
Load-Balanced Server-Aided MPC in Heterogeneous Computing

Yibiao Lu1, Bingsheng Zhang1, and Kui Ren1

�e State Key Laboratory of Blockchain and Data Security, Zhejiang University, {luyibiao,bingsheng,kuiren}@zju.edu.cn

Abstract. Most existing MPC protocols consider the homogeneous se�ing, where all the MPC players are as-
sumed to have identical communication and computation resources. In practice, the weakest player o�en becomes
the bo�leneck of the entire MPC protocol execution. In this work, we initiate the study of so-called load-balanced
MPC in the heterogeneous computing. A load-balanced MPC protocol can adjust the workload of each player
accordingly to maximize the overall resource utilization. In particular, we propose new notions called composite
circuit and composite garbling scheme, and construct two e�cient server-aided protocols with malicious security
and semi-honest security, respectively. Our maliciously secure protocol is over 400× faster than the authenti-
cated garbling protocol (CCS’17); our semi-honest protocol is up to 173× faster than the optimized BMR protocol
(CCS’16).

1 Introduction

Secure multi-party computation (MPC) is an important cryptographic primitive that enables a set of participants
P1, . . . , PN to collaboratively evaluate a function f(x1, . . . , xN) with certain security guarantees [21,47], where xi
is the private input of Pi. Most existing MPC protocols consider the homogeneous se�ing where all the involved
participants have the same computing power as well as network bandwidth. While in a practical deployment, such an
assumption of homogeneity may be unrealistic, e.g., some participants may have dedicated cloud servers, some may
be equipped with personal computers, while some may only have portable devices. When MPC protocols originally
designed for the homogeneous se�ing are executed among these heterogeneous devices, the weakest device always
becomes the shortest stave in the wooden bucket theory.

On the other hand, the concept of MPC is closely related to the concept of distributed computing, which also
focuses on how to coordinate a network of participants to jointly solve a common computation task. Speci�cally,
distributed computing considers load balancing and provides scalable solutions. Take the simplest case where all
the participants have the same resources as an example. Let |f | denote the total amount of workload for a task f .
Suppose there are N participants, each participant’s workload is expected to be as low as O(|f |)

N (with minimum
overhead). �at is, the workload of each participant shall decrease along with the increase of the participant number.
However, most existing practical MPC solutions, e.g., [45], fail to achieve such a nice property. Ironically, in many
MPC protocols, e.g., [17, 21], each participant’s workload even grows with the number of participants. Hereby, we
ask the following questions:

Is it possible to design an e�cient MPC that can freely adjust the computation and communication workload of each
MPC participant?

Load-balanced MPC. In this work, we initiate the study of so-called load-balanced MPC in the heterogeneous
computing. Without loss of generality, for a typical MPC solution, given a function f , there exists a protocol generator
Π ← GenProt(N, f) that takes as input the number of partiesN and the function f , and it outputs the MPC protocol
Π := (Π1, . . . ,ΠN), whereΠi denotes protocol description for pi. As we can see, the MPC parties’ communication
and computation resources are not taken into consideration.

In a load-balanced MPC, we augment the conventional protocol generator intoΠLB ← GenProtLB(N, f, {τi, ρi}i∈[N]),
where (τi, ρi) are the computing power and communication bandwidth of Pi. �erefore, ΠLB could potentially be
tailor-made to maximize the overall resource utility for the MPC participants, resulting a faster MPC protocol in
heterogeneous computing.
Limitations of the related works. Although the load-balanced MPC has not been formally studied, there are some
potential solutions in the literature. A straightforward solution is to utilize (threshold) fully homomorphic encryption
(FHE) [16], where each client encrypts his input and sends the ciphertext to a high-performance computing node,
e.g., a third-party server, who will evaluate the MPC function over encrypted data, and then all the clients jointly
decrypt the result. However, in an FHE-based MPC, the workload of the computing node is extremely high, which

makes it unsuitable for complicated computation tasks; moreover, heavy zero-knowledge proofs might be needed to
achieve malicious security [32].

�e recently proposed YOSO MPC [20] and Fluid MPC [15] show how to evaluate a long-term computation
task among a set of dynamically changing MPC participants. In each round of these protocols, a chosen group of
participants compute only a fraction of the computation task and then transmit their intermediate secret states to
the subsequent group of participants, who will carry on the computation. In particular, there are solutions in which
the participants only process a tiny part of the task, such as a gate in the whole circuit, at each time they are chosen.
With appropriate task assignment, these solutions can be applied to the load-balanced MPC se�ing. Nevertheless,
currently, YOSO MPC candidates perform terribly due to state transmission and are far from being practical.
Sever-aided MPC. Kamara, Mohassel and Raykova [26] formally propose the notion of server-aided MPC, which
assumes one or more third-party server(s) are available to accelerate the MPC execution. In their model, both the
servers and the other participants (which are called parties in the rest of this work) can be (maliciously) corrupted, but
the corrupted servers are not allowed to collude with the corrupted parties. Such non-colluding restriction enables
researchers to design more e�cient MPC protocols in practice.

Most server-aided MPC protocols are designed for the mobile cloud computing se�ing [10,11,26,27,33,46], where
a number of parties are mobile devices with limited resources. Technically, these protocols are transformed from
secure two-party computation (2PC) protocols, e.g., the Yao’s Garbled Circuits (GC) protocol [47]. During the MPC
execution, the server acts as P1 of the 2PC protocol, and one heavy-load party acts as P2 of the 2PC protocol, while
the other parties only provide their inputs and carry out some veri�cations. �erefore, the workloads of the server
and the heavy-load party are O(|f |), whereas the workloads of the other parties only depend on their input/output
sizes. However, this line of research fail to freely adjust the parties’ workloads; more speci�cally, except one heavy-
load party, the other parties can barely contribute to the MPC execution.

To the best of our knowledge, [8] is the only existing sever-aided MPC that can freely adjust the parties’ work-
loads on demand. In particular, this work lets the parties share the same PRF seed such that the workload of the
GC generation can be arbitrarily distributed among the parties. However, this technique con�icts with many GC
optimizations, e.g., the garbled-row-reduction technique [38] and the free-XOR technique [31]. Without these opti-
mizations, the resulting protocol is ine�cient.
Our approaches. In this work, we propose two e�cient load-balanced MPC protocols that enable arbitrary distri-
bution of the communication (and computation) workload(s) among the parties in the server-aided model.
Distributing Communication. Usually, communication is the performance bo�leneck of an MPC protocol, and we
�rst show how to balance the communication of each parties. Our protocol Πmal uses garbled circuit as its building
block, and it achieves malicious security as de�ned in [11, 27], i.e., either the server or all-but-one parties can be
maliciously corrupted, while the remaining participants are semi-honestly corrupted. Let ρi to denote the commu-
nication bandwidth of Pi. In Πmal, the communication cost of Pi is O

(
ρi∑N
i=1 ρi

· λ · |f |
)

, where λ is the security
parameter.

Πmal lets each party generate the same copy of garbled circuit using a shared seed (distributed via a tailor-made
coin-�ipping protocol). To achieve communication load balancing, we divide the garbled circuit into multiple seg-
ments according to the parties’ communication bandwidths {ρi}i∈[N], and each party only sends one segment to the
server. Since transmi�ing garbled circuit is the main communication cost, it is easy to see thatΠmal is communication
load-balanced.

To deal with malicious adversaries, we let each party send the hash values of the other garbled circuit segments.
�e non-colluding server can help to check the consistency of the received garbled circuit segments and the received
hash values and prevent any violation behavior. Besides, the hash values are of sizeO(λ), which only bring negligible
burden.
Distributing Computation. Simply partitioning the garbled circuit cannot distribute the workload of the garbled circuit
generation among multiple parties. �e main reason is that the garbled circuit labels are highly dependent with each
other a�er adopting certain e�cient garbled circuit optimizations, e.g., the garbled-row-reduction technique [38]
and the free-XOR technique [31].

Alternatively, our solution is to directly partition the circuit of the MPC computation task f into smaller sub-
circuits {fi}i∈[N], referred as the simple circuits. Each party Pi is associated with the simple circuit fi, whose size
is proportional to Pi’s computing power τi and communication bandwidth ρi.
− Composite Circuit. We propose a new notion called composite circuit as the composition of multiple simple

circuits. �e simple circuits are viewed as black-boxs and are linked together according to the so-called link informa-

2

Table 1: Communication costs (in Bytes) of the participants when computing AES128 with Πmal. �e overall cost is the sum of
the parties’ costs and the server’s cost. As a comparison, in the half-gates garbling scheme [48], the size of the garbled material
for the AES128 circuit is 204800 Bytes.

Party Num Server Max Pi Min Pi Overall

O�ine Online Total O�ine Online Total O�ine Online Total O�ine Online Total

2 32 4096 4128 102592 2048 104640 102496 2048 104544 205120 8192 213312
3 48 6144 6192 68528 2048 70576 68384 2048 70432 205376 12288 217664
4 64 8192 8256 51552 2048 53600 51360 2048 53408 205696 16384 222080
5 80 10240 10320 41392 2048 43440 41152 2048 43200 206080 20480 226560
6 96 12288 12384 34624 2048 36672 34336 2048 36384 206528 24576 231104
7 112 14336 14448 29840 2048 31888 29504 2048 31552 207040 28672 235712
8 128 16384 16512 26272 2048 28320 25888 2048 27936 207616 32768 240384

Table 2: Communication costs (in Bytes) of the parties when computing AES128 with Πmal. As a comparison, in the half-gates
garbling scheme [48], the size of the garbled material for the AES128 circuit is 204800 Bytes.

Party Num Max Pi Min Pi

O�ine Online Total O�ine Online Total

2 114384 2048 116432 114352 2048 116400
3 86256 2048 88304 74864 2048 76912
4 70192 2048 72240 57904 2048 59952
5 53568 2048 55616 51408 2048 53456
6 49776 2048 51824 41552 2048 43600
7 45712 2048 47760 36528 2048 38576
8 42160 2048 44208 33840 2048 35888

tion. For instance, links,t = {(s′, t′)} stands for the scenario where the output wire t of fs is linked with the input
wire t′ of fs′ . �e composite circuit is a 5-tuple CompCirc = (κ, {fs}s∈[κ], link, I,O), where κ is the number of the
simple circuits, {fs}s∈[κ] is the set of the simple circuits, link is the collection of all the link information, I and O
are the input wire set and output wire set of the composite circuit, respectively.

A composite circuit CompCirc can be generated by partitioning a circuit f . In such case, the partition should be
directed and acyclic, i.e., there exists a suitable numbering of the resulting sub-circuits, such that each sub-circuit is
only linked to its subsequent sub-circuits. Many acyclic multi-way graph partitioning algorithms [22, 23, 36, 37, 42]
can be adopted to our se�ing.

− Composite Garbling Scheme. We introduce the notion of composite garbling scheme as the garbling scheme for
composite circuits. Roughly speaking, in a composite garbling scheme, the garbled materials of the simple circuits
are linked by link materials, which deliver values between garbled circuits in a privacy-preserving fashion. We also
show how to transform a conventional garbling scheme with point-permute [4] and free-XOR [31] optimisations to
a composite garbling scheme, while retaining the security properties.

A similar idea of linking garbled circuits together is used in the reactive garbling scheme [40], which assumes
the circuit can be partially evaluated and the intermediate output can be revealed. However, the schemes proposed
in [40] don’t apply the garbled-row-reduction technique [38]; while most e�cient garbling optimisations is compat-
ible with our schemes, including the half-gates garbling scheme [48] and the state-of-the-art three-halves garbling
scheme [41].

Performance. Our maliciously secure protocol Πmal is 18.41-410.98× faster than the authenticated garbling pro-
tocol [44, 45], and it is 2.51-4.35× faster than the state-of-the-art server-aided MPC protocol of Lu et al. [33]. Our
semi-honest protocol Πsemi is 110.91-173.53× faster than the optimized BMR protocol [6], and it is 2.94-3.88× faster
than the protocol of Lu et al. Even compared with the semi-honest Yao’s GC protocol [47], our maliciously secure
protocolΠmal can be 2.17× faster and semi-honest protocolΠsemi can be 2.55× faster. As depicted in Table. 1, Table. 2
and Table. 3, the proposed protocols indeed achieve communication (and computation) load balancing.

3

Table 3: Time (in ms) of the parties for generating garbled materials and link materials when computing AES128 with Πsemi

for 1000 times. �e original time is the running time of generating the garbled materials according to the half-gates garbling
scheme [48].

Party Num Max Pi Min Pi Original

2 143.872 133.768 240.785
3 110.986 101.698 239.397
4 99.253 88.513 243.075
5 94.033 84.763 242.787
6 95.944 87.184 241.670
7 121.762 91.079 243.698
8 128.104 97.470 242.582

2 Preliminaries

Notations. Let λ be the security parameter. Let a||b denote the concatenation of two strings a and b. Let [a, b] denote
the set {a, a+ 1, . . . , b} and let [a] denote [1, a]. Let a := b denote assigning the value of b to a. When A is a string,
let |A| denote the length of A. When A is a determines algorithm, let a := A(x) denote executing A on input x, and
assigning the output to a. When A is a probabilistic algorithm, let a ← A(x) denote executing A on input x and a
fresh random coin, and assigning the output to a; speci�cally, we may also use a := A(x; r) to denote executing A
on input x and an explicit random coin r, and assigning the output to a. Let a $← A denote sampling an element a
from the setA uniformly at random. Let PPT be the abbreviation of probabilistic polynomial time, and let poly(·) and
negl(·) be a polynomially-bounded function and negligible function, respectively.
Circuit. We adopt the circuit speci�cation in [5]. A circuit is a 6-tuple f = (n,m, q,A,B,G). n, m and q denote
the numbers of inputs, outputs and gates in the circuit, respectively, so the circuit contains n+ q wires. Each wire is
associated with a wire id wid; for each gate, we use the wire id of the output wire to denote it. �e set of all wires is
denoted asW := {1, . . . , n+ q}, the set of all input wires is denoted as I := {1, . . . , n}, the set of all output wires
is denoted as O := {n + q − m + 1, . . . , n + q}, and the set of all gates is denoted as G := {n + 1, . . . , n + q}.
A : G 7→ W \O is a function that identi�es the �rst incoming wire of a gate, and B : G 7→ W \O is a function that
identi�es the second incoming wire of a gate.G : G×{0, 1}2 7→ {0, 1} is a function that de�nes the functionality of a
gate. For g ∈ G, we require thatA(g) < B(g) < g. We de�ne the evaluation function for the circuit as y ← ev(f, x),
where f is a circuit, x is the n-bit input and y is them-bit output. We use |f | to denote the size of the circuit f , which
is typically de�ned by the number of gates in the circuit.
Garbling Scheme. As formalized in [5], a garbling scheme consists of �ve algorithms GC := (Gb,En,Ev,De, ev);
the algorithm Gb is probabilistic while the other algorithms are deterministic.

