
B2T: The Third Logical Value of a Bit
Dipesh

Dept. of CSE
IIT Kanpur, India

dipesh@cse.iitk.ac.in

Vishesh Mishra
Dept. of CSE

IIT Kanpur, India
vishesh@cse.iitk.ac.in

Urbi Chatterjee
Dept. of CSE

IIT Kanpur, India
urbic@cse.iitk.ac.in

Abstract—Modern computing systems predominantly operate
on the binary number system that accepts only ‘0’ or ‘1’ as
logical values leading to computational homogeneity. But this
helps in creating leakage patterns that can be exploited by
adversaries to carry out hardware and software-level attacks.
Recent research has shown that ternary systems, operating on
three logical values (‘0, ‘1’, and ‘z’) can surpass binary systems
in terms of performance and security. In this paper, we first
propose a novel approach that assigns logical values based on
the direction of current flow within a conducting element, rather
than relying on the voltage scale. Furthermore, we also present
the mathematical models for each ternary gate.

Index Terms—Ternary System, HDL, Mathematical Model

I. INTRODUCTION

Modern computers operate on a binary system that con-
sists of only two logical values, namely ‘0’ and ‘1’, which
correspond to a true or false state. However, with moore’s
law reaching its limits, it has been difficult to cater to the
ever-increasing computational demands through conventional
binary-based computations. In addition, binary system facili-
tates a pattern of computational homogeneity that results in a
threat to the secret key entropy in the majority of cryptographic
implementations [1], [2].

Modern computer applications, particularly machine learn-
ing, artificial intelligence, and scientific computing, generate
substantial data computations that strain binary-based systems.
To overcome these challenges, researchers have been exploring
alternative computing approaches, including quantum comput-
ing, in-memory computing, and approximate computing, to
make computation faster and more secure. Moreover, they have
shown increasing interest in alternative number systems, offer-
ing advantages beyond the traditional binary system. Research
also shows that ternary-based cryptography performs better
than traditional binary-based cryptography not only in terms
of computation and energy [3] but also in terms of security
[4], [5]. In response to these opportunities, recent works [6]
have emerged, focusing on designing and implementing the
ternary number system with a radix of three. This ternary
system shows promising advantages over the binary system
regarding computation and security.

Unlike previous studies, we investigate using three ternary
logic values (0, 1, and z) within existing binary logic gates.
By incorporating ternary logic into the binary framework,
we aim to expand design possibilities and improve logic
circuit functionality. The key contributions of this work are
as follows:

• We adapt the hardware to implement ternary number sys-
tems by utilizing high impedance ‘Z’ in conducting elements
as a third logical value of a bit.

• Unlike traditional transistor-level designs, our unique ap-
proach integrates ternary logic into existing logic gates. We
validated this using Hardware Description Language (HDL)
Verilog and formulated the mathematical functionalities of
logical gates within the ternary system.

II. PROPOSED TERNARY SYSTEM

The existing binary system works on two logical values:
0 and 1. At the hardware level, zero corresponds to the
absence of an electrical signal or a low voltage level (usually
close to 0 volts), while one represents the presence of an
electrical signal or a high voltage level (usually at a specified
voltage, often referred to as the logic-high level). Alternatively,
it can also be attributed to the current movement inside a
conducting element. For instance, the current movement from
anode to cathode due to the high potential difference (e.g.,
5V) is considered logical ‘1’. If the movement is in the
reverse direction (reverse saturation current) or in the same
direction (but due to significantly low potential difference), it
is considered logical ‘0’. Interestingly, there can be a third
possibility as well. For example, there is a high impedance
inside the wire, (represented using ‘Z’ in Verilog HDL) or
the flowing current is significantly low (i.e., less than a pre-
defined threshold value) which can be used as our third logical
value for a bit. This way, the conducting element now has
three possible values viz., 0,1, and Z depending upon the net
movement of electrons inside it. The same convention can
be used to define the state of storage elements e.g. capacitor,
which is defined as follows:
• Logical 1; if Q/C >= T .
• Logical 0; if Q/C < T .
• X as used in HDL like verilog; if Q = 0.
Using symbols Q,C, T , we relate to the charge, capacitance,
and threshold voltage of a capacitor. Unlike binary systems
limited to 0 and 1, we introduce a third option, Z, for wires,
and X for registers. This extends to a new number system
where elements can be 0, 1, Z, or X. This introduces a ternary
system, offering three possible values to depict the state of
each conductor or storage unit. Figure 1, 2, and 3 briefly
explain the movement of electrons corresponding to these
logical values.

