Forged Attributes: An Existential Forgery
Vulnerability of CMS and PKCS#7 Signatures

v1.5, November 22, 2023

Falko Strenzke

MTG AG
falko.strenzke@mtg.de

Abstract. This work describes an existential signature forgery vulner-
ability of the current CMS and PKCS#7 signature standards. The vul-
nerability results from an ambiguity of how to process the signed mes-
sage in the signature verification process. Specifically, the absence or
presence of the so called SignedAttributes field determines whether the
signature message digest receives as input the message directly or the
SignedAttributes, a DER-encoded structure which contains a digest of
the message. If an attacker takes a CMS or PKCS#7 signed message M
which was originally signed with SignedAttributes present, then he can
craft a new message M’ that was never signed by the signer and has
the DER-encoded SignedAttributes of the original message as its con-
tent and verifies correctly against the original signature of M. Due to
the limited flexibility of the forged message and the limited control the
attacker has over it, the fraction of vulnerable systems must be assumed
to be small but due to the wide deployment of the affected protocols,
such instances cannot be excluded. We propose a countermeasure based
on attack-detection that prevents the attack reliably.

mailto:falko.strenzke@mtg.de

Table of Contents

|Forged Attributes: An Existential Forgery Vulnerability ot CMS and |
[PKCOS#7 Signatures v1.5, November 22, 2023 1
[InfroduchIon]. « - .o vvee e et 3
27 CMS Signatures|covvi 3
B PKCOS#T signatures|. ... 5
|4 Existential signature forgery attack|................l 5
[FProof-of-concept implementation].ouvveeeeinnreeaaa.. 6
6 Impact estimation|. 6
6.1 Applications that are not aftected| 6
6.2 The structure of the forged message| 7
6.3 Levelsof impact|. 8
6.4 Conceivable vulnerable systems| 9
.. 9
[T Mitigation in the CMS and PKCS#7 standards| 10
7.2 Attack detection as a mitigation in CMS and PKCS#7 |

| implementations| 10
7.3 Mitigation in application protocols| 10

1 10

11

11

12

12

1 Introduction

The CMS [1] and PKCS#7 [2] cryptographic data formats, both being very
similar to each other, are among the most widely used. Among other protocols,
they are employed for instance in S/MIME [3] and protocols for certificate man-
agement [4J5]. In this work, we describe an existential signature forgery attack
against the CMS and PKCS#7 protocols that is based on a design error in
the standards. Namely, the signature verification has to be carried out in two
different ways depending on the presence or absence of the optional so-called
Signed Attributes field in CMS signed messages (referred to as authenticated At-
tributes in PKCS#7). The misleading notion here is that these attributes may
seem to be protected through the signature, as, if they are present, their value
is passed to the signature digest algorithm. The message digest is contained in
these attributes and is thereby verified. However, the attacker can simply remove
them to cause the verifier to feed the message directly to the message digest.
Accordingly, encoded SignedAttributes themselves are a validly signed message
if the SignedAttributes field is absent from the structure.

2 CMS Signatures

CMS signatures are defined in [I]. A signed message consists of a SignedData
object with the following ASN.1 notation:

SignedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithms DigestAlgorithmIdentifiers,
encapContentInfo EncapsulatedContentInfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
signerInfos SignerInfos }

SignerInfos ::= SET OF SignerInfo

EncapsulatedContentInfo ::= SEQUENCE {
eContentType ContentType,
eContent [0] EXPLICIT OCTET STRING OPTIONAL }

The SignerInfo contains the signature:

SignerInfo ::= SEQUENCE {
version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue,

unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF AttributeValue }

AttributeValue ::= ANY

The crucial point for the vulnerability is optional presence of the Signed At-
tributes. If they are included in the SignerInfo structure is, according to the CMS
standard, at discretion of the signer. If they are included, they must contain at
least two specific attributes, namely the messageDigest and the contentType
attribute which are identified by the following OIDs:

id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkecs9(9) 4 }

id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkecs9(9) 3 }

where the message digest attribute value is given by an OCTET STRING
that contains the digest as its value of the signed message.

