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Abstract

A backdoored Pseudorandom Generator (PRG) is a PRG which looks pseudorandom to the
outside world, but a saboteur can break PRG security by planting a backdoor into a seemingly
honest choice of public parameters, pk, for the system. Backdoored PRGs became increasingly
important due to revelations about NIST’s backdoored Dual EC PRG, and later results about
its practical exploitability.

Motivated by this, at Eurocrypt’15 Dodis et al. [21] initiated the question of immunizing
backdoored PRGs. A k-immunization scheme repeatedly applies a post-processing function to
the output of k backdoored PRGs, to render any (unknown) backdoors provably useless. For k =
1, [21] showed that no deterministic immunization is possible, but then constructed “seeded”
1-immunizer either in the random oracle model, or under strong non-falsifiable assumptions. As
our first result, we show that no seeded 1-immunization scheme can be black-box reduced to
any efficiently falsifiable assumption.

This motivates studying k-immunizers for k ≥ 2, which have an additional advantage of
being deterministic (i.e., “seedless”). Indeed, prior work at CCS’17 [37] and CRYPTO’18 [7] gave
supporting evidence that simple k-immunizers might exist, albeit in slightly different settings.
Unfortunately, we show that simple standard model proposals of [37, 7] (including the XOR
function [7]) provably do not work in our setting. On a positive, we confirm the intuition of [37]
that a (seedless) random oracle is a provably secure 2-immunizer. On a negative, no (seedless) 2-
immunization scheme can be black-box reduced to any efficiently falsifiable assumption, at least
for a large class of natural 2-immunizers which includes all “cryptographic hash functions.”

In summary, our results show that k-immunizers occupy a peculiar place in the crypto-
graphic world. While they likely exist, and can be made practical and efficient, it is unlikely
one can reduce their security to a “clean” standard-model assumption.

1 Introduction

Pseudorandom number generators (PRGs) expand a short, uniform bit string s (the “seed”) to
a larger sequence of pseudorandom bits X. Beyond their status as a fundamental primitive in
cryptography, they are used widely in practical random number generators, including those in
all major operating systems. Unsurprisingly, PRGs have been target of many attacks over the
years. In this work we focus on a specific, yet prominent, type of PRG attack which arises by
planting a backdoor inside the PRG. This type of attack goes far back to 1983, when Vazirani and
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Vazirani [42, 43] introduced the notion of “trapdoored PRGs” and showed the Blum-Blum-Shub
PRG is one such example [12]. Their purpose was not for sabotaging systems, however, but instead
they used the property constructively in a higher level protocol.

NIST Dual EC PRG. Perhaps the most infamous demonstration of the potential for sabotage is
the backdoored NIST Dual EC PRG [1]. Oversimplifying this example for the sake of presentation
(see [39, 16, 21] for the “real-world” description), the attack works as follows. The (simplified)
PRG is parameterized by two elliptic curve points; call them P and Q. These points are supposed
to be selected at random and independent from each other, forming the PRG public parameter
pk = (P,Q) which can be reused by multiple PRG instances. Each new PRG instance then selects
a random initial seed s, and can expand into random-looking elliptic curve points X = sP and
Y = sQ. Ignoring the details of mapping elliptic curve points into bit-strings,1 as well as subsequent
iterations of this process, one can conclude that the points (X,Y ) are pseudorandom conditioned
on pk = (P,Q). In fact, this is provably so under to widely believed Decisional Diffie-Hellman
(DDH) assumption.

Yet, imagine that the entity selecting points P and Q chooses the second point Q as Q = dP
for a random multiple (“discrete log”) d, and secretly keeps this multiple as its backdoor sk = d.
Notice, the resulting public parameter distribution pk = (P,Q) is identical to the supposed “honest”
distribution, when Q was selected independently from P . Thus, the outside world cannot detect
any cheating in this step, and could be swayed to use the PRG due to its provable security under
the DDH assumption. Yet, the knowledge of d can easily allow the attacker to distinguish the
output (X,Y ) from random; or, worse, predict Y from X, by noticing that

Y = sQ = s(dP ) = d(sP ) = dX

While we considerably simplified various low level details of the Dual EC PRG, the works of
[39, 16] showed that the above attack idea can be extended to attacking the actual NIST PRG.
Moreover, the famous “Juniper Dual EC incident” (see [15] and references therein) showed that
this vulnerability was likely used for years in a real setting of Juniper Networks VPN system!

Backdoored PRGs. Motivated by these real-world considerations, the work of Dodis et al. [21]
initiated a systematic study of so called backdoored PRGs, abstracting and generalizing the Dual
EC PRG example from above. A backdoored PRG (K,G) is specified by a (unknown to the public)
key generation algorithm K which outputs public parameters pk, and a hidden backdoor sk. The
“actual PRG”G takes pk and a current PRG state s as input, and generates the next block of output
bits R and the updated (internal) state s. The initial seed/state s = s0 is assumed to be chosen at
random and not controlled/sabotaged by the attacker. We call this modeling honest initialization,
emphasizing that the Dual EC PRG attack was possible even under such assumption. The PRG
can then be iterated any number of times q, producing successive outputs (Ri) and corresponding
internal states (si). The basic constraint on the saboteur is that the joint output X = (R1, . . . , Rq)
should be indistinguishable from uniform given only the public parameters pk (but not the secret
backdoor sk). We call this constraint public security.

Unfortunately, the dual EC PRG example shows that public security — even when accompanied
by a “security proof” — does not make the backdoor PRG secure against the saboteur, who also
knows sk. In fact, [21] showed that the necessary and sufficient assumption for building effective
backdoor PRGs (secure to public but broken using sk) is the existence of any public-key encryption

1And instead thinking of PRG as outputting pseudorandom elliptic curve points.
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scheme with pseudorandom ciphertexts.

1.1 Our Questions: Immunization Countermeasures

While the question of designing backdoored PRGs is fascinating, in this work we are interested in
various countermeasures against backdoor PRGs, a topic of interest given the reduced trust in PRGs
engendered by the possibility of backdooring. Obviously, the best countermeasure would be to use
only trusted PRGs, if this is feasible. Alternatively, one could still agree to use a given backdoor
PRG, but attempt to overwrite its public parameters pk. For example, this latter approach is
advocated (and formally proven secure) in [35, 5]. Unfortunately, these techniques cannot be
applied in many situations. For example, existing proprietary software or hardware modules may
not be easily changed, or PRG choices may be mandated by standards, as in the case of FIPS.
Additionally, the user might not have not have direct control over the implementation itself (for
example, if it is implemented in hardware or the kernel), or might not have capability or expertise
to properly overwrite (potentially hidden or hardwired) value of pk. Fortunately, there is another
approach which is much less intrusive, and seems to be applicable to virtually any setting: to
efficiently post-process the output of a PRG in an online manner in order to prevent exploitation of
the backdoor. We call such a post-processing strategy an immunizer.2

The question of building such immunizers was formally introduced and studied by Dodis et
al. [21]. For example, the most natural such immunizer would simply apply a cryptographic hash
function C, such as SHA-256 (or SHA-3), to the current output Ri of the PRG, only providing the
saboteur with value Zi = C(Ri) instead of Ri itself. The hope being that hashing the output of
a PRG will provide security even against the suspected backdoor sk.3 Unfortunately, [21] showed
that this natural immunizer does not work in general, even if C is modeled as a Random Oracle
(RO)! Moreover, this result easily extends to any deterministic immunizer C (e.g., bit truncation,
etc).

Instead, the solution proposed by [21] considers a weaker model of probabilistic/seeded immu-
nizers, where it is assumed that some additional, random-but-public parameter can be chosen after
the attacker finalized design of the backdoor PRG (K,G), and published the public parameters pk.
While [21] provide some positive results for such seeded immunizers, these results were either in
the random oracle model, or based on the existence of so called universal computational extractors
(UCEs) [8]. Thus, we ask the question:

Question 1. Can one built a seeded backdoor PRG immunizer in the standard model, under an
efficiently falsifiable4 assumption?

As our first result, we use the elegant black-box separation technique of Wichs [44] to give a
negative answer to this question (see Section 5.4).

Theorem 1.1. If there is a black-box reduction showing security of seeded immunizer C from the
security of some cryptographic game G, then G is not secure.

2Note that the immunizer only processes pseudorandom outputs and does not have access to the internal state
(which is not necessarily available to a user). Indeed, if one has access to a random initial state, there is a trivial
“immunizer” that ignores the given backdoor PRG, and instead uses the random state to bootstrap a different
(non-backdoored) PRG.

3This assumption presumes that such C itself is not backdoored.
4Recall that, loosely speaking, an assumption is efficiently falsifiable if the falseness of the assumption can be

verified (efficiently), given an appropriate witness.
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Moreover, the availability and trust issues in generating and agreeing on the public seed required
for the immunization make this solution undesirable or inapplicable for many settings. Thus, we
ask the question if deterministic immunizers could exist in another meaningful model, despite the
impossibility result of [21] mentioned above. And, as a secondary question, if they can be based on
efficiently falsifiable assumptions.

2-Immunizers to Rescue? We notice that the impossibility result of [21] implicitly (but criti-
cally) assumes that only a single honestly-initialized backdoor PRG is being immunized. Namely,
the immunizer C is applied to the output(s) Ri of a single backdoor PRG (K,G). Instead, we notice
that many PRGs allow to explicitly initialize multiple independent copies. For example, a natural
idea would be to initialize two (random and independent) initial states s and s′ of the PRG, run
these PRGs in parallel, but instead of directly outputting these outputs Ri and R′

i, respectively, the
(“seedless”) immunizer C will output the value Zi = C(Ri, R

′
i) to the attacker.5 We call such post-

processing procedures 2-immunizers.6 More generally, one can consider k-immunizers for k ≥ 2,
but setting k = 2 is obviously the most preferable in practice. As before, our hope would be that
the final outputs (Z1, . . . , Zq) will be pseudorandom even conditioned on the (unknown) backdoor
sk, and even if the key generation algorithm K could depend on the choice of our 2-immunizer C.
This is the main question we study in this work:

Question 2 (Main Question). Can one construct a provably secure 2-immunizer C against all
efficient backdoored PRGs (K,G)?

We note that several natural candidates for such 2-immunizers include XOR, inner product, or
a cryptographic hash function C.

A note on immunizers from computational assumptions One may wonder whether it is
worth considering immunizers whose security depends on a computational assumption. After all, if
the computational assumption is sufficiently strong to imply that pseudorandom generators exist
(as most assumptions are), then why would we not just use the corresponding PRG? However, we
think that building a immunizer in this setting is still interesting for two reasons. First, if we can
show that a immunizer exists in this regime, then this gives evidence that an information-theoretic
style immunizer also exists. Second, there are some scenarios where one has access to PRG outputs
but no access to true randomness (for example if the kernel does not give direct access to its random
number generator). In this setting, we can use a computational immunizer to recover full security.

1.2 Related Immunization Settings

Before describing our results, it might be helpful to look at the two conceptually similar settings
considered by Bauer at al. [7, 20] and Russell et al. [37].

Detour 1: Backdoored Random Oracles. In this model [7], one assumes the existence of
a truly random oracle G. However, the fact that G might have been “backdoored” is modeled by
providing the attacker with the following leakage oracle any polynomial number of times: given any

5Note that again if the post-processing is not sufficiently “simple” (here this means statelessly processing outputs
in an online manner), one can trivially bootstrap “honest” public parameters from many fresh PRG invocations.

6Drawing inspiration from 2-source extractors [17] to similarly overcome the impossibility of deterministic extrac-
tion from a single weak source of randomness.
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(potentially inefficient) function g, the attacker can learn the output of g applied to the entire truth-
table of G. For example, one can trivially break the PRG security of a length-expanding random
oracle R = G(s), by simply asking the leakage oracle gR(G) whether there is a shorter-than-R seed
s s.t. G(s) = R.

With this modeling, [7] asked (among other things) whether one can build 2-immunizers for
two independent BROs F and G. For example, in case of pseudorandomness, they explicitly asked
if H(s) = F (s) ⊕ G(s) is pseudo-random (for random seed s), even if the distinguisher can have
polynomial number of leakage oracle calls to F and G separately (but not jointly). Somewhat sur-
prisingly, they reduce this question to a plausible conjecture regarding communication complexity
of the classical set-intersection problem (see [14] for a survey of this problem). Thus, despite not
settling this question unconditionally, the results of [7] suggest that XOR might actually work for
the case of PRGs.

