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Electromagnetic Emanations of DRAM

Accesses
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Abstract—Remote side-channel attacks on processors exploit hardware and micro-architectural effects observable from software
measurements. So far, the analysis of micro-architectural leakages over physical side-channels (power consumption, electromagnetic
field) received little treatment. In this paper, we argue that those attacks are a serious threat, especially against systems such as
smartphones and Internet-of-Things (IoT) devices which are physically exposed to the end-user. Namely, we show that the observation
of Dynamic Random Access Memory (DRAM) accesses with an electromagnetic (EM) probe constitutes a reliable alternative to time
measurements in cache side-channel attacks. We describe the EVICT+EM attack, that allows recovering a full AES key on a T-Tables
implementation with similar number of encryptions than state-of-the-art EVICT+RELOAD attacks on the studied ARM platforms. This
new attack paradigm removes the need for shared memory and exploits EM radiations instead of high precision timers. Then, we
introduce PRIME+EM, which goal is to reverse-engineer cache usage patterns. This attack allows to recover the layout of lookup tables
within the cache. Finally, we present COLLISION+EM, a collision-based attack on a System-on-chip (SoC) that does not require
malicious code execution, and show its practical efficiency in recovering key material on an ARM TrustZone application. Those results
show that physical observation of the micro-architecture can lead to improved attacks.
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1 INTRODUCTION

MODERN Central Processing Units (CPUs) embed ad-
vanced prediction and optimization mechanisms to

improve their performances. Several of these features, such
as cache memories or speculative execution, have been
shown to expose security vulnerabilities exploitable by soft-
ware attacks [1]–[6]. For instance, cache-based side-channel
attacks allow a malicious process to gain information about
other processes, hence bypassing memory isolation pro-
vided by the Operating System (OS). In practice, cache attacks
have been successfully employed for the recovery of cryp-
tographic keys or application fingerprinting. These attacks
have been shown to be practical on smartphones [7] as well
as desktop computers [8], [9].

Embedded devices’ CPUs or microcontrollers have been
widely investigated through the lens of physical side-
channels such as power consumption or electromagnetic
(EM) radiations. These physical vectors have been proved
to contain leakages that statistically depend on the code
and data manipulated by the CPU [10]–[15]. Interestingly,
smartphones embark increasingly more powerful and com-
plex CPUs, which contain micro-architectural optimizations
similar to those found in desktop computers. Smartphones
are physically exposed to the users, thus falling under
both micro-architectural software attacks and physical side-
channel attacks (SCA) paradigms.

In this paper, we show that the electromagnetic em-
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anations of Dynamic Random Access Memory (DRAM) ac-
cesses represent an exploitable side-channel on Systems-on-
chip (SoC). The profiling of EM radiations has well known
advantages over power consumption measurement. Partic-
ularly, it allows exploiting local leakages (coping with, for
example, peripherals’ noise) while being less invasive on
the targeted device. We exploit this side-channel in order
to perform key recovery attacks on a lookup table based
cryptosystem. Moreover, the attacks presented in this paper
are non-profiled: an attacker can recover secret material on
a secure device without the need of prior profiling on a
“whitebox” device. Because a Last-Level Cache (LLC) miss
results in a DRAM access, this work explores variants of
LLC cache attacks with physical inputs [1], [2]. The aim of
this paper is to evaluate the effectiveness of DRAM access
fingerprinting through EM radiations as an alternative to
high precision timers. First, we design a novel attack, named
EVICT+EM, an adaptation of EVICT+RELOAD [5], that has
no need for shared memory with the victim and requires
similar number of encryptions. Then we demonstrate a
collision-based attack, COLLISION+EM, that reduces the
entropy of an AES key down to 268 on a SoC, and down
to 280 on a ARM TrustZone application in a few thousands
measurements. COLLISION+EM can potentially be foreseen
on recent SoCs with stacked packages, where classical phys-
ical SCAs are difficult and physical bus probing almost
impossible without deteriorating the chip. Eventually, COL-
LISION+EM is able to recover secrets where cache flushing
countermeasures are enabled, and even when the cache is
partitioned and/or randomized.



1.1 Contributions

In this paper, we make the following contributions: (i)
in section 4 we characterize DRAM accesses through EM
measurements and we show that they constitute a reliable
side-channel vector, (ii) we derive EVICT+EM in section 5,
a hybrid attack on a T-tables AES implementation and
compare the results with existing methods, (iii) in section 6
we present the PRIME+EM attack, which allows monitoring
cache set accesses during encryptions or any other applica-
tion, (iv) we show the practical feasibility of cache collision-
based attacks with EM measurements on a high-end SoC
in section 7 and (v) we apply the COLLISION+EM attack
paradigm on a TrustZone application in section 8 with
cache attack countermeasures and demonstrate a successful
partial key recovery.

2 BACKGROUND

2.1 Physical side-channel analysis

Side-channel analysis is a specific category of physical at-
tacks. It exploits a so called “side-channel leakage”, which
can lead to a disclosure of private data within the obser-
vation of auxiliary effects such as heat propagation, power
consumption or EM radiation. The literature mainly studies
attacks on intermediate values of cryptosystems in order
to partially or fully recover sensitive data (i.e., often cryp-
tographic keys). Depending on the attacker model, these
attacks can either be profiled (i.e., requiring a training phase
prior to the attack) or non-profiled.

2.2 Cache memory

SoCs embed high-speed processors that need to exchange
data with “slow” DRAM. Such memories have a large
storage capacity (several gigabytes), but have a high ac-
cess latency. To fill the gap between CPU requirements
and DRAM capacities, processor designers introduced cache
memories. The smallest storage component within a cache
is called a cache line. Cache lines are grouped within cache
ways, that are themselves gathered into cache sets. When
data is cached, its address (physical or virtual, depending
on the architecture) is used to determine the cache set and
the cache line. The cache replacement policy handles the
affectation of a cache way. Different caches in a system are
organized hierarchically. First level caches (L1) are fast and
small, they can directly provide data to the CPU’s pipeline.
Upper cache levels gradually gain storage capacity at the
cost of a higher response latency, until the last level cache
(LLC) which is directly linked to the DRAM main memory,
and shared by all the cores of the CPU. If the data required
by the CPU are not currently in the cache, we observe a cache
miss: the data needs to be retrieved from the higher caches
(or ultimately the main memory), and the cache hierarchy
is updated. On the contrary, the recovery of data already
fetched in cache memory is called a cache hit.

2.3 Cache attacks

The ability to distinguish between cache hits and cache
misses is the keystone of cache attacks. Cache attacks can

be (i) time-driven if they measure the time of a com-
plete encryption, (ii) access-driven if they analyze if tar-
get cache lines have been accessed during an encryp-
tion, (iii) trace-driven, if every memory access is pro-
filed during an encryption. EVICT+TIME [3] and collision
attacks [4] are examples of time-driven attacks. Differ-
ent access-driven attacks exist, depending on the avail-
ability of cache flushing instructions (FLUSH+RELOAD,
FLUSH+FLUSH) [2] or not (EVICT+RELOAD) [5]. Some at-
tacks, such as PRIME+PROBE [3], succeed without the pos-
session of shared memory with the victim’s process. Finally,
trace-driven attacks can reuse the concept of access-driven
attacks, but they also require a mechanism that allows
memory access timing measurements during the encryption
process (e.g., process preemption techniques). There exist a
myriad of variants of these attacks [16], that we leave out of
the scope of this paper.

