxes, such as running Matsui’s branch and bound algorithm [Mat95], using the
wide-trail strategy [DR01], or modeling the search as a MILP problem.

2 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

s s s s s s s s

ki−1

S

s

S

s

S

s

S

s

S

s

S

s

S

s

S

s

Λ

ki

S

s

S

s

S

s

S

s

S

s

S

s

S

s

S

s

Λ

ki+1
s s s s s s s s

` SBoxes

Figure 1: A SPN cipher

1.1 Design strategies for SPN ciphers
We consider an SPN cipher with ` parallel SBoxes, each operating on s bits; the block
size is n = `s (see Figure 1). In this paper, we denote Bs the set of all s-bit elements:
Bs = {0, 1}s. The internal state is considered as an element in B`s = ({0, 1}s)`, i.e. a
sequence of ` s-bit elements x = (x0, x1, . . . , x`−1). We define the Hamming weight of x
as |x| = #{i : xi 6= 0} (Hamming weight over B`s).

The round function iterates three transformations:

SBox layer: an invertible SBox S : Bs → Bs is applied in parallel to each state element

xi ← S(xi), ∀i

Linear layer: an invertible linear transformation Λ : B`s → B`s is applied to the state

(x0, x1, . . . , x`−1)← Λ(x0, x1, . . . , x`−1)

In some ciphers such as the AES, Λ is a linear operation over F2s (identified with
Bs) but we consider a more general definition where Λ is only required to be linear
over F2.

Key addition: a round key k ∈ B`s is added (XORed) to the state

(x0, x1, . . . , x`−1)← (x0, x1, . . . , x`−1)⊕ k

SPN ciphers with a full key addition are usually seen as Markov ciphers [LMM91].
Therefore, we can compute the probability of a differential characteristic (resp. correlation
of a linear trail) by multiplying the probability (resp. correlation) of each round. In
particular, if we obtain a lower bound on the number of active SBoxes, this translates into
an upper bound for the probability of differential characteristics (resp, bias of linear trails).

Gaëtan Leurent and Clara Pernot 3

1.1.1 The Wide-Trail Strategy

The wide-trail strategy [DR01] is an important method to design SPN ciphers, used in
the AES and some of its predecessors. The focus of the wide-trail strategy is to design a
linear layer that guarantees a large number of active SBoxes, and to select SBoxes with
good cryptographic properties. When the two are combined, they provide bounds on the
probability of differential characteristics (and correlation of linear trails).

The differential branch number of a linear transformation Λ is defined as

Bd(Λ) = min
x 6=0

(
|Λ(x)|+ |x|

)
.

This is an important security property, measuring the diffusion of a linear layer: any
non-trivial differential characteristics in two consecutive rounds has at least Bd(Λ) active
SBoxes [DR01, Theorem 1]. Therefore, if the SBox has differential uniformity δ, the
probability of any r-round differential trail is at most (δ/2s)Bd·br/2c.

Similarly, the linear branch number is defined as

Bl(Λ) = min
x 6=0

(
|Λ>(x)|+ |x|

)
,

where Λ> is the linear transformation whose matrix representation over F2 is the transpose
of the matrix representation of Λ (note that we must consider the matrix representation
as an `s × `s matrix over F2, not as an ` × ` matrix over F2s). Any non-trivial linear
trail in two consecutive rounds has at least Bl(Λ) active SBoxes. Therefore, if the SBox
has linearity λ, the expected squared correlation of any r-round linear trail is at most
(λ2/22s)Bd·br/2c.

We have 2 ≤ Bd(Λ) ≤ `+ 1 and 2 ≤ Bl(Λ) ≤ `+ 1. A linear layer is called an MDS
matrix when Bd(Λ) = `+ 1; this condition is equivalent to Bl(Λ) = `+ 1. Besides, when
the linear layer is orthogonal (i.e. when Λ> = Λ−1), we have Bl(Λ) = Bd(Λ).

Alternatively, the differential branch number can be seen as the minimal distance of
the code with codewords x‖Λ(x) for x ∈ B`s. If Λ is linear over F2s , this is a linear code
over F2s of length 2` and dimension `. However, the code is only F2-linear in general; as
an F2-linear code it has length 2n = 2`s and dimension n = `s, but the branch number is
the minimal distance using the Hamming distance over Bs.

In the AES, the linear layer has branch number 5. This guarantees at least 5 active
SBoxes every two rounds. Moreover, the AES has a stronger property, due to the interaction
between the MixColumns and ShiftRows operations: any 4-round trail has at least 25 active
SBoxes (the square of the branch number). In this work we focus on two-round bounds.

1.1.2 Bitsliced Ciphers and LS-Designs

Conceptually, a software implementation of an SPN cipher uses a memory cell for each
SBox input (` memory units of s bits), so that an SBox application corresponds to a table
lookup. Alternatively, SPN ciphers can be implemented in a bitsliced way with s memory
units of ` bits: a memory cell gathers bits from each SBox, and the SBox is computed with
a series of arithmetic operation (AND, OR, XOR, . . .). The CPU arithmetic operations
operate in parallel on each bit of a memory cell, so that several SBoxes are computed
simultaneously. Bitsliced implementations of AES and DES have been proposed with good
performances [Bih97, KS09]. They have the advantage of avoiding table lookups; it is well
known that table lookups cause side channels because of memory cache, and this leads to
practical attacks [TSS+03].

In general, a bitsliced implementation requires reorganizing the memory layout. How-
ever, some ciphers are designed with a bitsliced operation in mind, and are described with
a bitsliced state, such as Noekeon [DPVAR00].