In addition, [38] studies the question of k-immunizers in the related setting of ”subverted”
random oracles (where the subverted oracle differs from the true one on a small number of inputs).
There, a simple yet slightly more complicated ”xor-then-hash” framework is shown to provide a
good immunizer.

Detour 2: Kleptographic Setting. While the study of kleptography goes back to the seminal
works of Young and Yung [45, 46, 47] (and many others), let us consider a more recent variant
of [37]. This model is quite general, attempting to formalize the ability of the public to test if a
given black-box implementation is done according to some ideal specification. As a special case,
this could in particular cover the problem of public parameter subversion of PRGs, where the PRG
designer kept some secret information sk, instead of simply choosing pk at random.

We will comment on the subtleties “kleptographic PRGs” vs “backdoored PRGs” a bit later,
but remark that [37] claimed very simple k-immunizers in their setting. Specifically they showed
that for one-shot PRGs (where there is no internal state for deriving arbitrarily many pseudorandom
bits) in the kleptographic setting, random oracle C is a good 2-immunizer, while for k ≫ 2, one
can even have very simple k-immunizers in the standard model. For example, have each of k PRGs
shrink its output to a single bit, and then concatenate these bits together. Again this suggests that
something might work for the more general case of (stateful) PRGs.

1.3 Our Results for 2-Immunizers

As we see, in both of these related settings it turns out that simple k-immunizers exist, including
XOR and random oracle for k = 2. Can these positive results be extended to the backdoored PRG
setting?

XOR is Insecure. First we start with the simple XOR 2-immunizer C(x, y) = x ⊕ y, which is
probably the simplest and most natural scheme to consider. Moreover, as we mentioned, the PRG
results of [7] for BROs give some supporting evidence that this 2-immunizer might be secure in
the setting of backdoor PRGs. Unfortunately, we show that this is not the case.7 Intuitively, the
BRO modeling assumes that both generators F and G are modeled as true random oracles with
bounded leakage, which means that both of them have a lot of entropy hidden from the attacker.
In contrast, the backdoor PRG model of [21] (and this work) allows the attacker to build F and G

7Under a widely believed cryptographic assumption mentioned shortly.
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which are extremely far from having any non-trivial amount of entropy to the attacker who knows
the backdoor sk.

Indeed, our counter-example for the XOR immunizer comes from a more general observa-
tion, which rules out all 2-immunizers C for which one can build a public key encryption scheme
(Enc,Dec) which has pseudorandom ciphertexts, and is what we call C-homomorphic. Oversim-
plifying for the sake of presentation (see Definition 3.5), we need an encryption scheme where the
message m — independently encrypted twice under the same public key pk with corresponding
ciphertexts x and y — can still be recovered using the secrete key sk and “C-combined” ciphertext
z = C(x, y). If such a scheme exists, the backdoor PRG can simply output independent encryp-
tions of a fixed message (say, 0) as its pseudorandom bits. The C-homomorphic property then
ensures that the attacker can still figure that 0 was encrypted after seeing the combined ciphertext
z = C(x, y), where x and y are now (individually pseudorandom, and hence secure to public) en-
cryptions of 0. Moreover, we build a simple “XOR-homomorphic” public key encryption under a
variant of the LPN assumption due to Alekhnovich [3]. Thus, under this assumption we conclude
that XOR is not a secure 2-immunizer.

Theorem 1.2. Assuming the Alekhnovich assumption (listed in Proposition 3.7) holds, XOR is
not a secure 2-immunizer.

Inadequacy of Kleptographic Setting for PRGs. Our second observation is that the
kleptographic setting considered by [37] — which extremely elegant and useful for many other
cryptographic primitives (and additionally considers the dimension of corrupted implementations,
which we do not consider) – does not adequately model the practical problem of backdoored PRGs.
In essence, the subverted PRG modeling of [37, 36] yields meaningful results in the stateless (one-
time output production) setting, but does not extend to the practically relevant stateful setting.
It is worth noting that while [37] informally claim (see Remark 3.2 in [36]) a trivial composition
theorem to move from stateless to the (practically relevant) stateful setting, that result happens
to be vacuous.8 In particular, the “ideal specification” of stateful PRGs (implicitly assumed by
the authors in their proofs) requires that stateful PRG would produce fresh and unrelated outputs,
even after rewinding the PRG state to some prior state. However, PRGs are deterministic after the
initial seed is chosen. As such, even the most secure and “stego-free” implementation will never
pass such rewinding test, as future outputs are predetermined once and for all. Stated differently,
the “ideal specification” of stateful PRG implicitly assumed by [37, 36] in Remark 3.2 is too strong,
and no construction can meet it.9

To see this modeling inadequacy directly, recall that one of the standard model k-immunizers
from [37, 36] simply concatenates the first bit of each PRG’s output. For a stateless (one-time) PRG
case, this is secure for trivial (and practically useless) reasons: each PRG bit should be statistically
random, or the “public” (called the “watchdog” by the authors) will easily catch it. But now let us
look at the stateful extension, — which could be potentially useful if it was secure, — and apply
it to the the following Dual-EC variant. On a given initial state s, in round i the variant will
output the ith bit of Dual-EC initialized with s. Syntactically, this is the same (very dangerous)

8In general, we conjecture no such composition result is true under proper modeling of backdoor PRGs, such
as the one in this work. For example, 2-immunization for stateless PRGs can be effectively instantiated with a
sufficiently strong 2-source extractor. In contrast, our negative result (mentioned later in the Introduction) rules out
such extractors as sufficient for stateful PRGs.

9Note however, that their modeling does capture pseudorandom number generators (PRNGs) which accumulate
entropy albeit in a setting where one has rewinding access and the entropy sources are not too adversarial.
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backdoor PRG we would like to defend against, although made artificially less efficient. Yet, when
the “concatenation” k-immunizer above is applied to this (stateful) variant, the attacker still learns
full outputs of each of the k PRG copies, and can just do the standard attack on Dual-EC separately
on each copy. This means that this k-immunizer is blatantly insecure in our setting, for any value
of k.

Random Oracle is Secure. Despite the inability to generically import the positive results
of [37, 36] to our setting, we can still ask if the random oracle 2-immunizer result claimed by
[37, 36] is actually true for backdoored PRGs. Fortunately, we show that this is indeed the case,
by giving a direct security proof.10 In fact, it works even is the so called auxiliary-input ROM
(AI-ROM) defined by Unruh [41] and recently studied by [22, 18]. In this model we allow the
saboteur to prepare the backdoor sk and public parameters pk after unbounded preprocessing of
the Random Oracle C. The only constraint of the resulting backdoored PRG G is that it has to
be secure to the public in the standard ROM (since the public might not have enough resources
to run the expensive preprocessing stage). Still, when being fed with outputs zi = C(xi, yi), the
saboteur cannot distinguish them from random even given its polynomial-sized backdoor sk (which
also models whatever auxiliary information about RO C the attacker computed), and additional
polynomial number of queries to C.

Despite appearing rather expected, the proof of this result is quite subtle. It uses the fact that
each independently initialized PRG instances F and G are unlikely to ever query the random oracle
on any of the outputs produced by the other instance (i.e., F on C(·, yi) and G on C(xi, ·)), because
we show that this will contradict the assumed PRG security of F and G from the public.

Theorem 1.3. C(X,Y ) = RO(X||Y ) is a secure 2-immunizer in the AI-ROM.

Back-box Separation From Efficiently Falsifiable Assumptions. Finally, we consider
the question of building a secure 2-immunizer in the standard model. In this setting, we again use
the black-box separation technique of Wichs [44] to show the following negative result. No function
C(x, y), which is highly dependent on both inputs x ad y, can be proven as a secure 2-immunizer
for backdoor PRGs, via a black-box reduction to any efficiently falsifiable assumption.

The formal definition of “highly dependent” is given in Definition ??, but intuitively states
that there are few “influential” inputs x∗ (resp., y∗) which fix the output of C to a constant,
irrespective of the other input. We notice that most natural functions are clearly highly dependent
on both inputs. This includes XOR, the inner product function, and any cryptographic hash function
heuristically replacing a random oracle, such as SHA-256 or SHA-3.

The latter category is unfortunate, though. While our main positive result gave plausible
evidence that cryptographic hash functions are likely secure as 2-immunizers, our negative result
shows that there is no efficiently falsifiable assumption in the standard model under which we can
formally show security of any such 2-immunizer C.

Theorem 1.4. Let C be a 2-immunizer which is highly dependent on both inputs. If there is a
black-box reduction showing that C is secure from the security of some cryptographic game G, then
G is not secure.

10In particular, the key piece of our proof that was missing in [37, 36], is contained in Lemma 4.13 of our paper.
The important observation (adapted from the seeded 1-immunizers proof in[21]) is that the random oracle outputs
reveal negligible information about its inputs, and so every PRG round can inductively be treated as the first round.
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Weak 2-Immunizers. Given our main positive result is proven in the random oracle model, we
also consider another meaningful type of immunizer which we call weak 2-immunizer, in hope that
it might be easier to instantiate in the standard model. (For contrast, we will call the stronger
immunizer concept considered so far as strong 2-immunizer.) Recall, in the strong setting the
immunizer C was applied to two independently initialized copies of the same backdoor PRG (K,G).
In particular, both copies shared the same public parameters pk. In contrast, in the weak setting,
— in addition to independent seed initialization above, — we assume the backdoor PRGs were
designed by two independent key generation processes K and K ′, producing independent key pairs
(pk, sk) and (pk′, sk′). For example, this could model the fact that competing PRGs were designed
by two different standards bodies (say, US and China). Of course, at the end we will allow the
two saboteurs to “join forces” and try to use both sk and sk′ when breaking the combined outputs
Zi = C(Ri, R

′
i). Curiously, it is not immediately obvious that a strong 2-immunizer is also a weak

one, but we show that this is indeed the case, modulo a small security loss. In particular, this
implies that our positive result in the random oracle model also gives a weak 2-immunizer.

Of course, the interesting question is whether the relaxation to the weak setting makes it easier
to have standard model instantiations. Unfortunately, we show that this does not appear to be the
case, by extending most of our impossibility/separation results to the weak setting (as can be seen
in their formal statements). The only exception is the explicit counter-example to the insecurity of
XOR as a weak 2-immunizer, which we leave open (but conjecture to be true). As partial evidence,
we show that the pairing operation (which looks similar to XOR) is not a weak 2-immunizer under
a widely believed SXDH assumption in pairing based groups [6, 4].

Theorem 1.5. Assuming the SXDH assumption (listed in Conjecture 3.14) holds for groups
GX , GY , GT , a bilinear map e : GX ×GY → GT is not a secure weak 2-immunizer.

Open Question. Summarizing, our results largely settle the feasibility of designing secure 2-
immunizers for backdoor PRGs, but leave the following fascinating question open: Is there a
2-immunizer C in the standard model whose security can be black-box reduced to an efficiently
falsifiable assumption?

While we know such C cannot be “highly dependent on both inputs”, which rules out most
natural choices one would consider (including cryptographic hash function), we do not know if
other “unnatural” functions C might actually work.

In the absence of such a function/reduction, there are two alternatives:

First, it may be possible to give a non-black-box reduction from a non-highly input-dependent
function (such as a very good two-source extractor).

Or alternatively, one might try to base the security of C on a non-falsifiable assumption likely
satisfied by a real-world cryptographic hash function. For example, [21] built seeded 1-immunizers
based on the existence of so called universal computational extractors (UCEs) [8]. Unfortunately,
the UCE definition seems to be inherently fitted for 1-immunizers, and it is unclear (and perhaps
unlikely) that something similar can be done in the 2-immunizer setting, at least with a security
definition that is noticeably simpler than that of 2-immunizers.

1.4 Further Related Work

We briefly mention several related works not mentioned so far.
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Extractors. Randomness Extractors convert a weak random source into an output which is
statistically close to uniform. Similar to our setting, while deterministic extraction is impossible in
this generality [17], these results can either be overcome using seeded extractors [31], or two-source
extractors [17].

