
A Solution to a Conjecture on the Maps χ
(k)
n

Kamil Otal
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Abstract

The Boolean map χ
(k)
n : Fn

2k
→ Fn

2k
, x 7→ u given by ui = xi + (x(i+1) mod n +

1)x(i+2) mod n appears in various permutations as a part of cryptographic schemes

such as KECCAK-f, ASCON, Xoodoo, Rasta, and Subterranean (2.0). Schoone

and Daemen investigated some important algebraic properties of χ
(k)
n in [IACR

Cryptology ePrint Archive 2023/1708]. In particular, they showed that χ
(k)
n is

not bijective when

⋄ n is even,

⋄ n is odd and k is even,

⋄ n is odd and k is a multiple of 3.

They left the remaining cases as a conjecture. In this paper, we examine this

conjecture by taking some smaller sub-cases into account by reinterpreting the

problem via the Gröbner basis approach. As a result, we prove that χ
(k)
n is not

bijective when

⋄ n is a multiple of 3 or 5, and k is a multiple of 5 or 7.

We then present an algorithmic method that solves the problem for any given

arbitrary n and k by generalizing our approach. We also discuss the systemati-

zation of our proof and computational boundaries.

1 Introduction

Let Fp be the finite field of size prime p, Fpk denote the k.th degree field extension

of Fp, and Fn
pk

represent the standard n-dimensional vector space of n-tuples over

Fpk . Fix p and define the Boolean map χ
(k)
n : Fn

pk
→ Fn

pk
, x 7→ u given by ui =

xi+(x(i+1) mod n+1)x(i+2) mod n. There are various cryptographic uses of such functions

in the literature, we list some known examples as follows.

⋄ For p = 2, χ
(1)
5 is used in KECCAK-f [3] (which is a part of the NIST’s standard

cryptographic hash algorithm SHA-3 [1]) and ASCON [12] (the winner of the

NIST lightweight cryptography competition [18]).

⋄ For p = 2, χ
(1)
3 is used in another cryptographic algorithm Xoodoo [8].
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⋄ For p = 2, χ
(1)
n is used in Rasta [11] where n represents the block-length and

always odd.

⋄ For p = 2, Subterranean (2.0) [6, 9] uses χ
(1)
257.

It is important to understand the algebraic properties of the maps χ
(k)
n since they

are used in many cryptographic applications. Each of the properties of χ
(k)
n could

be exploited in an attack, or conversely be used to argue for security properties. For

instance, in [7] and [10], the differential and correlation properties (related to differential

[4] and linear [15] cryptanalysis) have been studied. We can list some of the results

about the cryptographically important algebraic properties of χ
(k)
n as follows.

⋄ For p = 2 and k = 1, it is known from [7] that χ
(k)
n is invertible if and only if n

is odd.

⋄ For p = 2 and k = 1, the order of χ
(k)
n and its cycle structure are also known

from [17].

⋄ For p = 2, k = 1, and n is odd; we know a direct formula for the inverse function

of χ
(k)
n from [14].

⋄ Recently, Schoone and Daemen investigated various algebraic properties of such

functions thoroughly in [16]. We can summarize their results as follows.

– For p = 2 and k = 1, the map can be represented as a univariate polynomial

through an isomorphism between Fn
2 and F2n . We remark that this repre-

sentation can be used to attack ciphers, see [5] and [13] for example. The

authors study these univariate representations for χ
(k)
n to give an insight in

these representations.

– They investigated how many monomials of a certain degree occur in the

formula of the inverse of the map χ
(k)
n .

– They examined the bijectivity of χ
(k)
n (note that the bijectivity is an impor-

tant property since it is a must feature for the confusion layer of SPN ciphers

and some sponge constructions). Their results can be listed as follows.

* When p is odd, χ
(k)
n is not invertible.

* When p = 2 and n is even, χ
(k)
n is not invertible.

* When p = 2, n is odd, and k is even; χ
(k)
n is not invertible.

* When p = 2, n is odd, and k is a multiple of 3; χ
(k)
n is not invertible.

* For the remaining cases, they conjectured that χ
(k)
n is not invertible.