– (F, e, d)← Gb(1λ, f). �e garbling algorithm Gb takes as input the security parameter λ and the circuit f , and
it outputs the garbled material F , the input encoding information e and the output decoding information d.

– X := En(e, x). �e encoding algorithm En takes as input the input encoding information e and the plaintext
input x, and it outputs a garbled input X .

– Y := Ev(f, F,X). �e evaluation algorithm Ev takes as input the circuit f , the garbled material F and the
garbled input X , and it outputs a garbled output Y .

– y := De(d, Y). �e decoding algorithm De takes the output decoding information d and the garbled output Y ,
and it outputs a plaintext output y.

– y ← ev(f, x). �e plaintext evaluation algorithm ev takes as input the circuit and the plaintext input x, and it
outputs the computation result of f on input x.

A garbling scheme should have the following properties.

De�nition 1 (Correctness of Garbling Scheme). �e garbling scheme GC is correct if for any circuit f and any
input x, the following is 1− negl(λ):

Pr
[
(F, e, d)← Gb(1λ, f) : De(d,Ev(f, F,En(e, x))) = ev(f, x)

]
4

De�nition 2 (Obliviousness of Garbling Scheme). �e garbling scheme GC is oblivious if for any circuit f and
any input x, there exists a PPT simulator SimGC such that for any PPT adversary A, the following is negl(λ):∣∣∣∣∣∣∣Pr

 (F0, e0, d0)← Gb(1λ, f);X0 := En(e0, x);

(F1, X1)← SimGC(1
λ, f); b

$← {0, 1}; b̂← A(1λ, f, Fb, Xb) :

b = b̂

− 1

2

∣∣∣∣∣∣∣
De�nition 3 (Authenticity of Garbling Scheme).�e garbling scheme GC is authentic if for any circuit f and any
input x, for all PPT adversary A, the following is negl(λ):

Pr

[
(F, e, d)← Gb(1λ, f);X := En(e, x); Ŷ ← A(1λ, f, F,X) :

Ŷ 6= Ev(f, F,X),De(d, Ŷ) 6= ⊥

]
Without loss of generality, we assume a typical garbling algorithm is instantiated by three sub-algorithms Gb :=

(GbInp,GbCirc,GbOut):
– e← GbInp(1λ, f.I). �e input garbling algorithm GbInp takes as input the security parameter λ and the set of

the input wires of the circuit f.I , and it outputs the input encoding information e.
– (F, o) ← GbCirc(1λ, f, e). �e circuit garbling algorithm GbCirc takes as input the security parameter λ, the

circuit f and the input encoding information e, and it outputs the garbled material F and the output encoding
information o.

– d ← GbOut(1λ, f.O, o). �e output garbling algorithm GbOut takes as input the security parameter λ, the set
of the output wires of the circuit f.O and the output encoding information o, and it outputs the output decoding
information d.

We assume the garbling scheme is projective, i.e., each wirewid in the circuit is associated with two labelsW 0
wid and

W 1
wid. Besides, the garbled material is the concatenation of the garbled gates for the gates in the circuit. Speci�cally,

we focus on garbling schemes adopting the point-permute technique [4] and the free-XOR technique [31]. In the
point-permute technique, a random select bit is appended to each wire label, the garbling algorithm Gb arranges the
content of each garbled gate according to the select bits of the input wire labels, such that the evaluation algorithm Ev
knows how to evaluate the garbled gate. In the free-XOR technique, it holds that for any wire wid,W 0

wid⊕W 1
wid = ∆,

where ∆ is a global o�set. Combining together, we have that the select bit is the least signi�cant bit lsb of each wire
label, and ∆ ∈ {0, 1}λ−1||1.

�e garbling schemes that satisfy our requirements include (i) combining point-permute [4], garbled-row-reduction [38]
and free-XOR [31] together, (ii) the half-gates garbling scheme [48], and (iii) the three-halves garbling scheme [41].

2.1 Commitment Scheme

In our protocol, we let the party P1 sample and distribute a random coin to other parties, and we use commitments
to prevent the deviating behavior of P1. Speci�cally, we use a commitment scheme that only consists of a commit
algorithm Com := (commit).
– �e commit algorithm commit takes as input the message to commit m and a random seed r, and it outputs the

commitment c. �at is, c := commit(m; r).

We only require the commitment scheme to be computationally hiding and computationally binding:

De�nition 4 ((Computationally) Hiding of Commitment Scheme). �e commitment scheme Com is hiding if
for any messagem0,m1 and any PPT adversary A, the following is negl(λ):∣∣∣∣∣Pr

[
b

$← {0, 1}, r $← {0, 1}λ; c := commit(mb, r);

b̂← A(1λ, c) : b = b̂

]
− 1

2

∣∣∣∣∣
De�nition 5 ((Computationally) Binding of Commitment Scheme). �e commitment scheme Com is binding
if for any PPT adversary A, the following is negl(λ):

Pr

 (m0,m1, r0, r1)← A(1λ) :
m0 6= m1 ∨ r0 6= r1;
commit(m0, r0) = commit(m1, r1)

In this work, we use the hash-based commitment scheme, that is, c := hash(m||r).

5

3 Security De�nition

Based on the standard ideal/real world paradigm [9], Kamara, Mohassel and Raykova [26] formalized the behavior
of non-colluding adversaries and proposed the security de�nition of server-aided MPC. In this work, we follow their
security de�nition and we focus on the se�ing where one third-party server assists the MPC computation.
Non-Colluding adversary. MPC mainly considers two standard adversary models: (i) semi-honest adversaries who
follows the protocol description but tries to learn private information by observing the protocol execution; (ii) ma-
licious adversaries who can arbitrarily deviate from the protocol description. As for a semi-honest adversary, its
protocol message does not contain its private information, so it can only collude with other adversaries through
non-protocol messages. �erefore, a semi-honest adversary is non-colluding if it is independent, that is, it does not
share information with other adversaries beyond the protocol execution. As for a malicious adversary, it is stronger
than a semi-honest adversary in the sense that it may use protocol messages to collude with other adversaries. We
use the following notion of non-cooperative to capture the non-colluding behavior of a malicious adversary.

De�nition 6 (Non-Cooperative Adversary [26]). An adversary Ai is non-cooperative with respect to another ad-
versary Aj if the messages sent from Ai to Aj do not reveal Ai’s private information, except for what can be learned
from Aj ’s protocol output.

Real world execution. In the real world, the parties {Pi}i∈[N] and a server Server execute the protocol Π in the
presence of m + 1 adversaries {Ai}i∈[m+1], where m ≤ N . Let H denote the set of the honest parties, I denote
the set of corrupted but non-colluding parties, and C denote the set of corrupted and colluding parties. H, I and C
are pairwise disjoint sets, and their union contains all the parties and servers. Speci�cally, we require that the server
does not collude with the parties, so Server ∈ H∪I . At the beginning of the protocol, for i ∈ [m], the adversaryAi
receives an element of I (which can be a party or the server), while the adversaryAm+1 receives C. �e adversaries
then corrupts the parties accordingly.

We assume the protocol contains a o�ine phase and an online phase. In the o�ine phase, the party Pi receives
its auxiliary input zi and random coin ri, and the server receives its auxiliary input zs and random coin rs. In the
online phase, the party Pi receives its input xi, while the server receives nothing. �en we have x = (x1, . . . , xN),
z = (z1, . . . , zN , zs) and r = (r1, . . . , rN , rs)

At the end, each party Pi outputs OUTi, and the server outputs OUTs. If the party (server) is honest, OUTi is
its protocol output; if the party (server) is corrupted, OUTi is its view during the protocol execution. �e output of
the real world execution of protocol Π among the parties {Pi}i∈[N] and the server Server in the presence of the
adversaries A = (A1, . . . ,Am+1) is de�ned as:

REALΠ,A,I,C,z(λ,x; r) = {OUT1, . . . ,OUTN ,OUTs}.

Ideal world execution. In the ideal world, the parties interact with a trusted third party. �e parties, the server
and the adversaries receive the same inputs as in the real world, and we refer to the adversaries in the ideal world as
simulators. In the online phase, the parties send the inputs to the trusted third party. If Pi is corrupted by a malicious
simulator, it can send an arbitrary x̃i, e.g., x̃i := ⊥; otherwise, it sends x̃i := xi. �e trusted third party sends ⊥
to the parties and the server if it receives an abort message or x̃i = ⊥. Otherwise, the trusted third party computes
y := f(x̃1, . . . , x̃N). If the server Server is corrupted by a malicious simulator, the trusted third party asks the server
which of the parties should receive the output and which should receive ⊥.

At the end, each party Pi outputs OUTi, and the server outputs OUTs. If the party (server) is honest, OUTi
is its received output; if the party (server) is corrupted, OUTi is a value generated by the simulator. �e output
of the ideal world execution among the parties {Pi}i∈[N] and the server Server in the presence of the simulators
S = (S1, . . . ,Sm+1) is de�ned as:

IDEALf,S,I,C,z(λ,x; r) = {OUT1, . . . ,OUTN ,OUTs}.

�e formal security de�nition is as follows:

De�nition 7 (Server-aided Security).A protocolΠ among the parties {Pi}i∈[N] and a server Server is secure if there
exists PPT transformations {Simi}i∈[m+1] such that for all PPT adversaries {Ai}i∈[m+1], all inputs x and all auxiliary
inputs z:

{REALΠ,A,I,C,z(λ, x; r)}λ∈N
c
≈ {IDEALf,S,I,C,z(λ, x; r)}λ∈N

where r is random and uniform, S = (S1, . . . ,Sm+1) and Si := Simi(Ai), for i ∈ [m+ 1].

6

�e protocol Πmal is for N parties {Pi}i∈[N] and a third-party server Server. For simplicity, we assume each party Pi
inputs ` bits {x(i)k }k∈[`]. H : {0, 1}∗ → {0, 1}λ is a collision-resistant hash function. GC := (Gb,En,Ev,De, ev) is a
garbling scheme with correctness, obliviousness and authenticity. Com := (commit) is a commitment scheme that is
hiding and binding.
Protocol Generation
Given the circuit f , the load-balanced protocol generator GenProtLB can pre-compute the length of the garbled mate-
rial as |F |. According to the parties’ communication bandwidths {ρi}i∈[N], GenProtLB pre-partitions F into N seg-
ments {Fi}i∈[N] such that for each segment Fi, |Fi||F | ≈

ρi∑
i∈[N] ρi

.

O�line Phase

1. (a) �e party P1 samples coin1, r
$← {0, 1}λ and sends coin1, r to {Pi}i∈[2,N].

(b) �e server Server samples coin2
$← {0, 1}λ and sends coin2 to {Pi}i∈[N].

2. (a) For i ∈ [N], the party Pi computes c(i)coin := commit(coin1, r) and sends c(i)coin to the server Server.
(b) �e party P1 sets seed := coin1 ⊕ coin2 and sends seed to the parties {Pi}i∈[2,N].

3. (a) For i ∈ [2, N], the party Pi sets seed := coin1 ⊕ coin2 and asserts seed = seed′ where seed′ is received from
P1. If the assertion fails, it aborts.

(b) �e server Server asserts c(1)coin = · · · = c
(N)
coin . If the assertions fails, it aborts.

4. For i ∈ [N], the party Pi:
(a) Generates (F, e, d) := GC.Gb(1λ, f ; seed).
(b) Partitions F into {Fi}i∈[N] as speci�ed by GenProtLB.
(c) Sends Fi to the server Server.
(d) For j 6= i, computes h(i)

j := H(Fj) and sends h(i)
j to the server Server.

5. �e server Server:
(a) For i ∈ [N], computes h(i)

i := H(Fi).
(b) For i ∈ [N], asserts h(1)

i = · · · = h
(N)
i . If the assertion fails, it aborts.

Online Phase

6. For i ∈ [N], the party Pi:
(a) Parses e := {W 0

t ,W
1
t }t∈f.I .

(b) For k ∈ [`], sets X(i−1)·`+k :=W
x
(i)
k

(i−1)·`+k .
(c) Sends {X(i−1)·`+k}k∈[`] to the server Server.

7. �e server Server:
(a) Sets F := F1|| · · · ||FN and X := (X1, . . . , XN·`).
(b) Evaluates Y := GC.Ev(f, F,X).
(c) Sends Y to the parties {Pi}i∈[N].

8. For i ∈ [N], the party Pi decodes y := GC.De(d, Y) and outputs y.

Protocol Πmal

Fig. 1: �e Communication Load-Balanced Server-Aided Protocol Πmal Secure Against a Malicious Server or Malicious Parties

Lemma 1 ([27]). If a protocolΠ among the parties {Pi}i∈[N] and a server Server is secure (i) in the presence of semi-
honest and independent PPT adversaries {Aj} and (ii) in the presence of a malicious PPT adversaryAi, then the protocol
Π is also secure in the presence of a malicious PPT adversary Ai and semi-honest PPT adversaries {Aj}j 6=i, where Ai
is non-cooperative with respective to all other adversaries {Aj}j 6=i.

4 Communication Load-Balanced Protocol

In most MPC protocols, communication is the performance bo�leneck. For example, in the Yao’s Garbled Circuits
protocol [47], the party P1 needs to send the garbled material of the circuit to the party P2, and the size of the garbled
material isO(λ · |f |). According to the test data from the work of Lu et al. [34], when computing the SHA512 circuit
using garbled circuit, generating and evaluating the garbled material only take about 4ms in total, while transferring
the garbled material in a network with 100Mbps takes about 163ms.

7

Intuition. Our communication load-balanced MPC protocolΠmal achieves malicious security. At a high level, we let
the parties act as the garbled circuit generator and let the server act as the garbled circuit evaluator. In the protocol
Πmal, the parties share the same seed and generate a garbled circuit copy using the seed. �ey partition the garbled
material into several parts according to their communication bandwidths, and each party only sends a fraction of
the garbled material to the server. Hence, the server can assemble the whole garbled material while each party’s
communication workload is proportional to its communication bandwidth.
Formal description. Fig. 1 depicts the protocol description of Πmal. As de�ned eariler, in a load-balanced MPC,
GenProtLB takes the communication resource of each party into consideration, and distributes the workload to the
parties accordingly. In a protocol based on garbled circuit, the transmission of the garbled material F is the main
communication cost. According to the parties’ communication bandwidths {ρi}i∈[N], GenProtLB pre-partitions F
intoN segments {Fi}i∈[N] such that |Fi||F | ≈

ρi∑
i∈[N] ρi

, for i ∈ [N]. �at is, the size of the segment Fi is proportional
to Pi’s communication bandwidth ρi.