2.4 AES T-tables implementation

In this paper, we target an AES T-tables implementation
from openssl-1.0.0f [17]: it is a common use-case in the
literature since the work of Osvik et al. [3]. T-tables are
precomputed lookup tables of 256 × 32 bits words that are
designed to accelerate the computations of AES rounds. Let
δ be the number of 32 bits words that can fit within a cache
line. We denote by x
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We denote 〈x〉 the most significant bits (MSBs) that can be
recovered thanks to a memory access observation. Namely,
if δ = 8, the 3 lower-bits of the T-table address cannot be
recovered. In that case, 〈x〉 represent the 8−3 = 5 upper bits
of x. T-tables implementations consist in computing the first
9 AES rounds by consulting 4 precomputed lookup tables
T0, T1, T2 and T3, as shown on Equation 1. AES state bytes
for round r′ = r + 1 are computed as follows:
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With (x
(0)
i )0≤i<16 being the outputs of the first Ad-

dRoundKey operation (i.e., x(0)
i = pi ⊕ ki). The last round

is computed with classical sbox substitutions. Each lookup
table contains 256 elements of 32 bits each. Thanks to the C
language attribute attribute (aligned(·)), we ensure in the
remainder of this paper that all T-tables are aligned on 4× δ
bytes boundaries in memory, so that all tables’ first element
coincide with the start of a cache line: such an alignment is
the worst case scenario for an attacker (misalignment effects
are discussed in section 7).

3 ATTACKER MODELS

Put shortly, this work considers an attacker model that
has the same requirements as traditional EM side-channel
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analysis. Namely, all the introduced hybrid models (i.e.,
EVICT+EM, PRIME+EM and COLLISION+EM) require
physical access to the target device, as well as a trigger
signal (EM pattern, GPIO, network activity, etc.). Additional
prerequisites of proposed attacks are highlighted in Table 1.
Note that these assumptions are particularly sound in the
case of smartphones that can easily be robbed.

In this paper, we use a software controlled GPIO as a
trigger signal for synchronizing traces. Synchronization of
traces is left out of the scope of this work, since several
methods exist for this problem [18]. Also, we consider
that the target device is running an algorithm that realizes
secret-dependent memory accesses (instructions or data).
Throughout this paper, we use the AES T-tables imple-
mentation as a meaningful use-case, with a “known plain-
text” scenario, but all applications that perform memory
accesses are potentially vulnerable to the attacks listed in Ta-
ble 1. Finally, EVICT+EM and PRIME+EM, analogously to
EVICT+RELOAD and PRIME+PROBE, require malicious code
execution, while COLLISION+EM does not.

4 OBSERVING DRAM ACCESSES

In this section, we describe our experimental methodology
assessing that EM radiations of DRAM accesses can be
exploited as a reliable side-channel.

4.1 Device Under Test
We use a Digilent Zybo XC7Z020-1CLG400C board as our
device under test (DUT). This board incorporates a SoC with
a dual-core Cortex-A9 CPU running up to 667 MHz which
belongs to the ARMv7-A family (32bit) [19]. We choose this
DUT because (i) it contains a two-level cache hierarchy, (ii)
the Cortex-A9 CPU contains several optimizations such as
out-of-order execution, dynamic branch prediction, dual-
issuing of instructions and a deep pipeline: the induced
noise and jitter in EM measurements make the attack sce-
nario realistic compared to a “smartphone context”, (iii)
applicative CPUs are known to have a very poor Signal-to-
Noise Ratio (SNR) compared to simpler microcontrollers [20],
[21] and Cortex-A9 on the Zybo-z7 board is no exception in
this matter.

4.2 Software experimental setup
Here, we want to reliably provoke a DRAM access. The goal
is to make the latter as distinguishable as possible in side-
channel observations.

4.2.1 Target code
The target code for DRAM access discovery is depicted
in Figure 1. The goal of such code snippet is to keep a
constant execution while realizing a memory access whether
it is a cache hit or a cache miss (i.e., DRAM access) in order
to not introduce a confounding factor. It is composed of 8
steps:
• Step 1 and 8 are the function’s prolog and epilog which

handle the context saving (i.e., pushing and popping
register values into the stack).

• Step 2 consists in initializing the r9 register to 0: it will
be used as an offset in step 4.

Fig. 1: Target code for DRAM access discovery.

• Step 3 and 7 operate an inline repetition of 200 NOP
instructions. The goal of these operations is to fully
flush the pipeline state and generate a visual pattern
on the EM traces.

• Step 4 is the target memory access: the content at the
address contained in r0 is loaded into r6.

• Step 5 consists in the execution of a chainable Read-
after-Write (RAW) dependency code snippet crafted
with sub instructions: this forces in-order execution
and single issuing. It also provides a workload to the
CPU while the target memory load is processed. We
chain this snippet 50 times during our experiments:
this allows minimizing the total payload execution time
divergences between cache hits and misses induced in
step 4.

• Step 6 behaves as a synchronization barrier, as the
sub instruction requires the ldrb instruction to be
completed in order to use the r6 register.

4.2.2 Crafting eviction sets
The access to cache maintenance instructions (such as the
clflush instruction in x86) requires kernel privileges on
ARMv7-A Instruction Set Architecture (ISA). Consequently,
we need to craft an eviction set for each address we plan to
target. An eviction set is a collection of addresses that fills
the entire cache set in which the target address would be
mapped. It is necessary for the attacker to fill the whole
cache set because the cache way that would contain the
target data is determined by the cache replacement policy,
which is proprietary and hardly predictable. To this aim,
for each targeted cache set, we select a group of congruent
addresses from a large memory pool, the latter allocated
through C function mmap with the MAP HUGETLB flag
activated. The congruent addresses are organised into an
eviction set in the form of a double-linked list in order to
tweak the hardware prefetcher: this technique is known as
“pointer chasing” [3]. Once the eviction set is obtained, the
eviction of a target cache line is performed by consulting
each address of the eviction set.

4.2.3 Target code wrapper
We elaborate a controlled pre and post context around the
target code execution. As we will need to discriminate if
our target access is a DRAM access, the wrapper firstly
implements a branchless constant time selection of a “hit
target” address between the real target address A and
a dummy one in order to prevent side-effect speculative
behavior induced by the branch predictor (e.g., speculative
loads or unwanted pipeline flushes). Then,A is evicted from
the cache hierarchy by traversing an eviction set and the
“hit target” is accessed: if the “hit target” is A, the target
access occurring during target code execution would result
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TABLE 1: Comparison of attacker models prerequisites. Attacks that are presented in this paper are indicated with ∗.

