
Updatable Privacy-Preserving Blueprints

Bernardo David1, Felix Engelmann2[0000−0001−9356−0231], Tore Frederiksen3, Markulf
Kohlweiss4[0000−0002−8660−9663], Elena Pagnin5[0000−0002−7804−6696], and Mikhail Volkhov4

1 ITU Copenhagen beda@itu.dk
2 Lund University fe-research@nlogn.org ⋆

3 Zama tore.frederiksen@zama.ai ⋆⋆

4 University of Edinburgh, IOG {mkohlwei,mikhail.volkhov}@ed.ac.uk
5 Chalmers, elenap@chalmers.se

Abstract. Privacy-preserving blueprints enable users to create escrows using the auditor’s public key.
An escrow encrypts the evaluation of a function P (t,x), where t is a secret input used to generate
the auditor’s key and x is the user’s private input to escrow generation. Nothing but P (t,x) is re-
vealed even to a fully corrupted auditor. The original definition and construction (Kohlweiss et al.,
EUROCRYPT’23) only support the evaluation of functions on an input x provided by a single user.
We address this limitation by introducing updatable privacy-preserving blueprint schemes (UPPB),
which enhance the original notion with the ability for multiple parties to non-interactively update the
private value x in a blueprint. Moreover, a UPPB scheme allows for verifying that a blueprint is the
result of a sequence of valid updates while revealing nothing else.
We present uBlu, an efficient instantiation of UPPB for computing a comparison between private user
values and a private threshold t set by the auditor, where the current value x is the cumulative sum
of private inputs, which enables applications such as privacy-preserving anti-money laundering and
location tracking. Additionally, we show the feasibility of the notion generically for all value update
functions and (binary) predicates from FHE and NIZKs.
Our main technical contribution is a technique to keep the size of primary blueprint components
independent of the number of updates and reasonable for practical applications. This is achieved by
elegantly extending an algebraic NIZK by Couteau and Hartmann (CRYPTO’20) with an update
function and making it compatible with our additive updates. This result is of independent interest
and may find additional applications thanks to the concise size of our proofs.

Keywords: Updatable NIZKs · Privacy-Preserving Blueprints.

1 Introduction

Data protection often demands that the actions and personal information of individual users be kept private.
At the same time, regulatory organizations should be able to learn about potential violations evidenced by the
combined actions of multiple users and track down the misbehaving parties. In such scenarios, cryptographic
techniques such as multiparty computation come to mind as potential solutions. While such techniques may
trivially reconcile the paradox of privacy vs. accountability, they often impose performance overheads and
trust assumptions that are incompatible with the original scenario.

Multiparty computation (MPC) [43, 24] is a natural solution for auditing private data without under-
mining the privacy of users or jeopardizing the audit process by revealing sensitive audit parameters. An
auditor could execute an efficient MPC protocol (e.g., [31]) together with users to audit their data while only
revealing the final audit result. However, traditional MPC requires all participating parties to interact in
each computation. It is unrealistic to require all users to interact with each other at once, as opposed to only
interacting when generating the audit data, as parties may simply be unavailable or technically incapable of
executing long-running complex protocols. Moreover, processing large volumes of audit data via traditional
MPC would prove prohibitively expensive due to the network interaction required from all participating
parties.
⋆ Part of this work was done while at the ITU Copenhagen.

⋆⋆ Part of this work was done while at the Alexandra Institute.

Privacy-Preserving Blueprints: Adding Updates. A privacy-preserving blueprint scheme [52] allows a
user to create an escrow that only reveals the function P (t,x) where t is a private input from the auditor and
x is a private value from the user. This notion allows an auditor who sees a blueprint to non-interactively learn
P (t,x) at any point in time, allowing for asynchronous audits. However, P (t,x) can only be computed on an
input x that is fully known to a single party who generates the blueprint. This is clearly insufficient when
inputs come from multiple mutually distrusting users and the original constructions of blueprints cannot be
efficiently extended to this case. We focus on overcoming this limitation with the notion of updatable privacy-
preserving blueprints, which allow a party departing from an initial blueprint for P (t,x) to obtain an updated
blueprint for P (t,x′), where x′ is an output of a function of the current x and the party’s private input xi,
without learning anything about t, and nothing besides this functional relation about x or x′. Moreover,
our notion allows for parties to check that a sequence of blueprints has been obtained by successive updates
done by different parties using their respective private inputs, without learning anything else. Our main
construction supports evaluation predicates of the form “output 1 if x1 + · · · + xn ≥ t and 0 otherwise”,
where each xi is added to the blueprint as an update by a different party. Further, we show how updatable
blueprints can work with other predicates, expressible as a special class of multivariate polynomials, and
non-binary outputs, allowing more elaborate applications including privacy-preserving location testing.

Applications of Updatable Privacy-Preserving Blueprints. Our new notion can be seen as a type of
MPC and therefore can be used in different areas, such as privacy-preserving auditing, financial accountabil-
ity, reputation systems, private auctions, or voting. The common pattern in these applications is that they
involve both sensitive audit parameters provided by authorities (or a collective of users) and the private data
of multiple individual parties. Current approaches, especially in financial regulation-compliance, sacrifice
either privacy (when legally possible) or accuracy, which is lost as a result of auditing incomplete data.

While the notion of updatable privacy-preserving blueprints is generic, our running motivational ex-
ample is implementing anti-money laundering (AML) policies. In decentralized finance, AML schemes for
privacy-preserving cryptocurrencies either only support auditing users in isolation [59, 33] or rely on revo-
cable anonymity [2, 49, 29], requiring the auditor to learn all information about users’ activities, severely
undermining their privacy. Updatable blueprints can address these issues in both scenarios by enabling
privacy-preserving AML audits on joint data from multiple users.

Intuitively, an updatable blueprint scheme can be used to securely compute and validate a suspiciousness
score for the users’ bank accounts based on the features of transactions between multiple banks — and
the private information these banks hold about their customers. A blueprint is attached to each account to
accumulate a score that is based on the reputation of customers at other banks transferring funds into the
account. Before such a transfer the sending bank must receive an up-to-date blueprint with the suspiciousness
score from the receiving bank. It then augments the transfer with an updated blueprint with an update value
xi based on the value of the transaction and the reputation of the sending account owner. Upon receiving the
transfer the receiving bank records the updated blueprint as the new up-to-date blueprint. At any moment,
an auditor (e.g. a tax authority) can validate the correctness of this procedure and check if a user’s score
exceeds a certain threshold without learning the score. If so, the auditor can further request the opening of
related commitments held by other banks. All of these operations do not require the users nor the banks to
perform any extra rounds of communication and only add minimal overhead to the existing communication
and computation involved in transfers. A similar idea can be used to enforce limits on the amount of funds
transferred in decentralized finance applications using cryptocurrencies.

1.1 Our Contributions

In this work, we introduce the notion of updatable privacy-preserving blueprints, constructions, and applica-
tions. Our main results are summarized as follows:

Updatable Privacy-Preserving Blueprint: In Section 4, we introduce our new notion, extending privacy-
preserving blueprints [52] to allow for an auditor to learn a predicate P (t,x) of their own private input
t and users’ private inputs x such that users can update x in an existing blueprint.

2

Efficient Construction for Range Predicates: In Section 5, we present uBlu, an efficient realization of
UPPB for a comparison predicate between private user values and a range defined by the auditor’s private
threshold. This includes an update mechanism that allows users to update the current input value.

Succinct Updatable Algebraic NIZK: As a core technique in our construction, we show in Section 3
and Appendix B that we can extend the NIZK proof system of [26] to allow for updating the witness
and the instance of an existing NIZK while maintaining its efficiency and security.

Applications to AML and Extensions: In Section 7, we use our efficient uBlu instantiation to implement
a privacy-preserving AML algorithm. In Section 6, we discuss how updatable blueprints can be used to
evaluate more general predicates and additional applications including privacy-preserving location-based
services and enforcing limits on funds transferred in decentralized cryptocurrencies.

We remark that the main technical contribution of this work is a mechanism for updatable range predi-
cates. In the core of the algorithm, we employ a certain type of more standard ElGamal-inspired homomorphic
computation for polynomial update and evaluation. However, our technique allows us to construct sound
blueprints that do not grow with the number of updates, and are reasonably sized for practical applications.
By investigating and employing the updatability of CH20 NIZK [26], we show that a given ElGamal cipher-
text contains a correct and consistent evaluation of a polynomial whose coefficients are in other ElGamal
ciphertexts, and the evaluation point is in a Pedersen commitment. Furthermore, when x is updated, the
NIZK is updated too, while staying concise and efficient when used in generation and verification algorithms.

1.2 Overview of our Techniques

The Notion of Updatable Privacy-Preserving Blueprints. A UPPB scheme is defined in terms of
a base commitment scheme and a public predicate P (t,x) taking two private inputs: a fixed auditor value
t and an aggregate value x = fold(x1, . . . ,xn) where fold is an online streaming algorithm and each xi is
provided by a different user in committed form (we focus on fold(x1, . . . ,xn) =

∑n
i=1 xi). The updatable

functionality for blueprints requires several components: escrows esc, tags tag, hints hint, and commitments
C. Next, we elaborate on how these components interact.

Given an escrow esc for a corresponding history of commitments Ci to the values xi, the auditor learns
the value of P (t, fold(x1, ...,xn)) but nothing else, and third parties learn nothing. The auditor generates a
key pair (sk, pk) and a blueprint hint0 for predicate P (t, 0), where sk and t remain private but pk is published,
while hint0 is passed to the first user. Blueprint hint values store the aggregated x so far and can be verified
with respect to a history of base commitments. Specifically, using pk and hinti−1, a user can extend the
history with their value xi, each time deriving an updated hinti. In our construction, hinti−1 will contain an
aggregate value

∑i−1
j=1 xj that users can update via homomorphic operations to add their private input xi.

A hinti can be transformed into an escrow, esc, which reveals nothing to the users but can be used by an
auditor who knows sk to learn only whether P (t,

∑i
j=1 xj) = 1, while keeping the xj values private. When

a user updates hinti−1 to hinti, they obtain an update tagi for verifying the validity and consistency of the
commitment history by running VfHistorypk({tagi,Ci}ij=1), of the hint by running VfHintpk(hinti, tagi), and
of esc by running VfEscrowpk(esci, tagi). We have the following three properties: (i) tagi can only verify for
a single history, i.e., valid histories do not collide in their tags; (ii) we can extract the openings xj of all
base commitments from a valid history; (iii) if esc verifies with respect to tagi, then it indeed is an escrow
of predicate value P (t,

∑i
j=1 xj) for the openings xj of these base commitments.

We require hints, escrows, and tags derived from valid hints to be hiding. However, as hints contain the
aggregate value,

∑i
j=1 xj , hiding for hints only holds against adversaries who do not know sk. Thus, hints

should only be used for updates between users who cooperate to gain privacy, but must not be given to the
auditor as this would leak the current aggregate value. Finally, our scheme preserves the hiding and binding
properties of the base commitment scheme.

A Generic but Inefficient Construction. Departing from circuit private FHE and generic NIZKs for
NP, we can construct a UPPB scheme for arbitrary predicates and updates. The auditor generates an FHE
key pair (pk, sk) and publishes pk along with an encryption of t under pk as the auditor’s public key. Users

3

encrypt their private inputs xi under pk and use the resulting ciphertext to obtain an updated hinti containing
fold(x1, . . . ,xi) by homomorphically evaluating the update function corresponding to the fold algorithm on
this ciphertext and hinti−1. The update tag tagi can be obtained by generating a NIZK showing that hinti
was correctly computed by evaluating the update function on hinti−1 and the ciphertext containing xi . To
generate a predicate escrow esc, a user homomorphically evaluates the predicate P (t, fold(x1, . . . ,xi)) using
hinti and the ciphertext containing t (obtained from the public key) and computes the corresponding tag as
a NIZK showing that the predicate was correctly evaluated. Using sk the auditor can decrypt esc and learn
only the output of P (t, fold(x1, . . . ,xi)) but nothing else, while the validity of esc can be checked by verifying
the tag NIZK. This scheme provides support for arbitrary predicates and updates (beyond additive ones)
but clearly has a very high concrete computational complexity due to the use of heavy primitives such as
FHE and NIZKs for homomorphic computation on FHE ciphertexts. This is a serious caveat in a setting
such as that of AML and location privacy, where hundreds of thousands of updates must be processed per
second.

An Efficient Construction for Range Predicates. Range predicates P (t,X) are evaluated over ordered
sets and output 1 iff X ≥ t. To construct a concretely efficient UPPB scheme called uBlu, we will consider
the subclass of range predicates Pd(t,X) that can be expressed as a degree d polynomial over Zq (for an
opportune module q and degree d) with roots at positions [t, . . . , t+d− 1]. Here d is the size of the range for
which P (t,X) = 1 and t is the auditor’s secret threshold. The core of our scheme is a mechanism that relies
on Pedersen commitments, ElGamal ciphertexts, and NIZKs with updatable witness/instances for predicate
evaluations in the multi-user scenario, guaranteeing the soundness of the updates.

In detail, the auditor ElGamal encrypts the powers (−t)i for i ∈ [d], in the exponent. The ciphertexts
are included in the initial hint hint0. Users can combine the ciphertexts to homomorphically evaluate the
polynomial Pd(t,x) at their input x, in the exponent. Moreover, given hinti−1 (containing an encryption of
Pd(t,x)) a user with input x′ can update the hint to hinti containing an encryption of Pd(t,x+ x′). This is
achieved by an algebraic transformation on the polynomial representation, as described in Section 5.1.

When converting hints to escrows esc, users homomorphically reconstruct the ElGamal ciphertext for
the value Pd(t,x), and then exponentiate it by a random β obtaining an encryption of β · Pd(t,x). If the
polynomial evaluates to 0, the randomization has no effect and the auditor is able to decrypt the message
G0 (this is the case where the predicate P (T ,X) = [Pd(T ,X)

?
= 0] outputs 1). Otherwise, if the polynomial

evaluation is not a root, the auditor learns nothing.
The main technical achievement of this work is the design of hints that do not grow with the number

of updates, and are reasonably sized for practical applications. We make hints linear in the degree d of
the polynomial and endow them with updatable proofs that attest to hint consistency. Intuitively, this is
achieved by including witness-products in the witness and checking the consistency of those products w.r.t.
the minimal witness values by using Pedersen commitments and adding extra checks in the relation to
ensure input consistency based on these commitments. Thanks to the homomorphic property of Pedersen
commitments, our witness and instance are updatable: randomnesses and x values accumulate additively
(see Section 5.3 for further details).

For the many use cases which do require a linear history of proofs-of-updates, we provide a very concise
“update history” consisting of update tags tag, which naturally grows in the number of updates, but allows
enforcing update accountability. In addition, as we use Pedersen as base commitment, it is easy to integrate
our uBlu construction with applications such as credentials and private payment systems: one simply proves
extra statements about base commitments, e.g., that their values are equal to a credential attribute or a
payment transaction value.

1.3 Related Work

Homomorphic commitments [28, 19] and functional commitments [20] could potentially support general
updates and predicate evaluations for UPPB schemes. However, these operations would require knowledge
of individual commitment openings, making such schemes unfit for our multi-user setting, where users’

4

inputs must be kept private. The threshold predicate for which we present an efficient uBlu scheme is closely
related to Yao’s Millionaire’s Problem, i.e. performing secure comparison. While there are many protocols
for secure comparison (e.g., [30, 40]) that could be used in this setting, they would require continuous online
involvement of parties and many rounds of interaction. In our setting, no interaction is required from the
auditor or users (after they update commitments).

Updatable NIZKs, such as CH20 [26] used as our prime technical tool, have been previously investigated
in [8, 21, 23, 48]. While recursive approach to NIZK updatability becomes more practical over time [11, 9,
22, 13, 18, 16, 17, 56], direct malleability without recursion is more lightweight and thus more suitable for
tailored application, such as various signature schemes [32, 12, 37, 48], anonymous credentials [1], scalable
mix-nets [47] etc. The malleability of CH20 was observed in [25] to build anonymous credentials and structure-
preserving signatures on equivalence classes. It is also worth noting that RO-based NIZKs are essentially
non-malleable unless recursively [34, 54, 39]. This is why the CH20 NIZK combining the simplicity of a
Schnorr-like proof, together with a bilinear setup avoiding the ROM limitation, stands out as a natural
candidate for direct updatability.

A series of recent papers explored accountable law enforcement access system [44, 36, 66, 45, 6, 53]. A
different approach to privacy-preserving AML securely computing similarity scores of transaction graphs [38,
61]. However, as computing similarity among many accounts is expensive, the authors of [61] suggest that
banks pre-select accounts, which can be done utilizing our techniques for computing aggregate suspiciousness
scores. Our applications are most closely related to a subcategory of these works on abuse-resistant regulation
compliance [36, 6, 53] where users have full privacy against a malicious auditor. A consequence of full privacy
for users is that the auditor’s detection policy must be kept private since users can adapt their behavior to
avoid detection. Hence, it is necessary to securely compute a function on private inputs from the user and
the regulator.

2 Preliminaries

Notation. We will use λ ∈ N as a security parameter, often implicitly. PPT stands for “probabilistic polyno-
mial time”. The dollar-arrow combination $←− denotes uniform sampling, e.g., x $←− S means that x is picked
according to the uniform distribution over the set S. By extension, we denote probabilistic executions as
x

$←− Alg(y) where we implicitly run the algorithm Alg with uniform randomness; when needed we specify the
random coins r to be used for the execution as x← Alg(y; r). Whenever we do not explicitly use one output
of an algorithm, we denote the unspecified output place with ·, e.g., (x, ·)← Alg(y) defines the first output
to be x and leaves undefined the second output (well-determined by the input y). Polynomials and vari-
ables are written in capital letters, e.g. F (X,Y) ∈ Z[X,Y], while instantiated values are in small letters, e.g.
F (x, y) ∈ Z for x, y ∈ Z. Square braces generically denote predicate evaluation, e.g. [a = b] is a boolean value.
We use pairs like 1/0 or ⊤/⊥ for readability as aliases for 1/0. In pseudocode, assertb is equivalent to “if not
b, then return 0”. For two positive integers m < n, we denote discrete intervals of the form {m,m+1, . . . ,n}
as [m,n]; in the special case m = 1, we compact to [n]. Within mathematical expressions, the symbols “|”
“.” and “ :” are used interchangeably as “such that” or “given that”. The equality-question-mark combination
?
= denotes the boolean result of an equality check between the expressions surrounding the symbol, while ̸=
denotes the negation of ?

=.
We will use type-III bilinear groups (G1,G2,G3). We will denote group elements by their exponents using

square brackets: [a]b ∈ Gb for b ∈ {1, 2, 3}; when we have a vector of Z element, denoted by either x⃗ or x,
then [x⃗]b is a vector of Gb elements. In our protocols, we will mostly work in G1; whenever clear from the
context, we will drop the index and just write G for this group, and G for its generator.

Secure Commitments. Following [53] we use non-interactive commitments to bind inputs to externally
committed values.

5

Definition 1 (Statistically Hiding Non-Interactive Commitment). A pair of algorithms (Setup,Commit),
defined over message space V and randomness space R, constitutes a statistically hiding non-interactive com-
mitment scheme if it satisfies:

– Statistical hiding, i.e., for any pp output by Setup(1λ), for any m0,m1 ∈ V, the distributions D(pp,m0)

and D(pp,m1) are statistically close, where D(pp,m) = {r $←− R : Commitpp(m; r)}; and
– Computational binding, i.e. for any PPT adversary A, there exists a negligible function negl(λ) such

that Pr[Commitpp(m0; r0) = Commitpp(m1; r1) ∧m0 ̸= m1 : pp
$←− Setup(1λ); (m0, r0,m1, r1)←A(pp)] =

negl(λ)(λ).

Our main instantiation will use the Pedersen commitment scheme over V = R = Zq in a group G1 of
prime order q, which exists as part of a bilinear group setup (G1,G2,G3).

3 Updatable NIZK Proof Systems

Zero-knowledge proofs enable a prover to convince a verifier of the validity of a statement, without revealing
any additional information beyond the truth of the statement itself. Further, non-interactive zero-knowledge
proofs (NIZK) remove the need for interaction between prover and verifier: the prover simply outputs a
publicly verifiable proof generated from her (secret) witness and a common reference string (crs) [63].

We first discuss NP languages, relations, and their properties. Notation-wise, we will denote languages
and relations interchangeably in the following manner: LR = {x | ∃ w. (x,w) ∈ RL}, where x ∈ X is a
(public) instance, w ∈ W is a (secret) witness, and the relation RL is a subset of X ×W . Defining R also
determines LR uniquely; furthermore we implicitly assume L uniquely defines RL.