In the o�ine phase, the parties �rst generate the shared garbled circuit seed with the assistance of the server. More
precisely, in the �rst round, the party P1 samples λ-bit coin1 and r at uniformly random and sends the randomness
to the other parties {Pi}i∈[2,N]; meanwhile, the server Server samples λ-bit coin2 at uniformly random and sends
coin2 to all the parties {Pi}i∈[N]. �e parties can then use seed := coin1 ⊕ coin2 as the garbled circuit seed; in
addition, we use an extra round to prevent the potentially malicious P1 and the potentially malicious Server from
sending inconsistent messages. �at is, each party computes the commitment of coin1 by c(i)coin := commit(coin1, r)
and sends the commitment to Server. Moreover, the party P1 sends its seed seed to the other parties {Pi}i∈[2,N]. In
this way, the server can help to ensure all the parties hold the same coin1 by checking the consistency of the received
commitments, while the parties can check the consistency of the seed generated by itself and the seed sent by P1 to
prevent Server from sending inconsistent coin2.

If the above veri�cation passes, the parties generate the same garbled circuit copy by (F, e, d) := GC.Gb(1λ, f ; seed)
and partitions F into {Fi}i∈[N] as speci�ed by GenProtLB. Each party Pi sends the segment Fi to the server, and for
the segments {Fj}j 6=i, Pi computes a hash value h(i)j := H(Fj) and sends h(i)j to the server. �e server then checks
the consistency of the received garbled material segments against the received hash values.

In the online phase, the parties receive their inputs. Since all of the parties have the encoding information e, each
party can select the appropriate wire labels according to its input and send the wire labels to the server. �e server
reconstructs the garbled material and evaluates the garbled circuit, then it sends the garbled output Y to the parties.
At the end, the parties decode the output y := GC.De(d, Y).
E�ciency. In the o�ine phase, the server Server sendsN ·λ bits, the party P1 sends (4N −3) ·λ+ |F1| bits, and for
i ∈ [2, N], the party Pi sends N ·λ+ |Fi| bits; in the online phase, the server sends N · ` ·λ bits (suppose the output
is ` bits), and for i ∈ [N], the party Pi sends ` · λ bits. For most garbling schemes, the size of the garbled material
can be computed by |F | = C · |f | · λ, where C is a small constant. �erefore, in most practical applications, |F | is
much larger than the other constant costs. Note that the garbled material is partitioned such that for each segment
Fi, we have |Fi||F | ≈

pi∑N
i=1 pi

. �erefore, the protocol Πmal is communication load-balanced.

Security. We �rst brie�y explain why the protocolΠmal is secure against a malicious server or up toN−1 malicious
parties. When the adversary A corrupts the server, it only sees commitments of coin1, the garbled circuit and hash
values of the garbled material segments. If the commitment scheme is hiding, the commitments leaks no information
of coin1; and if the garbling scheme is oblivious, the garbled circuit leaks no information of the parties’ inputs. �e
pre-images of the hash values are already known to the server. Besides, if the corrupted server sends inconsistent
coin2 to the parties, the parties can detect the inconsistency in step 3(a); the authenticity of the garbling scheme
prevents the corrupted server from forging the garbled output.

�en we consider the case where the adversaryA corrupts parties {Pi}i∈[N−1]. Note that in step 3(b), we use the
server to check the consistency of the commitments sent by the parties, so when the commitment scheme Com is
binding,A has to send the same coin1 and r to the party PN . Similarly, when the hash function is collision-resistant,
A has to send the correct garbled material segments and hash values to the server in step 4(d); otherwise, the server
can detect the inconsistency in step 5(b). In step 2(b), A also needs to send the correct seed seed to PN , or PN can
detect the inconsistency in step 3(a). In step 6, when the garbling scheme GC is authentic, the wire labels sent by
A should correspond to some valid plaintext inputs, which can be extracted by the simulator.�e case where the
adversary A corrupts parties {Pi}i∈[2,N] can be handled in a similar way.

Now we give the formal security theorem for Πmal, and its proof can be found in App. A.1.

8

�eorem 1. If (a) H : {0, 1}∗ → {0, 1}λ is a collision-resistant hash function, (b) GC := (Gb,En,Ev,De, ev) is a
garbling scheme with correctness, obliviousness and authenticity and (c) Com := (commit) is a commitment scheme
that is hiding and binding, then the protocolΠmal depicted in Fig. 1 is secure when (i) a malicious adversary corrupts up
toN−1 parties, and the remaining parties and the server are corrupted by semi-honest and independent adversaries, and
(ii) a malicious adversary corrupts the server, and the parties are corrupted by semi-honest and independent adversaries.
In both cases, the malicious adversary is non-cooperative with respect to all other adversaries.

5 Composite Circuit

Speci�cation of Composite Circuit. Our work makes extensive use of the notion of composite circuit. To make
a distinction, we rename the circuit de�ned in Sec. 2 as simple circuit from now on. A composite circuit can be in-
terpreted as a composition of κ simple circuits {fs}s∈[κ]. Each simple circuit appears as a black-box to other simple
circuits, and we use link information link to illustrate the connection relationships between the simple circuits. Simi-
lar to the general circuit case, we use I andO to denote the sets of all input wires and all output wires in the composite
circuit, respectively. Combined together, a composite circuit is a 5-tuple CompCirc = (κ, {fs}s∈[κ], link, I,O). �is
notion of composite circuit is particularly useful for our load-balancing purpose, intuitively, we want each party to
only evaluate a fraction of the composite circuit.

We �rst describe how to interpret the link information link. We assume the existence of two virtual simple
circuit f0 := (|I|, |I|, 0, ∅, ∅, ∅) and fκ+1 := (|O|, |O|, 0, ∅, ∅, ∅), both of which directly outputs its inputs. �e
simple circuit f0 collects the inputs of the composite circuit and outputs to other simple circuits, and the simple
circuit fκ+1 collects outputs from the other simple circuits and produces the outputs of the composite circuit. �e
link information is de�ned as link := {links,t}s∈[0,κ+1],t∈fs.O , and each links,t is a set describing the connection
relationship of the output wire t of the simple circuit fs. For instance, suppose the output wire t of the simple circuit
fs is connected with the input wire t′ of the simple circuit fs′ , then links,t := {(s′, t′)}; suppose the aforementioned
wire is not connected with any other wire, then links,t := ∅; suppose the aforementioned wire is connected with
multiple wires, then links,t := {(s′1, t′1), . . . , (s′n, t′n)}.

One may notice that the above de�nition of link information is not complete and connecting simple circuits
according to the above link information could potentially generate an abnormal circuit. For example, if (s2, t2) ∈
links1,t1 and (s1, t

′
1) ∈ links2,t′2 , then there will be a cycle fs1 fs2 fs1 in the composite circuit, while a circuit

should be cycle-free. �erefore, we require the composite circuit CompCirc = (κ, {fs}s∈[κ], link, I,O) to satisfy the
following conditions:

Acyclicity. �ere does not exist a cycle in the composite circuit. For simplicity, we directly assume that the simple
circuits are arranged according to the topological order. �at is, for any s ∈ [0, κ] and any t ∈ fs.O, if (s′, t′) ∈ links,t,
then s′ > s. Speci�cally, for t ∈ fκ+1.O, linkκ+1,t = ∅.

Input Legality. Each input of the simple circuits {fs}s∈[κ+1] is connected with at least one output of another
simple circuit. �at is, for any s ∈ [κ+ 1] and any t ∈ fs.I , there exists (s′, t′) such that (s, t) ∈ links′,t′ .

Input Uniqueness. No input of the simple circuits {fs}s∈[κ+1] is connected with two outputs of other simple
circuits. �at is, for any s ∈ [κ + 1] and any t ∈ fs.I , there does not exist (s′1, t′1) and (s′2, t

′
2) such that s′1 6= s′2,

t′1 6= t′2, (s, t) ∈ links′1,t′1 and (s, t) ∈ links′2,t′2 .
We say a composite circuit is legal if it satis�es these three conditions. �roughout the paper, we only consider

legal composite circuits.
Now we can de�ne the composite circuit evaluation function evsc(CompCirc, x); more speci�cally, evsc(CompCirc, x)

is constructed from the simple circuit evaluation function ev(f, x):

De�nition 8 (Composite Circuit Evaluation Function). �e composite circuit evaluation function ev takes as
input a composite circuit CompCirc = (κ, {fs}s∈[κ], link, I,O) and a |CompCirc.I|-bit string x := {xt}t∈CompCirc.I ,
and it outputs a |CompCirc.O|-bit string y := {yt}t∈CompCirc.O . evsc(CompCirc, x) proceeds as follows:

1. For t ∈ CompCirc.I , for (s′, t′) ∈ link0,t, set vs′,t′ := xt;
2. For s ∈ [κ]:

(a) Compute {vs,t}t∈fs.O := ev(fs, {vs,t}t∈fs.I);
(b) For t ∈ fs.O, for (s′, t′) ∈ links,t, set vs′,t′ := vs,t;

3. For t ∈ CompCirc.O, set yt := vκ+1,t;
4. Return {yt}t∈CompCirc.O .

9

Given this composite circuit evaluation function, we can describe the functionality of a composite circuit. For
any valid input x, if evsc(CompCirc, x) = ev(f, x), then we can say that the composite circuit CompCirc computes
the same function as the simple circuit f .
Comparison with Gradual Function [40]. In [40], a similar notion of gradual function is considered, which also
combines multiple circuits together. At a high level, the composite circuit is �xed while the gradual function is
�exible. Speci�cally, a composite circuit assumes the inputs arrive at the same time, then all the simple circuits can
be sequentially evaluated; while a gradual function allows partial evaluation, i.e., the inputs may arrive gradually and
some of the outputs may be revealed in the middle, so an access function is needed to describe the availability of the
intermediate outputs. �e gradual function speci�cation does not explicitly describe how the components (simple
circuits) are connected. Speci�cally, a single input wire may be linked with multiple output wires, and it requires
careful value assignment for such situation. Although the notion of composite circuit is more restricted, we �nd that
it is adequately suitable for our use case, since we assume the computation task is determined at the very beginning.
Composite Circuit Generation. �ere are two possible approaches to generate a composite circuit. On the one
hand, we can prepare several types of building block, e.g., adder and multiplier, and link these building blocks ac-
cording to the description of the computation task. �e DUPLO framework [30] is built in this way. On the other
hand, there are also cases where the target function is already described as a circuit, and we can generate a composite
circuit that realizes the given circuit by partitioning.

A circuit can be viewed as a directed acyclic graph (DAG), and graph partitioning is a fundamental combinatorial
problem [19]. �e graph partitioning problem has many variants. For instance, it may give a two-way partition-
ing [29] or a multi-way partitioning [1], and it may consider a directed graph [28] or a undirected graph [18]. For
our case, we �nd that the acyclic multi-way graph partitioning algorithms [22,23,36,37,42] provide suitable solutions,
which partition a DAG into multiple DAG’s and ensure that there are no cycle among the generates parts. In this
work, we use the multilevel algorithm of Herrmann et al. [23] to partition the circuit, which includes a coarsening
phase, an initial partitioning phase and a uncoarsening phase. We refer interested readers to the original paper for
the details of the algorithm.

6 Garbling Schemes for Composite Circuits

�e BHR garbling scheme framework [5] considers general circuits and cannot be directly applied to composite
circuits. As discussed in Sec. 5, a composite circuit is similar to a gradual function, so a natural idea is to apply the
reactive garbling scheme [40], which is designed for the gradual functions, to the composite circuits. However, we
�nd that since the composite circuits are �xed, some syntaxes in the reactive garbling scheme seem redundant for
us. For example, the link materials used to connect multiple garbled materials can be generated inside the garbling
algorithm, instead of using a separate “link” algorithm. �us, in this work, we introduce the notion of a composite
garbling scheme.

In [40], it is shown that the garbling scheme instantiation in [5] can be extended to a reactive garbling scheme in
the random oracle model. While their construction requires the knowledge of the underlying garbling scheme, e.g.,
how each gate is garbled, we want to use the underlying garbling scheme in a more black-box manner. Speci�cally,
we focus on the garbling schemes with the point-permute optimization [4] and the free-XOR optimization [31]. In
such case, we can simply invoke the conventional garbling scheme algorithms in our construction. Our scheme is
compatible with (i) combining point-permute [4], garbled-row-reduction [38] and free-XOR [31] together, (ii) the
half-gates garbling scheme [48], and (iii) the three-halves garbling scheme [41].
Composite Garbling Scheme. We de�ne the composite garbling scheme CGC for composite circuits. A composite
garbling scheme consists of �ve algorithms CGC := (Gb,En,Ev,De, evsc), the algorithm CGC.Gb is probabilistic
while the other algorithms are deterministic.

– (F, e, d) ← CGC.Gb(1λ,CompCirc). �e garbling algorithm CGC.Gb takes as input the security parameter λ
and the composite circuit CompCirc, and it outputs the garbled material F , the input encoding information e
and the output decoding information d.

– X := CGC.En(e, x). �e encoding algorithm CGC.En takes as input the input encoding information e and the
plaintext input x, and it outputs a garbled input X .

– Y := CGC.Ev(CompCirc, F,X). �e evaluation algorithmCGC.Ev takes as input the composite circuitCompCirc,
the garbled material F and the garbled input X , and it outputs a garbled output Y .

10

– y := CGC.De(d, Y). �e decoding algorithm CGC.De takes the output decoding information d and the garbled
output Y , and it outputs a plaintext output y.

– �e plaintext evaluation algorithm for composite circuits evsc is de�ned in Def. 8.

�e security notion of a composite garbling scheme is similar to the security notion of a garbling scheme.