Attack Malicious code Shared memory Timer Knowledge of addresses Physical access
EVICT+RELOAD yes yes yes yes no
PRIME+PROBE yes no yes no no
EVICT+EM∗ yes no no yes yes
PRIME+EM∗ yes no no no yes

COLLISION+EM∗ no no no no yes

Fig. 2: Voltage amplitude cartography above the SoC.

in a cache hit, otherwise it will be a cache miss. Then, we
perform a computationally intensive workload in order to
force the Digital Voltage and Frequency Scaling (DVFS) to raise
the CPU frequency to its maximum. Afterwards, a data
synchronization barrier is placed to prevent late memory
loads to be executed between the trigger up and the trigger
down operations. Eventually, the target code is executed. We
add that the whole process is tied to a single core of the chip
in order to avoid context switches.

4.2.4 Side-channel acquisition setup
The near field EM emanations of the DUT are acquired
through an EM Langer H-field RF-U 2.5-2 probe connected
to a Tektronix 6 series oscilloscope with a 2.5 GHz band-
width through a +45/50 dB low noise amplifier. The probe is
attached to a 3-axis motorized bench. We use a sampling rate
of 3.125 GS/s, and an Analogic to Digital Converter (ADC)
precision of 12 bits.

4.3 Best position localization
As we observe local EM radiations, it is necessary to find an
adequate probe position on the top of the chip that allows
to accurately observe DRAM accesses. We expect the latter
event to produce high amplitude EM radiation, because
it involves the use of several components (e.g., DRAM
controller, data buses, etc.). Additionally, the structure of
our target code and its wrapper prevents high amplitude
events, such as pipeline flushes or context switches, to occur
between trigger up and trigger down events.

The amplitude of the perceived EM signal is mapped
upon a 25×25 spatial grid over the main chip. Interestingly,
the amplitude cartography exposes a high signal amplitude
on several positions near the DRAM interconnection buses
(see Figure 2). For, this DUT, we assess the best probe posi-
tion as the one that captures the highest signal amplitude.

4.4 Identification of patterns
We acquire one million traces of target code execution at
the best position identified previously. For each execution,

Fig. 3: High amplitude pattern identification on two exam-
ple traces, green lines indicate estimated pattern boundaries.

the target access is either a cache hit or a cache miss with a
50 % probability. Several patterns emerge within the traces
(see Figure 3). One can observe that (i) the patterns stand out
from the remaining signal (this seems to correspond to the
steps 3 and 7 baseline NOPs and step 5 RAW dependency
instructions depicted in Figure 1) in terms of amplitude
and shape, (ii) they have variable lengths, and they are
located at variable positions and (iii) some of them seem
unrelated to our target memory access, potentially caused
by evictions from other processes. To analyze the traces,
we automatically locate the patterns within the traces by
applying a metric on a sliding window. More specifically,
we compute the standard deviation of samples’ amplitude
on each window, then we establish a threshold (500 in our
experiments). A standard deviation value above this thresh-
old indicates the presence of a pattern (see Figure 3). The
advantage of this method, compared to a straightforward
peak detection, is that the standard deviation allows to
precisely spot the boundaries of a pattern. It is also more
resilient regarding the variations of the patterns’ shapes,
making it more generic (i.e., for different probe positions
or platforms).

4.5 Lengths and locations of patterns
In this subsection, we aim at answering the following ques-
tions: (i)Are there patterns with fixed length that appear mostly
for traces where the target access is a cache miss? (ii) Can we relate
pattern lengths to micro-architectural events? (iii) What can we
deduce from the position of the patterns within traces?

We start by gathering the lengths of patterns throughout
our set of traces, and we label them according to cache hit
or cache miss property of the corresponding target access.

In Figure 4 we observe that patterns with a width of
300 samples (approximately 110 ns) are only present in
cache miss related traces: we associate the label P1 to such
patterns. Interestingly, DRAM accesses on similar platforms
last between 100 and 120 ns [22], [23]. We also observe
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Fig. 4: Distribution of pattern lengths for hit and miss traces.

Fig. 5: Distributions of the starting offsets of patterns P1 and
P2 for hit and miss related traces.

slightly shorter patterns that are present in both hit and miss
related traces. We call P2 such patterns. These observations
bring insights about the phenomena producing P1 and P2:
P1 seems to be related to our target memory access, and
P2 to an event independent from the target memory access,
such as function epilog’s pop instruction.

Figure 5 depicts P1 and P2 starting offset distributions
within the traces. We clearly observe that P1 mostly appears
at the middle of target code execution (i.e., where the target
memory access should occur) while P2 occurs later. As a
consequence, P1 seems to be the pattern corresponding to
our intentional DRAM access.

4.6 Summary

In this section, we established a link between the appear-
ance of patterns within the EM measurements with DRAM
accesses. This implies that pattern matching or statistical
techniques allow detecting DRAM accesses through EM
radiations: this can then be used in a side-channel attack
context.

5 EVICT+EM

We showed in section 4 that we are able to detect DRAM
accesses through EM emanations. This leads to the ques-
tion: can EM observation of DRAM accesses be exploited as an
information leaking phenomenon in a cache side-channel attack
context?

This section introduces EVICT+EM, a novel hybrid soft-
ware and physical side-channel attack against memory ac-
cesses to recover secret keys. The attack principle is the
following: (i) the attacker fills a target cache set, evicting
the victim’s data from the cache, (ii) the victim resumes its
execution and (iii) the attacker decides whether a DRAM
access has been performed or not by the victim by ob-
serving EM radiations. Note that this is an adaptation
of EVICT+RELOAD [5], with (iii) replacing the RELOAD
phase. We stress that EVICT+EM does not require the at-
tacker to share memory with the victim, and hence falls into
the same application contexts than PRIME+PROBE [3].

Algorithm 1: Target code running on the DUT.
Input: P, T, L,w
// Warmup AES encryptions

1 for i from w down to 0 do
2 C← AES encrypt(P , K);
3 end
4 evict(T , L);
5 trigger up();
6 C← AES encrypt(P , K);
7 trigger down();

Fig. 6: EM traces of an AES encryption where the number of
warmup rounds is set to 100 (top) or 0 (bottom).

5.1 Software experimental setup

In this experiment, the DUT runs a TCP server that is tied to
one Cortex-A9 core. Warmup encryptions can be executed
in order to cope with several jitter and noise sources. Then,
one T-table related cache line, whose index is sent by the
client, is evicted before the target encryption (see subsubsec-
tion 4.2.2 for the eviction procedure). This target encryption
is surrounded by trigger operations.

The monitor computer samples random 16 bytes plain-
texts and sends them to the DUT among several parameters
such as the target T-table T , the target cache line to evict L,
as well as the number of warmup rounds w. This process is
repeated N times for each T-table T (see algorithm 1).

5.2 The impact of warmup encryptions

Warmup operations allow to reduce indeterminism due to
cache memory, hence limiting jitter effects. When several
warmup rounds are performed before evicting the target
line (see Figure 6), we observe a clear single pattern within
the EM measurement: the only observable DRAM access
is a consequence of a cache miss during a table access in
the course of the encryption (i.e., the one induced by the
eviction phase). On the contrary, when no warmup rounds
are performed, we observe the presence of several patterns,
with different shapes, that are unrelated with the target
DRAM access. Due to jitter, the target pattern that appears
for 100 warmup rounds is slightly shifted in the no warmup
case.

