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Abstract. In recent years, symmetric primitives that focus on arithmetic metrics
over large finite fields, characterized as arithmetization-oriented (AO) ciphers, are
widely used in advanced protocols such as secure multi-party computations (MPC),
fully homomorphic encryption (FHE) and zero-knowledge proof systems (ZK). To
ensure good performance in protocols, these AO ciphers are commonly designed with
a small number of multiplications over finite fields and low multiplicative depths.
This feature makes AO ciphers vulnerable to algebraic attacks, especially integral
attacks. While a far-developed analysis for integral attacks on traditional block
ciphers defined over F2 exists, there is still a lack of research on this kind of attacks
over large finite fields. Previous integral attacks over large finite fields are primarily
higher-order differential attacks, which construct distinguishers by simply utilizing
algebraic degrees without fully exploiting other algebraic properties of finite fields.
In this paper, we propose a new concept called integral multiset, which provides a
clear characterization of the integral property of multiset over the finite field Fpn .
Based on multiplicative subgroups of finite fields, we present a new class of inte-
gral multisets that exhibits completely different integral property compared to the
previously studied multisets based on vector subspaces over the finite field F2. In
addition, we also present a method for merging existing integral multisets to create
a new one with better integral property. Furthermore, combining with monomial de-
tection techniques, we propose a framework for searching for integral distinguishers
based on integral multisets.
We apply our new framework to some competitive AO ciphers, including MiMC and
Chaghri. For all these ciphers, we successfully find integral distinguishers with lower
time and data complexity. Especially for MiMC, the complexity of some distinguish-
ers we find is only a half or a quarter of the previous best one. Due to the specific
algebraic structure, all of our results could not be obtained by higher-order differ-
ential attacks. Furthermore, our framework perfectly adapts to various monomial
detection techniques like general monomial prediction proposed by Cui et al. at
ASIACRYPT 2022 and coefficient grouping invented by Liu et al. at EUROCRYPT
2023. We believe that our work will provide new insight into integral attacks over
large finite fields.
Keywords: integral attack · integral multiset · multiplicative subgroup · monomial
detection

1 Introduction
In recent years, symmetric-key cryptographic primitives, such as stream ciphers, block ci-
phers, hash functions, pseudorandom generators, message authentication codes, etc., also
serve as fundamental building blocks for many advanced protocols like MPC, FHE and
ZK. In the traditional design of symmetric primitives, linear operations and non-linear op-
erations typically have similar costs. However, this is not the case in many MPC/FHE/ZK
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protocols, where non-linear operations, such as multiplications, often become the bottle-
neck. As a result, traditional symmetric-key primitives like AES are not efficient and the
design of symmetric-key primitives specifically tailored for advanced cryptographic proto-
cols becomes imperative. Since the invention of block cipher LowMC [ARS+15], a large
number of MPC/FHE/ZK-friendly symmetric-key primitives have been developed. These
include MPC-friendly designs such as MiMC [AGR+16], Ciminion [DGGK21] and AIM
[DKR+22]; FHE-friendly designs such as Rasta [DEG+18], Pasta [DGH+21] and Chaghri
[AMT22]; and ZK-friendly designs such as MARVELlous [AD18], Poseidon [GKR+21] and
Griffin [GHR+23].

Some innovative primitives that prioritize arithmetic metrics are known as AO ciphers.
The designs of AO ciphers differ significantly from traditional ones. In contrast to using
small S-boxes as non-linear layers, AO ciphers are preferred to employ non-linear func-
tions with explicit and concise algebraic representations over large finite fields. MiMC and
Chaghri are two classical AO ciphers. MiMC, a block cipher with extremely low multiplica-
tive complexity, was proposed at ASIACRYPT 2016. Since its birth, MiMC has gained
widespread attention, and subsequently, several variants of MiMC have emerged, such as
GMiMC [AGP+19] and HadesMiMC [GLR+20]. Due to the algebraic simplicity of round
function, MiMC has become the preferred choice for many use cases [GRR+16, RSS17].
It also served as a candidate for Zcash1 and a baseline in “STARK-Friendly Hash Chal-
lenge” competition2. Recently, MiMC has been applied in zkBridge [XZC+22], which is
an efficient cross-chain bridge proposed at ACM CCS 2022. Chaghri, proposed at ACM
CCS 2022 [AMT22], is an FHE-friendly block cipher defined over the finite field F263 with
efficient circuit implementation. Its implementation with HElib can outperform AES by
about 65%.

The structure of AO ciphers has a great influence on the type of attacks that can
be mounted. Statistical attacks (including linear [Mat94] and differential [BS91] ones),
which are considered to be two of the most powerful classical cryptanalytic tools, do
not seem to pose a significant threat to the security of AO ciphers. However, AO ciphers
are naturally vulnerable to algebraic attacks, especially higher-order differential attacks
[EGL+20, BCD+20, BCP23, CHWW22, LAW+23, LGB+23]. Actually, higher-order dif-
ferential attacks are a specific case of integral attacks over finite fields of characteristic
2. Integral attacks involve the summation over a multiset, while higher-order differential
attacks require constraining the multiset to a linear subspace. In higher-order differential
attacks, accurately evaluating the algebraic degree is of utmost importance, which can
be achieved through direct estimation [CV02, BCD11, BC11, CGG+22] or monomial de-
tection [TIHM17, HSWW20, CHWW22, LAW+23]. There have been numerous research
achievements and well-established research methodologies for higher-order differential at-
tacks. However, in the case of integral attacks, particularly over large finite fields, the
research is rather insufficient. To the best of our knowledge, most of previously proposed
integral distinguishers over large finite fields are constructed solely based on algebraic
degree. This greatly limits the integral attacks, thus failing to showcase their significant
potentials on symmetric primitives for MPC/FHE/ZK protocols. Hence, proposing a the-
oretical framework for integral attacks over large finite fields is of great significance. It
would enable more systematic research on integral attacks and facilitate a more accurate
evaluation of the security of symmetric primitives against integral attacks.

In this paper, we introduce a new concept called integral multiset for better char-
acterizing the integral property and propose a novel theoretical framework for finding
integral distinguishers targeting MPC/FHE/ZK-friendly symmetric primitives. In order
to demonstrate the effectiveness of our framework, we apply it to a selection of competi-
tive AO ciphers, including MiMC and Chaghri. Consequently, we successfully find several

1https://github.com/zcash/zcash/issues/2233
2https://starkware.co/hash-challenge/
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distinguishers with lower complexity compared to previous ones [CHWW22, LAW+23].
In particular, the contributions of this paper are summarized below.

1. We introduce a new concept called integral multiset, which can be seen as a gen-
eralization of three-subset division property without unknown set. This concept
aims to better characterize the integral property for a given multiset of finite fields.
Moreover, we provide a classical construction method for integral multisets based
on multiplicative subgroups of finite fields. Additionally, we present an approach for
merging existing integral multisets to create a new one with improved integral prop-
erty. Furthermore, by combining with monomial detection techniques, we propose
a framework for searching for integral distinguishers using integral multisets.

2. By combining our new method with two state-of-the-art monomial detection tech-
niques, namely monomial prediction and coefficient grouping, we applied our frame-
work to analyze the symmetric primitives: MiMC and Chaghri. The results are
promising, as we successfully find some integral distinguishers with lower time and
data complexity compared to the previous best results. In Table 2, 5, 6, we present
the results for the standard versions of MiMC, Feistel MiMC, and Chaghri, respec-
tively. Additionally, in Table 3, we show the results for MiMC with different expo-
nents, while Table 4 displays the outcomes of merged multisets. It is worth noting
that all the distinguishers we found could not be obtained by using higher-order
differential attacks.