De�nition 9 (Correctness of Composite Garbling Scheme).�e composite garbling scheme CGC is correct if for
any legal composite circuit CompCirc and for any input x, the following is 1− negl(λ):

Pr

[
(F, e, d)← CGC.Gb(1λ,CompCirc) :
CGC.De(d,CGC.Ev(CompCirc, F,CGC.En(e, x))) = evsc(CompCirc, x)

]
De�nition 10 (Obliviousness of Composite Garbling Scheme).�e composite garbling scheme CGC is oblivious
if for any legal composite circuit CompCirc and for any input x, there exists a PPT simulator SimCGC such that for all
PPT adversary A, the following is negl(λ):∣∣∣∣∣∣∣Pr

 (F0, e0, d0)← CGC.Gb(1λ,CompCirc);X0 := CGC.En(e0, x);

(F1, X1)← SimCGC(1
λ,CompCirc); b

$← {0, 1}; b̂← A(1λ,CompCirc, Fb, Xb) :

b = b̂

− 1

2

∣∣∣∣∣∣∣
De�nition 11 (Authenticity of Composite Garbling Scheme). �e composite garbling scheme CGC is authentic
if for any legal composite circuit CompCirc and for any input x, and for any PPT adversaryA, the following is negl(λ):

Pr

 (F, e, d)← CGC.Gb(1λ,CompCirc);X := CGC.En(CGC.e, x);

Ŷ ← A(1λ,CompCirc, F,X) :

Ŷ 6= CGC.Ev(CompCirc, F,X) ∧ CGC.De(d, Ŷ) 6= ⊥

Construct CGC from GC. We show how to use a garbling scheme GC to construct a composite garbling scheme
CGCGC. To make a distinction, we call GC as the basic garbling scheme from now on.

We present the construction of the composite garbling scheme in Fig. 2. Roughly speaking, for each simple
circuit fi, the garbling algorithm of the composite garbling scheme CGCGC.Gb �rst invokes the garbling algorithms
of the basic garbling scheme to generate the input encoding information, garbled material and output encoding
information of fi. It also generates the output decoding information of the output simple circuit fκ+1. According to
the link information link, CGCGC.Gb parses the encoding information and generates the link materials. For example,
suppose links,t := {(s′, t′)}; to link the t-th output of the simple circuit fs with the t′-th input of the simple circuit
fs′ , it extract the corresponding wire labels {W 0

s,t,W
1
s,t} and {W 0

s′,t′ ,W
1
s′,t′} from the encoding information, and it

generates two ciphertextsH(s, t, s′, t′,W 0
s,t)⊕W 0

s′,t′ andH(s, t, s′, t′,W 1
s,t)⊕W 1

s′,t′ using a secure hash functionH
(the concrete property will be described later). In particular, the ciphertexts are arranged according to the select bit,
such that the evaluator can always decrypt the correct ciphertext. For simplicity, we use a private procedure GenLink
to generate all the link materials related to the simple circuit fs. CGCGC.Gb sets the input encoding information of
the composite garbling scheme as the input encoding information of the input simple circuit f0, sets the garbled
material of the composite garbling scheme as the collection of the garbled materials and link materials of the simple
circuits, and sets the output decoding information as the output decoding information of fκ+1.

As for the evaluation algorithm, CGCGC.Ev sequentially invoke the evaluation algorithm of the basic garbling
scheme to evaluate the garbled circuit of each simple circuit. A�er evaluating the garbled circuit of the simple circuit
fi, it additionally evaluates the link materials associated with fi to translate the wire labels of fi to the wire labels of
the subsequent simple circuits. In this way, the value of the wires are secretly transferred among the simple circuits.

�e encoding algorithm of the composite garbling scheme CGCGC.En can be directly implemented by invoking
the encoding algorithm of the basic garbling schemeGC.En on the simple circuit f0. Similarly, the decoding algorithm
of the composite garbling scheme CGCGC.De can be directly implemented by invoking the decoding algorithm of
the basic garbling scheme GC.De on the simple circuit fκ+1.
Security. �e security of the construction CGCGC relies on the security of the basic garbling scheme GC and the hash
functionH . Recall that we assume GC adopts the free-XOR technique [31]. Following the work of Choi et al. [14], we
assume the hash function H has circular correlation robustness. Choi et al. only considered a single garbled circuit,
or, a single global o�set ∆. In our case, each garbled circuit of a simple circuit is associated with a ∆, so we propose

11

procedure CGCGC.Gb(1λ,CompCirc)

Parse CompCirc = (κ, {fs}s∈[κ], link, I,O);
Parse link = {links,t}s∈[0,κ+1],t∈fs.O ;
Set f0 := (|I|, |I|, 0, ∅, ∅, ∅);
Set fκ+1 := (|O|, |O|, 0, ∅, ∅, ∅);
for s ∈ [0, κ+ 1] do:
es ← GC.GbInp(1λ, fs.I);
(Fs, os)← GC.GbCirc(1λ, fs, es);

for s ∈ [0, κ] do:
{Ls,t}t∈fs.O := GenLink(s, {links,t}t∈fs.O, os, {es′}s′∈[κ+1]);

dκ+1 ← GC.GbOut(1λ, fκ+1.O, oκ+1);
CGC.e := e0;
. F0 = Fκ+1 = ∅
CGC.F := {Fs}s∈[κ] ∪ {Ls,t}s∈[0,κ],t∈fs.O ;
CGC.d := dκ+1;
return (CGC.F,CGC.e,CGC.d).

private procedure GenLink(s, {links,t}t∈fs.O, os, {es′}s′∈[κ+1])

Parse os = {W 0
s,t,W

1
s,t}t∈fs.O ;

for s′ ∈ [κ+ 1] do:
Parse es′ = {W 0

s′,t,W
1
s′,t}t∈fs′ .I ;

for t ∈ fs.O do:
Set Ls,t := ∅;
τs,t := lsb(W 0

s,t);
for (s′, t′) ∈ links,t do:
σ
τs,t
s′,t′ := H(s, t, s′, t′,W 0

s,t)⊕W 0
s′,t′ ;

σ
τs,t⊕1

s′,t′ := H(s, t, s′, t′,W 1
s,t)⊕W 1

s′,t′ ;
Ls,t := Ls,t ∪ {σ0

s′,t′ , σ
1
s′,t′};

return {Ls,t}t∈fs.O .

procedure CGCGC.En(CGC.e, x)

. Encode the input of the input simple circuit f0
return GC.En(CGC.e, x).

procedure CGCGC.Ev(CompCirc,CGC.F,CGC.X)

Parse CompCirc = (κ, {fs}s∈[κ], link, I,O);
Parse link = {links,t}s∈[0,κ+1],t∈fs.O ;
Set f0 := (|I|, |I|, 0, ∅, ∅, ∅);
Set fκ+1 := (|O|, |O|, 0, ∅, ∅, ∅);
Parse CGC.F = {Fs}s∈[κ] ∪ {Ls,t}s∈[0,κ],t∈fs.O ;
Set F0 := ∅;
Set Fκ+1 := ∅;
Parse CGC.X = {X0,t}t∈f0.I ;
for s ∈ [0, κ+ 1] do:

Set Xs := {Xs,t}t∈fs.I ;
Ys := GC.Ev(fs, Fs, Xs);
Parse Ys = {Ys,t}t∈fs.O ;
if s < κ+ 1 then:

for t ∈ fs.O do:
τs,t := lsb(Ys,t);
for (s′, t′) ∈ links,t do:

SetXs′,t′ := H(s, t, s′, t′, Ys,t)⊕στs,ts′,t′ ;
CGC.Y := Yκ+1;
return CGC.Y .

procedure CGCGC.De(CGC.d,CGC.Y)

. Decode the output of the output simple circuit fκ+1

return GC.De(CGC.d,CGC.Y).

Fig. 2: �e Composite Garbling Scheme CGCGC from the Basic Garbling Scheme GC.

the multiple circular correlation robustness. We de�ne an oracleOH∆0,...,∆κ+1
with respect to the hash functionH and

the ∆’s, where each ∆i ∈ {0, 1}λ−1||1:

OH∆0,...,∆κ+1
(s, t, s′, t′, X, a, b) = H(s, t, s′, t′, X + a ·∆s) + b ·∆s′

De�nition 12 (Multiple Circular Correlation Robustness). �e hash function H is is multiple circular correla-
tion robust if for any PPT adversary that queries the oracle with distinct (s, t, s′, t′) values, the oracle OH∆0,...,∆κ+1

is
indistinguishable from a random oracle that accepts inputs with the same form and outputs a λ-bit random string.

�is de�nition is similar to the mixed-modulus circular correlation robustness de�ned in [3], except that they
assume each ∆ is a vector of Zm elements where m may not be 2, while we only consider m = 2.

�en we have the following security theorem.

�eorem 2. If (a) the basic garbling scheme GC has correctness, obliviousness and authenticity, (b) GC adopts the
point-permute technique and the free-XOR technique, and (c) the hash function H has multiple circular correlation
robustness, then the construction CGCGC depicted in Fig. 2 is a composite garbling scheme with correctness, obliviousness
and authenticity.

Intuitively, the construction CGCGC retains the security properties of the basic garbling scheme GC, because the
output of the hash function H is indistinguishable from a random string. For obliviousness, the simulator SimCGC

invokes the obliviousness simulator of GC to simulate the garbled materials, and it programs the simulated link ma-
terials such that the adversary always obtain the simulated wire labels. �e multiple circular correlation robustness

12

�e protocol Πsemi is for N parties {Pi}i∈[N] and a third-party server Server. For simplicity, we assume each party Pi
inputs ` bits {x(i)k }k∈[`]. PRG : {0, 1}λ → {0, 1}(2·N+5)·λ is a secure pseudorandom number generator. CGCGC is the
composite garbling scheme constructed in Sec. 6, and the details of the procedures GenLink, CGCGC.Ev and CGCGC.De
can be found in Fig. 2.
Protocol Generation
Given the computation task f , the parties’ computing power {τi}i∈[N] and the parties’ communication band-
width {ρi}i∈[N], the load-balanced protocol generator GenProtLB generates a composite circuit CompCirc =
(N, {fs}s∈[N], link, I,O) computing f . Speci�cally, for i ∈ [N], |fi| is proportional to Pi’s computing power τi and
communication bandwidth ρi.
O�line Phase

1. For i ∈ [N], the party Pi:
(a) Parses CompCirc = (N, {fs}s∈[N], link, I,O) and parses link = {links,t}s∈[0,N],t∈fs.O .
(b) Sets f0 := (|I|, |I|, 0, ∅, ∅, ∅) and fN+1 := (|O|, |O|, 0, ∅, ∅, ∅).

2. �e party P1 samples coin
$← {0, 1}λ and sends coin to {Pi}i∈[2,N].

3. For i ∈ [N], the party Pi:
(a) Computes (seed1,0, . . . , seed1,N+1, seed2,0, . . . , seed2,N+1, seed3) := PRG(coin).
(b) For s ∈ [0, N + 1], generates es := GC.GbInp(1λ, fs.I; seed1,s).
(c) Generates (Fi, oi) := GC.GbCirc(1λ, fi, ei; seed2,i). If i = 1, additionally generates

(F0, o0) := GC.GbCirc(1λ, f0, e0; seed2,0).
(d) Generates {Li,t}t∈fi.O := GenLink(i, {linki,t}t∈fi.O, oi, {es′}s′∈[N+1]). If i = 1, additionally generates
{L0,t}t∈f0.O := GenLink(0, {link0,t}t∈f0.O, o0, {es′}s′∈[N+1])

(e) Generates (FN+1, oN+1) := GC.GbCirc(1λ, fN+1, eN+1; seed2,N+1).
(f) Generates CGC.d := GC.GbOut(1λ, fN+1.O, oN+1; seed3).
(g) Sends {Fi} ∪ {Li,t}t∈fi.O to the server Server. If i = 1, additionally sends {L0,t}t∈f0.O .

Online Phase

4. For i ∈ [N], the party Pi:
(a) Parses e0 = {W 0

0,t,W
1
0,t}t∈f0.I .

(b) For k ∈ [`], sets X0,(i−1)·`+k :=W
(x

(i)
k

)

0,(i−1)·`+k .
(c) Sends {X0,(i−1)·`+k}k∈[`] to the server Server.

5. �e server Server:
(a) Sets CGC.F := {Fs}s∈[N] ∪ {Ls,t}s∈[0,N],t∈fs.O and CGC.X := (X0,1, . . . , X0,N·`).
(b) Evaluates CGC.Y := CGCGC.Ev(CompCirc,CGC.F,CGC.X).
(c) Sends CGC.Y to the parties {Pi}i∈[N].

6. For i ∈ [N], the party Pi decodes y := CGCGC.De(CGC.d,CGC.Y) and outputs y.

Protocol Πsemi

Fig. 3: �e Communication & Computation Load-Balanced Server-Aided Protocol Πsemi Secure Against Malicious Server

of H ensures that the programmed outputs are indistinguishable from the authentic link materials. For authenticity,
the adversary has to break the authenticity of GC or the multiple circular correlation robustness of H to forge the
garbled output, so it only succeeds with negligible probability. �e formal security proof can be found in App. A.2.

7 Communication & Computation Load-Balancing

Given the notion of the composite circuit and the composite garbling scheme construction, now we are ready to
present a server-aided MPC protocolΠsemi that is communication & computation load-balanced. As in our communi-
cation load-balanced protocol Πmal, the basic idea is to let the parties act as the garbled circuit generator and let the
server act as the garbled circuit evaluator. �e parties share the same garbled circuit seed and are able to generate the
same garbled circuit copy. Moreover, to achieve computation load balancing, the load-balanced protocol generator
GenProtLB coordinates the generation process such that each party only generate one part of the garbled circuit.
Suppose N parties {Pi}i∈[N] want to compute a computation task f , GenProtLB partitions the circuit of f into N

13

circuits {fi}i∈[N] such that the size of fi is proportional to Pi’s computing power τi and communication bandwidth
ρi. For example, suppose the party P1 is equipped with a 4.8Ghz processor and 500Mbps bandwidth, while each of
the other parties is equipped with a 2.4Ghz processor and 100Mbps bandwidth, then GenProtLB can generate the
simple circuits such that |f1| = min(4.8Ghz

2.4Ghz ,
500Mbps
100Mbps) · |fi| = 2 · |fi|, for i ∈ [2, N]. Using our composite garbling

scheme construction CGCGC, each party only needs to garble the circuit fi and generate some link materials associ-
ated with fi to link the garbled materials together. In terms of security,Πsemi is secure when the server is maliciously
corrupted, and the parties are corrupted by semi-honest and independent adversaries.
Protocol description. We provide the details of the protocol Πsemi in Fig. 3. In the protocol generation phase, the
load-balanced protocol generator GenProtLB generates a composite circuit CompCirc = (N, {fs}s∈[N], link, I,O)
computing f . In CompCirc, the size of each simple circuit fi is proportional to Pi’s computing power τi and com-
munication bandwidth ρi. GenProtLB can generate the composite circuit using the strategies discussed in Sec. 5.

In the o�ine phase, the parties �rst parse the composite circuit and prepare the virtual simple circuits f0 and
fN+1. �e party P1 samples the garbled circuit seed seed uniformly at random and sends seed to the other parties.
�e parties then use a PRG to extend seed into 2·N+5 seeds such that each step of the garbling algorithm CGCGC.Gb
can be determined. For i ∈ [N], the partyPi generates the input encoding information of all the simple circuits, and it
generates the garbled material and output encoding information of the simple circuit fi. In this way, Pi can generate
the link material associated with fi. Additionally, we let P1 generate the link material associated with the input
simple circuit f0. �e parties then generate the output decoding information, and they send the generated garbled
material and link material to the server.