Definition 2 (Updatable Language). A language L is updatable w.r.t. the class of transformations T
if for all T ∈ T , T = (Tx,Tw), and for all (x,w) ∈ RL it holds that (Tx(x),Tw(w)) ∈ RL. We call such T
valid transformations for L.

Note that the functions Tx : X → X,Tw : W → W are defined independently of any particular instance
and witness, i.e. in Tx the symbol “x” is only used as a label. All the relations and functions we consider can
be evaluated in PPT in the security parameter.

We recall the definitions of standard and updatable NIZK proofs. Updatable NIZKs are known as mal-
leable proofs [8, 21] and allow transforming a proof for x into a proof for Tx(x). We prefer the term updatable
and make this feature explicit in our syntax.

Definition 3 (Standard and Updatable NIZKs). An updatable NIZK proof system for a language L
and a set of transformations T is defined by:

– Setup(λ)
$−→ (crs, td): generates a common reference string crs and a trapdoor td which is used for security

definitions;
– Prove(crs, x,w)

$−→ π: produces a proof for (x,w) ∈ RL;
– Verify(crs,π, x)→ 0/1: verifies π w.r.t. the public instance x;
– Update(crs,π, x,T)

$−→ π′: updates the proof π for x into π′ for Tx(x).

A standard non-updatable NIZK proof system is defined only by the first three algorithms. For conciseness,
in what follows we drop crs from the explicit inputs and separate the proof and instance by a semicolon, e.g.,
Verify(π; x).

Our NIZKs need to satisfy the standard security definitions — completeness, soundness, and zero-
knowledge, given e.g., in [46] — which we defer to Appendix A. An updatable NIZK must additionally
satisfy the following two properties. First, the updated proof must be valid for the updated instance:

Definition 4 (Update Completeness). An updatable NIZK proof system for L satisfies update com-
pleteness w.r.t. a set of transformations T , if given (crs, ·) $←− Setup(1λ), for all x,π such that Verify(π, x) = 1,
and all T = (Tx, ·) ∈ T it holds that: Pr

[
Verify(crs,Update(crs,π, x,T),Tx(x)) = 1

]
= 1.

6

Second, derivation privacy states that updated proofs are distributed similarly to fresh proofs for the new
instance.

Definition 5 (Derivation Privacy). An updatable NIZK proof system for L satisfies derivation privacy
w.r.t. T , if given (crs, ·) $←− Setup(1λ), for all (x,w) ∈ RL, all π such that Verify(crs,π, x) = 1, and all
T = (Tx,Tw) ∈ T it holds that:

{
Update(crs,π, x,T)

}
p
=
{
Prove(crs,Tx(x),Tw(w))

}
.

Because updated proofs are distributed as fresh ones, they can be simulated using the standard simulator
guaranteed by zero-knowledge; therefore transformed proofs are also zero-knowledge. This property is inspired
by derivation privacy in [21].

NIZKs Used in This Work. We use two NIZK proof systems that work with the same class of languages.

– Π: The standard non-updatable Σ-protocol proof system for equality of discrete logarithm relations
[67, 57]. It is assumed to be straight-line knowledge-sound after non-interactive transformation, e.g. by
encrypting witnesses or using Fischlin’s technique [35].

– Πu: The CH20 NIZK [26], which is Σ-like, but is updatable, works in the bilinear setting, and has a
uniform CRS. We discuss CH20 and investigate its updatability in Appendix B. Although the malleability
of CH20 was used in [25], we believe that we provide a more focused analysis of it, which can be of
independent interest.

The Common Algebraic Language. Let G be a prime ordered group. Define the set of linear polynomials
P ⊂ G[X1 . . . Xl] in l variables with coefficients in G as P = {a0 +

∑l
i=1 aiXi | a0 ∈ G, a1 . . . al ∈ Zq}. Both

Π and Πu work with the so-called algebraic language6 LM :

LM =
{
x⃗ ∈ Gl | ∃ w⃗ ∈ Zt

p : M (⃗x) · w⃗ = x⃗
}
, where M(X⃗) ∈ P l×t.

In other words, it is a set of DLOG-like linear equations with a common instance and bases in M(X⃗) that
can potentially depend on the instance x itself. We define the corresponding relation RM to be the set
{(⃗x, w⃗) ∈ Gl × Zt

p |M (⃗x) · w⃗ = x⃗}.
Updatability for algebraic languages LM , due to their group structure, means that there exist four

matrices (Txm,Txa,Twm,Twa) such that for all (⃗x, w⃗) ∈ RM it holds that:

(Txm · x⃗+ Txa,Twm · w⃗ + Twa) ∈ RM .

The functions Tx,Tw required in Definition 2 are defined as follows: Tx(x) := Txm · x⃗ + Txa and Tw(w) :=
Twm · w⃗ + Twa. We will show that the algebraic languages we define in this work are updatable by explicitly
providing the matrices and proving they satisfy the equation. For more details, including an illustration of
updatability for a simple language, see Appendix B.

4 Updatable Privacy-Preserving Blueprints

Updatable privacy-preserving blueprints are like privacy-preserving blueprints [51, Definition 3], in the sense
that they are defined for a given function (in our case an efficiently computable predicate) and a given non-
interactive commitment scheme. In addition to the basic algorithms, updatable privacy-preserving blueprints
have three new algorithms that are necessary for our functionality: Update, VfHistory, and VfHint. Finally, to
enable proving external properties about update values we require the commitment scheme to be statistically
hiding and computationally binding (see Definition 1). For integration, the commitment scheme additionally
has to be compatible with our updatable NIZK system. We also introduce hints and tags which repackage and
augment some of the variables used in the original syntax of [51, Definition 3]. For convenience, we will refer
6 For simplicity, and contrast with [26], we do not consider arbitrary Θ(⃗x) such that M (⃗x) · w⃗ = Θ(⃗x).

7

to updatable privacy-preserving blueprint schemes as updatable blueprints (UPPB), and to the statistically
hiding non-interactive NIZK-friendly commitment scheme as the base commitment scheme and denote it as
BC = (Setup,Commit) (with gothic font). We will also employ binary predicates, i.e. functions of the form
P (T ,X) : V× V→ {0, 1}.

For a concrete example, consider Pedersen commitments, the CH20 NIZK, V = Zq, and the predicate
family PV of range checks, i.e., binary predicates that are parameterized by a public distance value d ∈ Zq

that return 1 if x ∈ [t, t+ d− 1], and 0 otherwise.

Definition 6 (Updatable Privacy-Preserving Blueprints). Let BC = (Setup,Commit) be a statisti-
cally hiding non-interactive commitment scheme defined over (V,R), and P (T ,X) ∈ PV be an efficiently
computable binary predicate defined over V. An updatable blueprint scheme (UPPB) for (BC,P (T ,X)) is
defined by the following set of PPT algorithms:

Setup(1λ, pp)
$−→ (pp, td): the setup algorithm is randomized,takes as input the security parameter λ, and

base commitment parameters pp output by Setup(1λ). It returns public parameters that contain at least
a description of a special value denoted by 0. It also returns a trapdoor td that is only used in security
definitions. pp and pp are implicit inputs to all other algorithms.

KeyGen(t)
$−→ (sk, pk, hint0): the key generation algorithm is randomized, ittakes as input a threshold value

t ∈ V. It outputs a key pair (sk, pk); a hint hint0 implicitly encoding 0 — this first hint is also the only
public one.

VfKeyGen(pk, hint0)→ 1/0 : the verify key generation algorithm is deterministic, itverifies the validity of the
public output of KeyGen.

Updatepk(hint, tag,x, r)
$−→ (hint′, tag′): the update algorithm is randomized, ittakes as input a hint and its tag,

a value, and external base commitment randomness. When hint = hint0, tag = ⊥. It returns an updated
hint′ and the new update tag′. To keep track of the update history (also called trace) of a commitment we
introduce an epoch index ι ≥ 1, e.g., Updatepk(hintι−1, tagι−1,xι, rι)

$−→ (hintι, tagι).
VfHistorypk({tagi,Ci}ιi=1)→ 1/0 : the verify history algorithm is deterministic, ittakes as input an ordered

sequence of update tags and base commitments and verifies the consistency of the update history (also
called trace, see Definition 7).

VfHintpk(hint, tag)→ 1/0 : the verify hint algorithm is deterministic, ittakes as input a hint and the last
corresponding update tag. It returns 1 if the inputs are deemed to be consistent (see Definition 7), and 0
otherwise.

Escrowpk(hint)
$−→ esc: the convert algorithm is randomized, ittakes as input a hint for the last tag of a history.

It returns a predicate escrow esc that prepares the history for audit evaluation.
VfEscrowpk(esc, tag)→ 1/0: the verify escrow algorithm is deterministic, ittakes as input a predicate escrow

esc, and the update tag tag used in the last update. It returns 1 if the inputs are consistent, and 0
otherwise.

Decryptsk(esc)→ ⊤/⊥: the decrypt algorithm is deterministic, ittakes as input the auditor’s secret key sk
and a predicate escrow. It returns ⊤ if the escrow contains values that satisfy the predicate P (t, ·), where
t is determined by sk.

The notion of correctness covers the honest execution of the protocol. It ensures that: (1) the honestly
generated key always verifies, (2) honestly updated histories of base commitments verify, and (3) the result
of decrypted escrow is consistent with the evaluation of the predicate on the sum of update values.

Definition 7 (Correctness). Let BC and P ∈ PV be as in Definition 6, and λ ∈ N. A UPPB scheme for
(BC,P) is correct if the following statements hold for all pp $←− Setup(1λ), (pp, ·) $←− Setup(1λ, pp) (remember
these are implicit in all the algorithms):

8

– Full correctness: for all t ∈ V, all poly-sized sequences of values x1, . . . ,xn ∈ V and r1, . . . , rn ∈ R:

Pr

VfKeyGen(pk, hint0) = 1 ∧
for all i ∈ [n] :

VfHintpk(hinti, tagi) = 1 ∧
VfHistorypk({tagj ,Cj}ij=1) = 1 ∧
VfEscrowpk(esci, tagi) = 1 ∧
Decryptsk(esci) = P (t,

∑i
j=1 xj)

:

(sk, pk, hint0)
$←− KeyGen(t)

for i ∈ [n] :
(hinti, tagi) ↰ $

Updatepk(hinti−1, tagi−1,xi, ri)

esci
$←− Escrowpk(hinti)

Ci ← Commit(xi; ri)

 = 1

– Update correctness: for all pk, hint0 s.t. VfKeyGen(pk, hint0) = 1, and all hintn, {tagj ,Cj}ni=1 such that
VfHintpk(hintn, tagn) = 1 and
VfHistorypk({tagj ,Cj}nj=1) = 1, and for all x ∈ V, r ∈ R:

Pr

VfHintpk(hintn+1, tagn+1) = 1 ∧
VfHistorypk({tagj ,Cj}n+1

j=1) = 1 ∧
VfEscrowpk(escn+1, tagn+1) = 1

:

(hintn+1, tagn+1) ↰ $

Updatepk(hintn, tagn,x, r)

escn+1
$←− Escrowpk(hintn+1)

Cn+1 ← Commit(x; r)

 = 1

In both statements, the probability is taken over the random coins internally sampled by the randomized
algorithms of UPPB.

4.1 Security Properties

We say that a history and predicate escrows are valid if they verify under a verifying public key. Valid
histories and escrows must satisfy two properties – history binding and soundness.

History binding enforces that for any valid history, its prefix must also be valid, and no alternative prefix
can ever be valid. This means that after verifying a commitment history one can use the last tag as a
commitment to the whole history and is guaranteed the validity of each step in the history.

Definition 8 (History Binding). A UPPB scheme for (BC,P) is history binding if for all PPT A, it
holds that Pr[GA(1λ) = 1] ≤ negl(λ), where game GA(1λ) is as follows:

1: pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

2: (pk, hint0, {{tag(0)i ,C
(0)
i }ιi=1}b∈{0,1})

$←− A(pp)
3: return VfKeyGen(pk, hint0) = 1 ∧
4: VfHistorypk({tag

(0)
i ,C

(0)
i }ιi=1) = 1 ∧

5:

(
VfHistorypk({tag

(0)
i ,C

(0)
i }

ι−1
i=1) ̸= 1 ∨

6: VfHistorypk({tag
(1)
i ,C

(1)
i }ιi=1) = 1 ∧

7: tag
(0)
ι = tag

(1)
ι ∧ ∃i. (tag(0)i ,C

(0)
i) ̸= (tag

(1)
i ,C

(1)
i)
)

In practice, history binding prevents history manipulation: assuming an updater that produced tag as a
“receipt” of their update is later approached by the regulator for presenting their esc, the updater will not
be able to deceive the regulator by saying “this tag I produced for a different history”. So history binding is
crucial for “tracking back” the history of changes done to the esc; it enforces history linearity.

Soundness focuses on what VfEscrow and VfHistory functions mean together : (1) any verifying history
“contains” a set of update values, and (2) if esc verifies w.r.t. the last tag of this history, it must decrypt to
the value of predicate P evaluated on t and the sum of committed values in the history.

Definition 9 (Soundness). A UPPB scheme for (BC,P) is sound if there exists a deterministic poly-time
black-box extractor Ext, such that for all PPT A:

9

1. Valid history can be explained in terms of base commitments: for all ι > 0,

Pr

VfKeyGen(pk, hint0) = 1 ∧
VfHistorypk({tagi,Ci}ιi=1) = 1 ∧
Cι ̸= Commit(xι, rι)

:

pp
$←− Setup(1λ)

(pp, td)
$←− Setup(1λ, pp)

(pk, hint0, {tagi,Ci}ιi=1) ↰ $

A(pp)
(xι, rι)← Ext(td, tagι)

 ≤ negl(λ)

2. Decryption always reveals the predicate computed for the sum of update values: for all t ∈ V, ι > 0,

Pr

VfHistorypk({tagi,Ci}ιi=1) = 1 ∧
VfEscrowpk(esc

⋆, tagι) = 1 ∧
Decryptsk(esc

⋆) ̸= P (t,
∑ι

i=1 xi)
:

pp
$←− Setup(1λ)

(pp, td)
$←− Setup(1λ, pp)

(sk, pk, hint0)
$←− KeyGen(t)

(esc⋆, {tagi,Ci}ιi=1) ↰ $

A(pp, pk, hint0)
for i ∈ [1, ι] :

(xi, ri)← Ext(td, tagi)

≤ negl(λ)

The extractor is the same in both clauses of the definition and works the same given the same inputs.
This means that the two parts are composable: the extracted value in the second part satisfies ∀i.Ci =
Commit(xi, ri) with overwhelming probability. Together with the binding property of BC, this guarantees
that any values xι that are opened, by revealing rι or that are used externally in proofs of knowledge about
Cι, must be the same as that used to evaluate P .

The first part of soundness considers dishonest keys (emulating a view of a third party observing the
history, e.g. on the bulletin board), while the second part has honest keys because it is viewed from the
honest regulator’s perspective.

Our hiding definitions provide privacy guarantees, capturing the following properties: (1) output of
KeyGen does not leak the threshold value t (Definition 10), (2) tags do not leak the update value (Defi-
nition 11), (3) hints do not leak the update value, without sk (Definition 12), and (4) escrow values only leak
the result of the evaluated predicate (Definition 13).

Threshold hiding states that it is computationally impossible to determine the threshold value t chosen
upon key generation from the public key, without the secret key.

Definition 10 (Threshold Hiding). A UPPB scheme for (BC,P) is threshold hiding if for all PPT A
it holds that:

Pr

 b ?
= b⋆ :

pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

(t0, t1)← A(pp), b
$←− {0, 1}

(·, pk, hint0)
$←− KeyGen(tb)

b⋆ ← A(pk, hint0)

 ≤ 1

2
+ negl(λ)

Tag hiding states that tags do not reveal any additional information than already revealed by C itself.

Definition 11 (Tag Hiding). A UPPB scheme for (BC,P) is hiding in tags if, for (pp, td) $←− Setup(1λ,V,P)
all t ∈ V, all pk, all pairs (hint, tag) such that
VfHintpk(hint, tag) = 1, and for all x ∈ V, r ∈ R, there exists a PPT S such that:{

tag′ | (·, tag′) $←− Updatepk(hint, tag,x, r)
}

p
=
{
S(td, pk, tag,C := Commit(x, r))

}
where distributions are over the internal randomness of the Update algorithm and the simulator. For the first
update, this holds conditioned on hint := hint0, tag := ⊥.

10

BlindPowers({Bi}i∈[d],α)

1: return {Di := Bi ·Wα
i }i∈[d]

Evaluate({Ai,Bi}i∈[d],β)

1: Let {Ui}di=1 be Stirling numbers as de-
fined in Section 5.1.

2: return

(∏
i∈[d]

(A
Ui
i)β ,

∏
i∈[d]

(B
Ui
i)β

)

UpdatePowerspk({Aι−1,i,Bι−1,i}i∈[d],xι, {rι,i}i∈[d])

1: Let Vi,j(X) :=
(i
j

)
Xi−j

2: for i ∈ [d] do
3: Aι,i ←

(∏i
j=1(Aι−1,j)

Vi,j(xι)
)
Grι,i

4: Bι,i ←
(
Gxi

ι
∏i

j=1(Bι−1,j)
Vi,j(xι)

)
Hrι,i

5: return {Aι,i,Bι,i}i∈[d]

Fig. 1. Helper functions for the main uBlu protocol. The values {Wi}i∈[d] are independent bases, being part of the
public parameters, and {Vi,j}, {Ui}i∈[d] are public values as defined in Section 5.1.

Note that the simulation-style definition here is dictated by tags being verifiable w.r.t. base commitments
in histories. This allows composable reasoning: tags are hiding regardless of the base commitments hiding
property; whereas IND-style definition would imply that the base scheme needs to be hiding which we avoid.
Tag hiding also implies hiding for any sequence of tags, and thus for any history {tagi,Ci}ιi=1: using S and
{Ci} we can simulate all the tags one by one, without any hints.

Hint hiding states that without the secret key, hints do not leak information update values.

Definition 12 (Hint Hiding). A UPPB scheme for (BC,P) is (computationally value) hiding in hints if,
for all t ∈ V and all PPT A, it holds that Pr[GA(1λ) = 1] ≤ 1/2+ negl(λ), where game GA(1λ) is as follows:

1: pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

2: (·, pk, hint0)
$←− KeyGen(t); b

$←− {0, 1}
3: (hint⋆, tag⋆,x(0),x(1), r)

$←− A(pp, pk, hint0)
4: (hint, ·) $←− Update(hint⋆, tag⋆,x(b), r)

5: b⋆
$←− A(hint)

6: return b⋆
?
= b ∧ VfCommit(hint⋆, tag⋆)

?
= 1

Blueprint hiding models that even with the knowledge of the secret key, the escrow esc does not leak
anything about the values inside the history besides the predicate result itself.

Definition 13 (Blueprint Hiding). A UPPB scheme for (BC,P) is blueprint hiding if there exists a
PPT simulator S such that for all PPT A, it holds that Pr[GA(1λ) = 1] ≤ 1/2+negl(λ), where game GA(1λ)
is as follows:

1: (pp, td)
$←− Setup(1λ,V,P).

2: (t, pk, hint0, {tagi,xi, ri}ιi=1, hintι)
$←− A(pp)

3: b
$←− {0, 1}

4: esc← if b = 0 then Escrowpk(hintι) else S(td, pk,P (t,
∑

i∈[ι] xi), tagι)

5: b⋆
$←− A(esc)

6: return b⋆ = b ∧
7: VfKeyGen(pk, hint0) = 1 ∧
8: VfHistorypk({tagi,Commit(xi, ri)}ιi=1) = 1 ∧
9: VfHint(hintι, tagι) = 1

5 uBlu: Efficient Realization of Updatable Blueprints

Our efficient uBlu construction is presented in Figures 2 (main algorithms), 1 (helper functions), and 3 (veri-
fication algorithms). The construction is instantiated with Pedersen commitment scheme PedersenC as a base
commitment, and the predicate Pd(T ,X) that returns 1 if and only if x is in the range {t, t+1, . . . , t+d−1}.

