
A preliminary version of this paper appears in Advances in Cryptology - ASIACRYPT 2023.
This is the full version, with major revision.

Sender-Anamorphic Encryption Reformulated:

Achieving Robust and Generic Constructions ∗

Yi Wang †

wangyi14@nudt.edu.cn

Rongmao Chen ‡

chromao@nudt.edu.cn

Xinyi Huang §

xinyi@ust.hk

Moti Yung ¶

moti@cs.columbia.edu

November 28, 2023

Abstract

Motivated by the violation of two fundamental assumptions in secure communication
- receiver-privacy and sender-freedom - by a certain entity referred to as “the dictator”,
Persiano et al. introduced the concept of Anamorphic Encryption (AME) for public key
cryptosystems (EUROCRYPT 2022). Specifically, they presented receiver/sender-AME,
directly tailored to scenarios where receiver privacy and sender freedom assumptions are
compromised, respectively. In receiver-AME, entities share a double key to communicate in
anamorphic fashion, raising concerns about the online distribution of the double key without
detection by the dictator. The sender-AME with no shared secret is a potential candidate
for key distribution. However, the only such known schemes (i.e., LWE and Dual LWE
encryptions) suffer from an intrinsic limitation and cannot achieve reliable distribution.

Here, we reformulate the sender-AME, present the notion of ℓ-sender-AME and formalize
the properties of (strong) security and robustness. Robustness refers to guaranteed delivery
of duplicate messages to the intended receiver, ensuring that decrypting normal ciphertexts
in an anamorphic way or decrypting anamorphic ciphertexts with an incorrect duplicate
secret key results in an explicit abort signal. We first present a simple construction for
pseudo-random and robust public key encryption that shares the similar idea of public-key
stegosystem by von Ahn and Hopper (EUROCRYPT 2004). Then, inspired by Chen et al.’s
malicious algorithm-substitution attack (ASA) on key encapsulation mechanisms (KEM)
(ASIACRYPT 2020), we give a generic construction for hybrid PKE with special KEM that
encompasses well-known schemes, including ElGamal and Cramer-Shoup cryptosystems.

The constructions of ℓ-sender-AME motivate us to explore the relations between AME,
ASA on PKE, and public-key stegosystem. The results show that a strongly secure ℓ-
sender-AME is such a strong primitive that implies reformulated receiver-AME, public-key
stegosystem, and generalized ASA on PKE. By expanding the scope of sender-anamorphic
encryption and establishing its robustness, as well as exploring the connections among ex-
isting notions, we advance secure communication protocols under challenging conditions.

∗In this full version, some subtlties in the proof of Theorem 4.1, Theorem 4.4 and 5.1 have been revised.
Please see the corresponding theorems for mode details.
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1 Introduction

In the realm of cryptosystems, there is an implicit assumption that the receiver’s secret key
remains confidential (referred to as the receiver-privacy assumption), and the sender has the
freedom to choose the message to be sent (referred to as the sender-freedom assumption).
However, in reality, these fundamental assumptions can be completely violated by a controlling
entity known as “the dictator” who possesses the ability to access any individual’s secret key
and censor the content of messages. Achieving both private and unrestricted communication in
such a setting seems futile.

To address this critical issue, Persiano, Phan, and Yung introduced a new concept called
“Anamorphic Encryption” [26]. This notion allows a well-established public-key cryptosystem to
enable entities to encrypt differently hidden messages in what is called an anamorphic manner,
thus evading the censorship imposed by the dictator. Specifically, they defined two variants
of anamorphic encryption: receiver-anamorphic encryption and sender-anamorphic encryption,
which provide secure communication while eliminating the reliance on the receiver-privacy and
sender-freedom assumptions, respectively. Receiver-anamorphic encryption aims to facilitate
secure communication in the face of a violating receiver-privacy assumption. By utilizing this
technique, entities can engage in anamorphic communication, where the recipient’s privacy is
protected even in the presence of the dictator. On the other hand, sender-anamorphic encryption
focuses on addressing the violation of the sender-freedom assumption. In this case, the sender
can encrypt messages in an anamorphic manner, allowing them to transmit information without
being constrained or controlled by the dictator.

Obviously, it is impossible to achieve the confidentiality of encrypted message against the
dictator when the receiver only holds one secret key and has to reveal this key to the dictator.
So, the receiver-anamorphic encryption requires that every pair of sender and receiver must
share a double key that is unknown to the dictator. This double key is used to encode/retrieve
a secret message into/from an anamorphic ciphertext in symmetric way, which raises a rather
important problem: How to distribute the double key for every entity pair without being detected
by the dictator? A trivial solution is offline key exchange which is extremely inefficient but most
unlikely to be caught by the dictator who monitors the online communication constantly. In
[26], the authors mentioned that the two-step bootstrap technique [19] of Horel et al. allows two
entities to exchange a random string which is used to generate the double key. However, this
technique involves the execution of pseudorandom key exchange protocol which is suspicious to
the dictator who might ban the usage of such protocol.

The sender-anamorphic encryption formalized in the setting of no-shared secret [26] could
be a potential candidate for realizing covert and efficient key distribution (using multiple re-
ceiver situations). In particular, when the dictator instructs Alice to send forced message
m0 to Carol, Alice might intend to send duplicate message m1 (e.g., double key) to Bob. The
sender-anamorphic encryption allows Alice to generate randomness via a special coin-toss faking
algorithm fRandom that takes as input forced public key fpk (i.e., Carol’s public key), duplicate
public key dpk (i.e., Bob’s public key), forced message m0 and duplicate message m1. Then, Alice
encrypts forced message m0 with the selected randomness (produced by fRandom) using forced
public key fpk, and obtains an anamorphic ciphertext act which gives duplicate message m1
when it is decrypted with duplicate secret key dsk (i.e., Bob’s secret key). Finally, Alice sends
ciphertext act to Carol only via public communication channel such that Bob can observe this
ciphertext and retrieve the duplicate message m1. It is worth noting that the only difference
between anamorphic and normal ciphertexts is the distribution of underlying randomness.

Non-Robustness of Sender-Anamorphic Encryption. Persiano et al. [26] pointed out
that not every public-key encryption scheme (PKE) can be sender-anamorphic in the setting of
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no-shared secret, and listed three sufficient conditions, including common randomness property,
message recovery from randomness and equal distribution of plaintext, for a 1-bit PKE to be
sender-anamorphic. So far, the only known sender-anamorphic encryptions are the LWE [28]
and the Dual LWE [14] encryptions.

One can note that in these two encryptions, decrypting a normal ciphertext with incorrect
secret key would return 0 or 1 with equal probability. This feature is undesirable and incurs
the following two problems when applying them to distribute the double key.

• (Misreading of normal ciphertexts) Assume that Alice actually does want to send
an ℓ-bit message m to Carol, and generates ℓ normal ciphertexts with uniformly sampled
randomnesses for message m. In this case, Bob cannot decide whether the observed ci-
phertexts are normal or anamorphic, and might take the decryption results of normal
ciphertexts using his secret key as the duplicate message from Alice.

• (Misreading of anamorphic ciphertexts) Assume that Alice sends ℓ anamorphic ci-
phertexts, which include ℓ-bit duplicate message for Bob, to Carol, and there is a user
Dave who also observes these anamorphic ciphertexts. In this case, Dave cannot tell
whether these ciphertexts are intended for himself or not, and might take the decryption
results of anamorphic ciphertexts using his secret key as the duplicate message from Alice.

To circumvent these problems, it is required that decrypting normal ciphertext in anamor-
phic way or anamorphic ciphertext with wrong duplicate secret key should produce an explicit
abort signal. However, this demand leads to a contradiction! In particular, the anamorphic
ciphertext can be viewed as a normal ciphertext with proper randomness, and the decryption
algorithm always returns a bit for normal ciphertext. So, we cannot expect that the decryption
algorithm would return an abort for anamorphic ciphertext.

Our observation regarding the non-robust nature of sender-anamorphic encryption was ini-
tially inspired by a recent notable work [4], which insightfully identified a similar issue within
the context of receiver-anamorphic encryption. Specially, the security definition for receiver-
anamorphic encryption in [26] did not consider the case where normal ciphertext is decrypted in
an anamorphic way. Consequently, the work [4] defined the property of robustness for receiver-
anamorphic encryption, and presented a range of novel constructions applicable to both general
PKE schemes and special PKE schemes.

Motivating Question: Sender-Anamorphic Encryption with Robustness? The afore-
mentioned problem seems to be unsolvable under the model of sender-anamorphic encryption
with no shared key. That is, it looks impossible to construct “robust” sender-anamorphic en-
cryption. We remark that compared with [4], our definition of robustness for sender-anamorphic
encryption also consider an additional case that decrypting anamorphic ciphertexts with wrong
duplicate secret key would produce explicit abort signal. Hence, we turn to reformulate the
original definition of sender-anamorphic encryption, and try to explore feasible solutions in the
tweaked model.

