
Efficiently Testable Circuits Without
Conductivity

Mirza Ahad Baig1[0000−0003−3650−7893], Suvradip
Chakraborty2[0000−0002−5352−4946], Stefan Dziembowski3,4[0000−0002−6914−6425],
Małgorzata Gałązka3, Tomasz Lizurej3,4[0000−0001−8563−4325], and Krzysztof

Pietrzak1

1 ISTA
2 Visa Research

3 University of Warsaw
4 IDEAS NCBR

Abstract. The notion of “efficiently testable circuits” (ETC) was re-
cently put forward by Baig et al. (ITCS’23). Informally, an ETC com-
piler takes as input any Boolean circuit C and outputs a circuit/inputs
tuple (C′,T) where (completeness) C′ is functionally equivalent to C
and (security) if C′ is tampered in some restricted way, then this can
be detected as C′ will err on at least one input in the small test set
T. The compiler of Baig et al. detects tampering even if the adversary
can tamper with all wires in the compiled circuit. Unfortunately, the
model requires a strong “conductivity” restriction: the compiled circuit
has gates with fan-out up to 3, but wires can only be tampered in one
way even if they have fan-out greater than one. In this paper, we solve
the main open question from their work and construct an ETC compiler
without this conductivity restriction. While Baig et al. use gadgets com-
puting the AND and OR of particular subsets of the wires, our compiler
computes inner products with random vectors. We slightly relax their
security notion and only require that tampering is detected with high
probability over the choice of the randomness. Our compiler increases
the size of the circuit by only a small constant factor. For a parameter
λ (think λ ≤ 5), the number of additional input and output wires is
|C|1/λ, while the number of test queries to detect an error with constant
probability is around 22λ.

1 Introduction

Circuit Testing. Detecting errors in circuits is of interest in various areas of
engineering and computer science. In circuit manufacturing, the focus is on ef-
ficiently detecting errors that randomly occur during production [10]. Querying
circuits on a few carefully chosen inputs and checking the output for correctness
will typically detect a large fraction of the faulty ones.

Private Circuits (PC). The cryptographic community has long focused on errors
that are intentionally introduced by an adversary, as such “tampering” or “fault

2 Baig et al.

attacks” can be used to extract cryptographic secrets [7, 8]. Compared to testing
in manufacturing, protecting circuits against fault attacks is more difficult for
at least two reasons (1) the errors are not just random but can be targeted on
specific wires or gates in the circuit (2) the errors introduced by tampering must
not just be detected, but the circuit must be prevented to leak any information.

For this challenging setting of private circuits (PC), Ishai, Prabhakaran, Sa-
hai, and Wagner [24] construct a circuit compiler that given (the description of)
any circuit C and some parameter k outputs (the description of) a functionally
equivalent circuit Ck (i.e., C(X) = Ck(X) for all X) which is secure against
fault attacks that can tamper with up to k wires with each query (the faults
can be persistent, so ultimately the entire circuit can be tampered with), while
blowing up the circuit size by a factor of k2. The efficacy of the compiler can be
somewhat improved by allowing some small information leakage [22].

Efficiently Testable Circuits (ETC). Efficiently testable circuits (ETC), recently
introduced in [3], considers a setting that “lies in between” testing for benign
errors and private circuits. An ETC compiler takes any Boolean circuit C :

Zs
2 → Zt

2 and maps it to a tuple (Ctest : Zs+s′

2 → Zt+t′

2 ,Ttest ⊂ Zs+s′

2) where Ctest

is functionally equivalent to C and Ttest is a test set that will catch any (non-
trivial) tampering on Ctest. A bit more formally, by saying Ctest is functionally
equivalent to C we mean ∀X ∈ Zs

2 : Ctest(X∥0s
′
)|t = C(X) (S|t denotes the t

bit prefix of S, ∥ is concatenation and 0s is the string of s zeros).
The security property states that if for a wire tampering τ on Ctest the

tampered circuit Cτ
test errs on at least one of the (exponentially many) inputs

X∥0s′ (i.e., the t bit prefix of the output is not C(X)), then Cτ
test will err on at

least one input in the (small) test set

∀τ : ∃X ∈ Zs
2 s.t. Cτ

test(X∥0s)|t ̸=

=C(X)︷ ︸︸ ︷
Ctest(X∥0s

′
)|t ⇒

∃T ∈ Ttest s.t. C
τ
test(T) ̸= Ctest(T) (1)

ETC aims at detecting adversarial errors like PC, but unlike PC, this de-
tection only happens during a dedicated testing phase, not implicitly with every
query. Thus ETC cannot be used to replace PCs which aim to protect secrets
on a device that is under adversarial control and can be tampered with. Instead,
they ensure that a circuit correctly evaluates on all inputs, even if it was under
adversarial control in the past.

Using ETC can also be useful to detect benign errors, particularly in set-
tings where one doesn’t want to accept a non-trivial probability of missing a
fault, which is the case for the heuristic techniques currently deployed in cir-
cuit manufacturing. One such setting is in space exploration where faults can
be catastrophic, and to make matters worse, the high radiation in outer space is
likely to cause additional faults. Here the ability to run a cheap test repeatedly
in a black-box way is useful.

While ETCs provide a weaker security guarantee than PC in terms of how
tampering is detected, the construction of the ETC from [3] achieves security

Efficiently Testable Circuits Without Conductivity 3

under a much stronger tampering model than what is known for PC. Further-
more, ETCs are much more efficient and rely on weaker assumptions: the ETC
compiler from [3] blows the circuit up by a small constant factor while allowing
for tampering with all wires. On the other hand, in Private Circuits II [24], to
detect tampering with k wires already requires a blow up of k2.

Conductivity. A major restriction of both, the PC compiler [24] and the ETC
compiler from [3], is the fact that wire tamperings are assumed to be conductive:
while a wire can be tampered (set to constant 0 or 1, or toggling) arbitrarily,
if this wire has fan-out greater than 1, i.e., leads to more than one destination
which can be an input to another gate or an output wire, all must carry the
same value and cannot be tampered individually.5 This is an arguably unrealistic
assumption and not does not capture real tampering attacks: Why should, say,
cutting the wire at the input of one gate affect the value at another gate to
which this wire is connected? While any circuit can easily be turned into a
functionally equivalent one where all wires have fan-out 1 by using copy gates
COPY(b) = (b, b), applying this to the circuit produced by the compiler from [3]
will completely break its security as we will sketch below.

Our contribution. In this work we solve the main open problem left in [3] and
construct an ETC compiler that maps a circuit C to an ETC (Ctest,Ttest) where
|Ttest| ≤ 6 and Ctest has fan-out 1, which means it doesn’t rely on the conductivity
assumption as there’s nothing to conduct.6

To get a practical construction with few extra output wires, we need to gen-
eralize the notion of ETCs and make it probabilistic. Whether efficient deter-
ministic ETCs without the conductivity assumption exist is an interesting open
question (our construction can be “derandomized”, but this would lead to an im-
practically large test set of size |C|2). Concretely, the inputs in our test set Ttest

are shorter than Ctest’s input, and during testing the remaining inputs must be
chosen at random. The soundness guarantee ∃T ∈ Ttest s.t. C

τ
test(T) ̸= Ctest(T)

from eq.(1) is adapted to a probabilistic guarantee

∃T ∈ Ttest s.t. Pr
R
[Cτ

test(T∥R) ̸= Ctest(T∥R)] ≥ 1/22λ (2)

where λ ∈ N0 is a parameter specifying the number of layers in the testing sub-
circuit. A larger λ will decrease the extra input/output wires but will increase
the required number of test queries, a reasonable range for λ is 1 to 4.

5 The conductivity assumption for the PC compiler from [24] is slightly stronger than
ours, as they additionally assume that “faults on the output side of a NOT gate
propagate to the input side”.

6 Ensuring non-conductivity by making sure the fan-out is 1 is done for clarity of
exposition. To get a fan-out 1 circuit our complied circuit requires numerous COPY
gates. In an actual physical circuit any of those COPY gates can be simply removed
by increasing the fan-out of the input wire to that gate by one.

4 Baig et al.

Size, Query and Randomness Efficiency. The number of extra input/output
wires is roughly (cf. Table 1 for the exact numbers) λ·|C|1/(λ+1), e.g. for a circuit
with 232 (≈ four billion) gates and λ = 3 we need roughly 3·28 = 768 extra input
and output wires. By repeating the testing κ times with fresh randomness, the
probability that we fail to detect a non-trivial tampering is at most (1−1/22λ)κ,
which for our example is < 0.5 for λ = 3, κ = 45. The number of test queries
required for this testing is |Ttest| · κ = 6 · 45 = 270 (as we don’t know which of
the T ∈ Ttest satisfies eq.(2) we have to query with all of them). The number of
random bits required for this testing is κ ·λ · |C|1/(λ+1)

= 45 · 768 = 34560 (each
test query T ∈ Ttest must be concatenated with λ·|C|1/(λ+1) random bits, we can
use the same randomness for each T ∈ Ttest, but assume fresh randomness for
each of the κ runs of the test). We can get the probability of missing a fault down
to any 2−α by repeating the above test α times. This is already quite practical
despite the fact that in this work we focused on a clean exposition rather than
improving concrete parameters.

2 ETC Compilers and their Security

2.1 The Construction from [3] Using Conductivity

Before we describe our construction, let us first give a short summary of the ETC
compiler from [3]. The basic construction using a toy circuit C(x1, x2, x3, x4) =
(x1 ∧ x2) ∨ (x3 ∨ x4) as input is illustrated in Figure 1.

x1 x2 x3 x4

y1

yAND yOR

cAND cOR

c

Fig. 1. The compiler from [3]
illustrated on a toy circuit.

Wire Covering. In a first step, they compile the
basic circuit C into a tuple (Cwire,Twire) where
Cwire is functionally equivalent to C and Twire is
a wire covering for Cwire, which means for ev-
ery wire w in C and b ∈ {0, 1} there is some
X ∈ Twire such that w carries the value b if C is
evaluated on X. For the toy circuit C we can use
(Cwire = C,Twire = {0000, 1111}) (here Cwire = C,
but in general we need up to 3 extra input wires
and some extra XOR gates to compile C to Cwire).

