
More forging (and patching) of tropical signatures

Daniel R. L. Brown∗ and Chris Monico†

December 21, 2023

Abstract

Panny [3] described how to forge the “tropical signatures” proposed by Chen, Grig-

oriev and Shpilrain [1]. (These signatures are loosely related to the NP-complete

problem of factoring tropical polynomials).

We describe more methods to forge these tropical signatures. We also describe

some patches that thwart all but one of these forgery methods (which we summarize

as re-hashing an honest signature).

1 Introduction

In [1], a cryptographic signature scheme is proposed using polynomials over a tropical semir-
ing.

We review the proposed signature scheme. Next, we describe several methods to forge
these signatures. After this, we propose some patches that thwart all but one of these forgery
methods.

2 Tropical signatures: review

Tropical signatures were proposed in [1]. We review this proposal, in two steps, and then
discuss a generalization (which also is affected by some of our forgeries).

2.1 Tropical polynomials

Tropical signatures use tropical polynomials, which we review briefly.
Consider the semiring (S,⊕,⊗) = (Z ∪ {∞},min,+). Since integer multiplication plays

no role in S, for s ∈ S and n ∈ N, we denote

sn = s⊗s⊗. . .⊗s︸ ︷︷ ︸
n copies

= s+ s+ · · ·+ s︸ ︷︷ ︸
n copies

= ns.

∗BlackBerry, danibrown@blackberry.com
†Texas Tech, c.monico@ttu.edu

1



Some authors have preferred the notation s⊗n or s(n), but since no confusion will arise here
we will use the simpler notation sn as above.

The polynomial semiring S[t] is the set of formal sums

S[t] =

{
n⊕

j=0

sj⊗tj : n ≥ 0, s0, . . . , sn ∈ S

}
.

It can be shown that S[t] is also a commutative semiring.
For a polynomial f(t) = f0 ⊕ f1⊗t ⊕ f2⊗t2 ⊕ . . . ⊕ fm⊗tm, we define deg f to be

the greatest integer n ≤ m for which fn ̸= ∞, if such an n exists.

2.2 A signature scheme

The signature scheme proposed in [1] is as follows.

1. Alice chooses polynomials X, Y ∈ S[t], each with coefficients in [0, r] and degree d. She
computes M = X ⊗ Y and publishes her public key (r, d,M).

2. To sign a message, Alice uses a standard hash function to produce a corresponding
hash1 H ∈ S[t], with coefficients in [0, r] and degree d.

3. Alice chooses two random polynomials U, V ∈ S[t] with coefficients in [0, r] and degree
d. Set N = U ⊗ V . The signature for this message is the 4-tuple(

H, H⊗X⊗U, H⊗Y ⊗V, N
)
.

One verifies Alice’s signature (H,A,B,N) as follows.

(V1) Verify that H has degree d and coefficients in [0, r], and that H is indeed the correct
hash of the message.

(V2) Verify that A and B each have degree 3d and coefficients in [0, 3r].

(V3) Verify that N has degree 2d and coefficients in [0, 2r].

(V4) Verify that neither A nor B is a constant tropical multiple of H ⊗M or H ⊗N .

(V5) Verify that A⊗B = H ⊗H ⊗M ⊗N .

2.3 Generalization of the signatures

One of our forgery methods is general enough to apply to a generalization of tropical signa-
tures. The generalized signature is described below.

Replace the set of tropical polynomials by some other set. Replace multiplication of
tropical polynomial by some other operation, also written as ⊗. Use a similar signing and
verification process.

1In [1], variable P is used for the hash, but we opt to use H.

2



If ⊗ is commutative and associative2, then condition (V5) still holds:

A⊗B = (H ⊗X ⊗ U)⊗ (H ⊗ Y ⊗ V )

= (H ⊗H)⊗ (X ⊗ Y )⊗ (U ⊗ V )

= H ⊗H ⊗M ⊗N.

Further details are needed to fully specify an instance of this generalization:

• How the signer samples X, Y , U and V (secretly).

• How the signer and verifier compute H as a hash of a message.