Recall that the sender of the original sender-anamorphic encryption is required to encode
both forced and duplicate messages into one ciphertext. Given the fact that every entity in the
cryptosystem usually sends more than one ciphertext to the others, we relax this requirement
by allowing encoding duplicate message across multiple ciphertexts. In this way, the sender
has to collect multiple pairs of forced public key and message to generate randomnesses for
anamorphic ciphertexts. Intuitively, it seems that the sender might fail to generate proper
randomnesses when the dictator asks the sender to encrypt only one forced message and to
send the ciphertext each time. Fortunately, it would not be a problem if the generation of the
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i-th randomness depends on the first i pairs of forced public key and message only, and it is
possible to construct such coin-toss faking algorithm.

On the side of the receiver, the retrieval of duplicate message needs an alternative decryption
algorithm that takes as input a set of ciphertexts and duplicate secret key. In particular, this
decryption algorithm might provide explicit abort signal when these ciphertexts do not include
any duplicate message (i.e., normal ciphertexts) or the duplicate secret key does not match these
ciphertexts (i.e., anamorphic ciphertexts). With such an algorithm, it is possible to overcome
the problem of misreading, achieving robustness for sender-anamorphic encryption and realize
reliable duplicate message distribution. Therefore, a natural question that we mainly consider
in this work is:

How to reformulate and construct sender-anamorphic encryption satisfying robustness
in the setting of no shared key?

1.1 Our Contributions

In this work, we provide an affirmative answer to the above question. Specifically, we reformulate
the syntax of sender-anamorphic encryption by permitting encoding duplicate message across
multiple anamorphic ciphertexts (while obviously keeping the cryptosystem building block in-
tact), and then formalize the properties of security and robustness. To show the feasibility of
such a primitive, we present a simple construction for pseudo-random and robust PKE. The core
idea is similar to the public-key stegosystem by von Ahn and Hopper [32]. Then, inspired by
Chen et al.’s asymmetric algorithm-substitution attack (ASA) on key encapsulation mechanism
(KEM) [10], we give a generic construction for hybrid PKE with special module-level KEM that
encompasses well-known schemes including ElGamal and Cramer-Shoup cryptosystems.

These constructions have enlightened us to investigate whether the reformulated sender-
anamorphic encryption might have some relations with existing notions. Indeed, it might be
difficult to explore the direct relationship among them individually. So, we present the reformu-
lated version of receiver-anamorphic encryption, and introduce the notion of generalized ASA
against PKE as in [8] to facilitate the investigation.

We can now present the summary of main contributions of this work:

• We introduce the notion of ℓ-sender-anamorphic encryption (ℓ-sender-AME), and define
the properties of (strong) security and robustness.

• We present two constructions of secure and robust ℓ-sender-AME. One is for pseudo-
random and robust PKE and the other is for hybrid PKE with special module-level KEM
which can be instantiated with well-known schemes including ElGamal and Cramer-Shoup
cryptosystems.

• We explore the relations between ℓ-sender-AME and other related primitives, as shown in
Fig. 1, including reformulated receiver-anamorphic encryption (ℓ-receiver-AME), public-
key stegosystem, and generalized ASA on PKE.

1.2 Results Overview

A Reformulated Model for Robustness: ℓ-Sender-AME. In sender-AME model, the
syntax of PKE is only augmented with a coin-toss faking algorithm that generates randomness
according to one pair of forced public key and message, and the duplicate public key and
message. In our reformulated model, the coin-toss faking algorithm would take more than one
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ℓ-Sender-AME
(Definition 3.1)

Generalized ASA on PKE
(Definition 8.1)

Public-Key Stegosystem
(Definition 7.1)

ℓ-Receiver-AME
(Definition 6.1)

Theorem 8.2

|

Theorem 6.1

|

Theorem 8.1 —

Theorem 7.1

|

Figure 1: Relations between ℓ-sender-AME and other related primitives.

pair of forced public key and message, and there exists an alternative decryption algorithm that
retrieves the duplicate message from a set of anamorphic ciphertexts using duplicate secret key.
We name the reformulated notion “ℓ-sender-AME,” where ℓ denotes the number of anamorphic
ciphertexts required for duplicate message embedding. Clearly, this definition includes the
original sender-AME when ℓ = 1 and the alternative decryption algorithm is the decryption
algorithm of PKE.

There are two properties defined for ℓ-sender-AME: security and robustness. The definition
of security is extended from that for original sender-AME trivially. Roughly, it indicates that
the dictator who knows all the forced public keys cannot distinguish normal and anamorphic
ciphertexts outputted by the encryption oracle with overwhelming advantage. Moreover, we
consider a strong variant of security by providing the dictator all the forced secret keys and
duplicate public key, which also implies the violation of the receiver-privacy assumption to some
extent. This strong security permits us to evade the surveillance by the dictator who violates
both receiver-privacy and sender-freedom assumptions. As mentioned above, the meaning of
robustness is twofold: the alternative decryption algorithm would return abort when 1) the
inputted ciphertexts are normal or 2) the inputted anamorphic ciphertexts and duplicate secret
key do not match.

Generic Constructions of ℓ-Sender-AME. In this work, we present two generic construc-
tions of ℓ-sender-AME satisfying both security and robustness. One is for pseudo-random and
robust PKE, and the other is for hybrid PKE with special module-level KEM that encompasses
well-known schemes including ElGamal and Cramer-Shoup cryptosystems.

Construction I: Pseudo-random and Robust PKE. Pseudo-random PKE produces ciphertext
that is indistinguishable from random bits [32]. This feature allows us to embed the ciphertext
of duplicate message across multiple ciphertexts without being detected by the dictator. The
robustness of PKE [1] ensures that a ciphertext cannot be valid under two different decryption
keys, which contributes to the robustness of ℓ-sender-AME.

In more details, we encode the i-th bit of the ciphertext of duplicate message into the i-th
anamorphic ciphertext using the rejection sampling technique. That is, repeating randomness
sampling until the desired bit can be publicly derived from the i-th anamorphic ciphertext.
Even though anyone can retrieve the ciphertext of a duplicate message from multiple anamorphic
ciphertexts, the dictator who does not hold the duplicate secret key cannot decide if the obtained
string is a ciphertext or a random bit string by the pseudo-randomness of PKE.

So far, there are only a few pseudo-random PKEs [32, 23]. Although most well-known public-
key cryptosystems do not satisfy pseudo-randomness, it is possible to transform the ciphertext of
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duplicate message into a pseudo-random string. Here are some optional approaches: removing
the distribution bias caused by the algebra [34], applying the covert key exchange technique
[36] or encoding elliptic-curve point to be indistinguishable from uniform random string [9, 31].

Construction II: Hybrid PKE with special KEM. Hybrid PKE relies on KEM which encap-
sulates the key for data encapsulation mechanism (DEM) which is used to encrypt the plaintext.
Inspired by the generic ASA on KEM of Chen et al. [10], we encode the (i − 1)-th bit bi−1 of
duplicate message across the key encapsulation part of the (i − 1)-th and i-th anamorphic ci-
phertexts Ci−1 and Ci. In particular, let ri denote the underlying randomness of key ciphertext
Ci, we generate randomness ri from ri−1 and duplicate public key. If bi−1 = 1, we add a per-
turbation to ri. Otherwise, we do nothing to ri. In the process of alternative decryption, we
first recover randomness r′i from Ci−1 and duplicate secret key by the universal decryptability
of KEM, and compute the perturbed randomness r′′i of r′i. Then, we compare Ci with C

′
i and

C ′′
i derived from r′i and r

′′
i respectively. If Ci = C ′

i, then bi−1 = 0. If Ci = C ′′
i , then bi−1 = 1.

Otherwise, the alternative decryption algorithm returns abort. By the key-pseudo-randomness
of KEM, it is hard to detect the correlation between Ci−1 and Ci for the dictator who does not
know the duplicate secret key.

We show the robustness of this construction as following: For normal ciphertext, its ran-
domness is uniformly distributed over appropriate space. The probability of the event that ri
is correlated to ri−1 and the duplicate public/secret key is negligible. Thus, decrypting normal
ciphertexts in anamorphic way would produce explicit abort. For anamorphic ciphertexts, de-
crypting them with incorrect duplicate secret key does not reveal the correlation between key
ciphertexts, and the unintended receiver would receive abort symbol.

We remark that it is possible to encode t-bits string (t > 1) into two successive random
fields at the cost of exponential time complexity (in the string length) for alternative decryption
algorithm. In particular, the coin-toss faking algorithm converts t-bits string into element in
randomness space and then adds it to randomness ri, while the alternative decryption algorithm
has to derive at most 2t ciphertexts to compare with inputted ciphertext Ci. Thus, such
variation is only feasible for short bit string. Another concern with this encoding is that the
perturbation over randomnesses disables us from providing a valid explanation on the selection of
randomness (e.g., revealing the pre-image of randomness under one-way hash function specified
by the dictator in case it is demanded).

Relations Between Existing Notions. The constructions above suggest that there exist
some inner connections among anamorphic encryption, public-key stegosystem, and algorithm-
substitution attack.