The CMS standard specifies the signature algorithm given in Algorithm
Here, the function invocation DER-encode(signed Attrs(M)) denotes the gener-
ation of the DER-encoded value of the SignedAttributes, which depends on M
due to the mandatory messageDigest attribute which contains HASH(M). The
function sign(K,, D) computes the signature over the message digest D.

Algorithm 1 CMS signature generation algorithm.

1: Algorithm CMS-SIGN(secret key K, message M)
2: if signedAttrs are absent then
D = HASH(M)
else
signed AttrF® = DER-encode(signed Attrs(M))
D = HASH(signed Attry ™)
end if
return sign(Ks, D)
end Algorithm

The corresponding signature the verification algorithm is given in Algorithm

Algorithm 2 CMS signature verification algorithm. The parameter
signedAttr]i[ER denotes the DER-encoded SignedAttributes structure of the
SignerInfo that is subject to verification and has the special value) if the Signe-
dAttributes are not present in the SignerInfo structure of the SignedData object.

1: Algorithm CMS-VERIFY(message M, public key K, signedAttrDF®, signature

S)
2: D =HASH(M)
3: if signedAttri™ = () then
4: E=D
5: else
6: F = message digest for M contained in signed AttrDFR
T if F'# D then
8: return FAIL
9: end if
10: E = HASH(signed AttriF®)
11: end if

12: return verify(K,, E, S)
13: end Algorithm

3 PKCS#7 signatures

PKCS#7 signatures are defined in [2]. They are mostly identical to CMS and
regarding the features relevant to the vulnerability that is subject of this work,
there is no difference between the two standards. The paragraphs describing the
digest computation are almost literally identical between both standards.

4 Existential signature forgery attack

An existential signatures attack against CMS or PKCS#7 signatures can be con-
ducted as follows. The signer signs a message M with Signed Attributes present.
The attacker takes the resulting SignerInfo from the SignedData and removes the
Signed Attributes from it. Then he replaces the content in the eContent field, i.e.
the signed message, with the same encoded SignedAttributesﬂ that he removed
in the prior step. This means that the verifier processes the message according
to SignedAttributes being absent and successfully verifies the signature for the
message

M’ = signedAttri " = DER-encode(signed Attrs(M))
that was never signed by the signer.

!Note that there is a difference between the encoding of the first byte of the structure
of the SignedAttributes depending on whether they are placed within a SignerInfo
structure or stand for themselves. They are fed to the message digest in the latter
form. See Appendix |§| for the details.

5 Proof-of-concept implementation

We created an attack tool that executes the attack against CMS SignedData
files and was tested successfully against OpenSSL. The attack is simulated with
the following command sequence:

openssl cms -sign -nodetach -signer signcert.pem -inkey signcert_pri.pem \
-binary -in data.file -outform DER -out test_sign.der

./forged_attributes.py test_sign.der

openssl cms -verify -signer signcert.pem -in test_sign.der \
-inform DER -noverify

openssl cms -verify -signer signcert.pem -in test_sign.der_forged \
-inform DER -noverify

where the tool forged_attributes.py performs the modifications to create
the forged SignedData object. The code of the attack tool is found in Appendix

We also made a proof-of-concept implementation of the attack using the CMS
verification routine of the BouncyCastle Java JCE provider. The forged message
is verified correctly using the method

org.bouncycastle.cms.SignerInformation.verify() E]

6 Impact estimation

In this section we estimate the impact of the existential forgery vulnerability.
For this purpose, we first explore under which circumstances applications are
not affected at all. Then we turn to the possible buildups of the forgeable mes-
sages. Finally, we attempt to qualify the likelihood for a number of conceivable
malicious effects of the forgeable messages.