• How the verifier does membership tests (V1), (V2), and (V3).

• How the verifier does the divisibility test (V4).

Security depends on all these details. Cryptographers are safer to presume that most prac-
tical instances of this generalization are insecure, until proven otherwise.

If a previously published signature scheme was an instance of this generalization, then
the generalization should be named after this. If not, then the generalization might merit a
name, with credit to [1]. Because the signer generates a factored nonce N = U ⊗V , it seems
reasonable to call this generalization a factored nonce signature.

3 Tropical polynomial division

In this section, we present some definitions, notations, and results which will be used in later
sections.

We define an order ≼ on S by x ≼ y if x⊕ y = x. This extends to a partial order on S[t]
by a ≼ b if deg a = deg b and a ⊕ b = a. Note that a ≼ b if and only if deg a = deg b and
every coefficient of a is less or equal the corresponding coefficient of b.

This partial order respects both operations of S[t]: if a ≼ b and c ∈ S[t], then(
a⊕ c

)
⊕
(
b⊕ c

)
= a⊕ c,

so a⊕ c ≼ b⊕ c. Similarly, if a ≼ b then a⊗ c ≼ b⊗ c.
For polynomials a, b ∈ S[t], we define

b
∣∣ a, if a = b⊗ q, for some q ∈ S[t].

The following is described in [2, Section 6], but we provide a complete self-contained argument
here.

Proposition 3.1 (Exact division of polynomials). Suppose that a, b ∈ S[t]. Let m = deg(b)
and n = deg(a)−m. For 0 ≤ j ≤ n let

qj = max
0≤i≤m

{ai+j − bi},

and q(t) = q0 ⊕ q1⊗t ⊕ . . . ⊕ qn⊗tn. Then

2More generally, it suffices that ⊗ is medial, instead of being commutative and associative.

3



1. a ≼ b⊗ q.

2. If d ∈ S[t] with degree n and a ≼ b⊗ d, then b⊗ q ≼ b⊗ d.

3. If b
∣∣ a, then a = b⊗ q.

Proof. Let a, b, q,m, n be as above, and let p = b⊗ q. Then for 0 ≤ k ≤ m+ n we have that
pk = min

i+j=k
{bi + qj}, Let i0 ∈ {0, 1, . . . ,m} and j0 ∈ {0, 1, . . . , n}. Then

ai0+j0 − bi0 ≤ max
0≤i≤m

{ai+j0 − bi} = qj0 ,

and so ai0+j0 ≤ bi0 + qj0 . In particular, for each 0 ≤ k ≤ m+ n, this holds for all i0, j0 with
i0 + j0 = k, which implies that ak ≤ pk for all such k. Therefore a ≼ p.

We prove Part 2 by contrapositive. Suppose d ∈ S[t] has degree n and b⊗ q ̸≼ b⊗ d. If
q ≼ d we would have b ⊗ q ≼ b ⊗ d, so we must have q ̸≼ d. It follows that qj0 > dj0 for at
least one j0 ∈ {0, 1, . . . , n}. By definition of qj0 there exists i0 ∈ {0, 1, . . . ,m} for which

dj0 < qj0 = ai0+j0 − bi0 .

Letting k0 = i0 + j0 we have that ak0 > bi0 + dj0 ≥ min
i+j=k0

{bi + dj}, so that a ̸≼ b⊗ d.

Now suppose that b
∣∣ a. Then there exists d ∈ S[t] with deg(d) = n 3 such that a = b⊗ d.

By Parts 1 and 2 we have that a ≼ b⊗ q ≼ b⊗ d = a, and hence b⊗ q = a.

The following result is obvious, but nevertheless worth making explicit.

Proposition 3.2. Let f, g ∈ S[t]. If the coefficients of f lie in [0, a] and the coefficients of
g lie in [0, b], then the coefficients of f ⊗ g lie in [0, a+ b].

4 Forgery methods

This section presents several methods to forge tropical signatures, including the forgery from
[1] that is thwarted by step (V4) from [1].