Relation between ℓ-Sender-AME and ℓ-Receiver-AME. In receiver-AME, parties share a double
key that is used to encode both normal and anamorphic plaintexts into an anamorphic ciphertext
or to retrieve anamorphic plaintext from anamorphic ciphertext. Analogous to ℓ-sender-AME,
we present the notion of ℓ-receiver-AME where the anamorphic plaintext is encoded across
ℓ anamorphic ciphertexts using double key. Once the double key is set as the forced public
keys and duplicate public/secret key pair in ℓ-sender-AME, the anamorphic ciphertexts of ℓ-
receiver-AME can be generated using the biased randomnesses outputted by the coin-toss faking
algorithm in ℓ-sender-AME.

Note that the security model for sender/receiver-AME only captures the violation of sender-
freedom or receiver-privacy assumption. It seems hard to reduce one security notion to another.
We overcome this problem by strengthening the ability of the adversary in the security game
for ℓ-sender-AME. In the game of strong security, the adversary knows all the forced secret keys
and the duplicate public key. Now, we get the following result.

Theorem 1.1. (Informal). For any strongly secure ℓ-sender-AME PKE, it is also a secure
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ℓ-receiver-AME.

It is obvious that not any ℓ-receiver-AME is an ℓ-sender-AME, as the double key in ℓ-
receiver-AME may not be parsed as a public/secret key pair.

Relation between ℓ-Sender-AME and Public-Key Stegosystem. Parties in public-key stegosys-
tem with no shared secret key are able to communicate in steganographic way over a public
channel such that no eavesdropper of the channel can detect the existence of hidden messages.
The notion of ℓ-sender-AME is similar to the public-key stegosystem in the sense of, both, set-
ting and target. Note that the pseudo-random PKE was first proposed to construct public-key
stegosystem, and our first ℓ-sender-AME construction is designed for pseudo-random PKE. It
is naturally leading us to the following result.

Theorem 1.2. (Informal). For any strongly secure ℓ-sender-AME PKE, there exists a public-
key stegosystem PKS built over PKE.

Conversely, it seems that every public-key stegosystem should imply an ℓ-sender-AME.
However, constructing public-key stegosystem is more diverse than that of ℓ-sender-AME. For
instance, the chosen-stegotext secure stegosystem in [32] uses a sender’s secret key to generate
stegotexts, while the input of coin-toss faking algorithm in ℓ-sender-AME does not involve any
secret keys.

Relations between AME and Generalized ASA on PKE. The attacker in ASA on PKE substi-
tutes the encryption algorithm in PKE with subverted version so as to recover the underlying
plaintext from subverted ciphertext using subversion key, which is rather different from the goal
of anamorphic encryption. Instead, we present the notion of generalized ASA on PKE as in [8]
where the subverted encryption algorithm also encodes a subliminal message into the ciphertext
and the attacker’s goal is extracting this subliminal message from subverted ciphertext. The
original ASA on PKE is a special case of generalized ASA on PKE where the subliminal message
equals to the plaintext for encryption.

Depending on how the subversion key is generated and used, the generalized ASA on PKE
can be classified into two types: symmetric and asymmetric. In symmetric ASA, there is only
one subversion key used by both subverted encryption and extraction algorithms. Recall that,
in ℓ-receiver-AME, the same double key is used to encode and extract anamorphic plaintext.
In this case, the subversion key corresponds to the double key. Furthermore, we shows that a
symmetric ASA on PKE implies the underlying PKE is an ℓ-receiver-AME.

Theorem 1.3. (Informal). Let PKE be a CPA secure PKE. If there exists a symmetric and
generalized ASA on PKE, then PKE is also a secure ℓ-receiver-AME.

In ASA on PKE, the subversion key is independent of the public and secret key for subverted
encryption algorithm. Once the generation of double key in ℓ-receiver-AME relies on the secret
key, it might be impossible to construct subversion key generation algorithm with anamorphic
key generation algorithm. Thus, not every ℓ-receiver-AME implies a symmetric ASA on PKE.

In asymmetric ASA, the subversion key is a pair of public/secret key, where the public
subversion key is hardwired into the subverted encryption algorithm and the extraction of
subliminal message requires secret subversion key. Note that if the duplicate public/secret key
pair in ℓ-sender-AME is also a subversion key pair for ASA, we can built an ASA on PKE from
ℓ-sender-AME.

Theorem 1.4. (Informal). Let PKE be a strongly secure ℓ-sender-AME. Then there exists an
asymmetric and generalized ASA on PKE.
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Conversely, not every asymmetric ASA on PKE directly implies that the underlying PKE
is an ℓ-sender-AME. In particular, when the subversion key generation of ASA is different from
the key generation of PKE, it is unlikely to build the coin-toss faking algorithm following the
core idea of ASA, as this algorithm only takes normal public keys and messages as input.

1.3 Related Work

Anamorphic Cryptography. Since the notion of anamorphic encryption was first proposed
in 2022, several works [4, 22, 21] have been presented to expand the scope of anamorphic
cryptography. In particular, Banfi et al. [4] and Kutylowski et al. [22] both refined the definition
of original receiver-AME but for different purposes. In [4], the generation of anamorphic key pair
and double key is decoupled, and the authors aims to build receiver-AME satisfying robustness.
In [22], both anamorphic public key and double key, instead of double key only, are used to
encode normal and anamorphic plaintexts into an anamorphic ciphertext. This refinement
permits some wide range of cryptosystems, including RSA-OAEP [7], Goldwasser-Micali [15],
Paillier [25], ElGamal [13] and Cramer-Shoup [11], to be receiver-anamorphic. Kutylowski et
al. [21] introduced the notion of anamorphic signature scheme where a signature is embedded
with an anamorphic message, which is only readable to the one owning the double key.

Steganography. The work of Simmons [30] initiated the study of steganography forty years
ago. In 2002, the first complexity-theoretic model of provably secure steganography was present
by Hopper et al. [18]. Further, von Ahn and Hopper [32] explored the public-key variant
of steganography and proposed the notion of public-key stegosystem and steganographic key
exchange protocol. Backes and Cachin [3] enhanced the security model of public-key stegosystem
to defend against active attacks. Note that our results in this work might provide a new way
to build public-key stegosystem from ℓ-sender-AME.

Algorithm-Substitution Attack. At CRYPTO 2014, Bellare et al. introduced the notion
of algorithm-substitution attack [6], which considers the ability of attackers to subvert the im-
plementation of cryptographic algorithms in reality. This concept dates back to the notion of
kleptography [34] by Young and Yung. In a series of works [34, 35, 36] on kleptography, the
subversion of the key generation algorithm enables attacker to recover the secret information
exclusively. The Snowden revelations in 2013 reignited the enthusiasm of the academic commu-
nity about this topic [6, 12, 5, 2, 8, 29, 10]. Although the ASA on encryption scheme helps the
dictator to conduct mass-surveillance without being detected, our work shows that the ordinary
users can also take advantage of the rationale behind ASA to communicate in a covert way
against the dictator. Namely, the users employ malicious cryptography against the malice of
the dictator!

2 Preliminaries

Notations. For any n ∈ N+, we denote the negligible function over n as negl(n). For any
i ∈ N+, [i] denotes integer set {1, 2, · · · , i}. For any i, j ∈ N with i < j, [i, j] denotes integer
set {i, i + 1, · · · , j}. For any non-empty set X , x←$X denotes sampling x from X uniformly
at random. For any randomized algorithm Alg(x), y←$Alg(x) denotes the random output of
Alg(x). For any deterministic algorithm Alg(x), y := Alg(x) denotes the deterministic output
of Alg(x). For n elements a1, a2, · · · , an, we denote the set {ai}i∈[n] as A.

2.1 Public-Key Encryption (PKE)

A public-key encryption scheme PKE consists of following algorithms:
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• Setup(1n) takes as input 1n, and returns the public parameter pp which is an implicit
input of encryption and decryption algorithms.

• Gen(pp) takes as input pp and returns a public/secret key pair (pk, sk).

• Enc(pk, m) takes as input pk and a plaintext m, and returns a ciphertext ct.

• Dec(sk, ct) take as input sk and ct, and returns m′ or an abort symbol ⊥.

Correctness. PKE is correct if, letM be the plaintext space, for any m ∈M,

Pr

Dec(sk, ct) ̸= m :

pp←$Setup(1n)

(pk, sk)←$Gen(pp)

ct←$Enc(pk, m)

 ≤ negl(n) .

Security. PKE is CPA secure if for any PPT adversary A1 and A2,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

pp←$Setup(1n)

(pk, sk)←$Gen(pp)

(m0, m1, st)← A1(pp, pk)

b←$ {0, 1}

ct∗←$Enc(pk, mb)

b′ ← A2(st, ct
∗)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

The notion of anamorphic encryption is defined over public-key encryption. We recall the
definitions of anamorphic encryption in Appendix A.1.

2.2 Entropy Smoothing Hash Functions

Let H = {Hk̂}k̂∈K̂ be a keyed hash function family associated with key space K̂, groups X,Y
and hash function Hk̂ : X → Y . We say H is entropy smoothing if for any PPT adversary A
and k̂←$ K̂, ∣∣∣Pr [A(k̂, Hk̂(x)) = 1

∣∣∣x←$X
]
− Pr

[
A(k̂, y) = 1

∣∣∣y←$Y
]∣∣∣ ≤ negl(n) .