11

Setup(1λ, pp)

% To ensure G1 is the same for Pedersen BCS and
the pairing system

1: parse pp as (G1,G,H,Pd)

2: ppBLG ← BLG.Setup(1λ;G1,G)

% Blinding factors for {Di}di=1
% d comes from the predicate Pd in pp

3: {Wi}i∈[d]
$←− G1

4: (crsΠ, tdΠ)← Π.Setup(1λ, ppBLG)

5: (crsΠu , tdΠu)← Πu
Lc .Setup(1λ, ppBLG)

6: pp← (pp, ppBLG, {Wi}i∈[d], 0,Pd, crsΠ, crsΠu)
7: td← (tdΠ, tdΠu)
8: return (pp, td)

KeyGen(t)

1: sk
$←− Zq , H ← Gsk

2: {r0,i}di=1, rt
$←− Zq

3: for i ∈ [d] do
% ElGamal encryptions of ti

4: A0,i ← Gr0,i , B0,i ← G((−t)i)Hr0,i

5: T← Commit(t; rt) % Pedersen T = GtHrt

6: X0 ← Commit(0; 0) % X0 = 1G1
7: A0 ← Commit(0; 0)
8: xc ← (H, {A0,i,B0,i}i∈[d],T,X0,A0)

9: wc ←

t, rt, {r0,i}i∈[d], x̂ := 0,

r̂x := 0, {r0,i · (0− t)}i∈[d],
α := 0, rα := 0

α · (x̂− t) := 0, rα(x̂− t) := 0

10: πc

$←− Πu
Lc.Prove(xc, wc)

11: πpk
$←− ΠLpk .Prove((H,B0,1,T), (sk, t, r0,1, rt))

12: pk← (H,T,πpk)
13: hint0 ←

(
{A0,i,B0,i}i∈[d],X0,πc

)
14: return (sk, pk, hint0)

Updatepk(hintι−1, tagι−1,xι; r)

1: parse tagι−1 as (πt,ι−1,Xι−1)

2: rx,ι
$←− Zq

3: hintι ← UpdateHint(hintι−1, xι, rx,ι)
4: Cι ← Commit(xι, r)
5: parse hintι−1 as (·,Xι−1, ·)
6: parse hintι as (·,Xι, ·)

7: πt,ι
$←− ΠLt.Prove(

 H,
Xι−1,Xι,
Cι,πt,ι−1

 ,

 xι,
rx,ι,
rι

)

8: tagι ← (πt,ι,Xι)
9: return (hintι, tagι)

UpdateHintpk(hintι−1,xι, rx,ι) (Helper)

1: parse hintι−1 as
(
{Aι−1,i,Bι−1,i}i∈[d],

Xι−1,πc,ι−1,

)
2: {rι,i}i∈[d]

$←− Zq

% rx,ι is the input to UpdateHint
3: Xι ← Xι−1 · Commit(xι; rx,ι)

% = Commit(
∑

i∈[ι] xi;
∑

rx,i)

4: {Aι,i,Bι,i}i∈[d] ← UpdatePowers

(
{Aι−1,i,Bι−1,i}i∈[d],

xι, {rι,i}i∈[d]

)
5: xc ←

(
H, {Aι−1,i,Bι−1,i}i∈[d],

T,Xι−1,A := 1

)
6: wupd,c ←

(
xι, {rι,i}i∈[d], rx,ι,
α := 0, rα := 0

)
7: πc,ι

$←− Πu
Lc.Update(πc,ι−1; xc, T⃗upd(wupd,c))

8: hintι ←
(
{Aι,i,Bι,i}i∈[d],Xι,πc,ι

)
9: return hintι

Escrowpk(hintι)

% Partially rerandomize the hint
1:
(
{Ai,Bi}i∈[d],X,πc

)
← UpdateHintpk(hintι, 0, 0)

2: α, β, rα, rβ
$←− Z⋆

q

3: A← Commit(α; rα)
4: B← Commit(β; rβ)
5: {Di}i∈[d] ← BlindPowers({Bi}i∈[d],α)
6: (E1,E2)← Evaluate({Ai,Bi}i∈[d], β)
7: xc ← (H, {Ai,Bi}i∈[d],T,X,A := 1)

8: wupd,c

(
xι := 0, {rι,i := 0}i∈[d],

rx,ι := 0,α, rα

)
9: π′

c
$←− Πu

Lc.Update(πc; xc,Tupd(wupd,c))

10: we ← (α, rα, β, rβ)
% Ui are the Stirling numbers

11: πe ← ΠLe.Prove

((
E1,E2,B,A,∏
A

Ui
i ,
∏

D
Ui
i

)
, we

)
12: esc←

(
E1,E2,πe,π

′
c,X,

{Ai,Di}i∈[d],A,B

)
13: return esc

Decryptsk(esc)

1: parse esc as (E1,E2, ·)
2: M ← E−sk

1 ∗ E2

% ElGamal decryption M = GβP (t,x̂)

3: return [M
?
= 1G1

]

Fig. 2. Our uBlu protocol for BC = PedersenC = (Setup,Commit), the predicate Pd(T ,X) =
[∏d−1

δ=0(X − T − δ)
?
= 0

]
,

and CH20 updatable NIZK. Main Algorithms.

12

VfKeyGen(Pd, pk, hint0)

1: parse pk as (H,T,πpk)
2: parse hint0 as

(
{Ai,Bi}i∈[d],X,πc

)
3: assert X = 1G
4: assert ΠLt,0.Verify(πpk; (H,B1,T))

5: assert Πu
Lc .Verify

(
πc;

(
{Ai,Bi}i∈[d],
T,X,H,A := 1

))
6: return 1

VfHistorypk({tagi,Ci}ιi=1)

1: Set X0 ← 1G,πt,0 ← πpk

2: parse tagι as (πt,ι,Xι) for all i ∈ [ι]
3: for i ∈ [ι] do

4: assert ΠLt.Verify

(
πt,i;

(
H,Xi−1,Xi,
Ci,πt,i−1

))
5: return 1

VfHintpk(hint, tag)

1: parse hint as
(
{Ai,Bi}i∈[d],X,πc

)
2: parse tag as (πt,X)

3: return Πu
Lc.Verify

(
πc;

(
H, {Ai,Bi}i∈[d]

T,X,A := 1

))
VfEscrowpk(esc, tag)

1: parse esc as
(

E1,E2,πe,πc,X
{Ai,Di}i∈[d],A,B

)
2: parse tag as (·,X′)
3: assert X′ = X

4: assert Πu
Lc.Verify

(
πc;

(
H, {Ai,Di}i∈[d],

T,X,A

))
5: assert ΠLe.Verify

(
πe;

(
H,E1,E2,B,

A, {Ai,Di}i∈[d]

))
6: return 1

Fig. 3. Verification Algorithms for the uBlu protocol. Continuation of Fig. 2.

It also uses the updatable proof system Πu instantiated by CH20, and a straight-line simulation-extractable
Π (instantiated by Fiat-Shamir transformed Σ-protocols for proofs of equality of discrete logarithm repre-
sentations with witness encryption). Next, we proceed with an overview that gradually builds intuition on
the techniques employed in our construction, and conclude with how to achieve privacy and soundness.

5.1 Achieving Updatable Functionality

The Predicate. We consider the predicate that returns ⊤ if the value x concealed in the escrow is above the
given threshold t. For efficiency, we limit the check to a reasonable interval, i.e. the escrow is only decryptable
if the value x is in [t, t+ d− 1] for a small value d: for generic X and T the predicate is defined as

Pd = Pd(T ,X) =

[
d−1∏
δ=0

(X − T − δ)
?
= 0

]
∈ {0, 1}. (1)

Clearly, when evaluated, the predicate Pd(t,x) returns 1 if and only if x is in the “critical range” [t, t+ d− 1]
on which the core polynomial evaluates to 0. The polynomial is built in such a way as to allow for efficient
updates as discussed next.

Setup and Key Generation. The setup takes as input a group G generated by Setup of the base com-
mitment scheme (Pedersen), together with generator G1 = G and H. It finishes the bilinear group setup,
creating ppBLG w.r.t. G1. It also sets up common reference strings and trapdoors for the NIZK proofs (more
on this in Section 5.3). Most importantly, it generates d random masking values W1, . . . ,Wd

$←− G which are
needed for blinding ElGamal ciphertexts in the hints.

To run the key generation process, the regulator needs to choose a threshold value t. In a nutshell, KeyGen
samples sk $←− Zq and computes its corresponding DH public key H ← Gsk. The public key consists of H and
some additional data to prove consistency. The key generation process additionally returns a hint consisting
of: 1) a sequence of d ElGamal ciphertexts encrypting the powers of t, t2, . . . , td under the public key H;
2) a NIZK consistency proof πc,0 for these powers; and 3) additional dummy information for correct hint
formatting. This allows public verifiability of the correctness of the key generation procedure and of the hints
in epoch ι = 0.

Hints and Updatability. Hints are used to update the value concealed in an updatable blueprint. In our
construction, updates perform the addition of a new known value xι to the already concealed one (which is
possibly unknown).

13

At each epoch ι hints have two main components: 1) a sequence of d ElGamal ciphertexts in the exponent
for a public key H (see Equation (5) for definition); and 2) a base Pedersen commitment X for the accumulated
value x̂ =

∑
i∈[ι] xi embedded in the ciphertexts (the meaning of “embedded” will become clear in a moment).

To understand the mechanics behind updatability, we need to look back at the polynomial in our predi-
cates Pd (see Equation (1)). This is a product of expressions consisting of a sum of a private/unknown value
(X −T) and a public value δ. Hence, the polynomial in Equation (1) can be written as a linear combination
of powers of (X − T), namely:

d−1∏
δ=0

((X − T)− δ) =

d∑
i=0

Ui(X − T)i (2)

where all Ui are well-determined public coefficients that depend solely on i and d.7 By the binomial theorem,
it is possible to rewrite terms on the right side of Equation (2) as:

(X − T + Y)i =

i∑
j=0

((
i

j

)
Y i−j

)
· (X − T)j . (3)

Equation (3) shows that we can always build ((x+ y)− t)i linearly from (lower powers) (x− t)j and y. This
property is exploited by the UpdatePowers helper function (Fig. 1) to compute hints for x + y as a linear
combination of the old hints values (dependent only on x and t), and values dependent only on the new
(known) input y = xι. For easy reference, we define the y-dependent values as

Vi,j(y) :=

(
i

j

)
yi−j ∈ Zq. (4)

Recall that hints contain a sequence of ElGamal ciphertexts, in our construction the initial hint, produced
at epoch ι = 0 during key generation, contains encryptions of powers of −ti, i.e. {A0,i = Gr0,i ,B0,i =

G(−t)iHr0,i}i∈[d] where the {r0,i}i∈[d] are the random values and t is the regulator’s secret threshold for the
predicate. Hints get progressively updated (as we show momentarily) into the following form:

{Aι,i = Gr̂ι,i ,Bι,i = G(x̂−t)iH r̂ι,i}i∈[d], (5)

where r̂0,i denotes accumulated randomness, x̂ =
∑

i∈[ι] xi is the committed value accumulated at epoch ι.
(Note that when ι = 0 the ciphertexts conceal the value (0− t)i).

By linear homomorphism, it is possible to add a new known value y to the quantity (x − t) that is
concealed in the hints of the previous epoch via the expression:

Bι+1,i =

i∏
j=0

B
Vi,j(y)
ι,j = G

∑i
j=0(x−t)

j ·Vi,j(y) · (Hrι,i)Vi,j(y) = G(x+y−t)iHrι,iVi,j(y)

where the last equality comes for Equation (3) and the definition in Equation (4) and B0,0 = Gt0H0. Noting
that Vi,0(y) = yi, each Bι+1,i can be computed solely from hints of epoch ι with j > 0 in the following way:

Bι+1,i = Gyi
i∏

j=1

B
Vi,j(y)
ι,j

where we isolate the j = 0 term Gyi

= B
Vi,0(y)
ι,0 to the left.

7 To be precise, the Ui are the Stirling coefficients, i.e., Stirling numbers of the first kind are defined as the coefficients
in the expansion of the falling factorial polynomial (x)n =

∏n−1
i=0 (x − i) =

∑n
k=0 s(n, k)x

k, and have closed form

s(n, k) =

[
n
k

]
= (−1)n−k ·

∑
1≤i1<...<in−k≤n−1

(
∏n−k

j=1 ij) [55].

14

Preparing Hints for Escrow. This procedure is performed by the Escrow algorithm (Fig. 2). Intuitively,
the ElGamal ciphertexts are extracted from the hint, and “evaluated”. The Evaluate algorithm raises both
ciphertext components to Ui · β, where β is a random non-zero value (used for masking non-escrow data),
and the Ui are the Stirling coefficients described in Section 5.1. Specifically:

E1 =
∏
i∈[d]

(AUi
i)β = G

β·(
∑

i∈[d]

rι,i·Ui)

E2 =
∏
i∈[d]

(BUi
i)β =

(
G

∑
i∈[d]

Ui(x−t)i

H

∑
i∈[d]

rι,i·Ui

)β

= G
β·(

d−1∏
δ=0

(x−t−δ))
H

β·(
∑

i∈[d]

rι,i·Ui)

where the last equality comes for Equation (2). As a result, the holder of the ElGamal secret key cannot
efficiently decrypt the evaluated ciphertext. Decryption corresponds to solving the discrete logarithm problem
since β is random (and unknown to the authority) unless the ciphertext encrypts the value “0”. Note that we
built the predicate in such a way that the ciphertext encodes 0 only on the roots of the polynomial, which
correspond to values in the “critical range”. The Escrow procedure outputs the predicate escrow which, in
addition to the evaluated ElGamal ciphertext, contains additional components needed to prove consistency
and verify the correctness of the procedure.

Testing the Predicate. This procedure is run by the regulator and simply attempts to decrypt the
ciphertext (E1,E2) using the secret key sk corresponding to the ElGamal encryption public key H. This
entails computing M = E2 · (E1)

−sk, which by construction is M = Gβ·(
∏d−1

δ=0 (X−T−δ)), where the reader
should recognize the core polynomial of the predicate (see Equation (1)). Note that β (unknown to the
regulator) acts as a random mask that prevents efficient decryption whenever the polynomial evaluates to a
value other than 0. This makes M gibberish unless the predicate Pd evaluates to 1 (the polynomial evaluates
to 0), which yields M = G0 = 1G.

5.2 Achieving Privacy

Up to this point, we discussed the correctness of our construction. Now we focus on how to achieve privacy,
i.e., the authority only learns Pd(t,x) and nothing else, and updaters learn nothing about the concealed
value.

The IND-CPA property of ElGamal ciphertexts {Ai = Gri ,Bi = G(x−t)iHri}i∈[d] prevents updaters from
seeing the concealed value. The regulator however can obtain {G(x−t)i}i∈[d] by decrypting the ciphertexts,
and even though encoding values in the exponent makes generic decryption inefficient, it does not prevent
the regulator from obtaining x by when the encoded values are in small, predictable ranges (which is the
setting of our application). To hide x properly, updaters will blind hints before sending them to the regulator
with the escrow.

The blinding is performed by BlindPowers and consists of multiplying each Bi component by a value
Wα

i , where the {Wi}di=1 are public group elements generated upon system setup, and α is a freshly sampled
random value. Specifically, blinded ciphertexts are of the form: {Ai,Di := Bi ·Wα

i }i∈[d]. To achieve efficient
updatable proofs, the α component will be zero while the hints are updated, which means parties will
exchange unblinded hints; and α will only be set while the hints are converted to an escrow (more details on
this in the upcoming description of updatable proofs).

5.3 Achieving Soundness Using NIZKs

Intuitively speaking, soundness means then whenever the data (primarily hints and escrows) is valid, it must
be “good” – bind to the history, contain only updates that are relevant to commitments, etc. As of now, hints
and escrows can be malformed and lack these guarantees. We overcome these issues by employing NIZKs to
ensure data correctness.

15

Our construction employs four kinds of proofs. The key proof (πpk) will show that the public key was
built correctly. The consistency proof (πc) will show the consistency of all the components in a hint, and
it will be updatable (details of which are the main technical contribution of the construction). The trace
proof (πt) will show that the new hint — obtained updating a hint from the previous epoch — is computed
correctly and that the update value is the same as in the external commitment C. Trace proofs are included
in tags tag and form the trace. The escrow proof (πe) will show that the escrow esc was produced correctly
from a tag and its hint.

Key Proof (πpk). During the key generation phase, the regulator produces the ElGamal encryptions of
the powers of the threshold (as explained in Section 5.1), in particular, we will use the first ciphertext
(A0,1,B0,1) := (Gr0,1 ,GtHr0,1) that is a standard ElGamal encryption of t for the auditor’s public key H. In
addition, the regulator computes a Pedersen commitment to the threshold T = GtHrt (which is included in
the public key pk). The public key additionally contains πpk that proves knowledge of the sk corresponding
to the ElGamal public key H = Gsk, and knowledge of a threshold value t and randomnesses that realize the
public components B0,1 (contained in hint0) and T. Specifically, the language Lpk is defined by:

x = (H,B0,1,T) ∈ G3

w = (sk, t, r0,1, rt) ∈ Z4
q

and M(x) =

G 0 0 0
0 G H 0
0 G 0 H

 .

where witness here and in the following is highlighted in gray.

Consistency Proof (πc). This proof shows that all the hint values (including the {A0,i,B0,i} produced by
KeyGen) are indeed encodings of (x̂− t)i, where x̂ and t are the current accumulated value and the original
threshold selected by the regulator. It works for both unblinded (Bi) and blinded (Di) hints. This proof is
produced (1) originally by the regulator in KeyGen to prove the consistency of powers in hintpk, and (2) by
updating parties to prove that the hints they send further are still consistent, (3) by updating parties to
prove to the regulator that the blinded hints in the escrow are consistent. The consistency proof will always
refer to T (the Pedersen commitment to the threshold included in pk) to make sure that the witness t used
in all proof iterations is the same as the initial one.

At epoch ι, the consistency proof πc proves the following statement: for an instance

x = (H, {Aι,i,Dι,i}i∈[d],T,Xι,A) ∈ G2d+4

there exists a witness

w =

(
t, rt, x̂ι, r̂x,ι,α, rα, {r̂ι,i}i∈[d],

(x̂ι − t), {rι,i(x̂ι − t)}i∈[d−1],α(x̂ι − t), rα(x̂ι − t)

)
∈ Z2d+8

q

such that the following relations are satisfied:

1. T = G tHrt (rt is the randomness used to create T, the Pedersen commitment to the threshold)
2. Xι = G x̂ι H r̂x,ι (Pedersen commitment to x̂ι, the accumulated value)
3. Aι = GαHrα (Pedersen commitment to the randomness for blinding factors)
4. Aι,1 = G r̂ι,1 (rι,i is the randomness used to create the ElGamal ciphertext)
5. Dι,1 = G x̂ι − tH r̂ι,1 W α

1 (the blinded ciphertext encrypts (x̂− t))
6. ∀ i ∈ [2, d]:

(a) Aι,i = G r̂ι,i

(b) Dι,i = (Dι,i−1)
x̂ι − t (H−1) r̂ι,i−1(x̂ι − t)H r̂ι,i (W−1i−1)

α(x̂ι − t)W α
i

7. Witness products (needed for step 6):
(a) 1 = G x̂ι (G−1) t (G−1) x̂ι − t

16

(b) 1 = A
x̂ι − t
ι (G−1)α(x̂ι − t) (H−1)rα(x̂ι − t)

(c) 1 = A
x̂ι − t
ι,i (G−1) r̂ι,i(x̂ι − t) , for i ∈ [d− 1]:

The complexity of this formula is due to the fact that we need to prove the relationship between the powers
of (x̂ − t)i, which we do recursively. Note that we do not store powers as additional witnesses; the only
witness is the first power (x̂ι − t).

When simplified, the recursive formulas reduce to the following four relations:

T = G tHrt X = G x̂H r̂x

A = GαHrα (Ai,Di) = (G r̂i ,G(x̂− t)iH r̂i W α
i) for i ∈ [d]

As briefly mentioned before, we use α in two different ways depending on the scenario: (1) while updating
the hints blinding is disabled: users will set α = rα = 0, and thus A = 1; thus Di will be actually just Bi;
(2) while creating escrow, the blinding values α, rα will be introduced, A ̸= 1 will be sent to the regulator,
but α, rα will not, which will ensure hiding of the blinding approach.

Therefore, to verify the consistency proof, the party (user or regulator) needs an instance x, which consists
of the original D0,1 produced during key generation; a collection of ciphertexts {(Aι,i,Dι,i)}i∈[d] (unblinded
or blinded); a tag tagι containing a commitment X to the accumulated x̂ι; and a special commitment A to
the blinding randomness α (either trivial A = 1 for users, or nontrivial for regulator).

Consistency proofs are instantiated by Πu, which is linear in the size of the hints but is also updatable,
meaning that the proof for new hints is a transformation of the previous consistency proof. Practically, this
is quite efficient, since otherwise consistency proofs would need to be aggregated, and hints would thus grow
in size; this is especially expensive given that the consistency language is linear in d. Because of updatability,
no updating party (except for the regulator, who creates the initial proof) ever knows the whole witness
“contained” in the proof.

