
1

Beyond Security: Achieving Fairness in
Mailmen-Assisted Timed Data Delivery

Shiyu Li, Yuan Zhang*, Yaqing Song, Hongbo Liu, Nan Cheng, Dahai Tao, Hongwei Li, and Kan Yang

Abstract—Timed data delivery is a critical service for time-
sensitive applications that allows a sender to deliver data to a
recipient, but only be accessible at a specific future time. This
service is typically accomplished by employing a set of mailmen to
complete the delivery mission. While this approach is commonly
used, it is vulnerable to attacks from realistic adversaries, such
as a greedy sender (who accesses the delivery service without
paying the service charge) and malicious mailmen (who release
the data prematurely without being detected). Although some
research works have been done to address these adversaries,
most of them fail to achieve fairness.

In this paper, we formally define the fairness requirement for
mailmen-assisted timed data delivery and propose a practical
scheme, dubbed DataUber, to achieve fairness. DataUber ensures
that honest mailmen receive the service charge, lazy mailmen
do not receive the service charge, and malicious mailmen are
punished. Specifically, DataUber consists of two key techniques:
1) a new cryptographic primitive, i.e., Oblivious and Verifiable
Threshold Secret Sharing (OVTSS), enabling a dealer to dis-
tribute a secret among multiple participants in a threshold and
verifiable way without knowing any one of the shares, and 2) a
smart-contract-based complaint mechanism, allowing anyone to
become a reporter to complain about a mailman’s misbehavior to
a smart contract and receive a reward. Furthermore, we formally
prove the security of DataUber and demonstrate its practicality
through a prototype implementation.

Index Terms—Timed data delivery, complaint-supported

I. INTRODUCTION

T IME-sensitive applications (e.g., sealed-bid auctions,
electronic voting, and digital time capsules) have become

increasingly prevalent in digital worlds [1]–[3]. In these ap-
plications, a sender needs to deliver some data in a timed-
release manner such that the recipient can access the data
content only after a duration specified by the sender. For
instance, in a sealed-bid auction, bidders deliver their bids to
an auctioneer, and to ensure fairness, the bids can be “opened”
by the auctioneer only after the bidding closes [4], [5].

Existing works for timed data delivery can be broadly
categorized into two types: the time-locked puzzles (TLPs)-
based ones and mailman-assisted ones. TLP-based schemes
adopt an encrypt-then-solve paradigm: the sender generates a
cryptographic puzzle, in which a decryption key is embedded

S. Li, Y. Zhang, Y. Song, H. Liu, D. Tao, and H. Li are
with the School of Computer Science and Engineering, University
of Electronic Science and Technology of China, 611731, Chengdu,
China. (email: Shai Li@yeah.net; ZY LoYe@126.com; YaqingS@163.com;
hongbo.liu@uestc.edu.cn; atfwuswy@163.com; hongweili@uestc.edu.cn)

N. Cheng is with State Key Lab. of ISN and School of Telecommu-
nications Engineering, Xidian University, 710071, Xi’an, China. (e-mail:
dr.nan.cheng@ieee.org)

K. Yang is with the Department of Computer Science, The University of
Memphis, TN, 38152, USA. (e-mail: kan.yang@memphis.edu)

as the solution; the sender encrypts the data using the key and
sends the ciphertext along with the puzzle to the recipient;
the recipient recovers the key by solving the puzzle and
further decrypts the ciphertext [6]–[8]. TLP-based schemes
do not introduce additional entities and are very efficient
on the sender side (since creating a cryptographic puzzle is
easy). However, these schemes are computationally expensive
for recipients due to the continuous computations required to
search for the puzzle’s solution.

Another line of research employs a set of mailmen to assist
the sender in delivering the data in a threshold manner [9]–
[11]. These schemes essentially share the same encrypt-then-
release paradigm: the sender encrypts the data and sends the
ciphertext to the target recipient, employs a set of mailmen
by compensating them with a service charge and distributes
the decryption key among the mailmen in a threshold way;
at a prescribed (future) time, the mailmen jointly release
the decryption key, allowing the recipient to recover the
data content [12]. However, these schemes are vulnerable to
misbehaved mailmen. Specifically, a lazy mailman may be
absent in the delivery mission, while a malicious mailman
might collude with the recipient to prematurely leak his share
for personal gain. Worse still, both the lazy and malicious
mailman would always receive the service charge, regardless
of whether the data is delivered on time1.

In order to resist misbehaved mailmen, a promising solution
is to leverage a smart-contract-based complaint mechanism,
where a smart contract is utilized to verify the trustworthiness
of the mailmen [11], [13]. To identify malicious mailmen,
before the prescribed delivery time arrives, anyone (including
the sender, the receiver, the mailmen, and the general public)
can act as a reporter and complain that some mailman has
prematurely leaked the share by submitting a witness to the
smart contract. If the complaint is valid, the reporter can
receive a reward, and the sender can get compensation (both
from the misbehaved mailman). With this mechanism, the
smart contract can continuously detect whether each mailman
misbehaves from beginning to end in a delivery mission. More-
over, to distinguish the honest mailmen from lazy ones, the
smart contract checks whether each share is correctly released.
Consequently, only the mailman who honestly follows the
prescribed scheme would receive the service charge.

Nevertheless, new challenges arise due to the adoption
of the complaint mechanism. Notably, a greedy sender may
maliciously complain against innocent mailmen for profits.

1This issue cannot be trivially addressed by utilizing the “pay-on-delivery”
paradigm for transferring the service charge, since everyone can maliciously
send data to the recipient, and the latter has to pay for each delivery mission.

2

Additionally, when a reporter submits a complaint transaction
to the smart contract regarding a premature leakage, there is a
potential vulnerability to blockchain adversaries who “copy”
the transaction and execute the “front-running” attack to steal
the rewards [14]–[16].

Putting things together. As such, in addition to achieving
timed data delivery, a secure and practical scheme should
provide the following guarantees, which we subsume as a
fundamental property of fairness:

- (honest mailman fairness) an honest mailman, who faith-
fully adheres to the prescribed scheme, would always
receive the designated service charge

- (lazy mailman fairness) a lazy mailman, who aborts the
delivery mission, would not receive the service charge,

- (malicious mailman fairness) a malicious mailman, who
prematurely leaks the share, would be penalized,

- (reporter fairness) a reporter, who submits the first valid
complaint of a leaked share, would receive the reward.

Despite the significance of fairness, it is not well investigated
in existing schemes. In particular, some existing schemes
assume that the mailmen will always honestly complete the
delivery mission, making fairness trivial to achieve [9], [10],
[17], [18]; others only provide weak fairness and are vulnera-
ble to sophisticated attacks [11], [13] (which will be detailed
in Section II and Section IV).

In this paper, we propose a complaint-supported timed data
delivery scheme dubbed DataUber to achieve fairness. Particu-
larly, we design a smart-contract-based complaint mechanism
to verify the trustworthiness of the mailmen. With this mech-
anism, if a mailman prematurely leaks a share, anyone can
complain to a smart contract, and the misbehaved mailman
would be penalized; if a mailman honestly completes the data
delivery mission, it would always receive the service charge.

To prevent the greedy sender from breaking honest mailman
fairness, we propose a new cryptographic primitive dubbed
oblivious and verifiable threshold secret sharing (OVTSS).
With OVTSS, the sender can distribute a secret among the
mailmen in a threshold way without gaining any knowledge
about the shares, and each mailman can verify the validity of
the corresponding share. To prevent the blockchain adversary
from breaking reporter fairness, we utilize a prover-designated
zero-knowledge proof (ZKP) for the complaint mechanism.
This prover-designated ZKP ensures that when a reporter com-
plains about a premature leakage, adversaries cannot generate
a valid complaint transaction to steal the reporter’s rewards.

The contributions of this paper are summarized as follows.
Fairness formalization. We investigate the practical require-

ments of mailmen-assisted timed data delivery and formalize a
new notion, i.e. fairness, within a decentralized environment.
Through an analysis of existing schemes, we conclude that
none of them (or their slight extensions) achieve fairness in
the context of mailmen-assisted timed data delivery.

OVTSS. We propose a powerful cryptographic primitive
dubbed oblivious and verifiable threshold secret sharing
(OVTSS), which we believe is of independent interest. OVTSS
enables a dealer to share a secret among a set of participants
in a threshold manner, while the dealer will not gain any

information about each share, and each participant can verify
the validity of the designated share.

DataUber construction. We develop DataUber, a mailmen-
assisted timed data delivery scheme with fairness, upon
OVTSS and the smart-contract-based complaint mechanism.
We give a formal analysis showing that DataUber realizes fair
timed data delivery.

Prototype implementation. We implement a DataUber pro-
totype based on Goerli [19] and present a comprehensive
performance evaluation, which demonstrates its practicality.

Roadmap. The remainder of this paper is organized as
follows. We review the related works in Section II and state
the problem in Section III. We overview DataUber in Section
IV, define it in Section V and detail it in Section VI. We
present the security proofs in Section VII and present the
implementation details and evaluation results in Section VIII.
Finally, we draw the conclusions and outlook the future work
in Section IX.

II. RELATED WORK

The notion of timed data delivery was first proposed by May
in a technique report [24]. May observed that numerous time-
sensitive applications require the delivery of data in a timed-
release manner, leading to the proposition of an escrow-based
approach for implementing timed data delivery.

The first timed data delivery scheme was proposed by
Rivest et al. [25], wherein a time-locked puzzle (TLP) is
utilized in tandem with an encryption algorithm. Specifically,
the decryption key is embedded within the solution to the
puzzle, requiring the recipient to solve it in order to retrieve the
data content [26]. Subsequent works following this research
line focus on constructing puzzles using diverse cryptographic
primitives to improve efficiency (e.g., the time spent in gen-
erating a puzzle is independent of the solving time) or enrich
functionality (e.g., homomorphism) [27]–[29].

Nevertheless, the practicality of TLP-based schemes is
debatable due to the following reasons. On the one hand, it
is challenging for the sender to precisely control the delivery
time. Factors beyond their control, such as the solver’s com-
putational capabilities and equipment, significantly impact the
time required to solve the puzzle. This creates an opportunity
for the recipient to outsource the solving process to a powerful
server, allowing them to prematurely access the data content.
On the other hand, solving the puzzle necessitates continuous
computations, which not only introduces substantial costs but
also causes a waste of resources [30].

Another research line employs a mailman to facilitate data
delivery. Such a mailman-assisted paradigm originates from
May’s report [24], and prior schemes were proposed by
Rivest et al. [25] and Bellare et al. [31]. In these schemes,
a sender employs a mailman to release the decryption key
at the designated time for delivering the data. Subsequently,
various mailman-assisted schemes were proposed to enrich
functionality [12], [32]. Compared with TLP-based schemes,
mailman-assisted ones offer the advantage of achieving precise
delivery without computationally expensive operations.

However, mailman-assisted schemes suffer from critical
threats: once the mailman is breached, the data content would

3

Scheme
Fairness Honest mailman would

receive the service charge
Malicious mailman would

not receive the service charge
Reporter’s rewards

would not be stolen
Key-servers-based [10], [17], [18], [20]

YOSO-style [21], [22]
SWE-based [9], [23]
SilentDelivery [13]

NDHC19 [11] 2

DataUber

TABLE I: Comparison between DataUber and related works

be prematurely recovered, undermining the primary goal of
timed data delivery schemes. Furthermore, fairness poses an
inherent challenge in mailman-assisted schemes, with limited
investigation thus far. When a mailman honestly fulfills its de-
livery duties, it is entitled to receive a service charge, ensuring
fairness straightforwardly. If the mailman misbehaves, fairness
can be easily compromised. For example, if the mailman
colludes with the recipient to prematurely recover the data
content for profits and cheats the sender, it would still receive
the service charge, resulting in a breach of fairness.

To mitigate the above “single-point-of-failure” problem,
subsequent works, such as YOSO-style protocols [21], [22],
signature-based-witness-encryption (SWE)-based schemes [9],
[23], and key-servers-based schemes [10], [17], [18], [20],
essentially share a common paradigm: employing a committee
comprising multiple members instead of a single one to
reconstruct a secret in a threshold way. They can be utilized for
timed data delivery, however, none of them focus on fairness,
nor can they be straightforwardly extended to achieve fairness.
We analyze these schemes in terms of fairness below.