3 Reformulating Sender-Anamorphic Encryption

In this section, we first present the reformulated version of sender-AME in the setting of no
shared secret key, and then define the properties of (strong) security and robustness for this
new primitive.

3.1 ℓ-Sender-Anamorphic Encryption (ℓ-Sender-AME)

Definition 3.1 (ℓ-Sender-Anamorphic Encryption). Let PKE be a public key encryption scheme.
For ℓ ∈ N+, we say PKE is ℓ-sender-anamorphic if 1) there exists a sender-anamorphic extension
(fRandom, dDec):
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Idealℓ,PKE,A(n)

pp←$Setup(1n)

(fpki, fski)i∈[ℓ], (dpk, dsk)←$Gen(pp)

b← AENC(·,·)(pp, FPK)

return b

ENC(FM, dm)

(ri)i∈[ℓ]←$R
return {Enc(fpki, fmi; ri)}i∈[ℓ]

RealfRandomℓ,PKE,A(n)

pp←$Setup(1n)

(fpki, fski)i∈[ℓ], (dpk, dsk)←$Gen(pp)

b← AENC′(·,·)(pp, FPK)

return b

ENC′(FM, dm)

R∗←$ fRandom(FPK, FM, dpk, dm)

return {Enc(fpki, fmi; r
∗
i )}i∈[ℓ]

Figure 2: Definition of game Idealℓ,PKE,A(n) and RealfRandomℓ,PKE,A(n).

• fRandom(FPK, FM, dpk, dm) takes a forced public key set FPK = {fpki}i∈[ℓ], a forced plaintext
set FM = {fmi}i∈[ℓ], a duplicate public key dpk and a duplicate plaintext dm, and returns
a randomness set R = {ri}i∈[ℓ];

• dDec(dsk, CT) takes as input a duplicate secret key dsk and a ciphertext set CT, and
returns the duplicate plaintext dm,

and 2) letM andM be the forced and duplicate plaintext space respectively, for any FM ∈Mℓ,
any dm ∈M,

Pr

dDec(dsk, CT) ̸= dm :

pp←$Setup(1n)

(fpki, fski)i∈[ℓ], (dpk, dsk)←$Gen(pp)

R←$ fRandom(FPK, FM, dpk, dm)

CT := {Enc(fpki, fmi; ri)}i∈[ℓ]

 ≤ negl(n)

When ℓ = 1 and algorithm dDec is the decryption algorithm Dec of PKE, the definition
above is the original sender-AME in [26].

3.2 Security

The property of security means that it is hard for anyone who does not possess the duplicate
secret key to distinguish a set of ciphertexts generated with uniformly sampled randomnesses
from the output of coin-toss faking algorithm with overwhelming advantage.

Definition 3.2 (Secure ℓ-Sender-AME). Let PKE = (Setup,Gen,Enc,Dec) be an ℓ-sender-AME
associated with extension (fRandom, dDec). We say PKE is a secure ℓ-sender-AME if 1) PKE is
CPA secure, and 2) for any PPT adversary A in Fig. 2,∣∣∣Pr[Idealℓ,PKE,A(n) = 1]− Pr[RealfRandomℓ,PKE,A(n) = 1]

∣∣∣ ≤ negl(n) .

If condition 2) still holds when A also owns FSK := {fski}i∈[ℓ] and dpk, we say PKE is a
strongly secure ℓ-sender-AME.
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In fact, the definition of strongly secure ℓ-sender-AME also captures the violation of receiver-
privacy assumption. specifically, the adversary A owns the forced secret keys of receivers, and
can decrypt ciphertexts to obtain the forced plaintexts. As will be shown later, this strong
security for sender-AME implies the security for receiver-AME. Hence, we are interested in
constructing strongly secure ℓ-sender-AME.

3.3 Robustness

Roughly, the property of robustness indicates that both decrypting normal ciphertexts in the
anamorphic way and decrypting anamorphic ciphertexts with incorrect duplicate secret key
would return abort signaling explicitly.

Definition 3.3 (Robust ℓ-Sender-AME). Let PKE = (Setup,Gen,Enc,Dec) be an ℓ-sender-
AME associated with extension (fRandom, dDec). We say PKE is a robust ℓ-sender-AME if for
any PPT adversary A,

Pr

dDec(dsk, CT) ̸= ⊥ :

pp←$Setup(1n)

(fpki, fski)i∈[ℓ], (dpk, dsk)←$Gen(pp)

FM← A(pp, FPK); (ri)i∈[ℓ]←$R

CT := {Enc(fpki, fmi; ri)}i∈[ℓ]

 ≤ negl(n) , (1)

where FM ∈Mℓ, and

Pr


dDec(dsk′, CT) ̸= ⊥ :

pp←$Setup(1n)

(fpki, fski)i∈[ℓ], (dpk, dsk)←$Gen(pp)

(dpk′, dsk′)←$Gen(pp)

(FM, dm)← A(pp, FPK, dpk)

R←$ fRandom(FPK, FM, dpk, dm)

CT := {Enc(fpki, fmi; ri)}i∈[ℓ]


≤ negl(n) , (2)

where FM ∈Mℓ and dm ∈M.

4 Construction I: Pseudo-random and Robust PKE

In this section, we show that any pseudo-random and robust PKE is ℓct-sender-anamorphic,
where ℓct is the bit length of ciphertext. The core idea is embedding the ciphertext of duplicate
message into multiple normal ciphertexts bit-by-bit using the rejection sampling technique,
which is inspired by the construction of public-key stegosystem in [32]. By pseudo-randomness,
the dictator cannot distinguish whether observed ciphertexts carry the ciphertext of duplicate
message or not. By robustness, decrypting the ciphertext of duplicate message with incorrect
duplicate secret key would return an abort symbol.

4.1 Pseudo-random and Robust PKE

We recall the definition of pseudo-randomness for PKE in [32] as below.
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RobPKE,A(n)

pp←$Setup(1n)

id := 0

(m, i, j)← AGEN()(pp)

return TEST(m, i, j)

GEN()

id := id+ 1

(pkid, skid)←$Gen(pp)

return (id, pkid)

TEST(m, i, j)

if (i /∈ [id]) ∨ (j /∈ [id]) :

return false

if i = j :

return false

m1 := m

ct←$Enc(pki, m1)

m2 := Dec(skj , ct)

return (m1 ̸= ⊥) ∧ (m2 ̸= ⊥)

Figure 3: Definition of game RobPKE,A(n).

Definition 4.1 (Pseudo-randomness [32]). Let PKE = (Setup,Gen,Enc,Dec) be a PKE scheme.
We say PKE is indistinguishable from random bits under chosen plaintext attack (pseudo-
random) if for any PPT adversary A1,A2,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

pp←$Setup(1n)

(pk, sk)←$Gen(pp)

(m∗, st)← A1(pp, pk)

ct0←$Enc(pk, m∗)

ct1←$ {0, 1}|ct0|

b←$ {0, 1}

b′ ← A2(st, ctb)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(n) .

The robustness presented by Abdalla et al. [1] for PKE captures the difficulty of generating
a ciphertext which is valid under two different decryption keys. Specifically, they formalized
four definitions for robustness including weak and strong robustness in the setting of CPA and
CCA security respectively (i.e., WROB-CPA, WROB-CCA, SROB-CPA, SROB-CCA). Here
we require the PKE to satisfy the WROB-CPA property and recall its definition below.

Definition 4.2 (Robustness [1]). Let PKE = (Setup,Gen,Enc,Dec) be a PKE scheme. We say
PKE is robust if for any PPT adversary A in Fig. 3,

Pr [RobPKE,A(n) = true] ≤ negl(n) .

So far, there are only a few pseudo-random PKE [32, 23], where Möller’s scheme [23] also
satisfies robustness. It seems that the coverage of this construction is rather limited. The
following description of sender-anamorphic extension indicates that we only need the ciphertext
(of duplicate message) can be encoded into a string which is indistinguishable from a uniform
random, and here are several approaches [34, 36, 9, 31] to achieve such an encoding.

4.2 Sender-Anamorphic Extension

Let PKE be a pseudo-random and robust PKE with plaintext space M, randomness space R
and ciphertext space C. The length of ciphertext in PKE is denoted by ℓct. Fig. 4 depicts the
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PKE.fRandom(FPK, FM, dpk, dm)

ct←$Enc(dpk, dm)

for i ∈ [ℓct] do :

do :

r∗←$R
ct∗ ← Enc(fpki, fmi; r

∗)

bi := Hk̂(ct
∗)

while bi ̸= ct[i]

ri := r∗

return R := {ri}i∈[ℓct]

PKE.dDec(dsk, CT)

CT := {cti}i∈[ℓct]

for i ∈ [ℓct] do :

b′i := Hk̂(cti)

ct′ := b′1∥b′2∥ · · · ∥b′ℓct
dm′ := Dec(dsk, ct′)

return dm′

Figure 4: Sender-anamorphic extension for pseudo-random and robust PKE.

details of sender-anamorphic extension for PKE, and PKE is an ℓct-sender-AME with duplicate
plaintext spaceM. We point out that the keyed hash functionHk̂ : C → {0, 1} used in algorithm
fRandom and dDec is entropy smoothing and accessible to the public including the dictator.