�e online phase ofΠsemi is essentially the same as the online phase ofΠmal. Note that in the composite garbling
scheme, the input encoding information of the input simple circuit f0 is used as the input encoding information of
the composite circuit. A�er receiving the inputs, the parties select the wire labels of their inputs and send the labels
to the server. �e server evaluates the garbled circuit according to the evaluation algorithm of the composite garbling
scheme, and it sends the garbled output to the parties. At the end, the parties decode and output.
E�ciency. �e concrete e�ciency of Πsemi depends on each party’s computing power and communication band-
width as well as the how the load-balanced protocol generator GenProtLB generates the composite circuit CompCirc.
Generally, in a GC-based protocol, the main computation cost is generating and evaluating the garbled circuit, and
the main communication cost is transmi�ing the garbled circuit. We assume that GenProtLB appropriately generates
CompCirc, such that the size of each simple circuit fi is proportional to Pi’s computing power τi and communication
bandwidth ρi, then we can say that the protocol Πsemi is communication & communication load-balanced.
Security. �e security analysis of Πsemi is much similar to that of Πmal. �e malicious adversary As that corrupts
server only sees the garbled input, garbled materials and link materials. Due to the obliviousness of CGCGC, As
cannot obtain information about the parties’ inputs from the garbled circuit. Besides, the authenticity of CGCGC

prevents As from forging garbled output. As for the semi-honest parties, in the execution of Πsemi, each party
receives at most two messages: (i) the garbled circuit seed from P1 and (ii) the garbled output from server. �ese
messages does not leak extra information about other parties’ inputs. �erefore, the protocol Πsemi is secure when a
malicious adversary corrupts the server, and the parties are corrupted by semi-honest and independent adversaries.

�e formal security theorem for Πsemi is given below, and its proof can be found in App. A.3.

�eorem 3. If (a) PRG : {0, 1}λ → {0, 1}(2·N+5)·λ is a secure PRG and (b) CGCGC := (Gb,En,Ev,De, evsc) is the
composite garbling scheme constructed in Sec. 6, then the protocol Πsemi depicted in Fig. 3 is secure when a malicious
adversary corrupts the server, and the parties are corrupted by semi-honest and independent adversaries. Speci�cally, the
malicious adversary is non-cooperative with respect to all other adversaries.

Remark. To achieve be�er load balancing, the load-balanced protocol generator GenProtLB actually distributes the
work of generating and transmi�ing the link materials associated with the simple circuit f0 to all the parties. Nev-
ertheless, this tweak does not a�ect the semi-honest security.

8 Implementation and Benchmarks

Experimental Setup. We implement the protocols Πmal and Πsemi in C++. We implement the PRG algorithm and
the multiple circular correlation robust hash functionH with AES-NI, and we use SHA256 for other hash functions.
We use the half-gates garbling scheme as the garbling scheme in Πmal and the basic garbling scheme for CGCGC,

14

Table 4: E�ciency comparison of two-party computation protocols.

Protocol Running Time (in ms)

Setup O�ine Online Total

Semi-honest Yao [47] 8.101 3.579 0.579 12.258
Auth. Garb. [44] 30.847 72.890 0.786 103.737

Lu et al. [33] 9.530 3.982 0.627 14.139
Πmal — 5.073 0.560 5.633
Πsemi — 4.301 0.495 4.796

Table 5: E�ciency comparison of semi-honest multi-party computation protocols. Num of parties = 3.

Protocol Circuit Running Time (in ms)

Setup O�ine Online Total

Optimized BMR [6] AES128 360.132 224.937 5.121 590.191
SHA256 358.927 2705.085 21.409 3085.422

Πsemi
AES128 — 4.714 0.607 5.321
SHA256 — 16.353 1.428 17.780

which is open source in the EMP toolkit [43]. We use the hash-based commitment scheme, that is, commit(m; r) =
SHA256(m||r).

We use the AES128 circuit and the SHA256 circuit from Bristol Fashion circuits [2] as the benchmark circuits.
If not explicitly stated otherwise, the following evaluation results are for the AES128 circuit. For the multi-party
case, we construct multi-party circuits from the original circuits in the following way: the inputs of {Pi}i∈[N−1] are
XOR-ed together to be used as the input of P1 in the original circuit, and the input of PN is used as the input of
P2 in the original circuit. We use the acyclic graph partitioning algorithm of Herrmann et al. [23] to generate the
composite circuit used in Πsemi, which is open source in dagP [24].

We perform the experiments on a Dell OptiPlex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz with
32.0 GB RAM, running Ubuntu 18.04 LTS. In the experiments, all of the parties have the same computing power and
the same communication speed. Speci�cally, the communication speed of each party is restricted to 500Mbps. All
the reported results are the average of 10 tests.

Two-Party Computation. For the two-party case, we compare our protocolsΠmal andΠsemi with the Yao’s Garbled
Circuits protocol [47], which is secure in the semi-honest se�ing, the two-party authenticated garbling protocol [44],
which is secure in the malicious se�ing, and the state-of-the-art server-aided protocol of Lu et al. [33], which is secure
against semi-honest server and malicious parties. �e Yao’s GC protocol and the two-party authenticated garbling
protocol are open source in the EMP toolkit [43]; and we re-implement the server-aided protocol of Lu et al.

We provide the evaluation results in Table. 4. �e running time of our communication load-balanced protocol
Πmal is 5.633ms, and the running time of our communication & computation load-balanced protocolΠsemi is 4.796ms.
Compared with the semi-honest Yao’s protocol, Πmal is 2.17× faster and Πsemi is 2.55× faster, while both of our
protocols consider malicious adversary. Compared with the maliciously secure authenticated garbling protocol,Πmal

is 18.41× faster andΠsemi is 21.62× faster. Compared with the server-aided protocol of Lu et al.,Πmal is 2.51× faster
and Πsemi is 2.94× faster, speci�cally, Πmal considers both malicious server and malicious parties, and it is more
secure than the server-aided protocol of Lu et al.

Multi-Party Computation. For the multi-party case, we compare our protocolsΠmal andΠsemi with the optimized
BMR protocol [6], which is secure in the semi-honest se�ing, the multi-party authenticated garbling protocol [45],
which is secure in the malicious se�ing, and the state-of-the-art server-aided protocol of Lu et al. [33], which is secure
against semi-honest server and malicious parties. �e optimized BMR protocol is open source in [7], but the imple-
mentation only provides a 3-party AES128 circuit and a 3-party SHA256 circuit, so we only provide the evaluation
results for the 3-party case; the multi-party authenticated garbling protocol is open source in the EMP toolkit [43];
and we re-implement the server-aided protocol of Lu et al.

15

Table 6: E�ciency comparison of maliciously secure multi-party computation protocols.

Protocol Phase Running Time for Di�erent Number of Parties (in ms)
2 3 4 5 6 7 8

Auth. Garb. [45]
Setup 18.193 40.410 69.951 108.777 144.565 206.129 281.735
O�ine 86.732 238.638 472.509 782.390 1178.980 1639.160 2177.836
Online 1.503 3.467 3.328 5.050 7.003 8.118 8.777
Total 106.428 282.516 545.789 896.217 1330.549 1853.407 2468.348

Lu et al. [33]
Setup 9.530 9.956 10.899 12.024 16.786 18.786 19.564
O�ine 3.982 4.047 4.265 4.455 4.718 4.842 5.040
Online 0.627 0.723 0.768 0.981 1.262 1.327 1.540
Total 14.139 14.726 15.931 17.460 22.766 24.955 26.144

Πmal

O�ine 5.073 5.032 5.055 5.049 5.080 5.098 5.099
Online 0.560 0.670 0.691 0.751 0.777 0.832 0.907
Total 5.633 5.702 5.746 5.799 5.857 5.930 6.006

Πsemi

O�ine 4.301 4.714 4.850 4.911 5.012 5.348 5.808
Online 0.495 0.607 0.641 0.749 0.779 0.848 0.918
Total 4.796 5.321 5.490 5.660 5.791 6.195 6.726

We compare the performance of the semi-honest protocols in Table. 5. For the AES128 circuit, our communication
& computation load-balanced protocol Πsemi only takes 5.321ms, which is 110.91× faster than the BMR protocol;
for the SHA256 circuit, our protocol Πsemi only takes 17.780ms, which is 173.53× faster than the BMR protocol.
�is e�ciency improvement is mainly because in our protocol, the parties only needs to locally generate part of the
garbled circuit; while in the BMR protocol, the parties needs to communicate with each other to generate the garbled
circuit, speci�cally, the size of the garbled circuit in BMR increases with the number of involved parties.

We compare the performance of the maliciously secure protocols in Table. 6. Since Πsemi considers potentially
malicious server, we also provide the evaluation results of Πsemi as a supplement. Compared with the multi-party
authenticated garbling protocol and the server-aided protocol of Lu et al., the performance of Πmal and Πsemi is less
a�ected by the number of involved parties. For the 8-party case, Πmal takes 6.006ms, which is 410.98× faster than
the multi-party authenticated garbling protocol and 4.35× faster than the server-aided protocol of Lu et al.; Πsemi

takes 6.726ms, which is 366.98× faster than the multi-party authenticated garbling protocol and 3.88× faster than
the server-aided protocol of Lu et al.

One may note that, the semi-honestΠsemi is slower than the maliciously secureΠmal when there are more than 6
parties. �is is because Πsemi requires the parties to generate and transfer some link materials. As the number of in-
volved parties increases, the circuit needs to be partitioned into more segments, thus contains more link information.
While in Πmal, the overall communication cost is basically una�ected by the number of involved parties.

Load Balancing.We also examine whether our protocols are load-balanced. As for the protocolΠmal, we provide the
communication cost of the participants in Table. 1. For the 2-party case, the highest and the lowest communication
costs are 104640 Bytes and 104544 Bytes, and the di�erence is merely 96 Bytes; even for the 8-party case, the di�erence
is only 384 Bytes. Moreover, the overall o�ine communication costs of Πmal for the 2-party case and the 8-party
case are only 205120 Bytes and 207616 Bytes, respectively, while simply sending the garbled material F needs 204800
Bytes of communication. As for the online communication, all of the parties have the same input length, thereby
having the same communication cost.

As for the protocolΠsemi, we provide the communication costs in Table. 2 and the running time for generating the
garbled materials and link materials in Table. 3. We omit the server’s costs in the table since its o�ine communication
cost is 0 and its online communication cost is the same as the cost in Πmal. Compared with Πmal, the parties need
to additionally transfer the link materials, hence having slightly higher communication costs. For the 2-party case,
the highest and the lowest communication costs are 116432 Bytes and 116400 Bytes, and the di�erence is merely
32 Bytes. When there are more parties, the sizes of the link information associated with di�erent simple circuits
may have larger di�erence. However, even for the 8-party case, the di�erence between the highest and the lowest
communication costs is only 8320 Bytes.

16

To evaluate the computation time, we generate the garbled materials and link materials in the way described in
Πsemi for 1000 times. For comparison, we also generate the garbled materials according to the half-gates garbling
scheme for 1000 times, and we refer to the running time of the half-gates garbling scheme as the original time.
�e original time is about 240ms. For the 2-party case, the highest and the lowest running time are 143.872ms and
133.768ms, respectively, both of which are about half of the original time. �e parties’ running times do not decrease
linearly as the number of the parties increase; instead, when there are too many parties, the running time may
even increase, because the size of the link information grows too fast. But even for the 8-party case, the running
times of the parties are still much shorter than the original time. Besides, the results of Πsemi can bene�t from the
improvement of graph partitioning algorithms.

As a conclusion, the proposed protocols are indeed load-balanced.

9 Related Work

Server-Aided MPC. In our protocols, the non-colluding server is indispensable for the load balancing purpose.
Kamara, Mohassel and Raykova [26] �rst formalized the notion of server-aided MPC, in which the server does not
collude with the parties. Speci�cally, they found that with the assistance of a non-colluding server, the workload of
the party P2 can be sublinear in the circuit size, which is impossible in the previous works if the fully-homomorphic
encryption technique is not adopted. Following [26], many server-aided MPC protocols are proposed [8, 10–12, 25,
27, 33, 35, 46], but none of these works can freely adjust the parties’ workloads while ensure e�ciency.

[10, 11, 27, 33, 46] consider the mobile cloud computing se�ing and propose solutions based on GC. During the
protocol execution, one of the parties interacts with the server to generate and evaluate the GC, while the other
parties only provide their inputs and carry out some veri�cations. �erefore, the workload of the heavy-load party
has to be O(|f |), while the other parties cannot help to share the workload. Similarly, Carter et al. [12] proposed
a server-aided two-party computation protocol in which the server and the party P1 execute another two-party
computation protocol, and the party P2 only deliver the input and verify the output. �eir protocol has the same
weakness as the GC-based solutions. Jakobsen, Nielsen and Orlandi [25] instead consider the se�ing of secure out-
sourced computation, in their protocol, the parties outsource the computation to a number of servers in a veri�able
way. Obviously, the parties cannot contribute to the MPC execution either. Mohassel, Orobets and Riva [35] adapted
the protocol of Nielsen [39] to the server-aided se�ing. In the o�ine phase, the non-colluding server generates and
provides authenticated triples to the parties, and in the online phase, the parties computes in a similar way as [39].
Although they claim that the parties can be instantiated with mobile devices, the workloads of the parties are ac-
tually the same as the circuit size. To the best of our knowledge, the only server-aided MPC protocol that allows
freely distribute the workload is [8], but as discussed in Sec. 1, their protocol use GC as the building block but is not
compatible with many practical GC optimizations and is therefore ine�cient.

MPC with Composite Circuit. Although the notion of composite circuit has not been explicitly proposed prior to
this work, the idea of combining simple circuits or partitioning complex circuits has been widely used. �e reactive
computation, e.g., [40], allows for partial evaluation of the circuit. Speci�cally, some reactive secure computation
protocols, e.g., the SPDZ protocol [17] and the TinyOT protocol [39], realize the arithmetic black-box functional-
ity, which allows the parties to compute the whole computation task by sequentially invoking adders (XOR) and
multipliers (AND). Similar to our work, the GC-based reactive computation protocols [30, 40] also generate garbled
circuit of each simple circuit (component) and link the generated garbled materials together. However, they focus on
�ne-grained cut-and-choose and maliciously secure computation, and do not consider to distribute the workloads of
the parties.