YOSO-style protocols [21], [22]. In a YOSO MPC protocol,
each party sends a single message and never speaks again in
the protocol execution. The key idea behind the YOSO-style
protocols is that when a party S speaks, S also conveys the
message that it needs to speak later to another party M (M
is typically a committee

−→
M = {M1,M2, ...} to avoid the

single-point-of-failure issue). Then,
−→
M takes the place of S

to speak at the future time.
Regarding functionality, YOSO-style protocols imply

mailmen-assisted timed data delivery, where S acts as a sender
and delegates

−→
M as a set of mailmen to deliver some message

at a future time. In terms of security, YOSO-style protocols
require correctness of the message sent into the future, i.e.,
the message delivered by

−→
M is the same as that transmitted

from S. With correctness, YOSO-style protocols can be easily
extended to achieve the honest mailman fairness defined in
our work. However, they do not focus on the obliviousness
of the transmission from S to

−→
M, i.e., S can know the

message obtained (and thereby will be published) by each
Mi. Therefore, applying YOSO-style protocols in timed data
delivery fails to achieve honest mailman fairness.

SWE-based schemes [9], [23]. In SWE-based schemes,
timed data delivery is achieved by a proposed t-out-of-n
signature-based witness encryption (SWE). SWE allows to
encrypt some data with respect to n mailmen’s public keys
and some message T (which can be the prescribed delivery

time), such that after t mailmen generate valid signatures on T
under their private keys, the data can be decrypted using these
signatures. For instance, in McFly [9], with the mailmen’s
public keys pk1, ..., pkn, for the data s to be delivered, a sender
splits s into ss1, ..., ssn in a (t, n)-threshold way such that
s =

∑t
j=1 ωijssij , where ωij is the corresponding Lagrange

coefficient, and generates the ciphertext c = {c0, c1, ..., cn} as
c0 = gr2, ci = (e(H(T), pki)r · gssiT ∀i ∈ [1, n], where r is
random, e : G1 ×G2 → GT is a bilinear map, g2 and gT are
generators of G2 and GT , respectively, and H : {0, 1}∗ → G1

is a hash function. To deliver s, each mailman generates
a BLS signature σi using the secret key ski. With t valid
signatures (say, σ1, ..., σt), m can be recovered by decrypting
c as m =

∏t
i=1 c

ωi
i /e(

∏t
j=1(σi)

ωi , c0).
This paradigm can be extended to ensure malicious mailman

fairness: when a mailman prematurely leaks a valid signature
on T , the leakage can be detected by verifying the signature.
However, it cannot be trivially tweaked to achieve honest
mailman fairness. Once a sender employs some mailmen for a
delivery with regard to the message T , anyone can generate a
ciphertext that can be decrypted by those mailmen’s signatures
on T using only the public keys. A greedy sender can enjoy the
delivery services provided by the mailmen employed by other
senders without paying. In this case, McFly fails to achieve
honest mailman fairness.

Key-servers-based schemes [10], [17], [18], [20]. In these
schemes, a set of mailmen jointly share a master secret key,
periodically derive a new one at each epoch, and publish their
shares at the end of the epoch. To deliver some data at a future
epoch, a sender encrypts the data using the corresponding
master public key, and the data will be delivered after the
mailmen publish the shares.

Due to the adoption of asymmetric encryption, key-servers-
based schemes cannot resist the greedy sender as SWE-based
schemes do. Moreover, to achieve malicious mailman fairness,
key-servers-based schemes implicitly require a verifiable dis-
tributed secret sharing to ensure that the benchmark used to
assess each mailman’s behavior corresponds to its share.

In the pursuit of fairness in timed data delivery, there are
also some works such as NDHC19 [11] and SilentDelivery
[13]. They leverage smart contracts to verify the trustwor-
thiness of the mailmen and transfer the service charge to
the honest ones. However, they are confronted with security
and fairness issues. Particularly, NDHC19 is vulnerable to

2In NDHC19 [11], one single mailman can obtain the decryption key of
the data to be delivered without being detected by the sender.

4

curious mailman: a single mailman can obtain the decryption
key by launching a “zero-attack” as elaborated in Section
IV. SilentDelivery fails to achieve honest mailman fairness
since a sender can refuse to pay a well-behaved mailman: the
mailmen’s identity information recorded in the smart contract
for payment is provided by the sender (please refer to [13]
for more details), the sender can upload an incomplete one to
avoid paying the service charge. Additionally, both of them
suffer from front-running attacks [14], [15], failing to achieve
reporter fairness.

A comparison between DataUber and the state-of-the-art
schemes is provided in Table I, where denotes the property
is not considered/achieved and denotes that it is achieved.

III. PROBLEM STATEMENT

A. Notation and basic theories

In this paper, r $← S denotes randomly choosing an element
r from a set S, i + + denotes i = i + 1, |r| denotes the bit
length of r, {xi}n1 denotes the set {x1, ..., xn}, and xi denotes
x to the power of i. Given two assertions A1 and A2, A1∧A2

is true iff they are both true.
Interactive algorithms. We use the notation below for an

interaction Π between two parties M1 and M2:

(out1, out2)← Π 〈M1(in1),M2(in2)〉 (pp),

where for each i ∈ {1, 2}, Mi takes its private input ini, has
access to some public parameter pp, and outputs outi. For ease
of readability, in case that the output of Mi is not explicitly
needed, we write ∗ instead of outi.

Blockchain and smart contract. Blockchain is an append-
only ledger. It records every change of participants’ funds by
a transaction [33], [34]. Every participant can generate and
verify the transaction data, but no entity can fully control it.
Smart contracts on the blockchain are public and transparent
protocols. Once a smart contract is deployed, it will execute
automatically as designed without a third party [35]. Due to
the space limitation, please refer to [36], [37] for more details.

Shamir’s secret sharing [38]. Shamir’s secret sharing proto-
col enables a dealer holding a secret s to share it among a set of
n participants {Mi}n1 . Any t participants can pool their shares
and reconstruct s, but no coalition of fewer than t participants
can get any information about s from their collective shares.
It is described as follows. Let Zq be a finite field that
contains the domain of possible secrets, and with |Zq| > n.
Let u1, ..., un ∈ Zq be distinct, nonzero elements. Given a
secret s ∈ Zq , the dealer chooses uniform a1, ..., at ∈ Zq
and defines the polynomial f(x) = s +

∑t−1
i=1 aix

i. The
share of Mi is ssi = f(ui) ∈ Zq . After collecting t
shares (say, ss1, ..., sst), the secret can be reconstructed as
s =

∑t−1
i=1 ssi ·

∏t
j=1,j 6=i

uj

uj−ui
.

Additively homomorphic encryption [39]. An encryption
algorithm is additively homomorphic if fixing a plaintext space
M, and a ciphertext space C, given two plaintexts m1,m2 ∈M
and their corresponding ciphertexts c1, c2 ∈ C under a public
key pk, c1 · c2 results in an encryption of m1 +m2.

Zero-knowledge proof (ZKP) [40]. In a ZKP for some
relation R, a prover P holds a secret x, and a verifier V holds

…

… … … …

…

…

Share

Service charge

Time of
delivery

Time of
distribution

Sender

Mailmen

Recover

Shares
distribution

Recipient

Arbitrary entity

Complaint

Before time
of delivery

Fig. 1: System model

w. P is able to convince V that R((w), (x)) = 1 while “no
knowledge” is yielded beyond the validity of the assertion.

Cryptographic commitment [41]. A party can “commit” to a
message by generating a commitment, while nothing about the
message is revealed. Later, the commitment can only “open”
as the committed message.

Discrete logarithm (DL) assumption [42]. Given a cyclic
group G and g, h

$← G, it is hard to compute d = logg h in
polynomial time.

B. System model

As depicted in Fig. 1, a typical complaint-supported
mailmen-assisted timed data delivery scheme involves four
entities:
• Sender. The sender publishes a timed data delivery mis-

sion via a smart contract, employs multiple mailmen for the
mission, and distributes a portion of the data to each mailman.
• Mailmen. All mailmen collectively deliver the data by

publishing their assigned shares through the smart contract at
the designated time.
• Recipient. The recipient can recover the data content using

the published shares when the delivery time has been reached.
• Smart contract. The smart contract assesses the behavior

of mailmen and transfers some service charge to them based
on its evaluation. The entities involved can complain about
any premature share leakage to it.

Communication model. We follow [43] to adopt a syn-
chronous communication model in this work, where the pro-
tocol is executed in rounds and all parties are always aware of
the current round. We make the following assumptions for the
time it takes for parties to communicate with each other. If a
party sends a message to another party (including the smart
contract) in round i, then it is received by that party at the
beginning of round i+ 1.

We outline a general workflow of complaint-supported
mailmen-assisted timed data delivery schemes as follows.

(1) Encryption. A sender S encrypts the data to be delivered
under a random key k using a symmetric-key encryption algo-
rithm, sends the ciphertext to some recipient(s) and publishes
a timed delivery mission via a smart contract.

(2) Distribution. S employs n mailmen, and each mailman
contributes a deposit to the smart contract. Then, S splits k
into multiple shares in a (t, n)-threshold way and distributes
these shares to the employed mailmen.

5

Greedy sender Mailman

1. 𝑘 → 𝑠𝑠! = 𝑓 𝑥! !"#
$

3. Complain using 𝑠𝑠!

2. 𝑠𝑠! 3. 𝑐𝑠𝑠!⋆
1. c𝑢!

2. Choose 𝑢!⋆ ≠ 𝑢! 	
compute 𝑐𝑠𝑠!⋆ using 𝑢!⋆

5. Complain using 𝑠𝑠!⋆
4. Obtain 𝑠𝑠!⋆

using 𝑐𝑠𝑠!⋆

Greedy sender Mailman
3. 𝑐𝑠𝑠!
2. c𝑢!

1. 𝑓 𝑥 = 𝑘
5. Complain using 𝑘

4. Always obtain
𝑠𝑠! = 𝑘

Greedy sender Mailman

① ② ③

Fig. 2: Vulnerabilities to greedy sender.

(3) Complaint. Prior to the delivery time, any entity can
complain to the smart contract about a premature share leak-
age. Then, the smart contract evaluates the complaint.

(4) Delivery. Once the designated delivery time arrives,
mailmen submit their shares to the smart contract to deliver
the data. The smart contract assesses mailmen’s behaviors
by verifying the submitted shares. After collecting at least t
shares, the recipient can reconstruct k and further recover the
data content.

C. Threat model and goals
We provide an intuitive discussion about threat model and

design goals here and formalize them in Section V-B.
Threat model. We consider all entities in DataUber to be

driven by the maximization of their own profits. Based on this
premise, the complaint-supported mailmen-assisted timed data
delivery is confronted with the following adversaries.
• Malicious recipient. A malicious recipient may compro-

mise certain mailmen to prematurely recover the data.
• Greedy sender. A greedy sender may maliciously accuse

an honest mailman of prematurely revealing the share to
benefit from the mailman’s deposit; the sender may attempt
to avoid paying the service charge to an honest mailman.
• Lazy mailman. A lazy mailman may be absent during a

delivery mission without being detected.
• Malicious mailman. A malicious mailman may intention-

ally leak their share ahead of schedule.
• Blockchain adversary. A blockchain adversary may moni-

tor the transactions sent to the smart contract, copy a reporter’s
complaint transaction and execute a front-running attack.

What we do not focus on. Regarding the threat model of
DataUber, we consider all mailmen to be rational. This as-
sumption seems to conflict with the general threat model under
the threshold paradigm, since the number of compromised
mailmen may exceed the threshold in order to maximize their
profits. However, this conflict can be eliminated by properly
setting the amount of the deposit and the service charge. The
orthogonal mechanisms, such as pricing mechanisms [44],
[45], can be integrated as plug-in tools. Therefore, instead of
going into the details of the case amount of the deposit and
service charge, we follow the general threshold cryptosystems
and restrict our attention to the fact that the number of
compromised mailmen will not exceed the threshold.

Under this threat model, we require the following properties
from a fair mailmen-assisted timed data delivery scheme.
• Time-locked confidentiality. As long as the number of

misbehaved mailmen is less than the threshold, the data
remains confidential to all entities (except the sender)
until the designated delivery time.

• Mailman fairness.
- Honest mailman fairness. A mailman should obtain the
service charge if it faithfully adheres to the scheme, even
in the presence of malicious complaints from the sender.
- Lazy mailman fairness. A mailman absent in a delivery
mission should not receive the service charge.
- Malicious mailman fairness. If a mailman prematurely
leaks its share and is complained against, it should be
punished.

• Reporter fairness. If a reporter complains about the pre-
mature leakage of a share, others cannot steal its rewards.

IV. TECHNICAL OVERVIEW OF DATAUBER

Plain scheme. Before presenting DataUber, we start with a
plain instantiation of the workflow described in Section III-B.

A sender S encrypts the data to be delivered under a random
key k using a symmetric-key encryption algorithm and sends
the ciphertext to the target receiver. S also publishes a timed-
delivery mission via a timed-publishing smart contract SC.
After receiving applications, S selects n mailmen (denoted by
{Mi}n1) out of all applicants. Each Mi pays some deposit to
SC. Then, S generates a polynomial f(x) = k + a1x+ · · ·+
at−1x

t−1, splits k into n shares as {ssi = f(i)}n1 using the
Shamir’s secret sharing protocol, and distributes ssi to Mi.
Finally, S uploads the hash values of the shares (denoted by
h(ssi),∀ i ∈ [1, n]) to SC as “benchmarks” for subsequent
verifications.