4.3 Security Analysis

Theorem 4.1 (Robustness1). Let PKE be a pseudo-random and robust PKE. PKE is a robust
ℓct-sender-AME with extension algorithms (in Fig. 4).

Proof. Let H0 denote the game for A in Equation 1. Game H1 is the same as H0 except that all
the ciphertexts in CT are sampled from {0, 1}ℓct uniformly, instead of generated by encrypting
FM.

Lemma 4.2. By the pseudo-randomness of PKE, H0 ≈c H1.

Proof. Let H0,0 = H0 and H0,i be the same as H0,i−1 except cti in CT is replaced to a bit-string
uniformly sampled from {0, 1}ℓct for i ∈ [ℓct]. We have H1 = H0,ℓct . To prove H0,i−1 ≈c H0,i,
we show how to build B1 and B2 to break the pseudo-randomness of PKE as follows.

• B1 receives (pp, pk), sets fpki = pk, generates (fpkk, fskk)k∈[ℓct]\{i} and (dpk, dsk) by
running Gen(pp), and sends (pp, FPK) to A.

• After receiving FM from A, B1 forwards fmi and state st to the challenger, and B2 receives
(ct∗, st). B2 sets the first i − 1 ciphertexts in CT as bit-strings uniformly sampled from
{0, 1}ℓct , the i-th ciphertext as ct∗, and computes the last ℓct − i ciphertexts using Enc.

If ct∗ is a ciphertext of fmi under pk, B1 and B2 simulates H0,i−1 for A. Otherwise,
ct∗←$ {0, 1}ℓct and the simulation is H0,i.

Game H2 is the same as H1 except that challenger samples a bit-string ct′ from {0, 1}ℓct
uniformly and computes dm := Dec(dsk, ct′), instead of running dDec.

Lemma 4.3. By the entropy smoothness of {Hk̂}k̂∈K̂, H1 ≈c H2.

1Compared with the conference version, the proof has been enhanced with more details.

14



Proof. Let H1,0 = H1 and H1,i be the same as H1,i−1 except that the i-th bit of ct′ in dDec is
uniformly sampled from {0, 1}, instead of Hk̂(cti). We have H2 = H1,ℓct . To prove H1,i−1 ≈c

H1,i, we show how to build B to break the entropy smoothness of {Hk̂}k̂∈K̂ as follows.

Let (k̂, y) be the instance that B receives from its challenger. B generates public parameter,
forced and duplicate public/secret key pairs as in H0. In the execution of dDec, the first i− 1
bits of ct′ are uniformly sampled from {0, 1}i−1, the i-th bit of ct′ is set as y and the last ℓct− i
bits are derived from {ctj}j∈[i+1,ℓct] with k̂. If y = Hk̂(ct) with ct←$ {0, 1}ℓct , B simulates
H1,i−1 for A. Otherwise, y←$ {0, 1} and B simulates H1,i.

If the probability of dm ̸= ⊥ in H2 is ϵ(n), that is,

Pr

Dec(dsk, ct′) ̸= ⊥ :

pp←$Setup(1n)

(dpk, dsk)←$Gen(pp)

ct′←$ {0, 1}ℓct

 = ϵ(n),

then the advantage of B1 and B2 breaking the pseudo-randomness of PKE is ϵ(n). In specific,
after receiving challenge ciphertext ctb, B2 samples (pk′, sk′)←$Gen(pp) and runs Dec(sk′, ctb).
If ctb is a valid ciphertext, by the robustness of PKE, the probability of Dec(sk′, ctb) ̸= ⊥ is
negligible. If ctb is a random bit-string, the probability of Dec(sk′, ctb) ̸= ⊥ is ϵ(n). By the
pseudo-randomness of PKE, ϵ(n) must be a negligible function, and Equation 1 holds.

Let G denote the game for A in Equation 2. To prove this equation, we show how to break
the robustness of PKE with A as follows.

Let A∗ be the adversary in game RobPKE,A∗(n). A∗ receives pp from its challenger and
makes at most q GEN queries. Then, A∗ generates (fpki, fski)i∈[ℓct]←$Gen(pp) and sets dpk
as the public key pki of the i-th GEN query, where i←$ [q]. After receiving (FM, dm) from A, A∗

sets m as dm, picks random j←$ [q] and returns (m, i, j) to the challenger.
This simulation is perfect. If the probability of dDec(dsk′, CT) ̸= ⊥ in G is not negligible,

the robustness of PKE does not hold.

Theorem 4.4 (Security2). Let PKE be a pseudo-random and robust PKE. Then, PKE is a
secure ℓct-sender-AME with extension algorithms in Fig. 4.

Proof. By the correctness of PKE, one can easily verify that PKE is ℓct-sender-anamorphic with
extension algorithms in Fig. 4. The pseudo-randomness of PKE implies CPA security.

We now prove that for any PPT adversary A, the advantage of A distinguishing games
Idealℓct,PKE,A(n) and RealfRandomℓct,PKE,A(n) is negligible. Assume that A makes at most q encryption
queries (providing a forced plaintext set FM and a duplicate plaintext dm each time).

Let H0 = RealfRandomℓct,PKE,A(n), and Hi is the same as Hi−1 except that challenger samples
(rj)j∈[ℓct]←$R to encrypt {fmj}j∈[ℓct] in the i-th encryption query for i ∈ [q]. We have Hq =
Idealℓct,PKE,A(n).

Lemma 4.5. By the pseudo-randomness of PKE, Hi−1 ≈c Hi for i ∈ [q].

Proof. Let H∗
i−1 be the same as Hi−1 except that ct is uniformly sampled from {0, 1}ℓct in

fRandom. Let H∗
i−1,0 = H∗

i−1 and H∗
i−1,j be the same as H∗

i−1,j−1 except that, in fRandom, the

2The proof has been revised to specify that PKE is only provable to be secure rather than being strongly
secure (although we do not find valid attack) as claimed in the conference version. The main difficulty for
proving strongly security is that adversary Bi,j

1 , who sets the public key in pseudo-randomness game as the j-th
forced public key, is unable to provide the j-th forced secret key to A.
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ciphertext of fmj is replaced to random string sampled from {0, 1}ℓct for j ∈ [ℓct]. In H∗
i−1,ℓct

,
the sampling of (rj)j∈[ℓct] is independent of FPK, FM, dpk, dm. Thus, H

∗
i−1,ℓct

is equivalent to Hi.

To prove Hi−1 ≈c H∗
i−1, we build adversary Bi1 and Bi2 to break the pseudo-randomness

of PKE. In specific, Bi1 receives (pp, pk) and returns challenge plaintext m∗ and state st. Bi2
receives (st, ctb) and has to guess the bit b.

Adversary Bi1 and Bi2 simulate Hi−1 or H∗
i−1 for A as follows.

• Bi1 runs Gen(pp) to generate ℓct pairs of forced public/secret key (fpkj , fskj), and sets pk
as the duplicate public key dpk;

• Bi1 provides (pp, FPK := {fpkj}j∈[ℓct]) to A;

• Let (FM, dm) be the i-th encryption query by A. Bi1 returns dm and st = (pp, dpk, FPK, FSK);

• Bi2 answers the first (i− 1) encryption queries by encrypting FM with randomnesses gener-
ated by fRandom(FPK, FM, dpk, dm) in Fig. 4, and the last (q− i) queries with randomnesses
uniformly sampled from R;

• Bi2 answers the i-th query by encrypting FM with R generated by fRandom′(FPK, FM, ctb)
which is the same as fRandom(FPK, FM, dpk, dm) except that ct is replaced by ctb.

If ctb is an encryption of dm under pk, then fRandom′(FPK, FM, ctb) is actually the same as
fRandom(FPK, FM, dpk, dm), and Bi1,Bi2 simulate Hi−1 for A.

If ctb is uniformly sampled from {0, 1}ℓct , then Bi1,Bi2 simulate H∗
i−1 for A.

Similarly, we can build adversary Bi,j1 and Bi,j2 to break the pseudo-randomness of PKE to

prove H∗
i−1,j−1 ≈c H∗

i−1,j . In specific, Bi,j1 receives (pp, pk), sets pk as the j-th forced public

key for A and returns fmj in the i-th encryption query by A. Bi,j2 answers the i-th query by
encrypting FM with R generated by fRandom′′({fpkk, fmk}k∈[j+1,ℓct], ctb), which is the same as
fRandom(FPK, FM, dpk, dm) except that the ciphertexts of dm and {fmk}k∈[j−1] are replaced to

random string from {0, 1}ℓct and the ciphertext of fmj is replaced to ctb.

If ctb is an encryption of fmj under pk, Bi,j1 and Bi,j2 simulates H∗
i−1,j−1 for A. Otherwise,

the simulation is H∗
i−1,j .

By Lemma 4.5, we have H0 ≈c Hq, from which this theorem follows.

