
ASOZ: a decentralized payment system with
privacy-preserving and auditing on public

blockchain

Tianjian Liu1[0009−0003−9475−1170], Dawei Zhang1[0000−0001−5942−8245], Chang
Chen1, and Wei Wang1(�)

1 Beijing Jiaotong University
tianjian.liu@bjtu.edu.cn

2 dwzhang@bjtu.edu.cn
3 chang.chen@bjtu.edu.cn
4 wangwei1@bjtu.edu.cn

Abstract. Decentralized payment systems have gradually gotten more
attention in recent years. Removing the trusted third party used for ac-
counting ledgers, fundamentally empowers users to control their assets.
As privacy concerns grow, some cryptocurrencies are proposed to pre-
serve the privacy of users. However, those cryptocurrencies cause illegal
transactions such as money laundering, fraudulent trading and so on.
So it is necessary to design an auditing scheme. To solve this problem,
many privacy-preserving and audit scheme was proposed. But there ex-
ists no scheme that effectively solves the issue of privacy-preserving and
auditing on both user identity and transaction content.
In this paper, we propose a design for a decentralized payment system
with privacy-preserving and auditing. We use cryptographic accumu-
lators based on Merkle trees for accounting and use a combination of
Twist ElGamal, NIZK (Non-Interactive Zero-Knowledge), Bulletproofs,
and zk-SNARKs for privacy-preserving and auditing.

Keywords: blockchain · cryptocurrencies · decentralized payment sys-
tem· privacy-preserving· auditiable· proof of no-knowledge

1 Introduction

With the development of blockchain, decentralized digital payment systems are
gradually becoming the future direction of digital payment systems. Compared to
centralized payment systems, decentralized digital payment systems are built on
public ledgers and digital transaction schemes based on consensus algorithms.
Therefore, they are more trusted by the public and offer better prospects for
development.

Bitcoin[21] is the first decentralized digital payment system. It records plain-
text transaction information on the public ledger, the public ledger can be easily
analyzed, tracked, and monitored. So many cryptocurrencies and protocols are
proposed to solve those problems, such as ZCash[4], Monero[19,20], Coinjoins[2],

2 T. Liu Author et al.

and so on. Essentially, those cryptocurrencies and protocols follow the concept
of coin mixing. Coin mixing refers to using cryptology method or trust mecha-
nism, to verify the correctness of a transaction without leaking the information
of a transaction in a transaction list. Among them, the zerocash protocol of
ZCash has the strongest mixing ability, we call it global mixing. Using mem-
bership proof of Merkle tree[23], zerocash scheme mixing sender address into a
whole Merkle tree. This means if the depth of the Merkle tree is 32, then the
transaction list size is 232.

However, the privacy-preserving method above leads to some problems. Since
the transaction information is not visible, those cryptocurrencies lead to illegal
transactions. according to the report of Chainalysis[16], the cryptocurrency re-
ceived by mixers is $7.8 billion in 2022, 24% of which came from illicit addresses.
In the year 2021, this percentage amounted to a mere 10%. So it is impera-
tive to introduce audit mechanisms within the frameworks of privacy-preserving
schemes. To solve those problems, many privacy-preserving and audit scheme
was proposed [12,17,7,25,18]. [12] proposed a basic improvement method to add
audit function based on zero cash; [7] proposed a transaction content auditing
scheme based on Twist ElGamal, but it does not support audit for identities;
[25] use Pedersen Commitment and ElGamal to preserve transaction content
and identities, but it lacks a design for recording transactions and relies on a
conventional blockchain structure for recording; [17] builds on the design of
transaction values and identities and uses cryptographic accumulators as a way
to record transactions but employs a significant amount of zk-SNARKs, result-
ing in lower computational efficiency. Its sender address is sent in plaintext,
the privacy-preserving ability is limited; [18] designs transaction records using a
tabular structure based on the design of transaction values and identities, but
this makes the scheme unsuitable for handling a large number of users, only
effective in scenarios involving a small number of institutions within the defined
consortium chain.

From above, we can see that there are some challenges in decentralized digital
payment systems currently, including how to define audit capabilities, how to
introduce effective audit mechanisms based on privacy-preserving schemes, how
to balance the audit capabilities and scheme efficiency.

In this paper, we propose a design for a decentralized payment system with
privacy-preserving and auditing. We use cryptographic accumulators based on
Merkle trees for accounting and use a combination of Twist ElGamal, NIZK
(Non-Interactive Zero-Knowledge), Bulletproofs, and zk-SNARKs for privacy-
preserving and auditing. We summarize our contributions as follows:

− We design a decentralized transaction privacy-preserving and auditing scheme
called ASOZ for scenarios with large-scale users, supporting privacy-preserving
and auditing of both identities and transaction content. We formalize the sys-
tem model and security properties of ASOZ, including correctness, auditabil-
ity, soundness, and privacy. We give the principles in design audit schemes,
including offline audit, Out-of-band cost, full transaction audit, and minimal
information disclosure. We instantiate our scheme following the principles,

Title Suppressed Due to Excessive Length 3

and prove that the scheme achieves all the security requirements in the for-
malized security model.

− We utilize a global mixing scheme for identity privacy-preserving, offering
the strongest hiding capabilities among all cryptocurrency schemes.

− We propose a sigma-protocol-friendly construction, in comparison to typical
zk-SNARK solutions, our construction has lower computational and storage
cost.

