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Abstract. There are two popular ways to measure computational en-
tropy in cryptography: (HILL) pseudoentropy and (Yao) incompressibil-
ity entropy. Both of these computational entropy notions are based on a
natural intuition.
– A random variable X has k bits of pseudoentropy if there exists a

random variable Y that has k bits ‘real’ entropy and Y is computa-
tionally indistinguishable from X.

– A random variable X has k bits of incompressibility entropy if X
cannot be efficiently compressed to less than k bits.

It is also intuitive, that if a random variable has high pseudoentropy,
then it should also have high incompressibility entropy, because a high-
entropy distribution cannot be compressed.
However, the above intuitions are not precise. Does ‘real entropy’ refer to
Shannon entropy or min-entropy? What kind of correctness do we require
from the compressor algorithm? Different papers use slightly different
variations of both pseudoentropy and incompressibility entropy.
In this note we study these subtle differences and see how they affect the
parameters in the implication that pseudoentropy implies incompress-
ibility.

1 Preliminaries - Shannon Entropy and Min-Entropy

The most common definition for (information theoretic) entropy is Shannon
entropy, that measures the average amount of uncertainty of a random variable
in bits.

Definition 1 (Shannon entropy). Let X be a random variable and S the
support of X. Shannon entropy of X is defined as

H(X) := −
∑
x∈S

Pr[X = x] log2(Pr[X = x]).

Often in cryptography, the average amount of uncertainty is not so interest-
ing, but we are interested in the worst-case scenario. For example, if an adversary
tries to guess the value of a random variable X, we do not care about how dif-
ficult this guessing is on average, but rather, if the adversary guesses the most
likely value of X, how much uncertainty does this guess have. This ‘guessing
entropy’ is best captured by min-entropy.



Definition 2 (Min-entropy). Let X be a random variable and S the support
of X. Min-entropy of X is defined as

H∞(X) := − log2(max
x∈S

(Pr[X = x])).

2 Pseudoentropy

Pseudoentropy was originally defined by H̊astad, Impagliazzo, Levin and Luby
[HILL99], they say that a variable has pseudoentropy k if it is computation-
ally indistinguishable from a distribution with Shannon entropy k. Later, Barak,
Shaltiel and Wigderson [BSW03] study computational analogues of min-entropy,
and in that context they define a min-entropy based version of HILL pseu-
doentropy, which they call HILL-type pseudoentropy. Subsequent papers (e.g.
[HLR07], [Rey11], [HW15], [HMS22]) sometimes refer to both of these pseu-
doentropy definitions as ‘HILL entropy’ or ‘HILL pseudoentropy’. In this note,
we want to highlight the difference, and hence, we refer to them as HILL avg-
pseudoentropy and BSW min-pseudoentropy respectively. The following defini-
tion shows both versions and marks the difference with colors.

Definition 3 (HILL avg-pseudoentropy , BSW min-pseudoentropy ).
Let Xλ be a random variable of length λ. Xλ has HILL avg-pseudoentropy or
BSW min-pseudoentropy (kλ)λ∈N if for every λ, there exists a random variable
Yλ such that

Indistinguishability Xλ and Yλ are computationally indistinguishable1 and
Entropy (HILL avg) the Shannon entropy H(Yλ) ≥ kλ.

(BSW min) the min-entropy H∞(Yλ) ≥ kλ.

HILL avg additionally requires that all the random variables are polynomial time
sampleable.

Remark 1. Since min-entropy≤ Shannon entropy (by definition of the entropies),
we get that if a distribution has BSW min-pseudoentropy k, then it has HILL
avg-pseudoentropy k. The converse is not always true.

3 Incompressibility entropy

Yao [Yao82] introduced the idea to measure computational entropy by how much
a variable can be compressed. Since the work of Yao, there have been several dif-
ferent ways to define the incompressibility entropy ([TVZ05], [BSW03], [HLR07],
[HW15]), all of them following the same intuition: a variable X has k bits in-
compressibility entropy, if there is no compressor-decompressor pair where the

1 both HILL and BSW leave the precise parameter open s.t. one can define indis-
tinguishability differently per use case (e.g. small constant, fixed polynomial, or
negligible computational distance).



compressor can compress x ∈ X to less than k bits and the decompressor can
recover x. We now review the slight differences in the formalizations of Yao’s
incompressibility entropy (sometimes also referred to as Yao pseudoentropy).

Trevisan, Vadhan and Zuckerman [TVZ05], TVZ, consider a compressor,
that is perfectly correct, but the output length of the compressor might vary. In
turn, Barak, Shaltiel and Wigderson [BSW03], BSW, and Hsiao, Lu and Reyzin
[HLR07] consider compressor with fixed output length, but the output of the
compressor does not always need to be correctly decompressible, more precisely,
the compressor is allowed to make more mistakes, the shorter the output. In
turn, Hubacek and Wichs [HW15], HW, use a weaker and simpler version of
[HLR07], since it is enough for their use-case, namely, they consider a fixed
success probability for the compressor regardless of its output length.