Recently, Chen et al. [13] proposed the Silph compiler, which also use the graph partitioning algorithms in MPC.
Silph considers the hybrid protocol assignment problem, which aims to use secret sharing, garbled circuit and other
MPC primitives to generate a hybrid MPC protocol, while minimizing the overall cost. Silph �nds that, the protocol
assignment problem can be expressed as a integer linear programming (ILP) problem. Since ILP algorithms are not
scalable to large programs, Silph further uses graph partitioning algorithms to decompose the target program into
multiple components. �erefore, Silph and our protocols use the graph partitioning algorithms for di�erent purposes.
Nevertheless, Silph is inspiring to our future work, since it considers mixed circuits while we only consider boolean
circuits.

17

10 Conclusion

In this work, we initiate the study of load-balanced MPC, which takes the participants’ communication and compu-
tation resources into consideration and can adjust the participants’ workloads accordingly. We construct a communi-
cation load-balanced protocol and a communication & computation load-balanced MPC protocol in the server-aided
model. �e evaluation results show that they are much more e�cient than the existing protocols.

References

1. Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng. Multilevel circuit partitioning. In Ellen J. Yo�a, Giovanni De Micheli,
and Jan M. Rabaey, editors, Proceedings of the 34st Conference on Design Automation, Anaheim, California, USA, Anaheim
Convention Center, June 9-13, 1997, pages 530–533. ACM Press, 1997.

2. David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo Sijacic, and Nigel Smart. ‘Bristol Fashion’
MPC Circuits. h�ps://homes.esat.kuleuven.be/∼nsmart/MPC/.

3. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean and arithmetic circuits. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 565–577. ACM Press,
October 2016.

4. Donald Beaver, Silvio Micali, and Phillip Rogaway. �e round complexity of secure protocols (extended abstract). In 22nd
ACM STOC, pages 503–513. ACM Press, May 1990.

5. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press, October 2012.

6. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty computation for the internet.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 578–590. ACM Press, October 2016.

7. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Semi-Honest-BMR. h�ps://github.com/cryptobiu/Semi-Honest-BMR, 2016.
8. Marina Blanton and Fa�aneh Bayatbabolghani. E�cient server-aided secure two-party function evaluation with applications

to genomic computation. PoPETs, 2016(4):144–164, October 2016.
9. Ran Cane�i. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages 136–145.

IEEE Computer Society Press, October 2001.
10. Henry Carter, Charles Lever, and Patrick Traynor. Whitewash: outsourcing garbled circuit generation for mobile devices. In

Charles N. Payne Jr., Adam Hahn, Kevin R. B. Butler, and Micah Sherr, editors, ACSAC 2014, pages 266–275. ACM, 2014.
11. Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. Secure outsourced garbled circuit evaluation for

mobile devices. In Samuel T. King, editor, USENIX Security 2013, pages 289–304. USENIX Association, August 2013.
12. Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. Outsourcing secure two-party computation as a black

box. In Michael Reiter and David Naccache, editors, CANS 15, LNCS, pages 214–222. Springer, Heidelberg, December 2015.
13. Edward Chen, Jinhao Zhu, Alex Ozdemir, Riad S. Wahby, Fraser Brown, and Wenting Zheng. Silph: A framework for scalable

and accurate generation of hybrid MPC protocols. In 2023 IEEE Symposium on Security and Privacy, pages 848–863. IEEE,
2023.

14. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the “free-XOR” technique. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer, Heidelberg, March 2012.

15. Arka Rai Choudhuri, Aarushi Goel, Ma�hew Green, Abhishek Jain, and Gabriel Kaptchuk. Fluid MPC: Secure multiparty
computation with dynamic participants. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of
LNCS, pages 94–123, Virtual Event, August 2021. Springer, Heidelberg.

16. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from threshold homomorphic encryption.
In Birgit P�tzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer, Heidelberg, May 2001.

17. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Reihaneh Safavi-Naini and Ran Cane�i, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer,
Heidelberg, August 2012.

18. Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the minimum bisection. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 105–115. IEEE
Computer Society, 2000.

19. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the �eory of NP-Completeness. W. H. Freeman,
1979.

20. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO:
You only speak once - secure MPC with stateless ephemeral roles. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 64–93, Virtual Event, August 2021. Springer, Heidelberg.

21. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols
with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

18

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://github.com/cryptobiu/Semi-Honest-BMR

22. Julien Herrmann, Jonathan Kho, Bora Uçar, Kamer Kaya, and Ümit V. Çatalyürek. Acyclic partitioning of large directed acyclic
graphs. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017,
Madrid, Spain, May 14-17, 2017, pages 371–380. IEEE Computer Society / ACM, 2017.

23. Julien Herrmann, M. Yusuf Özkaya, Bora Uçar, Kamer Kaya, and Ümit V. Çatalyürek. Multilevel algorithms for acyclic parti-
tioning of directed acyclic graphs. SIAM J. Sci. Comput., 41(4):A2117–A2145, 2019.

24. Julien Herrmann, M. Yusuf Özkaya, Bora Uçar, Kamer Kaya, and Ümit V. Çatalyürek. dagP: A Directed Acyclic Graph Parti-
tioning Tool. h�ps://github.com/GT-TDAlab/dagP, 2020.

25. �omas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for outsourcing of secure computation. In
Gail-Joon Ahn, Alina Oprea, and Reihaneh Safavi-Naini, editors, CCSW 2014, pages 81–92. ACM, 2014.

26. Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computation. Cryptology ePrint Archive,
Report 2011/272, 2011. h�ps://eprint.iacr.org/2011/272.

27. Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-aided secure function evaluation. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 797–808. ACM Press, October 2012.

28. Brian W. Kernighan. Optimal sequential partitions of graphs. J. ACM, 18(1):34–40, 1971.
29. Brian W Kernighan and Shen Lin. An e�cient heuristic procedure for partitioning graphs. �e Bell system technical journal,

49(2):291–307, 1970.
30. Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto Tri�le�i. DUPLO: Unifying cut-and-choose

for garbled circuits. In Bhavani M. �uraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
3–20. ACM Press, October / November 2017.

31. Vladimir Kolesnikov and �omas Schneider. Improved garbled circuit: Free XOR gates and applications. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdó�ir, and Igor Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

32. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-�y multiparty computation on the cloud via multikey
fully homomorphic encryption. In Howard J. Karlo� and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM
Press, May 2012.

33. Yibiao Lu, Bingsheng Zhang, and Kui Ren. Maliciously secure mpc from semi-honest 2pc in the server-aided model. IEEE
Transactions on Dependable and Secure Computing, 2023. Early access.

34. Yibiao Lu, Bingsheng Zhang, Hong-Sheng Zhou, Weiran Liu, Lei Zhang, and Kui Ren. Correlated randomness teleportation
via semi-trusted hardware - enabling silent multi-party computation. In Elisa Bertino, Haya Shulman, and Michael Waidner,
editors, ESORICS 2021, Part II, volume 12973 of LNCS, pages 699–720. Springer, Heidelberg, October 2021.

35. Payman Mohassel, Ostap Orobets, and Ben Riva. E�cient server-aided 2PC for mobile phones. PoPETs, 2016(2):82–99, April
2016.

36. Orlando Moreira, Merten Popp, and Christian Schulz. Graph partitioning with acyclicity constraints. In Costas S. Iliopoulos,
Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium on Experimental Algorithms, SEA
2017, June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

37. Orlando Moreira, Merten Popp, and Christian Schulz. Evolutionary multi-level acyclic graph partitioning. In Hernán E.
Aguirre and Keiki Takadama, editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018,
Kyoto, Japan, July 15-19, 2018, pages 332–339. ACM, 2018.

38. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In Proceedings of the 1st
ACM Conference on Electronic Commerce, EC ’99, page 129–139, New York, NY, USA, 1999.

39. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to practical active-
secure two-party computation. In Reihaneh Safavi-Naini and Ran Cane�i, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700. Springer, Heidelberg, August 2012.

40. Jesper Buus Nielsen and Samuel Ranellucci. Reactive garbling: Foundation, instantiation, application. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 1022–1052. Springer, Heidelberg, December
2016.

41. Mike Rosulek and Lawrence Roy. �ree halves make a whole? Beating the half-gates lower bound for garbled circuits. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–124, Virtual Event, August 2021.
Springer, Heidelberg.

42. Cui Su, Jun Pang, and Soumya Paul. Towards optimal decomposition of boolean networks. IEEE ACM Trans. Comput. Biol.
Bioinform., 18(6):2167–2176, 2021.

43. Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. EMP-toolkit: E�cient MultiParty computation toolkit. h�ps://github.
com/emp-toolkit, 2016.

44. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and e�cient maliciously secure two-party com-
putation. In Bhavani M. �uraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 21–37.
ACM Press, October / November 2017.

45. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In Bhavani M. �urais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM Press, October / November
2017.

19

https://github.com/GT-TDAlab/dagP
https://eprint.iacr.org/2011/272
https://github.com/emp-toolkit
https://github.com/emp-toolkit

46. Yulin Wu, Xuan Wang, Willy Susilo, Guomin Yang, Zoe L. Jiang, Qian Chen, and Peng Xu. E�cient server-aided secure
two-party computation in heterogeneous mobile cloud computing. IEEE Transactions on Dependable and Secure Computing,
18(6):2820–2834, 2021.

47. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167. IEEE
Computer Society Press, October 1986.

48. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in garbled circuits using
half gates. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

A Security Proofs of Our �eorems

A.1 Proof of �eorem. 1

Proof. According to Lemma. 1, to prove �m. 1, we only need to consider (i) the case where all the parties and the
server are corrupted by semi-honest and independent adversaries, (ii) the case where the server is corrupted by a
malicious adversary while the parties are honest, and (iii) the case where up to N − 1 parties are corrupted by a
malicious adversary while the remaining parties and the server are honest. For each case, we present corresponding
simulators that make the ideal-world execution and real-world execution indistinguishable.

Claim. �e protocol Πmal depicted in Fig. 1 is secure in the presence of N + 1 semi-honest and independent adver-
saries.

Proof. In this case, we assume that the adversaryAs corrupts the server and the adversaryAi corrupts the party Pi,
for i ∈ [N]. We construct the simulators in the following way:

– �e simulator Ss is constructed by Ss := Sims(As):
• For steps 1-3, Ss acts as the honest parties {Pi}i∈[N]. Ss samples coin1, r

$← {0, 1}λ and computes ccoin :=
commit(m, r). For i ∈ [N], Ss sends ccoin to As on behalf of Pi. Meanwhile, Ss receives coin2 from As on
behalf of the parties.

• For steps 4-6, Ss uses the obliviousness simulator for GC to generate the fake garbled circuit to obtain
the garbled materials F̃ and garbled input X̃ , that is, (F̃ , X̃) ← SimGC(1

λ, f). According to the protocol
description, Ss partitions the garbled material F̃ into {F̃i}i∈[N], and it generates the hash values. A�er that,
Ss sends the garbled material segments, the hash values and the garbled input toAs on behalf of the parties
in step 4(c), step 4(d) and step 6(c).

• For steps 7-8, Ss receives the garbled output from the adversaryAs on behalf of the parties. Ss then instructs
the trusted third party to send the output to all of the parties. At the end, Ss outputs the entire view of As.

Server’s partial output only consists of the view of the adversaryAs. �roughout the execution,As only receives
the commitments of a random coin, the garbled material segments and the hash values of the garbled material
segments. WhenCom is hiding,As cannot extract any information of coin1 from the commitments; whenGC has
obliviousness, the fake garbled circuit is indistinguishable from a genuine one; as for the hash values,As already
receives their pre-images. �erefore, Server’s partial output in the real-world execution are indistinguishable
from Server’s partial output in the ideal-world execution.

– �e simulator S1 is constructed by S1 := Sim1(A1):
• For steps 1-5, S1 acts as the honest parties {Pi}i∈[2,N] and the honest server Server. S1 receives coin1, r

from A1 on behalf of the parties and receives c(1)coin from A1 on behalf of the server. At the same time, S1
samples coin2

$← {0, 1}λ and sends coin2 to A1 on behalf of Server. A�er receiving seed, S1 generates the
garbled circuit by (F, e, d) := GC.Gb(1λ, f ; seed). Subsequently, S1 receives the garbled material segment
and the hash values from A1 on behalf of Server.
• For step 6, S1 receives the input {x(1)k }k∈[`] and sends {x(1)k }k∈[`] to the trusted third party to obtain the

output y. Meanwhile, S1 receives {Xk}k∈[`] from A1 on behalf of Server.
• For step 7, S1 generates the garbled output Ỹ according to the garbled circuit and the output y, and it sends
Ỹ toA1 on behalf of Server. Note that S1 knows the seed for the garbling algorithm, it can extract the wire
labels of the output wires and arrange a fake garbled output that evaluates to y.
• For step 8, S1 outputs the view of A1.

20

P1’s partial output only consists of the view of the adversary A1. �roughout the execution, A1 only receives
coin2 and Ỹ from the simulator S1. As in the protocol description, the random coin coin2 is uniformly random.
Besides, S1 programs Ỹ such that De(d, Ỹ) = y where y is the real output. �erefore, P1’s partial output in the
real-world execution are indistinguishable from P1’s partial output in the ideal-world execution.

– For i ∈ [2, N], the simulator Si can be constructed in a similar way as S1, except that in step 1, Si needs to sample
coin1, r

$← {0, 1}λ and sends coin, r toAi on behalf ofP1, and in step 2(b), Si needs to send seed := coin1⊕coin2
to Ai on behalf of P1. �e proof of indistinguishability is also similar, so we omit the details here.

Each partial output in the ideal-world execution is indistinguishable from the corresponding partial output in
the real-world execution. According to the security de�nition, the protocol Πmal depicted in Fig. 1 is secure in the
presence of N + 1 semi-honest and independent adversaries.

Claim. �e protocol Πmal depicted in Fig. 1 is secure in the presence of a malicious adversary corrupting the server.

Proof. In this case, we construct the simulator S by S := Sim(A). Whenever A aborts, S instructs the trusted third
party to send ⊥ to all the parties {Pi}i∈[N]. If A does not abort, the simulation is done in the following way:

– For step 1, S samples coin1, r
$← {0, 1}λ. For i ∈ [N], S receives coin(i)2 from the adversary A on behalf of Pi.