Before delivery, any entity can complain about some mail-
man’s premature leakage to SC by submitting a leaked share
(say, ssi). SC judges the complaint by comparing ssi with
h(ssi). If it is valid, some of the deposit paid by the misbe-
haved mailman is reassigned to the reporter as a reward and
the rest part is transferred to S as compensation.

Challenge-1: resistance against greedy sender. The above
plain scheme fails to achieve fairness since it is vulnerable to
a greedy sender: as shown in Fig. 2- 1©, S knows all shares, he
himself can complain about that Mi has prematurely leaked
ssi by submitting it to SC as witness3. Then, S can obtain any
mailman’s deposit even if the mailman is well-behaved. It may
appear that senders would not be motivated to launch such
an attack, as they would want to prevent the publication of
shares to maintain data confidentiality due to privacy reasons.
However, a greedy sender can exploit the delivery of non-
confidential data, such as public information or meaningless
messages. By doing so, the sender can complain against all
mailmen to get their deposits without privacy concerns.

3A smarter attacker would collude with another mailman or control a
blockchain account as a mailman to avoid detection.

6

② ③①

Curious mailmanSender 4. 𝑐𝑠𝑠$
2. c𝑢$

3. Compute 𝑐𝑠𝑠!
using c𝑢!

1. 𝑢! = 0

4. Obtain 𝑠𝑠! = 𝑘

2. 𝑆$⋆ as the
benchmark

1. Compute a commitment
𝑆!⋆ on 𝑠𝑠!⋆

Smart contract Malicious mailman

Smart contract
Reporter

Blockchain
adversary

1. 𝑠𝑠$

2. 𝑠𝑠$

Fig. 3: Vulnerabilities to adversarial mailman (1© and 2©) and blockchain adversary (3©)

The above attack can be resisted by making the share
distribution oblivious:Mi chooses ui, obtains the secret share
ssi = f(ui), and knows nothing else about f(x), while S
learns nothing about ssi. This can be achieved by utilizing
Paillier encryption [46]. Specifically, let pki denote Mi’s
public key, Paillier.Enc(pki, ui) denote a Paillier encryption of
ui under pki.Mi computes cu(j)

i = Paillier.Enc(pki, u
j
i), j =

1, ..., t − 1 and sends the ciphertexts to S. Then, S encrypts
k as ck = Paillier.Enc(pki, k). With ck and {cu(j)

i }
t−1
j=1, S

can compute cssi = ck ·
∏t−1
j=1(cu

(j)
i)aj due to the additive

homomorphism of Paillier encryption and send cssi to Mi.
Upon receiving cssi, Mi can decrypt it to get ssi.

However, two sophisticated attacks from the greedy sender
still work: i) as shown in Fig. 2- 2©, S chooses an arbitrary u?i
and sends css?i = Paillier.Enc(pki, f(u?i)) instead of cssi to
Mi; ii) as shown in Fig. 2- 3©, S sets f(x) = k+ 0 ·x+ · · ·+
0 ·xt−1 and honestly executes the prescribed scheme, andMi

will always obtain ssi = k with any ui. As f(x) is oblivious
toMi, it can verify neither whether the underlying plaintext of
css?i is indeed computed from ui selected by herself/himself
nor whether the coefficients of f(x) are all 0. Subsequently,
even if Mi follows the prescribed scheme, S can know the
exact value of the share and submit it to SC to complain about
Mi, and Mi’s deposit would be transferred to S.

To resist greedy sender, DataUber further makes the secret
sharing verifiable to the mailmen: before interacting withMi,
S generates a set of commitments enabling Mi to verify
the correspondence between cssi and ui. The key technique
used here is Pedersen’s commitment [47], which has additive
homomorphism and is compatible with Paillier encryption. S
further generates a ZKP πNZM to prove that the underlying
message of one commitment is not 0. By doing so, ssi is
verifiable to Mi while is oblivious to others. Moreover, the
non-zero property of f(x)’s coefficients is also verifiable to
Mi, while no additional knowledge of them is revealed. This
ensures that no information helping adversaries prematurely
recover the data content is exposed.

Challenge-2: resistance against curious mailmen. The
above scheme fails to resist a curious mailman, who launches
a so-called “zero-attack” shown in Fig. 3- 1©: if M?

i chooses
ui = 0 to execute the above scheme together with S, he can
obtain f(ui) = k. Since Paillier encryption is indistinguishable
against chosen-plaintext attacks (IND-CPA) [48], S cannot
detect such an attack, and no security would be guaranteed.

To thwart the zero-attack, the key observation is that iff
ui 6= 0, then ∃ vi s.t. wi = ui · vi 6= 0. Furthermore, when
ui and vi are both chosen by Mi, given wi, S can confirm
ui 6= 0 by verifying wi 6= 0 without gaining any additional

knowledge about ui. With this observation, we propose a non-
zero plaintext ZKP πNZP and integrate it into DataUber to
resist the zero-attack. The integration of Paillier encryption,
Pedersen’s commitment, and πNZP yields an oblivious and
verifiable threshold secret sharing (OVTSS). We defer its
formal definition and construction to Appendix B.

Challenge-3: judgment delegation. In the above scheme, we
cannot directly extend SC to support the judgment, since it
cannot verify the validity of the submitted shares for judging
complaints or paying the service charge. The fundamental
reason is that before ssi is published, it is oblivious to all
entities except Mi. We stress that enabling contract judging
cannot be trivially achieved by integrating a commitment
scheme, i.e. Mi generates a commitment Si on ssi and
uploads Si to SC as the benchmark for subsequent judgments,
since as shown in Fig. 3- 2©, a malicious M?

i could generate
a commitment S?i on an arbitrary ss?i 6= ssi. By doing so,
before the invalidity of ss?i is detected, M?

i has received the
service charge, which compromises mailman fairness.

To resolve this tension, we construct a ZKP πSD, which
proves that both cssi and Si are derived from the same ssi.
With πSD, Mi can prove the validity of Si. If Si is valid, S
uploads it to the smart contract for subsequent verifications.

Challenge-4: resistance against blockchain adversary.
When a reporter Mj complains about a premature leakage of
a share (say, ssi), it uploads ssi to SC by sending a transaction
Tj containing ssi. If the complaint is valid, Mj receives
a reward. However, as shown in Fig. 3- 3©, a blockchain
adversary M?

j may steal the reward by launching a copy-
then-front-running attack: once observing Tj from Mj , M?

j

conducts a complaint transaction T ?j containing ssi and inserts
T ?j before Tj by delaying Ti or paying higher transaction fee
on T ?j . Due to this vulnerability to the front-running attack,
the first reporter would always lose the reward.

A straightforward solution is to use a NIZKP for the knowl-
edge of ssi, which allows Mj to prove her/his knowledge
to SC without revealing any information about ssi [49].
However, the copy-then-front-running attack still works since
without need of ssi, M?

j can directly copy the proof in
the complaint transaction generated by Mj . To resist this
attack, we propose a prover-designated ZKP scheme allowing
Mj to prove the knowledge of ssi to SC without revealing
any information about ssi, while the proof is specific to the
account address of Mj , which will be detailed in Section
VI-A. With this mechanism, M?

j cannot generate a valid
complaint transaction from his account address by observ-
ing others’ complaints. This yields DataUber, a complaint-
supported timed data delivery scheme with fairness.

7

V. DEFINITION

A. Syntax and correctness

Definition 1. DataUber is a tuple of algorithms:
(Setup,PubMis,Reg,KeyDis,Complaint,VrfyCom,PubShare,
VrfyShare,Refund). In the following description, all entities’
private keys required to interact with a smart contract are
omitted for simplification.

(sp, {ski}n1)← Setup(1`, n): The Setup algorithm takes a
security parameter ` and the total number of mailmen n as
the input, outputs a set of system parameters sp and the secret
keys {ski}n1 of all mailmen. sp is an implicit input of the
following algorithms.
Phase 1. Encryption

(α, IDT)← PubMis 〈S(k),SC〉 (payment, ts, Aux): The
PubMis algorithm is interactively executed between the sender
S and the smart contract SC. It enables S to publish a timed-
data delivery mission via SC. PubMis takes as input the
encryption/decryption key k of the data to be delivered, the
service charge payment, the time slot ts where the data should
be delivered, and some auxiliary information Aux, outputs
some commitment(s) α (used in the following algorithms) and
the identity IDT of the mission.
Phase 2. Distribution

(∗, indi)← Reg 〈S,Mi(dep),SC〉 (Addi, AddS , IDT):
The Reg algorithm is interactively executed between S,
a mailman Mi, and SC. It enables Mi to register for a
published mission. Reg takes as input IDT , the account
address AddS of S, the account address Addi of Mi, and
some coins dep; outputs Mi’ index indi in the mission.

(Si, ssi)← KeyDis 〈S(k),Mi(ski,SC)〉 (pki, α): The
KeyDis algorithm is interactively executed between S, Mi,
and SC. It enables 1) Mi to obtain a share of the decryption
key of the delivered data from S and 2) S to obtain a
commitment on the share and publish it via SC. KeyDis
takes as input k and ski, outputs ssi as a share of ki and a
commitment Si on ssi.
Phase 3. Complaint

(TCom)← Complaint(IDT , ssj , indj , Addi): Complaint is
run by an arbitrary entity to complain about a premature share
leakage. It takes as input IDT , the prematurely leaked share
ssj , the leaker’s index indj , and the entity’s address Addi,
outputs a complaint transaction TCom.

(1/0)← VrfyCom(TCom, {Si}n): The VrfyCom algorithm
is run by SC to verify a submitted complaint. It takes as input
TCom and all commitments {Si}n of the shares, outputs 1 if
TCom is valid and 0 otherwise.
Phase 4. Delivery
TPub ← PubShare(IDT , Addi, ssi, indi): The PubShare

algorithm is run by a mailman to generate a transaction to
publish its share. It takes the mission ID IDT , the mailman’s
address Addi, the share ssi, and the mailman’s index indi as
input, outputs the publication transaction TPub.

(1/0)← VrfyShare(TPub, {Si}n): The VrfyShare algorithm
is run by SC to verify the validity of a publication transaction.
It takes the publication transaction TPub and {Si}n as input,
outputs 1 if TPub is valid and 0 otherwise.

(∗)← Refund 〈S/Mi,SC〉 (IDT): The Refund algorithm
can be run by a sender or a mailman to request refund of the
rest coins locked in the smart contract for a mission IDT .

Definition 2. (Correctness). DataUber is correct if when a
sender and a mailman are honest (i.e. follow the scheme), the
mailman will obtain a valid secret share. Moreover, if more
than threshold number of mailmen are honest, the receiver can
reconstruct the decryption key at the prescribed delivery time.

B. Formalizing notions

We formalize the security notions of DataUber as follows,
where the games for the notions are presented in Fig. 4.

Time-locked confidentiality. Timed-locked confidentiality
asserts the property that as long as the number of mailmen
compromised by an adversary is smaller than the threshold
t, the adversary cannot obtain any additional information
about the decryption key. We define the game TL-CONF to
capture time-locked confidentiality, where the adversary A
chooses two decryption keys (denoted by k0, k1) and guesses
which one is used. TL-CONF allows A to compromise up to
t − 1 mailmen and fully control them. After compromising
a mailman, A can obtain all secret information held by the
mailman and takes her/his place to interact with an honest
sender. The time-locked confidentiality is defined below.

Definition 3. (Time-locked confidentiality). DataUber
achieves time-locked confidentiality if, for any probabilistic
polynomial-time (PPT) adversary A, there is a negligible
function negl s.t.

|Pr[TL-CONFA(1`)⇒ 1] ≤ 1

2
+ negl(1`).

Mailman fairness. We formalize it by honest mailman fair-
ness, lazy mailman fairness, and malicious mailman fairness.

Honest mailman fairness requires that as long as a mailman
does not prematurely leak her/his share, it will not be punished.
As discussed in Section IV, a greedy sender may complain
that an honest mailman prematurely leaks the share for profits.
Therefore, this property requires that a sender cannot obtain
the share requested by a mailman before it is published. We
capture it by defining an HM-FAIR game, where an adversary
A (who is actually a greedy sender) interacts with a mailman
Mi to distribute a key. After the distribution, A tries to
complainMi by proving that he knows the share obtained by
Mi. If the complaint is valid, A wins. If A compromisesMi,
he can trivially win the game. To avoid the trivial winning, in
HM-FAIR, Mi is honest and follows the prescribed scheme.
The honest mailman fairness is defined below.

Definition 4. (Honest mailman fairness). DataUber achieves
honest mailman fairness if, for any PPT adversary A, there
is a negligible function negl s.t.