Even if performing warmup encryptions would intu-
itively enhance the accuracy of attacks, it would come at a
cost: the attacker would be forced to wait a certain number
of encryptions before triggering the target one, increasing
the duration of the attack. Consequently, in subsection 5.3
we aim at designing an attack framework that is resilient
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regarding the noise and jitter while executing no warmup
encryption.

5.3 Attack procedure
In the course of this subsection, we discuss the different
steps of the key recovery attack which are (i) making hy-
potheses, (ii) Region of Interest (RoI) selection, (iii) traces
preprocessing, (iv) choosing and evaluation of a metric, (v)
ranking of the hypotheses according to metric value.

5.3.1 Key distinguisher
Making a hypothesis on a key byte consists in splitting the
traces (ti)0≤i≤N into two groups g0 and g1 based on the
fact that a DRAM access at a desired encryption instant
occurs or not under the hypothesis. This attack follows the
methodology of the Differential Power Analysis (DPA) [14].
Let k∗ ∈ F28 be the right key byte, K = F28 be the
set of all possible key candidates and Z = F28 be a set
of intermediate values. Then, we denote DRAMk̃(z)z∈Z
a Boolean predicate that is True if the manipulation of z
under the hypothesis k̃ results in a DRAM access, and False
otherwise. Under each key hypothesis k̃, it is possible to
separate the traces between two sets g0

k̃
and g1

k̃
such that

g0
k̃

= {ti | DRAMk̃(zi)} and g1
k̃

= {ti | ¬DRAMk̃(zi)}.
Now it is possible to lift an arbitrary metric M(g0

k̃
, g1

k̃
),

its choice is discussed in subsubsection 5.3.4. The best key
hypothesis retained is then defined as:

kbest = argmax
k̃∈K

{
M(g0

k̃
, g1

k̃
)

}
(2)

5.3.2 RoI and window selection
When no warmup encryption is performed, we observe (i)
a jitter that misaligns our pattern of interest and (ii) other
erratic patterns that appear during the encryption. Nonethe-
less, we make the following assumption: It is possible to find
a RoI where the interesting patterns appear more frequently for
the good hypothesis.

It is hard to specifically locate one AES round (e.g.,
the first) within the traces for various reasons. Firstly, the
probe position does not allow us to observe pipeline EM
emanations, making harder the use of Simple Power Analysis
(SPA) in order to precisely locate the AES routines. Secondly,
the presence of jitter would automatically shift the RoI.

However, guessing can be performed by knowing the
algorithm. Indeed, the AES first round is unlikely to expose
side-channel leakage in, say, the 10% last samples of the
trace, even with the presence of jitter. In our experiments,
we thus consider a RoI of 2000 samples for targeting the first
AES round, which, in our experimental setup, corresponds
to 400 clock cycles (approximately 640 ns).

5.3.3 Preprocessing with integral computation
As we consider discrete measurements, the integral of a
trace t = (t[j])0≤j≤n is defined as the sum of its sam-
ples’ values. This operation performs a linear combination
of the samples over a RoI. This is useful when a jitter
desynchronizes the traces. However, the main limitation
of this method is that the per-sample precision is mostly
lost. For the sake of our experiments, we consider integral

computation upon a fixed sized sliding window of 300 sam-
ples within the RoI. This processing step is systematically
applied to g0

k̃
and g0

k̃
before computing the metric.

5.3.4 Metric
We use the Welch’s t-test as our distinguisher metric (not as
a proper statistical test). It is an adaptation of Student’s t-test
designed to test whether two normal distributions (X1 and
X2) have the same mean (possibly with distinct variances).
This test computes a t-statistic value as follows:

t =
Ē(X1)− Ē(X2)√

¯V ar(X1)
N1

+
¯V ar(X2)
N2

(3)

Here, Ē and ¯V ar denote the empirical mean and variance
with N1 observations of X1 and N2 observations of X2.
A high t-statistic indicates that the two means are highly
different.

In our case, this metric seems relevant because (i) the
data to be processed is divided into two groups g0

k̃
and

g1
k̃

and (ii) the population of these two groups is very
heterogeneous (g0

k̃
has few elements): we can benefit from

the in-class normalization. For the good hypothesis, we
expect the t-statistic to be higher than for wrong hypotheses.

5.4 First round attack
The first step of the attack is to craft eviction sets for at
least one cache set per T-table with the method described
in section 4. The attacker is supposed to be able to evict at
least one cache line per T-table.

The information the attacker can learn is whether one
of the addresses that is mapped in this same cache line has
been consulted or not. In the case of our DUT, this means
that an attacker that only exploits the first AES round can
only guess the five most significant bits (with δ = 8) of the
state bytes indexing the T-tables.

In order to attack the AES’s first round, it is needed to
draw hypotheses on each (〈x(0)

i 〉)0≤i≤15. As our attacker
model allows only one eviction per encryption and as each
table Tj is consulted for each (x

(0)
i )0≤i≤15,i≡j (mod 4), four

sets of traces need to be gathered (one for each table).
Each set of traces allow to draw hypotheses on 4 bytes.
For simplicity, the targeted cache line for each table Tj
corresponds to its first δ = 8 elements. The global guessing
entropy is obtained by performing the attack 100 times for
each byte on N randomly selected traces (see Figure 7),
and computing the average rank of all good hypotheses.
A guessing entropy down at 0 indicates that all guesses are
correct.

In Figure 7a, one can observe that the guessing entropy
of EVICT+EM reaches 0 between 800 and 900 traces per ta-
ble. This means that, on average, an attacker that is allowed
to observe 3600 encryptions is able to guess the 5 MSBs of
each byte of the secret key.

5.5 Second round attack
Following the attack of Osvik et al. [3], it is possible to
rewrite all (x

(1)
i )0≤i≤15 according to the bytes of the plain-

text and the secret key. Among those 16 state bytes equa-
tions, four of them are particularly interesting. Indeed, the
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TABLE 2: Start of second round state target bytes, their
corresponding hypotheses quadruplets to enumerate and
the first round misses that need to be avoided.