A special class of seeded extractors consider consider sources which could partially depend on
the prior outputs of the extractor (and, hence, indirectly on the random seed). Such sources are
called extractor-dependent [24, 33], and generalize the corresponding notion of oracle-dependent
extractors considered by [19] in the ROM. Conceptually similar to our results, [24] showed a black-
box separation for constructing such extractors from cryptographic hash functions in the standard
model, despite the fact that cryptographic hash functions provably worked in the ROM [19].

Kleptography. Young and Yung studied what they called kleptography: subversion of cryp-
tosystems by modifying encryption algorithms in order to leak information subliminally [45, 46, 47].
Juels and Guajardo [29] propose an immunization scheme for kleptographic key-generation proto-
cols that involves publicly-verifiable injection of private randomness by a trusted entity. More recent
work by Bellare, Paterson, and Rogaway [9] treats a special case of Young and Yung’s setting for
symmetric encryption.

As described in detail above, the works [37, 36] consider the idea of using a random oracle as
a 2-immunizer, however their results do not extend to the stateful setting considered here.

The works [34, 5] also consider immunizing corrupted PRGs, however these results success by
modifying the public parameters, as opposed to operating on the PRG output. In other words, the
immunizers are not simple and stateless, and thus not relevant in a situations where a user cannot
control the implementation itself (e.g. if it is implemented in hardware or the kernel).

Steganography and Related Notions. Steganography (see [40, 27]) is the problem of sending
a hidden message in communications over a public channel so that an adversary eavesdropping on
the channel cannot even detect the presence of the hidden message. In this sense backdoor PRG
could be viewed as a steganographic channel where the PRG is trying to communicate information
back to the malicious PRG designer, without the “public” being able to detect such communication
(thinking instead that a random stream is transmitted).

More recently, the works of [28, 32] looked at certain types of encryption schemes which can
always be turned into stegonagraphic channels, even if the dictator demands the users to reveal
their purported secret keys.

Finally, the works of [30, 23] looked at constructing so called reverse firewalls, which probably
remove steganographic communication by carefully re-randomizing messages supposedly exchanged
by the parties for some other cryptographic task.

Backdoored Random Oracles. The work of [7] and [11] consider the task of immunizing
random oracles with XOR. However, these consider information theoretic models of PRG security.
An intriguing observation about the findings of our work is that information theoretic models
(such as the backdoored random oracle model) do not capture the computational advantage that
backdoors can achieve, as is shown by our counterexamples in section 3.
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2 Definitions

Definition 2.1. Two distributions X and Y are called (t, ϵ)-indistinguishable (denoted by CDt(X,Y ) ≤
ϵ) if for any algorithm D running in time t,

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ϵ.

Definition 2.2. Let Xλ and Yλ be two families of distributions indexed by λ. If for all polynomial
t(λ) and some negligible ϵ(λ), Xλ and Yλ are (t(λ), ϵ(λ))-indistinguishable, then we say X and Y
are computationally indistinguishable (denoted by CD(X,Y ) ≤ negl(λ)).

2.1 Pseudorandom Generators

A pseudorandom generator is a pair of algorithms (K,G). Traditionally, K takes in randomness
and outputs a public parameter. We additionally allow K to output a secret key to be used for
defining trapdoors. To go with our notation of secret keys, we will denote the public parameter as
the public key. For non-trapdoored PRGs, the secret key is set to null. G is a function that takes
in a public key and a state, and outputs an n-bit output as well as a new state. More formally, we
give the following definitions, adapted from [21]:

Definition 2.3. Let PK,SK be sets of public and secret keys respectively. Let S be a set we call
the state space. A pseudorandom generator (PRG) is a pair of algorithms (K,G) where

- K : {0, 1}ℓ → PK × SK takes in randomness and outputs a public key pk and secret key sk.

We will denote running K on uniform input as (pk, sk)
$←− K.

- G : PK × S → {0, 1}n × S takes in the public key and a state and outputs n bits as well as
the new state.

For ease of notation, we may write G instead of Gpk when the public key is clear from context.

Definition 2.4. Let (K,G) be a PRG, pk ∈ PK, s ∈ S. Let s0 = s and let (ri, si) ← Gpk(si) for
i ≥ 1. We call the sequence (r1, . . . , rq) the output of (K,G), and denote it by outq(Gpk, s) (or
outq(G, s)).

For n an integer we will denote by Un the uniform distribution over {0, 1}n.

Definition 2.5. A PRG (K,G) is a (t, q, δ) publicly secure PRG if K, G both run in time t and

pk
$←− K

CDt((pk,out
q(Gpk,S)), (pk,Uqn)) ≤ δ.

Note that here there is some implied initial distribution over S. This will depend on the
construction, but when unstated we will assume that this distribution is uniform.

Definition 2.6. A PRG (K,G) is a (t, q, δ) backdoor secure PRG if K, G both run in time t and

(pk, sk)
$←− K

CDt((pk, sk,out
q(Gpk,US)), (pk, sk,Uqn)) ≤ δ.

10



Note that there are PRGs that are (t, q, δ) publicly secure, but not (t′, q, δ′) backdoor secure
even for some t′ << t and δ′ >> δ [21]. The goal of an immunizer is to take in as input some
(K,G) which is publicly secure but not backdoor secure, and transform it generically into a new
PRG which is backdoor secure.

2.2 2-Immunizers

Our definition of 2-immunizers will also be based on the definition of immunizers given in [21].
Note in particular that while the [21] definition of immunizers takes in the output of one PRG and
a random seed, we define 2-immunizers to be deterministic functions of the output of two PRGs.

We first define notation to express what it means to apply an immunizer to two PRGs.

Definition 2.7. Let (KX , GX), (KY , GY ) be two PRGs and let C : {0, 1}n × {0, 1}n → {0, 1}m be
a function on the output spaces of the PRGs. We define a new PRG as follows:

-The key generation algorithm (denoted (KX ,KY )) will be the concatenation of the original two
key generation algorithms. More formally, it will run KX → pkX , skX , KY → pkY , skY and will
return pk = (pkX , pkY ) and sk = (skX , skY ).

-The pseudorandom generation algorithm, denoted C(GX , GY ) will run both PRGs indepen-
dently and apply C to the output. Formally, let us denote s = (sX , sY ). If GX(sX) = (rX , s′X) and
GY (sY ) = (rY , s′Y ), then

C(GX , GY )(s) := (C(rX , rY ), (s′X , s′Y )).

Note that the output of the PRG will be C applied to the outputs of the original PRGs.
Formally, if outq(GX , sX) = x1, . . . , xq and outq(GY , sY ) = y1, . . . , yq, then

outq(C(GX , GY ), (sX , sY )) = C(x1, y1), . . . , C(xq, yq).

Definition 2.8. A two-input function C is a (t, q, δ, δ′)-secure weak 2-immunizer, if for any (t, q, δ)
publicly secure PRGs (KX , GX), (KY , GY ), the PRG
((KX ,KY ), C(GX , GY )) is a (t, q, δ′) backdoor secure PRG.

A weak 2-immunizer is effective at immunizing two PRGs as long as the public parameters are
independently sampled. We can also consider the case where the designers of the two PRGs collude
and share public parameters. Identically, we can consider the case where we run one backdoored
PRG on multiple honest initializations. If a 2-immunizer effectively immunizes in this setting, we
call it a strong 2-immunizer.

Let us first define the syntax

Definition 2.9. Let (K,G) be a PRG and let C : {0, 1}n × {0, 1}n → {0, 1}m be a function on the
output space of G. We define a new PRG (denoted (K,C(G,G))) as follows:

-The key generation algorithm will be K

-The pseudorandom generation algorithm, denoted C(Gpk, Gpk) will run G twice (with the same
public key) on two initial seeds, and apply C to the output. Formally, let us denote s = (sX , sY ).
If Gpk(s

X) = (rX , s′X) and Gpk(s
Y ) = (rY , s′Y ), then

C(G,G)(s) := (C(rX , rY ), (s′X , s′Y ))

11



If x1, . . . , xq = outq(Gpk, s
X) and y1, . . . , yq = outq(Gpk, s

Y ) are two outputs of G on the same
public key and freshly sampled initial states, then

outq(C(G,G), (sX , sY )) = C(x1, y1), . . . , C(xq, yq).

Definition 2.10. A two-input function C is called a (t, q, δ, δ′)-secure strong 2-immunizer, if for
any (t, q, δ) publicly secure PRG (K,G), the PRG
(K,C(G,G)) is a (t, q, δ′) backdoor secure PRG.

Lemma 2.11. If C is a (t, q, δ, δ′)-secure strong 2-immunizer, then C is a
(t, q, δ, 4δ′)-secure weak 2-immunizer.

Proof. Let (KX , GX), (KY , GY ) be two (t, q, δ) publicly secure PRGs, and let C be a (t, q, δ, δ′)-
secure strong 2-immunizer. Let pk = (pkX , pkY ) and sk = (skX , skY ). We need to show that

CDt((pk, sk,out
q(C(GX , GY ), (SX ,SY )), (pk, sk,Uqm)) ≤ 4δ′

We will construct a new PRG (K,G) which runs KX , GX and KY , GY in parallel and chooses
which to use based on the first bit of the state. More formally,

- K: Run KX → (pkX , skX) and KY → (pkY , skY ). Output pk = (pkX , pkY ) and sk =
(skX , skY ).

- GpkX ,pkY (s): Parse s as (b, sX , sY ) with b ∈ {X,Y }, sX ∈ SX , sY ∈ SY . Run Gb
pkb(s

b) →
(r′, s′), and output (r′, (b, s′)). We will denote the state space S := {X,Y } × SX × SY .

Since C is a (t, q, δ, δ′)secure strong 2-immunizer, we have

(pk, sk)
$←− K

CDt((pk, sk,out
q(C(G,G), (S,S))), (pk, sk,Uqm)) ≤ δ′.

Note that given any two samples (b, s), (b′, s′) from S, with probability
1

4
, we will have b = X and

b′ = Y . Conditioned on this event, by construction we have that (pk, sk,outq(C(Gpk, Gpk), (S,S))
is distributed identically to
((pkX , pkY ), (skX , skY ),outq(C(GX , GY ), (SX ,SY )). Thus, we have

(pkX , skX)
$←− KX , (pkY , skY )

$←− KY , pk = (pkX , pkY ), sk = (skX , skY )

CDt((pk, sk,out
q(C(GX , GY ), (SX ,SY )), (pk, sk,Uqm)) ≤ 4δ′.

Remark 2.12. Some traditional definitions of PRGs [10] consider the notion of forward-secrecy. That
is, even PRG security for the first q outputs should still be maintained even if the q+1st output is
leaked. However, it is impossible for a 2-immunizer in our model to preserve public forward secrecy.
Informally, given any PRG satisfying forward-secrecy, we can append an encryption of the initial
state to the q + 1st state. This would result in a PRG satisfying public forward-secrecy but not
backdoor forward-secrecy. Since we do not allow the 2-immunizer to view or modify the internal
state of the corresponding PRGs in any way, it is impossible for any 2-immunizer to remove this
vulnerability.
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3 Counterexamples for Simple 2-Immunizers

In this section we will outline a framework for arguing that simple functions (for example XOR)
do not work as 2-immunizers. To argue that some C is not a strong 2-immunizer, we will construct
a public key encryption scheme suitably homomorphic under C. We will then note that the PRG
which simply encrypts 0 using the randomness of its honest initialization will have a backdoor after
immunization, where the backdoor will be given by the homomorphic property of the underlying
encryption scheme.

To argue that C is not a weak 2-immunizer, we will need to instead construct two public key
encryption schemes which are in jointly homomorphic in a suitable manner. In this case, the
PRGs defined by encrypting 0 under the two public key encryption schemes defined will allow us
to perform an analogous attack on C.

In particular, we will generically define what it means for public key encryption schemes to
be suitably homomorphic under C, and argue that this property is enough to show that C is not
a 2-immunizer. Note that the definition of suitably homomorphic will depend on whether we are
attacking the weak or strong security of C.

We will then instantiate our generic result with specific public key encryption schemes, leading
to the following theorems.

Theorem 3.1 (Theorem 1.2 restated). Assuming the Alekhnovich assumption (listed in Proposi-
tion 3.7) holds, XOR is not a (poly(λ), 1, negl(λ), negl(λ))-secure strong 2-immunizer.