Pr[HM-FAIRA ⇒ 1] ≤ negl(`).

Definition 5. (Lazy mailman fairness). DataUber achieves
lazy mailman fairness, if any mailman who does not publish
her/his share on time would not receive the service charge.

8

TL-CONFA(1`, t, n)

1 : (sp, {ski}n1)← Setup(1`, n)

2 : I ← A(sp), where |I ∩ {1, ..., n}| < t

3 : (k0, k1)← A({ski}i∈I)

4 : b
$← {0, 1}, α← PubMis 〈S(kb),SC〉

5 : For each i′ ∈ {1, ..., n}/I :

6 : (Si′ , ssi′)← KeyDis 〈S(kb),Mi′(ui′ , ski′)〉 (pki′ , α)

7 : b? ← AKeyDis〈S(kb),·〉(pki′ ,α)({Si′}i′∈{1,...,n}/I , {ski}i∈I)
8 : Return (b = b?)

HM-FAIRA(1`)

1 : (sp, {ski}n1)← Setup(1`, n)

2 : (α, k)← A(sp)

3 : TCom ← AKeyDis〈Mi(ui,ski),·〉(pki,α),∀i∈[1,n]

4 : Return VrfyCom(TCom, {Si}n1)

MM-FAIRA(1`, n)

1 : (sp, {ski}n1)← Setup(1`)

2 : α← PubMis 〈S(kb),SC〉
3 : j ← A(sp, α)

4 : (Sj , ssj)← KeyDis 〈S(k),A(ski)〉 (pki, α)

5 : If Sj = ⊥ Return 0

6 : Else TCom ← Complaint(ssj , ∗)
7 : Return VrfyCom(TCom, Sj , ∗)

R-FAIRA(1`)

1 : ss
$← Yb

2 : generate the corresponding commitment S
3 : TCom ← Complaint(ss,Add, ∗)
4 : T ?Com ← A(TCom, S,Add

′)

5 : Return (VrfyCom(TCom, S, ∗) ∧ (Add 6= Add′))

bY is the space of the shares and is determined by `

Fig. 4: Games defining time-lock confidentiality (TL-CONF), honest mailman fairness (HM-FAIR), malicious mailman fairness
(MM-Fair), and reporter fairness (R-FAIR), where the parameters that are not explicitly needed are presented by ∗; AΠ〈P(∗)·〉(∗)

denotes that A can execute the interactive algorithm Π with a honest party P , and A can deviate from the prescribed algorithm

Malicious mailman fairness requires that if a premature
share leakage is complained about, the corresponding mailman
would be punished. We capture this property by defining
the game MM-FAIR, where an adversary A interacts with a
sender S in KeyDis and obtains a share while S obtains a
commitment. Then, the share obtained byA is used to generate
a complaint, which models that the share is prematurely leaked
by A. If the generated complaint is verified as invalid, A wins.
The malicious mailman fairness is defined below.

Definition 6. (Malicious mailman fairness). DataUber
achieves malicious mailman fairness if, for any PPT adversary
A, there is a negligible function negl s.t.

|Pr[MM-FAIRA ⇒ 1]| ≤ negl(`).

Reporter fairness. Reporter fairness asserts the property that
after a reporter complains the premature leakage of a share, an
adversary without the knowledge of the leaked share cannot
steal the rewards. In this work, we consider a blockchain
adversary who keeps monitoring the transactions sent to the
smart contract and can reorder the complaint transactions. In
this case, after observing a complaint transaction containing
a proof, the adversary may try to generate a valid complaint
transaction using the proof generated by the reporter and make
his transaction trigger the smart contract earlier. Therefore,
reporter fairness requires that given a complaint transaction
specific to an account address Add, without the knowledge
of the share, the adversary A cannot forge a valid complaint
transaction specific to another account address AddA 6= Add.
We capture this property by defining a R-FAIR game, where A
is given a complaint transaction TCom sent from Add associate
with a randomly chosen secret share ssi and aims to output
another valid one T ?Com using a different address Add′.

The reporter fairness is defined below.

Definition 7. (Reporter fairness). DataUber achieves reporter
fairness if, for any PPT adversary A with an address AddA,
there is a negligible function negl s.t.

|Pr[R-FAIRA ⇒ 1]| ≤ negl(1`).

VI. CONSTRUCTION OF DATAUBER

A. Building blocks

Paillier encryption [50]. An additively homomorphic en-
cryption scheme consisting of the following three algorithms:
• (sk, pk)← Paillier.Gen(1`): on input a security parame-

ter 1`, choose random primes p, q with |p| = |q|, compute
N = p·q, φ(N) = (p−1)·(q−1), output sk = (φ(N), N)
as the private key and pk = N as the public key.

• c← Paillier.Enc(pk,m; r): on input the public key pk =
N , a message m ∈ ZN , and a random r ∈ Z∗N , output
the ciphertext c = (1 +N)m · rN mod N2.

• m← Paillier.Dec(sk, c): on input a ciphertext c and the
private key sk = (φ(N), N), output the plaintext

m =
(cφ(N) mod N2)− 1

N
· φ(N)

−1 mod N.

Pedersen’s commitment [51]. An additively homomorphic
commitment scheme consisting of three algorithms:
• (p, q,G, g, h) ← Commit.Gen(1`): on input a security

parameter 1`, output (p, q,G, g, h), where p, q are primes
such that q|p− 1; G is a group with the order q; g, h are
generators of G such that logg(h) is unknown.

• α ← Commit.Com(m; r): with the message m ∈ Zq
and a random r ∈ Zq , the corresponding commitment,
α = gmhr, is computed and output.

9

𝒮𝒞
6: function	𝑉𝑟𝑓𝑦𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷!, _𝑖𝑛𝑑" , _𝑢" , _𝑠𝑠" :

𝐢𝐟		𝑔_$$! = 𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷! _𝑖𝑛𝑑" ∧
ℳ _𝐼𝐷! _𝑖𝑛𝑑% ≠ 0 ∧
the	current	time	is	in	𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
transfer	𝑠𝑎𝑙𝑎𝑟𝑦 _𝐼𝐷! 	to	ℳ";

end	if

7: function	𝑅𝑒𝑓𝑢𝑛𝑑	 _𝐼𝐷! :
if the current time is after 𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
return	the	rest	of	coins	to	payers;

end	if

4: function	𝑆ℎ𝑎𝑟𝑒𝑠	 _𝐼𝐷!, _𝑆% &
' :

𝐢𝐟	invoker	is	𝒮	𝐭𝐡𝐞𝐧
𝐟𝐨𝐫		𝑗 = 1		to		𝑛		𝐝𝐨				𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷! 𝑗 = _𝑆%;
end	for

end	if

5: function	𝑉𝑟𝑓𝑦𝐶𝑜𝑚	 _𝐼𝐷!, _𝑖𝑛𝑑%, _𝜋()
(+,,ℳ!) :

𝐢𝐟	_𝜋()
(+,,ℳ!)is	valid ∧

the	current	time	is	before	𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
transfer	ℳ _𝐼𝐷! _𝑖𝑛𝑑% /2	to	ℳ";
transfer	ℳ _𝐼𝐷! _𝑖𝑛𝑑% /2	to	𝒮;

end	if

1: 𝑖 = 0, 𝑐𝑜𝑢𝑛𝑡 	 = 0;
2: function	𝑃𝑢𝑏𝑀𝑖𝑠	 {_𝛼}	&', _𝑝𝑎𝑦𝑚𝑒𝑛𝑡, _𝑡𝑠, _𝐴𝑢𝑥 :

𝑠𝑎𝑙𝑎𝑟𝑦 𝑖 = _𝑝𝑎𝑦𝑚𝑒𝑛𝑡/𝑛; 𝑡𝑠 𝑖 = _𝑡𝑠;
𝐟𝐨𝐫		𝑗 = 1		to		𝑛		𝐝𝐨		𝛼 𝑖 𝑗 = _𝛼%;
end	for
𝑖 + +;
return 𝐼𝐷! = 𝑖 − 1;

3: function	𝑅𝑒𝑔	 _𝐼𝐷!, _𝑑𝑒𝑝𝑜𝑠𝑖𝑡 :
𝐢𝐟	𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! < 𝑛 ∧ the	invoker	did	not	register	𝐭𝐡𝐞𝐧
𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! ++;ℳ 𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡;
return 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! ;

else	return	⊥;
end	if

Fig. 5: Pseudocode of SC, where variables whose names start with an underline are parameters input by invokers

• 1/0 ← Commit.Open(α,m, r): on input a commitment
α, a committed message m, and the randomness r, verify
the validity of α by checking α ?

= gmhr.
Prover-designated ZKP for discrete logarithm π

(ID)
DL . A

prover-designated ZKP for the prover with the identity ID
to prove the knowledge of the solution of a discrete logarithm
problem. Formally,

RDL = {(G, g ∈ G,S ∈ G); (s)|S = gs}.

The proof π(ID)
DL can be generated as follows.

• The prover randomly chooses r ∈ Zq , computes R =
gr, z = r + s ·H(S,R, ID), where H : {0, 1}∗ → Zq is
a hash function modeled as a random oracle, and sends
π

(ID)
DL = {R, z, ID} to the verifier.

• The verifier verifies the validity of π(ID)
DL by checking

R · SH(S,R,ID) ?
= gz .

We defer the details of the following ZKP schemes to
Appendix A.

ZKP for ordered-exponential computation on the same base
πOEC [52]. A ZKP for the relation that multiple plaintexts are
a sequence of powers. Formally,

ROEC = {((pk = N, {cu(i) ∈ ZN2}t−1
i=1, u ∈ ZN)|

cu(i) = Paillier.Enc(pk, ui; ri) ∀i ∈ [1, t− 1]}.

ZKP for non-zero plaintext πNZP. A ZKP for the relation
that the value of the underlying plaintext of a ciphertext is not
0. Formally,

RNZP = {(N, c1 ∈ ZN2); (m1 ∈ ZN , r1 ∈ Z∗N)|
c1 = Paillier.Enc(pk,m1; r1) ∧ m1 6= 0}.

ZKP for non-zero message πNZM. A ZKP for the relation
that given a Pedersen’s commitment, the value of its underly-
ing message is not 0. Formally,

RNZM = {(G, p, q,g ∈ G, h ∈ G,α1 ∈ G); (a1 ∈ Zq, r1 ∈ Zq)|
α1 = Commit.Com(a1; r1) ∧ a1 6= 0}.

ZKP for same derivation πSD. A ZKP for the relation that
the exponent of an exponentiation in the group G is the
corresponding plaintext of a Paillier ciphertext. Formally,

RSD = {(N, cu ∈ ZN2 , G, g ∈ G,U ∈ G); (u,R)|
cu = (1 +N)u ·R mod N2 ∧ U = gu}.

B. Smart contract for DataUber: SC
We then present the constructed smart contract SC. As

shown in Fig. 5, SC consists of six functions: PubMis, Reg,
Shares, VrfyCom, VrfyShare, and Refund.
• PubMis. It can be invoked by a sender to publish a timed

data delivery mission, where some related information,
such as the amount of the service charge and prescribed
delivery time, is published via the blockchain. After a
mission is published, it returns the identity of the mission.

• Reg. It can be invoked by a mailman to register for a
published mission, where the mailman transfers some
coins as the deposit to SC.

• Shares. It can be invoked by a sender to publish all com-
mitments on the shares distributed to the mailmen. These
commitments are utilized for subsequent verifications.

• VrfyCom. It can be invoked by any entity to request ver-
ification of a complaint. This function verifies i) whether
the current time is before the delivery time and ii) the
validity of the complaint using the commitment (uploaded
in Shares) of the share.

• VrfyShare. It can be invoked by a mailman to publish
its share at a prescribed delivery time by uploading the
share. After a share is published, this function verifies i)
whether the current time is the prescribed delivery time
and ii) the validity of the share.

• Refund. It can be invoked to unlock all coins in the smart
contract after a mission is finished.

C. Algorithm details

A sender S with a blockchain account address AddS , a
recipientR, and a set of mailmen {M1, ...,Mn} with account
addresses {AddM1

, ..., AddMn
} are involved in DataUber.

We assume that there is a secure channel between S and R
for communication. The messages transmitted through these
channels are encrypted and authenticated.

Setup. Let ` be a security parameter and n be the total
number of mailmen, system parameters sp = {t, n, pp}
are published, where t is a threshold, n is the num-
ber of employed mailmen, and pp = (G, p, q, g, h) ←
Commit.Gen(1`, t, n). Each mailman Mi, i ∈ [1, n] runs
(ski, pki) ← Paillier.Gen(1`) and publishes the public key
pki. The smart contract SC shown in Fig. 5, is deployed on
the blockchain with the address AddC .

10

Phase 1. Encryption. In this phase, S executes PubMis to
publish a timed transmission mission on the blockchain.