4 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

The LS-designs [GLSV15] are a family of ciphers optimized for bitsliced implementation.
The state is considered as an s× ` matrix of bits; the SBox layer applies the same SBox
S : Bs → Bs on each column, and the linear layer applies a fixed LBox L : B` → B` on each
line. In practice, each line is stored in an `-bit register, so that the SBox is implemented as
a series of bitsliced operations. The linear layer Λ operates independently on each register,
applying the same transformation L : F`2 → F`2 on each line (corresponding to a given bit
of all SBoxes):

(x0[j], x1[j], . . . , x`−1[j])← L(x0[j], x1[j], . . . , x`−1[j]), ∀j < s

The branch number of Λ (over F2s) is equal to the branch number of L (over F2). Simple
bounds on the security are derived directly from the properties of the SBox and the branch
number.

Two 128-bit ciphers are proposed in [GLSV15], Robin and Fantomas, using s = 8 and
` = 16. The linear layer is build from an optimal code over F2 with length 2` = 32 and
dimension ` = 16: the resulting LBox is orthogonal, with distance 8. The linear layer is
implemented as a series of table lookups. Since the LBox is linear, table lookups are easy
to protect against side-channel using masking.

1.1.3 Spook

Spook [BBB+20] is an AEAD scheme using primitives that build upon the ideas of LS-
designs. In particular, Spook uses a 128-bit tweakable block cipher (Clyde-128) that is
strongly inspired by the LS-design construction, with two important differences.

First, the LBox is designed so that it has an efficient implementation using XORs and
rotations, rather than using table lookups. The block cipher PRIDE [ADK+14] also uses a
linear layer optimized for implementation with XORs and rotations, but focuses on more
efficient implementations and lower branch number. Clyde-128 uses s = 4 and ` = 32 so
that a natural implementation uses 32-bit words and is efficient on 32-bit processors.

Second, Clyde-128 differs from LS-designs by using an interleaved LBox operating on
two `-bit registers at once, rather than independently on each register. This enables a
larger branch number with a modest increase in implementation cost. In particular the
best known linear code with length 64 and dimension 32 has distance 12 [Gra07], but the
linear layer of Clyde-128 has branch number 16 (as a reference point, the best known linear
code over F4 with length 64 and dimension 32 has minimal distance 17). The linear layer
of Clyde-128 and its inverse have an implementation with just 6 XORs and 6 rotations per
word (see Algorithm 4 and 5).

1.2 Our Results
In this work we follow the strategy of the Spook linear layer to design an efficient linear
layer for 128-bit ciphers with good cryptographic properties. We assume that the cipher
uses bitsliced 4-bit SBoxes, and we search for a linear layer with a good implementation
on 32-bit processors.

We extend the construction of Spook by considering a linear layer that operates on 3
or 4 words at a time, rather than 2. This presents two difficulties, compared to what was
done by the Spook designers: bounding the branch number of such a linear layer requires a
lot of computation, and the techniques to obtain an efficient implementation of the inverse
are not applicable with those parameters.

Eventually, we manage to build a linear transformation with branch number 21,
improving from the branch number 16 used in Spook. Our linear layer is as expensive to
compute than Spook’s in the forward direction, but the inverse is around three times more
expensive. To compare the efficiency of the different linear transformations, we define the

Gaëtan Leurent and Clara Pernot 5

Table 1: Linear transformations based on XORs and rotations operating on one to four 32-
bit words. c(L) corresponds to the number of XORs per 32-bit word in the implementation
we propose.

LBox w Branch number c(L) c(L−1) Ref
L32 1 12 5 5 [Leu19]
L32×2 2 16 6 6 [BBB+20]
L32×3 3 19 6 13 Subsection 4.1
L32×4 4 21 6 18 Subsection 4.2

notion of cost c, which corresponds to the number of XORs to be performed per 32-bit
word.

2 Linear Transformations Based on XORs and Rotations

An efficient way to build linear transformations is to use a sequence of XORs and rotations.
This has been used as a component in several symmetric ciphers, such as SHA-2 [NIS02],
PRIDE [ADK+14], Spook [BBB+20], or Ascon [DEMS21]. In this paper, we use ⊕ to
denote XOR, and ≫ (resp. ≪) to denote circular rotation to the right (resp. left).

2.1 Operating on a Single Word

We first consider a linear transformation operating on a single `-bit word, i.e. an LBox,
implemented as a series of rotations, and XORs. For instance, the SHA-2 Σ0 function is
defined over 32-bit words as:

Σ0(A) = (A≫ 2)⊕ (A≫ 13)⊕ (A≫ 22)

Another example given in Algorithm 2 reuses internal values.
By construction this type of linear transformation satisfies L(x ≫ r) = L(x) ≫

r, ∀x∀r. Therefore, when written in matrix form, we obtain a circulant matrix: each line
is a rotation of the previous line. The set of circulant matrices has a strong structure;
in particular the product of two circulant matrices is a circulant matrix. A circulant
matrix can be identified with a polynomial in F2[X]/(X` + 1), by taking the content of
the first row as the coefficients; the product of two circulant matrices is the same as the
polynomial product in the ring F2[X]/(X` + 1). In particular, a polynomial is invertible in
the ring if and only if it is relatively prime with X` + 1; when ` is a power of two, we have
X` + 1 = (X + 1)` and a polynomial is invertible if and only if the sum of the coefficients
is non-zero. Therefore, when ` is a power of two, a circulant matrix is invertible if and only
if the sum of the elements in the first row is non-zero, and its inverse is also a circulant
matrix.

The linear code associated to the LBox is a quasi-cyclic (double circulant) code, with
one block being the matrix L, and one block being the identity. This class of codes is
often used in code-based cryptography because they have a compact description, and they
include codes with good properties. In our case we are interested in this class because they
have an efficient implementation without using lookup tables.