Note that there is no simple way to adapt the public key encryption scheme used to prove this
theorem to be sufficiently homomorphic to prove that XOR is not a weak 2-immunizer. We leave
the question as to whether XOR is a weak 2-immunizer as an open question.

Definition 3.2. Let GX , GY , GT be groups of prime order exponential in λ with generators gX , gY , gT .
A bilinear map e : GX ×GY → GT is a function satisfying

e(gaX , gbY ) = e(gX , gY )
ab = gabT

Note that requiring e(gX , gY ) = gT is a non-standard requirement for bilinear maps, but will
always occur when we restrict the codomain of the bilinear group to the subgroup defined by its
image.

Theorem 3.3 (Theorem 1.5 restated). Assuming the SXDH assumption (listed in Conjecture 3.14)
holds for groups GX , GY , GT , a bilinear map e : GX ×GY → GT is not a (poly(λ), 2, negl(λ),
negl(λ))-secure weak 2-immunizer.

Note that although [7] does not directly argue that a bilinear map is a 2-immunizer in their
model, it is clear that the argument for XOR can be generalized to apply for bilinear maps.

3.1 Public Key Encryption

A public key encryption scheme (PKE) is a triple (Gen,Enc,Dec) where

- Gen outputs a public key, secret key pair (pk, sk),
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- Enc takes in the public key pk and a message m, and outputs a ciphertext c,

- Dec takes in the secret key sk and a ciphertext c, and outputs the original message m.

For security, as we are working with pseudorandom generators, it is useful for us to require that
the encryption schemes themselves be pseudorandom. More formally,

Definition 3.4. We say that a public key encryption scheme (Gen,Enc,Dec) is pseudorandom if
for all m,

pk
$←− Gen

CDpoly(λ)((pk,Enc(m)), (pk,U)) ≤ negl(λ)

Note that for our purposes we will require all public key encryption schemes to be pseudoran-
dom. We remark that this assumption is strictly stronger than traditional PKE security.

3.2 Strong 2-Immunizers

Definition 3.5. Let C : {0, 1}n × {0, 1}n → {0, 1}m be some operation. We say that a public key
encryption scheme (Gen,Enc,Dec) is C-homomorphic if there exists some function DecCsk such that
for all m,

Pr
(pk,sk)

$←−Gen

α,α′ $←−U

[DecCsk(C(Encpk(m;α),Encpk(m;α′))) = m] ≥ 2

3
.

Theorem 3.6. Let (Gen,Enc,Dec) be a public key encryption scheme and let C be some operation.
Then, if (Gen,Enc,Dec) is pseudorandom and C-homomorphic (with homomorphic decryption al-
gorithm DecC), then C is not a
(poly(λ), 1, negl(λ), negl(λ))-secure strong 2-immunizer.

Proof. We will first construct a PRG (K,G) using (Gen,Enc,Dec), and then we will show that
C(G,G) has a backdoor.

Let us first observe that Pr[DecC(U) → 0] + Pr[DecC(U) → 1] ≤ 1, and so one of these

probabilities will be less than
1

2
. Without loss of generality, assume Pr[DecC(U)→ 0] ≤ 1

2
.

Define (K,G) by K := Gen, Gpk(s) := Encpk(0; s). It is clear to see that (K,G) is a
(poly(λ), 1, negl(λ)) publicly secure PRG by the definition of a pseudorandom PKE. Thus, it re-
mains to show an adversary D that can distinguish

(pk, sk, C(Encpk(0;U),Encpk(0;U)))

from
(pk, sk,U)

with probability ≥ 1

poly(λ)
.

On input (pk, sk, r), D will run DecCsk(r) → m and output 1 if and only if m = 0. It is clear
that

Pr[D(pk, sk, C(Encpk(0;U),Encpk(0;U)))→ 1] ≥ 2

3
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by the definition of DecC . But note that we assumed Pr[DecC(U)→ 0] ≤ 1

2
, and so

Pr[D(pk, sk,U)→ 1] ≤ 1

2

Thus, the advantage of D is ≥ 2

3
− 1

2
=

1

6
≥ 1

poly(λ)

We remark that while this theorem is stated for q = 1, it is fairly easy to extend this to arbitrary
q by simply appending the corrupted PRGs with a genuine one.

[3] gives a construction of a public key encryption scheme based off of a variant of the learning
parity with noise problem (which we will call the Alekhnovich assumption, it is Conjecture 4.7 in
his paper). Instead of presenting his underlying assumption directly, we will refer to the following
proposition:

Proposition 3.7. [3]: Suppose that the Alekhnovich assumption holds, then for every m = O(n), k =
Θ(
√
n), ℓ, t ≤ poly(n) then

Ai
$←− Um×n, xi

$←− Un, ei
$←−
(
{0, 1}m

k

)
CDt((Ai, Aixi + ei)

ℓ
i=1, (Ai,Um)ℓi=1) ≤ negl(n)

That is, given a uniformly random m × n binary matrix A, a vector which differs from an
element in the image of the matrix in exactly k places is computationally indistinguishable from
random.

Let us proceed now to the proof of Theorem 3.1.

We will prove this by showing a pseudorandom ⊕-homomorphic public key encryption scheme
based off of the Alekhnovich assumption.

We claim that if the Alekhnovich assumption holds, the public key encryption scheme presented
in [2] (along with a minor variation) is both pseudorandom and ⊕-homomorphic. Therefore, by
Theorem 3.6, XOR is not a strong 2-immunizer.

First, we present Alekhnovich’s public key encryption scheme in Figure 1. We make one minor

change to the original scheme, namely we change the value of the parameter k from

√
n

2
to

√
n

4
.

Note that since the underlying proposition only requires that k = Θ(
√
n), this does not affect the

proof of security.

Proposition 3.8. [3]: Assuming the Alekhnovich assumption holds,

CD((pk,Enc-A(0)), (pk,Enc-A(1))) ≤ negl(λ)

Corollary 3.9. Assuming the Alekhnovich assumption holds,
(Gen-A,Enc-A,Dec-A) is pseudorandom.

Proposition 3.10. Assuming the Alekhnovich assumption holds,
(Gen-A,Enc-A,Dec-A) as presented above is ⊕-homomorphic.
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Notation:

k =

√
n

4
, m = 2n.

{0, 1}ℓ are vectors in Zℓ
2.(

{0, 1}m

k

)
:= vectors in {0, 1}m with ex-

actly k 1s.

Gen-A:

A
$←− Um×n.

x
$←− Un

e
$←−
(
{0, 1}m

k

)
b← Ax+ e, M = (b|A).

B
$←− Um×(m−n−1) conditioned on

MTB = 0n.

Output pk = B, sk = (B, e).

Enc-A(1):

c
$←− Um.

Output c.

Enc-A(0):

x′
$←− Un−1,

e′
$←−
(
{0, 1}m

k

)
.

Output c = Bx′ + e′.

Dec-A((B, e), c):

Output 0 if eT c = 0.

Otherwise, output 1.

Figure 1: Alekhnovich’s PKE scheme (From Section 4.4.3).

Proof. We simply need to show that there exists some Dec-A⊕ decrypting the sum of any two
messages. Set Dec-A⊕ = Dec-A.

Observe that addition over Zℓ
2 is equivalent to ⊕, and so we will denote ⊕ as +.

Since Pr[Dec-A(Enc-A(1)) = 0] =
1

2
, and the sum of two uniformly random values is it-

self uniformly random, Pr[Dec-A(Enc-A(1) + Enc-A(1)) = 0] =
1

2
. Thus, if we can show that

Pr[Dec-A(Enc-A(0) + Enc-A(0)) = 0] ≥ 1

2
+ c for some constant c, we are done.

Let c1, c2
$←− Enc-A(0). We can write c1 = Bx1 + e1 and c2 = Bx2 + e2.

Dec(c1 + c2) = eT (Bx1 + e1 +Bx2 + e2) = eTB(x1 + x2) + eT e1 + eT e2

Following the proof of correctness from [3], we let pi be the probability that eb misses the first i
non-zero entries of e. Hence, the probability (over the choise of eb) that e and eb have a common
one can be written as

k−1∑
i=0

pi
k

m− i
<

k2

m− k
<

k2

m− k2
=

1

7

Thus, the probability that e has a common one with either e1 or e2 is≤
2

7
. Therefore, Pr[Dec-A(Enc-A(0)+

Enc-A(0)) = 1] ≤ 2

7
, and so Pr[Dec-A(Enc-A(0) + Enc-A(0)) = 1] ≥ 1

2
+

3

14
.
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3.3 Weak 2-Immunizers

Definition 3.11. Let C : {0, 1}n × {0, 1}n → {0, 1}m be some operation. We say a pair of public
key encryption schemes (Gen,Enc,Dec) and (Gen′,Enc′,Dec′) are jointly C-homomorphic if there
exists some function DecCsk,sk′ such that for all m,

Pr
(pk,sk)

$←−Gen

(pk′,sk′)
$←−Gen′

α,α′ $←−U

[DecCsk,sk′(C(Encpk(m;α),Enc′pk′(m;α′))) = m] ≥ 2

3
.

Theorem 3.12. Let (Gen,Enc,Dec), (Gen′,Enc′,Dec′) be two public key encryption schemes and
let C be some operation. Then, if (Gen,Enc,Dec),
(Gen′,Enc′,Dec′) are pseudorandom and jointly C-homomorphic (with homomorphic decryption
algorithm DecC), then C is not a (poly(λ), 1, negl(λ),
negl(λ))-secure weak 2-immunizer.

Proof. This proof is analogous to the proof of Theorem 3.6. The corresponding PRGs are (KX , GX) =
(Gen,Enc(0; s)) and (KY , GY ) = (Gen′,Enc′(0; s)). The distinguisher again runs DecC → 0 and
returns 1 if and only if m = 0.

Corollary 3.13. If there exists (Gen,Enc,Dec), (Gen′,Enc′,Dec′) pseudorandom and jointly ⊕-
homomorphic, then ⊕ is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We remark that the Alekhnovich PKE is not jointly ⊕-homomorphic with itself. We leave it as
an open question as to whether such a pair of encryption schemes exist for XOR, but we suspect
that its existence is likely.

Instead, we show that another simple 2-immunizer (namely a bilinear pairing) is not secure
assuming a suitable computational assumption. In particular, we will rely on the SXDH assumption,
defined in [6, 4].

Conjecture 3.14. The Symmetric External Diffie Hellman Assumption (SXDH) states that there
exist groups GX , GY , GT with generators gX , gY , gT such that -there exists an efficiently computable

bilinear map e : GX×GY → GT , -for uniformly random a, b, c
$←− Z|GX | CD((gaX , gbX , gabX ), (gaX , gbX , gcX)) ≤

negl(λ) (the Diffie Hellman assumption holds for GX), -for uniformly random a, b, c
$←− Z|GY |

CD((gaY , g
b
Y , g

ab
Y ), (gaY , g

b
Y , g

c
Y )) ≤ negl(λ) (the Diffie Hellman assumption holds for GY ).

Note that, as stated in Definition 3.2 we will require that e(gX , gY ) = gT and that GX , GY , GT

are of prime order exponential in λ.

Note that instead of constructing jointly homomorphic public key encryption schemes under e,
we will instead create public key encryption schemes jointly homomorphic under a related operation.
We will then use the fact that this related operation is not a weak 2-immunizer to show that e is
not a weak 2-immmunizer.

Let GX , GY , GT be cyclic groups of size exponential in λ with an efficiently computable bilinear
map e : GX ×GY → GT . Define the 2-immunizer Ce : (GX ×GX)× (GY ×GY )→ GT by

Ce((aX , bX), (aY , bY )) = (e(aX , bX), e(aY , bY )).
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Lemma 3.15. Assuming the SXDH assumption holds, Ce is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We defer the proof of this lemma to Section 3.4.