6.1 Applications that are not affected

Some application protocols prescribe a buildup of the CMS or PKCS#7 structure
that makes the attack impossible. Specifically, this is the case when

1. the presence of the SignedAttributes in the SignerInfo is mandatory, as it
is the case for instance in SCEP [4], Certificate Transparency [5], Firmware
update according to RFC 4108 [6] or the German Smart Metering CMS data
format [7],

Zhttps://www.bouncycastle.org/docs/pkixdocsl.8on/org/
bouncycastle/cms/SignerInformation.html#verify-org.bouncycastle.cms.
SignerInformationVerifier-

https://www.bouncycastle.org/docs/pkixdocs1.8on/org/bouncycastle/cms/SignerInformation.html#verify-org.bouncycastle.cms.SignerInformationVerifier-
https://www.bouncycastle.org/docs/pkixdocs1.8on/org/bouncycastle/cms/SignerInformation.html#verify-org.bouncycastle.cms.SignerInformationVerifier-
https://www.bouncycastle.org/docs/pkixdocs1.8on/org/bouncycastle/cms/SignerInformation.html#verify-org.bouncycastle.cms.SignerInformationVerifier-

2. the message is first signed and then encrypted, as then the attacker cannot
learn the signature.

In these cases, no forgery can be conducted as the message will be refused
during or directly after the CMS or PKCS#7 signature verification.

However, note that in case of Item [I] above the security relies on a correct
implementation of the verification routine to ensure the presence of the Signe-
dAttributes which is not the case without the existential forgery vulnerability if
there are only trusted signers who produce correct SignerInfos for the respective
protocol.

6.2 The structure of the forged message

In order to assess the possible impact of the existential forgery, one has to con-
sider the spectrum of the structure of the forged message and the degree of
control that the attacker has over it.

The ASN.1 structure of the forged DER-encoded message is

SET {
SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF AttributeValue }
[...]
}

where one of the attrValues contains the message digest which is first of all
variable and second potentially controlled by the attacker to a certain degree.
The order of the attributes is arbitrary since for a SET the ordering is free.
The inclusion of potential further attributes depends on the signer. Likely is for
instance inclusion the ”useful attributes” listed in the standard [Il Section 11].

The minimum number of bytes before the variable message digest is 17 ac-
cording to Table [1] if the messageDigest attribute is the first attribute that is
encoded. The table demonstrates also the variability of the message for this case,
namely the length octet(s) <L> in the right column are variable according to
the content length.

However, with a different ordering of the Signed Attributes, only the tag octets
of the first three fields in Table [l| are fixed, and the remaining octets depend on
the (potentially proprietary) attributes chosen by the sender and their order in
the SET.

In order for the attacker to control the value of the messageDigest attribute,
he would need to be able to control a portion X of the message that is signed
and further be able to predict the complete value of the resulting signed message
with a sufficiently high probability in order to craft the desired message through
the following process:

— in an offline preparation phase vary X randomly until

M’ = DER-encode(signed Attrs(M (X)))

fields octets

T and L of SET 31 <L>

T and L of SEQUENCE messageDigest 30 <L>

attribute

T, L, and V of the messageDigest 06 09 2A 86 48 86 F7 0D 01 09 04
attribute OBJECT IDENTIFIER

T and L of the OCTET STRING 31 <L>

V of the OCTET STRING <message digest value>

Table 1: Minimal data up to and including the variable and potentially attacker
controlled message digest in the forgeable message. In the left column, T, L and
V refer to tag, length, and value in the ASN.1 structure, respectively. In the
right column, the fixed octet values are noted as hexadecimal numbers and <L>
stands for the length octets of the respective ASN.1 object.

has the desired form,

— let the signer sign with SignedAttributes present the message M found in
this way to produce the signature S,

— and submit M’ together with the valid signature S to the verifier in a Signer-
Info with SignedAttributes absent.