PubMis.

• Randomly choose k ∈ Z∗q , encrypt m using a symmetric-
key encryption algorithm (e.g., CBC[AES]) and key k,
and send the ciphertext c to R via a secure channel.

• Choose a1, ..., at−1
$← Z∗q and generates a polynomial

f(x) = k + a1x+ a2x
2 + · · ·+ at−1x

t−1 mod q.
• Choose r0, ..., rt−1

$← Zq and compute the commit-
ments on k and ai as α0 = Commit.Com(k; r0), αi =
Commit.Com(ai; ri), ∀i ∈ [1, t− 1].

• Generate a proof πNZM for RNZM =
{((G, p, q, g, h), αt−1, at−1, rt−1)|at−1 6= 0 ∧ αt−1 =
Commit.Com(at−1; rt−1)}.

• Invoke SC.PubMis ({αi}t−1
0 , payment, ts, Aux) to pub-

lish a timed-delivery mission, where payment is the
service charge, ts is the time slot in which m should
be delivered, and Aux is the auxiliary information such
as the amount of the deposit and πNZM.

After publishing the mission, S obtains IDT as the identity
of the current mission. (α = {α0, ..., αt−1}, IDT) is output.

Phase 2. Distribution. In this phase, two algorithms, Reg
and KeyDis, are included. In Reg, any mailman can apply for
the published mission, S selects n mailmen (say,M1, ...,Mn)
out of all applicants, and these mailmen pay some deposit for
the mission. In KeyDis, S distributes k among all Mi in a
threshold, oblivious, and verifiable way.

Reg.

• A mailman Mi who wants to take the mission first
verifies the validity of πNZM. If it is valid,Mi generates a
transaction from Addi to AddS , where the string “Apply”
is integrated.

• S selects n mailmen (say, M1,M2, ...,Mn) out of all
applicants and informs them.

• Each Mi invokes SC.Reg and obtains an index indi.
KeyDis.

• Mi randomly chooses ui s.t. f(ui) ≤ pki, computes
cuj ← Paillier.Enc(pki, u

j
i),∀j ∈ [1, t − 1], generates

πNZP for RNZP = {((pk, cu1), ui)|ui 6= 0 ∧ cu1 ←
Paillier.Enc(pk, ui)}, and sends (cu1, πNZP) to S.

• If πNZP is valid, S accepts that ui 6= 0, and
Mi sends {cuj}t−1

2 to S and generates πOEC

for ROEC = {(pki, cu1, ..., cut−1); (u)|cuj =
Paillier.Enc(pki, u

j
i),∀j ∈ [1, t− 1]}.

• If the πOEC is valid, S sends {cvi, cssi} to Mi, where

cvi ← Paillier.Enc(pki, r0) ·
t−1∏
j=1

(cuj)
rj ,

cssi ← Paillier.Enc(pki, k) ·
t−1∏
j=1

(cuj)
aj .

• After receiving cvi and cssi, Mi decrypts cssi
to obtain a share ssi ← Paillier.Dec(ski, cssi).
Then, Mi verifies the validity of ssi by computing
vi ← Paillier.Dec(ski, cvi) and checking gssihvi

?
=∏t−1

j=0(αj)
uj
i . If it is not valid, Mi aborts.

• Mi computes Si = gssi , Ri = cssi ·
((1 + pki)

ssi)
−1, generates πSD for RSD =

{(pki, cssi, G, g, Si); (ssi, Ri)|cssi = (1 + pki)
ssi ·

Ri ∧ Si = gssi}, and sends (Si, πSD) to S.
• If the above proof is valid, S accepts it. Otherwise, S

rejects and asks Mi for a valid one. After receiving all
valid Si, S invokes SC.Shares (IDT , {Si}n1) by generat-
ing a transaction to upload them to the smart contract for
subsequent verifications for ssi.

Phase 3. Complaint. In this phase, if some share (say,Mj’s
share ssj) is leaked before the prescribed time slot, another
mailman (say, Mi) can run Complaint to complain about it.

Complaint.

• Given ssj , Mi extracts Sj from the blockchain and
concludes from gssj = Sj thatMj leaks his share (recall
that S1, ..., Sn are recorded on blockchain and everyone
can extract them.).

• Mi generates an prover-designated proof π
(AddMi

)

DL for
RDL = {(G, g, Sj); (ssi))|Sj = gssj}, and invokes
SC.VrfyCom (IDT , indj , π

(AddMi
)

DL) by generating a
transaction to report to SC that ssj is leaked.

VrfyCom.
• SC verifies the validity of the complaint by checking the

validity of π
(AddMi

)

DL . If it is valid, a part of the deposit
paid by Mj is transferred to Addi as a reward, and the
rest is transferred to AddS as compensation.

Phase 4. Delivery. In PubShare, the mailmen publish
their secret shares. Then, the published shares are verified in
VrfyShare. After t valid shares are published, R can recover
the data content. After the mission is finished, anyone can
run Refund to unlock the coins by invoking SC.Refund.

PubShare.

• Each Mi invokes SC.VrfyShare (IDT , indi, ui, ssi) by
generating a transaction to publish the share.

VrfyShare

• SC verifies the validity of the shares that mailmen publish
by checking gssi ?

= Si. If ssi is valid,Mi gets the salary
of the current mission.

After t valid shares {ssj1 , ..., ssjt} are published, R re-
construct k using Lagrange interpolation formula and further
decrypts c using k to obtain m.

Refund. After the mission is finished, S and an arbitrary
mailman Mi, i ∈ [1, n] can invoke SC.Refund (IDT) by
generating a transaction to get the rest of the coins locked
in the smart contract.

D. Limitations

Any complaint-supported system inherently encounters a
certain non-technical limitation: the detection of malicious
behavior is not automated [53], [54]. In DataUber, the enforce-
ment of the punishment for a premature leakage relies on a
valid complaint. If no reporter complains about the leakage,
the misbehavior would not be detected by the smart contract.
We stress that in general, any complaint system (and similar

11

one such as a tracing system [55]) serves more as a deterrence
rather than providing foolproof security.

Moreover, in this work, we consider a model where the
number of colluding mailmen is less than the threshold t. If
more than t mailmen come together and pool their shares,
they could jointly execute a distributed protocol and get the
output of the protocol. Specifically, the mailmen might run
a general MPC protocol that reconstructs the decryption key
[56]. Nevertheless, the assumption limiting the collaboration
to up to t − 1 mailmen is crucial to all systems that adopt
threshold secret sharing. If a larger collusion is allowed, the
security enhancement achieved through the distribution of trust
would be undermined in these systems.

VII. SECURITY ANALYSIS

We analyze the security of DataUber regarding time-locked
confidentiality, mailman fairness, and reporter fairness. In
our security analysis, we model the ZKP schemes used in
DataUber as “ideal functionalities” shown in Fig. 6, and
analyze the security of the ZKP schemes in Appendix A.

F (pk,{cu(i)}t−1
1)

OEC

On receiving (u, {ri}t−1
1) from P , if

cu(i) ← Paillier.Enc(pk, ui; ri)∀i ∈ [1, t− 1],

return 1, otherwise, return 0.

F (pk,c)
NZP

On receiving (m, r) from P , if

c← Paillier.Enc(pk,m; r) ∧m 6= 0,

return 1, otherwise, return 0.

F (G,p,q,g,h)
NZM

On receiving (αt−1, at−1, rt−1) from P , if

α1 = gat−1hrt−1 ∧ at−1 6= 0,

return 1, otherwise, return 0.

F (pk,cu,G,g,U)
SD

On receiving (u, rN) from P , if

cu← Paillier.Enc(pk, u; r) ∧ U = gu,

return 1, otherwise, return 0.

Fig. 6: Ideal functionalities of ZKP schemes

A. Time-locked confidentiality

Theorem 1. If Pedersen’s commitment [51] is unconditional
hiding, πOEC and πNZP are modeled as the ideal functionalities
FOEC and FNZP presented in Fig. 6, respectively, then for any
probabilistic polynomial-time (PPT) adversary A

|Pr[TL-CONFA(1`)⇒ 1]| ≤ 1

2
+ negl(1`).

Proof. To prove Theorem 1, we introduce a series of games
presented in Fig. 7 and elaborate on them below.

GTLC
0 (G, p, q, h, g)

1 : ski
$← Zq, pki = gski

2 : I ← A1({pki}n1 , G, p, q, h, g) s.t. |I ∩ [1, n]| < t

3 : (k0, k1)← A2({ski}i∈I)

4 : b
$← {0, 1}, a1, ..., at−1, r0, ..., rt−1

$← Z∗q
5 : α0 ← Commit.Com(kb; r0),

αi ← Commit.Com(ai; ri)∀i ∈ [1, n]

6 : For each i ∈ I : (ui, {cu(j)
i }

t−1
j=1)← A(α0, ..., αt−1)

s.t. FNZP(pki, cu
(1)
i , ui) = 1 ∧ FOEC(pki, {cu(j)

i }
t−1
j=1) = 1

7 : cssi ← Paillier.Enc(pki, kb) ·
∏t−1
j=1(cu

(j)
i)aj

8 : ssi ← Paillier.Dec(ski, cssi)

9 : b? ← A({ssi}i∈I , {αi}t−1
0)

GTLC
1 (G, p, q, g, h) GTLC

2 (G, p, q, g, h)

1 : ski
$← Zq, pki = gski

2 : I ← A({pki}n1 , G, p, q, h, g) s.t. |I ∩ [1, n]| < t

3 : (k0, k1)← A({ski}i∈I)

4 : b
$← {0, 1}, a1, ..., at−1, r0, ..., rt−1

$← Z∗q
5 : α0 ← Commit.Com(kb; r0),

αi ← Commit.Com(ai; ri)∀i ∈ [1, n]

6 : For each i ∈ I :

7 : ui 6= 0← A(α0, ..., αt−1)∀i ∈ I

8 : ssi = kb +
∑t−1
j=1 aj · ui mod Zq ssi

$← Zq

9 : b? ← A({ssi}i∈I , {αi}t−1
0)

HidingA′,Commit(1
`)

1 : (G, p, q, g, h)← Commit.Gen(1`)

2 : (k0, k1)← A′(G, p, q, g, h)

3 : b
$← {0, 1}

4 : r
$← Z∗q , αb ← gkbhr

5 : b? ← A′(αb)
6 : Return (b = b?)

Fig. 7: Game used in the proof of Theorem 1

GTLC
0 is identical with TL-CONFA except that ZKP

schemes are replaced with ideal functionalities in GTLC
0 ,

|Pr[GTLC
0 ⇒ 1]− Pr[TL-CONFA ⇒ 1]| ≤ negl(1`).

GTLC
1 is identical with GTLC

0 , except that the secret shares
ssi(i ∈ I) are computed directly using ui. Due to the
correctness of Paillier encryption, FNZP, and FOEC, ssi in
GTLC

1 is same as the one in GTLC
0 for each i ∈ I . Then,

Pr[GTLC
1 ⇒ 1] = Pr[GTLC

0 ⇒ 1].
GTLC

2 is identical with GTLC
1 , except that ssi(i ∈ I) is

replaced with random strings in GTLC
2 . Since a1, ..., at−1 are

random and independent with kb, ssi leaks nothing about kb.
We have Pr[GTLC

2 ⇒ 1] = Pr[GTLC
1 ⇒ 1].

12

Now we prove that

|Pr[GTLC
2 ⇒ 1]− Pr[HidingA′,Commit ⇒ 1]| ≤ negl(1`),

where HidingA′,Commit is the hiding game and A′ is a PPT
adversary. A′ is given given input (G, p, q, g, h) and oracle
access to some functionO, and its goal is to determine whether
the returned commitment is computed using k0 or k1. In detail:

1) A chooses (k0, k1) and sends them to A′.
2) A′ queriesO on (k0, k1).O chooses b $← {0, 1}, r $← Z∗q ,

computes αb ← gkbhr and sends αb to A′.
3) A′ chooses ai, ri

$← Z∗q , computes αi = gai · hri ,∀i ∈
[1, t− 1] and sends {α, α1, ..., αt−1} to A.

4) After A outputs b?, A′ sends b? to O.

The view of A when run as a subroutine by A′ in the above
procedure is identical with the view of A in GTLC

2 . Therefore,
|Pr[GTLC

2 ⇒ 1]− Pr[HidingA′,Commit ⇒ 1]| ≤ negl(1`).
Since Pedersen’s commitment is unconditional hiding,

Pr[HidingA′,Commit ⇒ 1] = 1
2 .

This concludes the proof.

B. Mailman fairness

Theorem 2. Let Pr[SolveG] denote the probability of solving a
DL problem in G, if πNZM is modeled as the ideal functionality
FNZM shown in Fig. 6, then for any PPT adversary A

Pr[HM-FAIRA ⇒ 1] ≤ 2 Pr[SolveG] + negl(1`).