Based on the above results, we believe that our framework is useful for carrying out the
integral attacks over large finite fields and worth further investigation.

The rest of this paper is organized as follows. In Section 2, we give the notations and
introduce some background knowledge about finite field, integral attack and monomial
detection. Section 3 is the main section of this paper. In Subsection 3.1, we introduce the
concept of integral multiset and reveal its relationship with integral distinguishers. In Sub-
section 3.2, we show how to construct valuable integral multisets based on multiplicative
subgroups of finite fields. In Subsection 3.3, we present a method for generating an inte-
gral multiset with better integral property by merging existing ones. In Subsection 3.4, a
framework for determining integral distinguishers based on monomial detection technique
is introduced. Section 4 shows the details of our experiments on different competitive AO
ciphers. We conclude the paper in Section 5.

2 Preliminaries
2.1 Notations
In this paper, we will use the following notations. We denote a finite field with q elements
as Fq. We denote F∗

q = Fq \ {0} and it is well known that F∗
q is a cyclic group. For

a finite field Fq, q must be a power of a prime, i.e., q = pn. Let Fpn denote the finite
field with characteristic p and Ft

pn denote the t-dimensional vector space over the finite
field Fpn . We denote the polynomial ring over Fpn as Fpn [x] and the set of integers
{i : a ≤ i ≤ b} as [a, b]. We use bold italic latters to represent vectors, e.g. a ∈ Ft

q

denotes the vector a = (a0, a1, . . . , at−1), where ai ∈ Fq. For any a ∈ [0, 2n − 1], we
have a =

∑n−1
i=0 ai · 2i, ai ∈ {0, 1}, and its Hamming weight is wt(a) = |{i : ai ̸= 0}|.

Correspongdingly, the Hamming weight of u ∈ [0, 2n−1]t is wt(u) =
∑t−1

i=0 wt(ui). We use
⊕ as addition over F2 or F2n and + over Fp or Fpn . For a multiset X, we use |X| to represent
the number of elements or, in other words, the cardinality of X. For simplicity, we denote
a set of all integers j ∈ [0, n−1] satisfying d | j as Dn

d and a set of all integers j ∈ [0, n−1]
satisfying d ∤ j as UDn

d , i.e., Dn
d = {j ∈ [0, n− 1] : d | j},UDn

d = {j ∈ [0, n− 1] : d ∤ j}.
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Let F : Ft
pn → Fpn be a function over Fpn [x0, x1, . . . , xt−1]/(xpn

0 −x0, xpn

1 −x1, . . . , xpn

n−1−
xn−1). Function F can be uniquely expressed as

F (x) = F (x0, x1, . . . , xt−1) =
∑

u∈{0,1,...,pn−1}t

auxu =
pn−1∑
i0=0

pn−1∑
i1=0
· · ·

pn−1∑
it=0

ai0,i1,...,it
xi0

0 xi1
1 · · ·x

it
t ,

where every coefficient au ∈ Fpn and xu = πu(x) =
∏n−1

i=0 xui
i is called a monomial. In

particular, the function G : Ft
2n → F2n can be represented as

G(x) = G(x0, x1, . . . , xt−1) =
⊕

u∈{0,1,...,2n−1}t

auxu =
2n−1⊕
i0=0

2n−1⊕
i1=0
· · ·

2n−1⊕
it=0

ai0,i1,...,it
xi0

0 xi1
1 · · ·x

it
t ,

If the coefficient of xu is zero, we say xu is not contained by F , denoted by xu ↛ F .
Otherwise, xu is contained by F , denoted by xu → F . The univariate degree of F on
variable xj is denoted by dj(F ) and defined as:

dj(F ) = max{ij : 0 ≤ ij ≤ 2n − 1, ai0,i1,...,it
̸= 0}.

Moreover, the algebraic degree d(F ) of F can be computed as

δ(F ) = max{
t∑

j=1
wt(ij) : 0 ≤ ij ≤ 2n − 1, ai0,i1,...,it ̸= 0}.

2.2 Finite field
Finite field is an important algebraic structure that consists of a finite set of elements along
with two operations, addition and multiplication. Fp with a large prime number p and
F2n are widely used in cryptography. A subfield is a subset of a field that is itself a field,
inheriting the same set of operations and satisfying the same properties as the original
field. Multiplicative group of a finite field is the group under multiplication operation
with respect to this finite field. For finite fields and multiplicative groups, we list some
useful theorems here.

Theorem 1. Let Fpn be the finite field with pn elements. Every subfield of Fpm has pm

elements for some positive integer m dividing n. Conversely, for any positive integer m
dividing n there is a unique subfield of Fpm of order pm.

Theorem 2. The multiplicative group F∗
q of a finite field Fq is cyclic.

Theorem 3. Let H be a cyclic group generated by x, if |H| = n is finite, then for each
positive integer a | n there is a unique subgroup of H of order a. This subgroup is the
cyclic group ⟨xd⟩, where d = n

a .

2.3 Integral attack
The integral attack was firstly introduced by Daemen et al. [DKR97] and formalized by
Knudsen and Wagner [KW02]. It is a chosen plaintext attack and a theoretical general-
ization higher-order differential cryptanalysis [Lai94]. In an integral attack, the crucial
aspect is to find an input multiset for which the sum of their output is a key-independent
constant value. Such an input multiset is called an integral distinguisher. A concrete
definition of integral distinguisher is given as below.
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Definition 1 (Integral Distinguisher). Let Er : Ft
pn → Ft

pn be an r-round cipher and X
be a multiset whose elements belong to Ft

pn . If the sum of ciphertext over X satisfies∑
x∈X

Er(x) = 0,

then X is an integral distinguisher of cipher Er.

An integral distinguisher should be able to distinguish a cipher from a random per-
mutation. In previous bit-based integral attacks, the input multiset usually consists of
plaintexts taking all possible combinations in d input positions, whereas the remaining
bits take a fixed value. According to the theory of higher-order differential cryptanalysis
[Lai94], the sum of any Boolean function with algebraic degree smaller than d over such
a multiset would become zero and naturally form an integral distinguisher.

With an integral distinguisher, the attacker is able to recover partial information of
secret key by guessing and then the remain part of key would be recovered by a brute-
force attack. Particularly, this process can be accelerated with the partial-sum technique
[FKL+01], the meet-in-the-middle technique [SW13] and the fast fourier transform tech-
nique [TA14]. However, the trivial key-guessing approach is inefficient on AO ciphers like
MiMC. In [EGL+20], Eichlseder et al. proposed a new strategy of key recovery by con-
structing a low-degree polynomial.

2.4 Monomial detection
Monomial detection is an important method used to identify the presence of monomials in
a given function. The ability to quickly and accurately determine whether a certain mono-
mial is contained by a complicated function is crucial for estimating the (algebraic) degree
of function and constructing algebraic attacks. Monomial prediction [HSWW20], based on
the division property [Tod15, TM16, HLM+20], is a monomial detection technique that is
widely employed in constructing cube attacks and integral attacks. Subsequently, the gen-
eralized monomial prediction [CHWW22] has been proposed, showcasing its formidable
capabilities in attacking AO ciphers like MiMC. In addition to monomial prediction, coeffi-
cient grouping [LAW+23, LGB+23] serves as another monomial detection technique. The
main idea of coefficient grouping is to give a compact expression for all possible mono-
mials and encode it as some constraints. Compared to monomial prediction, coefficient
grouping is more efficient and lightweight. However, its applicability is somewhat limited
and currently confined to field-based ciphers with quadratic round function.