Updating Hints and Consistency Proof. The consistency proof language Lc is structured in such a way, that
it supports a transformation that we will call Tupd, which can change all the necessary witnesses, including
our target aggregated commitment value x̂ι. To fit within the algebraic language updatability framework,
we must be able to represent the new instance and witness as a linear combination of the old instance and
witness values correspondingly.

We first start with the instance, which implicitly defines Txm,Txa:

– Using the (plaintext) update value xι, sample rerandomisation factors rι,i, and compute the new hints:
• Aι,i =

(∏i
j=1(Aι−1,j)

Vi,j(xι)
)
Grι,i .

• Bι,i = Gxi
ι

(∏i
j=1(Bι−1,j)

Vi,j(xι)
)
Hrι,i , where Gxi

ι covers the role of implicit (Bι−1,0)
Vi,0(xι).

– Sample rx,ι, update the tag commitment Xι = Xι−1G
xιHrx,ι .

– Sample α, rα, create the special commitment A = GαHrα (optionally, or still assume A = 1).

Next, we show how to update the witness, which implicitly defines Twm,Twa:

x̂ι := x̂ι−1 + xι x̂ι − t := x̂ι−1 − t + xι

r̂ι,i :=

i∑
j=1

r̂ι−1,i · Vi,j(xι) + rι,i r̂ι,i(x̂ι − t) :=

i∑
j=1

r̂ι−1,i(x̂ι−1 − t) · Vi,j(xι)+

i∑
j=1

r̂ι−1,i · xι · Vi,j(xι)+

rι,i · (x̂ι−1 − t) + rι,ixι
r̂x,ι := r̂x,ι−1 + rx,ι

α̂ := α α̂(x̂ι − t) := α · (x̂ι−1 − t) + α · xι

r̂α := rα r̂α(x̂ι − t) := rα · (x̂ι−1 − t) + rα · xι

17

The language transformation Tupd is formally a set of matrices (Txm,Txa,Twm,Twa) as implicitly defined
above, that is parameterized by a vector of update values wupd,c = (xι, {rι,i}i∈[d], rx,ι,α, rα), where all the
“product witnesses” can be defined in terms of this tuple.

Note that we do not describe the last four witnesses as “accumulatable” — if we try to update w with
(α, rα) more than once, α̂ will not be equal to the sum of previous α unlike e.g. r̂x,ι. This is due to our setup:
(1) we apply Tupd incrementally parameterized with (xι, {rι,i}i∈[d], rx,ι,α = 0, rα = 0) with blinding turned
off ; (2) and then, given α = rα = 0 and A = 1, we can introduce blinding, applying Tupd parameterized with
α, rα ̸= 0 only once. This separation is a result of a deeper limitation of Πu, discussion of which we defer to
Appendix B:

Theorem 1 (Validity of Tupd (Informal)). The transformation Tupd is valid w.r.t. Lc, and the Πu proof
system for Lc satisfies update completeness and derivation privacy w.r.t. Tupd when applied according to the
two distinct parametrizations described above.

Proof. See Definition 18, Theorem 3, and Lemma 1 in Appendix B.

Trace Proof (πt). Trace proofs are small aggregatable proofs that allow parties to linearise their updates.
At epoch ι, the party performing an update with local value xι will prove the following statement. For an
instance x = (H,Xι−1,Xι,Cι,πt,ι−1) (where Cι = GxιHr), there exists a witness w = (xι, rx,ι, rι) such that:

1. Xι = Xι−1 ·Gxι Hrx,ι (the new tag is computed the form the previous one, and the updating information
is completely known to the updater).

2. Cι = Commit(xι , rι)(the updated value xι is the same as in Cι).

Note that the value πt,ι−1 is in the instance, and thus bound by the NIZK being a signature of knowledge,
but it does not appear in any equations. In practice, this translates with hashing the additional value when
computing a Fiat-Shamir challenge, but not using it otherwise. This proof will be instantiated with a standard
non-updatable Π Σ-protocol.

As a potential future-work extension of our scheme, one can consider parties including their signatures
on these elements, to sign the update act, which can be used for extending updater accountability w.r.t. the
regulator.

Escrow Proof (πe). This proof is produced upon conversion of a hint into an escrow esc. The esc con-
tains an ElGamal encryption E = (E1,E2) of β · Pd(x̂, t) for some masking value β (random), an escrow
proof, a consistency proof (rerandomized, and with α introduced), and information needed to check the
proofs: a commitment X to the accumulated value, a commitment B to the randomness β, a commitment
A to the introduced accumulated blinding exponent α, and, most importantly, blinded ElGamal ciphertexts
{Ai,Di}i∈[d] (with α).

The escrow proof for Le proves the following statement. For an instance x = (E1,E2,B,A,
∏

AUi
i ,
∏

DUi
i),

there exists a witness w = (α, rα,β, rβ,βα, rβα) such that the following conditions are satisfied:

1. A = GαHrα

2. B = Gβ Hrβ

3. 1 = Bα (G−1)βα (H−1)rβα

4. E1 =
∏

i(A
Ui
i)β

5. E2 =
∏

i(D
Ui
i)β ·

∏
i(W

−Ui
i)βα

The language is compact, so the proof πe can be created from scratch, and since it doesn’t need to be
updatable performance-wise we can also use standard Π as a proof system.

18

5.4 Security of the uBlu Construction

The main security statement of our construction can be summarized as follows.
Theorem 2. The uBlu protocol w.r.t. (PedersenC,Pd(T ,X)) introduced in Section 5 is secure according to
the security definitions 8-13 (all in Section 4.1) under: hiding and binding of PedersenC; DDH in G1 that
in particular implies ElGamal IND-CPA; completeness, strong simulation-extractability, and ZK of Π; and
(update) completeness, soundness, derivation privacy, and ZK of Πu.

Proof (Summary). Due to the lack of space, the theorems and their corresponding proofs are deferred to
Appendix C, while here we present their summary and main intuition.

History Binding (Theorem 5) is proven by unfolding simulation-extractability of Π, instantiating trace
proofs, along the history.

Soundness (Theorem 6) reduces to KS of Π, soundness of Πu, and binding of PedersenC. The first part
of soundness is a trivial application of Π KS, while for the second part, we need to unpack all the NIZKs,
using the fact that they are “connected” by binding commitments, to arrive at the statement about correct
decryptability of esc.

Threshold Hiding (Theorem 7) is, first, by ZK of both Π and Πu — and after proofs in pk, hint0 are
simulated, we reduce the property directly to IND-CPA of ElGamal, holding under DDH in G1. Hint hiding
(Theorem 9) is very similar to threshold hiding: it holds by IND-CPA of Pedersen (Ai,Di are hiding), ZK
of the NIZKs, but also by derivation privacy of Πu, since Update uses Πu.Update internally. Similarly, Tag
hiding (Theorem 8) is a direct consequence of ZK of trace proof and hiding of PedersenC.

Blueprint Hiding (Theorem 10) holds under DDH in G1, security of PedersenC, ZK of Π,Πu, KS of Π,
and soundness of Πu. The hardest part in simulating esc is arguing that encryption (E1,E2) has a “correct”
form, which is similar to the soundness proof.

5.5 Adding Range Proofs for Improved Accuracy

For efficiency, construction approximates the predicate [x > t] with a polynomial that has roots in the range
[t, t+d−1], for a reasonably small value d. For the approximation to be accurate, however, we need to ensure
that an update does not jump over the range or cause an overflow. In other words, we need an extra range
proof ensuring that the value xι added during the update is not too large.

Range proofs can be conveniently integrated into our protocol which already exposes Ci = GxιHri for
exactly this purpose. Among the existing approaches to range proofs on Pedersen commitments, we recall
Bulletproofs [15] or “adjusted” Pedersen commitments and square decomposition [27]. These are efficient,
with the latter only requiring a constant amount of exponentiations and group elements in the proof.

Here we present a much simpler approach than the aforementioned: committing to bits of xι, and using
Π to prove that (1) C contains bit-reconstructed values; and (2) commitments are actually to the bit values
∈ {0, 1}. The latter can be done as follows: given C = GxHr for H being chosen uniformly at random, note
that condition x ∈ {0, 1} is equivalent to (x − 1)x = 0, therefore it is enough to prove that Cx−1 = Hr′

for some (known to the prover but private) r′. This requires O(log(d)) exponentiations and group elements,
which is practically efficient for our choice of d.

With this in mind, every updater can only “adjust” the aggregated rating x̂ by xι ∈ [0, d], which makes
our uBlu construction a proper score aggregation system. Other more complicated predicates can be proven
similarly about xι; commitment Ci is used precisely for this kind of external integration of a uBlu scheme
with other applications.

6 Scheme Extensions

The uBlu protocol we presented in this section is designed for a limited class of predicates (range predicates)
to keep its construction simple. In this section we show how to generalize our construction to support
arbitrary polynomial predicates and non-binary escrow values. We also discuss additional features such as
the distributed decryption of predicate escrows.

19

Disjoint Ranges Polynomial Predicates. Our uBlu construction can easily be adapted to the case of
polynomials P (T ,X) that capture r > 1 disjoint ranges (e.g. [t1, t1 + d1] and [t2, t2 + d2]). The cost is r sets
of hints that are linear in the corresponding range length.

Arbitrary Polynomial Predicates. Our uBlu protocol targets the “range polynomial” Pd(T ,X), that is
zero in [t, t+d−1]. We leverage the special structure of Pd to design hints linear in d. The algebraic trick used
in our protocol to construct and update hints can be generalized to any polynomial predicate P (T ,X) at
the cost of a quadratic number of hints, each encoding {xitj}i,j:i+j≤d, which are updatable in a similar way
our linear hints are. An example of using non-interval predicates could be designing P to encode a certain
few excluded revealing points, for example representing a certain blocklist of public key hashes.

In detail, assuming P (T ,X) =
∑

i,j Ci,jX
iT j , we can always construct the evaluation of the updated

polynomial P (T ,X+Y) =
∑

i,j Ci,j(X+Y)iT j from the hints, if we can transform old hints {(xitj)}i,j into
the new ones {(x+ y)itj}i,j . The latter is always possible since (x+ y)itj =

∑i
k=0

(
i
k

)
yi−k(tjxk) is a linear

combination of the previous (tjxk), which are known. Quadratic number of hints makes many algorithms
much less efficient and generally imposes much stricter upper bounds on d.

Multi-Variate Polynomial Predicates. It is possible to extend updatable blueprints to support evalua-
tions of predicates described by multi-variate polynomials, by repeating the protocol in parallel independently
for each dimension i (as if it were n protocol instances).

For example, assume the polynomial is of the form P (T ,X1, . . . ,Xn) =
∑n

i Pi(T ,Xi), and we are running
uBlu in parallel for each Pi independently, however with the same starting commitment to t. Updates and the
evaluation can still be done in a very similar manner. The only significant difference now is the escrow proof
created during Escrow will now have to prove the evaluation of joint P (T ,X1, . . . ,Xn) instead of independent
Pi(T ,Xi) as in the basic scheme. This, however, can still be encoded as an algebraic relation — now it will
take {Ai}ni=1 (one element per each “parallel” run), which will lead to the introduction of {βαi}si=1 witnesses
and the statement for E2 will have to change to E2 = (

∏d
i=1

∏n
j=1 D

Ui
j,i)

β · (
∏d

i=1 Wi)
∑n

j=1 βαj .
As a slightly different but instructive example, let us consider evaluating the polynomial corresponding

to the computation of the squared Euclidean distance. In this case, we manage the two-variate polynomial
P (TX ,TY ,X,Y) = (X−TX)2+(Y −TY)

2, where (TX ,TY) are the coordinates of a departure point, and X,
Y are updates on the respective latitude and longitude deviation from the previous (or initial) position. The
regulator needs to commit to TX ,TY separately. In order to evaluate P (tX , tY ,x+ x′, y + y′) it is sufficient
to notice that:

((x′ + x)− tX)2 + ((y′ − y)− ty)
2 =

= x′2 + x2 + t2X + 2(x′(x+ tX) + xtX) + y′2 + y2 + t2Y + 2(y′(y + tY) + ytY)

= x′2 + 2x′(x+ tX) + (x2 + t2X + 2xtX) + y′2 + 2y′(y + tY) + (y2 + t2Y + 2ytY)

where in the last line, all terms in parenthesis are computable from the previous hints.

Non-binary Predicate Value. In some applications, e.g., when users are anonymous, it is desirable for
Escrowpk to return not only a binary value but also information about the user (e.g. their identity) to enable
further investigations. Our uBlu scheme can be modified to achieve this functionality. The core idea is to give
Escrowpk a piece of extra information y, so that instead of returning an encryption of βP (x), the algorithm
returns (β1P (x),β2P (x) + y) for random β1,β2, which in case P (x) ̸= 0 produces two random points and
in the case P (x) = 0 (i.e. if the escrow is decryptable) returns (0, y). The extra information y then can
be proven to be added correctly by integrating a pre-computed commitment Cy to y (e.g. coming from an
external identity scheme) into the escrow proof, which now will not only attest to the correctness of the
evaluation w.r.t. (x, y) but also that y is coming from the designated commitment Cy.

Another simple but useful variation of this idea is to return y not based on Cy, but as a function
of x. Consider two polynomials P1,P2, where polynomial P1 is binary and defining the decryptability as

20

Authority, Public bulletin board

Updating party,

Fig. 4. Illustration of a potential usage of updatable blueprints in the blockchain setting. Dotted boxes illustrate
optional communication and computation depending on the scenario.

before, and P2(x) = y is defining what the result in case of decryption will be. Then Escrowpk can return
(β1P1(x),β2P1(x) + P2(x)), revealing the non-binary y that depends on x. Since P1 and P2 are different
predicates, they will have different sets of hints; but assuming that degP2 is low, the previous paragraph
explained how we can extend the uBlu scheme to support polynomial reconstructions for arbitrary P2. Again,
here the escrow proof must be modified to attest to the correct evaluation of the escrow.

Distributed Decryption. We observe that while we explicitly consider the KeyGen and Decrypt algorithms
to be run by a single party, these steps could be distributed or thresholded using standard techniques [41].
This would have the advantage of both, separating the attack surface for the secret decryption key sk and of
requiring the explicit consensus of decryption by a quorum of different key share holders. That is, it would
only make it possible for the auditors to discover exactly which update caused the change in the predicate
value (by running Decrypt after each update) if sufficiently many of them agree that they should learn this.

7 Applications of Updatable Privacy-Preserving Blueprints

In this section we present applications for uBlu schemes such as accountable privacy-preserving blockchains,
anti-money laundering (AML), and privacy-preserving proximity testing for unknown locations.

We believe that updatable blueprints can find multiple uses in ensuring accountability for privacy-
preserving blockchain applications beyond cryptocurrencies. The security properties of uBlu and their flex-
ibility as a building block in modular constructions make them easy to integrate into various applications
without undermining existing privacy properties.

In this setting, we assume access to a public append-only ledger with support for a Turing complete
scripting language (e.g. Ethereum or Cardano). We consider a model with an auditor who ensures the setup
of the system and who is able to decrypt the escrow. Observe that such an auditor could be distributed as
discussed in Sec. 6. With such a ledger, any auditor can run Setup and deploy a smart contract that embeds
the verification functions: VfKeyGen,VfHint,VfHistory and VfEscrow. The auditor can then run KeyGen for a
specific choice of predicate threshold t, and send the public key and hint0 to the initial 0-commitment hint0 to
the smart contract, which validates these values using VfKeyGen and stores them if they are valid. External
parties can now interact off-chain, constructing updates by running the Update algorithm and sending the
resulting hint to the next updating party, after validating the last hint using VfHint. When mandated by
the application (potentially after every update), the updating party will publish its tag to the ledger, which
will form a consistent history that will be validated by the smart contract using VfHistory. When necessary,

21

authority can request a party to Escrow a certain hint corresponding to a point in history, obtain escrow
esc off-chain, and check if the corresponding update has caused a predicate evaluation of 1; this would also
obviate any need for off-chain communication between authority and updating parties. Alternatively, esc can
be sent to the smart contract directly, which would be more expensive in terms of escrow validation but can
be used to prove to a third party that a certain escrow evaluated to 1. We illustrate this in Fig. 4.

This approach is generic and allows for many application-specific variations. For example, it is possible
the augment the smart contract logic to ensure that only a permissible set of parties are able to update the
blueprint. Or, one could limit the quantity of updates any specific updating party is allowed to make; etc.

In case one wishes to simplify the smart contract and save gas, it is also possible to have the smart
contract only store protocol elements but not run any of the verification algorithms, instead optimistically
assuming them to be correct and putting the responsibility of validation off-chain, to the auditor or any other
observer. That is, an approach similar to optimistic roll-ups in the blockchain space. Next, observe that each
call to a smart contract is signed by the caller and stored on the ledger, linking it to the caller’s public
key. Thus, by augmenting the smart contract with Decentralized Identifiers [68] it would also be possible to
publicly audit which parties correctly follow the protocol.

7.1 Traditional AML

Money laundering is the process of concealing the origins of funds obtained illegally by changing their origin
to one considered legitimate and is estimated to constitute 2-3% of the GDP in the US alone [64, Chap. 2].
Traditional banks mostly do AML by manually inspecting an account if its suspiciousness score, expressing
how suspicious or risky the account is, is above a certain threshold [7]. The score is first computed from
private account metadata and updated based only on local account activity. As this precludes using valuable
information held by other banks, e.g., the reputation of parties transferring money into the account, this
results in a very high false-positive rate.

The updatable blueprint scheme can be used in traditional AML by allowing banks to secretly commu-
nicate the user’s suspiciousness score, or credit score, from the sending bank to the receiving bank (or vice
versa). Concretely, by having the sending bank use the score of the sending account to compute a value
with which the recipient’s score should be increased. That is, an auditor generates keys (KeyGen) for an
updatable blueprint for each account in each bank. Then each bank checks these public keys using VfKeyGen
and uses Update to add each account’s base score to the corresponding hint0 (initially containing 0). When
an account holder makes a transaction, the sending bank updates the hint of the receiving account holder
with an amount computed from the quantity of the transaction and the base score of the sender. The receiv-
ing bank then runs VfHint and VfHistory to validate the update. At certain time intervals, each bank runs
Escrow to create the predicate escrow esc to be shared with the auditor along with the tags that have been
constructed as part of the updates since the last time the auditor did a check. The authority can then run
Decrypt (along with VfEscrow) to check if an account should be flagged. We illustrate the overall flow of this
in Fig. 7.1.

We observe that the scheme will allow the banks to get a much more accurate suspiciousness score on
each account without any bank leaking the base score of their account holders. When manual inspection of
a flagged account results in the bank needing to report the customer to the authorities, it is possible for
the bank to also share all the hints used to compute the updates. This allows the authority to validate the
entire history of transactions. Finally, we also note that this can be enhanced using the idea of distributing
the secret key in Sec. 6 to make the powers of the authority distributed.

7.2 Blockchain AML

The previously discussed approach to privacy-preserving AML based on updatable blueprints can be gener-
alized to the blockchain setting. Most decentralized cryptocurrencies (e.g. Bitcoin, Ethereum, and Cardano)
allow anyone to perform transactions with no privacy guarantees, publicly revealing the transaction graph
and transferred amounts. While this seemingly makes AML easy, it is cheap and easy to create new accounts,

22

Accounts...

...

...

Accounts...
...

Fig. 5. Illustration of the interaction between parties in the AML use-case.

and it is easy to perform layering through many accounts and various “mixing services”, mixing tokens from
many different sources [62]. Hence, although the transaction graph is public, AML is not simple. This issue
is exacerbated by privacy-preserving cryptocurrencies such as Zether [14], which is built on top of a smart
contract system, or ZCash [10], Monero, and Dash, which incorporate privacy in their basic design. These
schemes aim at hiding all transaction data, making AML even harder.

In order to reach a compromise between privacy and AML, several different ideas have been proposed by
authors in recent years. Some authors [65, 3, 29] suggest an escrow system where anonymity and privacy can
be broken if suspicious or illegal activities occur. Another approach is to specify a small spending limit per
client which they can use every month for anonymous payments. After the client has made more transactions
than covered by this budget, any future transactions can be traced [71, 70].

We now discuss how updatable blueprints could be used to achieve private spending limits on ledgers
with Turing complete smart contracts supporting private transactions.

Private Spending Limit. In this setting, we assume that the underlying ledger supports private transac-
tions and the goal of an authority is to be able to find out which (if any) users go over their private spending
limit. This is achieved by having a smart contract store an updatable blueprint hint associated with each
user and validate that each private transaction is supported by a Update to the user’s updatable blueprint
history consistent with the transaction amount, followed by a Escrow. If an update causes the escrow to be
decryptable, it leaks the user’s real identity to the auditor via the extension discussed in Sec. 6 that allows
for decryption to output specific messages.