In this paper we focus on linear transformations defined over ` = 32-bit words; a
sequence of XORs and rotations defines a 32× 32 binary circulant matrix. As a concrete

6 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

example, the code given in Algorithm 2 corresponds to the following matrix:

L32 =

1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1
1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0
0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The branch number of this matrix can be computed easily, by evaluating it on 232 − 1
inputs: we obtain B(L32) = 12. When considered as a linear code, this matches the best
known linear code with the same parameters (length 64, dimension 32, distance 12 [Gra07]).
This confirms that quasi-cyclic codes are good candidates to find linear transformations
with good properties.

In terms of implementation, a naive implementation of the LBox L32 would require 10
XORs and 10 rotations:

L32(x) = (x)⊕ (x≫ 1)⊕ (x≫ 3)⊕ (x≫ 4)⊕ (x≫ 5)⊕ (x≫ 6)
⊕ (x≫ 7)⊕ (x≫ 9)⊕ (x≫ 11)⊕ (x≫ 15)⊕ (x≫ 16)

However, the implementation of Algorithm 2 requires only 5 XORs and 5 rotations, by
reusing some intermediate variables. On many processors, this implementation using
rotations is faster than using table lookups (an implementation using 4 tables with 256
32-bits entries each requires 4 lookups and 3 XORs, as well as operations to extract the
individual bytes), and it avoids issues related to cache timing.

2.2 Operating on Several Words
The LS-design construction uses several copies of an LBox applied independently to the
bits of the SBoxes. On the other hand, Spook uses an interleaving construction: the linear
transformation is defined on two words simultaneously. This generalization includes linear
transformation with a better branch number.

In general, a linear transformation L operating on w words (with w dividing s) based
on XORs and rotations corresponds to a `w × `w matrix with `× ` circulant blocks Mi,j .

L =

M1,1 . . . M1,w
...

Mw,1 . . . Mw,w

 L : Bw` → Bw`
(x1, . . . xw) 7→ (y1, . . . yw)

yi =
∑

Mi,jxj

Alternatively, the input of the linear transformation can be considered in interleaved form.
The interleaving function I takes w `-bit words as input and turns them into a single
w`-bit word by transposing the bits:

I(x1, . . . xw) = x1[0]x2[0] . . . xw[0] x1[1]x2[1] . . . xw[1] . . .

Gaëtan Leurent and Clara Pernot 7

We define the interleaved matrix L̄ of a linear transformation L as the matrix such that

I (L× (x1, . . . xw)) = L̄× I(x1, . . . xw)

As a simplification, the designers of Spook [Leu19] focused on a subset of linear transfor-
mations where L̄ is a circulant w` × w` matrix. This is a subset of the block-circulant
linear transformations, because an implementation of L̄ using rotations and XORs on one
w`-bit register can be rewritten as an implementation using rotations and XOR on w `-bit
registers, using the following properties:

I(x1, x2, . . . , xw) ≫ 2r = I(x1 ≫ r, x2 ≫ r, . . . , xw ≫ r)
I(x1, x2, . . . , xw) ≫ 1 = I(xw ≫ 1, x1, . . . , xw−1)

As a concrete example, the Spook LBox is shown in Algorithm 4; it takes two words as
input and uses a sequence of rotations and XORs to produce two words of output. It is
actually built from the following interleaved implementation (given a 64-bit input x):
a← x⊕ rot(x, 24)
a← a⊕ rot(a, 6)
a← a⊕ rot(x, 34)
b← a⊕ rot(a, 62)
a← a⊕ rot(b, 51)
a← a⊕ rot(b, 30)
return rot(a, 1)

2.3 Differential and Linear Branch Numbers
An important property of LBoxes built from a circulant matrix L̄ is that the linear and
differential branch number are equal.

We use the following notation for a circulant matrix C, with c0, . . . , cw`−1 ∈ B = {0, 1}:

C = Circ(c0, c1, . . . , cw`−1) =

c0 c1 . . . cw`−1

cw`−1 c0 . . . cw`−2
...

...
c1 c2 . . . c0

In particular, we have C> = Circ(c0, c1, . . . , cw`−1)> = Circ(c0, cw`−1, . . . , c1).

Case w = 1. We first consider the case w = 1. We obtain similar expressions for the
differential and linear branch number:

Bd(C) = min
x 6=0

(∣∣∣Circ(c0, c1, . . . , c`−1)(x)
∣∣∣+
∣∣∣x∣∣∣)

Bl(C) = min
x 6=0

(∣∣∣Circ(c0, c1, . . . , c`−1)>(x)
∣∣∣+
∣∣∣x∣∣∣)

= min
x 6=0

(∣∣∣Circ(c0, c`−1, . . . , c1)(x)
∣∣∣+
∣∣∣x∣∣∣)

= min
x 6=0

(∣∣∣P (Circ(c0, c1, . . . , c`−1)(x)
)∣∣∣+

∣∣∣x∣∣∣),
with P a transformation that permutes its elements:

P : B` → B`

(x0, x1, . . . , x`−1) 7→ (x0, x`−1, . . . , x1)

Since the Hamming weight is invariant up to permutation of the elements, we have∣∣P (x)
∣∣ =

∣∣x∣∣ and we obtain Bd(C) = Bl(C).