3 Integral distinguishers based on integral multisets
3.1 Integral multiset
Let y = F (x, k) be a function from Fpn × Fpn to Fpn , we can express it as

F (x, k) =
pn−1∑
i=0

ai(k)xi,

where the coefficients ai(k) are related to k. Given a multiset X whose elements belong
to Fpn , then the sum of F on X is

∑
x∈X

F (x, k) =
∑
x∈X

pn−1∑
i=0

ai(k)xi =
pn−1∑
i=0

ai(k)
∑
x∈X

xi =
∑
ai ̸=0

ai(k)
∑
x∈X

xi. (1)
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According to Equation (1), we know that if
∑

x∈X xi = 0 for all i such that ai ̸= 0, the
sum equals to 0; otherwise, the value of sum would depend on k. Then, a natural question
raises, that is, how to construct a proper multiset such that the sum of a specific function
F (x, k) becomes 0. As is known, the basic component of function is the monomial. For
any monomial, the value obtained by summing it over a set is deterministic. Therefore,
approaching the problem from the perspective of monomials will make the entire issue
clearer and more comprehensive. In order to conduct a more in-depth investigation, we
proposed a new concept called the integral multiset.
Definition 2 (Integral Multiset). Given a multiset X whose elements belong to Fpn and
a set E ⊆ [0, pn − 1], if the multiset X satisfies

∑
x∈X xj = 0 for all j ∈ E and

∑
x∈X xj

is always non-zero for j ∈ [0, pn − 1] \ E, then we say that X belongs to an E-integral
multiset, or X is an E-integral multiset, where E is the set indicating integral property.

According to Definition 2, it is obvious that for any multiset X, there must exist a set
E such that X belongs to an E-integral multiset. The direct approach to compute an E
is to iterate over all monomials. To enhance readers’ comprehension of the concept of the
integral multiset, a simple example is presented below.
Example 1. Let α be a primitive element of F24 with the irreducible polynomial f(x) =
x4 + x + 1. Let X be a multiset whose element belong to F24 . As an example, we prepare
the multiset as

X := {0, α, α, α, α6, α8, α8, α11}.
Table 1 calculates the sum of xj for different j.

Table 1: Summation table of X := {0, α, α, α, α6, α8, α8, α11}.

j
x 0 α α α α6 α8 α8 α11 ⊕

xj

0 1 1 1 1 1 1 1 1 0
1 0 α α α α6 α8 α8 α11 0
2 0 α2 α2 α2 α12 α α α7 0
3 0 α3 α3 α3 α3 α9 α9 α3 α3

4 0 α4 α4 α4 α9 α2 α2 α14 0
5 0 α5 α5 α5 1 α10 α10 α10 0
6 0 α6 α6 α6 α6 α3 α3 α6 α6

7 0 α7 α7 α7 α12 α11 α11 α2 0
8 0 α8 α8 α8 α3 α4 α4 α13 0
9 0 α9 α9 α9 α9 α12 α12 α9 α9

10 0 α10 α10 α10 1 α5 α5 α5 0
11 0 α11 α11 α11 α6 α13 α13 α 0
12 0 α12 α12 α12 α12 α6 α6 α12 α12

13 0 α13 α13 α13 α3 α14 α14 α8 0
14 0 α14 α14 α14 α9 α7 α7 α4 0

For all j ∈ H = UD15
3 ∪{0}, the sum

⊕
x∈X xj becomes 0. Therefore, X is an H-integral

multiset.
Specifically, some multisets exhibit a constant integer value in the non-zero part, and

this property can be advantageous when constructing an integral distinguisher. To ef-
fectively represent such multisets, we present the definition of integral multiset with two
levels.
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Definition 3 (Integral Multiset with Two Levels). Let X be a multiset whose elements
belong to Fpn and E ⊆ [0, pn − 1]. When the multiset X satisfies:

∑
x∈X

xj =

{
0, j ∈ E

c, otherwise
,

where c ∈ Fpn is a constant, we call X belongs to an E-integral multiset with two levels,
or X is an E-integral multiset with two levels.

For an integral multiset with two levels, consider the following example: Y := {0, 1, α5, α10},
where α is a primitive element of F24 with the irreducible polynomial f(x) = x4 + x + 1.
In the case of Y, its indicated set is the same as X in Example 1, while

⊕
y∈Y yj always

evaluates to 1 in the non-zero part. It is not crucial for the values in the non-zero part to
be fixed constants when directly constructing an integral distinguisher, while combining
different two-level integral multisets is more likely to yield a superior integral multiset.

3.1.1 Comparsion with division property

Compared to the word-based division property [Tod15], the integral multiset is more
refined. Firstly, the word-based division property treats the non-zero sum value as “un-
known”, while the integral multiset calculates the exact value of sum. Secondly, the
word-based division property partitions the exponents solely based on Hamming weights,
whereas the integral multiset partitions them using an indicated set E. In summary, the
integral multiset can characterize the summation property more accurately.

To compare it with the bit-based division property [TM16, HLM+20], we firstly provide
the definition of bit-based integral multiset.

Definition 4 (Bit-based Integral Multiset). Given a multiset X whose elements belong
to Fn

2 and a set E ⊆ {0, 1}n, if the multiset X satisfies
⊕

x∈X xj = 0 for all j ∈ E and⊕
x∈X xj is always 1 for j ∈ {0, 1}n \ E, then we say that X belongs to an E-bit-based

integral multiset, or X is an E-bit-based integral multiset.

Since the only non-zero element in F2 is 1, there is no difference between bit-based
integral multiset and bit-based integral multiset with two levels. According to Definition 4,
it is evident that the bit-based integral multiset is essentially equivalent to the three-subset
division property without unknown set, where E corresponds to the set of elements that
appear an odd number of times in L in the latter case. Therefore, the core idea behind
the integral multiset can be regarded as a generalization of three-subset division property
without unknown set over Fpn .

3.1.2 The relation between integral multisets and integral distinguishers

Consider a field-based cipher Enc : Fpn ×Fpn → Fpn , it can be represented by a function:

F (x, k) =
pn−1∑
i=0

pn−1∑
j=0

ai,jxikj =
pn−1∑
i=0

gi(k)xi =
∑
i∈I

gi(k)xi,

where x is the plaintext, k is the secret key and I = {j : gj(k) ̸= 0} = {j : xj → F (x, k)}
represents the set of indices corresponding to non-zero coefficients. Given that an input
multiset X is an E-integral multiset, the sum of F (x, k) over X can be computed as:∑

x∈X

F (x, k) =
∑
x∈X

∑
i∈I

gi(k)xi =
∑

i∈I∩E

gi(k)
∑
x∈X

xi +
∑

i∈I−E

gi(k)
∑
x∈X

xi =
∑

i∈I−E

gi(k)ci.