In Definition 4, we compare the definitions of incompressibility by TVZ, BSW
and HW. Analogously to conditional probability, we can also consider conditional
(computational) entropy, that is, how much (computational) entropy a variable
has conditioned on knowing some other variable. Conditional incompressibility2

was first defined by HLR [HLR07], HLR take the natural approach of simply giv-
ing the compressor and decompressor the conditional information in addition to
their original input. HLR base their definition on the BSW version of incompress-
ibility, but the same idea can easily be applied to any of the incompressibility
definitions.

Definition 4 (Conditional3 Incompressibility Entropy). Let X and Z be
efficiently samplable random variables (not necessarily independent). The vari-
able (X|Z) is kλ-incompressible, if for every polynomial size circuit family pair
of a compression function Cmprλ(·, ·) and a decompression function Decmprλ(·, ·)
it holds that if (TVZ: expected) output length l(λ) of Cmpr is < kλ (TVZ: ≤ kλ)
then

Correctness there exists a negligible function ϵ s.t.
(HW) Pr

[
Decmpr

(
Cmpr(X,Z), Z

)
= X

]
≤ 1/2 + ϵ(λ)

(BSW) Pr
[
Decmpr

(
Cmpr(X,Z), Z

)
= X

]
≤ 2l−k + ϵ(λ)

(TVZ) ∃x, z ∈ Supp(X,Z) s.t. Decmpr
(
Cmpr(x, z), z

)
̸= x

Remark 2. Definition 4 directly implies that if X has k bits of BSW incom-
pressibility entropy, then X has k bits of HW incompressibility entropy (but

2 Defining conditional pseudoentropy is a bit more involved as it often depends on the
application whether we want to consider average-case or worst case conditioning and
this choice affects what conditional entropy notion to choose in the definition. The
subtleties related to conditional BSW min-pseudoentropy are very nicely discussed
in [HLR07]. Similar considerations can be done for HILL avg-pseudoentropy too,
while the simplest choice, used by [HILL99] among others, is to define conditional
pseudoentropy via simply using conditional Shannon entropy in Definition 3.

3 We present here the conditional version for full generality. The unconditional version
can be obtained by considering empty Z.



the converse is not necessarily true). This is because 2l−k ≤ 1/2 for all l < k,
assuming k is an integer4.

Next, we show that TVZ incompressibility implies BSW incompressibility,
but with quite big loss. It is not clear whether the other direction holds for any
non-trivial choice of parameters.

Claim 1 (TVZ Incompressibility Implies BSW Incompressibility). Let X be a
random variable of length λ. If X is kλ TVZ incompressible, then X is k′λ =
kλ + 1− λ/2 BSW incompressible.

Proof. WLOG λ ≥ k, k′. Assume towards contradiction that X is not k′λ BSW
incompressible, that is, there exists a compressor-decompressor pair, where com-
pressor’s output length l is < k′, and there exists a polynomial p s.t. for infinitely
many λ

Pr
[
Decmpr

(
Cmpr(X,Z), Z

)
= X

]
> 1/2l−k′

+ 1/p(λ).

Now consider the new compressor:

Cmprnew(x)

x̃← Cmpr(x)

if Decmpr(x̃) ̸= x

return x

return x̃

Now the new compressor is perfectly correct, since the new decompressor can
just check the length of x̃, and if it is λ, return x̃ as is and else return Decmpr(x̃).
Now the expected output length of the new compressor is (for infinitely many
λ)

E[|Cmprnew(X)|] = Pr[|Cmprnew(X)| = l]l + Pr[|Cmprnew(X)| = λ]λ

< l +
(
1− 1/2l−k′

− 1/p(λ)
)
λ (1)

≤ (k′ − 1) +
(
1− 1/2(k

′−1)−k′
− 1/p(λ)

)
λ

< k′ − 1 + λ/2 = k

where the value of (1) is maximized when l is maximal, that is, l = k′ − 1. The
last line is a contradiction with X being k TVZ incompressible.

4 This is explicitly assumed only in the HW definition. However, limiting k to integers
makes sense in the BSW definition too.



4 Pseudoentropy Implies Incompressibility

Now we present the different versions of the claim that pseudoentropy implies
incompressibility. Firstly, the following claim was proven by [Wee04] (see [Wee04]
for the precise parameters in the O).

Claim 2 (High HILL avg-pseudoentropy implies high TVZ incompressibility
entropy [Wee04]). If a random variable X has k bits HILL pseudoentropy, then
X has k −O(log λ) bits (TVZ) incompressibility entropy, where λ is the length
of X.

The following claim was proven by [HLR07], they show a conditional version,
and the following is a special case of that.