8 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

General case. In general, the linear transformation is defined as L(x) = I−1(C(I(x))).
We obtain:

Bd(C) = min
x6=0

(∣∣∣I−1(Circ(c0, c1, . . . , cw`−1)(x)
)∣∣∣+

∣∣∣x∣∣∣)
Bl(C) = min

x6=0

(∣∣∣I−1(Circ(c0, c1, . . . , cw`−1)>(x)
)∣∣∣+

∣∣∣x∣∣∣)
= min

x6=0

(∣∣∣I−1(Circ(c0, cw`−1, . . . , c1)(x)
)∣∣∣+

∣∣∣x∣∣∣)
= min

x6=0

(∣∣∣I−1(P (Circ(c0, c1, . . . , cw`−1)(x)
))∣∣∣+

∣∣∣x∣∣∣),
with P a transformation that permutes its elements:

P : Bw` → Bw`

(x0, x1, . . . , xw`−1) 7→ (x0, xw`−1, . . . , x1)

We observe that P preserves the interleaved Hamming weight over B`w by writing it over
Bw`: ∣∣∣x∣∣∣ =

∣∣∣(x0, x1, . . . , xw`−1)
∣∣∣

= max(x0, x1, . . . , xw−1) + max(xw, xw+1, . . . , x2w−1) + . . .∣∣∣I−1(x)∣∣∣ =
∣∣∣I−1(x0, x1, . . . , xw`−1)

∣∣∣
= max(x0, x`, . . . , x(w−1)`) + max(x1, x`+1, . . . , x(w−1)`+1) + . . .∣∣∣I−1(P (x)

)∣∣∣ =
∣∣∣I−1(x0, xw`−1, . . . , x1)

∣∣∣
= max(x0, x(w−1)`, . . . , x`) + max(xw`−1, x(w−1)`−1, . . . , xw`−`−1) + . . .

=
∣∣∣I−1(x)∣∣∣

Therefore we have Bd(L) = Bl(L).

2.4 Search for Good LBoxes
In order to find an LBox with a good implementation, the Spook designers ran a search over
potential implementations until obtaining an LBox with a good branch number [Leu19],
rather than first searching a good matrix and then searching a good implementation of this
matrix. The implementation is considered as a sequence of operations xi ← xai

⊕rot(xbi
, ri)

(with ai, bi < i), where the input is x0 and the output is the last computed value. Starting
with a fixed number of operations k, the search algorithm generates random parameters
(ai, bi, ri)ki=1, and evaluates the branch number of the resulting linear transformation. The
best linear transformation is kept as the result.

The most computationally intensive part of the search is to evaluate the branch number
of a given LBox. Finding the branch number of L is equivalent to finding the value x 6= 0
that minimizes |L(x)| + |x|. A naive approach does exhaustive search over all possible
x; this is practical for a 32-bit linear transformation. An improved variant tries x by
increasing weight: if |L(x)|+ |x| ≥ b for all x with |x| ≤ b− 2, then the branch number
is at least b (because L is invertible). We define the set Xh = {x ∈ F`2w : |x| ≤ h}
of words of weight at most h; in order to show that the branch number is at least b,
we only have to search over the set Xb−2. However, this is not feasible with the Spook
parameters: with ` = 32, w = 2 and branch number 16, we would have to consider X14 of
size

∑14
h=1

(32
h

)
3h ≈ 251.4.

Gaëtan Leurent and Clara Pernot 9

To further reduce the search space, we observe that if |L(x)|+ |x| ≤ b then |x| ≤ b/2
or |L(x)| ≤ b/2. Therefore, to show that the branch number is at least b it is sufficient
to exhaustively search all x in Xbb/2c and in {L−1(x) : x ∈ Xbb/2c}. With the Spook
parameters, we only have to consider X8 of size roughly 236.2, so that this approach is
practical. The algorithm is given as Algorithm 1. Moreover, since L is circulant, we
can skip candidates that are equivalent up to rotation. This technique works well for
Spook [Leu19], but it does not scale to larger values of w > 2.

Algorithm 1 Compute the branch number of an LBox
Input: L

b← |L(1)|+ 1
h← 1
while h ≤ b/2 do

for x ∈ Xh do
if |x|+ |L(x)| < b then

b← |x|+ |L(x)|
if |x|+ |L−1(x)| < b then

b← |x|+ |L−1(x)|
h← h+ 1

return b

2.5 Efficient Inverse
In order to use a linear transformation in an SPN cipher, it is useful to also have an
efficient implementation of the inverse (this is not always a requirement; for instance the
CTR mode of encryption does not use the inverse of the block cipher). When using the
approach of the previous section we obtain an LBox with an efficient implementation, but
we cannot derive an efficient implementation of L−1 from an efficient implementation of L.

Instead, the Spook designers ran a birthday search to find two efficient implementations
such that the resulting matrices L and L′ are each other’s inverses. The space of circulant
matrices is of size 2w`; 2w`−1 are invertible and after identifying matrices that are rotations
of each others there are approximately 2w`−1/w` equivalence classes. Therefore the birthday
search is expected to find one matrix with efficient implementation in both directions after
trying roughly 2w`/2/

√
w` random implementations (229 with the Spook parameters). In

order to obtain 2t candidates, the complexity is roughly
√
t× 2w`/2/

√
w`. With ` = 32,

this approach is feasible for w ≤ 2 but not for w > 2.

2.6 Known Results
We now summarize the state of the art on efficient LBoxes defined for ` = 32-bit words.

Operating on 1 word [Leu19]. When operating on one word, there are around 231/32 =
226 invertible circulant matrices up to equivalence by rotation. The branch number of a
candidate can be computed with at most 2×|X6| ≈ 221.1 operations, assuming it is smaller
than 12. Therefore, it is practical to exhaustively search all circulant matrices, showing
that the best possible branch number is 12. This matches the best known linear codes
with dimension 32 and length 64.

Moreover, there exist LBoxes in this set with an efficient inverse: Algorithm 2 and 3
give the implementation of an LBox with branch number 12 using 5 rotations and 5 XORs,
and its inverse using 6 rotations and 5 XORs.