Clearly, in the ideal setting, to achieve specific values for n octets inside
messageDigest part contained in M’, he needs to perform on average 28”1 hash
evaluations. For a message with only 8 octets in the messageDigest chosen by
the attacker, he would thus need 2% hash evaluations, which is comparable to
breaking DES and already a highly costly computation.

6.3 Levels of impact

Due to the limited flexibility of the buildup of the forged message, the majority
of applications will not be affected in a strong sense, i.e. they will not process
the forged message as a syntactically correct message.

If the forged message is fed to a parser of an application layer protocol, it may
be the case that the forged message triggers security critical parser errors. The
reason for the forged message passing the parsing may be due to a permissive
syntax of the application layer protocol or a permissive implementation of the
parser.

After passing the parsing step, the forged message is subject to interpretation.
In case the message is subject to machine interpretation, according to the rather
inflexible structure of a least the leading 17 bytes, it is not very likely that a
targeted attack is possible in the sense that the attacker can choose to trigger
a certain action. It seems rather possible that denial of service attacks could
be conducted, for instance by crafting a validly signed but invalidly encoded
firmware update file which brings the receiving device into an unrecoverable
state. It cannot be excluded, though, that (potentially proprietary / non public)

protocols exist, for which the forged messages are interpretable and lead to the
triggering of harmful actions on the side of the receiving IT system.

When the message is subject to interpretation by human users, i.e., is to be
read as natural language, it is rather improbable that the attacker achieves the
rendering of a convincing message. Even in case the DER-encoded structure is
not preventing the rendering, it is hardly feasible that the attacker will be able to
craft meaningful messages through the brute-force algorithm outlined in Section
0.2

6.4 Conceivable vulnerable systems

In this section we describe a set of conceivable vulnerable systems based on
specific properties of the presumed application protocol. Thereby, we have of
course the precondition that the affected protocol must allow for the absence of
the SignedAttributes during verification.

Firmware Updates Secure firmware updates often use signatures without en-
cryption. If the forged message can bring a device, due to lack of robustness in
the parser implementation, into an error state, this may lead to a denial of ser-
vice vulnerability. The possibility of creating a targeted exploit can be excluded
with greatest certainty in this case due to the lack of control the attacker has
over the forged message.

Dense message space If a protocol has a dense message space, i.e. a high
probability that the forged message represents a valid command or the beginning
of a valid command, then, especially if the parser is permissive with respect to
trailing data, there is a risk that the message is accepted as valid. This requires
a protocol where messages are signed but not encrypted.

Signing unstructured data Protocols that sign unencrypted unstructured
messages, e.g. tokens, might be affected in that the signature of one token might
result in the corresponding forged message being another valid token.

External signatures over unstructured secret data The probably strongest
affected class of systems would be one that uses external signaturesEI, i.e. CMS
or PKCS#7 signatures with absent content (that may be transmitted encrypted
separately) over unstructured data, e.g. a token of variable length. In that case
the attacker could create a signed data object for a known secret.

7 Mitigation

In this section we discuss necessary and possible mitigation measures.

%nttps://datatracker.ietf.org/doc/html/rfc5652#section-5.2

https://datatracker.ietf.org/doc/html/rfc5652#section-5.2

7.1 Mitigation in the CMS and PKCS#7 standards

In order to remove the vulnerability, the standards need to be updated. The
signature verification needs to be unambiguous with respect to what is the signed
message. One solution would for instance be to always use the SignedAttributes
as the input to the message digest.

7.2 Attack detection as a mitigation in CMS and PKCS#7
implementations

Software libraries that implement the CMS and PKCS#7 signature verification
may consider to apply an attack detection mechanism to the signed message in
the case of the SignerInfo not carrying the SignedAttributes. Namely, they would
check if the signed message is a valid DER-encoded SignedAttributes structure
and in this case let the signature verification fail. This is clearly not standard
conforming, as in the case an application protocol would deliberately use such
a structure as the signed messagdﬂ7 it would invalidly fail. However, on the one
hand, it is very unlikely that any application uses a message exactly matching
encoded SignedAttributes. Furthermore, the CMS and PKCS#7 signing rou-
tines of the libraries could also test for the message being a valid DER-encoded
Signed Attributes structure and thus indicate to the application early that this
type of message is refused.