Here, we use I − E to represent the set {i : i ∈ I, i /∈ E}. The sum would become zero
when I − E = ∅, i.e. I ⊆ E. Therefore, a proposition is derived.
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Proposition 1. Let F (x, k) : Fpn ×Fpn → Fpn be the function of a field-based cipher and
X be a multiset whose elements belong to Fpn . If X is an E-integral multiset, then the
following statements are equivalent:

1. For each monomial xj → F (x, k), its expononet satisfies j ∈ E;

2. For any secret key k ∈ Fpn ,
∑

x∈X F (x, k) = 0;

3. X is an integral distinguisher of F (x, k).

According to Proposition 1, it appears that a multiset X would be more useful with a
larger indicated set E. However, the cardinality |X| is also an important role in integral
attacks as it is closely related to the complexity of attacks. Additionally, an integral
distinguisher should be able to distinguish a cryptographic algorithm from a random
permutation. Therefore, some trivial multisets, such as a multiset with p identical elements
over Fpn , are useless.

3.2 A new class of integral multisets based on multiplicative subgroups
In this subsection, we will introduce how to construct valuable integral multisets with
some algebraic structures such as subfields and multiplicative subgroups. First of all, the
sum of certain monomial over a finite field can be summarized as the following lemma:

Lemma 1. Let p be a prime and xj be a monomial in Fpn [x], pn > 2, j is a non-negative
integer, then the sum of xj over the whole finite field is

∑
x∈Fpn

xj =

{
0, (pn − 1) ∤ j or j = 0
p− 1, (pn − 1) | j and j ̸= 0.

Proof. When j = 0, it is clear that∑
x∈Fpn

x0 =
∑

x∈Fpn

1 = p = 0.

When (pn − 1) ∤ j, we have

(1− gj)
∑

x∈Fpn

xj = (1− gj)
∑

x∈F∗
pn

xj = (1− gj)
pn−2∑
i=0

(gi)j =
pn−2∑
i=0

(gi)j −
pn−2∑
i=0

(gi)j = 0,

where g is a primitive element of F∗
pn . Since 1− gj ̸= 0,

∑
x∈Fpn

xj = 0.
When (pn − 1) | j and j ̸= 0, we have∑

x∈Fpn

xj =
∑

x∈F∗
pn

xj = pn − 1 = p− 1.

The proof is completed.

Lemma 1 implies that Fpn is a [0, pn − 2]-integral multiset with two levels. Though
most of function would yield a zero sum over this multiset, its large cardinality makes it
ineffective in attacks. Consequently, a subfield with smaller cardinality will be a better
choice when constructing an integral distinguisher.

Theorem 4. Let m be an integer dividing n, p be a prime and Fpm be a subfield of Fpn .
Consider the multiset H = Fpm , then H belongs to an UDpn

pm−1 ∪ {0}-integral multiset
with two levels.
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The proof of Theorem 4 is similar to Lemma 1 and thus is skipped here. Theorem 4
states that if a function f(x) does not contain a monomials xj satisfying j ̸= 0 and
(pm − 1) | j, then we can find a multiset X with cardinality pm such that

∑
x∈X f(x) =

0. Instead of solely focusing on the algebraic degree of f(x), this approach pays more
attention on the presence of monomial xc·(pm−1), c > 0, which presents a new perspective
for constructing an integral distinguisher. Furthermore, it is worth noting that Lemma 1
can be extended to multivariate cases, which might also be useful in constructing integral
distinguishers.

Corollary 1. Let p be a prime and xj0
0 xj1

1 · · ·x
jt−1
t−1 be a monomial in Fpn [x0, x1, . . . , xt−1], pn >

2, j0, j1, . . . , jt−1 are non-negative integers, then

∑
(x0,x1,...,xt−1)∈Ft

pn

xj0
0 xj1

1 · · ·x
jt−1
t−1 =

{
(p− 1)t, (pn − 1) | j0, (pn − 1) | j1, . . . , (pn − 1) | jt−1,

0, otherwise.

Although Theorem 4 presents a new method for constructing an integral distinguisher,
the requirement of m | n in Theorem 1 is too strict, significantly limiting the number of
available choices. For example, consider a finite field with size 2129, the size of its subfields
is restricted to either 23 or 243. Actually, multiplicative subgroups of finite fields have
nice integral property as well.

Lemma 2. Let p be a prime, xj be a monomial in Fpn [x] and G be a multiplicative
subgroup of Fpn , pn > 2, j is a non-negative integer, then the sum of xj over G is

∑
x∈G

xj =

{
0, |G| ∤ j

|G|, |G| | j.

It should be noted that
∑

x∈G x0 would not be 0 because the cardinality of G is not
necessarily a multiple of p. This property is not desirable as, in most cases, the functions
we analyze typically include a constant component. To address this issue, one possible
approach is to augment the multiset with several 0s, thereby ensuring its cardinality
becomes a multiple of p.

Theorem 5. Let p be a prime, G be a multiplicative subgroup of Fpn , S be a multiset
consisting only of 0s and p | (|S|+ |G|). Consider the multiset H = G∪S, then H belongs
to an UDpn

|G| ∪ {0}-integral multiset with two levels.

Proof. When j = 0, the sum is∑
x∈H

x0 =
∑
x∈H

1 = |S|+ |G| = 0.

When |G| ∤ j, we have

(1− gj)
∑
x∈H

xj = (1− gj)
∑
x∈G

xj = (1− gj)
|G|−1∑

i=0
(gi)j =

|G|−1∑
i=0

(gi)j −
|G|−1∑

i=0
(gi)j = 0,

where g is a generator of multiplicative subgroup G. Since 1− gj ̸= 0,
∑

x∈H xj = 0.
When |G| | j and j ̸= 0, we have ∑

x∈H

xj =
∑
x∈G

xj = |G|.

The proof is completed.
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In the case of binary extension field F2n , only one zero element needs to be added.
Therefore, the size of subgroup |G| will play a dominant role in determining the cardinality
of multiset H. According to Theorem 2 and 3, the size of multiplicative subgroup G is a
factor of pn−1, providing a wider range of choices. For instance, consider a multiplicative
group with size p = p1 · p2 · p3, it would yield a total of 6 meaningful subgroups with
different sizes.

3.3 Creating integral multisets with better integral property
Having a wider ranger of options for integral multiset will increase the probability of
discovering superior integral distinguishers. In Subsection 3.2, we present several integral
multisets based on subfields and multiplicative subgroups, which provides a method for
utilizing the specific structure of finite fields to construct integral multisets with desirable
integral properties. In this subsection, we will introduce a method that merges small
multisets to create a multiset with improved integral property.

Let X belongs to an E-integral multiset and F (x, k) : Fpn×Fpn → Fpn be the function
of field-based cipher. According to Proposition 1, the sum of F (x, k) over X would not
be zero if there exists a monomial xj → F (x, k) and j /∈ E, and thus this does not fulfill
the requirements of an integral distinguisher. If the set of monomials that do not belong
to E satisfies specific conditions, it is possible to construct an integral distinguisher by
merging X and its cosets.

Proposition 2. Let p be a prime, X be an E-integral multiset whose elements belong
to Fpn and aX := {ax : x ∈ X}, bX := {bx : x ∈ X} be its cosets, where a, b ∈ Fpn .
Consider a new multiset Y = X ∪ aX ∪ bX, if ai + bi + 1 = 0, then Y belongs to an
E ∪ {i, p · i, p2 · i, . . .}-integral multiset.

Proof. Because Y = X ∪ aX ∪ bX, we have∑
x∈Y

xj =
∑
x∈X

xj +
∑

x∈aX

xj +
∑

x∈bX

xj =
∑
x∈X

(xj + (ax)j + (bx)j) = (1 + aj + bj)
∑
x∈X

xj .