10 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

Algorithm 2 L32 LBox
Input: x
a← x⊕ rot(x, 1)
b← a⊕ rot(a, 4)
a← b⊕ rot(a, 9)
b← a⊕ rot(x, 3)
return b⊕ rot(a, 6)

Algorithm 3 L32 LBox inverse
Input: x
a← x⊕ rot(x, 2)
b← x⊕ rot(a, 3)
a← b⊕ rot(a, 16)
b← a⊕ rot(b, 6)
return rot(a, 25)⊕ rot(b, 15)

Operating on 2 words [BBB+20, Leu19]. When operating on two words, exhaustive
search is no longer possible. The Spook authors ran a search for random circulant matrices,
and the best branch number obtained was 16. They also found an LBox with branch
number 16 with efficient implementation and efficient inverse, which is used in Spook;
Algorithm 4 gives its implementation using 13 rotations and 12 XORs, while Algorithm 5
gives its inverse using 14 rotations and 12 XORs.

Algorithm 4 Spook L-box
Input: (x, y)
a← x⊕ rot(x, 12)
b← y ⊕ rot(y, 12)
a← a⊕ rot(a, 3)
b← b⊕ rot(b, 3)
a← a⊕ rot(x, 17)
b← b⊕ rot(y, 17)
c← a⊕ rot(a, 31)
d← b⊕ rot(b, 31)
a← a⊕ rot(d, 26)
b← b⊕ rot(c, 25)
a← a⊕ rot(c, 15)
b← b⊕ rot(d, 15)
b← rot(b, 1)
return (b, a)

Algorithm 5 Spook L-box inverse
Input: (x, y)
a← x⊕ rot(x, 25)
b← y ⊕ rot(y, 25)
c← x⊕ rot(a, 31)
d← y ⊕ rot(b, 31)
c← c⊕ rot(a, 20)
d← d⊕ rot(b, 20)
a← c⊕ rot(c, 31)
b← d⊕ rot(d, 31)
c← c⊕ rot(b, 26)
d← d⊕ rot(a, 25)
a← a⊕ rot(c, 17)
b← b⊕ rot(d, 17)
a← rot(a, 15)
b← rot(b, 16)
return (b, a)

3 Search for New Linear Transformations
In this work, we consider linear transformations with ` = 32 for efficiency reasons, and
we attempt to design linear transformations operating on more than 2 words at a time
(w > 2). This should increase the branch number that we can achieve, but there are two
issues that make the previous methods inapplicable:

• The algorithm to compute the branch number described in Section 2.4 is not applicable
to w > 2;

• The birthday search described in Section 2.5 to find a matrix with efficient imple-
mentation and efficient inverse is not applicable to w > 2.

3.1 Computing the Branch Number Efficiently
As mentioned above, computing the branch number of an LBox is equivalent to computing
the minimal distance of a linear code. In particular, we observe that the algorithm described

Gaëtan Leurent and Clara Pernot 11

in Section 2.4 is actually the classical Brouwer-Zimmermann [Zim96, BBF+06] minimum
distance algorithm, applied to the code generated by I‖L̄. As far as we know this is the
best deterministic algorithm to compute the branch number of an arbitrary linear code,
but coding theory offers probabilistic algorithms that are more efficient.

3.1.1 Information Set Decoding Algorithm

To efficiently compute the branch number, we use tools from coding theory. More
specifically, we use an Information Set Decoding (ISD) algorithm [Pra62] to find a non-zero
codeword with the lowest possible weight.

This is an iterative algorithm which, given a matrix, a weight w, a number of iterations
t, and a parameter d, returns a codeword of weight w if it finds one.

Case w = 1. We first describe how the algorithm in the case w = 1, so that the code is
linear over the field F2 and the weight is the standard Hamming weight. The code has
dimension ` and length 2`, and is given as a `× 2` generating matrix.

We assume that there is a word W of weight w in the code. Each iteration tries to
find such a word, and succeeds with some probability p. Each iteration works as follows.
First, starting from the matrix L̄, a random permutation of the columns is performed, and
a Gaussian reduction is performed. After the permutation, the ` columns on the left are
called an information set.

We hope that W has weight exactly 1 in the information set. This happens with
probability:

p =
(

`
w−1

)
×
(
`
1
)(2`

w
)

In this case, W is one of the rows of the matrix, if the matrix is in row echelon form.
We have a good probability to find W after 1/p iterations: after (1/p)× ε iterations,

we find it with probability 1− (1− p)(1/p)×ε ≈ 1− e−ε.
Knowing that the complexity of this algorithm is dominated by the Gaussian elimination,

we consider combinations of d rows. We therefore increase the probability of finding a
word of weight w if one exists. This succeeds if W has weight lower or equal than d in the
information set. The success probability is:

p =
d∑
j=1

(
`

w−j
)
×
(
`
j

)(2`
w
)

General case. When w > 1, we consider a code defined by 2w` basis vectors in B2`
w , given

a w`× 2w` matrix. The code is linear over F2 but the Hamming weight is defined over
w-bit words. Therefore, we don’t process columns and rows directly, but packets of w
columns and w rows:

• instead of randomly permuting the columns, we need to swap packets of w columns,
because this permutation corresponds to the selection of an information set, which is
defined in association with the Hamming weight.

• instead of enumerating rows in the binary case, i.e., scanning all rows of weight 1 on
the information set, here we have to scan all words of weight 1 in the information
set: the 2w − 1 words with weight 1 on the first packet of w columns, the 2w − 1
words with weight 1 on the second packet of w columns, ... In the case d = 1, there
will therefore be `× (2w − 1) elements to enumerate.