Proof. To prove Theorem 2, we introduce a series of games
presented in Fig. 8 and elaborate on them below.

First, as GHMF
0 is identical with HM-FAIR,

Pr[HM-FAIR ⇒ 1] = Pr[G
(HMF)
0 ⇒ 1]. In GHMF

0 , the
7-th step ensures the correctness of ssi and that not
a1, ..., at−1 are all 0. Therefore, GHMF

1 is identical with
GHMF

0 , except that cu(i) is replaced with a random element in
the ciphertext space. With the security of Paillier encryption,

|Pr[G
(HMF)
1 ⇒ 1]− Pr[G

(HMF)
0 ⇒ 1]| ≤ negl(1`).

Now we prove that Pr[G
(HMF)
1 ⇒ 1] ≤ 2 Pr[SolveG].

We use A to construct A′ for the DL problem. A′ is given
two generators g, h of a group G, and its goal is to output the
discrete logarithm of h to the base g, i.e. d = logg h.

In detail: A′ is given (G, p, q, g, h), where p and q are
primes and q|p − 1, G is a group with the order q, g and
h are two random generators of G.

1) Run A. A′ gives (G, p, q, g, h) to A.
2) When A chooses {k, r0, {ri, ai}t−1

1 }, A′ ensures that not
a1, ..., at−1 are all 0. Otherwise, A′ aborts.

3) A′ chooses u $← ZN , cu
(i) $← ZN2 ∀i ∈ [1, t − 1] and

sends {cu(i)}t−1
1 , S = gss to A.

4) Whenever A outputs (ss?, v?), A verifies whether ss? =
ss. If it is, A outputs a random d′ ∈ Zp. Otherwise, A
outputs d′ = (ss− ss?)/(v? − v).

In the above steps, if A outputs a v? for ss? 6= ss, then
ss? − ss 6= 0, v? − v 6= 0, and gss

?

hv
?

= gsshv .

GHMF
0 (G, p, q, g, h,N)

1 : sk
$← Z∗q , pk = gsk

2 : (k, {αi}t−1
0 , r0, {ri, ai}t−1

1)← A(G, p, q, g, h, pk)

s.t. F (G,p,q,g,h)
NZM (αt−1, at−1, rt−1) = 1

3 : randomly choose u 6= 0 s.t. (ut−1)/(u−1) ≤ (pk/q)

4 : cu(i) ← Paillier.Enc(pk, ui)∀i ∈ [1, t− 1]

5 : (css, cv)← A({cu(i)}t−1
1)

6 : ss← Paillier.Dec(sk, css), v = Paillier.Dec(sk, cv)

7 : α0 = gkhr0 , αi = gaihri ∀i ∈ [1, t− 1]

8 : If gsshv 6= ·
∏t−1
i=0(αi)

ui ∨
∏t−1
i=0 αi/g

ss = hv abort
9 : S = gss

10 : ss? ← A({cu(i)}t−1
1 , S)

11 : Return (ss = ss?)

GHMF
1 (G, p, q, g, h,N)

1 : sk
$← Z∗q , pk = gsk

2 : (k, r0, {ri, ai}t−1
1)← A(G, p, q, g, h, pk)

3 : If a1 = · · · = at−1 = 0 abort
4 : randomly choose u 6= 0 s.t. (ut−1)/(u−1) ≤ (pk/q)

5 : cu(i) $← ZN2 ∀i ∈ [1, t− 1]

6 : ss = k +
∑t−1
i=0 ai · ui, v =

∑t−1
0 ri · ui, S = gss

7 : (ss?, v?)← A({cu(i)}t−1
0 , S)

8 : Return (gsshv = gss
?

hv
?

)

Fig. 8: Game used in the proof of Theorem 2

Thus, we have gss
?

hv
?

= gss · gss?−sshv · hv?−v , where
ss? − ss+ (logg h) · (v? − v) = 0. With this equation,

d′ =
ss− ss?

v? − v
=

(logg h) · (v? − v)

v? − v
= logg h.

The view of A when run as a subroutine by A′ is identical
to the view of A in G(HMF)

1 . Therefore,

Pr[G
(HMF)
1 ⇒ 1] = Pr[logg h = d′ ← A′(G,p,q,g,h)

]

+ Pr[ss← A(S = gss)]

≤ 2 Pr[Solve].

This concludes the proof.

Theorem 3. If the smart contract used in DataUber always
executes its code and πSD is modeled as the ideal functionality
FSD presented in Fig. 6, DataUber achieves lazy mailman
fairness and malicious mailman fairness.

Proof. According to the logic behind the code of SC, only
after a mailman invokes the function V rfyShare to publish
her/his share in the prescribed time slot, will the service charge
be transferred to the mailman. If a mailman receives the
service charge from SC without invoking the V rfyShare,
the execution of SC does not follow its code. This conflicts
with our security assumption that the smart contract always
executes its code.

13

GRF (G, p, q, g)
1 : QH := ∅, QWit := ∅
2 : ss

$← Zq, S = gss

3 : (z′, R′, Add′)← AHO,WitO(S, g, p, q, g)

4 : If (R′ · SHO(S,R′,Add′) = gz
′
) ∧ (QWit[Add

′] 6= 1)

5 : Return 1

6 : Return 0

WitO(Add)

1 : r
$← Zq, R = gr

2 : z = r + ss ·HO(S,R,Add)

3 : QWit[Add] = 1

4 : Return (R, z)

HO(S,R,Add)

1 : If (S,R,Add) /∈ Q y
$← Zq, Q[S,R,Add] = y

2 : Else y = QH [S,R,Add]

3 : Return y

Fig. 9: Game used in the proof of Theorem 4

Analogously, malicious mailman fairness is also guaranteed
by the smart contract. In DataUber, the verification of com-
plaints and punishments both rely on SC. In the logic behind
the code of the function V rfyCom, if a valid proof of a
premature leakage is submitted, SC will reassign the deposit
of the malicious mailman to the sender and the reporter.
Moreover, the ideal functionality FSD ensures that a mailman
can only upload a commitment that is indeed corresponding
to its share. In this case, the mailman cannot leak its true
share while getting away with it due to the invalid commitment
recorded in the contract.

C. Reporter fairness

Theorem 4. If the hash function H used in π(ID)
DL is modeled

as a random oracle HO, then Pr[R-FAIRA ⇒ 1] ≤ negl(1`).

Proof. R-FAIR is identical with GRF , then Pr[R-FAIRA ⇒
1] = Pr[GRF (G, p, q, g) ⇒ 1]. Now we prove that
Pr[GRF (G, p, q, g) ⇒ 1] ≤ negl(1`).

We use A to construct a PPT adversary A′ to forge a
proof for the statement S = gss without knowing ss. A′ is
given access to some oracle O, when A′ queries O on some
challenge c, O returns (z,R, c) such that gz = R ·Sc. Finally,
if A′ outputs (z′, R′, c′) s.t. gz

′
= R′ ·Sc′ , A′ wins. In detail:

1) Initialize empty lists LH , LWit.
2) Run A. Whenever A queries WitO on Add, A′ stores

Add in LWit, chooses c $← Zq and queries O on c.
3) O chooses r $← Zq , computes z = r+ c ·ss,R = gr, and

returns (z,R) to A′.
4) After receiving the response (z,R) from O, A′ stores

(R,Add, c) in LH and gives (z,R,Add) to A.
5) Whenever A queries HO on (R?, Add?), if there is a

item (R?, Add?, c?) in LH , A returns c?. Otherwise, A
chooses c?

$← Zq , stores (R?, Add?, c?) in LH , and
returns c? to A.

6) Finally, when A′ outputs (z′, R′, Add′), A looks up LH
to find the item (R′, Add′, c′) and outputs (z′, R′, c′).

In the above procedure, A’s view when run as a subroutine
by A′ is identical to that in GRF . If A can output a valid proof
(z′, R′, Add′) s.t. c′ = HO(S,R′, Add′) and gz

′
= R′ · Sc′ ,

where Add′ has not been queried on WitO, A′ can output
a valid proof (z′, R′, c′) s.t. c′ = LH [R′], gz

′
= R′ · Sc′ .

Let Forge denote the event that A′ outputs a valid proof,
Pr[GRF ⇒ 1] ≤ Pr[Forge]. In the above game, the goal of
A′ is essentially to forge a proof for a statement in a NIZKP
protocol converted from a sigma protocol using Fiat-Shamir
transform [57]. Therefore, we have Pr[Forge] ≤ negl(1`).

This concludes the proof.

VIII. IMPLEMENTATION AND EVALUATION

We implement a DataUber prototype using Python and
Solidity, and the source code is available at

https://anonymous.4open.science/r/DataUber-1E48.
In our implementation, we choose a security level of 112

bits. For Pedersen’s commitment, we have employed the 224-
bit random ECP groups as defined in [58]. The Ethereum
public test network, Goerli [19], serves as the underlying
blockchain platform. The development of smart contract is
facilitated by the elliptic-curve-solidity library4, enabling com-
putations within the elliptic curve group.

Based on the prototype, we evaluate the performance of
DataUber by conducting experiments on a laptop equipped
with an Intel Core i5 CPU and 16 GB LPDDR4X of RAM. It
is important to underline that the evaluation presented herein
does not account for the costs associated with encrypting the
data and transmitting the ciphertext to the recipient.

n

Delay (s) t
3 4 5 6 7 8 9 10

5 2.82 4.48 6.08 - - - - -
7 3.90 6.33 8.65 10.83 13.22 - - -
10 5.56 8.90 12.41 15.53 18.79 22.20 25.55 29.10

(a) On the sender side
t 3 4 5 6 7 8 9 10

Delay (s) 0.43 0.49 0.51 0.54 0.58 0.59 0.65 0.70

(b) On the mailman side

TABLE II: Computation delay

A. Computation costs

On the sender side, the computation costs primarily arise
from the distribution of the decryption key to the mailmen in
a (t, n)-threshold manner. These costs escalate with the values
of n and the threshold t. We evaluate the computation costs
incurred by the sender for varying (t, n) configurations and
present the experiment results in Table IIa. From the results,
we observe that the computation costs on the sender side are
greatly influenced by the value of n. For instance, when the

4Implementation of Elliptic Curve arithmetic operations written in Solidity,
https://github.com/witnet/elliptic-curve-solidity.

14

sender employs 10 mailmen and sets the threshold to 7, the
computation delay on the sender side is approximately 18.8 s.

On the mailman side, the computation costs mainly emerge
from obtaining a share of the decryption key from the sender,
which increases with the value of t. If a mailman submits a
complaint to the smart contract regarding a premature leakage,
additional computation costs are incurred for generating a
proof of the knowledge of the leaked share. We evaluate the
computation costs on the mailman side with diverse values of
t. Based on the evaluation results presented in Table IIb, we
observe that for the configuration (t, n) = (7, 10), the average
computation delay for the mailman is approximately 0.6 s.

B. Communication costs

On the sender side, the communication costs primarily
arise from employing n mailmen from a pool of applicants,
publishing a mission, and distributing secret shares to the
employed mailmen. We conduct experiments to evaluate the
costs for different (t, n) configurations and present the results
in Table IIIa. In our experiments, with 20 applicants available,
employing 10 mailmen and setting the threshold to 7 takes
communication costs of approximately 0.28 MB.

n

Cost
(KB)

t

3 4 5 6 7 8 9 10

5 70.99 88.49 106.00 - - - - -
7 98.24 122.74147.24171.74196.24 - - -

10 139.11174.11209.11244.11279.11314.11349.11384.11

(a) On the sender side
t 3 4 5 6 7 8 9 10

Costs (KB) 13.96 17.46 20.96 24.46 27.96 31.46 34.96 38.46

(b) On the mailman side

TABLE III: Communication costs

Algorithm Operation Gas (t, n)

Setup SC deployment 4021202

PubMis Mission publication
839181 (3, 5)
922242 (5, 7)

1005267 (7, 10)

Reg
Application submission 21672

Registration 27088

KeyDis Commitment upload
293798 (3, 5)
376847 (5, 7)
501419 (7, 10)

Complaint Leakage complaint 2673605
PubShare Share publication 1455352

TABLE IV: On-chain costs

On the mailman side, the communication costs stem from
activities including applying for a mission, registering with

the smart contract, interacting with the sender to obtain a
share, and releasing the share. These costs are independent
of the value of n. We evaluate the communication costs for
the mailman with different t values and present the results in
Table IIIb. Notably, when t = 7, the communication costs for
a mailman are approximately 0.028 MB.

C. On-chain costs

We conduct an evaluation of the on-chain costs associ-
ated with various transactions in DataUber. The transactions
subjected to evaluation encompass contract deployment, mis-
sion publication, application submission, registration, leakage
complaint, shares’ commitment upload, share publication, and
refund process. A consolidated overview of the on-chain costs
for each transaction is presented in Table IV.