Byte Table Key quadruplet Round 1 misses to avoid
x
(1)
2 T2 (k0, k5, k10, k15) x

(0)
2 , x

(0)
6 , x

(0)
10 , x

(0)
14

x
(1)
5 T1 (k3, k4, k9, k14) x

(0)
1 , x

(0)
5 , x

(0)
9 , x

(0)
13

x
(1)
8 T0 (k2, k7, k8, k13) x

(0)
0 , x

(0)
4 , x

(0)
8 , x

(0)
12

x
(1)
15 T3 (k1, k6, k11, k12) x

(0)
3 , x

(0)
7 , x

(0)
11 , x

(0)
15

MSBs of x(1)
2 , x(1)

5 , x(1)
8 and x(1)

15 only depend on four secret
key bytes LSBs (the others depend on five). Let us denote
Si = sbox(pi⊕ ki). For the second round we can exploit the
following equations:

x
(1)
2 = S0 ⊕ S5 ⊕ 2 · S10 ⊕ 3 · S15 ⊕ sbox(k15)⊕ k2

x
(1)
5 = S4 ⊕ 2 · S9 ⊕ 3 · S14 ⊕ S3 ⊕ sbox(k14)⊕ k1 ⊕ k5

x
(1)
8 = 2 · S8 ⊕ 3 · S13 ⊕ S2 ⊕ S7 ⊕ sbox(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 · S12 ⊕ S1 ⊕ S6 ⊕ 2 · S11 ⊕ sbox(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(4)
The second round attack relies on the information gained

from first round attack (i.e., the MSBs of each key bytes). In
order to recover the full key, one needs to draw hypotheses
on key bytes LSBs and use equations in Equation 4 to predict
whether a DRAM access occurs for each plaintext. As each
equation in Equation 4 involves only 4 key bytes, hypothe-
ses are drawn on each quadruplet (e.g., (k0, k5, k10, k15) for
the first equation). For each quadruplet hypothesis and tar-
get address, we select plaintexts and traces so that the target
address is not accessed during the first round(see Table 2)1.
Then, the key distinguisher (see subsubsection 5.3.1) is ap-
plied to highlight the best hypothesis for each quadruplet.
Note that we are able to reuse the traces gathered for the
analysis of the first round.

Globally, guessing entropies for the quadruplets con-
verge towards 0 with less than 1600 traces per T-table
on average. This means that the whole secret key can be
recovered with less than 6400 traces on average.

5.6 Comparison with EVICT+RELOAD

We now compare EVICT+EM with the EVICT+RELOAD [5]
attack. Note that they are similar in terms of malicious
code execution, as EVICT+RELOAD does not suppose any
preemption of the victims process, nor multiple evictions
per encryption. For a fair comparison, EVICT+RELOAD uses
the same eviction set construction and roaming strategies
as EVICT+EM. We use two different timer sources for the
“Reload” part of the attack: a monotonic timer based on
the gettime function from the libc denoted “User”, and a
high-resolution cycle counter available in ARM Performance
Monitoring Unit (PMU). We stress that the latter requires
to load a kernel module in order to allow the access to
the CPU’s internal performance monitoring registers: this
method is ran at a kernel privilege level. Finally, we use
the same distinguisher (i.e., Welch’s t-test), except that our
EVICT+RELOAD attack version implements the t-test upon
the timing distributions.

1. This is a slight improvement of the initial EVICT+TIME attack
shown by Osvik et al. [3].

<

<

(a) First round

(b) Second round

Fig. 7: Guessing entropy comparison, per table, for
EVICT+RELOAD and EVICT+EM first round attack (7a)
where 〈k∗〉 is recovered, and second round attack (7b) where
the full key quadruplet is recovered (see Table 2), with no
warmup.

In Figure 7, we can observe that (i) EVICT+EM has better
performances than EVICT+RELOAD with kernel privileges
for the first round attack: this can be explained by a better
temporal resolution, (ii) EVICT+EM has better performances
on second round quadruplets candidates, but it is less
significant. An argument to explain this phenomenon is
an increased amount of first round induced jitter for the
EVICT+EM for the second round attack. Consequently, we
can assess that EVICT+EM constitutes a userland alterna-
tive to cache attacks with similar performances than an
EVICT+RELOAD attack with kernel privileges. When per-
forming EVICT+EM, the attacker does not need to share
memory with the victim, hence it is an interesting alterna-
tive to PRIME+PROBE family attacks when EVICT+RELOAD
is not practical.

6 PRIME+EM
EVICT+EM relies on the use of eviction sets to evict target
cache lines: the eviction set crafting phase requires to locate
the targets’ physical addresses in main memory. The main
goal of this section is to overcome this restriction. The
technique presented in this section, called PRIME+EM, is
based on PRIME+PROBE [3]. It aims to discover the cache
sets hosting the T-Tables within cache memory. This attack,
which can be viewed as a reverse-engineering step, can
precede an EVICT+EM attack for full key recovery.

6.1 Profiling cache set activity

We assume that the T-tables are stored contiguously and 32
bytes aligned within the DRAM, and that T0 is page aligned.
For a memory page size of 4 KB, this results in the T-tables
filling exactly one page so that there is no risk that two
distinct T-tables share the same cache set. We also assume
that the attacker knows the physical addresses that they are
manipulating.
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Fig. 8: Cache set activity metric of the Zybo-z7 during AES
encryption with 100 warmup rounds and N = 400.

Then, the attacker is able to craft eviction sets for each
cache set by using the methodology described in section 4.
We denote evi the eviction set for cache set i. The profiling
of cache set activity is performed as follows: (i) (Warmup)
the attacker lets the victim’s process perform random en-
cryptions so as to fill the cache, (ii) (Prime) the attacker
accesses evi to realize an eviction, (iii) (Observation) the
attacker triggers the encryption of a random plaintext with
the oscilloscope. This procedure is repeated several times
for each cache set, and for all cache sets. For each cache set,
an activity metric is computed for N EM traces as follows:

metric =
1

N

N∑
k=0

σk (5)

With σk being the standard deviation of the signal ampli-
tude of the EM observation on a 1000 samples RoI for trace
k. Then, an averaging of the standard deviation over the
N traces is made. This metric is based on the automatic
pattern identification conducted in subsection 4.4: the key
idea is that DRAM accesses highly stand out compared to
other activities for the assessed probe position on this DUT.

Experimental results of PRIME+EM for 100 warmup
rounds with N = 400 are depicted in Figure 8. We clearly
observe high metric values for the contiguous cache sets
where the T-tables are mapped. Interestingly, we also ob-
serve non contiguous high peaks for other cache sets. These
accesses can be related to cached assembly code (as we
are targeting the LLC in which both instructions and data
can be cached) or other memory locations accessed during
the encryption (e.g., plaintext or secret key buffers). With
this experiment, we show that an attacker is able to craft
eviction sets targeting the T-tables without precise timers,
shared memory nor knowledge of the T-tables’ location in
memory.

7 COLLISION+EM
The EVICT+EM and PRIME+EM attacks we presented so far
have the drawback of imposing to the attacker the forgery
of eviction sets. In this section, we remove the constraint
of malicious code execution by designing a collision-based
attack. We define a collision as equivalent to a cache hit with
data that is belonging to the same target algorithm during
a single encryption. Our attacker model is built under
the following assumption: every non-colliding memory access
made by the victim will most likely generate a DRAM access
during the targeted round. As a prerequisite, the attacker is
supposed to be able to erase T-tables’ content from the cache
hierarchy before the encryption. Several circumstances can
validate this prerequisite, such as cache eviction from other

processes, a reset of the DUT or a systematic cache flushing
implemented as a cache attack countermeasure. Finally, a
collision can be inferred from the absence of a DRAM
access through EM measurement during the encryption.
Once again, we opt for a differential approach on the EM
traces.