In this paper, we focus on this conjecture and start from the simplest cases. We

reinterpret the problem by utilizing the Gröbner basis approach. We also apply some

algebraic manipulations carefully by the help of the computer algebra program Magma

[2]. As a result, we provide concrete solutions for n is a multiple of 3 or 5, and k is

2



a multiple of 5 or 7. We then present an algorithmic method that solves the problem

for any given arbitrary n and k by generalizing our approach. We also discuss the

systematization of our proof and computational boundaries.

2 When n is a Multiple of 3

The conjecture in [16] comprises only fields of even characteristics, therefore we fix

p = 2 for the rest of the paper.

One of the simplest cases within the conjecture is the n = 3 and k = 5 case.

A brute force algorithm examining whether there exist distinct x = (x0, x1, x2), y =

(y0, y1, y2) ∈ F3
25 satisfying χ

(5)
3 (x) = χ

(5)
3 (y), i.e.

x0 + x1x2 + x2 = y0 + y1y2 + y2
x1 + x2x0 + x0 = y1 + y2y0 + y0
x2 + x0x1 + x1 = y2 + y0y1 + y1

easily gives x = (1, 1, w) and y = (w13, w12, w22) as a solution, where w ∈ F25 is a root

of the 5th degree irreducible polynomial X5 +X2 + 1 over F2.

Another simple case is for n = 3 and k = 7. A brute force algorithm examining

whether there exist distinct x = (x0, x1, x2), y = (y0, y1, y2) ∈ F3
27 satisfying χ

(7)
3 (x) =

χ
(7)
3 (y) easily gives x = (1, 1, w) and y = (w86, w81, w43) as a solution, where w ∈ F27

is a root of the 7th degree irreducible polynomial X7 +X + 1 over F2.

In general, a brute force searches for 2n unknowns x0, . . . , xn−1, y0, . . . , yn−1 among

2k elements, i.e. 22kn+1 computations of χ
(k)
n (x) are expected. However, the number

of expected solutions is 2kn since we have 2n unknowns and n equations. Therefore,

a solution appears by approximately 2kn+1 computations. On the other hand, the

following theorem lets us generalize our results for larger k and n values without any

additional computational cost.

Theorem 1. Let n = ms and k = lr for some integers l,m, r, s > 1. Suppose that

x and y are two distinct elements from Fs
2r satisfying χ

(r)
s (x) = χ

(r)
s (y). Then any m

times repetitions of x and y (i.e. xm = x||x|| · · · ||x and ym = y||y|| · · · ||y) are distinct

and satisfy χ
(k)
n (xm) = χ

(k)
n (ym).

Proof. It is clear that F2r is a subset of F2k(= F2rl). Also note that we concatenate

the images u = χ
(k)
s (x) and v = χ

(k)
s (y) m times when we concatenate x and y m times

since Zs is embedded in Zn(= Zms) periodically.

As a result, our computation cost for the brute force is 2rs+1 (rather than 2kn+1),

where r and s are some prime numbers dividing k and n, respectively.

Corollary 1. The conjecture in [16] is true when n = 3m and k = 5l or 7l for some

positive integers m and l.
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3 When n is a Multiple of 5

The complexity of the brute force is smaller than we expected at the beginning thank

to Theorem 1 (i.e. 2rs+1 rather than 2kn+1, where r and s are some prime numbers

dividing k and n, respectively). Therefore, we need to figure out the case in which n

has only large prime divisors. Note that the brute force approach can be exhaustive

while r and s get bigger. In this section, we solve this problem by utilizing the Gröbner

basis approach together with some additional algebraic manipulations.

We start with the case n = 5 and k = 5. Note that the equation system

x0 + x1x2 + x2 = y0 + y1y2 + y2
x1 + x2x3 + x3 = y1 + y2y3 + y3
x2 + x3x4 + x4 = y2 + y3y4 + y4
x3 + x4x0 + x0 = y3 + y4y0 + y0
x4 + x0x1 + x1 = y4 + y0y1 + y1

is required for our purpose. We can extend this system by adding

x0 = 0

y0 = 1

to satisfy x ̸= y. We need only one solution, hence we can add two more restrictions

as follows.
x1 = 0

x2 = 0

and fix y4 as the primitive element of F25 by adding

y54 + y24 + 1 = 0.