A naive Construction with Conductivity. From
(Cwire,Twire) [3] then further construct their ETC
(Ctest,Ttest). A naive construction is to let the test
set be the wire covering set, i.e., Ttest = Twire, and
derive Ctest from Cwire by increasing the fan-out of
every internal wire by one, and use the extra wire
as an output. This way any tampering of a wire will be observable on one of the
outputs.

Of course, having |Cwire| many output wires is completely impractical so
they must be compressed, and we’ll sketch how this is done below, but let us

Efficiently Testable Circuits Without Conductivity 5

first emphasize here that conductivity is absolutely crucial even for this naive
construction, a concrete example is given in [3]. Looking ahead, a key observation
we make in this work is that by using a more general “gate covering” set, this
naive construction will detect tampering even without conductivity.

Compressing the Output. The work of [3] reduce the number of additional output
wires by connecting every wire w in Cwire to one “OR gadget” and one “AND
gadget” in a careful way (so they get fan-out 3, in the figure those gadgets are the
purple and cyan subcircuits). These gadgets have just a one bit output (for our
toy example we just need one OR and one AND gadget). There’s also an extra
input bit c (for control) and for every X ∈ Twire in the wire covering, the test set
Ttest contains two inputs, X∥0 and X∥1, i.e., one where the control is 0 and one
where it’s 1. The wires are connected to the gadgets such that whenever there’s
some tampering on the internal circuit, some gadget will compute the wrong
value on some X ∈ Ttest. The extra control bit is necessary so this holds even if
the adversary can also tamper with the gadgets themselves. Understanding the
details of their construction and proof are not necessary for the current paper,
so we refer to their paper for more details.

2.2 Our Construction without Conductivity

Overcoming Conductivity. Without conductivity, the design principle outlined
above, i.e., routing internal wires to some gadgets that try to catch errors, is not
sufficient as errors on the internal wires can potentially be “tampered back” to
the correct value on the external wires. Our construction makes this approach
work even when we cannot rely on conductivity. Instead of trying to catch any
tampering error, our gadgets (which compute inner products) are only guaran-
teed to catch tamperings on a test set if some wire “loses information”, which
means the wire carries different values on two inputs from the test set, but after
tampering the values are identical. A key observation is that one can’t undo
information loss by tampering a wire. Fortunately, this already will be enough;
we prove a dichotomy showing that every tampering either loses information on
a “gate covering” set of inputs, or the tampering is additive. The latter case can
easily be detected by checking the correctness of the regular (as opposed to the
gadget) output on an arbitrary input. We will now illustrate our compiler using
the toy circuit C shown in Figure 2.(A).

Gate Covering. Like in [3], in a first step we compile our circuit C into a wire
covering. That is, a tuple (Cwire,Twire) where Cwire is functionally equivalent to C
and for every wire in Cwire and every b ∈ {0, 1} there’s an X ∈ Cwire s.t. w takes
value b on evaluation Cwire(X). For our toy example, we use (Cwire = C,Twire =
{0000, 1010, 1101}) as shown in Fig.2.(A).

We then compile (Cwire,Twire) into a gate covering (Cgate,Tgate). By this we
mean a tuple where Cgate is functionally equivalent to Cwire when padding the
(at most two) new inputs to 0, i.e., Cwire(X) = Cgate(X∥02). A gate covering
is a wire covering, but additionally, we require that for every gate g, and for

6 Baig et al.

AND

y1

x1 x2 x3 x4

OR

AND

1
0
0

0 0 0 0
1 0 1 0
1 1 0 1

Twire{

AND

y1

x1 x2 x3 x4

OR

AND

0 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0

Tgate{
0 0 0 0 0 1

c1 c2

0 0
0 1
1 1
0 1

0 0
1 0
1 1
0 1

0 0
1 0
0 1
1 1

1
0
0

1
1
0

(A) (B)

AND OR

AND

z1

z3

z2

z4

z5

z6C = Cwire Cgate Ctest,0

0 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(C)

Ttest = Tgate{

y1

Fig. 2. Illustration of our toy circuit C (A) with a wire covering set Twire =
{0000, 1010, 1101} (B) after adding two extra control inputs c1, c2 and XORing them
into the circuit to get a gate covering set Tgate = {X∥00 : X ∈ Twire} ∪ 000010 (in our
toy example the 2nd control c2 and the 2nd input 000001 is not required). (C) We get
our 0th layer ETC (Ctest,0,Ttest) setting Ttest = Tgate and adding copy gates to route
the output of every AND,OR and XOR to a new output zi.

every possible input to that gate, there’s a X ∈ Tgate such that g is queried on
those inputs. There’s one relaxation, for XOR gates we just require that three
out of the four inputs {00, 01, 10, 11} are covered. In Fig.2.(B) we illustrate how
to compile the wire covering into a gate covering. This requires adding two extra
control bits c1, c2 as inputs, some copy gates to create enough copies of those
controls, and some XOR gates which add those controls to some carefully chosen
wires. The gate cover set Tgate contains X∥00 for every X ∈ Twire, and additional
two inputs which are all 0 except on c1 and c2, respectively. For our toy example
we actually just need one control c1.

Our “0th layer” ETC (Ctest,0,Ttest), as illustrated in Fig.2.(C), is derived from
(Cgate,Tgate) by setting Ttest = Tgate, and Ctest,0 is derived from Cgate by adding
a copy gate to the output of every AND,OR and XOR gate (except if that wire
is an output already) to create fresh outputs z1, z2, . . . , z6. Note that by adding
copy gates Ttest remains a gate covering for Ctest,0. We will need this fact below.

Of course, the ETC is not practical as there are way too many output wires.
Before describing how to compress those outputs we discuss why (Ctest,0,Ttest)
is an ETC, i.e., why any non-trivial tampering on the circuit will already cause
an error on the outputs for some input in Ttest.

Information Loss. As we want a non-conductive circuit, we must use copy gates
to route the internal wire values to the outputs and can’t just use gates with
higher fan-out as in [3]. But now the adversary can tamper with the wires leading
to the zi’s individually and thus potentially undo any error in the circuit.

We show that for any circuit with a gate covering – we’ll use (Ctest,0,Ttest)
from Figure 2 as running example – every tampering τ is either additive in

Efficiently Testable Circuits Without Conductivity 7

AND OR

AND

z1

z3

z2

z4

z5

z6

x1 x2 x3 x4 c1 c2

y1

T

T

T

(D)

AND OR

AND

z̃1 = z1 ⊕ 1

z3

z2

z4

z5

z6

x1 x2 x3 x4 c1 c2

y1

T

T

AND OR

AND

z1

z3

z2

z4

z5

z6

x1 x2 x3 x4 c1 c2

y1

T

0 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0

Ttest(= Tgate){
0 0 0 0 0 1

with/without
tampering

0/0
1/0

0/0
1/0

(E) (F)

Ctest,0

Fig. 3. Illustration of the types on tamperings τ on circuits with gate coverings using
the toy example (C,Tgate) from Figure 2. Toggling three wires as indicated in (D)
has no effect, i.e., Cτ (X) = C(X) for all inputs X. Toggling two wires as in (E)
creates an additive tampering where Cτ (X) = C(X) ⊕ B (here B = 100000), and
thus is easily detected with just one query on any input. Tamperings that are not
additive create “information loss” at the output of some internal gate, i.e., for two
inputs T0, T1 ∈ Ttest, some wire will have different values without tampering, but the
same value with tampering as illustrated in (F). As we copy all output wires and use
them as outputs (and tampering a wire cannot “undo” information loss), we’ll observe
information loss also on one of the zi values (illustrated is the loss on z5 for inputs
000000 and 110100).

the sense that for some fixed B we have ∀X : Cτ
0 (X) = C0(X) ⊕ B or there’s

information loss on some wire w that is the output of a AND,OR or XOR gate,
which means there are two inputs X0, X1 ∈ Ttest such that the wire w carries
different values in the evaluations C0(X0) and C0(X1), but the same value in
the evaluations Cτ

0 (X0) and Cτ
0 (X1) of the tampered circuit.

By construction, in our C0 circuit every such wire w is copied (w′, w′′) ←
COPY(w) and w′′ is then routed to the output. Here we crucially rely on the
fact that we don’t merely have arbitrary errors like in [3] but information loss,
which cannot be undone even by tampering w′′ independently from w,w′.

Let us shortly sketch why (C0,Ttest) is an ETC. Consider any tampering τ .
As argued above, the tampering is either (1) additive or (2) we have information
loss on the outputs. In case (1) for some B we have Cτ

0 (X) = C0(X)⊕B. Recall
that C0’s outputs contain the actual outputs yi and the zi’s used for the testing.
If B doesn’t flip any of the yi’s, then this tampering does not affect correctness
and we don’t have to bother. If B flips (i.e., XORs a 1 to 0) at least one yi, we’ll
observe the mistake by querying C0 on an arbitrary input. In case (2) there is at
least one output out (could be a yi or zi value) and two inputs T0, T1 ∈ Ttest s.t.
out has the same value in evaluations Cτ

0 (T0), C
τ
0 (T1), but it should be different,

thus it will be wrong in one of the two evaluations.

8 Baig et al.

AND OR

AND

z1

z3

z2

z4

z5

z6

x1 x2 x3 x4 c1 c2

y1

(G)

r2 r3r1

AND OR

AND

z1

z3

z2

z4

z5

z6

x1 x2 x3 x4 c1 c2

y1

(H)

r2 r3r1

0 0 0 0 0 0

1 1 0 1 0 0

0/0
1/0

0/0
1/0

T

0/0
1/1

0 0 1

0 1 10 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0

Ttest{
0 0 0 0 0 1

Ctest,1

z′1

z′2

z′1

z′2
0/0
1/0

Fig. 4. (G) Illustration of the “information loss preserving” compression circuit (in
purple) attached to 0th layer ETC Ctest,0 from Figure 2.(C) to get a 1st layer ETC C1.
(H) For the two inputs T0 = 000000, T1 = 110100 to Ctest,0 we have information loss
on the z5 and also z6 output. For randomness R = 011, Q = 001 we then also observe
information loss at the z′2 output of Ctest,1 on inputs T0∥R, T1∥Q.

Compressing the Output. The 0th layer ETC (C0,Ttest) is not practical as the
number of output wires required for testing is linear in the size of the circuit.