The algorithmic description of a possible implementation is given in Ap-

pendix [B]

7.3 Mitigation in application protocols

Application protocols that not already do so should be updated to always require
the presence of the SignedAttributes during the verification.

7.4 Mitigation in application implementations

Application implementations that cannot enforce the presence of the SignedAt-
tributes in the SignerInfo during verification should be ensured to behave ro-
bustly when receiving as input a message of the structure of SignedAttributes
and discard this message early during the processing. Furthermore, it should be
considered to use the attack detection mechanism described in Section [T.2

“Even though the buildup of the general ASN.1 structure of the SignedAttributes
may coincide with other structures, the presence of the combination of the contentType
and messageDigest attributes, identifiable through their respective object identifiers,
that are both mandatory in CMS and PKCS#7 SignedAttributes, should not often
occur in other contexts and thus should allow for identification of the Signed Attributes
with rather high confidence.

7.5 Signing with SignedAttributes absent

Clearly, if the signer signs his messages with Signed Attributes absent, he prevents
the attack. However, using this as an approach to mitigate the attack should be
considered with care, as it is not compatible with the more future-proof solution
to enforce the presence of the SignedAttributes during verification.

8 Conclusion

In this work we show an existential signature forgery attack against two widely
deployed security protocols. Signature forgeries are generally a severe type of
vulnerability as they, among other possible effects, allow to bypass authentica-
tion. In the present case, the effect seems to be limited in the majority of the
presumable applications, since the buildup of the forged message is rather inflex-
ible. However due to the presumably vast number of applications build on these
security protocols, the existence of vulnerable systems cannot be precluded.

We describe several approaches to mitigations. Especially the attack detec-
tion mechanism during the signature verification described in Section [7.2] seems
to be a quick and almost unconditionally applicable solution until a revision of
the standards has taken place.

References

1. R. Housley: RFC 5652: Cryptographic Message Syntax (CMS) (2009) https://
tools.ietf.org/html/rfc5652.

2. B. Kaliski: RFC 2315 — PKCS #7: Cryptographic Message Syntax Version 1.5
(1998) https://datatracker.ietf.org/doc/html/rfc2315,

3. J. Schaad, S. Turner, B. Ramsdell : RFC 8551 — Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 Message Specification (2019) https://tools.
ietf.org/html/rfc8551.

4. P. Gutmann: RFC 8894 — Simple Certificate Enrolment Protocol (2020) https:
//datatracker.ietf.org/doc/html/rfc8894,

5. B. Laurie, E. Messeri, R. Stradling: RFC 9162 — Certificate Transparency Version
2.0 (2021) https://www.rfc-editor.org/rfc/rfc9162.html.

6. R. Housley: RFC 4808 — Using Cryptographic Message Syntax (CMS) to Protect
Firmware Packages (2005) https://datatracker.ietf.org/doc/html/rfc4108.

7. Bundesamt fiir Sicherheit in der Informationstechnik: Technische Richtlinie BSI
TR-03109-1 — Anlage I: CMS-Datenformat fiir die Inhaltsdatenverschliisselung
und -signatur (2019) https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR03109/TR-03109-1_Errata-CMS.pdf?
__blob=publicationFile&v=9.

https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc2315
https://tools.ietf.org/html/rfc8551
https://tools.ietf.org/html/rfc8551
https://datatracker.ietf.org/doc/html/rfc8894
https://datatracker.ietf.org/doc/html/rfc8894
https://www.rfc-editor.org/rfc/rfc9162.html
https://datatracker.ietf.org/doc/html/rfc4108
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR-03109-1_Errata-CMS.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR-03109-1_Errata-CMS.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR-03109-1_Errata-CMS.pdf?__blob=publicationFile&v=9

Appendix

A SignedAttributes binary data

Here we present a sample DER~encoded SignedAttributes object for reference
in the form as they are signed. Note that they are encoded without the [0]
IMPLICIT tag that they carry when embedded into a SignerInfo structure.