The rest of this paper is organized as follows:
In section 2, we introduce the basic concepts and notations used in this paper.

In section 3, we give an overview of our scheme. In section 4, we describe the
details of our scheme. In section 5, we give security proof. In section 6, we analyze
the performance of our scheme. In section 7, we give further discussion.

2 Preliminaries

2.1 Notaion

Pedersen Commitment Below we recall Pedersen Commitment[22]:

comm(v, r) = gvhr (1)

Where v is the value we want to hide, r is a random number, g and h are
two generators of a cyclic group G with s = |G| elements and prime order p,
Zp = {0, 1, . . . , s−1}, v ∈ Zp, and r ∈ Zp. The Pedersen commitment is perfectly
hiding and computational binding under the discrete logarithm assumption.

ElGamal ElGamal encryption is a public-key cryptosystem, below we recall
ElGamal encryption[9,10]:

Alice Bob

pick a prime p

find a primitive root g

α←$ Zq|2 ≤ α ≤ p− 1

a← gα(mod p)

publish public key (p, g, a)

get messages m ∈M
r ←$ Zq|2 ≤ r ≤ p− 2

c1 ← grmod p

c2 ← m · armod p

(c1, c2) send ciphertext

m← c2 · cp−1−α
1

4 T. Liu Author et al.

ElGamal encryption algorithm is based on the security of Diffie-Hellman dis-
tribution scheme. This algorithm is IND-CPA secure. As for its friendliness to
Sigma protocol, we use ElGamal encryption algorithm to encrypt the audit in-
formation in our scheme.

Twist ElGamal Below we recall Twist ElGamal encryption[7]:

Alice Bob

pick a prime p

find a primitive root g, h

α←$ Zq|2 ≤ α ≤ p− 1

a← gα(mod p)

publish public key (p, g, h, a)

get value v ∈ Zq

r ←$ Zq

c1 ← armod p

c2 ← gr · hvmod p

(c1, c2) send ciphertext

v ← logh
c1

−α

c2

In the above algorithm, the size of v is much smaller than p so that we can
calculate the discrete logarithm of (c1

−α)/c2. This algorithm supports homo-
morphic, so we directly use this algorithm to calculate transaction value in a
black box manner. This algorithm is IND-CPA secure based on the divisible
DDH assumption, which satisfies the requirements of our scheme.

Sigma Protocol Sigma protocol [24] is an interactive proof protocol, it contains
three parts: commitment, challenge, and response. And it is easy to convert to
non-interactive proof by random oracle model. In general, Sigma protocol is more
efficient than zk-SNARK.

Fiat-Shamir Heuristic The Fiat-Shamir heuristic [11] is a technique to con-
vert an interactive protocol to a non-interactive proof in the random oracle
model. This technique assumes pseudorandom function (PRF) as a random or-
acle, and uses it to replace the random challenge from verifier.

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge
(zk-SNARK) zk-SNARK[22] is an efficient variant of zero-knowledge proof
of knowledge. It can prove an arithmetic circuit without revealing any informa-
tion about witness

Title Suppressed Due to Excessive Length 5

Bulletproof Bulletproof [5] is a non-interactive zero-knowledge proof protocol.
It can prove inner-product argument and range proof based on Pedersen Com-
mitment. It has a small proof size and fast speed, so it is widely used in many
privacy coin such as ZCash [8], and Monero.

3 Solution Overview

3.1 Design Goal

Our scheme is shown in figure 1. In privacy-preserving scenarios, how to ensure
that transaction information is not visible to others, but that others can verify
the correctness of the transaction is a key issue. In this part, our scheme is similar
to the zerocash protocol, the owner of the coin uses the public key signature to
represent the ownership of the coin, and uses private key signature to get nullifier
to indicate that the coin has been spent. The purpose is that the spending
of the coin is stored in SNList, while the ownership of the coin is stored in
CMList, this can achieve the unlinkability of the transaction. In our scheme,
Auditor can open the transaction form the trapdoor and link the transaction.
Afterwards, auditor can sanction the illegal transactions. To trace the flow of
illegal transactions, Auditor needs to open the transaction from the trapdoor and
link the transaction. Afterwards, auditor can sanction the illegal transactions.
In this process, a key issue is ensuring the reliability of regulation, meaning that
regulatory entities can accurately reconstruct transaction data.

Fig. 1. scheme design

3.2 Base Character

Below we introduce the base character in our scheme.

– Sender: The initiator of the transaction.
– Receiver: The recipient of the transaction.

6 T. Liu Author et al.

– Verifier: The leader of updating public state in consensus algorithm, Gen-
erally verify a large number of transactions according to the protocol rules,
then record the transactions in public ledger. In our scheme, the verification
process does not require the involvement of auditors, and can be implemented
as smart contracts.

– Auditor: In order to audit money laundering, illegal transactions, and other
behaviors. We need a character to open transactions to get the identities and
values. Such as the tax bureau and so on.

3.3 Scheme Definition

Below we propose the definition of the scheme. Firstly, we provide a rough defi-
nition of the symbols in table 1, with more precise definitions to be provided in
scheme design in chapter 4. Then we will formalize the notions of correctness,
soundness, and privacy via security experiments, and capture the threat with
oracles.