To compress the output we construct a gadget circuit G : {0, 1}nin+r →
{0, 1}nin/r that takes an nin bit string and r random bits as input and outputs
an nout = nin/r bits. This compressing circuit on input X∥R chops X into nout

strings X1, . . . , Xnout
, it then computes and outputs the inner products ⟨Xi, R⟩

of each Xi with R. For nin = 6, r = 3 this gadget is illustrated by the purple
subcircuit in Figure 4.G.

We will prove that even if the compressing circuit is tampered with, it will
“preserve information loss” with good probability over the randomness. More
formally, we consider any four inputs X0, X1, X

′
0, X

′
1 where at least in one

position i the X0, X1 values are distinct, but the X ′0, X
′
1 values are not, i.e.,

∃i : X0[i] ̸= X1[i] and X ′0[i] = X ′1[i]. Now for any tampering τ and random
R,Q consider the values

(Y0, Y1, Y2, Y3) = (G(X0∥R), G(X1∥R), G(X0∥Q), G(X1∥Q))

(Y ′0 , Y
′
1 , Y

′
2 , Y

′
3) = (Gτ (X ′0∥R), Gτ (X ′1∥R), Gτ (X ′0∥Q), Gτ (X ′1∥Q))

Then PrR,Q

[
∃i, k < j : Yk[i] ̸= Yj [i] and Y ′k[i] = Y ′j [i]

]
≥ 1/2.

Setting r ≈
√
nin we get nout = nin/r ≈

√
nin and thus can replace nin

output wires with
√
nin input and output wires (in our toy example we had

nin = 6 and r = ⌈
√
6⌉ = 3, nout = ⌊

√
6⌋=2).

If we apply the compression gadget just once, it is sufficient to prove that with
good probability some of the outputs are wrong, i.e., that for some j : Yj ̸= Y ′j .
We prove a more general property of information loss at the output of the gadget
so we can cascade them. To balance the number of additional input and output

Efficiently Testable Circuits Without Conductivity 9

wires, for λ layers we compress the number of wires at each layer by a factor
λ+1
√
n which results in just λ+1

√
n additional output and λ · λ+1

√
n input wires.

The main disadvantage of choosing a larger λ is the fact that the probability
of detecting a tampering decreases, and one thus must make more test queries.
Concretely, we must make |Ttest|2λ ≤ 6 · 2λ queries to be guaranteed to catch a
tampering with probability 2−λ. By repeating this κ times we can amplify the
success probability to 1− (1− 2−λ)κ at the cost of making κ · 6 · 2λ queries.

In practice, a very small λ will be sufficient, for example with λ = 4 we get
a total of around 64 output and 256 input wires for a circuit with 232 (around 4
billion) gates, and setting κ = 11 requires 11 ·6 ·24 = 1056 queries to get a > 0.5
detection probability (that’s what’s guaranteed in the worst case by our security
proof, as we did not optimize for constant, the practical security is certainly
much better). Table 1 summarizes the efficiency of our ETC compiler.

C Cwire Cgate Ctest,0 Ctest,λ, λ ∈ N+

Number of gates n ≤ (3+o(1))|C| ≤ (7+o(1))|C| ≤ |Cgate|+2·4n ≤ |Ctest,0|+2 · 4n
≤ 3n+ o(n) ≤ 7n+ o(n) ≤ 15n+ o(n) ≤ 23n+ o(n)

Input size s ≤ s+ 3 ≤ s+ 5 ≤ s+ 5 ≤ s+5+λ· λ+1
√
4n

Output size t t t ≤ t+ 4n ≤ t+ λ+1
√
4n

Cover/Test size |Twire| ≤ 4 |Tgate| ≤ 6 |Ttest| ≤ 6 |Ttest| ≤ 6

Success Proba-
bility

N/A N/A 1 2−2λ

Randomness
(bits)

0 0 0 λ · λ+1
√
4n

Table 1. Summary of the efficiency of our ETC compiler which first compiles the input
circuit C into a (functionally equivalent) Cwire with a wire covering set Twire. This is
then compiled into a circuit Cgate with a gate covering set Tgate, which is then compiled
into the 0th later ETC Ctest,0 with the test set Ttest. We then compress the additional
output wires from 4n (i.e., linear in |C| = n) to the λ + 1th root of that by applying
λ ≥ 1 layers of our compression gadget. The testing is now probabilistic but can be
repeated with fresh randomness until one gets the desired .

2.3 More Related Work

Testing circuits is a major topic in hardware manufacturing, the books [6, 10] dis-
cuss heuristics for testing and practical issues of the problem. Circuit-compilers
(as used in this work) which harden a circuit against some “physical attacks”
in a provably secure way were first introduced for leakage attacks (concretely,
leaking values of a small number of wires) by Ishai et al. in [25]. Based on this
compiler they later also gave a compiler to protect against tampering [24]. This
line of research was continued in a sequence of papers on tampering wires [13,
14, 23, 21] or gates [26, 19, 28]. As discussed in the introduction, these compilers

10 Baig et al.

aim at protecting secrets in the circuit, while efficiently testable circuits [3] only
aim at detecting tampering in a special test phase.

Apart from compilers, a line of research was pioneered by Micali and Reyzin
in [30] on reductions or composition of cryptographic building blocks to prevent
“general” leakage. The first cryptographic primitive achieving security against a
general notion of leakage (bounded leakage) from standard cryptographic build-
ing blocks is the leakage-resilient cipher from [17], by now we have leakage-
resilient variants of most basic cryptographic primitives including signatures [20,
9] or MACS [5], an excellent overview on the area is [27]. Unfortunately for tam-
pering no construction secure against general tampering – or even a notion of
what “general tampering” means – exists. Although Non-malleable codes [18]
can protect data in memory (rather than during computation) from very gen-
eral classes of tampering attacks [29, 12, 1, 4, 15].

The most powerful physical attack model is Trojans, where an attacker can
not just tamper the circuit, but completely replace it. Some limited provable-
security results against this class of attacks are [16, 11]. There are few attempts
to use general verifiable computation to certify the output of circuits [2, 31].

3 Preliminaries

We use notations and a tampering model similar to [3].

3.1 Notation for Circuits

Circuits can be modeled as directed acyclic graphs (DAGs), and we will exten-
sively use standard graph theory notation. Concretely, a circuit is modeled as
a DAG Cγ = (V,E) where vertices refer to gates and the directed edges refer
to wires. The circuit definition Cγ comes with a labeling function γ : V → G
which assigns specific gates to the vertices, where G is the set of gates allowed.
We will often omit the parameter γ since it is chosen when specifying the circuit
and cannot be changed. Each wire carries a bit from Z2, and each gate is taken
from the set of allowed gates G (including {AND,OR,XOR,COPY,NOT} and
two special {in,out} gates).

For v ∈ V , let E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E} be the
sets of v’s incoming and outgoing edges, respectively. For e = (u, v) ∈ E we
define V −(e) = u and V +(e) = v. We split the vertices into three sets V =
I ∪ G ∪ O, where I = {I1, I2, ..., Is} are vertices which are assigned to in, and
O = {O1, O2, ..., Ot} are these assigned to out. Given Cγ = (V,E) and an input
X = (x1, . . . , xs) ∈ Zs

2 we define a valuation function

valCγ ,X : V ∪ E → Z2 (3)

which assigns each gate the value it outputs and each wire the value it holds
when the circuit is evaluated on X. More formally the valuation function for
vertices v ∈ V and edges e ∈ E is defined as

Efficiently Testable Circuits Without Conductivity 11

valCγ ,X=(x1,x2,...,xs)(v) =

{
xi, if v = Ii.

γ(v)(valCγ ,X(E−(v))), otherwise.

valCγ ,X(e) = valCγ ,X(V −(e)).

We will sometimes just write valX if the circuit considered is clear from the
context. The behaviour of the circuit C can be associated with the function
that it evaluates, i.e. C : Zs

2 → Zt
2. We can define this function as follows:

C(X) = (valC,X(O1), valC,X(O2), ..., valC,X(Ot)).

3.2 Tampering Model

We consider an adversary who can arbitrarily tamper with every wire of the
circuit, i.e. flip its value, set it to 0, set it to 1, or leave it untampered. Unlike
[3] or [24], we do not take advantage of the conductivity assumption. This means,
we operate on circuits with conductivity 1, where all nodes n ∈ V of a circuit
C have fan-in and fan-out equal to an inherent fan in, fan-out of γ(n), and all
output wires of all nodes can be tampered independently. We assume that the
input circuit is not conductive. In [3], the authors assumed k-conductivity, i.e. a
value of some wire in the circuit could be copied to at most k distinct destinations
with a restriction that all of them must be tampered equally. Without loss of
generality, every k-conductive circuit can be transformed into a 1-conductive
circuit, as by using COPY gates, every k-conductive circuit can be turned into
a non-conductive one while at most doubling the circuit size and increasing the
depth by a factor ⌈log(k)⌉.

The tampering of a wire is described by a function Z2 → Z2 from the set
of possible bit tamper functions T = {id,neg, one, zero}. The tampering of an
entire circuit C = (V,E) is defined by a function τ : E → T mapping each wire
to a tampering function. For convenience, we sometimes write τe to denote τ(e).

Now we can extend our notion of the valuation to also take tampering into
account in order to define the valuation of a tampered circuit

valτX : V ∪ E → Z2.

The only difference to the (non-tampered) valuation function from Eq(3) is that
we apply the tampering to each value of an edge after it is being computed,
formally:

valτCγ ,X=(x1,2,...,xs)(v) =

{
xi, if v = Ii.

γ(v)(valτCγ ,X(E−(v))), otherwise.

valτCγ ,X(e) = τe(val
τ
Cγ ,X(V −(e))).

By Cτ we can again understand a function that describes the input-output
behavior of the tampered circuit: Cτ (X) = (valτC,X(O1), val

τ
C,X(O2), ..., val

τ
C,X(Ot)).

12 Baig et al.

Fig. 5. Examples of 2 − conductive (left circuit) and 1 − conductive (right circuit)
circuits. A single wire on the left circuit is copied to two destinations. The adversary
can apply only a single tampering to this wire. On the right circuit, this wire is divided
into three parts with a COPY gate. The adversary can apply separate tampering to
each of these parts.

4 Gate Covering Sets

The authors of [3] developed a notion of wire covering set Twire. It is a set of
inputs to a specific circuit, such that every wire is evaluated to both 0 and 1, given
some inputs from the test set Twire (see Definition 1 below). Moreover, the paper
states that every circuit can be efficiently compiled into its wire-covered version
(Theorem 10 from [3]). We denote the compilation procedure (Algorithm 10
from [3]) as Algorithm A. It compiles a circuit C into a functionally equivalent
Cwire, along with its wire covering set Twire.