For j ∈ E, it is clear that∑
x∈Y

xj = (1 + aj + bj)
∑
x∈X

xj = (1 + aj + bj) · 0 = 0.

For j ∈ {i, p · i, p2 · i, . . .}, there exists l such that j = pl · i and the sum becomes∑
x∈Y

xj = (1 + aj + bj)
∑
x∈X

xj = (1 + apl·i + bpl·i)
∑
x∈X

xj = (1 + ai + bi)pl ∑
x∈X

xj = 0.

Equation (1 + a + b)p = 1 + ap + bp holds as the characteristic of Fpn is p.

Finding a pair of elements (a, b) that satisfy ai + bi + 1 = 0 for a given exponent i
in a finite field is not a challenging task. Proposition 2 shows how to construct a bet-
ter multiset so that its indicated set can cover all the monomials of a certain function.
However, merging also leads to a larger cardinality, which means higher complexity in
attacks. Naturally, there are many other methods to handle multisets for improved in-
tegral properties apart from merging. How to adjust a multiset to construct an integral
distinguisher on certain cryptographic algorithms will be a worthwhile research question.
Figuring out this problem would require a deep understanding of algebraic structures and
cryptographic algorithms.
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3.4 Combining with monomial detection
Determining the expression of a cryptographic algorithm is not an easy task. Due to its
complexity, computing and directly storing the expression can be challenging. Fortunately,
it is unnecessary to do so, and confirming the presence of some monomials is sufficient to
determine integral distinguishers with our method. Actually, there have been several stud-
ies on monomial detection, such as division property, monomial prediction and coefficient
grouping. These techniques exhibit certain differences in terms of accuracy and efficiency.
Attackers would prefer applying an efficient no-false-alarm monomial detection algorithm
rather than an accurate yet inefficient one. In this context, a no-false-alarm algorithm
implies that it may mistakenly identify some non-existent monomials as existing, but it
will always correctly identify monomials that do exist. Given an E-integral multiset and
a cipher Enc, the algorithm to determine whether it forms an integral distinguisher in
certain round is as shown in Algorithm 1.

Algorithm 1 A framework for determining integral distinguishers
1: procedure IDJudicator( Indicator set E, cipher Enc, the number of round R)
2: flag ← 0
3: Ē ← [0, pn − 1] \ E
4: for j ∈ Ē do
5: flag ←MonomialDetect(Enc, R, j)
6: if flag == 1 then
7: return False
8: end if
9: end for

10: return True
11: end procedure

The function MonomialDetect() in line 5 is responsible for monomial detection. When
the monomial does not exist, it returns 0; otherwise, it returns 1. The monomial detection
process is treated as a black box. Therefore, Algorithm 1 is an universal algorithm that can
accommodate all monomial detection methods. Cryptanalysts can choose any monomial
detection technique they desire based on the target cipher, computational capabilities,
and other requirements.

4 Experiments
In Section 3, we introduced the concept of integral multiset and proposed Algorithm 1
for determining an integral distinguisher. These components naturally form a framework
for exploring integral distinguishers. In order to demonstrate the effectiveness of integral
multiset, we applied our framework to two specific ciphers: MiMC and Chaghri. As a
result, we successfully found some better integral distinguishers, exactly, the currently
optimal integral distinguishers for the same number of rounds. In this section, we will
provide a detailed description of our experiments and corresponding results.

4.1 Application to MiMC
MiMC [AGR+16] is a key-alternating block cipher over a large binary extension field F2n

or a prime field Fp. In this paper, we will only focus on the binary field version of MiMC.
In detail, the encryption function of MiMC is

Ek(x) = (Fr−1 ◦ Fr−2 ◦ · · · ◦ F0)(x) + k,
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where x ∈ F2n is the plaintext and r is the number of rounds. The round function Fi

of MiMC is quite simple, consisting of a cube function f(x) = x3 and an addition. More
specifically, each Fi is defined as

Fi(x) = (x + k + ci)3,

where ci ∈ F2n is the round constant and c0 = 0. All the round constants are chosen
randomly at the instantiation of MiMC and then fixed. Figure 1 presents a high-level
overview of MiMC. We denote MiMC with exponent d and block size n as MiMCd(n, r).
To ensure the round function be a permutation, the block size n has to be odd. In the
specification of MiMC, the designers allow exponents of the form 2l + 1 and 2l − 1. The
recommended value for block size is 129. According to the requirement of security, the
number of round is r = ⌈n · logd 2⌉. In [AGR+16], designers totally give three types of
MiMC, namely MiMC-n/n, MiMC-2n/n (Feistel) and MiMC-p/p. We have considered all
the three types and provided the details in the following text.

𝑥 ⊕

𝑘

𝑋3 𝑋3 𝑋3⊕ ⊕ ⊕ 𝑦

𝑘𝑘 ⊕ 𝑐1 𝑘 ⊕ 𝑐𝑟−1

Figure 1: r-round MiMC encryption function.

4.1.1 Application to MiMC-n/n

MiMC-n/n is the most basic block cipher of MiMC, and it is also the most extensively
analyzed MiMC block cipher in the literature. Designers of MiMC claim that the large
number of rounds ensures that the algebraic degree of MiMC in its native field will be
maximum or almost maximum. This naturally thwarts higher-order differential attacks.
However, Eichlseder et al. [EGL+20] stated that the algebraic degree of MiMC grow
linearly in the number of rounds and not exponentially, and thus the security margin
against is only 1 or 2 rounds. Let δ

(d,r)
[EGL+20] denote the theoretical upper bound of algebraic

degree in [EGL+20]. Then the bound is computed as δ
(d,r)
[EGL+20] = ⌊log2(dr + 1)⌋. Besides

the bound δ
(d,r)
[EGL+20], Bouvier et al. [BCP23] proposed another theoretical bound of

algebraic degree for the case d = 2l + 1, denoted by δ
(d,r)
[BCP 23]. δ

(d,r)
[BCP 23] is tighter than

δ
(d,r)
[EGL+20] and computed as

δ
(d,r)
[BCP 23] =

{
2 · ⌈kr/2− 1⌉, l = 1,

⌊r log2 d⌋ − l + 1, l >= 2,

where kr = ⌊r log2 d⌋.
The state-of-the-art work on estimating the algebraic degree of MiMC is based on

field-based division property [CHWW22]. Cui et al. proposed a method for finding
integral properties over binary extension fields F2n , called general monomial prediction
(GMP). They decomposed the cipher into a sequences of simple functions and proposed
the corresponding propagation rules of monomials. With the aid of the bit-vector theory
of Satisfiability Modulo Theories (SMT), they successfully modeled the propagation of
monomials using CVC [BBB+22] input language and took STP [GD07, CGP+08] and
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Cryptominisat5 [SNC09] as solvers. In particular, an initial constraint wt(u(0)) = l needs
to be added into the SMT model for detecting the monomials with l Hamming weight,
where u(0) is the exponent of input variable x(0). A simple framework of their degree
estimation method is illustrated in Algorithm 2. The upper bound found by GMP, denoted
as δ

(d,r)
GMP , is the best upper bound so far. Moreover, δ

(d,r)
GMP exactly equals to the observed

algebraic degree in small-scale instances [CHWW22], which highlights the accuracy of
GMP.