Our scheme is composed of the following algorithms:

– Setup : pp← 1λ

– CreateAddress : (sk, pk)← U × pp

– CreateAuditKey : (usk, upk)← A× pp

– CreateTran : (πt, cm, sn, ρn)← Us × (pkr, ρo, sks, v, r)

– CreateAudit : (πa, s)← Us × (cm, sn, upk)

– V erifyTran : 0/1← V × (πt, cm, sn)

– V erifyAudit : 0/1← V × (πa, s)

– AuditTran : (pks, pkr, v)← A× (usk, cm, sn, s)

– SendSecret : (sm)← Us × (epkr, ρn, v)

3.4 Security Model

Let A be an adversary attacking our system. Formally, we capture attack be-
haviors as adversarial queries to oracles implemented by a challenger CH. We
list the oracles available to the adversary as below.

– OP :A queries this oracle to get a public key pk. The CH invoke CreateAddress
to get (sk, pk), then move sk, pk to the keys list T , return pk toA. This oracle
describes that A can get honest public keys.

– OS : A queries this oracle with a public key pk. CH first check if pk appears
in corrupt list Tcorrupt, if not, return a secret key sk, then CH move pk and
sk to the corrupt list Tcorrupt; if so, return ⊥. This oracle describe that A
can get a set of leaked public-secret key pairs.

– OV : A queries this oracle with (pp, pkr, ρ, sks, v, r), CH first check if pkr or
sks appears in Tcorrupt, if so, return ⊥; if not, the CH invoke CreateTran
to get (πt, cm, sn), then CH invoke CreateTran to get (πa, s), finally CH
return (πt, πa, cm, sn, s) to A. The oracle describe that A can use an honest
public key to create a valid transaction.

Title Suppressed Due to Excessive Length 7

– ORT : A queries this oracle with (cm, s) or (sn, s), CH first get (ρ, pkr, v)
or (ρ, sks) that generate cm or sn. Then CH check if pkr or sks appears
in Tcorrupt, if not, return (ρ, pkr, v) or (ρ, sks) above; if so, return ⊥. This
oracle describes a chosen plaintext attack (CPA) on transaction.

Table 1. Symbols define

Symbol Meaning

U is the set of users. In this set, we define Us as sender, and Ur as receiver in 3.2.

V is the set of verifier in 3.2.

A is the set of auditor in 3.2.

ρ is the secret identity of coin. To ensure security, Us needs to randomly update its
value in a transaction. So we define ρo as the identifier of the old coins and ρn as
the identifier of the coins to be poured. We want to point out that the effect of ρ is
similar to the superposition of (ρ, r) in Zerocash[4].

v is the transaction value, we define {vin,i} as input value from sneder, and {vout,i} as
output value to receivers.

c is the challenge parameter attached to the proof.

cm is the commitment of the ownership.

sn is the nullifier of the coin.

πt is the zero-knowledge proof (ZKP) of transaction information.

r is the additional parameter used by sender Us to calculate commitment cm.

(sk, pk) is the signature key of users. And pk is the address of users. (skr, pkr) refer in par-
ticular to the key pair of receiver, and(sks, pks) refer in particular to the key pair of
sender.

(usk, upk) is the audit key pair.

s is the additional parameter used by auditor A to decrypt transaction information. s
is encrypted by upk.

πa is the ZKP of audit information.

(esk, epk) is the secret transmission key pair of users.

sm is the ciphertext encrypted by epk.

Then, we give the security model of the description above[6]:

correctness Transactions that follow the rule of CreateTran can pass V erifyTran.

AdvCA = 1− Pr

[
β = 1 :

(πt, cm, sn, ρn)← CreateTran(pkr, ρo, sks, v, r)

β ← V erifyTran(πt, cm, sn)

]
(2)

auditability If transactions can pass V erifyAudit it can be opened byAuditTran
correctly.
We propose the following security experiment to describe the second half of
the attribute above.

8 T. Liu Author et al.

Adv
A
A = 1− Pr

pks = pk

∗
s

pkr = pk
∗
r

v = v
∗

:

(πt, cm, sn, ρn)← CreateTran(pkr, ρo, sks, v, r)

1← V erifyAudit(πt, cm, sn)

(pk
∗
s , pk

∗
r , v

∗
)← AuditTran(usk, cm, sn, s)

 (3)

soundness Transactions that do not follow the rule of CreateTran cannot pass
V erifyTran.

AdvCA = 1− Pr

[
β = 0 :

(π∗t , cm
∗, sn∗)←$ Zp

β ← V erifyTran(π∗t , cm
∗, sn∗)

]
(4)

privacy verifier cannot get transaction information from public data. Including
transaction value and transaction identity.
Experiment 0. This experiment describe the advantage that adversary can
get v, pkr, pks from public data.
1. generation phase: on input a security parameter λ, run pp← Setup(1λ)
2. pre query phase:A adaptively makes queries toOP ,OS ,OV ,ORT finitely.
3. query phase: CH invoke CreateAddress and get (pkr, sks), CH random

generate ρ and generate v from a smaller range, then invoke CreateTran,
CreateAudit to get (πt, πa, cm, sn, s) and send to A.

4. guess phase: A output pkr
′, pks

′, v′

We define the advantage of A to guess v, pks, pkr:
AdvvA(λ) = Pr[v = v′].
AdvsA(λ) = Pr

[
pks = pks

′].
AdvrA(λ) = Pr

[
pkr = pkr

′].
Then we define the advantage of A:
AdvPA(λ) = max{AdvvA(λ), AdvsA(λ), AdvrA(λ)}.