By breaking up the output of the counterexample for Lemma 3.15 into two parts, we get a
counterexample proving Theorem 3.3. Formally, we prove Theorem 3.3 as follows:

Proof. By Lemma 3.15, we know that there exists (KX , GX), (KY , GY ) such that Ce(GX , GY ) is
not a (poly(λ), 1, negl(λ)) backdoor-secure PRG. But we can write GX(s) = (aX , bX) and GY (s) =
(aY , bY ). Define

K ′X = (KX , 0), G′X(s, 0) = (aX , (s, 1)), G′X(s, 1) = bX

K ′Y = (KY , 0), G′Y (s, 0) = (aY , (s, 1)), G′Y (s, 1) = bY

That is, G′X , G′Y are PRGs defined by breaking up the outputs of GX , GY into two different rounds.
It is clear that

out2(e(G′X , G′Y ), ((sX , 0), (sY , 0)))

is identically distributed to
out1(Ce(GX , GY ), (sX , sY ))

and so clearly e(G′X , G′Y ) is not a (poly(λ), 2, negl(λ)) backdoor-secure PRG.

3.4 Proof of Lemma 3.15

We will construct two public key encryption schemes such that they are jointly Ce-homomorphic.
These encryption schemes, denoted
(Gen,Enc,Dec) and (Gen′,Enc′,Dec′) are denoted in Figure 2

Proposition 3.16. Assuming the SXDH assumption holds, (Gen,Enc,Dec) and
(Gen′,Enc′,Dec′) are pseudorandom.

Proof. We will show that (Gen,Enc,Dec) is pseudorandom and the same argument will apply for
(Gen′,Enc′,Dec′).

It is clear that
CD((pk,Enc-A(1)), (pk,U)) ≤ negl(λ).

Also, Enc(0) = (grXX , (gsXX )rX ) and we know from the SXDH assumption thatCD((gaX , gbX , gabX ), (gaX , gbX , gcX)) ≤
negl(λ). Thus,

CD((gsXX , grXX , gsXrX
X ), (gsXX , grXX , g

r′X
X )) ≤ negl(λ)

and so we are done.

Proposition 3.17. Assuming the SXDH assumption holds, (Gen,Enc,Dec) and
(Gen′,Enc′,Dec′) are jointly Ce-homomorphic.
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Gen:

sX
$←− Z|GX |.

Output pk = gsXX , sk = sX .

EncgsXX
(0):

rX
$←− Z|GX |.

c1 ← grXX ,

c2 ← (gsXX )rX .

Output (c1, c2).

EncgsXX
(1):

rX , r′X
$←− Z|GX |.

c1 ← grXX , c2 = g
r′X
X .

Output (c1, c2).

DecsX (c1, c2):

Output 1 if and only if csX1 = c2.

Gen′:

sY
$←− Z|GY |.

Output pk = gsYY , sk = sY .

Enc′
g
sY
Y

(0):

rY
$←− Z|GY |.

c1 ← grYY ,

c2 ← (gsYY )rY .

Output (c1, c2).

Enc′
g
sY
Y

(1):

rY , r
′
Y

$←− Z|GY |.

c1 ← grYY , c2 = g
r′Y
Y .

Output (c1, c2).

Dec′sY (c1, c2):

Output 1 if and only if csY1 = c2.

Figure 2: Jointly homomorphic PKE schemes under repeated pairings.

Proof. We will define DecC
e

sX ,sY
(c1, c2) to output 1 if and only if csXsY

1 = c2.

Then

DecC
e

sX ,sY
(Ce(Enc(0),Enc′(0))) = DecC

e
(Ce((grXX , gsXrX

X ), (grYY , gsY rY
Y )))

= DecC
e
(e(gX , gY )

rXrY , e(gX , gY )
rXrY sXsY )

= 1

(1)

and so Pr[DecC
e
(Ce(Enc(0),Enc′(0)))→ 0] = 1.

Also,

DecC
e

sX ,sY
(Ce(Enc(0),Enc′(0))) = DecC

e
(Ce((grXX , g

r′X
X ), (grYY , g

r′Y
Y )))

= DecC
e
(e(gX , gY )

rXrY , e(gX , gY )
r′Xr′Y ).

(2)

Thus,

Pr[DecC
e
(Ce(Enc(1),Enc′(1)))→ 0] = Pr[e(gX , gY )

rXrY sXsY = e(gX , gY )
r′Xr′Y ]

But note that exponentiation by any non-trivial scalar is a permutation on GT , and so we have

Pr[DecC
e
(Ce(Enc(1),Enc′(1)))→ 0] = Pr[e(gX , gY )

r = e(gX , gY )
r′ ]

But since e(gX , gY ) is a generator, this occurs with probability
1

|GT |
= negl(λ). Therefore,

Pr[DecC
e
(Ce(Enc(1),Enc′(1)))→ 1] = 1− negl(λ).
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By Theorem 3.12, we have proven Lemma 3.15.

4 Positive Result in Random Oracle Model

Although it seems that simple functions will not function well as a 2-immunizer, we show that a
random oracle is a strong 2-immunizer. Heuristically, this means that a good hash function can be
used in practice as a 2-immunizer. Furthermore, it gives some hope that 2-immunizers may exist
in the standard model.

In fact, a random oracle is a strong 2-immunizer even if we allow the adversary to perform
arbitrary preprocessing on the random oracle. This model, introduced in [41], is known as the
Auxiliary Input Random Oracle Model (AI-ROM).

Theorem 4.1. Let RO : {0, 1}2n → {0, 1}m be a random oracle. For t sufficiently large to allow
for simple computations, f(X,Y ) = RO(X||Y ) is a (t, q, δ, δ′)-secure strong 2-immunizer with

δ′ =

(
δ +

q2

2n

)
+ 2(t+ t2)q

√
δ +

q

2n
.

Corollary 4.2. f(X,Y ) = RO(X||Y ) is a
(poly(λ), poly(λ), negl(λ), negl(λ))-secure strong 2-immunizer in the ROM.

Theorem 4.3 (Theorem 1.3 restated). f(X,Y ) = RO(X||Y ) is a
(poly(λ), poly(λ), negl(λ), negl(λ))-secure strong 2-immunizer in the AI-ROM.

The intuition behind Theorem 4.1 is as follows. Even given the secret and public keys for a
PRG, public security guarantees that the output of each PRG is unpredicable. Let x1, . . . , xq and
y1, . . . , yq be two outputs of a PRG, and let us consider the perspective of the compromised PRG
generating x. Since this algorithm does not know the seed generating y, each yi is unpredictable
to it. Thus, it has no way of seeing any of the outputs of the functions RO(·||yi). But as long as
neither call to the PRG queries the random oracle on xi||yi, there will be no detectable relationship
between the xi’s and RO(xi||yi), and so the immunizer output will seem truly random.

The extension to the AI-ROM in Theorem 4.3 comes from standard presampling techniques.

4.1 Random Oracle Model Definitions

In the random oracle model (ROM), we treat some function RO as a function chosen uniformly at
random. This provides a good heuristic for security when the random oracle is instantiated with
some suitable hash function. To argue that some cryptographic primitive is secure in the random
oracle model, the randomness of the random oracle must be baked into the underlying game.

Definition 4.4. We will denote the random oracle by O : A → B. Two distributions X and Y
are (q, t, ϵ)-indistinguishable in the random oracle model if for any oracle algorithm DO running in
time t making at most q random oracle calls,∣∣∣∣∣∣ Pr

O
$←−{f :A→B}

[DO(X) = 1]− Pr
O

$←−{f :A→B}
[DO(Y ) = 1]

∣∣∣∣∣∣ ≤ ϵ
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For simplicity, we will typically set q = t. We will define PRG security in the random oracle model
to be identical to typical PRG security, but with the computational indistinguishability to be also
set in the random oracle model.

Definition 4.5. Two distributions X and Y are (s, t, ϵ)-indistinguishable in the AI-ROM if for
any oracle function zO into strings of length s and for any oracle algorithm DO running in time t,∣∣∣∣∣∣ Pr

O
$←−{f :A→B}

[DO(zO, X) = 1]− Pr
O

$←−{f :A→B}
[DO(zO, Y ) = 1]

∣∣∣∣∣∣ ≤ ϵ

We similarly define PRG security in the AI-ROM.

To prove security in the AI-ROM, we can reduce security to a simpler presampling model. In
the presampling model, the random oracle has a adversarially chosen preprogrammed value on p
of its points, and elsewhere is uniformly random. Note that in order to achieve negligible security

loss in the reduction, it is necessary that
1

p
is negligible [22].

Theorem 4.6. [41](Presampling Lemma): We say that a function f agrees with a partial assign-
ment {a1 → b1, . . . , ak → bk} if for all i ∈ [k], f(ai) = bi. Let p be a positive integer. Let zO be an
oracle function into strings of length s.

Then there is an oracle function IO outputting a partial assignment of length ≤ p such that for
any oracle algorithm D making at most q queries to its oracle,∣∣∣∣∣∣∣∣∣∣

Pr
O

$←−{f :A→B}
[DO(zO)→ 1]− Pr

O
$←−{f :A→B}

P
$←−{f :A→B|f agrees with IO}

[DP(zO)→ 1]

∣∣∣∣∣∣∣∣∣∣
≤

√
sq

2p

Informally, this says that any primitive secure in the AI-ROM is secure in the ROM with p

inputs adversarially assigned with security loss of

√
sq

2p
.

Definition 4.7. A two-input function C is a (t, q, δ, δ′)-secure strong 2-immunizer in the ROM
(respectively AI-ROM), if for any PRG (K,G) which is (t, q, δ) publicly secure in the ROM, the
PRG (K,C(G,G)) is a (t, q, δ′) backdoor secure PRG in the ROM (respectively AI-ROM).

The definition of a (t, q, δ, δ′)-secure weak 2-immunizer in the ROM/AI-ROM will be analogous.

Note that in particular our definition for 2-immunizer security in the AI-ROM only requires
that the underlying PRG be secure in the ROM. This is a stronger definition, and we do this to
model the situation where the auxiliary input represents a backdoor for the underlying PRGs.

4.2 Random Oracle is a 2-Immunizer

To show that a random oracle is a strong 2-immunizer, we adapt the proof structure from [21]. That
is, we prove a key information theoretic property about publicly secure PRGs, and then use this
property to bound the probability that some adversary queries the random oracle on key values.
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In particular, let GX , GY be two PRGs with outputs x1, . . . , xq and y1, . . . , yq, and let RO be a
random oracle. We will argue that the only part of the PRG game for RO(GX , GY ) which queries
RO(xi, yi) is when the 2-immunizer is directly called by the game. This is because all parts of the
game will only have access to at most one of xi or yi, and so therefore as the other is information
theoretically unpredictable, they will be unable to query xi and yi to the oracle at the same time.

Afterwards, we will show that RO is still a strong 2-immunizer even in the presence of auxiliary
input. We will show this by using the presampling lemma (Theorem 4.6). The trick we will use is
that since our key property is information theoretic, we can set p for the presampling lemma to be
exponential in λ, and so the security loss we suffer will be negligible.

We begin by stating the following information theoretic lemma. The proof will be deferred to
Section 4.3.

Lemma 4.8. (KEY LEMMA) Let K : {0, 1}ℓ → PK×SK, G : PK×S → {0, 1}n×S be a (t, q, δ)
publicly secure PRG. Let r ∈ {0, 1}ℓ be some initial randomness. For p ∈ (0, 1), we say that r is
p-weak if for (pk, sk)← K(r),

max
x̃∈{0,1}n

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some i ∈ [q]] ≥ p.

Denote
p′ := Pr

r∈{0,1}ℓ
[r is p-weak]

Then,

p′ · p2 ≤ q2
(
δ +

q

2n

)
.

Intuitively, we call a public key pk (described using its initial randomness r) weak if the output
of Gpk is predictable. The above lemma gives an upper bound on the probability of a public key
being weak. That is, we show (through an averaging argument) that every publicly secure PRG
has unpredictable output for most choices of its public parameters.

We now proceed to the proof of Theorem 4.1.

Proof. Let K : {0, 1}ℓ → PK×SK, G : PK× S → {0, 1}n × S be a (t, q, δ)-secure PRG. Let D be
a distinguisher against f(G,G) running in time t. Let HONEST be the distribution

(sk, pk)
$←− K, sX , sY

$←− S

(pk, sk,outq(C(Gpk, Gpk), (s
X , sY )))

and let RANDOM be the distribution

(sk, pk)
$←− K, (r1, . . . , rq)

$←− Uqm

(pk, sk, r1, . . . , rq)

We want to bound

δ′ = |Pr[D(HONEST ) = 1]− Pr[D(RANDOM) = 1]|
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Let qK , qG, qD be bounds on the number of times K,G,D query the random oracle respectively.
Note that these are all bounded by t.