5 Construction II: Hybrid PKE with Special KEM

In this section, we demonstrate that a wide range of hybrid PKE schemes are strongly secure and
robust (ℓ+1)-sender-AME for duplicate plaintext with ℓ bits. We first depict such PKE schemes
with a generic framework, then provide the details of their sender-anamorphic extension, and
finally prove the properties of strong security and robustness rigorously.

5.1 Hybrid PKE with Special KEM

To better describe the proposed sender-anamorphic extension for hybrid PKE, we recall the
module-level syntax of KEM and related properties (i.e., universal decryptability and key-
pseudo-randomness) by Chen et al. [10] as below. In fact, these two properties are the “perfect
correctness” and “CPA security” for typical KEM respectively.

• KEM.Setup(1n) returns the public parameter pp including the key space KKEM and ran-
domness space RKEM.
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PKE.Setup(1n)

pp←$KEM.Setup(1n)

return pp

PKE.Gen(pp)

(ek, dk)←$KEM.Ek(pp)

(tk, vk)←$KEM.Tk(pp)

pk := (ek, tk)

sk := (dk, vk)

return (pk, sk)

PKE.Enc(pk, m; r)

/∗r←$KEM.Rg(pp)∗/

K := KEM.Kg(ek, r)

C := KEM.Cg(r)

π := KEM.Tg(tk, r)

D := DEM.Enc(K, m)

ct := (C, π,D)

return ct

PKE.Dec(sk, ct)

K ′ := KEM.Kd(dk, C)

m′ := DEM.Dec(K ′, D)

π′ := KEM.Vf(vk, C)

if π′ = π then m := m′

else m := ⊥
return m

Figure 5: Hybrid PKE built on module-level KEM and DEM.

• KEM.Gen(pp) returns a key pair (pk = (ek, tk), sk = (dk, vk)) by running following sub-
algorithms.

– KEM.Ek(pp) produces an en/decapsulation key pair (ek, dk).

– KEM.Tk(pp) produces a tag generation/verification key pair (tk, vk).

• KEM.Enc(pk) returns keyK and ciphertext ψ = (C, π) by running following sub-algorithms.

– KEM.Rg(pp) picks a randomness r from RKEM.

– KEM.Kg(ek, r) produces a key K ∈ KKEM.

– KEM.Cg(r) produces a ciphertext C of key K.

– KEM.Tg(tk, r) produces the ciphertext tag π of C.

• KEM.Dec(sk, ψ = (C, π)) returns the key K or ⊥ by running following sub-algorithms.

– KEM.Kd(dk, C) produces a key K.

– KEM.Vf(vk, C) produces a ciphertext tag π′.

If π′ = π, KEM.Dec returns K. Otherwise, it returns ⊥.

We remark that algorithms related to the ciphertext tag (including KEM.Tk, KEM.Tg and
KEM.Vf) are optional and do not appear in certain KEMs.

Definition 5.1 (Universal Decryptability [10]). Let KEM be a module-level KEM. We say KEM
satisfies universal decryptability if for any n ∈ N,

Pr

KEM.Kg(ek, r) ̸= KEM.Kd(dk, C) :

pp←$KEM.Setup(1n)

(ek, dk)←$KEM.Ek(pp)

r←$KEM.Rg(pp)

C := KEM.Cg(r)

 ≤ negl(n) .
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Definition 5.2 (Key-Pseudo-Randomness [10]). Let KEM be a module-level KEM. We say
KEM is key-pseudo-random if for any PPT adversary A,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

pp←$KEM.Setup(1n)

(ek, dk)←$KEM.Ek(pp)

r←$KEM.Rg(pp)

C := KEM.Cg(r)

b←$ {0, 1};K0←$KKEM

K1 := KEM.Kg(ek, r)

b′ ← A(pp, ek,Kb, C)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(n) .

Here we introduce the homomorphic property for module-level KEM.

Definition 5.3 (Homomorphic Property). Let KEM be a module-level KEM with key space
KKEM and randomness spaceRKEM. We say KEM is homomorphic if for any n ∈ N+, pp←$KEM.
Setup(1n), (ek, dk)←$KEM.Ek(pp), any r1, r2 ∈ RKEM,

1) KEM.Kg(ek, r1 ⊕ r2) = KEM.Kg(ek, r1)⊙ KEM.Kg(ek, r2) where ⊕ and ⊙ are operations
defined over RKEM and KKEM respectively, and

2) KEM.Cg(r1 ⊕ r2) = KEM.Cg(r1)⊗ KEM.Cg(r2) where ⊗ is an operation defined over the
support of KEM.Cg(r).

Let KEM be a module-level KEM satisfying universal decryptability, key-pseudo-randomness
and homomorphic property, and DEM = (Enc,Dec) be the data encapsulation mechanism
(DEM) that is a symmetric encryption scheme that has indistinguishable encryptions in the
presence of an eavesdropper (see Appendix A.2). Fig. 5 shows the hybrid PKE PKE built on
KEM and DEM.

Some KEMs including Cramer-Shoup KEMs under DDH, DCR and QR assumptions [11],
Kurosawa-Desmedt KEM [20] and Hofheinz-Kiltz KEM [17] have been demonstrated to be
universally decryptable and key-pseudo-random in [10]. One can refer to the details of these
KEMs in [10] and verify that all these KEMs also satisfy the homomorphic property. Analogous
to the DDH-based Cramer-Shoup KEM, the ElGamal KEM also meets the requirement.

5.2 Sender-Anamorphic Extension

Fig. 6 depicts the details of sender-anamorphic extension for the above hybrid PKE. Also, this
extension requires an entropy smoothing keyed hash function Hk̂ that maps the key of KEM
into the randomness space RKEM. We assume RKEM is an additive and cyclic group and 1RKEM

denotes a generator of RKEM.
We note that some cryptosystems are built over such hybrid PKE (e.g., Naor-Yung [24] and

double-strand [16, 27, 33] paradigms) are strongly secure and robust 1-sender-AMEs for 1-bit
duplicate message. See Appendix B for more details.

5.3 Security Analysis

Let PKE be a hybrid PKE in Fig. 5 with KEM satisfying universal decryptability, key-pseudo-
randomness and homomorphic property and DEM that has indistinguishable encryptions in the
presence of an eavesdropper.
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PKE.fRandom(FPK, FM, dpk, dm)

dpk := (ek0, tk0)

dm := b1∥b2∥ · · · ∥bℓ ∈ {0, 1}ℓ

for i ∈ [ℓ+ 1] do :

if i = 1 then

ri←$KEM.Rg(pp)

else

ti := Hk̂(KEM.Kg(ek0, ri−1))

ri := ti + bi−1 · 1RKEM

R := {ri}i∈[ℓ+1]

return R

PKE.dDec(dsk, CT)

dsk := (dk0, vk0)

CT := {(Ci, πi, Di)}i∈[ℓ+1]

for i ∈ [2, ℓ+ 1] do :

ti := Hk̂(KEM.Kd(dk0, Ci−1))

r0i := ti; r
1
i := ti + 1RKEM

C0
i := KEM.Cg(r0i )

C1
i := KEM.Cg(r1i )

if Ci = C0
i then

b′i−1 := 0

elseif Ci = C1
i then

b′i−1 := 1

else

return ⊥
return b′1∥b′2∥ · · · ∥b′ℓ

Figure 6: Sender-anamorphic extension for hybrid PKE with special KEM.

Theorem 5.1 (Robustness3). PKE in Fig. 5 is a robust (ℓ + 1)-sender-AME with extension
algorithms in Fig. 6.

Proof. Let H0 denote the game for A in Equation 1. Game H1 is the same as H0 ex-
cept that ti := Hk̂(KEM.Kg(ek0, ri−1)) in dDec for every i ∈ [2, ℓ + 1], instead of ti :=
Hk̂(KEM.Kd(dk0, Ci−1)). Since the challenger performs the encryption of FM, it is possible
to obtain all the randomnesses and compute ti using ek0. By the universal decryptability of
KEM, game H1 is statistically indistinguishable from H0.

GameH2 is the same asH1 except that ti := Hk̂(Ki) withKi←$KKEM for every i ∈ [2, ℓ+1].

Lemma 5.2. By the key-pseudo-randomness of KEM, H1 ≈c H2.

Proof. LetH1,1 = H1 andH1,i be the same asH1,i−1 except that ti := Hk̂(Ki) withKi←$KKEM

and i ∈ [2, ℓ + 1]. We have H2 = H1,ℓ+1. To prove H1,i−1 ≈c H1,i, we show how to break the
key-pseudo-randomness of KEM by Di−1,1 and Di−1,2 distinguishing H1,i−1 and H1,i with non-
negligible advantage in Fig. 7. Specifically, ciphertext cti−1 derived from C∗ using secret key
fski−1 is valid. If K∗ = KEM.Kg(ek∗, r∗) and r∗ is the underlying randomness of C∗, Bi−1

simulates H1,i−1. If K
∗←$KKEM, Bi−1 simulates H1,i. Bi−1 breaks the key-pseudo-randomness

of KEM by forwarding the bit b outputted by Di−1,2.

Game H3 is the same as H2 except that ti←$RKEM for every i ∈ [2, ℓ+ 1].