The most financially demanding on-chain operation is the
complaint, which incurs a gas cost of 2673605. This is
attributed to the necessity of validating a NIZKP as part of
ensuring reporter fairness. We stress that in order to motivate
complaints, the amount of the reward needs to exceed the cost
of the complaint itself. This balance can be achieved through
established strategies, such as game-theoretic analysis [44],
[45], allowing for judicious adjustment of the deposit and
reward amounts, which are orthogonal with DataUber.

D. Comparison

To further demonstrate the practicality of DataUber, we
compare the computation costs of DataUber with those of
related mailmen-assisted timed-data delivery schemes, as pre-
sented in Table V. In the comparison, we omit the computation
costs incurred by establishing secure channels between enti-
ties. H stands for hashing, P stands for the bilinear map, ES
(resp. MG) stands for exponentiation (resp. multiplication) in
the set S, PKE.Enc stands for public-key encryption, L stands
for Lagrange’s interpolation, Paillier.Enc (resp. Paillier.Dec)
stands for Paillier encryption (resp. decryption), ZKP.Prove
(resp. ZKP.Vrfy) stands for proving using ZKP (resp. verifying
the validity of the proof). Specifically, in comparison with
tlock [18], when (t, n) = (3, 5) and the security level is 112
bits, the computation delay on the sender side of DataUber
is approximately increased by 2.7 s, while on the mailman
side and the recipient side, the computation delay of DataUber
is comparatively reduced. This comparison demonstrates that
while DataUber ensures fairness at the expense of higher
computation costs compared with certain related schemes, it
does not yield unacceptable costs.

IX. CONCLUSION

In this paper, we have proposed DataUber, a blockchain-
based mailmen-assisted timed data delivery scheme with
fairness. DataUber utilizes a smart contract as a judger to
check the trustworthiness of mailmen, where a reporter can
complain about the misbehavior of mailmen and would receive
rewards. To ensure security against a greedy sender and
curious mailmen, we have proposed an oblivious and verifiable

4In i-TiRE, |w| depends on the time when the data should be delivered.

15

Scheme Computation costs
Sender Mailman Recipient

tlock [18] 4H + P + 2EG
(2tn+ 2n+ t− 2)EG+

(2tn− 4n)EZq
+ (2tn− 2n)MZq

P + 3H + EG

McFly [9]
(2n+ 1)EG+

nMG + 3nP + nH
H + EG tL + tEG + tMG + P

i-TiRE5 [10] |w|H + (|w|+ 2)EG + MG + P (|w|+ 1)(HMG) + 3EG + ZKP.Prove
(|w|+ 1)(H + P) + tZKP.Vrfy+
tL + (t+ |w|+ 1)MG + (t+ 2)EG

NDHC19 [11]
(2nt− 2n+ t)EG + nPaillier.Enc
+(nt− n)(MZN2 + EZN2 + 2MG)

(t− 1)(MG + EZq
+ MZq

+ Paillier.Enc)
+(3t− 2)EZq

+ 2Paillier.Dec
tL + tMZq

DataUber
t(2EG + MG) + (n+ 1)ZKP.Prove

+2nPaillier.Enc + 3nZKP.Vrfy
+(nt− n)(2EZN2 + MZN2)

2ZKP.Vrfy + (t− 2)EZq
+

(t− 1)Paillier.Enc + 3ZKP.Prove
+2Paillier.Dec + (t+ 2)EG + MG

tL + tMZq

TABLE V: Comparison of computation costs between DataUber and related works.

secret sharing OVTSS and integrated it into DataUber. We
have formally defined the fairness of mailmen-assisted timed
data delivery and proven the security of DataUber under the
definition. We have also implemented a DataUber prototype
and evaluated the performance to demonstrate its practicality.
In the future work, we will investigate how to reduce the gas
costs of the on-chain activities in DataUber.

REFERENCES

[1] “Postfity,” https://postfity.com, 2023.
[2] “Boomerang,” https://www.boomeranggmail.com, 2023.
[3] “Now released (fall 2010): Autobiography of mark twain, volume

1,” 2023. [Online]. Available: https://www.marktwainproject.org/about
absample.shtml

[4] B. David, L. Gentile, and M. Pourpouneh, “FAST: Fair auctions via
secret transactions,” in Proc. ACNS, 2022, pp. 727–747.

[5] H. S. Galal and A. M. Youssef, “Trustee: Full privacy preserving vickrey
auction on top of ethereum,” in Proc. FC, 2019, pp. 190–207.

[6] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner, “Tardis:
a foundation of time-lock puzzles in UC,” in Proc. EUROCRYPT, 2021,
pp. 429–459.

[7] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock
puzzles and applications,” in Proc. CRYPTO, 2019, pp. 620–649.

[8] K. Eldefrawy, S. Jakkamsetti, B. Terner, and M. Yung, “Standard model
time-lock puzzles: Defining security and constructing via composition,”
2023. [Online]. Available: https://eprint.iacr.org/2023/439

[9] N. Döttling, L. Hanzlik, B. Magri, and S. Wohnig, “McFly: Verifiable
encryption to the future made practical,” Cryptology ePrint Archive,
2022.

[10] L. Baird, P. Mukherjee, and R. Sinha, “i-tire: Incremental timed-release
encryption or how to use timed-release encryption on blockchains?” in
Proc. CCS, 2022, pp. 235–248.

[11] J. Ning, H. Dang, R. Hou, and E. C. Chang, “Keeping time-release
secrets through smart contracts,” Cryptology ePrint Archive, 2018.

[12] K. G. Paterson and E. A. Quaglia, “Time-specific encryption,” in Proc.
SCN, 2010, pp. 1–16.

[13] C. Li and B. Palanisamy, “Silentdelivery: Practical timed-delivery of pri-
vate information using smart contracts,” IEEE Transactions on Services
Computing, vol. 15, no. 6, pp. 3528–3540, 2021.

[14] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proc. CCS, 2019, pp. 1521–1538.

[15] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in Proc. S&P, 2020,
pp. 910–927.

[16] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent dishonesty:
Front-running attacks on blockchain,” in Proc. FC, 2020, pp. 170–189.

[17] H. Malvai, L. Kokoris-Kogias, A. Sonnino, E. Ghosh, E. Oztürk,
K. Lewi, and S. Lawlor, “Parakeet: Practical key transparency for end-
to-end encrypted messaging,” in Proc. NDSS, 2023.

[18] N. Gailly, K. Melissaris, and Y. Romailler, “tlock: Practical timelock
encryption from threshold BLS,” Cryptology ePrint Archive, 2023.

[19] “Goerli,” https://goerli.net, 2023.
[20] “Shutter - in-depth explanation of how we prevent front

running,” 2021. [Online]. Available: https://blog.shutter.network/
shutter-in-depth-explanation-of-how-we-prevent-frontrunning/

[21] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in Proc. TCC, 2020, pp. 260–290.

[22] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin,
and S. Yakoubov, “YOSO: You only speak once: secure MPC with
stateless ephemeral roles,” in Proc. CRYPTO, 2021, pp. 64–93.

[23] V. Madathil, S. A. Thyagarajan, D. Vasilopoulos, L. Fournier, G. Mala-
volta, and P. Moreno-Sanchez, “Cryptographic oracle-based conditional
payments,” in Proc. NDSS, 2023.

[24] T. C. May, “Timed-release crypto,” https://cypherpunks.venona.com/\\
date/1993/02/msg00129.html, Tech. Rep., 1993.

[25] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” 1996.

[26] J. Pieprzyk and E. Okamoto, “Verifiable secret sharing and time cap-
sules,” in Proc. ICISC, 1999, pp. 169–183.

[27] J. Katz, J. Loss, and J. Xu, “On the security of time-lock puzzles and
timed commitments,” in Proc. TCC, 2020, pp. 390–413.

[28] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and
B. Waters, “Time-lock puzzles from randomized encodings,” in Proc.
ITCS, 2016, pp. 345–356.

[29] A. Abadi and A. Kiayias, “Multi-instance publicly verifiable time-lock
puzzle and its applications,” in Proc. FC, 2021, pp. 541–559.

[30] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Proc. CRYPTO, 2015, pp. 585–605.

[31] M. Bellare and S. Goldwasser, “Encapsulated key escrow,” 1996.
[32] J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, “Provably secure timed-

release public key encryption,” ACM Transactions on Information and
System Security, vol. 11, no. 2, pp. 1–44, 2008.

[33] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, pp. 1–32, 2014.

[34] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[35] T. Bocek and B. Stiller, “Smart contracts–blockchains in the wings,” in
Digital Marketplaces Unleashed, 2018, pp. 169–184.

[36] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. S&P, 2016, pp. 839–858.

[37] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security
services using blockchains: A state of the art survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 1, pp. 858–880, 2018.

[38] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

16

[39] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in Proc. EURO-
CRYPT, 2011, pp. 169–188.

[40] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,” in
Proc. USENIX Security, 2021, pp. 519–535.

[41] D. Catalano, D. Fiore, and I. Tucker, “Additive-homomorphic functional
commitments and applications to homomorphic signatures,” in Proc.
ASIACRYPT, 2022, pp. 159–188.

[42] H. Corrigan-Gibbs and D. Kogan, “The discrete-logarithm problem with
preprocessing,” in Proc. EUROCRYPT, 2018, pp. 415–447.

[43] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proc. CCS, 2018, pp. 967–984.

[44] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework
for incentives in p2p systems,” in Proc. P2P, 2003, pp. 48–56.

[45] S. Yu, K. Zhou, J. Brantingham, and Y. Vorobeychik, “Computing
equilibria in binary networked public goods games,” in Proc. AAAI,
vol. 34, no. 02, 2020, pp. 2310–2317.

[46] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Proc. TCC, 2005, pp. 303–
324.

[47] Z. Xia, B. Yang, M. Zhang, and Y. Mu, “An efficient and provably
secure private polynomial evaluation scheme,” in Proc. ISPEC, 2018,
pp. 595–609.

[48] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in Proc. FOCS, 1997, pp. 394–403.

[49] G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin,
A. Nicita, T. Rabin, A. Shah, and E. Tromer, “Gage MPC: Bypassing
residual function leakage for non-interactive mpc,” in Proc. PETS, vol. 4,
2021, pp. 528–548.

[50] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. EUROCRYPT, 1999, pp. 223–238.

[51] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in Proc. CRYPTO, 1991, pp. 129–140.

[52] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi,
“Efficient RSA key generation and threshold paillier in the two-party
setting,” Journal of Cryptology, vol. 32, no. 2, pp. 265–323, 2019.

[53] R. Issa, N. Alhaddad, and M. Varia, “Hecate: Abuse reporting in secure
messengers with sealed sender,” in Proc. USENIX Security, 2022, pp.
2335–2352.

[54] L. Liu, D. S. Roche, A. Theriault, and A. Yerukhimovich, “Fighting
fake news in encrypted messaging with the fuzzy anonymous complaint
tally system (facts),” in Proc. NDSS, 2021.

[55] V. Goyal, Y. Song, and A. Srinivasan, “Traceable secret sharing and
applications,” in Proc. CRYPTO, 2021, pp. 718–747.

[56] S. Wadhwa, L. Zanolini, F. D’Amato, A. Asgaonkar, F. Zhang, and
K. Nayak, “Breaking the chains of rationality: Understanding the
limitations to and obtaining order policy enforcement,” Cryptology
ePrint Archive, 2023. [Online]. Available: https://eprint.iacr.org/2023/
868

[57] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems.” in Proc. CRYPTO, vol. 86, 1986,
pp. 186–194.

[58] “Additional diffie-hellman groups for use with ietf standards,”
https://www.rfc-editor.org/rfc/rfc5114, 2008.

[59] C. Hazay and Y. Lindell, “Efficient oblivious polynomial evaluation with
simulation-based security,” Cryptology ePrint Archive, 2009.

APPENDIX A
ZKP DETAILS

ZKP for consistent product πPRO [59]. Given ciphertexts
c1, c2, c3 ∈ ZN2 output by Paillier.Enc, it proves that c3
is generated by encrypting the product of the underlying
plaintexts of c1 and c2. Formally,

RPRO = {(pk = N, {ci ∈ ZN2}31); ({mi ∈ ZN}21, {ri ∈ Z∗N}31)|
c1 ← Paillier.Enc(pk,m1; r1) ∧ c2 ← Paillier.Enc(pk,m2; r2)

∧ c3 ← Paillier.Enc(pk,m1 ·m2; r3)}.

We present the concrete steps of the 3-round Sigma protocol
for RPRO below, which can be converted to be non-interactive
using Fiat-Shamir transform.