Free Electrons
Conducting Element Electrons Flow

Conventional Flow

+_

Fig. 1. Illustration of the movement of electrons inside the conducting element
(from cathode to anode). This shows that the current direction is from anode
to cathode, and the negative potential difference between cathode and anode is
significantly high. This is considered a logical 0 in the binary representation.

Free Electrons
Conducting Element Electrons Flow

Conventional Flow

+_

Fig. 2. Illustration of the movement of electrons inside the conducting
element (from anode to cathode). This shows that the current direction is from
cathode to anode, and the potential difference between cathode and anode is
significantly high. This is considered logical 1 in the binary representation.

Free ElectronsConducting Element

+_

Fig. 3. Illustration of the movement of electrons inside the conducting element
is entirely random, and as a net result, they cancel out each other. This means
there is no net movement (or neglectable) of electrons inside the conducting
element. This results in a high impedance denoted as Z in conventional
hardware description language like Verilog.

A. Logical gates behaviour with ternary inputs

The binary input behavior in logical gates is well-known,
our study pioneers by exploring how these gates work with
ternary inputs (’Z/X’).To conduct our research, we adopted
a hit-and-try methodology, introducing a third logical value
alongside the conventional binary values and meticulously
observing the resulting outputs for each logical gate. Our aim
is to grasp the influence of ternary inputs on the overall perfor-
mance and functionality of these gates during ASIC synthesis.
For the simulations, we employed advanced Computer-Aided
Design tools (CAD) like Iverilog V11 to define the behaviour
of circuits accurately. Using the Hardware Description Lan-
guage (HDL) to assign Z or X values as inputs allows a deep
examination of how existing logical gates behave with ternary
inputs. Our study utilized Verilog to analyze existing logical
gates like AND, OR, NOT, NOR, NAND, XOR, and XNOR.

Our research seeks to answer questions such as:
1. How does the introduction of ternary inputs impact the

truth tables and logical behavior of each gate? 2. Can ternary
inputs enhance the fault tolerance and reliability of digital
circuits? 3. Are there any unique applications for ternary
inputs in specialized computing environments? 4. What are the
limitations and challenges associated with integrating ternary
inputs in practical circuits?

By undertaking this innovative investigation, we hope to
pave the way for the adoption of ternary inputs in logic
design, opening up new possibilities for digital circuitry and

potentially leading to advancements in computing systems and
their applications.

In conclusion, our study aims to shed light on the function-
ality and viability of ternary inputs in logical gates, bringing
attention to this unexplored area of research and inspiring
further exploration into the world of ternary logic. The results
of our experiments will contribute to the broader understanding
of logic design and may spark new paradigms in digital
computing.

TABLE I
TRUTH TABLE FOR LOGIC GATES WITH TERNARY INPUTS

A B AND OR NOT NAND NOR XOR XNOR
0 0 0 0 1 1 1 0 1
0 1 0 1 1 1 0 1 0
0 Z 0 X 1 1 X X X
0 X 0 X 1 1 X X X
1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1
1 Z Z 1 0 X 0 X X
1 X X 1 0 X 0 X X
Z 0 0 X X 1 X X X
Z 1 Z 1 X X 0 X X
Z Z Z X X X X X X
Z X X X X X X X X
X 0 0 X X 1 X X X
X 1 X 1 X X 0 X X
X Z X X X X X X X
X X X X X X X X X

The results in Table I are crucial, forming a foundation to
examine established logical gates with a new input set: logical
0, logical 1, and logical Z/X. While we understand outcomes
for logical 1 and 0, our focus is on unraveling how gates
behave when one or both inputs are logical Z/X. This helps
us understand gate responses to uncertain inputs represented
by logical Z/X. The experimental results are presented in Table
I. In this table, columns A and B represent the inputs provided
to the aforementioned logical gates. The remaining columns
represent the corresponding outputs of these gates, based on
the given inputs in columns A and B. It is important to note
that the output of the NOT gate corresponds to the input ’A,’
as it is a single-input gate.
More precisely, the findings of the experiment are as follows:
• Gates show normal behaviour with the Z/X as an input to

the logical gates.
• X is shown in the output even though we have not provided

X as a single input.
• Z does not appear at a single output, even if both inputs of

a gate have provided Z as an input.
• No error is seen in the Verilog simulator.
Based on these findings, we draw several conclusions that are
listed as follows:
• The existing logical gates are designed to work on a ternary

number system.
• Both the binary and ternary number systems, can run on the

same hardware.
• The register cannot hold Z as a value.
• Z and X are equivalent on the hardware level as when Z is

passed to a buffer, it is converted to X, but X remains X on
the same experiment.

Additional note: X is used to represent both X/Z at the same
time, as they are equivalent in the findings.