7.1 First-round attack

Let i, j ∈ {0, ..., 16} with i 6= j be such as x(0)
i = pi ⊕ ki

and x
(0)
i′ = pi′ ⊕ ki′ are indexing the same table T . A

collision is obtained when 〈x(0)
i 〉 = 〈x(0)

i′ 〉, which implies
that 〈pi ⊕ pi′〉 = 〈ki ⊕ ki′〉. Then, it is possible for an
attacker to craft hypotheses on 〈ki ⊕ ki′〉 under a known
plaintext scenario. All the T-tables’ contents are evicted from
the cache before each encryption. No warmup is used, as it
would fetch T-tables’ contents within the cache and thwart
the attack. Under each hypothesis, it is possible to separate
the traces and plaintexts into two groups g0 and g1, based
on the apparition of a collision or not for each plaintext. As
in section 5, we use integral computation as preprocessing
and the Welch’s t-test as a distinguisher. We setup a window
of 300 samples for integral computation that slides along the
traces with a single sample stride.

Graph theory provides an insightful representation for
collision-based attacks [24]. Let G = (V, E) be an undi-
rected graph such as its vertices V represent key bytes
MSBs (〈ki〉)0≤i<15. An edge is drawn between two vertices
vi = 〈ki〉 and vi′ = 〈ki′〉 when the knowledge of the value
of vi allows to uniquely determine the value of vi′ . Knowing
a relationship of the form 〈ki ⊕ ki′〉 = r creates an edge in
G between vi and vi′ , because if 〈ki〉 is known, the value of
〈ki′〉 is 〈ki〉 ⊕ r. Let Gj = (Vj , Ej)0≤j<4 be subgraphs such
as Vj = {〈ki〉 | i ≡ j (mod 4)} (see Figure 10). In other
words, Gj covers key bytes that concern table Tj during
the first round computations. By observing collisions within
the same table, one can hope to recover enough vertices
between edges of Gj to make it a connected graph.

Figure 9 illustrates the guessing entropies for each vertex
corresponding to each subgraph Gj . Concerning the G0 and
G1 subgraphs (see Figure 9a and Figure 9b), we observe that
the guessing entropies converge towards 0 with between 8k
and 14k attack traces. We also remark that G2 and G3 have a
slower convergence towards 0. In our experiments, guessing
entropies for each 〈ki ⊕ ki′〉 reach 0 for 20k traces, making
all the Gj subgraphs fully connected. This shows that our
method allows discovering 〈k(0)

i ⊕k
(0)
i′ 〉 relationships with a

few thousands of encryptions on average and no malicious
code running on the target.

Recall that, for δ = 8 (e.g., on the Zybo board), knowing
if a cache line has been accessed by an intermediate value
grants information upon the 5 MSBs of this value. If a
subgraph Gj is connected, fixing a value for any 〈ki〉 ∈ Ej

allows recovering the values of all other 〈ki′〉 ∈ Ej , i
′ 6= i.

Thus there are 25 hypotheses to be tested for each subgraph
Gj . By combining the four subgraphs, we obtain a search
space of size 25×4 = 220. Then, remember that for δ = 8,
the 3 LSBs of each key byte cannot be guessed from the first
round attack. Hence, after the first round attack, the total
key entropy drops from 2128 to 220 × 23×16 = 268.
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(a) T0 (G0 subgraph). (b) T1 (G1 subgraph).

(c) T2 (G2 subgraph). (d) T3 (G3 subgraph).

Fig. 9: Guessing entropy for Gj related collisions corre-
sponding to each table (T0 to T3) on the Zybo-z7 platform,
each point displays the average rank of the good candidate
over 100 attack iterations upon randomly sampled traces,
with no warmup.

Now we consider Equation 4. For each of the four
quadruplets depicted in Table 2, each key byte involved is
concerned by a different Gj . Hence, in our case, this means
that the complexity of the second round attack is in the
order of 4 × 220 × 23×4 = 234. More precisely, an attacker
would need to derive 234 hypotheses in total for the four
quadruplets depicted Table 2 and perform a Welch’s t-test
for each of them.

7.2 About connecting G

Having no connections linking the different Gj subgraphs
keeps the key entropy too high to mount a bruteforce attack
in a reasonable amount of time. Creating links between
the subgraphs, in order to make G connected, implies that
collisions must be exploitable between state bytes that are
indexing different tables. Several hardware or software fea-
tures could enable this, such as (i) misaligned T-tables and
(ii) known or controlled data prefetching behavior.

Firstly, as stated in [25], misaligned T-tables have the
effect of not mapping their base address to the beginning
of a cache line. As T-tables are often contiguous in memory,
this would imply that cache lines contain data from adjacent
tables, and inherently allow collisions between state bytes
indexing distinct tables. Secondly, data prefetching, that
brings data closer to the CPU speculatively, could bring
data from one table when another is accessed, potentially
leading an attacker to observe a collision. Leaving aside
other optimizations to the attack, a connected graph G on
our DUT would lead to a total key entropy upper bound of
25×23×16 = 253 after the first round attack. An upper bound
of the complexity of the second round attack would be of
4×25×23×4 = 219 Welch’s t-tests. The AES implementation
we target in this experiment has no misaligned tables, and
we found no exploitable prefetching behavior.

Fig. 10: Example of a collision graph G, composed of the
four subgraphs G0, G1, G2, G3. Plain vertices indicate inter
table collisions, dashed vertices represent the collisions that
would be observable with misaligned tables or favorable
prefetching behavior.

7.3 Conclusion
We were able to exploit collisions within an AES T-tables
implementation with less than 20k traces on average with a
non-profiled model on a Cortex-A9 processor, dropping the
total key enumeration complexity from 2128 to 268. Putting
aside the use of COLLISION+EM to reduce key entropy,
this attack can be coupled to a classical EM SCA in order
to reduce the total number of needed measurements. This
attack has no need for malicious code execution on the
DUT and only requires the attacker to flush the whole T-
tables region before encryptions. Interestingly, cache flushes
before sensitive application execution, which is a common
countermeasure against cache attacks, would actually make
COLLISION+EM possible.