The sample SignedAttributes value in hexadecimal notation:

31 4b 30 18 06 09 2a 86
Ob 06 09 2a 86 48 86 £f7
2a 86 48 86 f7 0d 01 09
22 81 99 93 42 58 14 86
£f1 37 04 99 c1 03 7b 53

48 86 £7 04 01
0d 01 07 01 30
04 31 22 04 20
6b 62 70 1e 29
b9 d4 9c 2c 8a

And the result of an ASN.1 parse thereof:
<31 4B 30 18 06 09 2A 86 48 86 F7 0D

0 75: SET {

09
2f
e0
19

01

<30 18 06 09 2A 86 48 86 F7 OD 01 09 03

2 24: SEQUENCE {

<06 09 2A 86 48 86 F7 0D 01 09 03>

03 31
06 09
be bd
ea 26

09 03 31 0B 06 09 2A 86 48 86 F7>

31 OB 06 09 2A 86 48 86 F7 OD 01>

4 9 OBJECT IDENTIFIER contentType (1 2 840 113549 1 9 3)
<31 OB 06 09 2A 86 48 86 F7 OD 01 07 01>
15 11: SET {
<06 09 2A 86 48 86 F7 0D 01 07 01>
17 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
}
}

<30 2F 06 09 2A 86 48 86 F7 OD 01 09 04 31 22 04 20 EO BE BD 22 81 99 93>

28 47: SEQUENCE {

<06 09 2A 86 48 86 F7 0D 01 09 04>
30 9: OBJECT IDENTIFIER messageDigest (1 2 840 113549 1 9 4)
<31 22 04 20 EO BE BD 22 81 99 93 42 58 14 86 6B 62 70 1E 29 19 EA 26 F1>

41 34: SET {

<04 20 EO BE BD 22 81 99 93 42 58 14 86 6B 62 70 1E 29 19 EA 26 F1 37 04>

43 32: OCTET STRING
EO BE BD 22 81 99 93 42 58 14 86 6B 62 70 1E 29

19 EA 26 F1 37 04 99 C1 03 7B 53 B9 D4 9C 2C 8A

B Attack detection countermeasure

In this section we provide an algorithmic description of a possible implementation
of the attack detection countermeasure described in Section The purpose is

to detect a potential attack during the signature verification and, to facilitate
interoperability, to prevent the generation of signed messages that would be
refused by a recipient who implements the attack detection countermeasure.

Algorithm [3] determines whether the input data fulfills the minimal condition
to be a valid SignedAttributes structure. It is used in the secure verification
routine, given in Algorithm [4] to protect against the attack and in the signature
generation routine, given in Algorithm|[5] to prevent the signer from signing data
that would not be veriable by a verifier that uses the attack detection.

Algorithm 3 Routine for determining that a given byte array is a valid DER-
encoded SignedAttributes structure. If one of the instructions indicated as “en-
sure ...” is not fulfilled, the algorithm breaks with result false

1: Algorithm IS-ATTACK-MESSAGE(message M)
2: contentTypeFound = false

3: messageDigestFound = false
4: ensure M is decodable as a SET
5: set = M
6: for all elements seq in set do
T ensure seq is decodable as SEQUENCE
8: ensure seq contains two elements
9: ensure first element in seq is of type OBJECT IDENTIFIER
10: attrOID = first element in seq
11: ensure second element in seq is of type SET
12: attrSet = second element in seq
13: if attrOID has value 2A 86 48 86 F7 OD 01 09 03 then
14: ensure attrSet contains a single element of type OBJECT IDENTIFIER
15: contentTypeFound = true
16: end if
17: if attrOID has value 2A 86 48 86 F7 0D 01 09 04 then
18: ensure attrSet contains a single element of type OCTET STRING
19: messageDigestFound = true
20: end if

21: end for
22: if contentTypeFound == true AND messageDigestFound == true then

23: return true // attack messsage detected
24: end if
25: return false

26: end Algorithm

C Attack tool in Python

In Listing we give the attack tool.