12 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

Algorithm 6 Information Set Decoding Algorithm to compute the distance of a linear
code
Input: C: linear code,
d: maximum number of rows to XOR to verify weight,
t: number of iterations,
w: the desired weight.
for i = 1, ..., t do

C ← Random_permutation_of_columns (C)
C ← Gaussian_elimination (C)
for all combination x of at most d rows do

if |x| < w then
return x

return False

3.2 Best Distance Obtained
First, we looked for the branch number achievable for random circulant matrices: for 3
32-bit words, after 227 tests, the best branch number we obtained is 19, which is achieved
by 7% of random circulant matrices. For 4 32-bit words, after 218 tests, the maximum we
obtained is 21, and it is reached by 42% of the random circulant matrices. In the next
section, we look for linear transformations with efficient implementation (based on XOR
and rotations, as described above) that reach those maximums.

3.3 Implementing the Inverse
Simultaneous Search of L and L−1. As explained in Section 2.5, the strategy used
to find linear transformations that can be implemented as well as their inverses using a
sequence of operations xi ← xai ⊕ rot(xbi , ri) is impractical for 3 or more words. So we use
another strategy: we generate matrices using a sequence of operations xi ← xai⊕rot(xbi , ri),
and then, for candidates with a high branch number, we look for an efficient implementation
of their inverse. This implementation of the inverse will be less efficient than those proposed
above, but nonetheless more efficient than a naive implementation.

Heuristic Search of Good Implementation. In this section, we describe how to build an
implementation of the inverse from its matrix description. We use the notation |x|2 to
denote the binary Hamming weight (as opposed to the Hamming weight |x| over Bw). A
naive implementation of an LBox L requires |L(1)|2 rotations and |L(1)|2 − 1 XORs, but
we can use heuristics to find a more efficient implementation.

Since we work with circulant matrices, we only consider the w`-bit word corresponding
to the first row of the matrix. Our approach is to start with the target L(1) and to
decompose it into several words. For simplicity, we only count the number of XORs in an
implementation. We start with the following decomposition:

x = a ⊕ (a ≫ r) ⊕ b. Given a target x, we iterate over all r (1 ≤ r < w`) and we
construct a value a to obtain a small value |a|2 + |b|2 with b = x⊕ a⊕ (a≫ r).
A good candidate is z = x ∧ (x≪ r); when z and z ≫ r are disjoint we take a = z
and obtain |b|2 = |x|2 − 2|a|2 with |a|2 + |b|2 minimal. In general, we use a greedy
algorithm to iteratively build a.

We can implement a and b naively, and we obtain an implementation of x with cost
(|a|2 − 1) + (|b|2 − 1) + 2; most of the time this is smaller than the cost of a naive
implementation (|x|2 − 1). We can often further reduce the cost of the implementation by
recursively decomposing a and b.

Gaëtan Leurent and Clara Pernot 13

More generally, we build a recursive algorithm to find an implementation of a vector
of target values (x0, . . . , xv). At each step, we apply several heuristics to attempt to
decompose elements of the vector. We start the algorithm with the vector (L(1)), and
eventually we implement the final vector naively and reconstruct the target by inverting
the decomposition operations.

We consider the following decompositions:

xi = a ⊕ (a ≫ r) ⊕ b. We exhaustively consider all xi’s (and r) and use the same
decomposition as above. This reduces the implementation cost if |a|2 + |b|2 < |xi|2.
The new vector to decompose is (x0, . . . , xi−1, xi+1, . . . , xv, a, b).

xi = a ⊕ (xj ≫ r). We exhaustively consider all pairs (xi, xj) and all values r, and
define a = xi ⊕ xj ≫ r. If |a|2 + 1 < |xi|2 this reduces the implementation cost.
The new vector to decompose is (x0, . . . , xi−1, xi+1, . . . , xv, a).

xi = a ⊕ b, xj = (a ≫ r) ⊕ c. We exhaustively consider all pairs (xi, xj) and all values
r, and define a = xi ∧ (xj ≪ r), b = xi ⊕ a, c = xj ⊕ (a ≫ r). We have
|b|2 = |xi|2 − |a|2 and |c|2 = |xj |2 − |a|2, so that this reduces the implementation
cost when |a|2 > 1.
The new vector to decompose is (x0, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xv, a, b, c).

When several decompositions are possible, we try various heuristics to select a decomposi-
tion, from a simple greedy heuristic to more advanced heuristics (with a recursive call to
the greedy heuristic) to get a more accurate estimate of the cost of the new vector.

We also considered a decomposition that adds an arbitrary bit to one of the objectives;
this random noise generally increases the implementation cost but it can sometimes simplify
a later decomposition.

4 Results
Using the new described methods, we managed to obtain matrices with efficient implemen-
tations that meet the best distances obtained with random circulant matrices for 3 and 4
words.

4.1 Considering 3 words
We found an LBox operating on 3 32-bit words with branch number 19 and an efficient
implementation (18 rotations and 18 XORs). It matches the maximum branch number for
random circulant matrices, and the number of XORs per 32-bit word is 6, as in Spook. The
implementation of the inverse has been found using the strategy described in Section 3.3:
it has 42 rotations and 39 XORs. The implementations of the linear transformation and
its inverse are given in algorithms 7 and 9. This candidate was tested with 220 iterations
of the information set decoding algorithm 6 with w = 18 and d = 3. Each iteration costs(32

3
)
× 73 +

(32
2
)
× 72 + 32× 7 ≈ 220.7, and the probability of finding a word of weight 18

at each iteration is 2−10.17. By repeating 220 times, the probability of failing to find this
word is e−220−10.17 ≈ 2−1313 if it exists.