Algorithm 2 Degree estimation method in [CHWW22]
1: procedure DegEst(The r-round SMT model Mr, the maximum algebraic degree ∆)
2: i← ⌊log2(dr + 1)⌋
3: while i > 0 do
4: M ←Mr

5: M.addConstr(wt(u(0)) = i)
6: solve M
7: if M is satisfiable then
8: return i
9: end if

10: i← i− 1
11: end while
12: return 0
13: end procedure

In this experiment, we employ GMP as our monomial detection method and find the
highest round integral distinguishers for each candidate integral multiset. As a result, we
successfully find some effective integral distinguishers. First of all, to determine whether
a monomial xj is contained by r-round MiMC, we need to modify the initial constraint
of SMT model from wt(u(0)) = l to u(0) = j. Given a multiset X belongs to an E-
integral multiset, according to Proposition 1, it is necessary to ensure that none of the
monomials xj , satisfying j /∈ E, are contained by r-round MiMC in order to form an
integral distinguisher. Obviously, it is inefficient to evaluate monomials individually. By
observing the integral multiset obtained from Theorem 5, it is evident that we only need to
focus on non-zero exponents that are divisible by the size of the multiplicative subgroup, i.e.
the set D2n

|G| \{0}. Fortunately, SMT supports modular arithmetic constraints. Therefore,
by modifying the initial constraints to u(0)%|G| = 0 and u(0) > 0, we can determine
whether the multiset is an r-round integral distinguisher by solving only one SMT model.
The detail of searching algorithm is shown in Algorithm 3.

The function ModelGen(r, d) in line 5 would return the SMT model for MiMCd(129, r)3.
In Algorithm 3, we start the process of searching from round br = ⌊logd |G|⌋ instead of
round 0. This is because the highest degree monomial that can appear in MiMCd(129, r)
is xdr , which means that the monomial xc·|G|, c > 0, will not appear in the first br rounds.
As a result, the input multiset will always form an integral distinguisher within the initial
br rounds.

By factoring 2129 − 1, we get an expression 2129 − 1 = 7 · 431 · 9719 · 2099863 ·
11053036065049294753459639, which means there are totally 30 meaningful subgroups
with different sizes. We firstly applied Algorithm 3 to MiMC3(129, r), the standard ver-
sion of MiMC, and found some effective integral distinguishers of different rounds. The
result on MiMC3(129, r) is listed in Table 2. In the subsequent results presentation, we
will use bold font to highlight significant improvements.

3As the process of generating model is not the main focus, it will not be further discussed in this paper.
Interested readers can refer to [CHWW22].
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Algorithm 3 Search for integral distinguishers using UD2n

|G| ∪ {0}-integral multiset
1: procedure IDSearch(The size of group |G|, block size n, the exponent of round

function d)
2: R← ⌈n · logd 2⌉
3: br ← ⌊logd |G|⌋
4: while br ≤ R do
5: M ←ModelGen(br, d)
6: M.addConstr(u(0)%|G| = 0)
7: M.addConstr(u(0) > 0)
8: solve M
9: if M is satisfiable then

10: return br − 1
11: end if
12: br ← br + 1
13: end while
14: return R
15: end procedure

Table 2: Effective integral distinguishers found on MiMC3(129, r).

Round δ
(d,r)
GMP Comp. of HD-ID⋆ |G|∗ Comp. of IM-ID†

3 4 25 p1 23

6 8 29 p2 28.75

16 24 225 p1 · p2 · p3 224.81

21 32 233 p1 · p2 · p4 232.56

60 94 295 p1 · p2 · p5 294.75

⋆ The complexity of integral distinguisher based on higher-order
derivative is computed as 2δ

(d,r)
GMP

+1, where δ
(d,r)
GMP is the estimated

upper bound of algebraic degree.
∗ (p1, p2, p3, p4, p5) = (7, 431, 9719, 2099863, 11053036065049294753459639).
† According to Theorem 5, a zero element needs to be added. Hence,

the complexity of integral distinguisher based on integral multiset
is computed as 2log2(|G|+1).

To verify the results, we implemented the cipher MiMC3(129, r) with SageMath [The20]
and tested the sum for a large number of randomly generated keys and round constants in
small-scale instances. Across different keys and round constants, we consistently obtained
a sum of zero, which proves the correctness of our method.

During the process of searching, we totally found 5 integral distinguishers better than
the previous ones constructed using higher-order derivative. It is worth noting that GMP
is an efficient and accurate method for algebraic degree estimation, and the difference
between the bound δ

(d,r)
GMP and the actual algebraic degree is small. This statement holds

true for at least some verifiable small instances [CHWW22]. Therefore, although the new
integral distinguishers found by our method do not exhibit a significant improvement on
complexity, such results cannot be obtained solely through the use of algebraic degree.
This advantage is well demonstrated in the round 3 result shown in Table 2. By directly
computing the expression of output function, it can be observed that the monomial with
highest degree is 27 and the set of monomials {x5, x7, x13, x14, x15, x20, x21, x22, x23} does
not appear. A subspace with 25 elements is required for a higher-order differential attack
because the algebraic degree of output function is 4. However, we can derive a new
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integral distinguisher based on the multiplicative subgroup of size 7 due to the absence of
{x7, x14, x21}.

We also applied Algorithm 3 to MiMCd(129, r) with exponents d ∈ {5, 7, 9, 15, 17},
respectively. Table 3 shows our results on MiMCd(129, r) with different exponents. We
successfully found some integral distinguishers for all d ∈ {5, 7, 9, 15, 17}. Specifically,
when d = 17, we obtained a 12-round integral distinguisher with a complexity of 243, which
is only a quarter of the complexity of previous one. This result demonstrates that it is
possible to enhance the efficiency of integral attacks on complex functions with our method.
According to Lucas’s Theorem4, after one round of iteration, a power function with d =
2l − 1 will generate more terms/monomials than the one with d = 2l + 1. This implies
that the output of cipher with x2l−1 as round function is more likely to become dense
after several rounds, which intuitively helps prevent attacks based on integral multiset.
However, Table 3 shows that integral multiset still proves effective when d = 2l − 1. This
indicates that the designer cannot resist our attack by simply replacing the round function
of the cipher.

Table 3: Effective integral distinguishers found on diffrent versions of MiMCd(129, r).

d Round δ
(d,r)
GMP Comp. of HD-ID |G| Comp. of IM-ID

5
2 3 24 p1 23

41 94 295 p1 · p2 · p5 294.75

49 112 2113 p2 · p4 · p5 2112.95

7 9 24 225 p1 · p2 · p3 224.81

17 45 246 p1 · p2 · p3 · p4 245.81

9 2 3 24 p1 23

11 32 233 p1 · p2 · p4 232.56

15 29 112 2113 p2 · p4 · p5 2112.95

31 120 2121 p1 · p3 · p4 · p5 2120.25

17 2 3 24 p1 23

12 44 245 p2 · p3 · p4 243

When searching for integral distinguishers using a given multiplicative subgroup G,
we found that some rounds cannot form an integral distinguisher due to the existence of
a small number of monomials xj satisfying |G| | j. However, according to Proposition 2,
if these appearing monomials meet certain conditions, we can obtain a new integral dis-
tinguisher by merging the original integral multiset with its cosets. We also applied this
method to different version of MiMCd(129, r). The results of experiment are shown in
Table 4.

4.1.2 Application to MiMC-2n/n (Feistel)

The designer of MiMC also proposed MiMC-2n/n, or Feistel MiMC, whose non-linear per-
mutation is the same as MiMC. We denote Feistel MiMC with exponent d and block size n
as FeistelMiMCd(n, r). The i-th round function of FeistelMiMCd(n, r) is shown in Figure 2
and defined as

(x(i+1)
0 , x

(i+1)
1 )← (x(i)

1 ⊕ (x(i)
0 ⊕ k ⊕ ci)d, x

(i)
0 ).