4.1 Swapping symbols Y and U

The following attack was already presented in [1], and was already thwarted by counter-
measure (V4) from [1]. We review this attack, because we found a very similar attack, not
thwarted by any steps from [1].

In short, this forger does the exact same steps as the signer, except that the forger swaps
the symbols Y and U in the computation of the signature:

(H, H⊗X⊗Y, H⊗U⊗V, U⊗V ).

3A bit of care and detail in the definitions is required to get this, but if we define polynomials and degree
correctly, this should be true.

4



The forger does not know the values of symbolsX or Y , but the forger does knowX⊗Y = M .
Because symbols X and Y have now been put together, the forger can compute the actual
values of the formula above as:

(H, H⊗M, H⊗U⊗V, U⊗V ).

Verification checks (V1), (V2) and (V3) will hold, because the four variables X, Y , U
and V are sampled from the same subset. Verification check (V5) will hold, because ⊗ is
commutative and associative.

Verification check (V4) will stop this forgery. Indeed, the purpose of (V4) is to thwart
this forgery. Notably:

• This forger is a universal forger. The forger can sign any message you want it to.

• This forger is a key-only forger, also known as no-message. The forger can produce a
forgery given only the public-key. The forger does not need the signer’s help by way
of generating honest signatures for the forger to exploit.

• This forgery should work against any suitable generalization of tropical signatures,
provided it has ⊗ commutative and associative, and it lacks a suitable generalization
of verification check (V4). In other words, this forgery likely breaks most forms of
factored nonce signatures.

• The forger does not need to divide any tropical polynomials.

• The countermeasure (V4) to this attack requires the verifier to implement some form
of divisibility test, which is specific to the choice of ⊗. By contrast to the forger does
not need to divide. This makes the forger more generic and generally faster than the
signer.

4.2 Swapping symbols Y and H

A forger similar to the previous works by swapping symbols Y and H. The resulting forgery
is:

(H, M⊗U, H⊗H⊗V, U⊗V ),

where, once again, the symbol Y has been put together with symbol X, to give the public
key M , which the forger knows.

This forger is not prevented by any of the verification steps (V1), ..., (V5) from [1]. Like
the previous method, the forger does not need to divide, and the forger can be applied to
any generalization (a factored nonce signature) with ⊗ commutative and associative.

Though this forger is quite similar to the previous one, it seems to have been overlooked
in [1].

5



4.3 Factoring the hash

We present here a method which can be used to forge signatures for around 2% of all possible
hash values H(t), with the parameter sizes d = 150 and r = 127. This success rate is already
non-negligible, but can sometimes become even more serious. In many real world settings,
if one wishes to forge a signature for a specific message, it may be easy to produce a few
hundred message variants conveying the same essential information but having different hash
values. One of the variant messages is likely to have a hash susceptible to a forgery.

Suppose that (r, d,M) is a public key of the form specified in the introduction. Let
H ∈ S[t] with degH = d, coefficients in [0, r], and having a degree 1 divisor L whose
coefficients are in [0, r]. Then H = L⊗Q for some Q which may be found using Proposition
3.1. Let ℓ be the maximum finite coefficient of L and let q be the maximum finite coefficient
of Q. Let U ∈ S[t] with degU = d − 1 and coefficients in [0, r − ℓ]. Let V ∈ S[t] with
deg V = d+ 1 and coefficients in [0, r − q]. Then with N = U ⊗ V , we find that

(H, L⊗M ⊗ U, Q⊗H ⊗ V, N),

is a valid signature. Certainly the degrees are correct and the product condition is met.
Moreover, it is highly likely that neither L⊗M ⊗U nor Q⊗H ⊗ V is a constant (tropical)
multiple of H⊗M or H⊗N . The coefficients of each component are all in the proper range,
by Proposition 3.2.

For parameter sizes in the range of interest, d = 150 and r = 127, experimental evidence
suggests that around 2% of all hash polynomials H have a linear divisor L with integer
coefficients in the interval [0, r]. Of course, one may also consider many such H polynomials
which are constructed with such a divisor.