Definition 1 (Definition 4 from [3]). The set Twire is a wire covering set for
a circuit C if ∀ e ∈ E(C), b ∈ {0, 1} ∃ X ∈ Twire : valC,X(e) = b.

In this paper, we develop a stronger notion called gate covering set. Here,
we not only require covering all wires of the circuit, but also pairs of wires that
form an input to multi-input gates (in our model the and,or,xor gates).

Before we proceed, we expand our notation by the sequences of the input
values to the gate i.e., by (valC,X(e))e∈E−(v) we understand the sequence of the
values given to v, when the circuit is evaluated on the input X. E.g. for a gate
v in a circuit C that is evaluated on 0 and 1 given input X to C, we write
(valC,X(e))e∈E−(v) = 01. Now, we give the definition of the gate covering set.

Definition 2. Tgate is a gate covering set for a circuit C with gate assignment
γ if it satisfies:

• ∀v∈V (C) : γ(v)∈{COPY,NOT,OUTPUT} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| ≥ 2,

• ∀v∈V (C) : γ(v)∈{AND,OR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| = 4,

• ∀v∈V (C) : γ(v)∈{XOR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| ≥ 3.

We call a circuit with a gate-covering set a gate-covered circuit. Any node in
a circuit that has enough evaluation sequences as in the Definition 2, given any
test set, we call gate-covered.

Efficiently Testable Circuits Without Conductivity 13

To construct a gate covering of a circuit we first use the recalled Algorithm
A to obtain a wire covering of the circuit and then we go through the multi-
input gates of the intermediary circuit topologically to ensure that they are
evaluated on a sufficient number of their inputs combinations. In the algorithm,
it is sufficient to add XOR gates to the input wires of the topologically traversed
gates of the circuit to gate-cover them. The Algorithm 1 describes a procedure
that takes as input a circuit C and outputs a functionally-equivalent circuit Cgate

along with a gate-covering set Tgate for Cgate.

Algorithm 1: Algorithm for constructing a gate covering set for C

Input: C : Zs
2 → Zt

2

Output: Cgate,Tgate

1 (Cwire : Zs+sw
2 → Zt

2,Twire) = Algorithm A(C) /* Wire-covered
intermediary circuit */

2 Initialize Cgate = Cwire

3 Initialize Tgate = Twire

4 Append 00 to every X ∈ Tgate

5 X0 = 0s+sw10
6 X1 = 0s+sw01
7 for v ∈ V (Cgate) : γ(v) ∈ {OR,AND,XOR} (processed in a topological order)

do
8 S = {(valC,X(e))e∈E−(v) : X ∈ Tgate} /* Assert |S| ≥ 2 */
9 for ei ∈ {00, 01, 10, 11} \ S do

10 pi = (valC,Xi(e))e∈E−(v) /* Get current valuation of the v’s
input wires on the input Xi */

11 for j ∈ {0, 1} do
12 if ei[j] ̸= pi[j] then

/* Given the input Xi, the s+ sw + i’th input wire of
the circuit has value 1 */

13 Update Cgate by adding a XOR gate that has one of the inputs
connected s+ sw + i’th input wire of the circuit and its
second input is the j’th input wire of v. The output of the
XOR gate will be a new j’th input of v /* When the control
bits X0, X1 are used at least twice, one needs to use
linear number of COPY gates in the construction to
assure that Cgate remains non-conductive */

14 return Cgate,Tgate ∪ {X0, X1}

Proposition 1 The Algorithm 1 transforms a circuit C into a functionally
equivalent circuit Cgate along with gate-covering set Tgate.

Proof. It is easy to see that the circuit Cgate is functionally equivalent to C, since
it does not add any new output bits to the circuit, and all the new gates are XOR
gates connected via a sequence of COPY gates to the new control bits. Whenever

14 Baig et al.

these bits are set to 0, the new XOR gates do not affect the behaviour of the
circuit. Note that after adding the new XOR gates, all of the wires connected
directly to the old gates of the circuit remain wire-covered by the old test set
adjusted by adding 00 to its every input. What is more, the new control bits
wire-cover every new wire added to the circuit. This implies that every gate from
the set {COPY,NOT,OUTPUT} in the updated circuit is trivially gate-covered
(evaluated to both 0, 1 given some inputs from the test set).

When we topologically go through the gates from the set {OR,AND,XOR}
of the intermediary circuit, we can see that since the input wires to the cir-
cuit are wire-covered by the adjusted old test set, then these gates are par-
tially covered before and after adding new XOR gates to their input wires (i.e.
{(valC,X(e))e∈E−(v) : X ∈ Tgate} ≥ 2). In the step 9 of the Algorithm, we add
XOR gates connected to the new control bits to cover at most two missing eval-
uation sequences. The XOR gates added during the topological procedure are
evaluated on two distinct input sequences, given inputs from the adjusted old
wire-covering set. The third distinct input comes from setting their respective
control bit to 1 □

Proposition 2 For any circuit C with max fan-in 2, number of gates n, the
Algorithm 1 creates a circuit with additional 5 input bits, test set of size 6,
additional 6n gates.

Proof. The Algorithm A from [3] compiles into a circuit with additional 3 input
bits, test set of size 4 and adds at most n XOR gates and n COPY gates. Now,
adding 2 input bits and 2 test inputs to the test set in the second part of
Algorithm 1, and adding at most 2n XOR gates and 2n COPY gates during the
iteration concludes the result □

5 Information Loss in Gate-Covered Circuits

In this section, we define information loss and show that it is easily trackable in
any Cgate that has a gate-covering set Tgate. For any such circuit, we show the
following property: for any tampering applied to the wires of the Cgate, either we
observe an information loss on one of the output wires of the multi-input gates
AND,OR,XOR (given only the inputs from the gate-covering set Tgate), or the
output wires of the circuit are always set to a constant value or always toggled
or always correctly evaluated.

Theorem 1. For any circuit Cgate : Zs
2 → Zt

2 with gate-covering set Tgate, for
any tampering function τ applied to the circuit then at least one of the following
holds:

• Information loss on multi-input gates

∃X0,X1∈Tgate, n∈V (Cgate) : γ(n)∈{AND,OR,XOR} :(
valX0,Cgate(n) = 0 ∧ valX1,Cgate(n) = 1

)
∧
(
valτX0,Cgate

(n) = valτX1,Cgate
(n)

)

Efficiently Testable Circuits Without Conductivity 15

• Constant output

∃i∈[t],c∈{0,1}∀X ∈ Zs
2 : Cτ

gate(X)[i] = c

• At most toggled output

∃T∈{0,1}t∀X ∈ Zs
2 : Cτ

gate(X) = Cgate(X) + T

Proof. The proof follows a modular argument. For this, we need a definition of
Topological Layers of Computation on any circuit Cγ . In the definition below,
we say that a wire e is connected to a gate g in a circuit Cγ described with a
DAG (denoted by predicate connectedCγ

(g, e) holds) if and only if there exists
a direct connection or connection going through a path of COPY or NOT gates
between g and the predecessor of e in the circuit.

Definition 3 (Topological Layers of Computation). For any circuit C, we
recursively define its Topological Layers of Computation:

• 0th-layer of Computation L0 = I(C)

• ith-layer of Computation Li = {g ∈ V (Cγ) : ∀e∈E−(g) : connectedCγ
(g′, e)

for some g′ ∈ L0 ∪ . . . ∪ Li−1 and γ(g) ∈ {XOR,AND,OR}}.

By Gi(C) we denote a subgraph induced by the layers L0, . . . ,Li of the circuit.
Below we consider C = Cgate. We run an experiment that evaluates layer by

layer the tampered C (assuming C has L + 1 layers). In the i’th layer either
there is an information loss and we stop the experiment or the output of the
layer is at most toggled [see event E2 below] and the experiment proceeds to the
next layer. We define the following predicates for a gate g in layer i:

• E1(g, i) holds if g ∈ Li ∧ ∃X0,X1∈T′valX0,C(g) = 0 ∧ valX1,C(g) = 1 ∧
valτX0,C(g) = valτX1,C(g),

• E2(g, i) holds if g ∈ Li ∧ ∀X∈Zs
2
: valτX,C(g) = valX,C(g) + f

[
τ(e) : e ∈

E(Gi(C))
]
.

In the 0th-layer of the circuit, by definition of the tampering function, for any
node g ∈ L0(C): X ∈ Zs

2 : valτX,C(g) = valX,C(g). This implies event E2(g, 0) on
any gate from this layer. We prove the following for the tampered circuit C:

∀τ(C),i∈{1,...,L} : ∀j∈{0,...,i−1},g′∈Lj
: E2(g′, j) =⇒ ∀g∈Li(C) : E1(g, i) ∨ E2(g, i)

We first study the gates of the first layer:

• The AND gate in the 1st-layer is connected to the input gates only via a
sequence of COPY and NOT gates. The computation on this gate can be
described as Pg(a, b) = a·b. The tampered output of the gate is P̃g(a, b) = ã·b̃,
where ã ∈ {a, a + 1, 0, 1}, b̃ ∈ {b, b + 1, 0, 1}. The tampering of a wire a is
set to 1 or 0 whenever there is a constant tampering on its path from the

16 Baig et al.

0thlayer, a + 1 or b + 1 whenever on the path there is an odd number of
toggle tamperings, and a or b whenever there is an even number of toggle
tamperings on the path. Whenever ã = 0 ∨ b̃ = 0, then P̃g(a, 1) = 0 and
P (a, 1) = a, we get an information loss. Now, since by the construction of
the Algorithm 2, the wire P is connected via a COPY to the output, the
event E1(g, 1) occurs.
In other cases:

– if ã = 1 (or b̃ = 1), P (a, 1) = a and P̃ (a, 1) = const. (resp. P (b, 1) = b
and P̃ (b, 1) = const.) [E1(g, 1) occurs],

– when ã = a + 1 (or b̃ = b + 1), then P (1, b) = b and P̃ (1, b) = 0 (resp.
P (1, a) = 1 and P̃ (a, 1) = 0) [E1(g, 1) occurs],

– otherwise P̃ (a, b) = ab [E2(g, 1) occurs].