4.2 Considering 4 words
We found an LBox operating on 4 32-bit words with branch number 21 and an efficient
implementation (24 rotations and 24 XORs). It matches the maximum branch number for
random circulant matrices, and the number of XORs per 32-bit word is 6, as in Spook. The
implementation of the inverse has been found using the strategy described in Section 3.3:

14 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

it has 76 rotations and 72 XORs. The implementations of the linear transformation and
its inverse are given in algorithms 8 and 10. This candidate was tested with 225 iterations
of the information set decoding algorithm 6 with w = 20 and d = 2. Each iteration costs(32

2
)
× 152 + 32× 15 ≈ 216.8, and the probability of finding a word of weight 20 at each

iteration is 2−17.8. By repeating 225 times, the probability of failing to find this word is
e−225−17.8 ≈ 2−212 if it exists.

Algorithm 7 L32×3 Lbox
Input: (x, y, z)
a← x⊕ rot(y, 17)
b← y ⊕ rot(z, 17)
c← z ⊕ rot(x, 18)
d← a⊕ rot(c, 30)
e← b⊕ rot(a, 31)
c← c⊕ rot(b, 31)
a← d⊕ rot(x, 21)
b← e⊕ rot(y, 21)
f ← c⊕ rot(z, 21)
d← d⊕ rot(b, 30)
e← e⊕ rot(f, 30)
c← c⊕ rot(a, 31)
a← d⊕ rot(c, 23)
b← e⊕ rot(d, 24)
f ← c⊕ rot(e, 24)
a← a⊕ rot(d, 26)
b← b⊕ rot(e, 26)
c← f ⊕ rot(c, 26)
return (a, b, c)

Algorithm 8 L32×4 LBox
Input: (x, y, z, t)
a← x⊕ rot(y, 19)⊕ rot(t, 24)
b← y ⊕ rot(z, 19)⊕ rot(x, 25)
c← z ⊕ rot(t, 19)⊕ rot(y, 25)
d← t⊕ rot(x, 20)⊕ rot(z, 25)
e← a⊕ rot(c, 2)
f ← b⊕ rot(d, 2)
g ← c⊕ rot(a, 3)
h← d⊕ rot(b, 3)
i← e⊕ rot(h, 8)
j ← f ⊕ rot(e, 9)
k ← g ⊕ rot(f, 9)
l← h⊕ rot(g, 9)
e← i⊕ rot(d, 30)
f ← j ⊕ rot(a, 31)
g ← k ⊕ rot(b, 31)
h← l ⊕ rot(c, 31)
a← e⊕ rot(k, 3)
b← f ⊕ rot(l, 3)
c← g ⊕ rot(i, 4)
d← h⊕ rot(j, 4)
return (a, b, c, d)

5 Conclusion
We obtain a 128-bit linear transformation which is a very good candidate for the linear
layer of a bitsliced 128-bit cipher with 32 4-bit SBoxes. It has an efficient implementation
as a series of 32-bit XORs and rotations, and a branch number of 21.

As a comparison, our new linear layer has a better branch number that the one used in
Spook (with branch number 16), and the implementation in the forward direction has the
same efficiency. However, the inverse is about three time more expensive. Using our linear
layer in Spook would significantly improve the security margin, with a limited impact on
performance (because Spook only requires the inverse for the tag verification).

We obtain this result by designing an LBox operating on all four state words, while
Spook uses two copies of an LBox operating on 2 words. We had to solve two problems.
Firstly, how to compute efficiently the branch number of a linear transformation? For
this, we used tools from coding theory: an Information Set Decoding algorithm is used
to compute the branch number of a linear transformation. Secondly, how to find linear
transformations with an efficient implementation and/or whose inverse has an efficient
implementation? To do this, we proposed linear transformations from sequences of XORs
and rotations of 32-bit words.

Gaëtan Leurent and Clara Pernot 15

Algorithm 9 L32×3 LBox inverse
Input: (x, y, z)
a← rot(y, 14)⊕ rot(y, 26)
b← rot(z, 14)⊕ rot(z, 26)
c← rot(x, 15)⊕ rot(x, 27)
d← rot(a, 8)
e← rot(b, 8)
f ← rot(c, 8)
a← a⊕ rot(a, 1)
b← b⊕ rot(b, 1)
c← c⊕ rot(c, 1)
g ← rot(z, 6)
h← rot(x, 7)
i← rot(y, 7)
g ← g ⊕ rot(c, 10)
h← h⊕ rot(a, 11)
i← i⊕ rot(b, 11)
j ← rot(x, 21)
k ← rot(y, 21)
l← rot(z, 21)
j ← j ⊕ a
k ← k ⊕ b

l← l ⊕ c
g ← g ⊕ rot(e, 26)
h← h⊕ rot(f, 26)
i← i⊕ rot(d, 27)
a← rot(y, 1)⊕ rot(z, 22)
b← rot(z, 1)⊕ rot(x, 23)
c← rot(x, 2)⊕ rot(y, 23)
j ← j ⊕ rot(c, 18)
k ← k ⊕ rot(a, 19)
l← l ⊕ rot(b, 19)
d← d⊕ a⊕ rot(d, 8)
e← e⊕ b⊕ rot(e, 8)
f ← f ⊕ c⊕ rot(f, 8)
a← d⊕ g ⊕ rot(e, 11)
b← e⊕ h⊕ rot(f, 11)
c← g ⊕ i⊕ rot(d, 12)
a← a⊕ j ⊕ rot(a, 30)
b← b⊕ k ⊕ rot(b, 30)
c← c⊕ l ⊕ rot(c, 30)
return (a, b, c)