4.4 Factoring the public key

If an attacker can find a proper divisor D of M with coefficients in [0, r], then she can forge
a signature as follows. She uses Proposition 3.1 to find Q such that M = D⊗Q, and chooses
a hash H ∈ S[t] with degH = d and coefficients in [0, r]. Let q be the maximum finite
coefficient of Q. She chooses U ∈ S[t] with coefficients in [0, r] and degU = degQ. She also
chooses V ∈ S[t] with coefficients in [0, r − q] and deg V = degD. Then the 4-tuple

(H, H ⊗D ⊗ U, H ⊗Q⊗ V, U ⊗ V ),

is a valid signature. A decomposition M = D ⊗ Q is effectively usable by an eavesdropper
in a way similar to how the legitimate signer uses M = X ⊗ Y .

To find such a proper divisor D of M , one may simply proceed by brute force. The lack
of unique factorization in S[t] is pronounced, and this is non-negligible. For 300 randomly
chosen pairs X, Y ∈ S[t] with coefficients in [0, 127] and degX = deg Y = 150, we found
that X ⊗ Y had a degree 1 divisor with coefficients in [0, r] in 143 of these 300 cases.

The main point here is that it is not necessary for an attacker to obtain the particular
factorization M = X⊗Y ; there are generally many possible non-trivial factorizations, many
of which will allow her to forge a signature.

6



4.5 Panny’s forgeries

While this paper was under preparation, Lorenz Panny [3] independently proposed several
method for forging tropical signatures.

4.5.1 Tweaking the symbol swap forgery

Panny’s first forgery method can be considered a tweak of the forgery that swaps Y and U .
Recall that this symbol swap forgery computes A = H ⊗M , B = H ⊗N . But this forgery
cannot be directly used as-is to form a signature because the protocol checks at (V4) whether
this is the case. However, Panny observed that the non-cancellative multiplication⊗makes it
fairly easy to slightly vary the coefficients of A and B, obtaining A′, B′ which are not constant
tropical multiples of H⊗M and H⊗N respectively, yet still satisfy A′⊗B′ = H2⊗M ⊗N .

4.5.2 Double dividing

Indeed, an additional way this could be done is to set A′ to be the quotient of H2 ⊗M ⊗N
by B, as given by Proposition 3.1; similarly set B′ to be the quotient of H2 ⊗M ⊗N by A′.

4.5.3 Factoring H ⊗M

Panny’s second forgery method is essentially to factor H ⊗M . This works similarly to our
attacks that factor H or that factor M . Search for a hash polynomial H for which H ⊗M
has a proper divisor that can be quickly found. In practice, this is not hard to do - it is, in
fact, easier than what we suggested in the previous sections. Assuming this to be the case,
apply Proposition 3.1 to write H ⊗M = D1⊗R1, with degD1 < degR1. Construct a nonce
N for which H ⊗ N = D2 ⊗ R2 for some D2, R2 ∈ S[t] with degD2 = degD1, and with
D2, R2 having coefficients in appropriate ranges. It follows that (H,D1 ⊗R2, D2 ⊗R1, N) is
a valid signature.

4.6 Re-hashing an honest signature

Suppose that an attacker knows the public key (r, d,M) and a valid signature(
H, H⊗X⊗U, H⊗Y ⊗V, N

)
.

with H,X, Y, U, V,N = U ⊗ V as in Section 1. Given the division technique described in
Section 3, if the divisions of A and B by H yielded X⊗U and Y ⊗V respectively, it would be
easy to forge a signature for an arbitrary hash value H̃. Experiments suggest that this exact
division occurs at both A and B approximately 0.5% of the time. One can therefore expect
that, after seeing approximately 200 signatures, the forger can then forge any message.

Typically, given a single signature only, the quotients obtained are strictly less thanX⊗U
and Y ⊗ V respectively. So, approximately 99.5% of the time, given only a single signature,
this basic forgery method fails. Nevertheless, the basic method above is the starting point
for a more sophisticated single-signature attack.