• Similar argument as above applies for the OR gate,

• The input wires of the XOR gate are also connected only via a sequence of
COPY and NOT gates to the input. We observe that Pg(a, b) = a+b, and the
tampered output P̃g(a, b) = ã+b̃, where ã ∈ {a, a+1, 0, 1}, b̃ ∈ {b, b+1, 0, 1}.

– if ã = const. (or b̃ = const.), P (a, 0) = a and P̃ (a, 0) = const. (resp.
P (0, b) = b and P̃ (0, b) = const.) [E1(g, 1) occurs],

– when ã = a+ ca, b̃ = b+ cb, then P (a, b) = a+ b, P̃ (a, b) = a+ b+ ca+ cb
[E2(g, 1) occurs].

In the i’th layer, the inputs to all of the gates are, again, connected to the gates
of the previous layers only via a sequence of COPY, NOT gates. Now, once the
induction assumption holds in the layers {1, . . . , i− 1}, the event E2 on all gates
assures that the case analysis from the first layer may be repeated, but the
tampered wires ã, b̃ will now get a constant tampering 0 or 1, or a toggle bit
depending on the tamperings chosen on the edges of the graph induced by layers
from the set {0, . . . , i}.

This implies that on multi-input gates of the circuit, we either get event E1 or
E2. Whenever the event E1 occurs, the information loss on one of the multi-input
gates of the circuit occurs. Otherwise only the event E2 on these gates may occur.
The OUTPUT gates of the circuit are connected via a sequence of COPY and
NOT gates to the gates of the topological layers of computation of the circuit.
If on their paths one finds a constant tampering, then some output bit is set
constant; if only toggles are found there, the output bits are at most toggled □

5.1 Routing the Information Loss in Gate-Covered Circuits

In this section, we show that any gate-covered circuit can be converted to another
gate-covered circuit for which any information loss that appears on its multi-
input gates is routed to the output of the circuit. We present Algorithm 2 that
adds a COPY gate to the output wires of the multi-input gates in the gate-
covered circuit. The added COPY gates forward one copy of the original wires
to their previous destinations and another copy directly to the output (Fig 6).

Efficiently Testable Circuits Without Conductivity 17

a b a b

COPY

P P

Fig. 6. Adding a COPY gate to the wire P in the Algorithm 2. This creates two wires;
the left one is connected to the previous successor of the wire P , and the right one
is sent to the output of the circuit. Algorithm 2 takes into account only the wires P
which originate at AND,OR,XOR gates in the original circuit.

Algorithm 2: Algorithm for Routing the Information Loss in a Gate-
Covered C

Input: Cgate : Zs
2 → Zt

2,Tgate

Output: Ctest,0,T0

1 Initialize Ctest,0 = Cgate, T0 = Tgate

2 for g ∈ V (Cgate) do
3 if g ∈ {AND,OR,XOR} ∧ E+(g) is not an output wire of Ctest,0 then
4 Insert to Ctest,0 a COPY gate between g and V +(w).
5 One of the output wires of the new gate should go to V +(w), the other

one should be left as an additional output wire of the modified circuit.
6 return Ctest,0,T0

Proposition 3 The Algorithm 2 transforms a gate-covered circuit Cgate : Zs
2 →

Zt
2 with gate-covering set Tgate into another gate-covered circuit Ctest,0 : Zs

2 →
Zt+t0
2 with additional output bits and the same gate-covering set, T0 = Tgate,

where one observes for any tampering τ of the circuit Ctest,0 at least one of the
following holds:

• Information loss on output: ∃b ∈ {0, 1}, X0, X1 ∈ T0, i ∈ {1, . . . , t+ t0}
such that

valX0
(Ctest,0)[i] = 0, valX1

(Ctest,0)[i] = 1, valτX0
(Ctest,0)[i] = valτX1

(Ctest,0)[i] = b

• At most toggled output

∃B∈{0,1}t∀X ∈ Zs
2 ∃Y ∈ Zt0

2 : Cτ
test,0(X) = Cgate(X)∥Y +B||0t0

Proof. It is easy to see that the same test set T0 = Tgate is a gate covering set
for the transformed Ctest,0. Now, according to Theorem 1 on the transformed
circuit the following cases may follow:

1. Information-loss on one of the multi-input gates of Ctest,0: in this case, one
of the output wires of Ctest,0 is connected via a COPY gate to the output of
the multi-input gate and the information loss is propagated to this wire.

18 Baig et al.

2. One of the output wires of Ctest,0 always evaluates to a constant value: in this
case, we observe an information loss on this wire because it is wire-covered
according to the definition of the gate-covering set T0.

3. At most, toggled output on the circuit.

6 Minimizing the Number of External Wires

AND OR

AND

z1

z3

z2

z5

z6

x1 x2 x3 x4 c1 c2

y1

z4

AND OR

AND

z3

z2

z5

z6

x1 x2 x3 x4 c1 c2

y1

z4

G

r1 r2

p1 p2

Fig. 7. To reduce the number of external wires, we add a compressing gadget Gn,λ,d.

In the previous Section, we introduced the notion of information loss and
showed that without limitations on the number of additional input/output wires,
the tamper-resilience can be achieved for 1-conductive circuits. For practical
reasons, the number of the external wires, nexternal, is more limited compared
to the number of internal wires, ninternal. Typically, the external wires are on
the border of a square which contains internal wires [6, 10], thus a convincing
relation between these numbers can be given by n2

external ≤ c ·ninternal, where c is
some constant. Unfortunately, in the construction given in the previous Section,
the number of external wires in the compiled circuit is linear in the number of
the internal wires in the original ones, which is not practical to implement in
a real-life circuit. Thus, in this section, we focus on minimizing the number of
external wires in our precompiled circuit.

We will define a compressing gadget Gn,λ,d. The gadget will compress an
input of length n. It will be composed of λ layers of smaller sub-gadgets each
of which will need d additional wires with uniformly random bits as input. The
gadget Gn,λ,d will take λ·d additional input wires and will have a limited number
of output wires (much lower than the number of its input wires - see Figure 7).
We will show that even if the adversary tampers with the compressing gadget
Gn,λ,d, the information loss on any of its input wires will survive through it and
can be detected on the output of the gadget with sufficiently high probability.
In practice, we will be able to keep λ at most 5.

Efficiently Testable Circuits Without Conductivity 19

6.1 Construction of One Layer Compression

r1

z′1

z′2

z1
...
zd

zd+1

rd

z2d

z′k

...

...

· · ·
· · ·

...

...

...

· · ·

...

z(k−1)d+1

zn
...

COPY COPY

XOR

XOR

XOR

...

...

...

Fig. 8. Construction of - Sm,d. The
dotted red triangle represents the
copying tree, △k. The dotted green
triangle represents the xoring tree,
▷d.

The Gn,λ,d gadget consists of λ layers that we
define as subgadgets Sm,d (with varying pa-
rameter m). The single-layer compression gad-
get Sm,d compresses m bit input into

⌈
m
d

⌉
bit

output (using d additional input wires which
will be uniformly random bits during the test-
ing procedure). For ease of analysis, we can
consider m to be a multiple of d (otherwise
we can add m−

⌊
m
d

⌋
spare input wires set to

0 to the Sm,d single-layer gadget). Sometimes
we refer to Sm,d as simply Sd when m is clear
from the context.

Sm,d takes m + d wires as input, where d
are additional inputs composed of uniformly
random bits, and outputs m

d wires. First, Sm,d

divides the input sequence that it receives (say
z1, z2, . . . , zm) into m

d blocks of length d(
(z1, . . . , zd), (zd+1, . . . , z2d), . . . , (z(m

d −1)d+1, . . . z(m
d −1)d+d)

)
.

Then using the additional sequence of d input bits r1, ..., rd it outputs the value
of the inner product of each length d block of z′s and the additional sequence.
More formally, for Sm,d given input wires (z1, ..., zm) and additional input wires
(r1, ..., rd), Sm,d outputs m

d bits:

Sm,d ((zi)i=1,...,m, (ri)i=1,...,d) =

 ∑
j=1,...,d

zid+j · rj

i=0,...,md −1

.

The construction of Sm,d is shown in Figure 8. An instantiation with m =
8, d = 4 is shown in Figure 10. Construction of Sm,d needs as building blocks
2 types of gadgets: copying tree (with fan-in 1, but high fan-out) consisting of
COPY gates and xoring tree (with high fan-in, but fan-out 1) consisting of XOR
gates. They are realized by tree-like gadgets that we denote with the following
symbols - △m′ ,▷d (see Figure 9).

The copying tree, △m′ , takes a single wire as input and outputs m′ wires
which, as the name suggests, are copies of the input in untampered computation.
This is achieved by a complete binary tree with m′ leaves where the root is the
input, the leaves are the output and all internal nodes are COPY gates. The
direction of computation is from the root to the leaves.

The xoring tree, ▷d takes d wires as input and outputs 1 wire which in the
untampered circuit is the xor of all the inputs. It achieves this by a complete
binary tree with d leaves, where leaves are the input, the root is the output and
all nodes are XOR gates. The direction of computation is from the leaves to the
root. From the construction above, we obtain the following properties of Sm,d.

20 Baig et al.

...

i1

i2

id−1

id

... · · ·

· · ·

...

· · ·

r

Fig. 9. The gadgets △,▷ are realized by
complete binary trees with COPY,XOR
in nodes, respectively.

r2 r3r1

z′1

z′2

z1
z2
z3
z4

z5
z6

r4

z7z8

Fig. 10. A single layer of compression
- Sm,d (in this case m = 8, d = 4).
Trapeziums represent copy gates. The
dotted red triangle represents the copy-
ing tree, △2. The dotted green triangle
represents the xoring tree, ▷4.

Lemma 1. For the Sm,d gadget with m input wires and additional d input wires
for randomness (Figure 8), the following holds: (1) The number of output wires
is m

d , (2) The depth is less than log m
d + log d + 1 = logm + 1, (3) The total

number of gates is less than d · md + n + m
d · d = 3m (number of gates in the

copying trees, plus the number of multiplication gates plus number of gates in
the xoring trees).

6.2 Composing The Layers

Now we are ready to present the full construction of Gn,λ,d. This is achieved by
simply adding λ layers of Sm,d gadgets, with varying parameter m depending on
the layer (see Figure 11). The first layer of S takes as input the input wires to the
gadget G; the next layer takes as input the output of the previous layer, and so
on. We change the parameter m of inputs to Sm,d in each layer accordingly. The
output of the last layer is the output of the G. Every layer reduces the number
of output wires by a factor of d. Every layer is given d extra input wires which
would be uniformly random bits.