In addition, we propose other principles for the design of audit scheme, and
we think that these attributes help improve system efficiency and protect the
privacy of legitimate users. In our plan, we will follow below principles:

Offline audit Scheme allows offline auditing, the auditor does not need to track
and maintain the entire public state.

Out-of-band Cost Audit scheme should use the data structure provided by
the privacy-preserve scheme whenever possible, with the aim of minimizing
additional storage, computation, and interaction costs.

Full transaction audit In an auditing scheme, the auditing party has the abil-
ity to open all transactions and obtain information about all participants and
value, we refer to this auditing scheme as a full transaction audit scheme.
Under a full transaction audit scheme, the auditing party can get the flow
of all funds and the individuals involved.

Minimal information disclosure When the auditor opens private data for
the purpose of auditing, he should strive to minimize unnecessary disclosures
of privacy.

Security Strength Unchanged The introduction of audit measures will not
result in a diminution of the privacy-preserving strength in the original
privacy-preserving schemes.

Title Suppressed Due to Excessive Length 9

3.5 How to Preserve Privacy

Our solution here is based on the membership proof of Merkle tree[23]. In our
plan, we use Merkle tree to record the commitment of the coin, and we call the
Merkle tree as CMList. We record the value (v, ρ, pk) as a commitment on the
leaf node of CMList.

k = PRF k(pk, ρ) = gpkhρ

cm = PRF cm(v, k) = gkhv
(5)

Where:

– v is the value of the coin.
– ρ provides the right to use the coin, and introduce randomness into commit-

ment.
– pk provides ownership of the coin.

When the user uses the coin, he gives the membership proof of (v, ρ, pk) below
a root of CMList in ledger, membership proofs do not disclose the position of
the commitment in the cmlist, thereby preserving the privacy of the sender’s
identity. When he spends the coin, he uses a new ρ generated randomly and
receiver’s public key to generate a new commitment. The secret parameter ρ is
sent to receiver in a security way, which we do not consider in this paper.

We can see only users who know ρ with a correct pk can spend the coin.
Now, we only need a PRF function of commitment, the specific form of the PRF
we will explain in audit part in 3.6.

When a user spends a coin, he also needs to generate a nullifier for the coin
and record it on a publicly maintained list SNList.

sn = PRF sn(ρ, sk) = gskhρ

pk = gsk
(6)

The nullifier is unidirectional binding with CMList using sk, user uses zk-SNARK
to prove this binding. This can avoid the double spending problem by searching
for the same record on the SNList. The function PRF sn need to be collision-
resistant, once the resistant exists, the spending of later coin will fail. We in-
stantiate PRF sn as the form of Pedersen commitment, because of its random
uniform distribution, the probability of collision is negligible.

We would like to emphasize here that, Although both CMList and SNList
are member lists that require public maintenance to ensure their immutability.
However, the CMList needs to prove that the coin is in the Merkle tree structure
in the commitment list when the specific content of the coin is not visible; SNList
is just a search list, which can be a structure such as B+ tree, Bloom Filter, etc.
The specific form of the PRF we will explain in the audit part in 3.6.

Compared to the tabular ledger data structure of FabZK[18], our solution
only needs to record the commitment of the coin and the information of the
coin spent during each transaction, rather than record transactions generated

10 T. Liu Author et al.

by every part, so the storage cost is linear correlation with the number of users,
making it more suitable for large-scale transaction scenarios compared to tabular
ledger data structures.

3.6 How to Audit

According to the prior definition, our auditing refers to the process that the
verifier leave a Trapdoor in the encrypted transaction for the auditor before the
transaction is confirmed. The auditor can open the encrypted transaction and
get the transaction value and identities. In our scheme, the audit does not need
to interact online, the auditor can open the encrypted data on blockchain alone.
This follows the Offline Audit principle.

To describe our scheme, let us review our PRF sn, PRF cm, Twist ElGamal
and ElGamal ciphertext:

PRF cm(v, k) = gkhv

PRF sn(ρ, sk) = gskhρ

pk = gsk

TwistElGamal(m) = (ar, grhm)

ElGamal(m) = (gr,mar)

(7)

We can see that the form of PRF cm and PRF sn is similar to the form of
TwistElGamal(m)[1], ElGamal(m)[1]. In the equations above, the (v, pk, sk)
is the parameter need to be preserved and (v, pk) is the parameter needs to be
audited, so if we give the:

TwistElGamal(v) = (upkk, gkhv)

ElGamal(pk) = (gr, pk · hρ)

upk = gusk
(8)

Then we can audit v in CMList and pk in SNList, only left to prove the consis-
tency of the parameters involved in the calculation. We give the Sigma protocol
of those proofs later in 4. Unfortunately, we cannot give a pure Sigma protocol
to prove the consistency of pk in CMList, but we combine the Sigma protocol
with zk-SNARK to prove it.

Besides, by using ElGamal and TwistElGamal to encrypt transaction infor-
mation, our introducing of audit is IND-CPA secure, which follows the Security
Strength Unchanged principle. From another perspective, the form of PRF cm is
friendly to bulletproof, through which we can prove the sender has solvency by
proving assets are not negative after payment.

4 Scheme Design

4.1 Transaction Scheme

In order to explain our scheme, we take 2 input-1 output transaction as an
example. Actually, the scheme can be extended to m input-n output transactions.