8 ARM TRUSTZONE ATTACK

The ARM TrustZone is a mechanism that aims at pro-
viding hardware-based security features on ARM CPUs.
ARM TrustZone ecosystems have widely been deployed in
embedded devices such as smartphones, automotive and
industrial systems [26]. This technology separates the so
called secure world from the normal world. TrustZone pro-
vides a Trusted Execution Environment (TEE) which hosts
the security critical features such as payment or authen-
tication operations within Trusted Applications (TAs). The
secure monitor is a privileged entity that handles context
switches between secure and normal worlds. The secure
and normal world’s resources are isolated at the hardware-
level. Such an isolation inherently prevents shared memory
based attacks such as EVICT+RELOAD. For the past several
years, researchers have identified several vulnerabilities in
TEEs. Notably, Lipp et al. [7] exposed a PRIME+PROBE attack
on a trusted application, bringing forward the fact that the
ARM TrustZone does not guarantee “as-is” security against
cache attacks. Nevertheless, the authors emphasized that
some devices ensure that the cache is flushed when entering
or leaving a trusted application. This countermeasure has
the effect of making PRIME+PROBE attacks harder, as the
eviction sets need to be browsed between the cache flushing
procedure and the beginning of the encryption (respectively
between the end of the encryption and the following cache
flush), imposing strict timing constraints to the attacker. As
a consequence, authors were unable to perform complete
or partial key recovery, but rather determined if a valid or
invalid key had been used by the trusted application.
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The COLLISION+EM attacker model (see Table 1) is par-
ticularly relevant for targeting a TA’s AES implementation
with such countermeasures in a realistic scenario because (i)
the addresses of the T-tables are unknown, (ii) the target
cache sets are flushed before entering the secure world
as a countermeasure for PRIME+PROBE, PRIME+EM and
EVICT+EM attacks and (iii) no malicious code is executed
(GPIO toggles before and after the encryption used to
trigger the oscilloscope are not considered as malicious
code), only legitimate calls to the trusted application are per-
formed. For the rest of this section we use a STM32MP157F-
EV1 dual-core Cortex-A7 based SoC with TrustZone support
as our DUT. This platform encompasses several peripherals
(screen, keyboard, ethernet port, etc.) that are active while
performing the analysis, potentially adding extra noise and
jitter to our measurements. Finally, the Cortex-A7 has two
levels of cache, with a cache line size of 64 bytes and a 8-way
set-associative LLC of size 1MB.

8.1 Leakage assessment
The printed circuit board (PCB) layout of this DUT exposes
the data buses that are headed towards the two DRAM
chips (see Figure 11). Similarly to subsection 4.3, we perform
a 15 × 50 voltage range cartography during the execution
of the characterization program (see Figure 1). Figure 11
illustrates that the signal amplitude is more significant
above the data buses. Leakages of those buses could not
be analysed on the Zybo-z7 due to the PCB layout. This is
explained by the greater current through the latter. Contrary
to Figure 2, the signal dynamics do not effectively highlight
a best probe position: the latter needs to be determined with
more specific leakage assessment. Hence, a Welch’s t-test is
performed (with 2000 traces per position) in order to mea-
sure the distinguishability between the traces regarding the
presence of the target DRAM access. Further measurements
are headed with the probe placement related to the highest
t-value in Figure 11. The total procedure represents less than
a day.

8.2 Attack of a trusted application
The DUT is running a full-fledged Linux distribution as
a host operating system, and an OP-TEE OS [27] that
handles the TrustZone environment. The OP-TEE operating
system’s cryptographic primitives are implemented within
the LibTomCrypt library [28] whose default AES implemen-
tation is based on T-tables. Note that no cache flushing
countermeasure is implemented by default before or after
encryption, enabling PRIME+PROBE and PRIME+EM threat
models (see Table 1). This countermeasure is hence the
responsibility of the developer that writes the TA.

For the sake of this experiment, we design a trusted
application that realizes T-tables AES encryptions such that
(i) lookup tables’ offsets are aligned to a cache line size (64
bytes on this platform) and (ii) cache lines that would hold
T-tables contents are systematically evicted before and after
every encryption thanks to the TEE cache clean function
provided by the OP-TEE API.

To carry out this experiment, we gathered one million
encryption traces. The RoI lower bound is assessed by
locating the start of a region of significant activity within EM

measurements. Such an instant is determined by observing
an increasing trend in the average of the traces in absolute
value (see Figure 12). The upper bound is determined to be
empirically large so that the risk for the first round DRAM
accesses to be out from the RoI is minimized.

Because of low amplitude noise and important jitter,
the preprocessing method presented in subsection 5.3 is
inefficient on this DUT. A variant, that counts the number
of samples that exceed an amplitude threshold on a sliding
window fashion, is preferred for this platform.

With a cache line size of 64 bytes, each T-table fills exactly
16 cache lines. As a consequence, a random guess on 〈ki ⊕
ki′〉 ranks in eighth position in average. Also, an attacker
that is able to build subgraphs Gj reduces the total AES key
entropy to 280.

Guessing entropies for the first round collision attack
on the four tables are depicted in Figure 13. The G0 and
G1 subgraphs become fully connected with less than 10k
traces. Some collisions are harder to detect for theG2 andG3

subgraphs, which become fully connected with almost 60k
traces. It is important to notice that some collisions are accu-
rately detected from 2000 traces (e.g., 〈k0 ⊕ k4〉). Figure 13c
and Figure 13d expose that collisions with bytes belonging
to W (1)

3 need more traces to be accurately recognized. When
focusing on the G3 case, we remark that collisions related
to k6 have the worst guessing entropy convergence towards
zero. Interestingly, the analysis of the binary file informed us
that the compiler reordered memory accesses so that T2[x

(0)
6 ]

is processed last.

8.3 Conclusion
Despite extra noise and jitter in the electromagnetic mea-
surements, we show that COLLISION+EM succeeds in ex-
tracting secret data in a TrustZone environment. We can
conclude that TrustZones with cache flushing based coun-
termeasures are not resistant against COLLISION+EM. This
raises major security concerns for TAs handling critical data
(e.g., banking, authentication) on embedded devices. We are
able to recover secret key material with COLLISION+EM
with less than 10k encryptions. This means that information
about secrets stored and manipulated by trusted environ-
ments are potentially vulnerable to COLLISION+EM with
a reasonable time spent on measurements and analysis (a
few hours). As mentioned, smartphones are particularly
vulnerable to this threat model, as no malicious code needs
to be executed on the device.

9 DISCUSSION

9.1 Comparison with EM SCA
SoCs EM radiations encompass the activity of all the com-
ponents that are close to the probe. Hence, measurements of
small-scale phenomena (e.g., register updates) often present
a high amount of noise and jitter due to micro-architectural
complexity and concurrent activity. Even so, after EM traces
are gathered, traditional SCA often require preprocessing
steps, such as filtering or synchronization [21]. Finally, when
dealing with EM measurements on noisy SoCs, finding a
good probe position is a time consuming process (i.e., sev-
eral days to a month). Still, even at the best probe position,
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Fig. 11: Voltage range (left), top view of the board (middle) and Welch’s t-test cartography (right).

Fig. 12: Region of interest selection based on activity detec-
tion upon average of absolute traces values.

(a) T0 (G0 subgraph). (b) T1 (G1 subgraph).

(c) T2 (G2 subgraph). (d) T3 (G3 subgraph).

Fig. 13: Guessing entropy for Gj related collisions cor-
responding to each table (T0 to T3), each point displays
the average rank of the good candidate over 100 attack
iterations upon randomly sampled traces, with no warmup.

attacking a cryptosystem on a high-end SoC with non-
profiled methods often requires up to millions of traces [29].
By profiling DRAM accesses through EM measurements,
we tackle some of these issues. The attacks we propose are
more resilient to noise and jitter than classical physical side-
channel attacks. We recall that DRAM accesses last for vari-
ous clock cycles and produce rather high amplitude signal:
the constrains upon the acquisition chain (e.g., ADC pre-
cision, voltage precision, sampling rate, probe positioning)
are less restrictive in our case. Moreover, chip packages with
stacked DRAM on are known to impose a lot of EM traces
gathering and preprocessing [29]. These stacked packages
also limit the possibility for an attacker to directly probe the
buses to harvest DRAM access information.