Claim 3 (High BSW min-pseudoentropy implies high BSW incompressibility
entropy). If random variable X has k bits BSW pseudoentropy, then X has k
bits BSW incompressibility entropy.

Claim 3 is easy to prove also for HW incompressibility entropy. Below we
show a proof for both versions of Claim 3.

Proof. Assume towards contradiction that Xλ has < kλ bits incompressibility
entropy. Now ∃Cmpr,Decmpr and exists a polynomial p s.t. for infinitely many
λ:
(HW) PrXλ

[
Decmpr

(
Cmpr(Xλ)

)
= Xλ

]
≥ 1/2 + 1/p(λ)

(BSW) PrXλ

[
Decmpr

(
Cmpr(Xλ)

)
= Xλ

]
≥ 2lλ−kλ + 1/p(λ)

and output length lλ of Cmpr is < kλ.
Now since Xλ has kλ bits BSW pseudoentropy, there is a random variable

Yλ with kλ-bits min-entropy, s.t. Xλ is computationally indistinguishable from
Yλ.

However, consider the following distinguisher for Yλ and Xλ:

A(x)

x̃←$ Cmpr(x)

if |x̃| ≥ kλ

return 1

x′ ← Decmpr(x̃)

if x′ = x

return 0

return 1

Now for all λ

Pr[A(Yλ) = 1] ≥ Pr[Decmpr(x̃) ̸= x] ≥ 1− 2lλ−kλ

where the last inequality follows from the fact that Yλ has kλ bits min-entropy
while |x̃| = lλ (so decompressor needs to ’guess’ at least kλ − lλ bits).



On the other hand

Pr[A(Xλ) = 0] = Pr[Decmpr(x̃) = x] ≥ 1/2 + 1/p(λ)
∣∣
by HW contradiction assumption

≥ 2lλ−kλ + 1/p(λ)
∣∣by BSW contradiction assumption

for infinitely many λ, which is a contradiction, because A distinguishes Xλ and
Yλ with non-negligible probability.

Note that the proof of Claim 3 does not work for HILL avg-pseudoentropy,
because high Shannon entropy does not directly imply hard-to-guess5, hence,
Claim 3 is more tight than Claim 2.

Conclusion of all the results covered in this note:

high BSW min-pseudoentropy

⇓ Remark 1: H∞ ≤ H (this is tight)

high HILL avg-pseudoentropy high BSW min-pseudoentropy

⇓ Claim 2 [Wee04] (−O(log λ) loss) ⇓ Claim 3 [HLR07] (this is tight)

high TVZ incompr. entropy
Claim 1 (−λ/2 + 1 loss)⇒ high BSW incompr. entropy

⇓ Remark 2 (this is tight)

high HW incompr. entropy

5 Acknowledgements

Thank you Chris Brzuska for valuable feedback on drafts of this note.

References

BSW03. Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of
entropy. In APPROX 2003 and 7th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science, RANDOM 2003,
volume 2764 of Lecture Notes in Computer Science, pages 200–215. Springer,
2003.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364–1396, 1999.

5 Consider for example a random variable Y which is 0λ with probability 1/2 and
1||Sλ−1 otherwise, where Sλ−1 is a uniformly random string of length λ − 1. Now
the Shannon-entropy of Y is H(Y ) = 1

2
·1+ 1

2
(λ−1) = λ/2 while the min-entropy is

H∞(Y ) = 1, that is, the value of Y can be guessed with constant probability (1/2).



HLR07. Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computa-
tional entropy, or toward separating pseudoentropy from compressibility. In
Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 169–186. Springer, Heidel-
berg, May 2007.

HMS22. Iftach Haitner, Noam Mazor, and Jad Silbak. Incompressiblity and next-
block pseudoentropy. Cryptology ePrint Archive, Report 2022/278, 2022.
https://eprint.iacr.org/2022/278.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015: 6th Conference on Innovations in Theoretical Computer Science,
pages 163–172. Association for Computing Machinery, January 2015.

Rey11. Leonid Reyzin. Some notions of entropy for cryptography - (invited talk). In
Serge Fehr, editor, ICITS 11: 5th International Conference on Information
Theoretic Security, volume 6673 of Lecture Notes in Computer Science, pages
138–142. Springer, Heidelberg, May 2011.

TVZ05. Luca Trevisan, Salil Vadhan, and David Zuckerman. Compression of sam-
plable sources. Comput. Complex., 14(3):186–227, December 2005.

Wee04. Hoeteck Wee. On pseudoentropy versus compressibility. In Proceedings. 19th
IEEE Annual Conference on Computational Complexity, 2004., pages 29–41,
2004.

Yao82. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, pages 80–91. IEEE Computer Society Press, November 1982.

https://eprint.iacr.org/2022/278

	 Different Flavours of HILL Pseudoentropy and Yao Incompressibility Entropy 