Title Suppressed Due to Excessive Length 11

Sender has two coin record: coin1 = (ρ1, v1) and coin2 = (ρ2, v2)(ρ is the secret
identifier of coin, v is the value of coin), and sender wants to merge these two
coins and send them to receiver.

1. Sender calculate commitment cmold
1 = gPRFk(pks,ρ1)hv1 cmold

2 = gPRFk(pks,ρ2)hv2

2. Sender calculate cm′ = cmold
1 · cmold

2

3. Sender uses zk-SNARK to make membership proof: π1, to prove commitment
cmold

1 and cmold
2 in the Merkle tree of CMList and the correctness of cm′.

4. Sender calculate sn1 = PRF sn(ρ1, sks) and sn2 = PRF sn(ρ2, sks)
5. Sender generates proof, to prove nullifier is generated by his private key:

π2 = PoK{(sks, pks, ρ1, ρ2) : pks = PRF pk(sks)
∧

sn1 = PRF sn(ρ1, sks)
∧
sn2 =

PRF sn(ρ2, sks)}. We use zk-SNARK to prove π2.
6. Sender randomly generate ρ3 and calculate new commitment of coin: cmnew =

gPRFk(pkr,ρ3)hv3

7. Sender calculate requation, make it satisfy PRF k(pks, ρ1)+PRF k(pks, ρ2)−
PRF k(pkr, ρ3) + requation = 0

8. Sender use bulletproof to generate range proof π3 = PoK{(v3, cmnew, r) :
cmnew = grhv3

∧
v3 ∈ [0, 2n]}

9. Sender encrypt transaction value with audit key: X = upkPRFk(pkr,ρ3), Y =
cmnew. We define Ccontent = Encupk1(v3) = (X,Y)

10. Sender generates ZKP, prove that the values encrypted by audit key are cor-
rect π4 = PoK{(r2) : X = upkr2

∧
Y = gr2hv3}, where r2 = PRF k(pkr, ρ3)

Sigma protocol of π4(P for prover and V for verifier):

(a) P randomly generates a,b. send A = upka, B = gahb to V
(b) V randomly choose e, send e to P as challenge
(c) P calculate z1 = a + er2, z2 = b + ev3, send z1, z2 to V, V check the

following equation:

upkz1 = AXe (9)

gz1hz2 = BY e (10)

We use Fiat-Shamir Transform to convert the above Sigma protocol into a
NIZK. We want to point out that this proof can be easily extended to m
input-n output transactions. And the proof of security properties can be seen
in [7].

11. Sender uses audit key encrypt identity information: Csender = Encupk2(pks),
Creceiver = Encupk2(pkr)

12. Sender generates ZKP, prove that the identities of sender encrypted with au-
dit key are correctly π5 = PoK{(pks, sks) : Csender = Encupk2(pks)

∧
pks =

PRF pk(sks)
∧
sn1 = PRF sn(ρ1, sks)

∧
sn2 = PRF sn(ρ2, sks)}

Then we expand PRF and Enc function, π5 can be written as:

π5 = π7 ◦ π8, Csender = (X1, Y1)

π7 = PoK{(r3) : X1 = gr3
∧

Y1 = upkr3gsks}

π8 = PoK{(sks) : Y1 = upkr3gsks

∧
sn1 = gskshρ1

∧
sn2 = gskshρ2}

(11)

12 T. Liu Author et al.

Where Encupk2(pks) = (X1, Y1), and r3 is random generated. The proof of
π7 is similar with Sigma protocol of π4, so we do not prove them in there.
The proof of π8 is below:
Sigma protocol of π8:
(a) P random generate a, b1, b2, b3. send A = ga, B1 = upkb1 , B2 = hb2 , B3 =

hb3 to V
(b) V random generate e, send e to P as challenge
(c) P calculate z = a+ e · sks, z1 = b1+ e · r3, z2 = b2+ e · ρ1, z3 = b3+ e · ρ2,

send z, z1, z2, z3 to V, V check the following equation:

gzupkz1 = A(Y1)
eB1 (12)

gzhz2 = A(sn1)
eB2 (13)

gzhz3 = A(sn2)
eB3 (14)

We use Fiat-Shamir Transform to convert the above Sigma protocol into a
NIZK. We want to point out that this proof can be easily extended to m
input-n output transactions. We will give the proof of security properties
later in A.1.

13. Sender generates ZKP, prove that the identities of receiver encrypted with
audit key are correct: π6 = PoK{(pkr) : Creceiver = Encupk2(pkr)

∧
cmnew =

gPRFk(pkr,ρ3)hv3}.
Then we expand PRF and Enc function, π6 can be written as:

π6 = π9 ◦ π10, Creceiver = (X2, Y2)

π9 = PoK{(r4) : X2 = gr4
∧

Y2 = upkr4pkr}

π10 = PoK{(pkr) : Y2 = upkr4pkr
∧

cmnew = gg
pkrhρ3

hv3}

(15)

Where Encupk2(pkr) = (X2, Y2), and r4 is random generated. We use zk-
SNARK to prove π9, π10.

14. Sender send π1, π2, π3, π4, π5, π6, cm
′, sn1, sn2, requation, Ccontent, Csender,

Creceiver to verifier.
15. Sender use public key of receiver to encrypt ρ3, v3 and send to receiver.

4.2 Transaction Verify Scheme

1. Verifier verify π1, π2, π3, π4, π5, π6.
2. Verifier verify cm′ · grequation · cm−new = 0, (cmnew = Ccontent[1])
3. Verifier verify if sn1, sn2 already in SNList, if not, then record nullified

sn1, sn2 into SNList.
4. Verifier record cmnew in Merkle tree node of CMList.
5. Verifier send Ccontent, Creceiver, Csender to auditor.