Let us consider the case where the distinguisher is given the output of the honest 2-immunizer.
We will denote outq(G, sX) = x1, . . . , xq and outq(G, sY ) = y1, . . . , yq. Let BAD be the event
that there is some i such that (xi, yi) is queried to the random oracle more than once. Note
that conditioned on BAD, the two distributions in the distinguishing game are identical. Thus,
δ′ ≤ Pr[BAD].

We will break BAD up into five cases, and bound each case separately.

- We define BAD1 to be the event where there exists i, j such that xi = xj and yi = yj . This
corresponds to (xi, yi) be queried to the random oracle more than once by the game itself.

- We define BAD2 to be the event that K queries xi, yi for some i.

- We defineBAD3 to be the event thatG queries xi, yi in the process of calculating outq(Gpk, s
X).

- We defineBAD4 to be the event thatG queries xi, yi in the process of calculating outq(Gpk, s
Y ).

- We define BAD5 to be the event that D queries xi, yi.

Lemma 4.9. Pr[BAD1] ≤ δ +
q2

2n

First, we will bound Pr[BAD1]. Let A be an attacker for the underlying PRG game on (K,G)
which on input r1, . . . , rq outputs 1 if ri = rj for some i ̸= j. It is clear that Pr[A(pk,outq(Gpk,US))→

1] ≥ Pr[BAD1], and Pr[A(pk,Uqn)→ 1] ≤ q2

2n
. But by public security of the PRG, Pr[A(pk,outq(Gpk,US))→

1]− Pr[A(pk,Uqn)→ 1] ≤ δ Thus, we have

Pr[BAD1] ≤ δ +
q2

2n

Lemma 4.10. Pr[BAD2] ≤ qqK

√
δ +

q

2n

We will bound Pr[BAD2] using the key lemma. We claim that

Pr
r

$←−Uℓ

[r is p-weak] ≥
√
Pr[BAD2]

for some suitable value of p. We will then use the key lemma to get an upper bound on Pr[BAD2].

Let r be such that
Pr[BAD2|(pk, sk)← K(r)] ≥

√
Pr[BAD2]

We claim then that r is p-weak for some p to be specified later. Let Fr be the set of random oracle
queries made by K(r). We can more precisely state

Pr[BAD2|(pk, sk)← K(r)] = Pr[(xi, yi) ∈ Fr for some index i|(pk, sk)← K(r)]

In particular, we can ignore one output and see that this means

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi ∈ Fr for some index i] ≥
√
Pr[BAD2]
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But since |Fr| ≤ qK , this means there must be some element x̃ ∈ Fr such that

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some index i] ≥
√

Pr[BAD2]

qK
.

But this precisely means that r is p-weak, for p =

√
Pr[BAD2]

qK
. Thus,

√
Pr[BAD2] Pr[BAD2] ≤ q2Kq2

(
δ +

q

2n

)
and so as

Pr[BAD2]
2 ≤

√
Pr[BAD2] Pr[BAD2],

we have

Pr[BAD2] ≤ qqK

√
δ +

q

2n
.

Lemma 4.11. Pr[BAD3] ≤ q2qG

√
δ +

q

2n

To bound Pr[BAD3], we will again use the key lemma and show that

Pr
r

$←−Uℓ

[r is p-weak] ≥
√
Pr[BAD3]

for some suitable value of p.

Let r be such that
Pr[BAD3|(pk, sk)← K(r)] ≥

√
Pr[BAD3]

. We claim then that r is p-weak for some p to be specified later. Note that since this probability
is the average over s of Pr[BAD3|(pk, sk)← K(r), sX = s], there must be some s̃ such that

Pr[BAD3|(pk, sk)← K(r), sX = s̃] ≥
√
Pr[BAD3].

Let Fr,s̃ be the queries made by G when calculating outq(Gpk, s̃). Using a similar argument as in
the previous paragraph, we see that there must be some pair (x̃, ỹ) ∈ Fr,s̃ such that

Pr
y1,...,yq

$←−outq(Gpk,US)

[yi = ỹ for some index i] ≥
√
Pr[BAD3]

|Fr,s̃|
.

But note that |Fr,s̃| ≤ q · qG as it is generated by running G q times. Thus, r is p-weak for

p =

√
Pr[BAD3]

q · qG
. The same algebra as the previous lemma gives us

Pr[BAD3] ≤ q2qG

√
δ +

q

2n

Lemma 4.12. Pr[BAD4] ≤ q2qG

√
δ +

q

2n

The proof of this lemma is analogous to the proof for Pr[BAD3].
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Lemma 4.13. Pr[BAD5] ≤ qqD

√
δ +

q

2n

To bound Pr[BAD5], we first notice that at the point when D first queries xi, yi, the only
information available to D is the secret key and the output of i− 1 random oracle calls. As at this
point D has never queried any of its inputs, the probability that D succeeds at querying any input
is the same as if D were given only the secret key.

Let us fix any initial randomness r ∈ {0, 1}ℓ such that

Pr[BAD5|(pk, sk)← K(r)] ≥
√

Pr[BAD5]

. We can clearly see that
Pr[BAD5|(pk, sk)← K(r)]

≤ max
F⊆{0,1}n
|F |≤qD

Pr[(xi, yi) ∈ F for some index i|(pk, sk)← K(r)]

But by union bound we then have

Pr[BAD5|(pk, sk)← K(r)] ≤ qD max
x̃∈{0,1}n

Pr[xi = x̃ for some i ∈ [q]].

The same reasoning as the previous arguments shows us that r is p-weak for p =

√
Pr[BAD5]

qD
.

Applying the key lemma gives us

Pr[BAD5] ≤ qqD

√
δ +

q

2n

Putting all the lemmas together, we have

δ′ ≤ Pr[BAD] ≤
(
δ +

q2

2n

)
+
(
qqK + 2q2qG + qqD

)√
δ +

q

2n

Noting that qK , qG, qD ≤ t gives us our theorem.

We then proceed to the proof of Theorem 4.3.

Proof. We will use the presampling lemma to show this. Namely, let p be some integer to be set
later. Let IRO be the partial assignment function of length p defined by the presampling lemma.
Let F = {f : A→ B} and let FIO = {f : A→ B|f agrees with IO}. We want to show∣∣∣∣∣∣∣∣∣ Pr

O
$←−F

RO
$←−F

IO

[D(HONEST )→ 1]− Pr
O

$←−F
RO

$←−F
IO

[D(RANDOM)→ 1]

∣∣∣∣∣∣∣∣∣ ≤ δ′

for some suitable δ′.
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We will define BAD to be the event that there is some i such that (xi, yi) is queried to the ran-
dom oracle more than once or is contained in IO. As before, if conditioned on BAD not occurring,
HONEST and RANDOM are identically distributed. We will also define BAD1, . . . , BAD5 as
in the main proof. Note that the bounds for each Pr[BADi] determined earlier apply also in this
model.

Define BAD6 to be the event that (xi, yi) is contained in IO. As |IO| ≤ p, the same argument
as for BAD2 gives us that

Pr[BAD6] ≤ qp

√
δ +

q

2n

Thus,

δ′ ≤ negl(λ) + qp

√
δ +

q

2n

Applying the key lemma then gives us that in the AI-ROM,

CDt(HONEST,RANDOM) ≤ negl(λ) + qp

√
δ +

q

2n
+ 2 ·

√
st

2p

Thus, it remains to set p such that this is negligible. Taking p =
1

4

√
δ + q

2n

gives us

CDt(HONEST,RANDOM) ≤ negl(λ) + q 4

√
δ +

q

2n
+
√
2st 8

√
δ +

q

2n
= negl(λ)

4.3 Proof of Lemma 4.8

Proof. We will define an attacker A against the PRG game for (K,G), and then we will bound p′

using its success probability. We will define our attacker A as follows: On input r1, . . . , rq, A will

sample s′
$←− S and calculate r′1, . . . , r

′
q. If ri = r′i for any i, A outputs 1. Otherwise, A outputs 0.

Let r be some p-weak initial randomness with K(r)→ (pk, sk). By definition, there exists some
x̃ such that

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some i ∈ [q]] ≥ p.

Thus, there exists some index i such that

Pr[xi = x̃] ≥ p

q
.

But then by independence we have

Pr
x1,...,xq

$←−outq(Gpk,US)

y1,...,yq
$←−outq(Gpk,US)

[xi = yi = x̃] ≥ p2

q2
.
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Thus,

Pr[A(pk,outq(Gpk,US)→ 1|r is p-weak] ≥ p2

q2

But
Pr[A(pk,outq(Gpk,US)→ 1] ≥ p′ Pr[A(pk,outq(Gpk,US)→ 1|r is p-weak]

= p′
p2

q2
.

Note that by union bound, Pr[A(pk,Uqn)→ 1] ≤ q

2n
. Thus, we have

p′
p2

q2
≤ δ +

q

2n
.

5 Black Box Separation (with Limitations)

Definition 5.1. Let C : {0, 1}n × {0, 1}n → {0, 1}m be a function. We call an input x ∈ {0, 1}n

“left-bad” if max
z∈{0,1}m

Pr
y∈{0,1}n

[C(x, y) = z] >
1

2
. We define what it means for an input to be “right-

bad” analogously.

We say that C is highly dependent on both inputs if

Pr
(x,y)

$←−{0,1}2n
[x is “left-bad” OR y is “right-bad”] ≤ negl(λ).

Informally, a two-input function C is highly dependent on both inputs if it ignores one of its
inputs at most a negligible proportion of the time. This is a rather broad category of functions.
In particular, XOR, pairings, inner product, and random oracles are all highly dependent on both
inputs. Furthermore, any collision resistant hash function must also be highly dependent on both
inputs, otherwise it would be trivial to find a collision.

We show that it is hard to prove security (either weak or strong) for any 2-immunizer C which
is highly dependent on both inputs. Note that one of the most common and useful techniques for
proving security of cryptographic primitives is to create a black box reduction to some cryptographic
assumption. Informally, a black box reduction transforms an attacker for some cryptographic
primitive into an attacker for a cryptographic assumption. Thus, if the cryptographic assumption
is immune to attack, the cryptographic primitive will be secure.

We show that if a 2-immunizer is highly dependent on both inputs, then there cannot be any
black-box reduction of its security to any falsifiable cryptographic assumption.

Theorem 5.2 (Theorem 1.4 restated). Let C be a weak 2-immunizer which is highly dependent on
both inputs. If there is a black-box reduction showing that C is (poly(λ), λ, negl(λ),
negl(λ))-secure from the security of some cryptographic game G, then G is not secure.
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As a random oracle is highly dependent on both inputs, any reasonable hash function should
also be highly dependent on both inputs. This implies that despite the fact that a random oracle
is a strong 2-immunizer, it may be hard to argue security for any particular instantiation of the
random oracle.

On Seeded 1-Immunizers Dodis et. al. [21] bypass the impossibility result for immunizers with
public randomness in their model by considering the notion of semi-private immunizers. In a semi-
private immunizer, the immunizer has access to some randomness seed. The randomness will be
semi-private in the sense that it will be available to the distinguishing adversary, but not to the
immunized PRG. This models the scenario where the designer of the PRG has no knowledge of the
immunizer beforehand.

Definition 5.3. Let fseed : {0, 1}n → {0, 1}m be a function family keyed by seed. We say that a
function fseed : {0, 1}n → {0, 1}m is a semi-private (t, q, δ, δ′)-immunizer if for any (t, q, δ) publicly
secure PRG (K,G)

(pk, sk)
$←− K, seed

$←− {0, 1}s

CDt((pk, sk, seed,out
q(fseed(Gpk),US)), (pk, sk, seed,Uqn)) ≤ δ.

We prove an analogue of Theorem 5.2 in this model. The proof will also follow the framework
of Theorem 6.2 from [44]. Note that our separation in this model is unconditional in the sense that
we make no requirements on the structure of the immunizer.

Theorem 5.4. Let fseed : {0, 1}n → {0, 1}m be a semi-private (poly(λ), q, negl(λ), negl(λ))-
immunizer such that q ≥ λ and m ≥ λ. If PRGs exist and there is a black-box reduction showing
that C is (poly(λ), λ, negl(λ),
negl(λ))-secure from the security of some cryptographic game G, then G is not secure.