The round constants ci are again chosen randomly except for the first and last round

4By Lucas’s Theorem,
(

n
m

)
=

∏k

i=0

(
ni
mi

)
(mod 2), where n =

∑k

i=0 ni · 2i, m =
∑k

i=0 mi · 2i and
ni, mi ∈ {0, 1}.
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Table 4: Effective integral distinguishers found on diffrent versions of MiMCd(129, r) by
merging integral multiset.

d Round δ
(d,r)
GMP Comp. of

HD-ID
|G| Monmials⋆ Comp. of

IM-ID∗

3 7 10 211 p2 {x2|G|, x4|G|} 210.33

64 100 2101 p1 · p3 · p5 2100.83

5 20 44 245 p2 · p3 · p4 {x4|G|, x8|G|} 244.59

15 1 4 25 p1 {x|G|, x2|G|} 24.46

12 44 233 p2 · p3 · p4 {x2|G|, x4|G|, x8|G|} 244.59

⋆ The set of monomials {xj : |G| | j} that exists in MiMCd(129, r).
∗ According to Proposition 2, the size of new merged multiset is 3 · (|G| + 1). Due

to the binary extension field, we can reduce the number of 0 from 3 to 1. Thus,
the complexity of integral distinguisher based on merged multiset is computed as
3|G|+ 1.

⊕ ⊕

𝑘 ⊕ 𝑐𝑖

𝑥0
(𝑖+1)

𝑥1
(𝑖)

𝑥1
(𝑖+1)

𝑥0
(𝑖)

𝑥𝑑

Figure 2: The i-th round function of FeistelMiMCd(n, r)

constants which are equal to 0. The number of rounds for FeistelMiMCd(n, r) is r′ = 2 ·r =
2 · ⌈n · logd 2⌉.

We focus on the univariate case of Feistel MiMC. In this case, we only consider the
input and output of left branch. Because of the structure of Feistel network, all integral
distinguishers found in this way can be naturally extended with 2 more rounds. With-
out a doubt, when considering the same nonlinear function and number of rounds, the
output of left branch of Feistel MiMC is denser than that of MiMC. New variable x1
and addition of both branches decrease the probability of two identical monomials can-
celing each other out. Taking the example of three rounds, the set of missing mono-
mials for MiMC is {x5, x7, x13, x14, x15, x20, x21, x22, x23}, while for Feistel MiMC it is
{x14

0 , x15
0 , x20

0 , x21
0 , x22

0 , x23
0 }. However, when we applied Algorithm 3 to the standard ver-

sion FeistelMiMC3(n, r), we found that the Feistel network did not prevent us from finding
better integral distinguishers. The result is shown in Table 5.
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Table 5: Effective integral distinguishers found on FeistelMiMC3(129, r).

Round δx0(x(r)
0 )⋆ Comp. of HD-ID |G| Comp. of IM-ID

7 11 212 p1 · p2 211.56

15 23 224 p1 · p4 223.81

58 91 292 p2 · p5 291.94

71 112 2113 p2 · p4 · p5 2112.95

73 115 2116 p1 · p2 · p4 · p5 2115.75

74 117 2118 p3 · p4 · p5 2117.74

⋆ We denote the algebraic degree of left branch over x
(0)
0 as δx0(x(r)

0 ).

4.1.3 Applications to MiMC-p/p

A variant of MiMC over prime finite fields is denoted as MiMC-p/p. MiMCHash over prime
finite field is one of the candidate hash function in STARKWARE hash challenge. To
ensure the round function as a permutation, the prime number p should satisfy gcd(3, p−
1) = 1. When MiMC-p/p is used to construct hash function, the prime number p should
also satisfy p− 1 = 2l · q.

When we attempted to directly apply our framework for seeking integral distinguishers
on MiMC-p/p, we encountered two problems. The first problem is the lack of monomial
detection over Fp. Though GMP can work perfectly on MiMC-n/n, the propogation of
monomial over Fp is greatly different from that over F2n , which limits the application of
GMP on MiMC-p/p. The second problem is more essential. During our previous process
of searching, we make use of the absence of certain monomials, e.g. though d(F ) > |G|,
monomials xc·|G| do not appear. For a ciphers over F, where p is a large prime, the
corresponding function would be very dense. This property greatly restricts the existence
of lower complexity integral distinguishers based on multiplicative subgroups. However,
we can still construct distinguishers based on multiplicative subgroups if d(F ) < |G|.
Beyne et. al. [BCD+20] give the concrete proposition.

Proposition 3. Let G be a multiplicative subgroup of F∗
p, where p is a prime. For any

F : Fp → Fp such that d(F ) < |G|, we have∑
x∈G

F (x) = F (0) · |G|.

It is worth noting that, besides Proposition 3, we are still able to find integral distin-
guishers with lower complexity by using the framework of integral multiset. This can be
achieved by our merging method or a new class of integral multisets. We will provide
an example of merging multisets to find better integral distinguishers. As for how to
construct a new class of integral multisets, it is a topic that requires further research and
investigation.

Example 2. Consider MiMC-p/p with p = 2161 + 23 · 2128 + 1, we can factor p − 1 as
2128 ·5 ·31 ·37 ·1497809. For 80-round MiMC-p/p, we can use a multiplicative subgroup G1
with size 2128, since 380 < 2128. When the round number of cipher comes to 81, according
to Proposition 3, the smallest multiplicative subgroup we can use is the group G2 with
size 5 · 2128.

By investigating the polynomial of 81-round MiMC-p/p, we know that among mono-
mials xc·|G1| only x|G1| would appear. According to Proposition 2, we can construct an
integral distinguisher based on a multiset with size 3 · |G1| = 3 · 2128.
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4.2 Applications to Chaghri
Chaghri [AMT22] is a FHE-friendly block cipher defined over a large finite field. The block
size of Chaghri is 189. We denote the state by a = (a1, a2, a3) ∈ F3

263 . The number of
round is 8 and each round is composed of two steps. The step function S(a) of Chaghri5
is shown in Figure 3 and defined as

𝐺(𝑥)

𝐺(𝑥)

𝐺(𝑥)

𝐵(𝑥)

𝐵(𝑥)

𝐵(𝑥)

𝑀

⊕

⊕

⊕

𝑎1

𝑎2

𝑎3

𝑅𝐾1

𝑅𝐾2

𝑅𝐾3

Figure 3: The step function of Chaghri.

S(a) = M ·B(G(a))T + RK,

where RK = (RK1, RK2, RK3) ∈ F3
263 is the round key. The components used in step

function are the nonlinear function G(a) = (a232+1
1 , a232+1

2 , a232+1
3 ), the affine transform6

B(a) = (c1a23

1 +c2, c1a23

2 +c2, c1a23

3 +c2) and a 3×3 Maximum Distance Separable (MDS)
matrix M .

Coefficient grouping technique [LAW+23, LGB+23], proposed and refined by Liu et al.,
is a novel method for monomial detection. It has been successfully employed to construct
integral distinguishers targeting Chaghri. The main idea of coefficient grouping is to give
an expression of all possible monomials and find the maximum Hamming weight among
the exponents. To be specific, by setting the input state as

a
(0)
1 = A0,1X + B0,1, a

(0)
2 = A0,2X + B0,2, a

(0)
3 = A0,3X + B0,3,

where X ∈ F263 is the variable and A0,i, B0,i ∈ F263(1 ≤ i ≤ 3) are randomly chosen
constants, the set of possible exponents in r-th round is

wr = {e : e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Nr
i }. (2)

Mn(x) is a function defined as follows:

Mn(x) =

{
2n − 1, (2n − 1) ∤ x and x ̸= 0,

x%(2n − 1), otherwise.