Our experiments have showcased the behavior of each logic
gate. Based on the behavior and its analysis, we now aim to
realize each logic gate in a mathematical form with the help of
a function f . Clearly, the domain and range of this function
f is defined over set B = {−1, 0, 1}. Here, each element
represents the net movement of electrons inside the conducting
element viz., -1 represents logical 0, 1 represents logical 1, and
0 represents high impedance. The function f has the number
of parameters depends upon the type of logical gate, which
is 2 in most gates, except NOT gate, in which the number of
parameters is 1. However, the function always returns a single
value.

B. Functionality of logical gates

The functionality of each logical gate is defined using the
function f . The domain and range of each function is the set
B as defined above. The functionality of each logic gate is
defined using the observations and findings of table I.
• AND Gate:- The outputs corresponding to each input are

shown in Table I. As shown, ’0’ is returned when one input
is ’0’, ’X’ is returned when one or both of input/s is/are ’X’,
and another input is not ’0’, and ’1’ is returned when both
inputs are ’1’. From the above observation, we conclude that
the maximum of the passed parameter values is returned.
Consequently, functionality f is defined as:

f(A,B) =

{
B if A >= B
A if B > A

}
(1)

• OR Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’1’ is returned when one input
is ’1’, ’X’ is returned when one or both of input/s is/are
’X’, and another input is not ’1’, and ’0’ is returned when
both inputs are ’0’. From the above observation, we define
the functionality f as:

f(A,B) =

{
A if A >= B
B if B > A

}
(2)

• NOT Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’1’ is returned when input is
’0’, ’X’ is returned when input is ’X’, and ’1’ is returned
when input is ’0’. From the above observation, conclude
that the additive inverse of the passed parameter value is
returned. Also, functionality f is defined as:

f(A) = −A (3)

• NAND Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’1’ is returned when one input
is ’0’, ’X’ is returned when one or both of input/s is/are ’X’,
and another input is not ’0’, and ’0’ is returned when both
inputs are ’1’. From the above observation, we conclude that
the additive inverse of the maximum of the passed parameter
values is returned. Consequently, functionality f is defined
as:

f(A,B) = −C

where C =

{
B if A >= B
A if B > A

}
(4)

• NOR Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’0’ is returned when one input
is ’1’, ’X’ is returned when one or both of input/s is/are
’X’, and another input is not ’1’, and ’1’ is returned when
both inputs are ’0’. From the above observation, we are
able to conclude that the additive inverse of the minimum
of the passed parameter values is returned. Consequently,
functionality f is defined as:

f(A,B) = −C

where C =

{
A if A >= B
B if B > A

}
(5)

• XOR Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’0’ is returned when both inputs
are the same and not ’X’, ’X’ is returned when one input is
’X’, and ’1’ is returned when both inputs are not the same
and not ’X’. From the above observation, we conclude that
the additive inverse of the product of the passed parameter
values is returned. Also, functionality f is defined as:

f(A,B) = −(A.B) (6)

• XNOR Gate:- The outputs corresponding to each input are
shown in Table I. As shown, ’1’ is returned when both inputs
are the same and not ’X’, ’X’ is returned when one input is
’X’, and ’0’ is returned when both inputs are not the same
and not ’X’. From the above observation, we deduce that
the product of the passed parameter values is returned with
functionality, f defined as:

f(A,B) = (A.B) (7)

III. CONCLUSION

This paper highlights the practicality of employing the
ternary number system on existing hardware. By analyzing the
behavior of logical gates in the context of a ternary number
system, we establish a mathematical model applicable to both
binary and ternary systems.

REFERENCES

[1] S. Mangard et al., “Successfully attacking masked aes hardware imple-
mentations,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2005, pp. 157–171.

[2] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in Information
Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication: 5th IFIP WG 11.2 International Workshop,
WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings 5.
Springer, 2011, pp. 224–233.

[3] W. Alexander, “The ternary computer,” Electronics and Power, vol. 10,
no. 2, pp. 36–39, 1964.

[4] R. Bricout et al., “Ternary syndrome decoding with large weight,” in Se-
lected Areas in Cryptography–SAC 2019: 26th International Conference,
Waterloo, ON, Canada, August 12–16, 2019, Revised Selected Papers 26.
Springer, 2020, pp. 437–466.

[5] J. Adikari et al., “Hybrid binary-ternary number system for elliptic curve
cryptosystems,” IEEE transactions on computers, vol. 60, 2010.

[6] S. Lin, Y.-B. Kim, and F. Lombardi, “A novel cntfet-based ternary logic
gate design,” in 2009 52nd IEEE International Midwest Symposium on
Circuits and Systems. IEEE, 2009, pp. 435–438.