5.1 Our Black-Box Separation Techniques

The simulatable attacker paradigm The simulatable attacker paradigm, first introduced
by [13] and formalized by [44], is a method for transforming a black-box reduction into an attack
against the underlying assumption. This paradigm was first used to prove black-box separations
from all falsifiable assumptions in [25].

In particular, let C be a cryptographic protocol with a black-box reduction to a cryptographic
assumption G. Formally, we will describe the black-box reduction as an oracle algorithm B· which
breaks the security of G whenever its oracle is a (possibly inefficient) adversary breaking the security
of C.

A simulatable attack against C is an (inefficient) attack A which breaks the security game of C,
but which can be simulated by an efficient algorithm Sim. In particular, oracle access to A and
Sim should be indistinguishable to the black-box reduction B·. If this occurs, then since BSim is
indistinguishable from BA, BSim is an efficient attack breaking the security game of G.

Note that in order for this paradigm to make sense, it needs to be the case that the simulator
has more capabilities than the inefficient adversary, otherwise the simulator itself would be an
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attack for C. In practice, this is done by either restricting the oracle queries made by the black-box
separation B· or by restricting the power of the attacker A.

Black-box separations for 2-stage games In 2013, Wichs showed a a general framework for
proving that two-stage games cannot be reduced to any falsifiable assumption [44]. In a two-stage
security game the adversary consists of two algorithms which each have individual state, but are
not allowed to communicate. Thus, a simulatable attack consists of the inefficient attack as well
as two simulators where the simulators do have shared state. This means that it is conceivable to
have a simulator Sim for which oracle access is indistinguishable from A.

Note that if we have a simulatable attack of this form, then this simulator will fool every
(efficient) black-box reduction. Thus, if we can prove that for every construction there exists an
simulatable attack, this gives a black-box separation of the security definition from any falsifiable
assumption.

Simulatable attack against any 2-immunizer Note that an adversary against a 2-immunizer
consists of both a set of PRGs and a distinguisher. Here, the PRGs and the distinguisher are not
allowed to share state, and so we can hope to construct a simulatable attack in the style of [44].

Given C any candidate 2-immunizer, let GX , GY be random functions and let D(y) be the
algorithm which outputs 1 if there exists an (sX , sY ) such that y = outq(C(GX , GY ), (sX , sY )). It
is clear that GX , GY , D is an inefficient attack breaking the security of C.

To simulate this, we simply replace GX , GY with a lazy sampling oracle. That is, the first time
GX sees s, it will respond with a random value, and it will use the same response for future queries
of s. To simulate D, the simulator will check if there exists an already queried (sX , sY ) such that
y = outq(C(GX , GY ), (sX , sY )). Since the adversary is polynomially bounded, there will only be a
polynomial number of already queried points, and so this simulator is efficient.

It turns out that the only way to distinguish this simulator from the inefficient adversary is to
find some y such that y = outq(C(GX , GY ), (sX , sY )) for either sX or sY unqueried. If neither sX

or sY has been queried before, then by a counting argument it is impossible to guess such a y. But
if sX has been queried before, if C ignores sY then it is possible to guess outq(C(GX , GY ), (sX , sY ))
without querying sY . To avoid this problem, we simply assume that the output of C is dependent
on both of its inputs, as in Definition 5.1.

Simulatable attack against any semi-private immunizer The idea behind this attack
follows the same structure as for 2-immunizers. That is, the inefficient distinguisher will simply
manually check whether the output it received is in the image space of the immunizer applied to
a random function G. Then, a similar argument to the 2-immunizer case shows that this attack is
simulatable.

The corresponding condition that we need to make on a semi-private immunizer fseed is that
the output of fseed is dependent on its input x. But we can show that this is true for any good
semi-private immunizer. Thus, as long as pseudorandom generators exist (and so immunizing is
non-trivial), we get an unconditional black-box separation of semi-private immunizers from any
falsfiable assumption.
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5.2 Preliminaries

Definition 5.5. [44, 26]A cryptographic game G = (Γ, c) is defined by a (possibly inefficient)
random system Γ (the challenger) and a constant c ∈ [0, 1). On security parameter λ, the challenger
Γ(1λ) interacts with some attacker A(1λ) and outputs a bit b. We denote this interaction by
b = (A(1λ) ⇄ Γ(1λ)). The advantage of an attacker A in the game G is defined as

AdvAG := Pr[(A(1λ) ⇄ Γ(1λ))→ 1]− c

Definition 5.6. Let C be some cryptographic property and let G by a cryptographic game. A black-
box reduction deriving the security of C from the security of G is an oracle-access PPT machine
B(·) for which there are some constants c,N0 > 0 such that for all integers λ ≥ N0 and all (possibly

inefficient, non-uniform) oracles An with AdvAλ
C (λ) ≥ 1

2
, we have AdvB

Aλ

G (λ) ≥ n−c.

Definition 5.7. A simulatable attack on a cryptographic property C consists of the following:

-A finite indexing set Hλ

-An ensemble of inefficient stateless non-uniform attackers Aλ,h indexed by n ∈ N, h ∈ Hλ

-A stateful PPT simulator Sim

such that the following properties hold

- For each λ ∈ N, h ∈ Hλ, the inefficient attacker Aλ,h successfully breaks the security of C with
advantage 1− negl(λ).

- For every (possibly inefficient) oracle access machine M making at most poly(λ) queries to
its oracle ∣∣∣∣Prh (MAλ,h(1λ)→ 1)− Pr(MSim(1λ)(1λ)→ 1)

∣∣∣∣ ≤ negl(λ)

We remark that the initial statement of this definition in [44] requires advantage 1. Our change
is purely notational. For any cryptographic primitive we can redefine advantage by adding some
negligible function without affecting the security of the protocol.

Theorem 5.8. If there exists a simulatable attack against some cryptographic notion C and there
is a black-box reduction showing the security of C from the security of some cryptographic game G,
then G is not secure.

5.3 Black Box Separation for 2-Immunizers (Proof of Theorem 5.2)

This argument will loosely follow the framework of Theorem 6.2 from [44], showing that there is
a simulatable attack against correlation-resistant one-way functions. The key difference is that
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instead of relying on some degeneracy check, we use the fact that C is highly dependent on both
inputs to guarantee that ”bad” honest initializations will occur with negligible frequency.

The other issue we must handle with care is that the inefficient adversary must win the PRG
game for all indices h ∈ H, which we handle by explicitly requiring that every h turns the inefficient
adversary into a PRG. We then show that almost all functions are in H, and so the simulator can
simply treat h as a random function.

Theorem 5.9. Let C : {0, 1}n×{0, 1}n → {0, 1}m be highly dependent on both inputs and let q ≥ λ.

Then there exists an ensemble of simulatable attackers

Ah = ((KX , GX), (KY , GY ), D)

against the (poly(λ), q, negl(λ), negl(λ))-security of C as a weak 2-immunizer.

Proof. First, we will define the indexing set for our adversary. Let h : [q]× {0, 1}λ/4 → {0, 1}n be
a function. Define Gh(count, s) := (h(count, s), (count + 1, s)). We say that h is good if Gh is a
(poly(λ), q, negl(λ))-secure PRG. We define

H = {(hX , hY )|hX , hY : [q]× {0, 1}λ/4 → {0, 1}n and hX , hY are both good}.

We will also state a simple lemma claiming that our indexing set makes up a large proportion
of the set of all functions.

Lemma 5.10. Let F = {f : [q]× {0, 1}λ/4 → {0, 1}n} be the set of all functions. Then

Pr
f

$←−F
[f is good] ≥ 1− negl(λ).

The proof of this lemma is deferred to Section A.1.

Our goal is to define an Ah such that

(pkX , skX)
$←− KX , (pkY , skY )

$←− KY , pk = (pkX , pkY ), sk = (skX , skY )

HONEST = (pk, sk,outq(C(GX , GY ), (SX ,SY )))

RANDOM = (pk, sk,Uqm)

|Pr[D(HONEST ) = 1]− Pr[D(RANDOM) = 1]| ≥ 1− negl(λ)

and (KX , GX), (KY , GY ) are (poly(λ), q, negl(λ))-secure PRGs.

We also need to define some stateful simulator Sim such that any inefficient M(·) making a
polynomially bounded number of oracle calls cannot distinguish between oracle access to Ah and
Sim.

We set Ah to be as defined in Figure 3.

We then must define the simulator Sim in Figure 4.
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KX :

Output ⊥

GX(count, s):

If count > q, output ⊥.
x← hX(count, s)

Output (x, (count+ 1, s)).

D(r1, . . . , rq):

For each sX , sY ∈ {0, 1}λ/4

- If (r1, . . . , rq) = outq(C(GX , GY ), ((0, sX), (0, sY ))), output 1

Output 0

KY :

Output ⊥

GY (count, s):

If count > q, output ⊥.
y ← hY (count, s)

Output (y, (count+ 1, s)).

Figure 3: Inefficient adversary for any C highly dependent on both inputs

Sim(KX):

Output ⊥

Sim(GX , count, s):

If (count, s) ∈ T Y

-Output TX [count][s]

r
$←− {0, 1}n

TX [s][count] = r

Output r

Sim(D, r1, . . . , rq):

For each sX ∈ TX , sY ∈ T Y

- If (r1, . . . , rq) = outq(C(GX , GY ), ((0, sX), (0, sY )), output 1.

Output 0.

Sim(KY ):

Output ⊥

Sim(GY , count, s):

If (count, s) ∈ T Y

-Output T Y [count][s]

r
$←− {0, 1}n

T Y [s][count] = r

Output r

Figure 4: Simulator indistinguishable from inefficient adversary. Sim tracks internal arrays
TX , T Y ∈ [q]× {0, 1}λ/4 × {0, 1}n.

Thus, all that remains is to show the following:
1. The PRGs defined by A win the PRG game.
2. The distinguisher defined by A distinguishes correctly.
3. A and Sim are indistinguishable.

Proof of 1: This is trivial by the definition of H.
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Proof of 2: Note that by construction if D is provided genuine immunized output, then it will
output 1 with probability 1. Thus, it just remains to bound the probability that D outputs 1 on
truly random input. Note that D compares its input to any of |{0, 1}λ/4| · |{0, 1}λ/4| = 2λ/2 values,
and outputs 1 if and only if its input matches one of these values. However, a random value is
sampled from 2qn ≥ 2λ possible choices. Thus, the probability that D returns 1 on a uniformly

random input is ≤ 2λ/2

2λ
= 2−λ/2.

Proof of 3: We will show this by a series of hybrids starting with some attacker interacting
with A, and ending with an attacker interacting with Sim. As a sketch of the argument, the first
hybrid will involve replacing the hash functions used in A with truly random functions.

� Hybrid 0: Defined as A

� Hybrid 1: Defined as Hybrid 0, but with H replaced with the set of all functions. By the
lemma, this will be indistinguishable from the original A even by a computationally inefficient
distinguisher.

� Hybrid 2: Defined as Sim. Let M be some (possibly inefficient) adversary distinguish-
ing hybrids 1 and 2 in polynomially many queries. Let E be the event where M in-
teracting with hybrid 1 makes a D query on input r1, . . . , r1 such that D returns 1 and
r ̸= outq(C(GX , GY ), ((0, sX), (0, sY )) for any sX previously queried to G or for any sY pre-
viously queried to GY and for any value of count. Note that if we consider a new set of oracles
which acts as hybrid 2, but has D return 0 whenever a query would cause E to be true, then
the distribution ofM interacting with this set of oracles is identical to that ofM interacting
with hybrid 1. Thus,M succeeds with probability ≤ Pr[E].

We define E0 to be the event where neither sX nor sY were queried to GX or GY , we define
EX to be the event where sX was queried to GX but sY was not queried, and we define EY

to be the analogue for Y . It is clear that Pr[E] ≤ Pr[E0] + Pr[EX ] + Pr[EY ]. Note that

Pr[E0] ≤ poly(λ) · 2
λ/2

2λ
= negl(λ) since it is the same as the probability of hitting a point in a

random set of 2λ/2 values out of 2λ possibilities using only poly(λ) queries. Thus, it remains
to bound Pr[EX ] (the case for Pr[EY ] will be analogous).