Lemma 5.3. By the entropy smoothness of hash function family {Hk̂}k̂∈K̂, H2 ≈c H3.

Proof. Let H2,1 = H2 and H2,i be the same as H2,i−1 except that ti←$RKEM with i ∈ [2, ℓ+1].
We haveH3 = H2,ℓ+1. If there exists adversary Di−1,1 and Di−1,2 distinguishingH2,i−1 andH2,i

with overwhelming advantage, we show Bi−1 that breaks the entropy smoothness of {Hk̂}k̂∈K̂.
In particular, let (k̂∗, y∗) be the instance, Bi−1 simulates the game for Di−1,1 and computes CT

3Compared with the conference version, the proof has been enhanced with more details.
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Bi−1(pp, ek
∗,K∗, C∗)

(fpki, fski)i∈[ℓ+1]←$Gen(pp)

(FM, st)← Di−1,1(pp, FPK)

(rj)j∈[ℓ+1]\{i−1}←$R
cti−1 := Enc∗(fski−1, C

∗, fmi−1)

CT := {Enc(fpkj , fmj ; rj)}j∈[ℓ+1]\{i−1} ∪ {cti−1}
flag := dDec∗(ek∗, (rj)j∈[i,ℓ], CT) ̸= ⊥
b← Di−1,2(flag, st)

return b

Enc∗(sk, C, m)

sk := (dk, vk)

π := KEM.Vf(vk, C)

K := KEM.Kd(dk, C)

D := DEM.Enc(K, m)

ct := (C, π,D)

return ct

dDec∗(ek∗, (rj)j∈[i,ℓ], CT)

CT := {(Ci, πi, Di)}i∈[ℓ+1]

for j ∈ [2, ℓ+ 1] do :

if j < i then

Kj ←$KKEM

tj := Hk̂(Kj)

elseif j = i then

tj := Hk̂(K
∗)

else

tj := Hk̂(KEM.Kg(ek
∗, rj−1))

r0j := tj ; r
1
j := tj + 1RKEM

C0
j := KEM.Cg(r0j )

C1
j := KEM.Cg(r1j )

if Cj = C0
j then

b′j−1 := 0

elseif Cj = C1
j then

b′j−1 := 1

else

return ⊥
return b′1∥b′2∥ · · · ∥b′ℓ

Figure 7: Adversary Bi−1 breaking the key-pseudo-randomness of KEM in the proof of
Lemma 5.2

as in H0. Recall that, in H2, tj := Hk̂(Kj) with Kj←$KKEM for every i ∈ [2, ℓ + 1]. Here,
Bi−1 samples tj←$RKEM for j ∈ [2, i − 1], sets ti := y∗ and computes tj := Hk̂∗(Kj) with
Kj←$KKEM for j ∈ [i + 1, ℓ + 1]. If y∗←$RKEM, then Bi−1 simulates H2,i. Otherwise, Bi−1

simulates H2,i−1.

Recall that the output of dDec is not ⊥ when Ci = C0
i or Ci = C1

i for any i ∈ [2, ℓ + 1].
That is, ri = ti or ri = ti + 1 for any i ∈ [2, ℓ + 1] by the homomorphic property of KEM.
Otherwise, KEM.Cg(ri − ti) or KEM.Cg(ri − (ti + 1)) is the identity in the support of KEM.Cg,
while ri − ti or ri − (ti + 1) is not 0. In H3, both ri and ti are uniformly sampled from RKEM.
The probability that dDec does not return ⊥ is at most (2/|RKEM|)ℓ which is negligible over n.

Let G denote the game for A in Equation 2. In game G, ri := Hk̂(KEM.Kg(ek0, ri−1)) +
bi−1 · 1RKEM

for i ∈ [2, ℓ+ 1]. Let dsk′ := (dk′0, vk
′
0), then ti := Hk̂(KEM.Kd(dk

′
0, Ci−1)). By the

universal decryptability of KEM, ti := Hk̂(KEM.Kg(ek
′
0, ri−1)). Since both dpk and dpk′ are ran-

domly generated, the probability that ek0 = ek′0 is negligible. Obviously, KEM.Kg(ek0, ri−1)) ̸=
KEM.Kg(ek′0, ri−1)). By the entropy smoothness of {Hk̂}k̂∈K̂, the probability that ri = ti or
ri = ti + 1 is negligible.

Theorem 5.4 (Security). PKE is a strongly secure (ℓ + 1)-sender-AME with extension algo-
rithms in Fig. 6.

Proof. We first prove that PKE is (ℓ+ 1)-sender-anamorphic and claim that b′i = bi for i ∈ [ℓ].
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In cti := (Ci, πi, Di),

Ci = KEM.Cg(ri)

= KEM.Cg(Hk̂(KEM.Kg(ek0, ri−1)) + bi−1 · 1RKEM
)

= KEM.Cg(Hk̂(KEM.Kd(dk0, Ci−1)) + bi−1 · 1RKEM
)

= KEM.Cg(r
bi−1

i ) = C
bi−1

i ,

where i ∈ [2, ℓ + 1]. By the universal decryptability of KEM, the probability of event that the
third equality does not hold is negligible. Note that if bi−1 = 0 then Ci = C0

i and b′i−1 = 0.
Otherwise, we have bi−1 = 1, Ci = C1

i and b′i−1 = 1.
Since KEM is key-pseudo-random and DEM has indistinguishable encryptions in the presence

of an eavesdropper, PKE is CPA secure. We defer the proof of CPA security to Appendix A.3.
We now prove that for any PPT adversary A, the advantage of adversary A distinguishing

games Idealℓ+1,PKE,A(n) and RealfRandomℓ+1,PKE,A(n) is negligible. Assume that adversary A makes at
most q encryption queries, and provides a forced plaintext set FM := {fmi}i∈[ℓ+1] and a duplicate
plaintext dm in each query.

Let H0 = RealfRandomℓ+1,PKE,A(n), and Hi is the same as Hi−1 except that challenger samples
(ri)i∈[ℓ+1]←$RKEM to encrypt forced messages {fmj}j∈[ℓ+1] in the i-th encryption query for
i ∈ [q]. Obviously, Hq = Idealℓ+1,PKE,A(n).

Let Hi−1,0 = Hi−1 for i ∈ [q], and Hi−1,j is the same as Hi−1,j−1 except that the challenger
samples rj←$RKEM to encrypt fmj in the i-th encryption query for j ∈ [ℓ + 1]. Obviously,
Hi−1,ℓ+1 = Hi. Note that r∗1←$KEM.Rg(pp), namely, r∗1←$RKEM, in algorithm fRandom, we
have Hi−1,0 = Hi−1,1 for i ∈ [q].

Let H′
i−1,j−1 be the same as Hi−1,j−1 except that the challenger computes rj := Hk̂(K) +

bj−1 · 1RKEM
, where K←$KKEM and bj−1 is the (j − 1)-th bit of dm, to encrypt fmj in the i-th

encryption query for j ∈ [2, ℓ+ 1].
Now, there is a series of games between H0 and Hq as below.

{ H0(H0,0), H0,1, H′
0,1, · · · , H0,ℓ, H′

0,ℓ,

H1(H0,ℓ+1,H1,0), H1,1, H′
1,1, · · · , H1,ℓ, H′

1,ℓ,

· · · ,

Hq−1(Hq−2,ℓ+1,Hq−1,0), Hq−1,1, H′
q−1,1, · · · , Hq−1,ℓ, H′

q−1,ℓ,

Hq(Hq−1,ℓ+1)}

Lemma 5.5. By the key-pseudo-randomness of KEM, H′
i−1,j−1 ≈c Hi−1,j−1 for i ∈ [q] and

j ∈ [2, ℓ+ 1].

Proof. We show how to build an adversary Di−1,j−1 breaking the key-pseudo-randomness of
module-level KEM. Specifically, Di−1,j−1 receives (pp, ek∗,K∗, C∗) and has to guess the bit
b. If b = 0, K∗ is uniformly sampled from KKEM. Otherwise, K∗ = KEM.Kg(ek∗, r) with
r←$KEM.Rg(pp) and C∗ = KEM.Cg(r).