• The prover chooses m4
$← ZN , computes

c4 ← Paillier.Enc(pk,m4; r4),

c2·4 ← Paillier.Enc(pk,m2 ·m4; r2·4),

and sends c4, c2·4 to the verifier.
• The verifier chooses a $← ZN and sends it to the prover.
• The prover computes b = a ·m1 + m4, z1 = ra1r4, z2 =
rb2(r2·4r

a
3)−1 to open the encryptions

ca1c4 ← Paillier.Enc(pk, am1 +m4; ra1r4),

cb2(c2·4c
a
3)−1 ← Paillier.Enc(pk, 0; rb2(r2·4r

a
3)−1).

• The verifier verifies correctness of the encryption open-
ings in the above step and accepts iff it is correct.

ZKP for ordered-exponential computation on the same base
πOEC [52]. A ZKP for the relation that multiple plaintexts are
a sequence of powers. Formally, the relation is

ROEC = {(pk = N, {cu(i) ∈ ZN2}t−1
i=1); (u ∈ ZN)|

cu(i) ← Paillier.Enc(pk, ui; ri) ∀i ∈ [1, t− 1]}.

πOEC can be constructed by using πPRO as follows [52]:
the prover proves to the verifier that ∀ i ∈ [2, t − 1], the
plaintext corresponding to cui is the product of the plaintexts
corresponding to cu1 and cui−1, i.e.,

RPRO = {(pk, cu(1), cu(i−1), cu(i)); (u1, ui−1, ui, r1, ri−1, ri)|
cu(1) ← Paillier.Enc(pk, u1; r1)∧
cu(i−1) ← Paillier.Enc(pk, ui−1; ri−1)∧
cu(i) ← Paillier.Enc(pk, u1 · ui−1; ri)}.

ZKP for non-zero plaintext πNZP. A ZKP for the relation
that the value of the underlying plaintext of a ciphertext is not
0. Formally,

RNZP = {(pk = N, c1 ∈ ZN2); (m1 ∈ ZN , r1 ∈ Z∗N)|
c1 ← Paillier.Enc(pk,m1; r1) ∧ m1 6= 0}.

πNZP can be constructed based on πPRO as follows: The
prover chooses m2

$← ZN s.t. m3 = m1 · m2 6= 0,
encrypts m2,m3 as c2 = Paillier.Enc(pk,m2; r2), c3 =
Paillier.Enc(pk,m3; r3), respectively, sends c2, c3 to the veri-
fier, opens the encryption of m3, and generates πPRO to prove
that the underlying plaintext of c3 is the product of m1 and
m2. Iff m3 6= 0 and πPRO is valid, S accepts that m1 6= 0.

The security analysis of πPRO and πOEC can be found in in
[59] and [52], respectively, and πNZP is constructed based on
πPRO. We do not repeat their security proofs here.

ZKP for non-zero message πNZM. A ZKP for the relation
that given a Pedersen’s commitment, the value of its underly-
ing message is not 0. Formally,

RNZM = {(G, p, q,g ∈ G, h ∈ G); (α1 ∈ G, a1 ∈ Zq, r1 ∈ Zq)|
α1 ← Commit.Com(a1; r1) ∧ a1 6= 0}.

An interactive protocol for RNZM can be constructed as
follows, which can be easily converted to be non-interactive.

17

• The prover chooses a2
$← Z∗q , r2

$← Zq , computes α2 =
Commit.Com(a2; r2), a3 = a1 · a2 and sends a3 to the
verifier.

• Iff a3 6= 0, the verifier continues the following protocol.
• The prover further proves

R1 = {(G, p, q, g, h, α1, α2, a3); (a1, a2, r1, r2)|
α1 ← Commit.Com(a1; r1)∧

α2 ← Commit.Com(a2; r2) ∧ a3 = a1 · a2}.

We observe that

R1 ⇔ R2 = {(G, p, q, g, h, α1, α2, a3); (a1, r1, r2)|
α1 ← Commit.Com(a1; r1)∧

α2 ← Commit.Com(a3 · a−1
1 ; r2)}.

With this observation, we can implement a Sigma proto-
col for R2 as follows.

– The prover chooses ta, tr, t′r
$← Zq , computes αt =

gtahtr , α′t = ga1·taht
′
r and sends {αt, α′t} to the

verifier.
– The verifier chooses c $← Zq and sends it to the prover.
– The prover computes za = ta + c · a1, zr = tr + c ·
r1, z

′
r = r2 · ta + c · a1 · r2 − t′r and sends {za, zr, z′r}

to the verifier.
– The verifier verifies Commit.Com(za; zr)

?
= αt · (α1)c

and (α2)za
?
= Commit.Com(ca3; z′r) · α′t.

The Completeness of the above Sigma protocol for R2 is
clear, and we prove its Special soundness, and Special honest
verifier zero-knowledge (SHVZK) as follows.

Special soundness. Given two accepting conversations
((αt, α

′
t), c, (za, zr, z

′
r)) and ((αt, α

′
t), c

?, (z?a, z
?
r , z
′
r
?
)) for

the statement (α1, α2), where c 6= c?. It is efficient to compute

a1 =
z?a − za
c? − c

, r1 =
z?r − zr
c? − c

, r2 =
z?r − zr
z?a − za

.

SHVZK. Given challenge c $← Zq , choose za, zr, z′r
$← Zq

and compute αt = αz

(α1)c , α
′
t = (α2)za

Commit.Com(ca3;z′r) . Clear, it is
an accepting conversation. Moreover, in the real conversation,
c, za, zr, z

′
r are mutually independent and all uniformly dis-

tributed over Zq . Given (c, za, zr, z
′
r), αt and α′t are uniquely

determined. It should be clear that this is the same as the
distribution of the simulated output.

ZKP for same derivation πSD. A ZKP for the relation
that the exponent of an exponentiation in the group G is
the corresponding plaintext of a Paillier ciphertext. Formally,
RSD = {(N, cu ∈ ZN2 , G, g ∈ G,U ∈ G); (u,R)|cu =
(1 +N)u ·R mod N2 ∧ U = gu}.
• The prover chooses s $← Zq, rs

$← Z∗N , computes S =
gs, cs = (1 +N)s · rNs mod N2 and sends {S, cs} to the
verifier.

• The verifier chooses c $← Zq and sends it to the prover.
• The prover computes z = s+ c ·u,Rz = Rc · (rs)N mod
N2 and sends (S, cs, z, Rz) to the verifier.

• The verifier verifies the proof by checking gz
?
= S · U c

and (cu)c · cs ?
= (1 +N)z ·Rz mod N2.

The Completeness of the above Sigma protocol for πSD is

clear, and we prove its Special soundness, and Special honest
verifier zero-knowledge (SHVZK) as follows.

Special soundness. Given two accepting conversations
(S, cs, c, z, Rz) and (S, cs, c′, z′, R′z), it is efficient to compute
u = z′−z

c′−c and R = (
R′z
Rz

)(c′−c)−1 mod q .

SHVZK. Given challenge c
$← Zq , choose z

$← Zq

and Rz
$← Z∗N2 . Then, compute S = gz

U and cs =

((1+N)z·Rz

cs)c
−1 mod q . This always yields an accepting conver-

sation. With the randomness of c, z ∈ Zq and Rz ∈ Z∗N2 , it is
clear that the distribution of the simulated output is the same
as the one in real conversation.

APPENDIX B
OVTSS

A. Syntax and correctness

OVTSS enables a sender to distribute a secret to n par-
ticipants such that any t of them can pool their shares to
reconstruct the secret, while the sender learns nothing about
each share, each participant learns nothing about the secret,
and the correctness of each share can be verified by the
corresponding participant.

Definition 8. (OVTSS). An OVTSS OVTSS is a tuple of five
algorithms (Setup,Prep,Share,Vrfy,Combine) that satisfies
the correctness property below.

• ({ski}n1 , pp)← Setup(1`, t, n): it generates a secret key
ski for each participantMi and public parameters pp (pp
will be implicitly input to the algorithms below.).

• (aux, α)← Prep(k, t, n): it is run by the sender S to gen-
erate some auxiliary information aux to share the secret
k and some commitment(s) α to support verifications.

•

(
vi
ssi

)
← Share

〈
S(k, aux)
Mi(ui, ski)

〉
(pp): it is an inter-

active algorithm between S and Mi, where Mi obtains
a share ssi using ui, and S outputs the corresponding
verification information vi.

• 0/1 ← Vrfy(α, ssi, vi): it is run by Mi to verify the
validity of ssi. Output 1 if it is valid, and 0 otherwise.

• k/⊥ ← Combine({ui, ssi}i∈S , t): it combines the shares
received from participants in the set S to reconstruct the
secret k. If the algorithm fails, it outputs ⊥.

Definition 9. (Correctness). For all ` ∈ N, any t, n ∈ N
such that t ≤ n, all ({ski}n1 , pp) generated by Setup(1`, t, n),

any (aux, c) generated by Prep, and all
(
ssi
vi

)
←

Share

〈
S(aux, k)
Mi(ui, ski)

〉
(pp), if S and {Mi}i∈S are hon-

est, then 1 ← Vrfy(α, ssi, vi). Moreover, if |S| ≥ t, then
k ← Combine({ui, ssi}i∈S).

B. Security properties

We elaborate on the security properties that OVTSS should
satisfy (i.e. verifiability, participant obliviousness, and dealer
obliviousness) one by one and depict them in Fig. 10.

Verifiability. Verifiability requires that when a participant
requests a share ssi of a secret k from a dealer, the participant

18

VerifiabilityOVTSS,A(1`, t, n)

1 : ({ski}n1 , pp)← Setup(1`, t, n)

2 : (k, aux, α, ui, ss
?
i , v

?
i)← A(1`, pp, t, n)

3 :

(
vi
ssi

)
← Share

〈
S(k, aux)
Mi(ui, ski)

〉
(pp)

4 : zi ← Vrfy(α, ss?i , v
?
i)

5 : If 0← Vrfy(α, ssi, vi) Restart

6 : Return zi ∧ (ssi 6= ss?i)

PObliviousnessOVTSS,A(1`, t, n)

1 : ({ski}n1 , pp)← Setup(1`, t, n)

2 : I ← A1(1`, pp, t, n)

3 : (k1, k2)← A2(1`, pp, {ski}i∈I)

4 : b
$← {0, 1}

5 : (aux, α)← Prep(k, t, n)

6 : For each i ∈ I do(
vi
ssi

)
← Share

〈
S(kb, aux)
A(ui, ski)

〉
(pp)

7 : b? ← A
8 : Return (b? = b) ∧ (|I| < t)

DObliviousnessOVTSS,A(1`, t, n)

1 : ({ski}n1 , pp)← Setup(1`, t, n)

2 : (k, aux, α, u0,1, ..., u0,n, u1,1, ..., u1,n)← A(1`, pp, t, n)

3 : b
$← {0, 1}

4 : For each i ∈ [1, n] do(
vi
ssi

)
← Share

〈
A(k, aux)
Mi(ub,i, ski)

〉
(pp)

5 : b? ← A
6 : Return b = b?

Fig. 10: Security definitions of OVTSS

can verify whether the obtained share ss?i corresponds to its
input ui. In other words, the dealer cannot forge verification
information for an incorrectly computed share.

Definition 10. (Verifiability). An OVTSS OVTSS = (Setup,
Prep, Share,Vrfy,Combine) is verifiable if for all t, n ∈
N, t ≤ n, and any probabilistic polynomial-time (PPT) ad-
versary A, there is a negligible function negl s.t.

Pr[VerifiabilityOVTSS,A(1`, t, n) = 1] ≤ negl(1`).

Obliviousness. We formalize obliviousness by defining par-
ticipant obliviousness and dealer obliviousness.

Participant obliviousness requires that as long as the number
of colluding mailmen is less than the threshold, they cannot
obtain any information about the shared secret.

Definition 11. (Participant obliviousness). An OVTSS
OVTSS = (Setup,Prep,Share,Vrfy,Combine) is oblivious
for participants if for all t, n ∈ N, t ≤ n and any PPT
adversary A, there is a negligible function negl s.t.

Pr[PObliviousnessOVTSS,A(1`, t, n) = 1] ≤ 1

2
+ negl(1`).

Dealer obliviousness requires that the sender cannot obtain
any information about the shares requested by the participants.

Definition 12. (Dealer obliviousness). An OVTSS OVTSS =
(Setup, Prep,Share,Vrfy,Combine) is oblivious for dealers if
for all t, n ∈ N, t ≤ n, and any PPT adversaries A, there is
a negligible function negl s.t.

Pr[DObliviousnessOVTSS,A] ≤ 1

2
+ negl(1`).

C. Construction

Our construction of OVTSS can be easily extracted from the
algorithm KeyDis presented in Section VI-C, where the sender
and the mailmen play the role of dealer and participants,
respectively, and k is the secret to be distributed. We do not
repeat the construction here to avoid redundancy.