Intuition: In Proposition 3, it was shown, that any non-trivial tampering implies
an error on the standard output wires or an information loss on the auxiliary
output wires (which are input wires to the compressing gadget G). Here we focus
on the second case. We can conclude, that if there is any error on the input wire
corresponding to the value zi (what is implied by the information loss), we may
hope it to survive through λ of the Sd layers - sometimes the value on this
particular wire will be changing the value of the respective inner product, and
sometimes not, independent of everything else except the value of some rj .

Efficiently Testable Circuits Without Conductivity 21

S16,2

z1

z16

S8,2 S4,2

r1,1 r1,2 r2,1 r2,2 r3,1 r3,2

Fig. 11. The compressing
gadget Gn,λ,d consists of λ
layers of the compression
subgadgets Sm,d, where the
number of input wires m
decreases layer by layer.
Example parameters are
n = 16, λ = 3, d = 2.

From the construction above, we obtain the
following.

Lemma 2. Let Gn,λ,d receive a sequence of length
n = m ·dλ as an input to be compressed. Then the
following statements are true: (1) Gn,λ,d outputs
m bits. (2) It needs λ ·d auxiliary random bits. (3)
The depth of Gn,λ,d is bounded by λ · (log n + 1).
(4) The total number of its gates is not greater
than

∑λ−1
i=0

(
3 n
di

)
= 3nd−d1−λ

d−1 .

6.3 Information Losing Tuples

Recall that in Proposition 3, we show that any
meaningful error of computation will result in an
information loss on one of the output wires of the
precompiled circuit. In the following Sections, we
will describe that the Gn,λ,d gadget propagates
the information loss on some of its input wires to
one of its output wires with good probability. The
reason that we focus on the propagation of the information loss, not a single
error on computation is that the values of the input the Gn,λ,d gadget and the
tamperings may be adversarially chosen in a way that the error vanishes. E.g.
imagine a wire in Gn,λ,d that is (almost) always evaluated to 0 on the test inputs
in an untampered evaluation, and the adversarial tampering flips the value of
this wire to 1, given some specific inputs. Then the adversary may undo the
wrong evaluation on this wire with another constant tampering. In general, it
is easy for an adversary to undo the (almost) always correct or (almost) always
incorrect evaluations. We will thus make use of the information loss - a pair of
evaluations on a single wire that ensures that this wire evaluates to both 0 and
1, and an error occurs on one of these evaluations.

We introduce the notion of information-losing tuples which separates the idea
of information loss from the process of evaluation of the whole circuit. In the
definition below the n-ary vectors over Z2 denoted with Xi denote honest eval-
uations of n wires and the vectors denoted with Yi denote tampered evaluations
of the same wires of some circuit C.

Definition 4. We say that (X1, ..., Xm;Y1, ..., Ym) - a tuple of n-ary vectors over
Z2 - is an information-losing tuple if ∃i,j,k ((Xi[k] ̸= Xj [k]) ∧ (Yi[k] = Yj [k])) .
The triple (i, j, k) is called an information-losing witness for (X1, ..., Xm;Y1, ..., Ym)

Recall Proposition 3. Let (Xi), (Yi) denote the values on the output wires of
Cgate, C

τ
gate for the gate covering set Tgate = (Ti). Then information loss on the

output means, that ((Xi), (Yi)) forms an information-losing tuple if the informa-
tion loss occurs on the output of the circuit.

22 Baig et al.

6.4 Algebraic Values on the Wires

Now we analyze what are the (parameterized by the input) possible values on
wires in tampered realization of Gn,λ,d. We will use an algebraic notation for
the computation on the circuit. The wires of the circuit carry not only the
elements of Z2, but elements of a ring of multivariate polynomials over Z2. The
indeterminates of this ring for a single circuit will be associated with its input
wires and will be denoted with lowercase letters; sometimes we will be using
auxiliary indeterminates. To compute the results of the val function, we simply
extrapolate the functions from G to the ring. From now on, whenever we refer
to value on the wire, we allow the value to be an element of the ring.

In this setting, how does the tampering of the wire affect its value? It works
the same way as before - toggling is simply adding 1 to the polynomial, and
setting 0/1 is setting the polynomial to be equal to 0/1, without indeterminates.
Therefore we can make some observations on the gadgets ▷,△ (from Figure 9),
and the output of the multiplication gates in Sd.

Proposition 4 (Output of the copying trees) Let △τ be given r as input,
and r′ be any of its output. Then r′ ∈ {0, 1, r, r + 1}.

Every output of a copying tree is either constant, toggled or the original value of
its single input wire, depending on the number of toggling or constant tamperings
on the path from the root of the copying tree to the output wire.

Proposition 5 (Output of the xoring trees) Let a1, ..., ad be the input val-
ues to ▷τ and p be its output. Then p = β+

∑
i=1,...,d αiai, where αi, β ∈ {0, 1}.

The single output of the xoring tree is a linear combination of its input. If there
is a constant tampering on a path from some input wire to the output wire, the
coefficient αi of the input value ai is set to 0, the coefficient β depends on the
number of toggling tamperings and values of the constant tamperings.

Proposition 6 (Output of the multiplication gates) Let (zi, ri) be a pair
of input wires to some multiplication gate in Sτ and let multi denote the output
value of this multiplication gate. Then multi = αi(zi)ri+βi(zi), where αi, βi are
linear functions over Z2 for all i’s.

Given that for any fixed τ on Sτ , tamp(zi) ∈ {0, 1, zi, zi + 1}, tamp(ri) ∈
{0, 1, ri, ri + 1}, we can set multi = tamp(zi) · tamp(ri). The above Proposi-
tion states that for the fixed tampering τ , the output value of the multiplication
gate mi can be described as a linear function of ri.

Proposition 7 (Output of the one layer compression gagdet) Let pm be
the output value of the gadget ▷τ from the construction of Sτ

d which takes as input
values zmd+1, zmd+2, ..., zmd+d, r1, r2, ..., rd. Then pm = β(zmd+1, ..., zmd+d) +∑

i=1,...,d αi(zmd+i)ri, where αi and βi are linear (multilinear) functions over
Z2.

Given the Propositions 4, 5, 6, in Proposition 7 we can conclude on the output
values of Sm′d,d given values z1, ..., zm′d; r1, ..., rd as input in the above statement.

Efficiently Testable Circuits Without Conductivity 23

6.5 Information Loss Survival for Sd

Now, we will prove that information loss survives a single-layer computation Sd

with probability at least 1
2 . Since the full compression gadget Gn,λ,d is built

using λ layers of Sd gadgets, this result will lead us to the final conclusion, that
Gn,λ,d compresses the size of the output and propagates the information loss to
the output with a probability at least 1/2λ.

We are given an information-losing tuple (X1, ..., Xz;X
τ
1 , ..., X

τ
z) which rep-

resents z different (untampered and tampered) evaluation vectors of input wires
to the single layer compressing gadget Sd. Given z uniformly random pairs of
randomness vectors Ri, Qi each of the evaluation vectors Xi will be used twice
as the input to the gadget Sd. This will suffice to propagate the information loss
to the output of the gadget with good probability.

Theorem 2 (Information loss through one layer). Let (X1, ..., Xz;X
τ
1 , ..., X

τ
z)

be an information-losing tuple. Let Ri, Qi for i = 1, ..., z be vectors in Zd
2 chosen

independently and uniformly at random. Let

Yi = Sd(Xi|Ri), Yi+z = Sd(Xi|Qi), Y τ
i = Sτ

d (X
τ
i |Ri), Y τ

i+z = Sτ
d (X

τ
i |Qi),

for i = 1, ..., z. Then (Y1, ..., Y2z;Y
τ
1 , ..., Y τ

2z) is an information-losing tuple with
probability at least 1

2 .

Proof. Let (i, j, k) be a information-loss witness for (X1, ..., Xz;X
τ
1 , ..., X

τ
z). Then

(Xi[k] ̸= Xj [k]) ∧
(
Xτ

i [k] = Xτ
j [k]

)
. (4)

Denote the input to Sd by U = (x1, ..., xd, r1, ..., rd). Let Os be the s’th output
wire of S which is possibly affected by the value of xk. Obviously s = ⌈kd⌉, and
k = sd + k′ where k′ ∈ [d]. Then the value of the selected output wire in the
untampered Sd is:

valU (Os) =
∑

t=1,...,d

xsd+trt =
∑

t=1,...,d

γt(xsd+t)rt, (5)

where γt is the identity function. From Proposition 7 we know, that the tampered
value of the selected output wire can be described with the following expression:

valτU (Os) =
∑

t=1,...,d

αt (xsd+t) rt + βt (xsd+t) , (6)

where αi and βi are linear (multilinear) functions over Z2.
Now we can instantiate (x1, ..., xz) four times, with Xi, Xj , X

′
iX
′
j . In every

such case αt(·), βt(·), γt(·) are evaluated to some elements of Z2. Let us denote
these elements with β

X′
i

t = βt(X
′
i[sd + t]). Since (i, j, k) is the witness of infor-

mation loss we know, that γXi

k′ ̸= γ
Xj

k′ , α
X′

i

k′ = α
X′

j

k′ . WLOG let γXi

k′ ̸= α
X′

i

k′ .

24 Baig et al.

Moreover, the evaluations 5, 6 are simply linear/affine combinations of r1, ...rd
over Z2, respectively. Consider,

DIFFi(r1, ..., rt) := valXi|r1,...,rd(Os)−valτX′
i|r1,...,rd(Os) = rk′+

∑
t=1,...,d;t ̸=t′

δtrt+ϵi,

(7)
for some ϵi, δt ∈ Z2.

Now let instantiate (r1, ..., rd) with uniform random variable R over Zd
2.