With this in mind, we describe the use case step by step: An authority starts by setting up new public
and private keys and an initial hint0 using KeyGen for an updatable blueprint scheme. Public key pk and
hint0 are going to be “shared” by all users with a private spending limit. Next, we require each user to get
their real-world identity y validated by the auditor and linked to their blockchain account. This is done by
having the user post a commitment Y = GyHry to the smart contract and prove to the auditor that the
committed message is indeed their identity y. The commitment from each user will then get aggregated into
a Merkle tree, and stored in the smart contract. Next, each user gets a copy of hint0 from the auditor which
they will store, and use for their first Update. For each private transaction, the user runs Update and Escrow
to make a new hint, tag, and esc which will open to y in case of successful decryption. The latter is based on
the extension of Sec. 6. They then construct a zero-knowledge proof that the value y that esc will open to,
if decrypted, corresponds to the value of a leaf commitment on a path in the smart contract’s Merkle tree
(without revealing the path). Finally, the user also constructs a proof of equality between the value in the
base commitment of the update and the value of the private transaction they wish to carry out. The smart
contract now validates the proofs, the private transaction, and whether the updates are valid (VfHistory,
VfEscrow).

23

7.3 Privacy-Preserving Geofencing for Unknown Locations

As seen in Sec. 6 updatable blueprints can also be used to evaluate the (squared) Euclidean distance. This
is relevant in privacy-preserving location-based services, and updatability provides the feature to update
one’s location according to movement w.r.t. a departure point or a previous location. This might be of use
for military training, where soldiers are dropped in unknown territories and can track their own movements
relative to the starting point, without knowing the exact coordinates of their location. Another use case
could be proximity-based testing w.r.t. a moving object, here instead of sending the new location at every
time interval, one sends relative update values, which are much shorter (in size) and may increase privacy
should the device sending updates be compromised.

8 Instantiation and Performance

In this section, we summarise the implementation and performance details of the uBlu construction. We
consider an instantiation of our updatable blueprints in the “standard model”, with a caveat that we apply
the Fiat-Shamir heuristic for the non-updatable proof system Π. The updatable proof system Πu, which is
instantiated by the CH20 [26] NIZK, is non-interactive by design.

We realize the base commitment BC using Pedersen’s scheme [60] over G1 of a practical type III pairing
friendly elliptic curve, where source groups G1 and G2 have no efficiently computable isomorphism. While
we do not consider a specific curve, we remark that several curves could be used, such as Barreto-Naehrig [5]
or BLS12-381 [4]. For more details on choice of curves, and performance estimates, especially w.r.t. NIZKs,
see Appendix D.

Table 1. Complexity of our uBlu construction in
terms of the number P of pairing operations and
E1/E2 the number of multiplicative group scalar
exponentiations in G1/G2. Constant d is defining
the “explosion” range [t, t+d−1]. Value ιcur stands
for the current epoch (history length).

Algorithm #P #E1 #E2

Setup 0 O(1) O(1)
KeyGen 0 9d+O(1) 4d+O(1)
Update 0 4d2 +O(d) 1.5d2 +O(d)
Escrow 0 14d+O(1) 4d+O(1)
Decrypt 0 O(1) 0
VfKeyGen 2d+O(1) 10d+O(1) 6d+O(1)
VfHint 2d+O(1) 10d+O(1) 6d+O(1)

VfHistory 0 O(ιcur) O(ιcur)
VfEscrow 2d+O(1) 10d+O(1) 6d+O(1)

Table 2. Size complexity of the different
components of our uBlu construction in
terms of the number of group elements (or
elements of equivalent size).

Object pp sk pk hint tag esc

#G1 O(d2) 1 O(1) 4d+ 5 O(1) 4d+O(1)

#G2 O(1) 0 0 2d+ 8 0 2d+ 8

Asymptotic Summary. We summarize the computational complexity of the different algorithms in Table 1
and the sizes of the different components in Table 2. We assume that the public combinatorial values (binomial
coefficients for Vi,j and Stirling coefficients for Ui) are pre-computed, which requires total auxiliary storage
of 2d2 elements (added into the cost for Setup).

Given that most constants, as we discussed in the previous paragraphs, are quite low (for UpdatePowers
it is 1, for updating the proofs it is ≈ 3), and having a slower BLS12-381 curve in mind, we roughly estimate

24

that the conservative choice of d could be about 200-400, in order to achieve a latency in running Update
of at most 1 second. When proof verification time is a concern, as in the blockchain environments, it makes
sense to consider lower degrees, e.g. pairings in VfHint for d = 45 will take about 100 ms. These being rough
estimates, in practice, many optimizations are possible, such as parallelizing the (row-independent) quadradic
computations and using efficient Multi-Scalar-Multiplication (MSMs), so we expect concrete performance to
be significantly better. Nevertheless, the estimates clearly show that the system is practical, the NIZK
overhead is comparably low, and given that hints are not aggregated due to updatability of Πu, the NIZK-
induced communication overhead is quite optimal w.r.t. what is absolutely necessary to produce a hint
update.

References

[1] T. Acar and L. Nguyen. “Revocation for Delegatable Anonymous Credentials”. In: PKC 2011. Ed. by
D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi. Vol. 6571. LNCS. Springer, Heidelberg, Mar. 2011,
pp. 423–440. doi: 10.1007/978-3-642-19379-8_26.

[2] E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya, K. Elkhiyaoui, and B. Tackmann. “Privacy-
preserving auditable token payments in a permissioned blockchain system”. In: AFT ’20: 2nd ACM
Conference on Advances in Financial Technologies, New York, NY, USA, October 21-23, 2020. ACM,
2020, pp. 255–267. doi: 10.1145/3419614.3423259. url: https://doi.org/10.1145/3419614.3423259.

[3] A. Barki and A. Gouget. Achieving privacy and accountability in traceable digital currency. Cryptology
ePrint Archive, Report 2020/1565. https://eprint.iacr.org/2020/1565. 2020.

[4] P. S. L. M. Barreto, B. Lynn, and M. Scott. “Constructing Elliptic Curves with Prescribed Embedding
Degrees”. In: SCN 02. Ed. by S. Cimato, C. Galdi, and G. Persiano. Vol. 2576. LNCS. Springer,
Heidelberg, Sept. 2003, pp. 257–267. doi: 10.1007/3-540-36413-7_19.

[5] P. S. L. M. Barreto and M. Naehrig. “Pairing-Friendly Elliptic Curves of Prime Order”. In: SAC 2005.
Ed. by B. Preneel and S. Tavares. Vol. 3897. LNCS. Springer, Heidelberg, Aug. 2006, pp. 319–331.
doi: 10.1007/11693383_22.

[6] J. Bartusek, S. Garg, A. Jain, and G. Policharla. “End-to-End Secure Messaging with Traceability Only
for Illegal Content”. In: Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V. Ed. by C. Hazay and M. Stam. Vol. 14008. Lecture Notes in Computer
Science. Springer, 2023, pp. 35–66. doi: 10.1007/978-3-031-30589-4_2. url: https://doi.org/10.
1007/978-3-031-30589-4_2.

[7] C. Baum, J. H. yu Chiang, B. David, and T. K. Frederiksen. SoK: Privacy-Enhancing Technologies in
Finance. Cryptology ePrint Archive, Report 2023/122. https://eprint.iacr.org/2023/122. 2023.

[8] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. “Randomizable
Proofs and Delegatable Anonymous Credentials”. In: CRYPTO 2009. Ed. by S. Halevi. Vol. 5677.
LNCS. Springer, Heidelberg, Aug. 2009, pp. 108–125. doi: 10.1007/978-3-642-03356-8_7.

[9] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: CRYPTO 2014, Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. LNCS. Springer,
Heidelberg, Aug. 2014, pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[10] E. Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2014, pp. 459–474. doi:
10.1109/SP.2014.36.

[11] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive composition and bootstrapping for
SNARKS and proof-carrying data”. In: 45th ACM STOC. Ed. by D. Boneh, T. Roughgarden, and J.
Feigenbaum. ACM Press, June 2013, pp. 111–120. doi: 10.1145/2488608.2488623.

[12] O. Blazy, G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. “Signatures on Randomizable Ciphertexts”.
In: PKC 2011. Ed. by D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi. Vol. 6571. LNCS. Springer,
Heidelberg, Mar. 2011, pp. 403–422. doi: 10.1007/978-3-642-19379-8_25.

25

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://eprint.iacr.org/2020/1565
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-031-30589-4_2
https://doi.org/10.1007/978-3-031-30589-4_2
https://doi.org/10.1007/978-3-031-30589-4_2
https://eprint.iacr.org/2023/122
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-19379-8_25

[13] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive Proof Composition without a Trusted Setup.
Cryptology ePrint Archive, Report 2019/1021. https://eprint.iacr.org/2019/1021. 2019.

[14] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. “Zether: Towards Privacy in a Smart Contract World”.
In: FC 2020. Ed. by J. Bonneau and N. Heninger. Vol. 12059. LNCS. Springer, Heidelberg, Feb. 2020,
pp. 423–443. doi: 10.1007/978-3-030-51280-4_23.

[15] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs
for Confidential Transactions and More”. In: 2018 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[16] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-Carrying Data without Succinct Argu-
ments. Cryptology ePrint Archive, Report 2020/1618. https://eprint.iacr.org/2020/1618. 2020.

[17] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-Carrying Data Without Succinct
Arguments”. In: CRYPTO 2021, Part I. Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Virtual
Event: Springer, Heidelberg, Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-84242-0_24.

[18] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Recursive Proof Composition from Accumulation
Schemes”. In: TCC 2020, Part II. Ed. by R. Pass and K. Pietrzak. Vol. 12551. LNCS. Springer,
Heidelberg, Nov. 2020, pp. 1–18. doi: 10.1007/978-3-030-64378-2_1.

[19] I. Cascudo, I. Damgård, B. David, N. Döttling, R. Dowsley, and I. Giacomelli. “Efficient UC Com-
mitment Extension with Homomorphism for Free (and Applications)”. In: ASIACRYPT 2019, Part II.
Ed. by S. D. Galbraith and S. Moriai. Vol. 11922. LNCS. Springer, Heidelberg, Dec. 2019, pp. 606–635.
doi: 10.1007/978-3-030-34621-8_22.

[20] D. Catalano, D. Fiore, and I. Tucker. “Additive-Homomorphic Functional Commitments and Applica-
tions to Homomorphic Signatures”. In: ASIACRYPT 2022, Part IV. Ed. by S. Agrawal and D. Lin.
Vol. 13794. LNCS. Springer, Heidelberg, Dec. 2022, pp. 159–188. doi: 10.1007/978-3-031-22972-5_6.

[21] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable Proof Systems and Applica-
tions”. In: EUROCRYPT 2012. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer,
Heidelberg, Apr. 2012, pp. 281–300. doi: 10.1007/978-3-642-29011-4_18.

[22] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable Signatures: New Definitions
and Delegatable Anonymous Credentials”. In: CSF 2014 Computer Security Foundations Symposium.
Ed. by A. Datta and C. Fournet. IEEE Computer Society Press, 2014, pp. 199–213. doi: 10.1109/CSF.
2014.22.

[23] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Succinct Malleable NIZKs and an Ap-
plication to Compact Shuffles”. In: TCC 2013. Ed. by A. Sahai. Vol. 7785. LNCS. Springer, Heidelberg,
Mar. 2013, pp. 100–119. doi: 10.1007/978-3-642-36594-2_6.

[24] D. Chaum, C. Crépeau, and I. Damgård. “Multiparty Unconditionally Secure Protocols (Abstract) (In-
formal Contribution)”. In: CRYPTO’87. Ed. by C. Pomerance. Vol. 293. LNCS. Springer, Heidelberg,
Aug. 1988, p. 462. doi: 10.1007/3-540-48184-2_43.

[25] A. Connolly, P. Lafourcade, and O. Perez-Kempner. “Improved Constructions of Anonymous Creden-
tials from Structure-Preserving Signatures on Equivalence Classes”. In: PKC 2022, Part I. Ed. by G.
Hanaoka, J. Shikata, and Y. Watanabe. Vol. 13177. LNCS. Springer, Heidelberg, Mar. 2022, pp. 409–
438. doi: 10.1007/978-3-030-97121-2_15.

[26] G. Couteau and D. Hartmann. “Shorter Non-interactive Zero-Knowledge Arguments and ZAPs for
Algebraic Languages”. In: CRYPTO 2020, Part III. Ed. by D. Micciancio and T. Ristenpart. Vol. 12172.
LNCS. Springer, Heidelberg, Aug. 2020, pp. 768–798. doi: 10.1007/978-3-030-56877-1_27.

[27] G. Couteau, M. Klooß, H. Lin, and M. Reichle. “Efficient Range Proofs with Transparent Setup from
Bounded Integer Commitments”. In: EUROCRYPT 2021, Part III. Ed. by A. Canteaut and F.-X.
Standaert. Vol. 12698. LNCS. Springer, Heidelberg, Oct. 2021, pp. 247–277. doi: 10.1007/978-3-030-
77883-5_9.

[28] I. Damgård, B. M. David, I. Giacomelli, and J. B. Nielsen. “Compact VSS and Efficient Homomorphic
UC Commitments”. In: ASIACRYPT 2014, Part II. Ed. by P. Sarkar and T. Iwata. Vol. 8874. LNCS.
Springer, Heidelberg, Dec. 2014, pp. 213–232. doi: 10.1007/978-3-662-45608-8_12.

26

https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2020/1618
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-662-45608-8_12

[29] I. Damgård, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and L. Siniscalchi. “Balancing Privacy and Ac-
countability in Blockchain Identity Management”. In: CT-RSA 2021. Ed. by K. G. Paterson. Vol. 12704.
LNCS. Springer, Heidelberg, May 2021, pp. 552–576. doi: 10.1007/978-3-030-75539-3_23.

[30] I. Damgard, M. Geisler, and M. Kroigard. “Homomorphic encryption and secure comparison”. In:
International Journal of Applied Cryptography 1.1 (2008), pp. 22–31.

[31] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. “Multiparty Computation from Somewhat Ho-
momorphic Encryption”. In: CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. LNCS.
Springer, Heidelberg, Aug. 2012, pp. 643–662. doi: 10.1007/978-3-642-32009-5_38.

[32] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. “Cryptography against Continuous Memory
Attacks”. In: 51st FOCS. IEEE Computer Society Press, Oct. 2010, pp. 511–520. doi: 10.1109/FOCS.
2010.56.

[33] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. “MatRiCT: Efficient, Scalable and Post-
Quantum Blockchain Confidential Transactions Protocol”. In: ACM CCS 2019. Ed. by L. Cavallaro,
J. Kinder, X. Wang, and J. Katz. ACM Press, Nov. 2019, pp. 567–584. doi: 10.1145/3319535.3354200.

[34] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. “On the Non-malleability of the Fiat-Shamir
Transform”. In: INDOCRYPT 2012. Ed. by S. D. Galbraith and M. Nandi. Vol. 7668. LNCS. Springer,
Heidelberg, Dec. 2012, pp. 60–79. doi: 10.1007/978-3-642-34931-7_5.

[35] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with Online Extractors”.
In: CRYPTO 2005. Ed. by V. Shoup. Vol. 3621. LNCS. Springer, Heidelberg, Aug. 2005, pp. 152–168.
doi: 10.1007/11535218_10.

[36] J. Frankle, S. Park, D. Shaar, S. Goldwasser, and D. J. Weitzner. “Practical Accountability of Secret
Processes”. In: USENIX Security 2018. Ed. by W. Enck and A. P. Felt. USENIX Association, Aug.
2018, pp. 657–674.

[37] G. Fuchsbauer. “Commuting Signatures and Verifiable Encryption”. In: EUROCRYPT 2011. Ed. by
K. G. Paterson. Vol. 6632. LNCS. Springer, Heidelberg, May 2011, pp. 224–245. doi: 10.1007/978-3-
642-20465-4_14.

[38] N. Gama et al. “Detecting money laundering activities via secure multi-party computation for structural
similarities in flow networks”. In: Real World Cryptography. 2020. url: https://www.youtube.com/
watch?v=4hryY6cMPaM&t=2558s.

[39] C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zając. “What Makes Fiat–Shamir
zkSNARKs (Updatable SRS) Simulation Extractable?” In: International Conference on Security and
Cryptography for Networks. Springer. 2022, pp. 735–760.

[40] J. A. Garay, B. Schoenmakers, and J. Villegas. “Practical and Secure Solutions for Integer Comparison”.
In: PKC 2007. Ed. by T. Okamoto and X. Wang. Vol. 4450. LNCS. Springer, Heidelberg, Apr. 2007,
pp. 330–342. doi: 10.1007/978-3-540-71677-8_22.

[41] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key Generation for Discrete-
Log Based Cryptosystems”. In: Journal of Cryptology 20.1 (Jan. 2007), pp. 51–83. doi: 10.1007/s00145-
006-0347-3.

[42] Gnark Benchmarks. https://hackmd.io/@gnark/eccbench. Accessed: 2023-07-25.
[43] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game or A Completeness Theorem

for Protocols with Honest Majority”. In: 19th ACM STOC. Ed. by A. Aho. ACM Press, May 1987,
pp. 218–229. doi: 10.1145/28395.28420.

[44] S. Goldwasser and S. Park. Public Accountability vs. Secret Laws: Can They Coexist? Cryptology
ePrint Archive, Report 2018/664. https://eprint.iacr.org/2018/664. 2018.

[45] M. Green, G. Kaptchuk, and G. V. Laer. “Abuse Resistant Law Enforcement Access Systems”. In:
EUROCRYPT 2021, Part III. Ed. by A. Canteaut and F.-X. Standaert. Vol. 12698. LNCS. Springer,
Heidelberg, Oct. 2021, pp. 553–583. doi: 10.1007/978-3-030-77883-5_19.

[46] J. Groth and A. Sahai. “Efficient Non-interactive Proof Systems for Bilinear Groups”. In: EURO-
CRYPT 2008. Ed. by N. P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr. 2008, pp. 415–432.
doi: 10.1007/978-3-540-78967-3_24.

27

https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1109/FOCS.2010.56
https://doi.org/10.1109/FOCS.2010.56
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-642-20465-4_14
https://www.youtube.com/watch?v=4hryY6cMPaM&t=2558s
https://www.youtube.com/watch?v=4hryY6cMPaM&t=2558s
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://hackmd.io/@gnark/eccbench
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2018/664
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-540-78967-3_24

[47] C. Hébant, D. H. Phan, and D. Pointcheval. “Linearly-Homomorphic Signatures and Scalable Mix-
Nets”. In: PKC 2020, Part II. Ed. by A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas. Vol. 12111.
LNCS. Springer, Heidelberg, May 2020, pp. 597–627. doi: 10.1007/978-3-030-45388-6_21.

[48] M. Khalili, D. Slamanig, and M. Dakhilalian. “Structure-Preserving Signatures on Equivalence Classes
from Standard Assumptions”. In: ASIACRYPT 2019, Part III. Ed. by S. D. Galbraith and S. Moriai.
Vol. 11923. LNCS. Springer, Heidelberg, Dec. 2019, pp. 63–93. doi: 10.1007/978-3-030-34618-8_3.

[49] A. Kiayias, M. Kohlweiss, and A. Sarencheh. “PEReDi: Privacy-Enhanced, Regulated and Distributed
Central Bank Digital Currencies”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. Ed. by H.
Yin, A. Stavrou, C. Cremers, and E. Shi. ACM, 2022, pp. 1739–1752. doi: 10.1145/3548606.3560707.
url: https://doi.org/10.1145/3548606.3560707.

[50] T. Kim and J. Jeong. “Extended Tower Number Field Sieve with Application to Finite Fields of
Arbitrary Composite Extension Degree”. In: PKC 2017, Part I. Ed. by S. Fehr. Vol. 10174. LNCS.
Springer, Heidelberg, Mar. 2017, pp. 388–408. doi: 10.1007/978-3-662-54365-8_16.

[51] M. Kohlweiss, A. Lysyanskaya, and A. Nguyen. “Privacy-Preserving Blueprints”. In: Cryptology ePrint
Archive (2022). url: https://eprint.iacr.org/2022/1536.

[52] M. Kohlweiss, A. Lysyanskaya, and A. Nguyen. “Privacy-Preserving Blueprints”. In: EUROCRYPT 2023,
Part II. Ed. by C. Hazay and M. Stam. Vol. 14005. LNCS. Springer, Heidelberg, Apr. 2023, pp. 594–
625. doi: 10.1007/978-3-031-30617-4_20.