4.3 Transaction Audit Scheme

1. Auditor get (X,Y) from Ccontent, calculate v3 = logh(
Y

Xusk−1), get the trans-
action value v3.

2. Auditor calculate Dec(Csender), Dec(Creceiver) to get public key of sender
and receiver.

Title Suppressed Due to Excessive Length 13

5 Security

Theorem 4.1. Assuming the security of ZKP, the IND-CPA security of ElGa-
mal, and Twisted ElGamal, the above scheme is secure.

5.1 Correctness

The correctness of the ZKP is included in the assumption. And other parts of
the scheme are easy to verify by simple calculations.

5.2 Auditability

The auditability of the scheme is based on the public-key encryption scheme
of ElGamal protocol and Twist ElGamal protocol. The encryption scheme is
described in 2.1 and 2.1.

5.3 Privacy

Lemma 4.2. Assume the adaptive zero-knowledge property of NIZK and the
IND-CPA security of ElGamal and Twisted ElGamal, the above scheme satisfies
the privacy property.

Proof. We proceed via a sequence of games. Let Si be the probability that A
wins in Game i.

Game 0. This game corresponds to the Game 0 in Experiment 0.

Game 1. Game 1 is the same as Game 0 except in the challenge phase, the
difference is that zero-knowledge proof π1, π2, π3, π4 is generated by simulator
simulation. If the advantage of A winning in Game 0 and Game 1 has difference,
then we can build a scheme to break the zero-knowledge property. So we have:

|Pr[S1]− Pr[S0]| ≤ negl(λ) (16)

Similar to Game 0, we usePr[Sv
1],Pr[S

s
1],Pr[S

r
1] to describe the advantage of

A to guess v, pks, pkr. We know that Pr[S1] = max{Pr[Sv
1],Pr[S

s
1],Pr[S

r
1]}

Game 2. Game 2 is a part of Game 1. In Game 2, CH makes a random guess
for the index of target pk, i.e., randomly picks an index j ∈ (T − Tcorrupt). If A
makes an extraction query of pkj in the pre query stage, or picks pk ̸= pkj in
the query stage, then CH abort. Let W be the event that CH does not abort.
We can get Pr[W] = 1/(T − Tcorrupt). A’s view in Game 0 is identical to that
in Game 1. Then we have:

Pr[Ss
2] = Pr[Ss

1] · Pr[W]

Pr[Sr
2] = Pr[Sr

1] · Pr[W]
(17)

Game 3. Game 3 is a part of Game 1. The difference is that Game 3 random

generate r1 to replace cm = gg
pkhρ

hv.

We know that the ρ are random generated in cm = gg
pkhρ

hv, so cm is random
distributed as r1,so cm is indistinguishable with r1, we have:

|Pr[S3]− Pr[Sv
1]| ≤ negl(λ) (18)

14 T. Liu Author et al.

Game 4. Game 4 is a part of Game 2. The difference is that Game 4 random

generate r2 to replace cm = gg
pkrhρ

hv. Similar to Game 3, r2 is indistinguishable
with cm because of the randomness of ρ. So we have:

|Pr[S4]− Pr[Sr
2]| ≤ negl(λ) (19)

Game 5. Game 5 is a part of Game 2. The difference is that Game 5 random
generate r3 to replace sn = pksh

ρ. Similar to Game 3 and 4, r3 is indistinguish-
able with sn because of the randomness of ρ. So we have:

|Pr[S5]− Pr[Ss
2]| ≤ negl(λ) (20)

Game 6. Game 6 is the sum of Game 3,4,5. Considering the message sent to
Verifier. In SumPara = (π1, π2, π3, π4, cm

′, sn1, sn2, requation, Ccontent, Csender,
Creceiver), we have already use simulation value to replace ZKP π, and we use
random value to replace commitment and nullifier cm, sn, then requation is ran-
domly generated. Now we remain the privacy of Ccontent, Csender, Creceiver to be
proven.

Lemma 4.3. If encryption scheme ElGamal and Twisted ElGamal are IND-
CPA secure, then we can get Pr[S6] ≤ negl(λ).

Proof. If A wins in Game 6 in a negligible advantage, then we can build a
simulator B to break the IND-CPA security of ElGamal or Twisted ElGamal
scheme. The simulator simulation runs Game 6 as follows.

1. generation phase: B run pp← Setup(1λ)
2. pre query phase: A adaptively makes queries to below oracles finitely:
OP : B invoke CreateAddress to get (sk, pk), then move sk, pk to the keys
list T , then return undisclosed pk to A.
OS : B move sk, pk to Tcorrupt and return sk to A.
OV : B check if pk in Tcorrupt, then invoke CreateTran and return SumPara
to A.
ORT B get (cm, s) or (sn, s) and return correspond (ρ, pkr, v) or (ρ, sks) to
A.

3. query phase: B invoke CreateAddress and get (pkr, sks), then random gener-
ate ρ and generate v, finally invoke CreateTran,CreateAudit to get SumPara
and send to A.

4. guess phase: A output pkr
′, pks

′, v′, B send pk′r, pk
′
s to ElGamal encryption

scheme, and send v′ to Twist ElGamal encryption scheme.