In Equation (2), the vector of integers (Nr
n−1, Nr

n−2, . . . , Nr
0 ) can be computed by the

recursive relation

N j+1
i = N j

(i−35)%n + N j
(i−32)%n, 0 ≤ i ≤ n− 1, j ≥ 0

5In this paper, we consider the decryption of Chaghri, since the secure number of rounds mainly depends
on the security of decryption and low multiplicative depth in decryption desired in FHE schemes.

6c1, c2 ∈ F263 are constants. In fact, after the proposal of coefficient grouping [LAW+23], the affine
transform has been replaced by a denser one. However, we focus on the original version in order to make
a better comparison with the result in [LAW+23].
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and the initial value is
N0

0 = 1, N0
i = 0, 1 ≤ i ≤ n− 1.

With the value of (Nr
n−1, Nr

n−2, . . . , Nr
0 ), the algebraic degree can be obtain by finding

the maximum Hamming weight. In [LAW+23], the authors encoded the problem as an
MILP (Mixed Integer Linear Programming) problem and presented the methodology for
modeling arithmetic addition and comparison as MILP constraints.

It should be noted that only when j ∈ wr will the monomial xj appear in the r-round
Chaghri. The detection of certain monomial xj naturally becomes a constraint problem,
as shown below:

Mn(
n−1∑
i=0

2iγi) = j,

0 ≤ γi ≤ Nr
i , i = 0, 1, . . . , n− 1.

(3)

In order to detect the existence of monomials with non-zero exponents that are divisible
by the size of a certain multiplicative subgroup G, we need to replace Mn(

∑n−1
i=0 2iγi) =

j with Mn(
∑n−1

i=0 2iγi)%|G| = 0 and Mn(
∑n−1

i=0 2iγi) > 0. However, the presence of
Mn(

∑n−1
i=0 2iγi)%|G| = 0 prevents us from encoding the problem as an MILP problem

as [LAW+23]. After carefully examining the operations and variable domains in the
constraint problem, we have realized that SMT, supporting bit vectors and arithmetic
operations, is a better choice. Therefore, we model the problem with CVC input language
and solve it using STP as the solver. In particular, an algorithm for exploring the set of
monomials {xj : |G| | j, j > 0} is shown in Algorithm 4.

Algorithm 4 Explore the set of monomials {xj : |G| | j, j > 0} with coefficient grouping
1: procedure MonSearch(The size of group |G|, the r-th round coefficient limit

(Nr
n−1, Nr

n−2, . . . , Nr
0 ))

2: M ← an empty model
3: R← ∅
4: for i from 0 to n− 1 do
5: M.addV ar(ai)
6: M.addConstr(ai ≥ 0)
7: M.addConstr(ai ≤ Nr

i )
8: end for
9: M.addV ar(s)

10: M.addConstr(s =
∑n−1

i=0 2iai)
11: M.addConstr(s > 0)
12: M.addConstr(s%|G| = 0)
13: solve M
14: while M is satisfiable do
15: t←M.getV al(s)
16: R← R ∪ {t}
17: M.addConstr(s ̸= t)
18: solve M
19: end while
20: return R
21: end procedure

Algorithm 4 includes two phases: constructing the basic model and finding all solu-
tions. Lines 2-12 depict the process of constructing SMT model with the limit of r-round
coefficient (Nr

n−1, Nr
n−2, . . . , Nr

0 ). On the other hand, lines 13-19 iteratively exclude fea-
sible solutions until the model becomes unsatisfiable. If the output of Algorithm 4 is an
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empty set, an integral distinguisher can be obtained based on Proposition 1 and Theo-
rem 5. Otherwise, the sum over |G| ∪ {0} would not be equal to 0. However, if the output
satisfies certain conditions, it is still possible to form an integral distinguisher by merging
integral multiset, as described in Proposition 2.

With the above algorithm, it is easy to search for integral distinguishers for multiplica-
tive subgroup with any size. By factoring 263 − 1, an expression 263 − 1 = 7 · 7 · 73 · 127 ·
337 · 92737 · 649657 is obtained. We denote the algebraic degree upper bound of r-step
Chaghri as δr. Applying Algorithm 4 to Chaghri, some integral distinguishers which are
more effective than previous ones in [LAW+23]. The result is listed in Table 6.

Table 6: Effective integral distinguishers found on Chaghri

Step δr Comp. of HD-ID |G|⋆ Comp. of IM-ID
8 17 218 q1 · q2 · q4 217.39

15 35 236 q5 · q6 235.81

17 40 241 q2 · q3 · q4 · q6 240.88

17 40 241 q1 · q2 · q3 · q4 · q5 240.88

24 58 259 q2 · q3 · q4 · q5 · q6 258.97∗

⋆ (q1, q2, q3, q4, q5, q6) = (7, 73, 127, 337, 92737, 649657).
∗ This distinguisher is constructed by merging integral multiset. The

monomial with non-zero exponent that is divisible by |G| found in
24-th step is x2|G|.

With integral distinguishers in Table 6, we can mount the integral attack on differ-
ent steps of Chaghri with lower data and time complexity. Furthermore, according to
[LAW+23], one more step can be easily extended by setting the input carefully.

5 Conclusion
In the past two decades, bit-based block ciphers or ones with efficient bit-based implemen-
tation have played a dominant role in symmetric cryptographic primitives. Consequently,
when we refer to integral attacks, more often than not, we are referring to higher-order dif-
ferential attacks. Recently, there has been a surge of MPC/FHE/ZK-friendly symmetric
primitives. These primitives are typically defined over large finite fields such F2n and Fp.
When dealing with these primitives, using higher-order derivative to construct integral
distinguishers is no longer the most natural choice. In fact, it would even fail to be effec-
tive over finite field with odd characteristic. How to effectively perform integral attacks
over large finite fields has become a subject worthy of research. While there have been
scattered studies in the past, there is still a lack of research on the framework of integral
attacks over large finite fields.

In this paper, we introduce a novel concept called integral multiset, which provides a
clear and unified characterization of the integral property of multisets over the finite field
Fpn . Previous higher-order differential distinguishers can be regarded as a class of integral
multiset based on vector subspaces. In particular, we present a new class of integral
multisets based on multiplicative subgroups and a method about how to merge existing
integral multisets to create one with better integral property. Combining with monomial
detection techniques, we propose a framework for searching for integral distinguishers and
apply it to MiMC and Chaghri. For the ciphers defined over F2n , we find some integral
distinguishers with lower time and data complexity, which were not achievable by higher-
order differential attacks. For the ciphers defined over Fp, we also demonstrated that
the merging method indeed enables us to find better distinguishers. Furthermore, our
framework can perfectly adapt to various monomial detection techniques. From this fact,
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we expect that the integral multiset will be of great help in improving integral attacks. In
order to resist integral attacks based on multiplicative subgroups, the designer of cipher
should choose a field with as few multiplicative subgroups as possible.

Finally, there are still some open questions that require further research. For example,
how to construct E-integral multisets for any indicated set E and whether there exists a
theoretical lower bound on the cardinality of E-integral multisets for certain E.
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