[53] M. Kohlweiss, A. Lysyanskaya, and A. Nguyen. “Privacy-Preserving Blueprints”. In: Advances in Cryp-
tology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part II. Ed. by C. Hazay
and M. Stam. Vol. 14005. Lecture Notes in Computer Science. Springer, 2023, pp. 594–625. doi:
10.1007/978-3-031-30617-4_20. url: https://doi.org/10.1007/978-3-031-30617-4_20.

[54] M. Kohlweiss and M. Zając. On Simulation-Extractability of Universal zkSNARKs. Cryptology ePrint
Archive, Report 2021/511. https://eprint.iacr.org/2021/511. 2021.

[55] J. Konvalina. “A unified interpretation of the binomial coefficients, the Stirling numbers, and the
Gaussian coefficients”. In: The American Mathematical Monthly 107.10 (2000), pp. 901–910.

[56] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive Zero-Knowledge Arguments from Folding
Schemes. Cryptology ePrint Archive, Report 2021/370. https://eprint.iacr.org/2021/370. 2021.

[57] U. M. Maurer. “Unifying Zero-Knowledge Proofs of Knowledge”. In: AFRICACRYPT 09. Ed. by B.
Preneel. Vol. 5580. LNCS. Springer, Heidelberg, June 2009, pp. 272–286.

[58] MIRACL Benchmarks. https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/
benchmarks.md. Accessed: 2023-07-25.

[59] N. Narula, W. Vasquez, and M. Virza. “zkLedger: Privacy-Preserving Auditing for Distributed Ledgers”.
In: 15th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2018, Renton,
WA, USA, April 9-11, 2018. Ed. by S. Banerjee and S. Seshan. USENIX Association, 2018, pp. 65–80.
url: https://www.usenix.org/conference/nsdi18/presentation/narula.

[60] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”. In:
CRYPTO’91. Ed. by J. Feigenbaum. Vol. 576. LNCS. Springer, Heidelberg, Aug. 1992, pp. 129–140.
doi: 10.1007/3-540-46766-1_9.

[61] P. de Perthuis and D. Pointcheval. “Two-Client Inner-Product Functional Encryption with an Appli-
cation to Money-Laundering Detection”. In: ACM CCS 2022. Ed. by H. Yin, A. Stavrou, C. Cremers,
and E. Shi. ACM Press, Nov. 2022, pp. 725–737. doi: 10.1145/3548606.3559374.

[62] A. Pertsev, R. Semenov, and R. Storm. Tornado Cash Privacy Solution, version 1.4. https://web.
archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf.
Dec. 2019.

[63] C. Rackoff and D. R. Simon. “Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ci-
phertext Attack”. In: CRYPTO’91. Ed. by J. Feigenbaum. Vol. 576. LNCS. Springer, Heidelberg, Aug.
1992, pp. 433–444. doi: 10.1007/3-540-46766-1_35.

28

https://doi.org/10.1007/978-3-030-45388-6_21
https://doi.org/10.1007/978-3-030-34618-8_3
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1007/978-3-662-54365-8_16
https://eprint.iacr.org/2022/1536
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/370
https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://www.usenix.org/conference/nsdi18/presentation/narula
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3548606.3559374
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://doi.org/10.1007/3-540-46766-1_35

[64] P. Reuter and E. M. Truman. Chasing Dirty Money: The Fight Against Money Laundering. Peterson
Institute for International Economics, 2004.

[65] T. Sander and A. Ta-Shma. “Flow Control: A New Approach for Anonymity Control in Electronic Cash
Systems”. In: FC’99. Ed. by M. Franklin. Vol. 1648. LNCS. Springer, Heidelberg, Feb. 1999, pp. 46–61.

[66] A. Scafuro. “Break-glass Encryption”. In: PKC 2019, Part II. Ed. by D. Lin and K. Sako. Vol. 11443.
LNCS. Springer, Heidelberg, Apr. 2019, pp. 34–62. doi: 10.1007/978-3-030-17259-6_2.

[67] C.-P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: CRYPTO’89. Ed. by G.
Brassard. Vol. 435. LNCS. Springer, Heidelberg, Aug. 1990, pp. 239–252. doi: 10.1007/0-387-34805-
0_22.

[68] M. Sporny, D. Longley, M. Sabadello, D. Reed, O. Steele, and C. Allen. Decentralized Identifiers
(DIDs) v1.0 - Core architecture, data model, and representations. https://w3c- ccg.github.io/did-
spec/. Accessed: 2023-05-18.

[69] M. Tibouchi. CRYPTO and CHES 2016, Santa Barbara, CA, USA. https://ellipticnews.wordpress.
com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/. Accessed: 2023-05-16.

[70] A. Tomescu et al. UTT: Decentralized Ecash with Accountable Privacy. Cryptology ePrint Archive,
Report 2022/452. https://eprint.iacr.org/2022/452. 2022.

[71] K. Wüst, K. Kostiainen, V. Capkun, and S. Capkun. “PRCash: Fast, Private and Regulated Trans-
actions for Digital Currencies”. In: FC 2019. Ed. by I. Goldberg and T. Moore. Vol. 11598. LNCS.
Springer, Heidelberg, Feb. 2019, pp. 158–178. doi: 10.1007/978-3-030-32101-7_11.

A Non-Interactive Zero-Knowledge Proofs

Section 3 introduces NIZK syntax and mentions some of the most important aspects. In this section, due to
the lack of space, we describe common security definitions that we use to prove our construction secure.

We defined update completeness in Definition 4. The following definition is a standard variant that does
not consider Update.

Definition 14 (Completeness). A non-interactive proof system (Setup,Prove,Verify) for L is perfectly
complete, if for crs

$←− Setup(1λ), and all (x,w) ∈ RL,

Pr
[
Verify(crs,Prove(crs, x,w), x) = 1

]
= 1

where the randomness is over the random coins of Prove.

Definition 15 (Soundness). A non-interactive proof system (Setup,Prove,Verify) for L is computationally
sound, if for all x /∈ L and all PPT A playing a role of a malicious prover,

Pr

[
Verify(crs,π, x) = 1 :

crs
$←− Setup(1λ)

π
$←− A(crs)

]
≤ negl(λ)

where the randomness is over the random coins of Setup and A.

Definition 16 (Zero-Knowledge). A non-interactive proof system (Setup,Prove,Verify) for L is perfectly
zero-knowledge if there exists a PPT simulator Sim such that given for all (x,w) ∈ RL{

(crs,π)
∣∣∣ (crs, td)

$←− Setup(1λ)

π
$←− Sim(crs, td, x)

}
p
=

{
(crs,π)

∣∣∣ (crs, ·) $←− Setup(1λ)

π
$←− Prove(crs, x,w)

}
Definition 17 (Strong Simulation-Extractability). A non-interactive proof system (Setup,Prove,Verify)
for L is (strongly straight-line) simulation-extractable, if it is zero-knowledge and there exists Ext such that
for all PPT A

Pr

Verify(crs,π, x) = 1 ∧
(x,π) /∈ Q ∧ (x,w) /∈ RL

:

(crs, td)
$←− Setup(1λ)

Q← ∅
(x,π)

$←− AOSim(·,·)(crs)
w← Ext(crs, td,π)

 ≤ negl(λ)

29

https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/did-spec/
https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/
https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/
https://eprint.iacr.org/2022/452
https://doi.org/10.1007/978-3-030-32101-7_11

where OSim(x,w) behaves as follows: it first checks whether (x,w) ∈ RL, and if not, aborts; otherwise it
generates π

$←− Sim(td, x), sets Q← Q ∪ {(x,π)}, and returns π. The existence of Sim is guaranteed by ZK.

The strong aspect here highlights non-malleability: an adversary which can randomize proofs can easily
win a strong SE game by obtaining a simulated proof π for x, randomizing it into π′, and passing it to the
game: (x,π′) /∈ Q, but Ext will definitely fail because simulated proofs do not contain the witness. Therefore,
strong SE prohibits proof randomization.

Note that the definition commonly called knowledge-soundness (KS) is a weaker form of simulation-
extractability that does not give A the oracle, does not maintain Q, and does not perform the (x,π) /∈ Q
check.

B Updatable NIZK Arguments

For our main construction, we use CH20 [26] NIZK, which we refer to as Πu which has controlled malleability.
In this section, we recall the proof system and argue why is it updatable.

The Πu proof is using a uniform CRS consisting of a single group element [z]2, where z ← Zq is a uniformly
sampled trapdoor. For a language matrix M(X⃗) ∈ P l×t where l is the size of the instance x and t is the
size of the witness w, Prove([z]2, x,w) returns π = ([a]1 ∈ Gl

1, [d]2 ∈ Gt
2) where elements are constructed as

follows:

[a]1 ← [M(x)]1 · s
[d]2 ← [z]2 · w + [1]2 · s

where s ∈ Zt
q is sampled randomly. That is, the vector s is used as randomization to avoid leakage. Hence

proof construction requires 2t+|M(x)| curve multiplications (when abusing notation to let |M(x)| denote non-
zero entries), of which only 2t are in curve 2. Then the proof is verified by running Verify([z]2,π) := ([a]1, [d]2))
which checks a single equation

ê([M(x)]1, [d]2)
?
= ê(x, [z]2) · ê([a]1, [1]2) .

That is, the left-hand side is a matrix-vector multiplication of an l × t matrix and a vector of t elements,
where the multiplication operation happens through the pairing. Hence this requires the amount of pairing
operations as there are non-zero elements in M(x). On the right-hand side, we compute 2l pairings. Hence
proof validation requires 2l + |M(x)| pairings and no direct curve multiplications. The proof itself contains
|x|+ |w| = l + t elements, of which l are on curve 1 and t on curve 2.

Updates in LM . Rephrasing the definition of updatability for algebraic languages covered in Section 3, L is
updatable w.r.t. transformation (Txm,Txa,Twm,Twa) if for all (x,w) ∈ R, the following relation holds:

Txm · x+ Txa = M(Txm · x+ Txa) ·
(
Twm · w + Twa

)
Intuitively, it means that there is a linear way to update both the instance and the witness simultaneously.

One simple example is the language of Diffie-Hellman tuples (C1,C2,C3) := (gx, gy, gxy). The matrix M

defines the following relations: C1 = Gx,C2 = Gy,C3 = Cy
1 . Then, for any α,β it holds that (Cα

1 ,C
β
2 ,C

αβ
3)

is also in the relation (this defines Txm implicitly, Txa = 0), since x′ = αx, y′ = βy (this defines Twm with α,β
as diagonal, and Twa = 0).

Updates in the CH20 NIZK. The proof updatability in CH20 requires an extra condition: a valid language
transformation must be compatible in the following way:

30

Definition 18 (Blinding-Compatible Transformations). Let LM be an algebraic language defined
w.r.t. a matrix M(x). A valid transformation T := (Txm,Txa,Twm,Twa) on L is said to be blinding-compatible,
if there exists another pair of matrices (Tam,Taa) ∈ Zl×2l

p × Zl
p such that the following equation holds for all

x ∈ L and all s ∈ Zt
p:

Tam ·
(
M(x) · s

x

)
+ Taa = M(Txm · x+ Txa) ·

(
Twm · s+ Twa

)
Some valid T are trivially blinding-compatible: a simple (Tam,Taa) := (Txm | 0l×l,Txa) will satisfy the

equation; but this is not true generally.
Note that this equation is quite different from the one for language updatability. First, it applies to all s

completely independently from the instance x. Second, s ∈ Zt
p is uniform and might not be a valid witness

(e.g. L may require w2 = w2
1, but the equation must work for completely independent s1, s2). Finally, Tam

applies not only to M(x) · s, but also to the instance x itself; this actually relaxes the requirement.
Overall, this much stronger condition is necessary due to the linearity that Schnorr-like NIZKs use for

blinding w with a uniform s.

Define Update(([a]1, [d]2),T := (Tam,Taa,Txm,Txa,Twm,Twa)) as a function returning π′ = ([a′]1, [d
′]2)

constructed as follows:

[a′]1 = Tam ·
(
[a]1
x

)
+ [1]1 · Taa + [M(x)]1 · ŝ

[d′]2 = Twm · [d]2 + [z]2 · Twa + [1]2 · Twa + [1]2 · ŝ

where ŝ is sampled uniformly at random.

Theorem 3 (Update Completeness of CH20). The CH20 proof system Πu with Update satisfies update
completeness with respect to all blinding-compatible transformations T = (Tam,Taa,Txm,Txa,Twm,Twa) on an
algebraic language LM .

Proof. Consider first the case with ŝ = 0 — this element rerandomizes the proof, which we will cover in the
second step. Observe how the new proof elements are expressed in terms of the old instance and witness:

[a′]1 = Tam ·
(
[M(x)]1 · s

x

)
+ [Taa]1

[d′]2 = [z]2(Twm · w + Twa) + [Twm · s]2 + [Twa]2

For convenience, define x′ = Txm · x+Txa, w′ = Twm ·w+Twa, s′ = Twm · s+Twa. Let us check the verification
equation directly; by looking at the left and right-hand sides separately:

ê([M(x′)]1, [d
′]2) = [z ·M(x′) · (Twm · w + Twa) +M(x′)(Twm · s+ Twa)]3

ê(x′, [z]2) · ê([a′]1, [1]2) = [z · x′ + Tam ·
(
M(x) · s

x

)
+ Taa]3

Since T is a valid transformation, we first have that M(x′) · w′ = x′. Since, furthermore, T is blinding-

compatible, we have Tam ·
(
M(x) · s

x

)
+Taa = M(x′)(Twm ·s+Twa). This means that the verification equations

will be satisfied by (a′,d′).

Now, considering ŝ ̸= 0, observe the form of the updated proof elements:

[a′′]1 = [a′]1 + [M(x)ŝ]1

[d′′]2 = [d′]2 + [ŝ]2

This merely sets the new challenge randomness to s′ + ŝ, essentially rerandomizing the proof.

31

Note that setting (Tam,Taa,Txm,Txa,Twm,Twa) ← (Il|0l×l, 0l, Il, 0l, It, 0t) (where Il is the identity matrix
of size l) turns Update into a rerandomization function without transforming the instance.

Theorem 4 (Derivation Privacy of CH20). The CH20 proof system Πu with Update satisfies derivation
privacy for any valid transformation T on algebraic languages.

Proof. This follows from the form of the update function, and the remark on randomization. The updated
proofs which are additionally randomized are distributed in the same way as the honest proofs because
randomization has exactly the same form as the honest Prove.

B.1 Example of Updatability for Algebraic Languages

We will illustrate updatability of algebraic languages and Πu on the example of a concrete small language
encoding a Diffie-Hellman tuple. Given a group G1 of finite prime order p with a generator G, define the
language as follows:

Ldh := {(C1,C2,C3) | ∃(a, b) s.t. C1 = Ga ∧ C2 = Gb ∧ C3 = Gab}

It is clear that the relation Rdh is hard under DDH in G1, therefore proving x ∈ Ldh is non-trivial.
We start by formally defining how Ldh is expressed algebraically:

x = (C1,C2,C3) ∈ G3
1

w = (a, b) ∈ Z2
p

and M(x) =

G 0
0 G
0 C1

Recall that our formalization defines M(X⃗) ∈ P l×t — in our example, the only instance variable in M

is C1, and all other elements are constants. It is easy to see that for a fixed (x,w) the fact that M(x) ·w = x
directly implies (x,w) ∈ Rdh.

First, examining transformations on Ldh we observe that the following matrices can be used:

Twm =

[
γ 0
0 δ

]
Txm =

γ 0 0
0 δ 0
0 0 γδ

 Twa =

(
0
0

)
Txa =

0
0
0

With them we can derive the new instance x′ := Txm · x = (Gγa,Gδb,G(γa)(δb)) that corresponds to the
transformed witness w′ := Twm · w = (γa, δb). Indeed, as required by Definition 2, with these two matrices
the following equation holds:

M(Txm · x) ·
(
Twm · w

)
= Txm ·

(
M(x) · w

)
Finally, let there be a CH20 proof of x ∈ L created as

([a]1, [d]2) = ([M(x)]1 · s, [z]2 · w + [1]2 · s) =

 [s1]1
[s2]1

[a · s2]1

 ,

(
[za+ s1]2
[zb+ s2]2

)
for some random s. When verifying this proof, we will compute, on each side:

ê([M(x)]1, [d]2) =

 [za+ s1]3
[zb+ s2]3

[a(zb+ s2)]3

 and ê(x, [z]2) · ê([a]1, [1]2) =

 [a · z]3
[b · z]3
[ab · z]3

+

 [s1]3
[s2]3

[a · s2]3

which are exactly equal. The transformation is trivially blinding-compatible, which means that (Tam,Taa) :=
(Txm | 0l×l,Txa) will do. Then:

([a′]1, [d
′]2) = (Txm · [a]1,Twm · [d]2) =

 [γs1]1
[δs2]1

[γa · δs2]1

 ,

(
[zγa+ γs1]2
[zδb+ δs2]2

)
will be a (non-rerandomized) transformed proof for x′. It is easy to visually verify that the transformed proof
is structured exactly the same as the original proof, but w.r.t. a new instance and witness.

32

Adding Additive Matrices. Our example can be further extended to commitments on DH tuples; this
would use additive matrices as well. Assume H ∈ G1 is uniformly sampled.

Ldh+ := {(C1,C2,C3) | ∃(a, b) s.t. C1 = GaHr1 ∧ C2 = GbHr2 ∧ C3 = GabHr1b+r3}

Because Pedersen commitments are perfectly hiding, every triple of group elements is in the language. But
proving membership in it with an argument of knowledge is meaningful, because it shows a way to extract
a witness computationally, and by the computational binding of Pedersen it will be a unique one8. In this
case, we have:

x = (C1,C2,C3) ∈ G3
1

w = (a, b, r1, r2, r3) ∈ Z5
p

and M(x) =

G 0 H 0 0
0 G 0 H 0
0 C1 0 0 H

The matrices we will use are:

Twm =

γ 0 0 0 0
0 δ 0 0 0
0 0 γ 0 0
0 0 0 δ 0
0 0 0 0 γδ

 Txm =

γ 0 0
0 δ 0
0 0 γδ

 Twa =

0
0
0
r′2
r′3

 Txa =

 0

Hr′2

Hr′3

To see that this matrix constitutes a valid transformation consider how the new instance and witness look:

x′ =

 Cγ
1

Cδ
2H

r′2

Cγδ
3 Hr′3

 =

 GγaHγr1

GδbHδr2+r′2

G(γa)(δb)H(γr1)(bδ)+(γδr3+r′3)

w′ = (γa, δb, γr1, δr2 + r′2, γδr3 + r′3)

which clearly belong to the relation Rdh+. Proving the proof transformation is similar to how it was done in
the previous example, except now we need to consider the non-zero additive matrices. The proof is structured
as follows (where h is a logarithm of H):

([a]1, [d]2) = ([M(x)]1 · s, [z]2 · w + [1]2 · s) =

 [s1 + hs3]1

[s2 + hs4]1
[as2 + h(r1s2 + s5)]1

 ,

[za+ s1]2
[zb+ s2]2
[zr1 + s3]2
[zr2 + s4]2
[zr3 + s5]2

Now, after updating the proof (again without rerandomization for simplicity) it will look as follows:

[a′]1 = Txm · [a]1 + [Txa]1 =

 [γs1 + h(γs3)]1
[δs2 + h(δs4 + r′2)]1

[(γa)(δs2) + h((γr1)(δs2) + (γδs5 + r′3))]1

[d′]2 = Twm · [d]2 + [z]2Twa + [Twa]2 =

[z · γa+ γs1]2
[z · δb+ δs2]2
[z · γr1 + γs3]2

[z · (δr2 + r′2) + δs4 + r′2]2
[z · (γδr3 + r′3) + γδs5 + r′3]2

It is easy to verify that this is structurally equal to the fresh proof, but w.r.t. (x′,w′); formally, ([a′]1, [d′]2) =
([M(x′)]1 · s′, [z]2 · w′ + s′) with s′ = Twms+ Twa.

8 Even though CH20 proofs are only sound, in practice this issue can be overcome with pairing CH20 with a regular
Schnorr, which is ignored in this example.

33

B.2 Updatability for the Consistency Language

In Section 5.3 we presented the consistency language Lc together with a general language transformation,
that affects virtually all the witness elements simultaneously. In this section, we show that there exist two
distinct blinding-compatible transformations for Lc.

The first one, Tupd, will assume that the current witness has α̂ = r̂α = 0, and therefore A = 1 in
the instance, and will update all the internal randomness values, including the commitment value x̂ι. This
transformation may be parameterized with either α = rα = 0, in which case it can be applied to the
transformed proof further; or with α, rα ̸= 0, in which case the new hints will become properly blinded, but
the transformation will no longer apply. The second one, Tblind does not assume α̂ = r̂α = 0, can introduce
non-zero (α, rα) and other randomizers, except it does not update the value xι.