Firstly, observe that Pr[DIFFi(R) = 1] = 1
2 which means, that for the pair

Xi, X
′
i for exactly half of the choices of R there will occur an error on the

Os - i.e. the expected and actual values will differ. Since DIFFj(r1, ..., rt) =
valXj |r1,...,rd(Os)− valτX′

j |r1,...,rd(Os) =
∑

t=1,...,d κtrt + ϵj , for some ϵj , κt ∈ Z2,
we know that Pr[DIFFj(R) = 1] ∈

{
0, 1

2 , 1
}
. Thus for the pair Xj , X

′
j there is

an error never or always or for half of the choices of R. Finally,{
1

2

}
⊆

{
Pr[valXi|R(Os) = 0],Pr[valXj |R(Os) = 0]

}
⊆

{
0,

1

2

}
. (8)

The first inclusion is true since 1 ∈ {γXi

k′ , γ
Xj

k′ }. The second inclusion is true,
since valXi|R(Os), valXj |R(Os) are linear combinations of rt’s.

Let us denote x1(R) = S(Xi|R)[k′], x2(R) = S(Xj |R)[k′], y1(R) = Sτ (Xτ
i |R)[k′],

y2(R) = Sτ (Xτ
j |R)[k′]. Informally speaking, for independent and uniformly ran-

dom Ri, Rj , Qi, Qj the tuple V below
V = (x1(Ri), x1(Qi), x2(Rj), x2(Qj); y1(Ri), y1(Qi), y2(Rj), y2(Qj)) contains a
tampered evaluation y1 that has an error with probability 1/2 with respect to
its correct evaluation x1 and at least one evaluation x1 or x2 that is correctly
evaluated to 1. Now, we can use Lemma 3 below to prove the above informal
statement and say that given uniformly random Ri, Rj , Qi, Qj , the tuple V is an
information-losing tuple with a probability of at least 1/2.

Thus we conclude that (Y1, ..., Y2z;Y
τ
1 , ..., Y τ

2z) is an information-losing tuple
with at least one of (i, j, k′), (i, j+z, k′), (i+z, j, k′), (i+z, j+z, k′) as a witness
with probability at least 1/2. □

Finally, we formulate the Lemma which lets us conclude that the information
loss survives a single layer of compression Sd with probability at least 1/2.

Lemma 3. Let x1, x2, y1, y2 be functions from Zd
2 to Z2, and let R be a random

variable over Zd
2, such that:

Pr[x1(R) = y1(R)] =
1

2
, (9)

Pr[x2(R) = y2(R)] ∈
{
0,

1

2
, 1

}
, (10){

1

2

}
⊆ {Pr[x1(R) = 0],Pr[x2(R) = 0]} ⊆

{
1

2
, 1

}
, (11)

Efficiently Testable Circuits Without Conductivity 25

Then for independent and uniformly random R1, R2, Q1, Q2 the tuple

(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2))

is information losing with probability ≥ 1
2 .

Proof. We want to show that for any constraints with probability ≥ 1
2 the tuple

(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)) has some two x′s
different and corresponding y′s being equal. Consider any four tuples (a, a′), (b, b′),
(c, c′) and (d, d′) where a, b, c, d, a′, b′, c′, d′ ∈ {0, 1}. First, we claim that (a, b, c, d; a′, b′, c′, d′)
forms an information-losing tuple if and only if none of the following is true:
(1) a = b = c = d, (2) (a = a′) ∧ (b = b′) ∧ (c = c′) ∧ (d = d′), (3)
(a = 1− a′) ∧ (b = 1− b′) ∧ (c = 1− c′) ∧ (d = 1− d′).

Clearly, if any of the above conditions is true then (a, b, c, d; a′, b′, c′, d′) is not
information-losing. For the reverse, assume none of the conditions is true. WLOG
let a = 1, b = 0. WLOG we have two cases c = 1, d = 1 or c = 1, d = 0. In the
first case, if b′ = 0, then at least one of a′, c′, d′ must be 0, otherwise, condition
2 above would hold. WLOG let a′ = 0. Thus a ̸= b but a′ = b′ and we get
information loss. Similarly, if b′ = 1 using condition 3, we will find information
loss. In the second case of a = 1, b = 0, c = 1, d = 0, if a′ ̸= c′, then b′ = a′ or c′

hence information loss. If a′ = c′, then we get information loss if either b′ or d′

is equal to a′. The only way for neither b′ nor d′ to be equal to a′ is for one of
conditions 2 or 3 to hold true, but this would be a contradiction.

Thus we define three events corresponding to the three conditions above:

E1: x1(R1) = x1(Q1) = x2(R2) = x2(Q2)
E2: (x1(R1) = y1(R1)) ∧ (x1(Q1) = y1(Q1)) ∧ (x2(R2) = y2(R2)) ∧ (x2(Q2) =

y2(Q2))
E3: (x1(R1) = 1 − y1(R1)) ∧ (x1(Q1) = 1 − y1(Q1)) ∧ (x2(R2) = 1 − y2(R2)) ∧

(x2(Q2) = 1− y2(Q2))

Thus given a tuple of evaluations

V = (x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)),

we get that Pr[V is information losing] = 1− Pr[E1 ∨ E2 ∨ E3].
We will bound Pr[E1∨E2∨E3] ≤ 1

2 , thus proving the desired result. For this
we first use union bound to get Pr[E1 ∨ E2 ∨ E3] ≤ Pr[E1] + Pr[E2 ∨ E3]. Now
for Pr[E1], we have that at either Pr[x1 = 0] = 1

2 or Pr[x2 = 0] = 1
2 (eq. 11).

Thus Pr[x1(R1) = x1(Q1) = x2(R2) = x2(Q2)] ≤ 1
4 .

For Pr[E2 ∨ E3] ≤ Pr[E2] + Pr[E3]. We have three cases by eq. 10:

1. Pr[x2(R) = y2(R)] = 0: In this case Pr[E2] = 0. Additionally using eq. 9 we
get that Pr[E3] =

1
4 . Hence, Pr[E2 ∨ E3] =

1
4

2. Pr[x2(R) = y2(R)] = 1: In this case Pr[E3] = 0. Additionally using eq. 9 we
get that Pr[E2] =

1
4 . Hence, Pr[E2 ∨ E3] =

1
4

3. Pr[x2(R) = y2(R)] = 1
2 : Additionally using eq. 9 we get Pr[E2] = Pr[E3] =

1
16 . Hence, Pr[E2 ∨ E3] ≤ 1

8

We get Pr[E1 ∨ E2 ∨ E3] ≤ 1
2 , and the probability of inf. loss at least 1

2 . ■

26 Baig et al.

7 The Compiler

Finally, building upon results from the previous sections, we define a compiler
that compiles any circuit C : Zs

2 → Zt
2 into another functionally equivalent

circuit Ctest,λ : Zs+s′

2 → Zt+t′

2 such that for any non-trivial tampering of the
circuit Ctest,λ, running the testing procedure on the tampered Ctest,λ, one always
detects an error with high probability.

Algorithm 3: The Compiler
Input: C : Zs

2 → Zt
2, λ

Output: Ctest,λ

1 Compile circuit C into a gate-covered Cgate : Z
s+sg
2 → Zt

2,Tgate, by running
Algorithm 1 on it

2 Add the COPY gates that route the information loss in the gate-covered
circuit to the testing gadget, by running Algorithm 2 on the pair Cgate,Tgate.
This procedure gives a circuit with additional t0 output bits -
Ctest,0 : Zs+sg

2 → Zt+t0
2 along with a test set T0

3 Append the Gn,λ,d gadget to the t0 wires added in the previous step, where

d = ⌈t
1

λ+1
0 ⌉. This step adds sλ wires to the input of the circuit, but replaces

the t0 output bits created in the previous step with λ new output bits,
producing a circuit Ctest,λ : Zs+sg+sλ

2 → Zt+tλ
2

4 return Ctest,λ

Theorem 3 (Testing Probability of Final Circuit). On input circuit C :

Zs
2 → Zt

2 along with parameter λ, Algorithm 3 outputs a circuit Ctest,λ : Zs+sg+sλ
2 →

Zt+tλ
2 such that for any tampering τ of Ctest,λ if

∃X ∈ Zs
2 : Cτ

test,λ(X||0sg+sλ) ̸= Ctest,λ(X||0sg+sλ)

then when observing behaviour of the circuit Ctest,λ on its test set Ttest,

• Either the output is wrong:

∃X ∈ Ttest : C
τ
test,λ(X||0sλ) ̸= Ctest,λ(X||0sλ),

• or the testing gadget detects an inconsistency:

∃X ∈ Ttest : Pr
R←Zsλ

2

[
Cτ

test,λ(X||R) ̸= Ctest,λ(X||R)
]
≥ 1

22λ
.

Proof. By the Proposition 3 we know that either we observe an information loss
on the first t bits of the intermediary circuit Ctest,0 or its output is toggled, or
we observe information loss on t0 wires added during Step 2 of the Algorithm 3,
or the output is always correct. Any error on the first t bits of the circuit will

Efficiently Testable Circuits Without Conductivity 27

be detected on at least of query from (T0 ⊆ Ttest is the gate-covering set of
the Ctest,0 (Propositions 1 and 3)). Next, when we append the gadget Gn,λ,d

to the remaining t0 wires of the construction. By Theorem 2 we know that the
information loss on these wires survives with probability 1/2 in each layer when
queried with fresh randomness twice. Hence the information loss would survive
with probability 1/2λ if we query with two fresh randomness vectors in each layer.
Thus if we query with only one random string the probability of information loss
surviving and hence the error showing up on the output is 1

2λ
/2λ = 1/22λ. ■

Testing Procedure Given any circuit Cτ
test,λ with any tampering τ on its wires

we test it by querying it on all the test inputs in Ttest along with uniform random
R ∈ Zsλ

2 . We can repeat the testing procedure κ times with fresh randomness to
get the probability of catching an error 1− (1− 1/22λ)κ

Circuit Parameters For any circuit C : Zs
2 → Zt

2 with n gates, using the
Algorithm 3 with parameter λ. The first step of the Algorithm produces a gate-
covered circuit Cgate with 5 new input bits and a test set of size 6 and creates a
circuit of size ≈ 7n gates (see Proposition 2). The second step of the algorithm
adds XOR and COPY gate to every nonlinear gate of the circuit, adding ≈ 2 · 4n
gates and roughly ≈ 4n output wires (in the previous estimation at least 3n out
of 7n gates are the COPY gates). The third step of the algorithm replaces the
4n intermediary wires with ≈ L · λ+1

√
4n input bits and ≈ λ+1

√
4n output bits.