Algorithm 4 Attack detection during signature verification. This algorithm
prevents the signature forgery attack.

1: Algorithm SECURE-SIGNATURE-VERIFY(message M, signature S, public key K,
signedAttrsPresent (boolean))

2 if signedAttrsPresent then

3 perform the verification according to Algorithm

4 end if

5 if 1S-ATTACK-MESSAGE(M) then

6: return false

T end if

8: D =HASH(M)

9: return verify (K, D, S)

10: end Algorithm

Algorithm 5 Prevention of signing invalid messages during signature gener-
ation. This algorithm prevents the generation of signed messages that will be
refused by a verifier who implements Algorithm

1: Algorithm ROBUST-SIGN(message M, secret key K, signedAttrsPresent
(boolean))

2 if signedAttrsPresent then

3 perform the signature generation according to Algorithm

4 end if

5 if IS-ATTACK-MESSAGE(M) then

6: abort with error “invalid message”

7 end if

8: D =HASH(M)

9: return sign(Kp, D, S)

10: end Algorithm

#!/usr/bin/python3

import sys, os
from asnlcrypto import cms, util, core
import binascii

def main():
if len(sys.argv) != 2:
print ("missing input file")

print ("call with --help for more information")
sys.exit (1)
if sys.argv[1] == "--help":

print ("how to run attack:")

print ("openssl cms -sign -nodetach -signer signcert.pem -inkey signcert_pri.pem -binary -in data.
file -outform DER -out test_sign.der")

print("./forged_attributes.py test_sign.der")

print ("openssl cms -verify -signer signcert.pem -in test_sign.der -inform DER -noverify")

print ("openssl cms -verify -signer signcert.pem -in test_sign.der_forged -inform DER -noverify")

exit (0)
with open(sys.argv[1]l, ’rb’) as f:

info = cms.ContentInfo.load(f.read())

signed_data : cms.SignedData = infol[’content’]

signer_infos : cms.SignerInfos = signed_datal’signer_infos’]

for signer_info in signer_infos:
new_content : cms.CMSAttributes = signer_info[’signed_attrs’]
signer_info[’signed_attrs’] = None

new_content_bytes = bytearray(new_content.dump())

new_content_bytes [0] = 0x31

print ("new_content_bytes = " + str(binascii.hexlify(bytearray(new_content_bytes)).decode(’ascii’)))

signed_datal[’encap_content_info’][’content’]= core.OctetString(bytes(new_content_bytes))
with open(sys.argv[i] + °_forged’,’wb+’) as fout:
fout.write (info.dump ())

if __name__ == "__main__":
main ()

Listing C.1: Attack tool

	ForgedAttributes: An Existential Forgery Vulnerability of CMS and PKCS#7 Signatures v1.5, November 22, 2023
	Introduction
	CMS Signatures
	PKCS#7 signatures
	Existential signature forgery attack
	Proof-of-concept implementation
	Impact estimation
	Applications that are not affected
	The structure of the forged message
	Levels of impact
	Conceivable vulnerable systems

	Mitigation
	Mitigation in the CMS and PKCS#7 standards
	Attack detection as a mitigation in CMS and PKCS#7 implementations
	Mitigation in application protocols
	Mitigation in application implementations
	Signing with SignedAttributes absent

	Conclusion
	SignedAttributes binary data
	Attack detection countermeasure
	Attack tool in Python