The intuition here is that although the consistency language is fully updatable, we can only update the
proof (1) with xι, while (Ai,Bi) are not blinded, (2) with the blinder α, but then we cannot update xι

further. In both cases, all other randomizers are included and non-exclusive. The matrices Tam,Taa for both
of these transformations look exactly the same structurally, except they will need to be parameterized with
zero or non-zero update values depending on the case.

We will not further consider Tblind in this section because for our application it is only necessary to use
Tupd in two modes: either with α = rα = 0 when running Update, or with non-zero α, rα when blinding
within Escrow.

We will describe the matrices Tam,Taa in the form of a list for conciseness — we will present the linear
transformations, per row, that characterize the mapping (x,S) 7→ Tam · (S, x)T +Taa, where S = M(x) ·s. For
clarity, unlike in Section 5, we will use U· notation to denote update values explicitly, e.g. Ux is an update
value corresponding to the variable x. In this syntax SAi

corresponds to the line of M(x) · s that would
produce Ai if there was w instead of s. Note that S3+2d+i for i ∈ [d + 1] are generally not 1G, unlike the
real counterparts in x. Given the update values (Ux,Urx,i , {Urι,i}di=1,Uα,Urα), the update transformation is
as follows:

1. S′T = ST.
2. S′X = SXG

UxHUrx .
3. S′A = GUαHUrα .
4. S′A1

= SA1
GUr1

5. S′D1
= SD1

GUxHUr1WUα
1

6. S′Ai
=
(∏i

j=1(SAj
)Vi,j(Ux)

)
GUrι,i for i ∈ [1, d]

7. S′Di
= GUx

i
ι

(∏i
j=1 S

(i−1
j−1)U

i−j
x

Dj

)(∏i−1
j=1 D

(i−1
j)Ui−j

x

j

)
HUriWUα

i for i ∈ [1, d]

8. S′3+2d+1 = S3+2d+1

9. S′3+2d+2 = 1

10. S′5+2d+i =
(∏i

j=1(S5+2d+j)
Vi,j(Ux)

)(∏i
j=1(Aj)

(ij)U
i−j+1
x

)(∏i
j=1(SAj

)−(
i
j)U

i−j+1
x

)
for i ∈ [1, d− 1]

Now, we need to show why Tam,Taa defined implicitly so satisfies the blinding-compatibility equation:

Tam ·
(
M(x) · s

x

)
+ Taa = M(Txm · x+ Txa) ·

(
Twm · s+ Twa

)
More precisely, we need to prove that the equation is satisfied for all x ∈ L, s such that xX = 1, and
sα = srα = 0.

Lemma 1. The transformation Tupd described above is blinding-compatible w.r.t. (x,w) ∈ Lc for which
α = rα = sα = srα = 0.

Proof. Assume sα = srα = 0. Since the (Tam,Taa) (defined through the set of 10 clauses we just mentioned)
determines the left-hand side (LHS) of the blinding-compatibility equation, we will focus on showing that
the RHS is equal to it.

Let us look at s′ := (Twm · s+ Twa):

34

1. s′t = st
2. s′rt = srt
3. s′x = Ux + sx
4. s′rx = Urx + srx
5. s′α = Uα

6. s′rα = Urα

7. s′x−t = Ux + sx−t
8. s′α(x−t) = Ux · Uα + Uα · sx−t
9. s′rα(x−t) = Urα · Ux + Urα · sx−t

10. s′ri =
(∑i

j=1

(
i
j

)
U i−j
x srj

)
+ Uri , for i ∈ [d].

11. s′ri(x−t) =
(∑i

j=1

(
i
j

)
U i−j+1
x srj

)
+
(∑i

j=1

(
i
j

)
U i−j
x srj(x−t)

)
+ UriUx + Uri · sx−t, for i ∈ [d− 1].

Now let us look at M(Txm ·x+Txa) ·
(
Twm ·s+Twa

)
, which we expect to be equal to LHS defining Tam,Taa.

1. “T”: GstHsrt

2. “X”: GUx+sxHUrx+srx

3. “A”: GUαHUrα

4. “A1”: GUr1+sr1

5. “D1”: GUx+sx−tHUr1
+sr1WUα

1

6. “Ai”,i ∈ [2, d]: G(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

7. “Di”,i ∈ [2, d]:

(D′i−1)
Ux+sx−t × (H−1)(

∑i−1
j=1 (

i−1
j)Ui−j

x srj)+
(∑i−1

j=1 (
i−1
j)Ui−j−1

x srj(x−t)

)
+Uri−1

Ux+Uri−1
·sx−t

×H(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

× (W−1i−1)
Ux·Uα+Uα·sx−tWUα

i

8. “3 + 2d+ 1”: Gsx+Ux(G−1)st(G−1)sx−t+Ux

9. “3 + 2d+ 2”: (GUαHUrα)Ux+sx−t(G−1)Ux·Uα+Uα·sx−t(H−1)Urα ·Ux+Urα ·sx−t

10. “5 + 2d+ i”, i ∈ [d− 1]:

(A′i)
Ux+sx−t(G−1)(

∑i
j=1 (

i
j)U

i−j+1
x srj)+

(∑i
j=1 (

i
j)U

i−j
x srj(x−t)

)
+Uri

Ux+Uri
·sx−t

Clause 1 is completely unchanged. In clauses 2,3,4,5,6,8 M does not change (M(x)[i] = M(x′)[i]), but the
witness s′ does. In the rest (clauses 7,9,10) both M and the witness change.

It is easy to verify that RHS clauses 1-6 are equal to the LHS presented earlier. Let us examine the other
clauses one by one.

Clause 8. The LHS is S′3+2d+1 = S3+2d+1, while the RHS is Gsx+Ux(G−1)st(G−1)sx−t+Ux , equal to Gsx(G−1)st(G−1)sx−t ,
which is in turn exactly equal to S3+2d+1, as expected.

Clause 9. The LHS is S3+2d+2 = 1, while the RHS is

(GUαHUrα)Ux+sx−t(G−1)Ux·Uα+Uα·sx−t(H−1)Urα ·Ux+Urα ·sx−t

which is also equal to 1 when all the exponent terms cancel.

35

Clause 10. The RHS is equal to:

(A′i)
Ux+sx−t(G−1)

(∑i
j=1 (

i
j)U

i−j
x (Uxsrj+srj(x−t))

)
+Uri

Ux+Uri
·sx−t

= (G
∑i

j=1 (
i
j)rjU

i−j
x +Uri)Ux+sx−t(G−1)

(∑i
j=1 (

i
j)U

i−j
x (Uxsrj+srj(x−t))

)
+Uri

Ux+Uri
·sx−t

= G

(∑i
j=1 (

i
j)U

i−j
x (rj(Ux+sx−t)−Uxsrj−srj(x−t))

)
Now, consider the LHS:(i∏

j=1

(S5+2d+j)
Vi,j(Ux)

)
×
(i∏

j=1

(Aj)
(ij)x

i−j+1
ι

)
×
(i∏

j=1

(SAj)
−(ij)x

i−j+1
ι

)

=
(i∏

j=1

(S5+2d+j)
Vi,j(Ux)

)
×
(i∏

j=1

G(ij)x
i−j+1
ι (rj−srj)

)
Recall that S5+2d+j = A

sx−t

j G−srj(x−t) = Grjsx−t−srj(x−t) , then

=
(i∏

j=1

(Grjsx−t−srj(x−t))(
i
j)U

i−j
x

)
×
(i∏

j=1

G(ij)x
i−j+1
ι (rj−srj)

)

=
(i∏

j=1

G(ij)U
i−j
x (rjsx−t−srj(x−t)+Ux(rj−srj)

)
which is exactly equal to the RHS.

Clause 7. We start with the RHS:

(D′i−1)
Ux+sx−t × (H−1)

(∑i−1
j=1 (

i−1
j)Ui−j−1

x (Uxsrj+srj(x−t)

)
+Uri−1

Ux+Uri−1
·sx−t

×H(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

× (W−1i−1)
Ux·Uα+Uα·sx−tWUα

i

Expanding the first term with D′i−1 into

= (G(x+Ux−t)i−1

H
∑i−1

j=1 (
i−1
j)rjUi−j−1

x +Uri−1WUα
i−1)

Ux+sx−t × . . .

we immediately see that the Wi−1 terms and HUri−1
(Ux+sx−t) terms cancel:

= (G(x+Ux−t)i−1

H
∑i−1

j=1 (
i−1
j)rjUi−j−1

x)Ux+sx−t × (H−1)

(∑i−1
j=1 (

i−1
j)Ui−j−1

x (Uxsrj+srj(x−t)

)
×H(

∑i
j=1 (

i
j)U

i−j
x srj)+Uri ×WUα

i

Rearrange the terms, grouping them by base:

= H
∑i−1

j=1 (
i−1
j)Ui−j−1

x (rj(Ux+sx−t)−Uxsrj−srj(x−t)) ×H
∑i

j=1 (
i
j)U

i−j
x srj

×G(x+Ux−t)i−1(Ux+sx−t)HUriWUα
i

Given that
(
i
j

)
=
(
i−1
j−1
)
+
(
i−1
j

)
, we have H

∑i
j=1 (

i
j)U

i−j
x srj = HsriH

∑i−1
j=1((

i−1
j−1)+(

i−1
j))Ui−j

x srj . Plugging it in
into the previous equation we arrive at

= H
∑i−1

j=1 (
i−1
j)Ui−j−1

x (rj(Ux+sx−t)−srj(x−t)) ×H
∑i

j=1 (
i−1
j−1)U

i−j
x srj

×G(x+Ux−t)i−1(Ux+sx−t)HUriWUα
i

= H
∑i−1

j=1 (
i−1
j)Ui−j−1

x (rj(Ux+sx−t)−srj(x−t)+srj+1
) ×G(x+Ux−t)i−1(Ux+sx−t)HUri

+Ui−1
x sr1WUα

i

36

Now, we will switch to the LHS, and show that it is equal to this last reduced version of the RHS.

GUi
x

 i∏
j=1

S
(i−1
j−1)U

i−j
x

Dj

i−1∏
j=1

D
(i−1

j)Ui−j
x

j

HUriWUα
i

=

GUi
x ·

i−1∏
j=1

D
(i−1

j)Ui−j−1
x Ux

j

 i∏
j=1

S
(i−1
j−1)U

i−j
x

Dj

×HUriWUα
i

Expand product over Dj :

=

GUi
x ·

i−1∏
j=1

D
(i−1

j)Ui−j−1
x Ux

j

 i∏
j=1

S
(i−1
j−1)U

i−j
x

Dj

×HUriWUα
i

=

GUi−1
x

i−1∏
j=1

(G(x−t)jHrj)(
i−1
j)Ui−j−1

x

Ux
 i∏

j=1

S
(i−1
j−1)U

i−j
x

Dj

×HUriWUα
i

=
(
G(x+Ux−t)i−1

H
∑i−1

j=1 rj(i−1
j)Ui−j−1

x

)Ux

 i∏
j=1

S
(i−1
j−1)U

i−j
x

Dj

×HUriWUα
i

Recalling that SD1 = Gsx−tHsr1 and SDj = D
sx−t

j−1 (H−1)srj−1(x−t)Hsrj , substitute:

= H
∑i−1

j=1 rj(i−1
j)Ui−j

x (Gsx−tHsr1)U
i−1
x

 i∏
j=2

(D
sx−t

j−1 Hsrj−srj−1(x−t))(
i−1
j−1)U

i−j
x

×GUx(x+Ux−t)i−1

HUriWUα
i

= H
∑i−1

j=1 rj(i−1
j)Ui−j

x (Gsx−tHsr1)U
i−1
x

i−1∏
j=1

(D
sx−t

j Hsrj+1
−srj(x−t))(

i−1
j)Ui−j−1

x

×GUx(x+Ux−t)i−1

HUriWUα
i

= H
∑i−1

j=1 rj(i−1
j)Ui−j

x (Gsx−tHsr1)U
i−1
x

i−1∏
j=1

((G(x−t)jsx−tHrjsx−t+srj+1
−srj(x−t))(

i−1
j)Ui−j−1

x

×GUx(x+Ux−t)i−1

HUriWUα
i

=

i−1∏
j=1

H(i−1
j)Ui−j−1

x (rjUx+rjsx−t+srj+1
−srj(x−t))

×G(sx−t+Ux)(x+Ux−t)i−1

HUri
+sr1U

i−1
x WUα

i

It is easy to see now that LHS is equal to the RHS, so clause 7 holds.

C Deferred Proofs

Theorem 5 (History Binding). The uBlu protocol is a history binding UPPB scheme for (PedersenC,Pd(T ,X))
by strong simulation-extractability of Π.

Proof. The first winning condition for the history binding game, that VfHistory must verify for any prefix,
is trivially satisfied by the construction: our VfHistory checks every proof linearly, so if all proofs are valid,
any prefix is also valid.

37

The second condition says that two histories are “merged”: the last tags are the same, tag(0)ι = tag
(1)
ι , but

the histories are different: ∃i. (tag(0)i ,C
(0)
i) ̸= (tag

(1)
i ,C

(1)
i). Locate the greatest index j satisfying the second

condition. This also implies that (tag
(0)
j+1,C

(0)
j+1) = (tag

(1)
j+1,C

(1)
j+1). We will refer to tag

(0)
j+1 = tag

(1)
j+1 as just

tagj+1.
Because tagj ← (πx,j ,Xj), our condition is equivalent to either πx,j , Xj , or Cj being different in the two

cases. Note that both Cj and Xj are inputs to πx,j ; and that Xj is an input to πx,j+1 which is equal in both
cases.

By strong simulation-extractability, proofs with different instances are distinct, so by SE of πx,j+1 we get
X

(0)
j = X

(1)
j and π

(0)
x,j = π

(1)
x,j . Applying the same SE logic to πx,j now, we obtain C

(0)
j = C

(1)
j . This contradicts

the second winning condition.

Theorem 6 (Soundness). The uBlu protocol is a sound UPPB scheme for (PedersenC,Pd(T ,X)), if Π is
straightline-extractable knowledge sound, Πu is sound, and binding of PedersenC.

Proof. To prove soundness we must show the existence of an extractor Ext that satisfies two probabilistic
statements for any PPT A. Our extractor Ext, when given tagι = (πx,ι,Xι), will use tdΠ produced by Setup
to extract witness (xι, rx,ι, rι) from πx,ι such that Cι = Commit(xι, rι) and Xι = Xι−1G

xιHrx,ι .
The first part of the soundness proof is then a trivial application of knowledge-soundness of Π since it

guarantees the well-formedness of Cι w.r.t. the extracted values. In the rest of the proof, we will focus on
the second statement.

The second part of the soundness proof uses the same extractor multiple times, using which we now
obtain {xi, rx,i, ri}ιi=1 from the whole trace. In addition, we rely on KS of Π for the escrow proof, and on Πu

soundness for the consistency proof.
Right after the extraction from Xi = Xi−1G

xiHrx,i and X0 = 1 we conclude that Xι = Gx̂ιHr̂x,ι where
x̂ι :=

∑ι
i=1 xi and similarly r̂x,ι :=

∑ι
i=1 rx,ι. Because T is honestly constructed, we know T = GtHrt .

By soundness of the escrow proof πe we know that ∃α, rα,β, rβ,βα, rβα such that

A = GαHrα

B = GβHrβ

1 = Bα̂(G−1)βα(H−1)rβα

(E1,E2) =

(
d∏

i=1

(AUi
i)β ,

d∏
i=1

(DUi
i)β ·

d∏
i=1

(W−Ui
i)βα

)

The purpose of lines (2) and (3) is to merely introduce the product variables correctly (without revealing
β): by binding of B (which is binding of PedersenC) we know that the witness standing for βα is actually
equal to β · α, and same stands for rβα.

From the lines (1) and (4), simplifying, we now deduce that ∃α, rα,β:

A = GαHrα

(E1,E2) =

(∏
i

AUiβ
i ,

∏
i

DUiβ
i ·

∏
i

(W−Ui
i)β·α

)

Let us now analyze the consistency proof πc. It can be shown similarly that by binding of the commitments,
soundness of πc, and in particular the set of equations in line 7 in the description of Lc in Section 5.3, that
the product witness elements α(x̂ι − t) and r̂ι,i(x̂ι − t) are product of, correspondingly, witness elements α
with (x̂ι − t) and r̂ι,i with (x̂ι − t). In addition, we thus deduce that witness variable (x̂ι − t) is equal to
the difference of the other two witness variables x̂ι and t. With these simplifications in mind, and collapsing

38

recursive relations in line 6.b of Lc description, we obtain that ∃t, rt, x̂ι, r̂x,ι,α, rα, {r̂i}di=1 such that

T = GtHrt

Xι = Gx̂ιHr̂x,ι

A = GαHrα

(Ai,Di) = (Gr̂i ,G(x̂ι−t)iH r̂iWα
i) for i ∈ [d]

By binding of T and all Xι, we know that the existentially introduced t, rt, x̂ι, r̂x,ι are the same that we
constructed from the output of an earlier extractor. Therefore they can be removed from the existential
statement together with commitment-validity lines.

By binding of A we know that the existentially introduced variables (α, rα) are equal in both statements,
and the statement A = GαHrα itself can be removed from both.

Combining two sets of equations for πc and πe we now have: ∃α,β, {r̂i}di=1:

(Ai,Di) = (Gr̂i ,G(x̂ι−t)iH r̂iWα
i) for i ∈ [d]

(E1,E2) =

(∏
i

AUiβ
i ,

∏
i

DUiβ
i ·

∏
i

(W−Ui
i)β·α

)

Substituting the first into the second we arrive at: ∃α,β, {r̂i}di=1:

(E1,E2) =

(∏
i

Gr̂iUiβ ,
∏
i

(G(x̂ι−t)iH r̂iWα
i)

Uiβ ·
∏
i

(W−Ui
i)β·α

)

=

(∏
i

Gr̂iUiβ ,
∏
i

G(x̂ι−t)iUiβH r̂iUiβ

)
=
(
Gβ

∑
i r̂iUi ,Gβ

∑
i(x̂ι−t)iUiHβ

∑
i r̂iUi

)
=
(
Gβ

∑
i r̂iUi ,GβP (t,x̂ι)Hβ

∑
i r̂iUi

)
By combining everything, we deduce that (E1,E2) is an encryption of βP (t, x̂ι :=

∑ι
i=1 xi); by ElGamal

completeness, this will be the predicate value. This last transition used soundness of πc,πe and binding of
the commitment scheme.

Theorem 7 (Threshold Hiding). The uBlu protocol is a threshold hiding UPPB scheme for (PedersenC,Pd(T ,X)),
under DDH in G1, ZK of both Π and Πu, and hiding of PedersenC.

Proof. First, recall that the honest KeyGen(t) outputs

pk = (H,T,πpk)

hint0 =
(
{A0,i,D0,i}i∈[d],X0 = 1G,πc

)
We proceed in the sequence of hybrid games.

In the first game transition, we will replace (pp, ·) $←− Setup(1λ) with (pp, td)
$←− Setup(1λ), and using td

will simulate both πpk and πc by zero-knowledge of Π and Πu. The transition is perfect.
In the second game, we will replace T with a randomly sampled element. Since the honest T = GtHrt for

uniformly random r sampled in KeyGen, T is uniform in T, and thus can be replaced (hiding of PedersenC).
This transition is also perfect.

At this stage, the game directly reduces to the IND-CPA of ElGamal (m-message variant) w.r.t. the public
key of the regulator, which is known to be implied by DDH in the underlying group. Assuming A breaks the
threshold hiding of our construction, we describe an attacker B interacting with the d-IND-CPA challenger

39

C. First, B obtains H = Gsk from C, which is a public key of the regulator. Then, B gets two threshold
values t1, t2 from A, gives C threshold powers {ti1}di=1 and {ti2}di=1, obtains ciphertexts {A0,i,B0,i}di=1 which
are encryptions of those powers. Remembering that no hint blinding is involved at this step, B can assemble
(pk, hint0) (with simulated proofs and randomly chosen T as before) and give it to A. Now, if A can return
b⋆ that decides threshold secrecy, then B can pass this b⋆ to C and decide d-IND-CPA.

Theorem 8 (Tag Hiding). The uBlu protocol is a tag hiding UPPB scheme for (PedersenC,Pd(T ,X)),
assuming ZK of Π, and hiding of PedersenC.

Proof. To prove tag hiding, we must construct S(td, pk, tagι−1,Cι := Commit(xι, rι)) that outputs tag dis-
tributed equally to the honest Updatepk(hintι−1,xι, rι).