8 Conclusions and Open Problems

In this work, we construct an efficiently testable circuit compiler that detects
tampering on all wires and does not assume conductivity, solving one of the two
open problems put forward in [3] (the other being a construction that can handle
tampering of all gates). Unlike in [3], our testing procedure is randomized, and
it’s an interesting open question whether this is inherent. We can “derandomize”
our construction by using λ = log(n) layers and then making test queries for all
22λ = n2 possible choices of the randomness. The number of test queries will be
quadratic in the size of the circuit, which is not practical.

We hope that more applications, besides testing and security against tam-
pering, will be found in the future as was the case for non-malleable codes [18]
(like ETC, non-malleable codes originally also aimed at preventing tampering,
but only on static memory). E.g., an arithmetic version of our ETC could have
applications to multiparty computation (as it would strengthen the additive tam-
pering notion used in [23]), or to the construction of succinct proofs systems,
where starting from an ETC rather than a general (arithmetic) circuit could give
some security benefits, like avoiding a trusted setup, and instead just checking
whether the setup works on all the values in the testset.

28 Baig et al.

References

[1] D. Aggarwal, Y. Dodis, and S. Lovett. “Non-malleable codes from additive
combinatorics”. In: Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014. Ed. by D. B. Shmoys. ACM,
2014, pp. 774–783. doi: 10.1145/2591796.2591804.

[2] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Venturi. “Secure
Outsourcing of Cryptographic Circuits Manufacturing”. In: ProvSec. Ed.
by J. Baek, W. Susilo, and J. Kim. Vol. 11192. Lecture Notes in Computer
Science. Springer, 2018, pp. 75–93. doi: 10.1007/978-3-030-01446-
9_5.

[3] M. A. Baig, S. Chakraborty, S. Dziembowski, M. Gałązka, T. Lizurej,
and K. Pietrzak. “Efficiently Testable Circuits”. In: ITCS - Innovations in
Theoretical Computer Science. 2023.

[4] M. Ball, D. Dachman-Soled, S. Guo, T. Malkin, and L. Tan. “Non-Malleable
Codes for Small-Depth Circuits”. In: 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-
9, 2018. Ed. by M. Thorup. IEEE Computer Society, 2018, pp. 826–837.
doi: 10.1109/FOCS.2018.00083.

[5] F. Berti, C. Guo, T. Peters, and F. Standaert. “Efficient Leakage-Resilient
MACs Without Idealized Assumptions”. In: Advances in Cryptology - ASI-
ACRYPT 2021 - 27th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Singapore, December 6-10,
2021, Proceedings, Part II. Ed. by M. Tibouchi and H. Wang. Vol. 13091.
Lecture Notes in Computer Science. Springer, 2021, pp. 95–123. doi: 10.
1007/978-3-030-92075-3_4.

[6] S. Bhunia and M Tehranipoor. “The Hardware Trojan War”. In: Cham„
Switzerland: Springer (2018).

[7] E. Biham and A. Shamir. “Differential Fault Analysis of Secret Key Cryp-
tosystems”. In: CRYPTO. Vol. 1294. Lecture Notes in Computer Science.
Springer, 1997, pp. 513–525.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance of Elimi-
nating Errors in Cryptographic Computations”. In: J. Cryptol. 14.2 (2001),
pp. 101–119.

[9] E. Boyle, G. Segev, and D. Wichs. “Fully Leakage-Resilient Signatures”. In:
J. Cryptol. 26.3 (2013), pp. 513–558. doi: 10.1007/s00145-012-9136-3.

[10] M. Bushnell and V. Agrawal. Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Vol. 17. Springer Science & Busi-
ness Media, 2004.

[11] S. Chakraborty, S. Dziembowski, M. Gałązka, T. Lizurej, K. Pietrzak, and
M. Yeo. “Trojan-Resilience Without Cryptography”. In: Theory of Cryp-
tography. Ed. by K. Nissim and B. Waters. Cham: Springer International
Publishing, 2021, pp. 397–428. isbn: 978-3-030-90453-1.

[12] E. Chattopadhyay and X. Li. “Non-malleable codes and extractors for
small-depth circuits, and affine functions”. In: Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1109/FOCS.2018.00083
https://doi.org/10.1007/978-3-030-92075-3_4
https://doi.org/10.1007/978-3-030-92075-3_4
https://doi.org/10.1007/s00145-012-9136-3

Efficiently Testable Circuits Without Conductivity 29

Montreal, QC, Canada, June 19-23, 2017. Ed. by H. Hatami, P. McKenzie,
and V. King. ACM, 2017, pp. 1171–1184. doi: 10.1145/3055399.3055483.

[13] D. Dachman-Soled and Y. T. Kalai. “Securing Circuits against Constant-
Rate Tampering”. In: Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings. Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 533–551. doi: 10.
1007/978-3-642-32009-5_31.

[14] D. Dachman-Soled and Y. T. Kalai. “Securing Circuits and Protocols
against 1/poly(k) Tampering Rate”. In: Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings. Ed. by Y. Lindell. Vol. 8349. Lecture
Notes in Computer Science. Springer, 2014, pp. 540–565. doi: 10.1007/
978-3-642-54242-8_23.

[15] D. Dachman-Soled, F. Liu, E. Shi, and H. Zhou. “Locally Decodable and
Updatable Non-malleable Codes and Their Applications”. In: J. Cryptol.
33.1 (2020), pp. 319–355. doi: 10.1007/s00145-018-9306-z.

[16] S. Dziembowski, S. Faust, and F. Standaert. “Private Circuits III: Hard-
ware Trojan-Resilience via Testing Amplification”. In: ACM CCS. Ed. by
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi.
ACM, 2016, pp. 142–153. doi: 10.1145/2976749.2978419.

[17] S. Dziembowski and K. Pietrzak. “Leakage-Resilient Cryptography”. In:
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA. IEEE Computer Soci-
ety, 2008, pp. 293–302. doi: 10.1109/FOCS.2008.56.

[18] S. Dziembowski, K. Pietrzak, and D. Wichs. “Non-Malleable Codes”. In:
J. ACM 65.4 (2018), 20:1–20:32. doi: 10.1145/3178432.

[19] K. Efremenko et al. “Circuits Resilient to Short-Circuit Errors”. In: Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Com-
puting. STOC 2022. Rome, Italy: Association for Computing Machinery,
2022, 582–594. isbn: 9781450392648. doi: 10.1145/3519935.3520007.

[20] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. “Leakage-Resilient
Signatures”. In: Theory of Cryptography, 7th Theory of Cryptography Con-
ference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceed-
ings. Ed. by D. Micciancio. Vol. 5978. Lecture Notes in Computer Science.
Springer, 2010, pp. 343–360. doi: 10.1007/978-3-642-11799-2_21.

[21] S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. “A Tamper and
Leakage Resilient von Neumann Architecture”. In: Public-Key Cryptog-
raphy – PKC 2015. Ed. by J. Katz. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 579–603. isbn: 978-3-662-46447-2.

[22] S. Faust, K. Pietrzak, and D. Venturi. “Tamper-Proof Circuits: How to
Trade Leakage for Tamper-Resilience”. In: 2011, pp. 391–402. doi: 10.
1007/978-3-642-22006-7_33.

[23] D. Genkin, Y. Ishai, M. M. Prabhakaran, A. Sahai, and E. Tromer. “Cir-
cuits Resilient to Additive Attacks with Applications to Secure Computa-

https://doi.org/10.1145/3055399.3055483
https://doi.org/10.1007/978-3-642-32009-5_31
https://doi.org/10.1007/978-3-642-32009-5_31
https://doi.org/10.1007/978-3-642-54242-8_23
https://doi.org/10.1007/978-3-642-54242-8_23
https://doi.org/10.1007/s00145-018-9306-z
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.1145/3178432
https://doi.org/10.1145/3519935.3520007
https://doi.org/10.1007/978-3-642-11799-2_21
https://doi.org/10.1007/978-3-642-22006-7_33
https://doi.org/10.1007/978-3-642-22006-7_33

30 Baig et al.

tion”. In: Proceedings of the Forty-Sixth Annual ACM Symposium on The-
ory of Computing. STOC ’14. New York, New York: Association for Com-
puting Machinery, 2014, 495–504. isbn: 9781450327107. doi: 10.1145/
2591796.2591861.

[24] Y. Ishai, M. Prabhakaran, A. Sahai, and D. A. Wagner. “Private Circuits
II: Keeping Secrets in Tamperable Circuits”. In: EUROCRYPT. Ed. by S.
Vaudenay. Vol. 4004. Lecture Notes in Computer Science. Springer, 2006,
pp. 308–327. doi: 10.1007/11761679_19.

[25] Y. Ishai, A. Sahai, and D. Wagner. “Private circuits: Securing hardware
against probing attacks”. In: Annual International Cryptology Conference.
Springer. 2003, pp. 463–481.

[26] Y. T. Kalai, A. B. Lewko, and A. Rao. “Formulas Resilient to Short-Circuit
Errors”. In: 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012.
IEEE Computer Society, 2012, pp. 490–499. doi: 10.1109/FOCS.2012.69.

[27] Y. T. Kalai and L. Reyzin. “A survey of leakage-resilient cryptography”.
In: Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali. Ed. by O. Goldreich. ACM, 2019, pp. 727–
794. doi: 10.1145/3335741.3335768.

[28] A. Kiayias and Y. Tselekounis. “Tamper Resilient Circuits: The Adversary
at the Gates”. In: Advances in Cryptology - ASIACRYPT 2013. Ed. by K.
Sako and P. Sarkar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 161–180. isbn: 978-3-642-42045-0.

[29] X. Li. “Improved non-malleable extractors, non-malleable codes and in-
dependent source extractors”. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017. Ed. by H. Hatami, P. McKenzie, and V. King.
ACM, 2017, pp. 1144–1156. doi: 10.1145/3055399.3055486.

[30] S. Micali and L. Reyzin. “Physically Observable Cryptography”. In: The-
ory of Cryptography. Ed. by M. Naor. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 278–296. isbn: 978-3-540-24638-1.

[31] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish. “Verifiable
ASICs”. In: IEEE SP. IEEE Computer Society, 2016, pp. 759–778. doi:
10.1109/SP.2016.51.

https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1007/11761679_19
https://doi.org/10.1109/FOCS.2012.69
https://doi.org/10.1145/3335741.3335768
https://doi.org/10.1145/3055399.3055486
https://doi.org/10.1109/SP.2016.51

	Efficiently Testable Circuits Without Conductivity