– For step 2, S computes ccoin := commit(coin1, r) and sends ccoin to the adversaryA on behalf of Pi, for i ∈ [N].
– For step 3, if there exists i, j such that coin(i)2 6= coin

(j)
2 , S sends an abort message to A and the trusted third

party, and it outputs the entire view of A.
– For step 4(a), S invokes the obliviousness simulator for the garbling scheme to generate the fake garbled material
F̃ and the fake garbled input X̃ , that is, (F̃ , X̃)← SimGC(1

λ, f).
– For step 4(b), S partitions the garbled material F̃ into N segments {F̃i}i∈[N] according to the protocol descrip-

tion.
– For steps 4(c)-4(d), S computes the hash values of the garbled material segments. According to the protocol

description, S sends the garbled material segments and the hash values to A on behalf of the parties.
– For step 6, S sends the fake garbled input to the adversaryA on behalf of the parties. More concretely, S parses
X̃ = {X̃t}t∈f.I . For i ∈ [N], S sends {X̃(i−1)·`+k}k∈[`] to the adversary A on behalf of Pi.

– For step 7, for i ∈ [N], S receives Ŷi from the adversary A on behalf of Pi.
– For step 8, S computes Ỹ := GC.Ev(f, F̃ , X̃) by itself and it compares Ỹ with each of {Ŷi}i∈[N]. When the

trusted third party asks which of the parties should receive the output, S instructs the trusted third party to
send the output to the parties who receive Ỹ = Ŷi and to send⊥ to the parties who receive Ỹ 6= Ŷi. At the end,
S outputs the entire view of A.

We prove the indistinguishability through a sequence of hybrid worlds.

– Hyb0. �is is the real-world.
– Hyb1. �is hybrid world is the same as Hyb0, except that in Hyb1, the seed of the garbled circuit is sampled

at uniformly random, that is, seed $← {0, 1}λ. When Com is hiding, it is hard for the adversary A to extract
information of coin1 from the commitment ccoin. Even though coin2 is chosen byA, seed := coin1⊕coin2 is still
masked by a uniformly random one-time pad, and is indistinguishable from true randomness. �erefore, Hyb0
and Hyb1 are indistinguishable.

– Hyb2. �is hybrid world is the same as Hyb1, except that in Hyb2, if a party Pi receives coin(i)2 6= coin
(j)
2 , the

simulator S sends an abort message to A and the trusted third party. In Hyb1, the computation also terminates
if such event happens, so Hyb1 and Hyb2 are indistinguishable.

– Hyb3. �is hybrid world is the same as Hyb2, except that in Hyb3, the simulator S checks the garbled output
sent by the adversary A in the following way: S execute the evaluation algorithm GC.Ev to obtain the garbled
output, and it compares the generated garbled output with the garbled outputs received by the parties. If a party
Pi receives an inconsistent garbled output, S instructs the trusted third party to send ⊥ to Pi; otherwise, S
instructs the trusted third party to send the actual output y to Pi. When GC has authenticity, it is hard for the
adversary A to forge a valid garbled output. �erefore, the outputs of the honest parties in the Hyb2 and in
Hyb3 are indistinguishable.

21

– Hyb4. �is hybrid world is the same as Hyb3, except that in Hyb4, the parties uses the obliviousness simulator
for GC to generate a fake copy of the garbled circuit. In step 4 and step 6, the parties sends the fake garbled circuit
to the adversaryA. When GC has obliviousness, the fake garbled circuit is indistinguishable from a genuine one,
and the views of A in Hyb3 and in Hyb4 are indistinguishable.

Note that, Hyb4 is the ideal-world. �e view of the adversary A and the output of the honest parties {Pi}i∈[N] in
the execution of Hyb4 are indistinguishable from the corresponding variables in the execution of Hyb0. According
to the security de�nition, the protocol Πmal depicted in Fig. 1 is secure in the presence of a malicious adversary
corrupting the server.

Claim. �e protocolΠmal depicted in Fig. 1 is secure in the presence of a malicious adversary corrupting up toN−1
parties.

Proof. Without loss of generality, we consider the case where A corrupts {Pi}i∈[N−1]. We construct a simulator S
by S := Sim(A):

– For step 1(a), S receives coin1, r from P1 on behalf of PN .
– For step 1(b), S samples coin2

$← {0, 1}λ and sends coin2 to A on behalf of Server.
– For step 2(a), S receives {c(i)coin}i∈[N−1] from A on behalf of Server.
– For step 2(b), S receives ŝeed from A on behalf of PN .
– For step 3(a), S computes seed := coin1⊕ coin2. If seed 6= ŝeed, S sends an abort message toA on behalf of PN

and sends an abort message to the trusted third party on behalf of P1, then it outputs the entire view of A.
– For step 3(b), S computes c(N)

coin := commit(coin1, r). For i ∈ [N − 1], S asserts that c(i)coin = c
(N)
coin . If there exists

i such that c(i)coin 6= c
(N)
coin , S sends an abort message to A and the trusted third party, then it outputs the entire

view of A
– For step 4, S generates (F, e, d) := GC.Gb(1λ, f ; seed) and partitions F into {Fi}i∈[N]. S then receives the

garbled material segments and the hash values from A on behalf of Server.
– For step 5, S checks the garbled material segments and the hash values. For i ∈ [N], S computes hi := H(F)

by itself, then it asserts all the hash values associated with the garbled material segment Fi are the same. Ad-
ditionally, S checks the garbled material segments sent by the parties by asserting F̂i = Fi, for i ∈ [N]. If any
assertion fails, S sends an abort message to A on behalf of Server and sends an abort message to the trusted
third party on behalf of the parties that send inconsistent values, and it outputs the entire view of A.

– For step 6, S receives the garbled inputs {X̂k}k∈[(N−1)·`] fromA on behalf of Server. S then extracts the inputs
of A. S parses the input encoding information e := {W 0

t ,W
1
t }t∈f.I . For i ∈ [N − 1], k ∈ [`], if there exists

x̃i,k ∈ {0, 1} such that W x̃i,k
(i−1)·`+k = X̂(i−1)·`+k , then S sets x̃i,k as the k-th bit of Pi’s input; otherwise, S sets

x̃ := ⊥.
– For step 7, S sends the extracted {x̃i}i∈[N−1] to the trusted third party and receives the output back. If the

output is ⊥, S sends Y := ⊥ to A on behalf of Server and it outputs the entire view of A. If the output is y,
S generates a fake garbled output Ỹ according to the garbled circuit and the output y, and it sends Ỹ to A on
behalf of Server.

– For step 8, S outputs the entire view of A.

We prove the indistinguishability through a sequence of hybrid worlds.

– Hyb0. �is is the real-world.
– Hyb1. �is hybrid world is the same as Hyb0, except that in Hyb1, if the server Server receives inconsistent

commitments from {Pi}i∈[N−1], the simulator S sends an abort message to A and the trusted third party. In
Hyb0, the computation also terminates if such event happens, so Hyb0 and Hyb1 are indistinguishable.

– Hyb2. �is hybrid world is the same asHyb1, except that inHyb2, ifPN receives ĉoin1, r̂ such that commit(ĉoin1, r̂) 6=
ccoin, the simulator S sends an abort message to A on behalf of Server and to the trusted third party on behalf
of P1. Note that, when Com is binding, it is hard for A to �nd inconsistent values that computes to the same
commitment, so Hyb1 and Hyb2 are indistinguishable.

– Hyb3. �is hybrid world is the same as Hyb2, except that in Hyb3, if the party PN receives ŝeed 6= seed where
seed := coin1 ⊕ coin2, the simulator S sends an abort message to A and the trusted third party. In Hyb2, the
computation also terminates if such event happens, so Hyb2 and Hyb3 are indistinguishable.

22

– Hyb4. �is hybrid world is the same as Hyb3, except that in Hyb4, if the server Server receives inconsistent
hash values of the garbled material segments, the simulator S sends an abort message toA and the trusted third
party. In Hyb2, the computation also terminates if such event happens, so Hyb3 and Hyb4 are indistinguishable.

– Hyb5. �is hybrid world is the same as Hyb4, except that in Hyb5, the simulator S additionally checks the
garbled material segments in the following way: S uses the seed computed by the party PN to generate the
garbled circuit by itself, and it compares the garbled material segments sent by the parties {Pi}i∈[N−1] with
the generated garbled material segments. If Server receives inconsistent garbled material segments, S sends an
abort message to A and the trusted third party. When H is a collision-resistant hash function, it is hard for the
adversaryA to forge fake garbled materials and link materials that evaluates to the same hash value. �erefore,
Hyb4 and Hyb5 are indistinguishable.

– Hyb6. �is hybrid world is the same as Hyb5, except that in Hyb6, the simulator S extracts the inputs of
the corrupted parties from the garbled input received by the server Server according to the input encoding
information. Subsequently, S sends the extracted inputs to the trusted third party as the inputs of the parties.
A�er receiving the output y from the trusted third party, Server sets the garbled output according to y and the
garbled circuit, and it sends the garbled output toA.Hyb5 andHyb6 di�ers only when the adversaryAmanages
to �nd X̂t /∈ {W 0

t ,W
1
t } that also evaluates to valid garbled output. According to the authenticity of GC, this

only happens with negligible probability. �erefore, Hyb5 and Hyb6 are indistinguishable.

Note that, Hyb6 is the ideal-world. �e view of the adversary A and the output of the honest party PN in the
execution of Hyb6 are indistinguishable from the corresponding variables in the execution of Hyb0. According
to the security de�nition, the protocol Πmal depicted in Fig. 1 is secure in the presence of a malicious adversary
corrupting up to N − 1 parties.

According to Lemma. 1, we can conclude that Πmal depicted in Fig. 1 is secure when (i) a malicious adversary
corrupts up to N − 1 parties, and the other parties and the server are corrupted by semi-honest and independent
adversaries, and (ii) a malicious adversary corrupts the server, and the parties are corrupted by semi-honest and
independent adversaries.

A.2 Proof of �eorem. 2

Proof. To prove �m. 2, we need to prove the correctness, obliviousness and authenticity of the construction CGCGC.
Correctness. �e correctness of the construction CGCGC follows from the correctness of GC. We only need to argue
that the input labels of the simple circuits are properly generated and evaluated. To link the outputs of the simple
circuit fs to the subsequent simple circuits, the link material generation algorithmGenLink generates two ciphertexts
σ0
s′,t′ := H(s, t, s′, t′,W

τs,t
s,t) ⊕W τs,t

s′,t′ and σ1
s′,t′ := H(s, t, s′, t′,W

τs,t⊕1
s,t) ⊕W τs,t⊕1

s′,t′ , where τs,t is the select bit

of the 0-label W 0
s,t. �e evaluation CGCGC.Ev computes Xs′,t′ := H(s, t, s′, t′, Ys,t)⊕ σ

τ ′s,t
s′,t′ , where Ys,t is the label

of the wire t in the simple circuit s, and τ ′s,t is the select bit of Ys,t. Suppose the label Ys,t carries the value v, then

σ
τ ′s,t
s′,t′ = σ

τs,t⊕v
s′,t′ = H(s, t, s′, t′,W v

s,t) ⊕W v
s′,t′ , and Xs′,t′ = W v

s′,t′ also carries the value v. �erefore, the input
labels of the simple circuits are properly generated and evaluated.

We conclude that the CGCGC correctness game succeeds if all the GC correctness games for the simple circuits
succeed. If GC has correctness, the GC correctness game succeeds except with negligible probability, and poly(λ) ·
negl(λ) is still negligible. In other words, if the basic garbling scheme GC has correctness, then the construction
CGCGC has correctness.
Obliviousness. �e obliviousness of the construction CGCGC follows from the obliviousness of GC and the multiple
correlation robustness of the hash function H . We �rst present the simulator in Fig. 4, and then we prove that
SimCGC works. For each simple circuit fs, the simulator SimCGC invokes SimGC, which is the obliviousness simulator
for the basic garbling scheme GC, to simulate the garbled material F̂s and garbled input X̂s. SimCGC then invokes
the evaluation algorithm to obtain the simulated garbled output Ŷs := Ev(fs, F̂s, X̂s). A�er that, SimCGC uses the
procedure SimLink to simulate the link materials. Suppose the output wire t of the simple circuit fs is linked to the
input wire t′ of the simple circuit fs′ , SimLink extracts the select bit τ̂s,t := lsb(Ŷs,t). To simulate the two ciphertexts,
SimLink sets σ̂τs,ts′,t′ := RO(s, t, s′, t′, Ŷs,t) ⊕ X̂s′,t′ where RO is a random oracle; for the other ciphertext, SimLink

samples σ̂τs,t⊕1s′,t′ uniformly at random.
We prove the simulator SimCGC works by considering a sequence of hybrid worlds.

23

procedure SimCGC(1
λ,CompCirc)

Parse CompCirc = (κ, {fs}s∈[κ], link, I,O);
Parse link = {links,t}s∈[0,κ+1],t∈fs.O ;
Set f0 := (|I|, |I|, 0, ∅, ∅, ∅);
Set fκ+1 := (|O|, |O|, 0, ∅, ∅, ∅);
for s ∈ [0, κ+ 1] do:

(F̂s, X̂s)← SimGC(1
λ, fs);

Ŷs := GC.Ev(fs, F̂s, X̂s);
for s ∈ [0, κ] do:
{Ls,t}t∈fs.O ← SimLink(s, {links,t}t∈fs.O, Ŷs, {X̂s′}s′∈[κ+1]);

Sim.X := X̂0;
Sim.F := {F̂s}s∈[κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O ;
return (Sim.F,Sim.X).

procedure SimLink(s, {links,t}t∈fs.O, Ŷs, {X̂s′}s′∈[κ+1])

Parse Ŷs = {Ŷs,t}t∈fs.O ;
for s′ ∈ [κ+ 1] do:

Parse X̂s′ = {X̂s′,t}t∈fs′ .I ;
for t ∈ fs.O do:

Set L̂s,t := ∅;
τ̂s,t := lsb(Ŷs,t);
for (s′, t′) ∈ links,t do:
σ̂
τs,t
s′,t′ := RO(s, t, s′, t′, Ŷs,t)⊕ X̂s′,t′ ;

σ̂
τs,t⊕1

s′,t′
$← {0, 1}λ;

Ls,t := Ls,t ∪ {σ̂0
s′,t′ , σ̂

1
s′,t′};

return {Ls,t}t∈fs.O .

Fig. 4: �e Obliviousness Simulator SimCGC for the construction CGCGC. GC := (Gb,En,Ev,De, ev) is the basic garbling scheme
and SimGC is the obliviousness simulator for GC. RO is a random oracle.

Hyb0:�is is the real execution. Namely, givenCompCirc = (κ, {fs}s∈[κ], link, I,O) andx, (CGC.F,CGC.e,CGC.d)←
CGC.Gb(1λ,CompCirc) and CGC.X := CGC.En(CGC.e, x) are executed. We have Hyb0.X = X0 = GC.En(e0, x)
and Hyb0.F = {Fs}s∈[κ] ∪ {Ls,t}s∈[0,κ],t∈fs.O .