Let R be the event that for some sX queried, one of x1, . . . , xq
= outq(GX , sX) is ”left-bad”. Since each xi is chosen uniformly at random and as C is highly
dependent on both inputs, by the union bound Pr[R] ≤ negl(λ) · q·number of queries made
to D. But q and the number of queries made to D are both polynomial, so Pr[R] ≤ negl(λ).

We will now condition on R not occurring, and show that Pr[EX |R] ≤ negl(λ). Let EX
i,j

be the event that EX is triggered during the ith query to D and the corresponding sX was
queried in the jth query to GX . We will denote by r1, . . . , rq the value queried in the ith

33



query to D and we will denote x1, . . . , xq = outq(GX , sX).

Pr[EX
i,j |R]

≤ Pr
hY

[
∃ unqueried sY s.t. outq(C(GX , GY ), (sX , sY )) = r1, . . . , rq|R

]
≤ 2λ/4 Pr

y1,...,yq
$←−Uqm

[ri = C(xi, yi) for all i ∈ [q]|R]

≤ 2λ/4
1

2q
≤ 2λ/4−λ = 2−

3
4
λ = negl(λ)

(3)

But as GX and D can only be queried a polynomial number of times, by the union bound
Pr[EX |R] ≤ negl(λ). So we have

Pr[EX ] ≤ Pr[EX ∩R] + Pr[EX ∩R] ≤ Pr[EX |R] + Pr[R] ≤ negl(λ)

Therefore, we have Pr[E] ≤ negl(λ) and so hybrids 1 and 2 are computationally indistin-
guishable.

Combining Theorem 5.9 and Theorem 5.8 gives us a proof of Theorem 5.2.

5.4 Black Box Separation for Semi-private Immunizers (Proof of Theorem 5.4)

The proof of Theorem 5.4 follows the same framework as the proof of Theorem 5.2. That is, we
will prove that there exists a simulatable attack against any semi-private immunizer, and then use
Theorem 5.8 to prove the main result. More formally, we prove the following theorem:

Theorem 5.11. Let fseed : {0, 1}n → {0, 1}m be a semi-private (poly(λ), q, negl(λ), negl(λ))-
immunizer such that q ≥ λ and m ≥ λ. If there exists a (poly(λ), q, negl(λ))-publicly secure PRG
G̃, then there exists an ensemble of simulatable attackers

Ah = ((K,G), D)

against the (poly(λ), q, negl(λ))-security of fseed.

Proof. We say that h : [q] × {0, 1}λ/2 → {0, 1}n is good if it is good in the sense of Lemma 5.10.
We define H = {[q]× {0, 1}λ/4 → {0, 1}n : h is good}

Our goal is to define an Ah such that

(pk, sk)
$←− K

HONEST = (pk, sk, seed,outq(fseed(G),S))

RANDOM = (pk, sk, seed,Uqm)

|Pr[D(HONEST ) = 1]− Pr[D(RANDOM) = 1]| ≥ 1− negl(λ)
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and (K,G) is a (poly(λ), q, negl(λ))-secure PRGs.

We also need to define some stateful simulator Sim such that any inefficient M(·) making a
polynomially bounded number of oracle calls cannot distinguish between oracle access to Ah and
Sim.

Note that our algorithm will perform a test to ensure that the seed it is given is not degenerate.

For our purposes, we will call a seed degenerate if there exists a y such that Pr
x
[fseed(x) = y] ≥ 1

2
.

K:

Output ⊥

G(count, s):

If count > q, output ⊥.
x← hX(count, s)

Output (x, (count+ 1, s)).

D(seed, r1, . . . , rq):

Degeneracy check: sample q random values x1, . . . , xq. If fseed(xi) = fseed(xj)

for some i, j, output 0.

For each s ∈ {0, 1}λ/4

- If (r1, . . . , rq) = outq(fseed(G), s), output 1

Output 0

Figure 5: Inefficient adversary for any fseed

We set Ah to be as defined in Figure 5.

We then must define the simulator Sim in Figure 6.

Thus, all that remains is to show the following:
1. The PRGs defined by A win the PRG game.
2. The distinguisher defined by A distinguishes correctly.
3. A and Sim are indistinguishable.

Proof of 1: This is trivial by the definition of H and by Lemma 5.10.

Proof of 2: Set ϵ = Pr
seed,x1,...,xq

[fseed(xi) ̸= fseed(xj) for all i, j]. We have that the probability

that D outputs 1 on an immunized input is exactly ϵ. Note that by construction, if D is pro-
vided genuine immunized output, then it will output 1 with probability 1 − ϵ. But we must have
ϵ ≤ negl(λ) as otherwise we can distinguish outq(fseed(G̃), s) from random by simply checking if
there are any repetitions.
Thus, it just remains to bound the probability that D outputs 1 on truly random input. Note that
D compares its input to any of |{0, 1}λ/2| = 2λ/2 values, and outputs 1 if and only if its input
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Sim(K):

Output ⊥

Sim(G, s, count):

If (s, count) /∈ T

-Output T [s][count]
$←− {0, 1}n

Output T [count][s]

Sim(D, seed, r1, . . . , rq):

Degeneracy check: we check if seed is degenerate using the same degeneracy

check as the inefficient adversary. That is, we sample x1, . . . , xq and if

fseed(xi) = fseed(xj) for some i, j, output 0.

For each s ∈ T

- If (r1, . . . , rq) = outq(fseed(G), s)), output 1.

Output 0.

Figure 6: Simulator indistinguishable from inefficient adversary. Sim tracks an internal array
T ∈ ({0, 1}λ/4 × [q])× {0, 1}n.

matches one of these values. However, a random value is sampled from 2qn ≥ 2λ possible choices.

Thus, the probability that D returns 1 on a uniformly random input is ≤ 2λ/2

2λ
= 2−λ/2.

Therefore, A breaks fseed with advantage (1− negl(λ))− negl(λ) = 1− negl(λ).

Proof of 3: We will show this by a series of hybrids starting with some attacker interacting
with A, and ending with an attacker interacting with Sim. As a sketch of the argument, the first
hybrid will involve replacing the hash functions used in A with truly random functions.

� Hybrid 0: Defined as A

� Hybrid 1: Defined as Hybrid 0, but with H replaced with the set of all functions. By the
lemma, this will be indistinguishable from the original A even by a computationally inefficient
distinguisher.

� Hybrid 2: Defined as Sim. Let M be some (possibly inefficient) adversary distinguishing
hybrids 1 and 2 in polynomially many queries. Let E be the event where M interacting
with hybrid 1 makes a D query on input seed, r1, . . . , r1 such that D returns 1 and r ̸=
outq(C(G), s) for any s previously queried to G for any value of count. Note that if we
consider a new set of oracles which acts as hybrid 2, but has D return 0 whenever a query
would cause E to be true, then the distribution of M interacting with this set of oracles is
identical to that ofM interacting with hybrid 1. Thus,M succeeds with probability ≤ Pr[E].

Let Ei be the event that E is triggered during the ith query to D. Let Ri be the event that

36



the seed queried in round i is degenerate. Then

Pr[Ei ∩Ri] ≤ Pr[Ei|Ri] ≤ Pr[seed passes the degeneracy check] ≤ negl(q) = negl(λ)

It remains to bound Pr[Ei ∩Ri].

Pr[Ei|Ri]

≤ Pr
h

[
∃ unqueried s s.t. outq(C(G), s) = r1, . . . , rq|Ri

]
≤ 2λ/2 Pr

x1,...,xq

[ri = fseed(xi) for all i ∈ [q]|Ri]

≤ 2λ/2
1

2q
≤ 1

2λ/2
= negl(λ)

(4)

But as G and D can only be queried a polynomial number of times, by the union bound
Pr[E] ≤ negl(λ). Thus, hybrids 1 and 2 are computationally indistinguishable.
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with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidelberg,
April / May 2017.

[23] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message transmission with
reverse firewalls—secure communication on corrupted machines. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372.
Springer, Heidelberg, August 2016.

[24] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting randomness from
extractor-dependent sources. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 313–342. Springer, Heidelberg, May 2020.

[25] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

[26] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 202–219. Springer, Heidelberg,
March 2009.

[27] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography. In
Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 77–92. Springer, Heidelberg,
August 2002.

[28] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert
backdoored encryption: Security against adversaries that decrypt all ciphertexts. In Avrim
Blum, editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January 2019.

[29] Ari Juels and Jorge Guajardo. RSA key generation with verifiable randomness. In David Nac-
cache and Pascal Paillier, editors, PKC 2002, volume 2274 of LNCS, pages 357–374. Springer,
Heidelberg, February 2002.

[30] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
657–686. Springer, Heidelberg, April 2015.

[31] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[32] Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic encryption: Private com-
munication against a dictator. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 34–63. Springer, Heidelberg, May / June
2022.

39



[33] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions and applications. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
424–453, Virtual Event, August 2021. Springer, Heidelberg.

[34] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping
the power of kleptographic attacks. Cryptology ePrint Archive, Report 2015/695, 2015. https:
//eprint.iacr.org/2015/695.

[35] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping
the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 34–64. Springer, Heidelberg, December
2016.

[36] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic security
against a kleptographic adversary. Cryptology ePrint Archive, Paper 2016/530, 2016. https:
//eprint.iacr.org/2016/530.

[37] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic security
against a kleptographic adversary. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 907–922. ACM Press, October / November
2017.

[38] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Correcting subverted
random oracles. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 241–271. Springer, Heidelberg, August 2018.

[39] Dan Shumow and Niels Ferguson. On the possibility of a back door in the nist sp800-90 dual
ec prng. In Proc. Crypto’07, 2007. https://rump2007.cr.yp.to/15-shumow.pdf.

[40] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In David Chaum,
editor, CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983.

[41] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 205–223. Springer, Heidelberg, August 2007.

[42] Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number generators, with
applications to protocol design. In 24th FOCS, pages 23–30. IEEE Computer Society Press,
November 1983.

[43] Umesh V. Vazirani and Vijay V. Vazirani. Efficient and secure pseudo-random number gener-
ation. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages
193–202. Springer, Heidelberg, August 1984.

[44] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky sources. In Robert D.
Kleinberg, editor, ITCS 2013, pages 111–126. ACM, January 2013.

[45] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103.
Springer, Heidelberg, August 1996.

[46] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptography. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer, Heidel-
berg, May 1997.

40

https://eprint.iacr.org/2015/695
https://eprint.iacr.org/2015/695
https://eprint.iacr.org/2016/530
https://eprint.iacr.org/2016/530
https://rump2007.cr.yp.to/15-shumow.pdf


[47] Adam Young and Moti Yung. Kleptography from standard assumptions and applications. In
Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages 271–290.
Springer, Heidelberg, September 2010.

A Supplemental Materials

A.1 Proof of Lemma 5.10

Proof. Let p(λ) be some polynomial. Let F = {f : [q] × {0, 1}λ/4 → {0, 1}n}. We will use the
probabilistic method to argue that a large fraction of functions f ∈ F are such that if we define
Gf (count, s) = (f(count, s), (count+ 1, s)), then CDp(λ)(out

q(Gf (US),U)) ≤ negl(λ).

Let C be any cicuit of size p(λ). Define pC = Pr[C(U)→ 1]. We want to bound

Pr
f

$←−F
[|pC − Pr[C(outq(Gf (US)))→ 1]| ≥ δ]

for some δ to be set later.

We will define random variables p̃C = Pr[C(outq(Gf (US))) → 1] and Ts = C(outq(Gf (s))).
Then,

p̃C =
1

2λ/4

∑
s∈{0,1}λ/4

Ts.

But note that as f is uniformly random, for any single given s Gf (s) is uniformly random. Thus,
E[Ts] = pC .

By the Chernoff bound,

Pr[|pC − p̃C | ≥ δ] ≤ 2e
− δ22λ/4

3p

Thus, taking δ =
1

2λ/16
gives

Pr
f

$←−F
[|pC − p̃C | ≥

1

2λ/16
] ≤ 2e−

2λ/8

3 .

But note that there are 2O(p(λ) log(p(λ))) circuits of size p(λ). Thus, by the union bound,

Pr
f

$←−F
[There exists C such that |pC − p̃C | ≥

1

2λ/16
] ≤ 2O(p(λ) log(p(λ)))2e−

2λ/8

3

But 2O(p(λ) log(p(λ)))2e−
2λ/8

3 = negl(λ) and so we are done.
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