Our simulator S will return tagι = (πx,ι,Xι), where Xι is randomly sampled, and πx,ι is fully simulated
using td. Since the honest Xι = Xι−1 · Commit(xι; rx,ι) = Xι−1G

xιHrx,ι is perfectly hiding due to rx,ι being
sampled randomly, a randomly sampled Xι ∈ G is in distributed exactly the same. Because Π is perfect
zero-knowledge, S with td can simulate πx,ι for the instance x = (H,Xι−1,Xι,Cι,πx,ι−1), where H (part of
pk), tagι−1 = (πx,ι−1,Xι−1), and Cι are all provided as an input to S.

Theorem 9 (Hint Hiding). The uBlu protocol is a hint hiding UPPB scheme for (PedersenC,Pd(T ,X)),
under DDH in G1, ZK of both Π and Πu, derivation privacy of Πu, and hiding of PedersenC.

Proof. Recall the hint structure; as an output of Update we obtain:

hintι =
(
{Aι,i,Dι,i}i∈[d],Xι,πc,ι

)
This proof is very similar to how threshold hiding is proven since KeyGen also produces a hint.

We start with the hint hiding game. As a first step, we switch to simulated setup Setup, and simulate
πc,ι,πx,ι. One difference with the threshold hiding proof is that while πx,ι is produced by Prove, πc,ι is produce
as a result of update of πc,ι−1. However, we can still instead simulate πc,ι−1 for the new instance, because
Πu is derivation private (updated proof is distributed as a completely fresh one for the new instance) and
standard zero-knowledge. This transition is perfect.

In the next game, we sample Xι uniformly at random, as in the threshold hiding proof. Since PedersenC
is perfectly hiding, this transition is also perfect.

Now, we can directly embed d-IND-CPA of ElGamal into our game. This is very similar to the threshold
hiding case, except we will request encryptions of {(x(0))i}di=1 and {(x(1))i}di=1 from d-IND-CPA challenger,
and then homomorphically append them to {Aι−1,i,Bι−1,i}di=1. It follows that if A wins this last variant
of the hint hiding game, then the reduction we just described will break d-IND-CPA of ElGamal, which is
known to hold under DDH in G1.

Before we formulate and prove blueprint hiding, we state simple lemmas explaining why our blinding
technique with Di = BiW

α
i is hiding.

Lemma 2. Let G be a finite group with prime order q and generator G. Then for any polynomial d, DDH
in G is equivalent to following problem we call d-VDDH:

(Gx, {Gyi ,Gxyi}di=1)
c≈ (Gx, {Gyi ,Gzi}di=1)

Proof. The basic idea is that under DDH we can always create the d+1 challenge tuple (Gyd+1 ,Gxyd+1 or zd+1)
as ((Gyd)β , (Gxyd or zd)β) for a uniformly sampled β. This proves (d+ 1)-VDDH =⇒ d-VDDH; everything
else is straightforward.

It is clear that 1-VDDH is exactly DDH. It is also straightforward that d-VDDH implies standard (d−1)-
VDDH and thus DDH, since VDDH tuple contains DDH tuple as a subset (take (Gx,Gy1 ,Gxy1)); so whenever
A can break (d−1)-VDDH, A can break d-VDDH – we just pass A a subset of the bigger challenge. We will
now focus on the DDH =⇒ d-VDDH direction.

40

Consider 2-VDDH, a problem to distinguish

(Gx,Gy1 ,Gxy1 ,Gy2 ,Gxy2) and (Gx,Gy1 ,Gz1 ,Gy2 ,Gz2)

where z1, z2 are uniform in Zp. When we are given DDH challenge (C1,C2,C3) := (Gx,Gy1 ,Gxy1 or Gz1),
we can always pick β, and pass A the following VDDH challenge: (C1,C2,C3,C

β
2 ,C

β
3). The fourth element

of the tuple is Gy1β , so call y2 := y1β; the last element of the tuple is either Gx(y1β) = Gxy2 , or it is Gz1β .
This last z1β term is not quite a perfectly uniform Gz2 , but it is hard to tell because Gz1β can be viewed as
a DH challenge itself.

Formally, let G0 be the original 2-VDDH game, where we generate all the challenges by ourselves. In
the G1 the challenger C will generate the fourth and fifth element of the tuple as in our reduction, instead
of picking fresh (y2, z2). We claim that if adversary B can distinguish G0 from G1, we can break DDH.
Let us build reduction RB. Our DDH challenge be (C1,C2,C3) := (Gβ ,Gy1 ,Gβy1 or Gy2), where y2 is
assumed to be uniformly random. R embeds the challenge as follows: it samples x, z1, and returns either
(Gx,C2,C

x
2 ,C3,C

x
3) (real) or (Gx,C2,G

z1 ,C3,C
z1
1) (random). If the DDH challenge is real, then R behaves

identical to G1, returning either (Gx,Gy1 ,Gy1x,Gβy1 ,Gβy1x) (real) or (Gx,Gy1 ,Gz1 ,Gβy1 ,Gβz1) (random).
If the DDH challenge is random, R is identical to G0, returning either (Gx,Gy1 ,Gy1x,Gy2 ,Gy2x) (real) or
(Gx,Gy1 ,Gz1 ,Gy2 ,Gβz1) (random). In the latter case, βz1

p
= z2, because β is uniformly random and is used

in the tuple only there, once. This proves that RB solves DDH with the same probability of success that B
has in distinguishing G0 from G1.

Now, G0
c≈ G1 under DDH, and G0 is essentially VDDH. This concludes the proof, because the probability

of A to win G1 is itself negligible under DDH since it allows for a direct reduction that constructs 2-VDDH
tuple from the DDH tuple.

Now it is easy to prove (d− 1)-VDDH =⇒ d-VDDH. Consider the d case:

(Gx, {Gyi ,Gxyi}di=1)
c≈ (Gx, {Gyi ,Gzi}di=1)

The idea is the same: G0 is d-VDDH, but in G1 we return ((Gyd−1)β , (Gxyd−1 or zd−1)β) as the last two tuple ele-
ments instead of honest version. By DDH with challenge (C1,C2,C3) := (Gβ ,Gyd−1 ,Gβyd−1 or Gyd) we argue
that G1

c≈ G2. This is done as before: the reduction needs to sample x, zd−1, {(yi, zi)}d−2i=1 , and simulate the rest
of the challenge: it will return either (Gx, {Gyi ,Gxyi}d−2i=1 ,C2,C

x
2 ,C3,C

x
3) or (Gx, {Gyi ,Gzi}d−2i=1 ,C2,G

zd−1 ,C3,C
zd−1

1).
The argument proceeds as before.

Now, G2 depends on y1 . . . yd−1 and z1 . . . zd−1, without depending on yd, zd, so if A can solve G2, then
RA can solve (d− 1)-VDDH. This concludes the proof.

Lemma 3. Let G be a finite group with prime order q and generator G, and d poly-sized. If DDH holds in
G, then for all PPT A the probability of the following game returning 1 is ≤ 1/2 + negl(λ):

1: {Wi}di=1
$←− G

2: (H, {xi}di=1)
$←− A(1λ, {Wi}di=1)

3: {zi, ri}di=1,α
$←− Zq

4: b
$←− {0, 1}

5: b⋆ ← A({Ai := Gri ,Di := if b = 0 then GxiHriWα
i else Gzi}di=1)

6: return b⋆ = b

Proof. What A gets is essentially encryptions of GxiWα
i , where xi is either random or chosen, for a random

α. The structure seems similar to Pedersen commitments, except we use the same randomness α for every
commitment, but with different bases Wi. We show that these exponents xi+wiα are computationally hiding
xi, assuming d-VDDH, proven secure in Lemma 2 under DDH.

Our d-VDDH challenge is (C0,C1, . . . C2d) := (Gα, {(Gwi ,Gαwi or zi)}di=1). It is straightforwardly embed-
ded into our game. First, set all Wi := C2∗i−1 — the distribution of these is still uniform, so A does not
see the difference when it is first for the first time. After A responds, as before, generate {ri}di=1

$←− Zq, and
now set all (Ai := Gri ,Di := GxiHriC2∗i). The distribution of Di is as in the honest game too: if VDDH
instance is real, Di = GxiHriWα

i ; if VDDH instance is random, then Di = GxiHriGzi which is uniform in
G, which is the same as Gzi for zi uniform in Zq.

41

Theorem 10 (Blueprint Hiding). The uBlu protocol is a blueprint hiding UPPB scheme for (PedersenC,Pd(T ,X)),
assuming DDH in G1, zero-knowledge of Π,Πu, knowledge-soundness of Π, soundness of Πu, and hiding and
binding of PedersenC.

Proof. An escrow has the following form:

esc =
(
E1,E2,πe,πc,X, {Ai,Di}i∈[d],B,A

)
In the blueprint hiding game, we have serveral conditions before we claim equality of distributions. Let

us first present the simulator, and then argue, based on these conditions, why the distributions are indeed
equal.

The simulator S(td, pk, vP := P (t,
∑

i∈[ι] xi), tagι) will:

1. Sample β, rE
$←− Zq, create fresh encryption (E1,E2) = (GrE ,GβvPHrE) based on the predicate value vP ;

2. Sample {Ai,Di}i∈[d],B,A
$←− G all independently uniformly at random.

3. Set X := tagι.X.
4. Simulate πe,πc for these elements using td.

To formally prove that
{
Escrowpk(hintι)

}
c≈
{
S(td, pk,P (t,

∑
i∈[ι] xi), tagι)

}
we will proceed in the series

of games, starting from G0, where A observes Escrowpk(hintι), towards S, implementing parts of the S step
by step.

G1 : Simulate both πe,πc in the output of Escrow. Because both Π and Πu are zero-knowledge, the simulation
is perfect, so G1

p
= G2.

G2 : Sample B,A
$←− G uniformly at random. These two are honest commitments with H as a base, and fresh

randomness rα, rβ generated in Escrow. By perfect hiding of Pedersen commitments, G2
p
= G1.

G3 : In this game, we simulate setup for Π and extract from all {πx,i}ιi=1,πpk, similarly to how it is done
in the soundness proof. The extractor will return (t′, rt, {x′i, r′i, rx,i}ιi=1). Additionally, we assert that
(t′, {x′i, r′i}ιi=1) are the same as provided by A; we will refer to these values (t, {xi, ri}ιi=1) (without
“primes”) as before.
This assertion does not fail unless with negligible probability because commitments T, {Xi}ιi=1 are bind-
ing. This transition is thus computational by knowledge-soundness of Π and DH in G1 (which guarantees
Pedersen binding).

G4 : In this game we replace (E1,E2) with a fresh encryption of βvP instead; except for that, all other
parts of esc are as before. This is in contrast with the previous game, where we still honestly call
(E1,E2)← Evaluate({Ai,Bi}di=1,β).
We start by establishing the form that hintι takes, using soundness of πc,ι similarly to the proof of The-
orem 6 (soundness). From the previous game we know xi, {rx,i}i∈[d] that each Xi = Xi−1G

xiHrx,i , and
X0 = 1G. Inductively, this implies that Xι = Gx̂ιHr̂x,ι , where x̂ι :=

∑ι
i=1 xi, r̂x,ι :=

∑ι
i=1 rx,i. By sound-

ness of the input πc,ι and binding of PedersenC (both of which are needed to assert that witness-products
are formed correctly; similar to the soundness proof), we deduce that ∃{r̂ι,i}di=1, x̂

′
ι, r̂
′
x,ι, t

′, r′t,α
′, r′α such

that for i ∈ [d], Aι,i = Gr̂ι,i , Bι,i = G(x̂′
ι−t

′)iH r̂′ι,iWα′

i , Xι = Gx̂′
ιHr̂′x,ι ,T = Gt′Hr′t , 1 = A = Gα′

Hr′α .
First, since πc,ι verifies w.r.t. A = 1, we must conclude by binding of PedersenC that α′ = r′α = 0, and
thus Bι,i = G(x̂′

ι−t
′)iH r̂′ι,i is not blinded. Also by binding of (T, {Xi}ιi=1), we know that x̂′ι guaranteed

existentially by πc is the same as the extracted x̂ι; same applies to t′, r′t, r̂
′
x,ι, so we can remove the

“primes”. Now we simply know that ∃{r̂ι,i}di=1 such that for i ∈ [d], Aι,i = Gr̂ι,i , Bι,i = G(x̂ι−t)iH r̂ι,i .

Honest Evaluate will return (E1,E2) =

(∏
i∈[d]

(AiG
r′′ι,i)Uiβ ,

∏
i∈[d]

(BiH
r′′ι,i)Uiβ

)
, where r′′ι,i are freshly sam-

pled on the line 1 of Escrow. Denote r̂′′ι,i := r̂ι,i+r′′ι,i. Then together with the previous existential statement

42

in mind, we conclude that ∃{r̂ι,i}di=1 such that

(E1,E2) =

∏
i∈[d]

G(r̂ι,i+r′′ι,i)·Uiβ ,
∏
i∈[d]

G(x̂ι−t)i·UiβH(r̂ι,i+r′′ι,i)·Uiβ

=
(
G
∑d

i=1 r̂′′ι,i·Uiβ ,GβP (t,x̂ι)H
∑d

i=1 r̂′′ι,i·Uiβ
)

which is exactly the encryption of βP (t, x̂ι) with the uniformly random
∑d

i=1 r̂
′′
ι,i · Uiβ.

This means that our honestly-produced encryption of vP = βP (t, x̂ι) will be distributed equally to freshly
encrypted (E1,E2). The computational transition is by soundness of πc and binding of PedersenC that
implies binding of various H-based Pedersen commitments.

G5 : Replace {Ai,Di}i∈[d] with randomly sampled elements, instead of returning a blinded re-randomized
version of {Ai,Bi}i∈[d] with locally sampled α. If G5 ̸

c≈B G4, then we can build a d-VDDH attacker from
B by embedding the {Ai,Di}i∈[d] challenge directly into our game (and changing Wi in the setup on the
first line of the game). Note that important aspect is that Escrow fully rerandomises honest {Ai,Bi}i∈[d]
at line 1 with {r′′ι,i}i∈[d]. Therefore, by Lemma 3, G5

c≈ G4 under DDH in G1.

The last game is exactly equivalent to the output of S — note that the honest and simulated X is exactly
the same, so it does not appear in any game transitions. This concludes the proof.

D Analysis of Protocol Performance

Section 8 gives a good summary of the performance analysis of our updatable blueprint scheme. In practice,
all our computations, except for the quadratic UpdatePowers, are easy to analyze in terms of performance.
Zero-knowledge proofs are definitely an exception, and we cover them in detail in this section.

Instantiating a Curve. We mentioned that our construction is not curve-specific, but for the sake of
estimates, we mention the performance of BN256 and BLS12-381. While the computational security of the
Barreto-Naehrig 256-bit curve (BN256) is generally considered to have less than 128 bits of computational
security [69] due to algorithmic advancements [50], this curve is supported by native operations in Solidity
on Ethereum9 and can thus be evaluated with a cheap gas price, in contrast to any other pairing scheme
whose operations would have to be manually implemented at a huge gas penalty. To give a rough estimate
of curve performance, on AWS z1d.3xlarge a BN256 pairing can be computed in about 0.8ms. Sticking
with multiplicative group notation as in our protocol descriptions, exponentiation with a full field scalar is
0.05/0.15ms (in G1 and G2 correspondingly); in BLS12-381 implementations timings are only slightly higher:
a pairing costs about 1.1 ms and an exponentiation 0.1/0.25ms (for G1 and G2 correspondingly) [42, 58].

Consistency Proof. The consistency proof is constructed in KeyGen, updated in Update and Escrow, and
verified in VfKeyGen, VfHint and VfEscrow. The consistency language Lc uses witness of size |w| = 2d+8, and
instance of size |x| = 2d+4, therefore being overall 4d+12 ∈ O(d) in size. During updates, four of the witness
elements corresponding to zero values of α = rα = 0 related elements, do not need to be communicated,
but we will ignore this minor performance improvement and focus on the O(d) terms instead. Our matrices
— both M(x) and update matrices (Tam,Twm, . . .) — are quite sparse. Estimating the biggest asymptotic
term and its constant, as we will do in the rest of the section as well, |M(x)| ≈ 8d (|M(x)| stands for the
number of non-zero items in the matrix) elements excluding constants, |M(x)| ≈ 6d if blinding is disabled,
|Tam| ≈ 3 · d2, and |Twm| ≈ (3/2) · d2. Performance of Πu mostly depends on the number of elements in these
matrices.
9 Specified in EIP-1108 (https://eips.ethereum.org/EIPS/eip-1108) and introduced in Istanbul fork (https://eips.

ethereum.org/EIPS/eip-1679)

43

https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1679
https://eips.ethereum.org/EIPS/eip-1679

The setup phase is O(1) since we only need to generate a single G2 challenge element. In terms of space,
the proof takes |x|·G1+|w|·G2 = 4d+12 elements. Proving time for Πu is equal to |M(x)|·E1+2|w|·E2, which
is in case of Lc is equal to ≈ 6d ·E1+4d ·E2, where Ei stands for exponentiation in group Gi. Update time is
equal to (|Tam|+|Taa|+|M(x)|)·E1+(|Twm|+|Twa|+|w|)·E2 (for definition of Tam,Taa see Appendix B). In the
case of Lc it is quadratic and dominated by the update matrices sizes:≈ (3d2+O(d))·E1+((3/2)d2+O(d))·E2.
We note however, that update time in Escrow will be linear because the update matrices will only introduce
blinders α, rα and randomize Bi without updating the commitment value x̂ — thus the matrices will only
contain a linear number of non-zero elements.

As for verification time, Πu supports two approaches: naive and batched. With the naive approach,
directly as described in [26], the cost will be dominated by about |M(x)|+2|x| pairings. For the consistency
proof language, Lc, this is equal to 12d + O(1) pairings. However, using a well-known pairing batching
optimization, we can bring down the verification cost to (|w| + 2) · P + (|M(x)| + 2|x|) · E1 + 3|x| · E2, in
our case ≈ (2d+ 10) · P + 10d ·E1 + 6d ·E2 (when letting P denote pairings). This is achieved by sampling
random values ϕi for i ∈ [l] on the verifier’s side and combining all the rows of the verification equation
into a single one, where every row is taken with scalar multiple ϕi. Security of such a transformation is
guaranteed by the Schwartz-Zippel lemma as usual: if the final ϕi-linearly-combined equation holds, equations
corresponding to the individual rows must hold unless with negligible probability due to ϕi being sampled
randomly and independently. In practice, this is more efficient, since not only pairings are more expensive
than multiplications, but also because we can use multi-scalar-multiplication optimizations to batch the
multiplications further.

Non-Updatable Proofs. The key, trace, and escrow proofs are all created using standard Σ-protocol
techniques, instantiated in G1. For all of them, we assume Π to be Fiat-Shamir transformed, but also
straightline-extractable, which we will assume is achieved by adding ElGamal encryptions of corresponding
witnesses (to a CRS-embedded public key). Without the extra encryptions, Π is quite similar in Πu, except
G2 exponentiations are now Fq multiplications, and G1 exponentiations are used instead of pairings; we still
achieve (|x|+ |w|) ·G1 proof size, ≈ |M(x)| ·E1 + |w| ·EF proving time (where EF are multiplications in Fq),
and ≈ |M(x)| multiplications in verification. For more details see [57, Sec. 6.5]. Straightline extractability
will add extra |w| elements into the witness (Paillier randomness), 2|w| ciphertexts into the instance (Paillier
ciphertexts), and extra 3|w| exponentiations into M(x) (each ciphertext is three exponentiations). The setup
will only see the extra one Paillier modulus generated, which we will treat as a constant cost. In practice,
such transformation will not change asymptotics, only increasing the constant factors by ≈ 2 − 3, which
is affordable because Π is generally efficient. The approach of [27] can also be used for better asymptotic
efficiency.

The key proof is very small and O(1) for our calculations: it only contains 3 instance elements, 4 witness
elements, and 5 exponentiations in M(x) in total. It is created in KeyGen and verified in VfKeyGen.

Similarly, the trace proof is O(1) with its 5 instance elements, 3 witness elements, and 5 exponentiations
in total. The proof is created as part of Update and is verified in VfHistory.

The escrow proof is also compact, since even though it uses {Ai,Di}di=1, only their products
∏

AUi
i

(similarly for Di) enter M(x), so these products can be treated like constants from the perspective of Le.
Therefore we have |x| = 6, |w| = 6, the proof is constant sized, and we will only treat its proving and
verification time as O(d) due to the need to construct the aforementioned

∏
AUi

i . The proof is constructed
as part of Escrow and verified of VfEscrow.

44

	Updatable Privacy-Preserving Blueprints