7



Suppose the attacker can find QA, QB ∈ S[t] each with degree 2d, with coefficients in
[0, 2r], satisfying QA ⊗ QB = M ⊗ N , and neither QA nor QB being a constant tropical
multiple of M or N ; such a pair certainly exists since QA = X ⊗ U and QB = Y ⊗ V is one
such pair. Then for an arbitrary H̃ ∈ S[t] with degree d and coefficients in [0, r], it’s not
hard to see that the 4-tuple (

H̃, H̃ ⊗QA, H̃ ⊗QB, N
)

is also a valid signature for the public key (r, d,M).
An attacker may attempt find such polynomials QA, QB as follows. For f ∈ S[t] and

j ≤ deg f , we let (f)j denote the coefficient of tj. Set C = M ⊗N , and set qA, qB to be the
minimal quotients of A and B by H, as produced by Proposition 3.1. Then we have that
H ⊗ qA = A, H ⊗ qB = B, and qA ≼ X ⊗U and qB ≼ Y ⊗ V . Therefore qA ⊗ qB ≼ C. If we
had qA = X ⊗ U and qB = Y ⊗ V , we would be done. However, this occurs quite rarely for
parameter values in the range of interest. The general situation that arises is qA ≺ X ⊗ U
and qB ≺ Y ⊗ V . The idea is simply to increase coefficients of qA and/or qB, as necessary,
until qA ⊗ qB = C.

For each i, j ∈ {0, 1, . . . , 2d}, set δij = Ci+j − (qA)i − (qB)j. Repeat the following, while
qA ⊗ qB ≺ C. Let k be the least non-negative integer for which qA ⊗ qB and C disagree in
coefficient k. For each i+ j = k, if δij > 0 then first try increasing (qA)i by δij. Doing so, if
we still have qA ⊗ qB ≼ C, then keep this change of qA. Otherwise, leave qA unchanged and
try increasing (qB)j by δij. If we still have qA ⊗ qB ≼ C, then keep this change of qB; if not,
report a failure.

We randomly generated 10000 public keys with the parameters d = 150 and r = 127
suggested in [1]. For each public key, we generated one valid signature randomly and applied
the technique above to create a forged signature for a randomly chosen hash. In these 10000
attempts, 9965 resulted in successful forgeries which passed the verification tests (V1)–(V5).

5 Patches to tropical signatures

This section describes some patches to the original tropical signatures. Each patch was
devised narrowly to thwart one of our forgery attacks. So, the patches are not part of an
effort to save tropical signatures. Rather, the patches save us from overstating the reach
of our forgery results. We have not yet found a patch against our re-hashing the honest
signature. Neither our attacks nor our patches should be expected withstand further patches
or attacks (respectively).

5.1 A new verification check of divisibility

One patch is to apply another verification test, in addition to those from [1], which were
enumerated in Section 2.2.

(V6) Verify that H divides both A and B, and that M divides neither A nor B, and that
N divides neither A nor B.

8



This condition may be verified using Proposition 3.1. This patch has the following impacts
on the previously discussed forgery methods.

• Swapping symbols Y and U , from Section 4.1: Those forgeries have component A
divisible by M , and are therefore thwarted by (V6).

• Swapping symbols Y and H, from Section 4.2: Those forgeries also have component A
divisible by M , and are therefore thwarted by (V6).

• Factoring the hash, from Section 4.3: Those forgeries have component A which is
divisible by M ; also, component A is typically not divisible by H. Thus, these are also
thwarted by (V6).

• Tweaking the symbol swap, from Section 4.5.1: Varying the coefficients of H ⊗ M
typically yields a result which is not divisible by H. These are therefore thwarted by
(V6).

• Double dividing, from Section 4.5.2: This is just a very special case of the previous,
and so it fails to pass (V6) for the same reason(s).

5.2 Leading and trailing zeros

A second patch is to choose the private key values X and Y such that the first and last
coefficients of X and Y are zero. We have that the first and last coefficients of M = X ⊗ Y
are also zero. It’s easy to see in that case that if D is any divisor of M with coefficients in
[0, r], then D must also have first and last coefficients of zero. Thus, the only possible degree
1 divisor would be D(t) = 0 ⊕ 0⊗t, and it seems (empirically) that this will not divide M
in the generic case.