Algorithm 10 L32×4 LBox inverse
Input: (x, y, z, t)
a← rot(t, 2)⊕ rot(x, 28)
b← rot(x, 3)⊕ rot(y, 28)
c← rot(y, 3)⊕ rot(z, 28)
d← rot(z, 3)⊕ rot(t, 28)
e← rot(y, 15)⊕ a
f ← rot(z, 15)⊕ b
g ← rot(t, 15)⊕ c
h← rot(x, 16)⊕ d
a← rot(y, 25)⊕ rot(a, 21)
b← rot(z, 25)⊕ rot(b, 21)
c← rot(t, 25)⊕ rot(c, 21)
d← rot(x, 26)⊕ rot(d, 21)
i← rot(x, 9)⊕ rot(t, 19)
j ← rot(y, 9)⊕ rot(x, 20)
k ← rot(z, 9)⊕ rot(y, 20)
l← rot(t, 9)⊕ rot(z, 20)
m← i⊕ rot(k, 2)⊕ rot(e, 7)
n← j ⊕ rot(l, 2)⊕ rot(f, 7)
o← k ⊕ rot(i, 3)⊕ rot(g, 7)
p← l ⊕ rot(j, 3)⊕ rot(h, 7)
q ← rot(t, 3)⊕ rot(y, 7)
r ← rot(x, 4)⊕ rot(z, 7)
s← rot(y, 4)⊕ rot(t, 7)
u← rot(z, 4)⊕ rot(x, 8)

e← e⊕ rot(q, 12)
f ← f ⊕ rot(r, 12)
g ← g ⊕ rot(s, 12)
h← h⊕ rot(u, 12)
a← a⊕ q ⊕ rot(r, 3)
b← b⊕ r ⊕ rot(s, 3)
c← c⊕ s⊕ rot(u, 3)
d← d⊕ u⊕ rot(q, 4)
q ← a⊕ e⊕ rot(d, 0)
r ← b⊕ f ⊕ rot(a, 1)
s← c⊕ g ⊕ rot(b, 1)
u← d⊕ h⊕ rot(c, 1)
k ← rot(x, 1)⊕ rot(t, 26)⊕ rot(k, 4)
l← rot(y, 1)⊕ rot(x, 27)⊕ rot(l, 4)
i← rot(z, 1)⊕ rot(y, 27)⊕ rot(i, 5)
j ← rot(t, 1)⊕ rot(z, 27)⊕ rot(j, 5)
a← k ⊕m⊕ rot(m, 12)
b← l ⊕ n⊕ rot(n, 12)
c← i⊕ o⊕ rot(o, 12)
d← j ⊕ p⊕ rot(p, 12)
m← q ⊕ a⊕ rot(c, 18)
n← r ⊕ b⊕ rot(d, 18)
o← s⊕ c⊕ rot(a, 19)
p← u⊕ d⊕ rot(b, 19)
return (m,n, o, p)

16 Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

References
[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat.
PRIDE). In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 57–76. Springer, Heidelberg, August
2014.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November
2001.

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers,
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi,
Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert,
Balazs Udvarhelyi, and Friedrich Wiemer. Spook: Sponge-based leakage-
resistant authenticated encryption with a masked tweakable block cipher.
IACR Trans. Symm. Cryptol., 2020(S1):295–349, 2020.

[BBF+06] Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel
Kohnert, and Alfred Wassermann. Error-correcting linear codes: Classification
by isometry and applications, volume 18. Springer Science & Business Media,
2006.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 260–272. Springer, Heidelberg, January
1997.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466.
Springer, Heidelberg, September 2007.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present (full version).
Cryptology ePrint Archive, Report 2017/760, 2017. https://eprint.iacr.
org/2017/760.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. Journal of
Cryptology, 34(3):33, July 2021.

[DPVAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
Nessie proposal: Noekeon. October 2000. http://gro.noekeon.org/
Noekeon-spec.pdf.

[DR01] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In
Bahram Honary, editor, 8th IMA International Conference on Cryptography
and Coding, volume 2260 of LNCS, pages 222–238. Springer, Heidelberg,
December 2001.

https://eprint.iacr.org/2017/760
https://eprint.iacr.org/2017/760
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf

Gaëtan Leurent and Clara Pernot 17

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations.
In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of
LNCS, pages 18–37. Springer, Heidelberg, March 2015.

[Gra07] Markus Grassl. Bounds on the minimum distance of linear codes and quantum
codes. Online available at http://www.codetables.de, 2007. Accessed on
2023-08-07.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747
of LNCS, pages 1–17. Springer, Heidelberg, September 2009.

[Leu19] Gaëtan Leurent. Efficient linear layers for spook. Slides from the “Spook
day” worfkshop, July 2019. https://www.spook.dev/assets/workshop/
leurent.pdf.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differen-
tial cryptanalysis. In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 17–38. Springer, Heidelberg, April 1991.

[Mat95] Mitsuru Matsui. On correlation between the order of S-boxes and the strength
of DES. In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS,
pages 366–375. Springer, Heidelberg, May 1995.

[NIS02] NIST. Secure hash standard. FIPS 180-2, August 2002.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory, 8(5):5–9, 1962.

[Sha45] Claude E Shannon. A mathematical theory of cryptography. Mathematical
Theory of Cryptography, 1945.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In
Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, CHES 2003,
volume 2779 of LNCS, pages 62–76. Springer, Heidelberg, September 2003.

[Zim96] Karl-Heinz Zimmermann. Integral hecke modules, integral generalized Reed-
Muller codes, and linear codes. Technical report, Techn. Univ. Hamburg-
Harburg, November 1996.

http://www.codetables.de
https://www.spook.dev/assets/workshop/leurent.pdf
https://www.spook.dev/assets/workshop/leurent.pdf

	Introduction
	Design strategies for SPN ciphers
	Our Results

	Linear Transformations Based on XORs and Rotations
	Operating on a Single Word
	Operating on Several Words
	Differential and Linear Branch Numbers
	Search for Good LBoxes
	Efficient Inverse
	Known Results

	Search for New Linear Transformations
	Computing the Branch Number Efficiently
	Best Distance Obtained
	Implementing the Inverse

	Results
	Considering 3 words
	Considering 4 words

	Conclusion