Combining EM measurements with the cache attack
paradigm comes at the cost of being more intrusive on the
DUT. As we have seen, EVICT+EM and PRIME+EM require
eviction set construction, hence malicious code execution.
However, COLLISION+EM removes this limitation.

9.2 Comparison with cache attacks
Cache attacks often require a high amount of malicious
memory accesses. The extreme case is reached with trace-
driven attacks, which need to profile almost every memory
accesses performed by the victim process. Moreover, the
vast majority of cache attacks require a way to measure time
with enough precision. Finally, software micro-architectural
attacks are often noisy. For example, access-driven and time-
driven attacks on AES first round are noisy because of other
rounds accesses. The method we describe here (i) has a small
memory footprint, as abnormal memory interactions are
performed for initial data evictions only, (ii) can be headed
with better temporal precision, (iii) does not require cycle
accurate timer and (iv) can target DRAM accesses through
time during the encryption. In terms of drawbacks, our
EVICT+EM and PRIME+EM attacks, presented in this paper,
hardly allow to profile several memory addresses at the
same time. Moreover, the attacker needs to have physical
access on the target and add several hardware components
to its experimental setup (i.e., oscilloscope, probe).

9.3 Mitigations
A natural countermeasure to EVICT+EM, PRIME+EM and
COLLISION+EM is a systematic prefetch of the victim’s data
before encryption. This would prevent any DRAM accesses
during the encryption as long as there are no self evictions
occurring within the victim’s process. Note that this can
represent a performance bottleneck. Also, such a prefetch is
not always possible, especially when the sensitive lookup
tables are wider than the available cache size. A perfor-
mance compromise can be reached by performing random
accesses to the sensitive data before encyption: this would
drastically increase the number of measurements required
by an attacker. Note that this mitigation “as-is” does not
prevent the attacks, and needs to be implemented jointly to
other security measures (e.g., frequent rekeying).

The attacks presented in this paper exploit side-channel
information leaked by DRAM accesses that are statisti-
cally dependent to a secret. Preventing table lookups and
branches from depending on a secret, which is a cornerstone
of so called constant time implementations [30], is also
a viable mitigation strategy. Note that these methods are
already widely deployed for asymmetric cryptography (e.g.,
square-and-multiply always for RSA).

Classical SCA countermeasures such as hiding (e.g.,
metallic shields or artificial EM noise addition), and mask-
ing [31] can thwart the attacks proposed in this paper. Note
that, due to a high tolerance to jitter, our attacks would be
poorly affected by shuffling countermeasures. Finally, con-
current activity in multi-core platforms could be employed
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to add noisy DRAM activity and increase the difficulty of
our attacks.

9.4 Related work

Bertoni et al. [32] designed a simulated attack exploiting
intentionally induced cache misses. More precisely, they
target first round misses in a sbox AES implementation on a
simulated microcontroller architecture with an 8 bytes cache
line size. This attack provided inspirational insights for the
EVICT+EM approach.

Osvik and al. [3] proposed an attack on an AES T-
tables implementation. They formalized the key recovery
procedure for attacking the two first rounds of the AES
with EVICT+TIME and PRIME+PROBE. They recovered
the whole key with 500k encryptions with EVICT+TIME
on an AMD Athlon64 CPU. Our EVICT+EM attack is an
adaptation of EVICT+TIME.

Dey et al. proposed a monitoring of CPU stalls induced
by LLC misses through the observation of EM emana-
tions [33]. For this purpose, they use micro-benchmarks
by executing controlled code with known memory access
behavior. They pinpoint the benefit of their work for bench-
marking code segments when performance counters are
unavailable (e.g., bootloaders). While our study and Dey et
al.’s [33] both target similar memory events, the main pur-
pose of our work is to mount a key recovery attack on
CPUs that could be packaged with a stacked DRAM and
potentially support Out-of-Order execution. Then, rather
than relying on precise (and potentially device dependent)
pattern matching results, we exploit statistical links between
the EM radiations and DRAM accesses in order to leverage
a differential non-profiled attack.

Schramm et al. identified that collisions of intermediate
variables in a cryptographic primitive are an attack vec-
tor [34]. They experimentally confirmed this new attack
paradigm by showing a chosen plaintext collision-DPA
attack on the AES on an Intel 8051 compatible microcon-
troller [35].

Fournier and Tunstall designed a theoretical attack ex-
ploiting cache collisions during AES encryptions [36]. The
target is a smartcard with a single level of cache which
is shared for instruction and data. The cache line size is
16 bytes, thus containing 16 sbox elements. To break the
remaining bits of each byte, they first propose a method
exploiting second round SubBytes routine. Alternatively,
they propose exploiting cache collisions in the MixColumns
precomputed tables (i.e., the one performing the xtime func-
tion). This work has been since extended [37]. Bogdanov [24]
proposed an enhanced collision-based attack targeting Sub-
Bytes and MixColumns outputs. He formalized the collision
attack as a set of linear equations that can be represented
as a connected graph. A practical implementation of the
attack was shown on a PIC16F microcontroller. This work
was extended by combining the key ranking features of
DPA, Correlation Power Analysis (CPA) or Mutual Information
Analysis (MIA) with collision-based attack [38].

Gérard and Standaert formalized collision attacks linear
problems as a Low Density Parity Codes (LDPC) decoding
problem [39]. They pinpoint that collision attacks are hard-
ened by the diversity of possible implementations when

considering software primitives. This work may allow to
optimize the COLLISION+EM attack.

GPU caches are also vulnerable, from timing attacks [40]
to correlation-collision exploiting memory coalescing [41].
Gao et al. investigated the EM leakages of cache collision
on a NVIDIA GEFORCE GPU [42]. They find an AES key
through chosen plaintext attack with 6k traces. The occur-
rence of a collision is used as a separation criterion for a
DPA attack.

10 CONCLUSION

In this paper, we described a new methodology to exploit
the electromagnetic emanations of DRAM accesses on SoCs
as an attack vector. We develop three attack scenarios,
EVICT+EM, PRIME+EM and COLLISION+EM, that require
a physical access to the attacked device, which is rele-
vant when considering embedded devices such as smart-
phones. We show that EVICT+EM enables full AES key
recovery with similar precision as EVICT+RELOAD attacks
with kernel level timer. Furthermore, the aforementioned
attacks require no process interruption nor concurrency
constraints. Eventually, we demonstrate the efficiency of
COLLISION+EM, that do not require any malicious code
execution. We showed that this technique allows partial
key recovery against a T-Table AES implementation running
in a trusted application on an ARM TrustZone. The attack
even works with the presence of systematic cache flushing
before encryptions. COLLISION+EM can be applied to a
wide range of algorithms with secret dependent memory
access patterns. This represents a threat regarding trusted
execution environments on embedded devices, which re-
main physically accessible to an attacker. Future work may
consider recovering the addresses of the DRAM accesses
to mount more efficient attacks. Eventually, it could be
beneficial to evaluate the security of mitigations suggested
in subsection 9.3.
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