This patch seems to thwart, on its own, the following attacks.

• Factoring the public key, from Section 4.4: By construction, H will divide the second
and third signature components, and it is highly unlikely that either are divisible by M
or N . So (V6) alone does not defeat this forgery technique. However, if X and Y have
first and last coefficient of zero, it seems to be difficult to find a divisor of M = X⊗Y ;
at least, a brute force approach enumerating possible divisors of small degree with first
and last coefficients zero seems to not generally find such a divisor.

This patch when combined with (V6) patch seems to thwart Panny’s attacks.

• Factoring H ⊗M , from Section 4.5.3: We used the code made available by [3], adding
condition (V6) to the verification code. For 1000 randomly generated keys, 358 of
the forged signatures still passed. So the additional verification test (V6) alone is
insufficient to defend against Panny’s attack. However, when we also imposed the
requirement that the first and last coefficients of both X and Y be zero, and repeated
the experiment, none of the 1000 forged signatures were accepted as valid. Specifically,
all of the resulting forgeries failed to have second and third components divisible by
H. It is entirely possible, though, that this technique might be modified to still work
in the present situation.

9



5.3 Re-hashing honest signature survives

The technique presented in Section 4.6 survives, even with the additional verification test
(V6) and X, Y chosen with first and last coefficients of zero. By construction, the second and
third components of the forged signature are each divisible by the first component. Nothing
in the construction seems to make it particularly likely that the second or third components
will be divisible by M or N . Finally, the construction we suggest for obtaining QA and QB

seems to be unaffected when X, Y are chosen to have first and last coefficients of zero.
We randomly generated 10000 public keys, from X and Y having first and last coefficients

of zero, with the suggested parameter values [1] of d = 150 and r = 127. For each public
key, we generated one valid signature. For each of these, we choose a random hash value and
employed the technique in Section 4.6 to create a forged signature. Of these 10000 exper-
iments, we were able to produce 9963 forged signatures which passed the verification tests,
including the additional verification test suggested in Section 5.1. This forgery technique
therefore appears to be almost completely unaffected by the extra verification test (V6) and
the restricted choices of X and Y .

6 Conclusion

We found several attacks on tropical signatures. We also presented some straightforward
countermeasures for preventing some of these - namely, the extra verification condition (V6)
and restricting the private polynomials X, Y to have first and last coefficients zero. While
these countermeasures also apparently thwart the techniques from [3], they do not prevent
our last forgery technique from Section 4.6. Indeed, we have not found any way to prevent
that type of forgery.

References

[1] Jiale Chen, Dima Grigoriev, and Vladimir Shpilrain. Tropical cryptography III: digital
signatures. Cryptology ePrint Archive, Paper 2023/1475, 2023. https://eprint.iacr.
org/2023/1475.

[2] Ki Hang Kim and Fred W. Roush. Factorization of polynomials in one variable over the
tropical semiring, 2005. https://arxiv.org/abs/math/0501167.

[3] Lorenz Panny. Forging tropical signatures. Cryptology ePrint Archive, Paper 2023/1748,
2023. https://eprint.iacr.org/2023/1748.

10

https://eprint.iacr.org/2023/1475
https://eprint.iacr.org/2023/1475
https://arxiv.org/abs/math/0501167
https://eprint.iacr.org/2023/1748

	Introduction
	Tropical signatures: review
	Tropical polynomials
	A signature scheme
	Generalization of the signatures

	Tropical polynomial division
	Forgery methods
	Swapping symbols Y and U
	Swapping symbols Y and H
	Factoring the hash
	Factoring the public key
	Panny's forgeries
	Tweaking the symbol swap forgery
	Double dividing
	Factoring H M

	Re-hashing an honest signature

	Patches to tropical signatures
	A new verification check of divisibility
	Leading and trailing zeros
	Re-hashing honest signature survives

	Conclusion