We know that A’s observation in Game 6 is equivalence distribute with B,
so the probability of A succeeding in Game 6 is the same as the probability of
A succeeding in B. Game 6 and simulation of B are PPT algorithms, so the
advantage of A win in Game 6 is the same as B win in ElGamal encryption
scheme or Twist ElGamal encryption scheme. This prove Lemma 4.3.

Now we can get:

Pr[S6] ≤ negl(λ) (21)

To sum up, we prove Lemma 4.2.

Title Suppressed Due to Excessive Length 15

5.4 Soundness

The soundness of cm, sn are based on the pseudorandom function.
Lemma 4.4. If PRF is collision-resistant, the scheme satisfies soundness.
In our scheme, all the data be recorded in blockchain is cm, sn, so if A do

not follow the rule of CreateTran want to pass V erifyTran, he must generate
cm∗, sn∗(cm∗ ̸= cm, sn∗ ̸= sn) satisfy equation 4. Consider the soundness of
cm:

if the A can forge cm, sn, then we can build a simulator B to break the
collision-resistant of PRF:

1. generation phase: B run pp← Setup(1λ)

2. query phase: B invoke CreateTran, calculate cm = gPRFk(pk,ρ)hv and send
cm to A

3. guess phase: A send cm∗ to B.

In the security proof in privacy, we prove that A can not forge cm∗ = cm,
so cm∗ ̸= cm, we know that the Pedersen Hash function is collision-resistant for
fixed-length input, so we get PRF k(pk∗, ρ∗) = PRF k(pk, ρ). So if A can win
the game in 4 in a non-negligible probability, B can break the collision-resistant
of PRF.

The soundness proof of sn is similar to the cm above. Then we prove Lemma
4.4.

6 Performance

We now give a prototype implementation of ASOZ in JavaScript and circom
mainly based on circomlibjs[15], and collect the benchmarks on Intel i7-12700H
CPU (2.30GHz) and 16GB of RAM. The source code of ASOZ is publicly avail-
able at Github [1].

Our scheme is implemented on Jubjub curve [8], and the space for generating
our random numbers is 253 bits. We employ the Poseidon [13] as the construction
function for the Merkle tree. We choose Groth16 [14] as our zk-SNARK’s proving
system.

The proof generation time, verification time, and transmission cost of our
scheme are illustrated in Figures 2. After surveying the ZCash explorer[3], we
noted that cryptocurrency transactions commonly manifest as either 1 input to
n outputs or n inputs to 1 output, with the former being more prevalent. The
most common scenario is the 1 input-1 output transaction. Based on these obser-
vations. We test the performance of 1-1 to 1-6 transactions. In 1-1 transaction,
the auditing functionality introduces 21% increment in proof generation time
and 33% rise in verification time compared to the original scheme. The trans-
mission cost on Sigma protocol is 6.5 KB. The results indicate that the auditing
cost introduced by our scheme falls within an acceptable range, which follows
the Out-of-band Cost principle.

Besides, we would like to emphasize that, due to our implementation in
JavaScript, which is relatively inefficient, there is considerable room for improve-
ment in the computational speed of the Sigma protocol.

16 T. Liu Author et al.

(a) Comparison of Proof
Generating Time

(b) Comparison of Verify
Time

(c) Transmission Cost

Fig. 2. Comparison of Execution Cost Before and After Audit Introduction

7 Further Discussion

How to balance privacy and auditability remains a big challenge to decentralized
payment systems. In this paper, we give our solution by using an auditing agency.
The agency can open the transaction and trace illegal transactions. Furthermore,
we propose security properties and design principles to refine our solution. Our
solution remains open to further exploration and research.

Is there a better way to construct commitment and nullifier? In our
scheme, we design a sigma-protocol-friendly construction to reduce out-of-band
cost, but we still use zk-SNARK in some parts, leading to significant compu-
tational cost. We think that apart from the membership proof in the Merkle
tree, there is no necessity to employ the relatively inefficient zk-SNARK in the
remaining portions.

Using key agreement and key derivation. In our scheme, user and au-
dit reuse the public keys, which may lead to a decrease in security strength.
Maybe we can consider referencing Sapling and Orchard versions of ZCash, in-
corporating key agreement and key derivation mechanisms to avoid the reuse of
keys.

Rethinking audit capabilities. In our scheme, we define a trusted auditing
agency, which follows the Full transaction audit principle, but this design un-
dermines the decentralized idea to some extent. One reasonable enhancement is
to decentralize auditor authority through the use of secret sharing mechanisms.

References

1. https://github.com/AwakeLithiumFlower/ASOZ

2. Coinjoins - learn about bitcoin collaborative transactions, https://www.

coinjoins.org/

3. nighthawk apps: Zcash explorer - search the zcash blockchain, https://

zcashblockexplorer.com/

4. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. pp. 459–474 (2014).
https://doi.org/10.1109/SP.2014.36

https://github.com/AwakeLithiumFlower/ASOZ
https://www.coinjoins.org/
https://www.coinjoins.org/
https://zcashblockexplorer.com/
https://zcashblockexplorer.com/
https://doi.org/10.1109/SP.2014.36

Title Suppressed Due to Excessive Length 17

5. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 315–334 (2018).
https://doi.org/10.1109/SP.2018.00020

6. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and account-
ability in distributed payment systems. In: Applied Cryptography and Network
Security: 19th International Conference, ACNS 2021, Kamakura, Japan, June
21–24, 2021, Proceedings, Part II. p. 311–337. Springer-Verlag, Berlin, Heidelberg
(2021). https://doi.org/10.1007/978-3-030-78375-413, https://doi.org/10.1007/
978-3-030-78375-4_13

7. Chen, Y., Ma, X., Tang, C., Au, M.H.: Pgc: Decentralized confidential payment
system with auditability. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) Com-
puter Security – ESORICS 2020. pp. 591–610. Springer International Publishing,
Cham (2020)

8. Daira Hopwood, Sean Bowe, T.H.N.W.: Zcash protocol specification, version
2022.3.8 [nu5] (2022), https://zips.z.cash/protocol/canopy.pdf

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory 22(6), 644–654 (1976).
https://doi.org/10.1109/TIT.1976.1055638

10. Elgamal, T.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985).
https://doi.org/10.1109/TIT.1985.1057074

11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

12. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) Financial Cryptography and Data
Security. pp. 81–98. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)

13. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for Zero-Knowledge proof systems. In: 30th USENIX Secu-
rity Symposium (USENIX Security 21). pp. 519–535. USENIX Association (Aug
2021), https://www.usenix.org/conference/usenixsecurity21/presentation/
grassi

14. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

15. iden3: iden3, https://github.com/iden3
16. Inc, C.: The chainalysis 2023 crypto crime report, https://go.chainalysis.com/

2023-crypto-crime-report.html

17. Jeong, G., Lee, N., Kim, J., Oh, H.: Azeroth: Auditable zero-knowledge
transactions in smart contracts. IEEE Access 11, 56463–56480 (2023).
https://doi.org/10.1109/ACCESS.2023.3279408

18. Kang, H., Dai, T., Jean-Louis, N., Tao, S., Gu, X.: Fabzk: Supporting privacy-
preserving, auditable smart contracts in hyperledger fabric. In: 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). pp. 543–555 (2019). https://doi.org/10.1109/DSN.2019.00061

19. Lab, M.R.: Monero research lab (mrl) — monero - secure, private, untraceable,
https://www.getmonero.org/resources/research-lab/

20. Li, Y., Yang, G., Susilo, W., Yu, Y., Au, M.H., Liu, D.: Traceable mon-
ero: Anonymous cryptocurrency with enhanced accountability. IEEE Trans-

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://zips.z.cash/protocol/canopy.pdf
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1985.1057074
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://github.com/iden3
https://go.chainalysis.com/2023-crypto-crime-report.html
https://go.chainalysis.com/2023-crypto-crime-report.html
https://doi.org/10.1109/ACCESS.2023.3279408
https://doi.org/10.1109/DSN.2019.00061
https://www.getmonero.org/resources/research-lab/

18 T. Liu Author et al.

actions on Dependable and Secure Computing 18(2), 679–691 (2021).
https://doi.org/10.1109/TDSC.2019.2910058

21. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized busi-
ness review (2008)

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp.
129–140. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

23. Sander, T., Ta-Shma, A.: Auditable, anonymous electronic cash. In: Wiener, M.
(ed.) Advances in Cryptology — CRYPTO’ 99. pp. 555–572. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1999)

24. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (jan 1991). https://doi.org/10.1007/BF00196725, https://doi.org/10.
1007/BF00196725

25. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: Prcash: Fast, private and
regulated transactions for digital currencies. Cryptology ePrint Archive, Paper
2018/412 (2018), https://eprint.iacr.org/2018/412

A Missing Proofs and Protocols

A.1 The Proof of Sigma Protocol

Sigma protocol of π8 is an example of 2 input-1 output transaction. In order
to give a general proof, we define the following problem in n input-m output
transaction:

π11 = PoK{(sks) : Y1 = upkr3gsks

∧
sn1 = gskshρ1

∧
. . .

∧
snn = gskshρn}

(22)
The Sigma protocol of π11 is similar to π8.
Sigma protocol of π11:

1. P random generate a, a2, b1, . . . , bn. send A = ga, A2 = upka2 , Bi = hbi to V
2. V random generate e, send e to P as challenge
3. P calculate y = a+ e · sks, y2 = a2 + e · r3, zi = bi + e · ρi(i = 1, . . . , n), send

y, y2, z1, . . . , zn to V, V check the following equations:

gyupky2 = A(Y1)
eA2

gyhzi = A(sni)
eBi

(23)

Then we give the security proof of the protocol above:
Prefect Completeness This is obvious from simple calculation.
Special Soundness Fix the initial message (A,A′, B1, . . . , Bn), suppose

there are two accepting transcripts (e, y, y2, zi) and (e′, y′, y′2, z
′
i). We have sks =

(y−y′)/(e−e′), r3 = (y2−y′2)/(e−e′), ρi = (zi−z′i)/(e−e′). So if P can answer
with probability greater than 1/(2t) then P is consider to know sks, r3, rhoi

Special HVZK For a fixed challenge e, the simulator S works as below:
picks y, y2, zi randomly, we can calculate equation23, let A to be equal to k ,then
A2 = gyupky2/(k · Y e

1), Bi = gyhzi/(k · sne
i). Which means that an accepting

transcript (A,A2, Bi, e, y, y2, zi) is distributed exactly like a real execution where
V sends e.

https://doi.org/10.1109/TDSC.2019.2910058
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://eprint.iacr.org/2018/412

	ASOZ: a decentralized payment system with privacy-preserving and auditing on public blockchain