Hyb1: �is hybrid world is the same as Hyb0, except that in Hyb1, we use random oracle RO rather than the hash
function H to generate the link materials. More concretely, for s ∈ [0, κ], t ∈ fs.O, (s′, t′) ∈ links,t, we compute
σ̂
τs,t
s′,t′ := RO(s, t, s′, t′,W 0

s,t)⊕W 0
s′,t′ and σ̂τs,t⊕1s′,t′ := RO(s, t, s′, t′,W 1

s,t)⊕W 1
s′,t′ , and we insert σ̂0

s′,t′ , σ̂
1
s′,t′ to L̂s,t.

At the end, we outputs Hyb1.X := CGC.X and Hyb1.F := {Fs}s∈[κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O .
When the hash function has multiple correlation robustness, Hyb0 and Hyb1 are indistinguishable.

Hyb2: �is hybrid world is the same as Hyb1, except that in Hyb2, we �rst evaluate the composite circuit CompCirc.
We look into the execution of the composite circuit evaluation function evsc, and we extract the outputs of the simple
circuits {ys}s∈[0,κ+1]. A�er that, we modify the link materials. �e link material σ̂τs,t⊕ys,ts′,t′ remains unchanged, while
the link material σ̂τs,t⊕1⊕ys,ts′,t′ is now sampled uniformly at random. At the end, we outputs Hyb2.X := CGC.X and
Hyb2.F := {Fs}s∈[κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O .

Note that the adversary can only decrypt the ciphertext σ̂τs,t⊕ys,ts′,t′ , which is unchanged. As for σ̂τs,t⊕1⊕ys,ts′,t′ , the
outputs of the random oracle are indistinguishable from true random string, soHyb1 andHyb2 are indistinguishable.

Hyb3: �is hybrid world is the same as Hyb2, except that in Hyb3, the garbled circuit of the simple circuit fκ+1 is re-
placed by a simulated one. We invoke theGC obliviousness simulator by (F̂κ+1, X̂κ+1)← SimGC(1

λ, fκ+1). For each
input wire t′ of fκ+1, we can �nd a pair (s, t) in the link information link, indicating that the connection relationship.
�en we modify the related link materials. Suppose the link materials inHyb2 is σ̂0

κ+1,t′ and σ̂1
κ+1,t′ , where σ̂τs,t⊕ys,tκ+1,t′

is computed byRO(s, t, κ+1, t′,W
ys,t
s,t)⊕W ys,t

κ+1,t′ . We change σ̂τs,t⊕ys,tκ+1,t′ toRO(s, t, κ+1, t′,W
ys,t
s,t)⊕X̂κ+1,t′ . In this

24

way, the link material will evaluate to the simulated input label X̂κ+1,t′ . At the end, we outputs Hyb3.X := CGC.X

and Hyb3.F := {Fs}s∈[κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O .
�e random oracle outputs are indistinguishable. Besides, suppose the adversary A3 distinguishes Hyb2 and

Hyb3, then we can construct an adversary A′3 breaking the GC obliviousness game. A′3 receives Fκ+1, Xκ+1 of the
simple circuit fκ+1, and it genuinely generates the garbled circuits of {fs}s∈[0,κ] and generates the link materials as
in Hyb3. A′3 feeds Hyb3.F,Hyb3.X to A3 and outputs whatever A3 outputs. When GC has obliviousness, Hyb2
and Hyb3 are indistinguishable.
Hybi+4, for i ∈ [0, κ−1]: �is hybrid world is the same as Hybi+3, except that in Hybi+4, the garbled circuit of the
simple circuit fκ−i is replaced by a simulated one. We invoke the GC obliviousness simulator by (F̂κ−i, X̂κ−i) ←
SimGC(1

λ, fκ−i). For the inputs of fκ−i, we modify the related link materials in the same way as Hyb3. Moreover, we
modify the link materials related to the outputs of fκ−i. We compute the garbled output Ŷκ−i := GC.Ev(fκ−i, F̂κ−i, X̂κ−i).
For t ∈ fκ−i.O, we extract the select bit τ̂κ−i,t := lsb(Ŷκ−i,t); for (s′, t′) ∈ linkκ−i,t, we set στ̂κ−i,ts′,t′ := RO(κ −
i, t, s′, t′, Ŷκ−i,t)⊕ X̂s′,t′ and sample στκ−i,t⊕1s′,t′ uniformly at random. At the end, we outputs Hybi+4.X := CGC.X

and Hybi+4.F := {Fs}s∈[κ−i−1] ∪ {F̂s}s∈[κ−i,κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O .
All the garbled materials and link materials related to fκ−i are replaced by a simulated one. Speci�cally, in this

way, we make sure that the link materials related to the outputs of fκ−i only contains simulated labels. �erefore,
Hybi+3 and Hybi+4 are indistinguishable for the same reason as Hyb2 and Hyb3 are indistinguishable.
Hybκ+4: �is hybrid world is the same as Hybκ+3, except that in Hybκ+4, the garbled circuit of the simple circuit
f0 is replaced by a simulated one. We invoke the GC obliviousness simulator by (F̂0, X̂0) ← SimGC(1

λ, f0) and
compute the garbled output by Ŷ0 := GC.Ev(F̂0, X̂0). �e link materials related to f0 is modi�ed in the same way
as Hybi+4. At the end, we outputs Hybκ+4.X := X̂0 and Hybκ+4.F := {F̂s}s∈[κ] ∪ {L̂s,t}s∈[0,κ],t∈fs.O .

Hybκ+3 and Hybκ+4 are indistinguishable for the same reason as Hybi+3 and Hybi+4 are indistinguishable.
Hybκ+4 is the simulated world of the obliviousness simulator SimCGC, and we conclude that if the basic garbling

scheme GC has obliviousness and the hash function H has multiple correlation robustness, then the construction
CGCGC has obliviousness.
Authenticity. �e authenticity of the construction CGCGC follows from the authenticity of GC and the multiple
correlation robustness of the hash functionH . Suppose there is an adversaryA breaking the authenticity of CGCGC,
then (i) for some i ∈ [0, κ + 1], A successfully obtain a valid Ŷi 6= Yi, or (ii) A learns the information of both
input wire labels from the link materials. �e �rst case indicates the existence of an adversary A′ breaking the
authenticity of GC; and the second case indicates the existence of an adversary A′′ breaking the multiple circular
correlation robustness of H . �erefore, if the basic garbling scheme GC has authenticity and the hash function H
has multiple correlation robustness, then the construction CGCGC has authenticity.

A.3 Proof of �eorem. 3

Proof. According to Lemma. 1, to prove �m. 3, we only need to consider (i) the case where all the parties and the
server are corrupted by semi-honest and independent adversaries, and (ii) the case where the server is corrupted by
a malicious adversary while the parties are honest. For each case, we present corresponding simulators that make
the ideal-world execution and real-world execution indistinguishable.

Claim. �e protocol Πsemi depicted in Fig. 3 is secure in the presence of N +1 semi-honest and independent adver-
saries.

Proof. In this case, we assume that the adversaryAs corrupts the server and the adversaryAi corrupts the party Pi,
for i ∈ [N]. We construct the simulators in the following way:

– �e simulator Ss is constructed by Ss := Sims(As):
• For steps 1-4, Ss uses the obliviousness simulator for CGCGC (constructed in the proof of �m. 2) to generate

a fake copy of the garbled circuit. Ss parses the fake garbled circuit to obtain the garbled materials, link
materials and garbled input. In step 3(f) and step 4(c), Ss sends the fake garbled circuit to the adversary A
on behalf of the parties.

• For steps 5-6, Ss receives the garbled output from the adversaryAs on behalf of the parties. Ss then instructs
the trusted third party to send the output to all of the parties. At the end, Ss outputs the entire view of As.

25

Server’s partial output only consists of the view of the adversary As. �roughout the execution, As only re-
ceives the garbled circuit. When PRG is a secure pseudorandom number generator, the generated seeds are
indistinguishable from true randomness, so the garbled circuit generated using these seeds are indistinguishable
from a garbled circuit generated using true randomness. When CGCGC has obliviousness, the fake garbled cir-
cuit are indistinguishable from a genuine one. �erefore, Server’s partial output in the real-world execution is
indistinguishable from Server’s partial output in the ideal-world execution.

– �e simulator S1 is constructed by S1 := Sim1(A1):
• For steps 1-3(f), S1 acts as the honest parties {Pi}i∈[2,N]. For i ∈ [2, N], S1 receives coin fromA1 on behalf

of Pi. S1 then follows the protocol description to generate the seeds and the garbled circuit.
• For step 3(g), S1 receives {F1} ∪ {Ls,t}s∈[0,1],t∈fs.O from A1 on behalf of Server.
• For step 4, S1 receives the input {x(1)k }k∈[`] and sends {x(1)k }k∈[`] to the trusted third party to obtain the

output y. Meanwhile, S1 receives {X0,k}k∈[`] from A1 on behalf of Server.
• For step 5, S1 generates the garbled output C̃GC.Y according to the garbled circuit and the output y,

and it sends C̃GC.Y to A1 on behalf of Server. More speci�cally, S1 have generated (FN+1, oN+1) :=
GC.GbCirc(1λ, fN+1, eN+1; seed2,N+1) in step 3(d). S1 parses oN+1 = {W 0

N+1,t,W
1
N+1,t}t∈fN+1.O and

y = {yt}t∈fN+1.O . A�er that, S1 sets C̃GC.Y := {W yt
N+1,t}t∈fN+1.O .

• For step 6, S1 outputs the view of A1.
P1’s partial output only consists of the view of the adversary A1. �roughout the execution, A1 only receives
C̃GC.Y from the simulator S1. Speci�cally, S1 programs C̃GC.Y such that De(d, C̃GC.Y) = y where y is the
real output. �erefore, P1’s partial output in the real-world execution are indistinguishable from P1’s partial
output in the ideal-world execution.

– For i ∈ [2, N], the simulator Si can be constructed in a similar way as S1, except that in step 2, Si needs to
sample coin

$← {0, 1}λ and sends coin to Ai on behalf of P1. �e proof of indistinguishability is also similar, so
we omit the details here.

Each partial output in the ideal-world execution is indistinguishable from the corresponding partial output in
the real-world execution. According to the security de�nition, the protocol Πsemi depicted in Fig. 3 is secure in the
presence of N + 1 semi-honest and independent adversaries.

Claim. �e protocolΠsemi depicted in Fig. 3 is secure in the presence of a malicious adversary corrupting the server.

Proof. In this case, we construct a simulator S by S := Sim(A). Whenever A aborts, S instructs the trusted third
party to send ⊥ to all the parties {Pi}i∈[N]. For the case where A does not abort, the simulation is done in the
following way:

– For steps 1-2, S acts as the honest parties. S parses CompCirc = (N, {fs}s∈[N], link, I,O) and sets f0 :=
(|I|, |I|, 0, ∅, ∅, ∅) and fN+1 := (|O|, |O|, 0, ∅, ∅, ∅).

– For steps 3(a)-3(f), S invokes the obliviousness simulator for the composite garbling scheme to generate the fake
garbled material C̃GC.F and the fake garbled input C̃GC.X , that is, (C̃GC.F , C̃GC.X)← SimCGC(1

λ,CompCirc).
– For step 3(g), S parses the fake garbled material C̃GC.F = {F̃s}s∈[N] ∪ {L̃s,t}s∈[0,N],t∈fs.O . For i ∈ [N], S

sends {F̃i} ∪ {L̃i,t}t∈fi.O to the adversary A on behalf of Pi.
– For step 4, S parses the fake garbled input C̃GC.X = {X̃0,t}t∈f0.I . For i ∈ [N], S sends {X̃0,(i−1)·`+k}k∈[`] to

the adversary A on behalf of Pi.
– For step 5, for i ∈ [N], S receives ĈGC.Y i from the adversary A on behalf of Pi.
– For step 6, S computes C̃GC.Y := CGCGC.Ev(CompCirc, C̃GC.F , C̃GC.X) by itself and it compares C̃GC.Y

with each of {C̃GC.Y i}i∈[N]. When the trusted third party asks which of the parties should receive the output,
S instructs the trusted third party to send the output to the parties who receive C̃GC.Y i = C̃GC.Y and to send
⊥ to the parties who receive C̃GC.Y i 6= C̃GC.Y . At the end, S outputs the entire view of A.

We prove the indistinguishability through a sequence of hybrid worlds.

– Hyb0. �is is the real-world.

26

– Hyb1. �is hybrid world is the same as Hyb0, except that in Hyb1, the simulator S uses true randomness to
execute the garbling algorithms. S then sends the garbled material to A on behalf of the parties. When PRG is
a secure pseudorandom number generator, its output is indistinguishable from true randomness, and the views
of A in Hyb0 and in Hyb1 are indistinguishable.

– Hyb2. �is hybrid world is the same as Hyb1, except that in Hyb2, the simulator S checks the garbled output
sent by the adversary As in the following way: S execute the evaluation algorithm CGCGC.Ev to obtain the
garbled output, and it compares the generated garbled output with the garbled outputs received by the parties.
For i ∈ [N], if the party Pi receives an inconsistent garbled output, S instructs the trusted third party to send
⊥ to Pi; otherwise, S instructs the trusted third party to send the actual output y to Pi. When CGCGC has
authenticity, it is hard for the adversary A to forge a valid garbled output. �erefore, the outputs of the honest
parties in the Hyb1 and in Hyb2 are indistinguishable.

– Hyb3. �is hybrid world is the same as Hyb2, except that in Hyb3, the simulator S uses the obliviousness
simulator for CGCGC (constructed in the proof of �m. 2) to generate a fake copy of the garbled circuit. S parses
the fake garbled circuit to obtain the garbled material, link materials and garbled input, and in step 3(g) and step
4(c), S sends the fake garbled circuit to the adversaryA on behalf of the parties. When CGCGC has obliviousness,
the fake garbled circuit is indistinguishable from a genuine one, and the views of A in Hyb2 and in Hyb3 are
indistinguishable.

Note that, Hyb3 is the ideal-world. �e view of the adversary A and the output of the honest parties {Pi}i∈[N] in
the execution of Hyb3 are indistinguishable from the corresponding variables in the execution of Hyb0, so Server’s
partial output in the real-world execution are indistinguishable from Server’s partial output in the ideal-world execu-
tion. According to the security de�nition, the protocolΠsemi depicted in Fig. 3 is secure in the presence of a malicious
adversary corrupting the server.

According to Lemma. 1, we can conclude that Πsemi depicted in Fig. 3 is secure when the server Server is corrupted
by a malicious adversary, and the parties are corrupted by semi-honest and independent adversaries.

27

	Load-Balanced Server-Aided MPC in Heterogeneous Computing