Remark that we selected y4 as the primitive element since y4 is the last element in the

lexicographic order, hence all the other x0, . . . , x4, y0, . . . , y3 values can be represented

as a function of y4 when we apply the Gröbner basis computations. The ideal I

generated by the polynomials

x0,

x1,

x2,

y0 + 1,

y54 + y24 + 1,

x0 + x1x2 + x2 + y0 + y1y2 + y2,

x1 + x2x3 + x3 + y1 + y2y3 + y3,

x2 + x3x4 + x4 + y2 + y3y4 + y4,

x3 + x4x0 + x0 + y3 + y4y0 + y0,

x4 + x0x1 + x1 + y4 + y0y1 + y1
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over F2 is reduced to
x0,

x1,

x2,

x3 + 1,

x4 + y4,

y0 + 1,

y1 + y34 + y24 + y4 + 1,

y2 + y24 + y4,

y3 + y4,

y54 + y24 + 1,

by using the Gröbner basis approach via Magma [2], which corresponds to the solution

x = (0, 0, 0, 1, w) and y = (1, w3 + w2 + w + 1, w2 + w,w,w), where w is a root of

X5 +X2 + 1 over F2.

A similar procedure can be applied for the n = 5 and k = 7 case, by considering

X7 +X + 1 instead of X5 +X2 + 1, and the following result is obtained:

x = (0, 0, 0, w5 + w4 + w2 + w,w) and

y = (1, w5 + w4 + w3 + w2 + w,w2 + w,w5 + w4 + w2 + 1, w),

where w is a root of X7 + X + 1 over F2. As a result, we can obtain the following

corollary by the help of Theorem 1.

Corollary 2. The conjecture in [16] is true when n = 5m and k = 5l or 7l for some

positive integers m and l.

4 A Generalization of Our Method

We can generalize the method in Section 3 for more general n values. We can apply

the following procedure for this purpose.

1. Let s be the smallest prime divisor of n and r be the smallest prime divisor of

k. If s ∈ {2, 3, 5} and r ∈ {2, 3, 5, 7} then the conjecture in [16] is true by the

results up to now. Otherwise, we apply the next step.
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2. Construct the ideal I generated by 2s polynomials

x0,

x1,
...

xs−3,

y0 + 1,

f(ys−1),

x0 + x1x2 + x2 + y0 + y1y2 + y2,

x1 + x2x3 + x3 + y1 + y2y3 + y3,
...

xs−1 + x0x1 + x1 + ys−1 + y0y1 + y1

generated by 2s variables x0, x1, . . . , xs−1, y0, y1, . . . , ys−1, where f(X) is a prim-

itive polynomial of degree r over F2.

3. Apply the Gröbner basis reduction procedure by considering the lexicographic

order x0 < x1 < · · · < xs−1 < y0 < y1 < · · · < ys−1.

4. If the resulting ideal has a common zero (x, y), then take xm and ym as the

solution for the main problem. Otherwise, repeat Step 2 by changing one of the

first s− 2 polynomials in the ideal I linearly (i.e. taking x1 + 1 instead of x1 for

example) or removing one of the first s− 2 polynomials (i.e. x1 can be removed

for example).

5 Conclusion and Future Work

We remark that the 4-step procedure in Section 4 yields one solution with high prob-

ability since the expected number of solutions is 2nk. We also emphasize that the

procedure in Section 4 can be manipulated for any other Boolean functions in case of

necessity.

Another advantage of our method is that the problem is reduced to prime n and

prime k from odd n and odd k. Therefore, we can reduce the conjecture in [16] as

follows: χ
(k)
n is not invertible for any prime n and prime k.

On the other hand, our method is an algorithmic solution and gives no result

when n and k are sufficiently large prime numbers because of the computational cost.

Therefore, it seems interesting as a future work to look for another mathematical

solution that contains all possible n and k values even if they are large prime numbers.
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