Adversary Di−1,j−1 simulates Hi−1,j−1 or H′
i−1,j−1 for A as shown in Fig. 8. In particular,

the duplicate public key dpk∗ is a valid public key, as the generation of encapsulation key ek

and tag generation key tk in PKE is independent.
Di−1,j−1 runs algorithm dEnc to generate ciphertexts {cti}i∈[ℓ+1] for the i-th encryption

query. In ctj−1, Cj−1 = C∗ + bj−2 · KEM.Cg(1RKEM
), Dj−1 = DEM.Enc(Kj−1, fmj−1), πj−1
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Di−1,j−1(pp, ek
∗,K∗, C∗)

(fpki, fski)i∈[ℓ+1]←$Gen(pp)

((ek0, tk0), dsk)←$Gen(pp)

dpk∗ := (ek∗, tk0)

b← AENC(·,·)(pp, FPK, FSK, dpk∗)

return b

ENC(FM, dm)

/∗the k-th encryption query∗/

if k = i then

return dEnc(FPK, FM, dpk∗, dm)

if k ≤ i− 1 then

(ri)i∈[ℓ+1]←$RKEM

else · · · · · · /∗k > i∗/

R←$ fRandom(FPK, FM, dpk∗, dm)

return {Enc(fpki, fmi; ri)}i∈[ℓ+1]

dEnc(FPK, FM, dpk∗, dm)

dm := b1b2 · · · bℓ ∈ {0, 1}ℓ; b0 := 0

for i ∈ [ℓ+ 1] do :

if i < j − 1 then

ri←$RKEM

cti := Enc(fpki, fmi; ri)

elseif i = j − 1 then

Ci := C∗ + bi−1 · KEM.Cg(1RKEM
)

πi := KEM.Vf(vki, Ci)

Ki := KEM.Kd(dki, Ci)

Di := DEM.Enc(Ki, fmi)

cti := (Ci, πi, Di)

elseif i = j then

si := bi−2 · KEM.Kg(ek∗, 1RKEM
)

ti := Hk̂(K
∗ + si)

ri := ti + bi−1 · 1RKEM

cti := Enc(fpki, fmi; ri)

else · · · · · · /∗i > j∗/

ti := Hk̂(KEM.Kg(ek
∗, ri−1))

ri := ti + bi−1 · 1RKEM

cti := Enc(fpki, fmi; ri)

return CT := {cti}i∈[ℓ+1]

Figure 8: Adversary Di−1,j−1 breaking the key-pseudo-randomness of KEM in the proof of
Lemma 5.5.

and Kj−1 are derived from Cj−1 using fskj−1 = (dkj−1, vkj−1). Note that C∗ = KEM.Cg(r),
we have Cj−1 = KEM.Cg(rj−1) = KEM.Cg(r + bj−2 · 1RKEM

) by the homomorphic property
of KEM.Cg, and ctj−1 = Enc(fpkj−1, fmj−1; rj−1). In ctj , the underlying randomness rj =
Hk̂(K

∗ + bj−2 · KEM.Kg(ek∗, 1RKEM
)) + bj−1 · 1RKEM

.
If K∗ = KEM.Kg(ek∗, r), by the homomorphic property of KEM.Kg,

rj = Hk̂(KEM.Kg(ek
∗, r + bj−2 · 1RKEM

)) + bj−1 · 1RKEM

= Hk̂(KEM.Kg(ek
∗, rj−1)) + bj−1 · 1RKEM

.

ctj is computed in the same way as in fRandom, and Di−1,j−1 simulates Hi−1,j−1 for A. Oth-
erwise, K∗←$KKEM, K∗ + bj−2 · KEM.Kg(ek∗, 1RKEM

) is uniformly distributed over KKEM and
Di−1,j−1 simulates H′

i−1,j−1 for A.

Lemma 5.6. By the entropy smoothness of hash function family H = {Hk̂}k̂∈K̂ with Hk̂ :
KKEM → RKEM, Hi−1,j ≈c H

′
i−1,j−1 for i ∈ [q] and j ∈ [2, ℓ+ 1].

Proof. We show how to build an adversary Bi−1,j−1 breaking the entropy smoothness of hash

function family H with Hk̂ : KKEM → RKEM. Specifically, Bi−1,j−1 receives (k̂, y) and has to
decide whether y = Hk̂(x) with x←$KKEM or y←$RKEM.
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Bi−1,j−1(k̂, y)

pp←$ Setup(1n)

(fpki, fski)i∈[ℓ+1]←$Gen(pp)

(dpk, dsk)←$Gen(pp)

b← AENC(·,·)(pp, FPK, FSK, dpk)

return b

ENC(FM, dm)

/∗the k-th encryption query∗/

if k ≤ i− 1 then

(ri)i∈[ℓ+1]←$RKEM

elseif k > i then

R←$ fRandom(FPK, FM, dpk, dm)

else · · · · · · /∗k = i∗/

R←$ ˜fRandom(dpk, dm)

return {Enc(fpki, fmi; ri)}i∈[ℓ+1]

˜fRandom(dpk, dm)

dpk := (ek0, tk0)

dm := b1b2 · · · bℓ ∈ {0, 1}ℓ

for i ∈ [ℓ+ 1] do :

if i < j then

ri←$RKEM

else

if i > j then

ti := Hk̂(KEM.Kg(ek0, ri−1))

else · · · · · · /∗i = j∗/

ti := y

ri := ti + bi−1 · 1RKEM

R := {ri}i∈[ℓ+1]

return R

Figure 9: Adversary Bi−1,j−1 breaking the entropy smoothness of hash function family H in the
proof of Lemma 5.6.

Adversary Bi−1,j−1 simulates Hi−1,j−1 or H′
i−1,j−1 for A as shown in Fig. 9. In particular,

Bi−1,j−1 runs algorithm ˜fRandom to generate R for the i-th encryption query. In algorithm

˜fRandom, the value of tj is set as y.
If y is uniformly sampled from RKEM, then randomness rj is also uniformly sampled from

RKEM, and Bi−1,j−1 simulates Hi−1,j for A. If y = Hk̂(x) with x←$KKEM, then Bi−1,j−1

simulates H′
i−1,j−1 for A.

By Lemma 5.5, Lemma 5.6 and Hi−1,0 = Hi−1,1 for i ∈ [q], we have H0 ≈c Hq. That is,
for any PPT adversary A, the advantage of adversary A distinguishing games Idealℓ+1,PKE,A(n)
and RealfRandomℓ+1,PKE,A(n) is negligible.

6 Relation between ℓ-Receiver/Sender-AME

6.1 ℓ-Receiver-Anamorphic Encryption (ℓ-Receiver-AME)

Definition 6.1 (ℓ-Receiver-Anamorphic Encryption). Let PKE be a public key encryption
scheme. We say PKE is ℓ-receiver-anamorphic if 1) there exists a receiver-anamorphic extension
(aSetup, aGen, aEnc, aDec)

• aSetup(1n) takes as input 1n, and produces the public parameter pp;

• aGen(pp) takes as input pp, and produces ℓ anamorphic public/secret key pairs (apki, aski)i∈[ℓ],
and a double key dkey;

• aEnc(dkey, M, m̄) takes as input the double key dkey, a normal plaintext set M = {mi}i∈[ℓ]
and an anamorphic plaintext m̄, and produces an anamorphic ciphertext set ACT = {acti}i∈[ℓ];
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nGameℓ,PKE,D(n)

pp←$Setup(1n)

(pki, ski)i∈[ℓ]←$Gen(pp)

b← DENC(·,·)(pp, (pki, ski)i∈[ℓ])

return b

ENC(M, m̄)

return {Enc(pki, mi)}i∈[ℓ]

faGameℓ,PKE,D(n)

pp←$ aSetup(1n)

((apki, aski)i∈[ℓ], dkey)←$ aGen(pp)

b← DAENC(·,·)(pp, (apki, aski)i∈[ℓ])

return b

AENC(M, m̄)

return aEnc(dkey, M, m̄)

Figure 10: Definitions of game nGameℓ,PKE,D(n) and faGameℓ,PKE,D(n).

• aDec(dkey, ACT) takes as input the double key dkey and the ciphertext set ACT, and returns
the anamorphic plaintext m̄,

and for any M ∈Mℓ, any m̄ ∈M,

Pr

aDec(dkey, ACT) ̸= m̄ :

pp←$ aSetup(1n)

((apki, aski)i∈[ℓ], dkey)←$ aGen(pp)

ACT←$ aEnc(dkey, M, m̄)

 ≤ negl(n) .

Definition 6.2 (Secure ℓ-Receiver-AME). Let PKE be an ℓ-receiver-AME with extension
(aSetup, aGen, aEnc, aDec). We say PKE is a secure ℓ-receiver-AME if following conditions hold,

• PKE is CPA secure;

• For any plaintext set M̂ ∈ Mℓ, fAME
M̂

= (aSetup, aGen2ℓ+1, aEnc1,M̂ , aDec) is a sym-
metric encryption scheme, where aGeni denotes selecting the ith component of the triplet
generated by aGen as the output, aEnc

1,M̂
denotes running aEnc with the normal plaintext

set M = M̂ ;

• For any PPT adversary D,

|Pr [nGameℓ,PKE,D(n) = 1]− Pr [faGameℓ,PKE,D(n) = 1]| ≤ negl(n) .

6.2 ℓ-Sender-AME ⇒ ℓ-Receiver-AME

Theorem 6.1. Let PKE be a strongly secure ℓ-sender-AME with extension (fRandom, dDec) and
duplicate plaintext space M. PKE is also a secure ℓ-receiver-AME with extension in Fig. 11
and anamorphic plaintext spaceM.

Proof. One can easily verify that the correctness of ℓ-sender-AME implies the correctness of ℓ-
receiver-AME, and, for any plaintext set M̂ ∈Mℓ, fAME

M̂
= (aSetup, aGen2ℓ+1, aEnc1,M̂ , aDec)

is a symmetric encryption scheme.
Next, we prove that for any PPT adversary D, the advantage of distinguishing games

nGameℓ,PKE,D(n) and faGameℓ,PKE,D(n) in Fig. 10 is negligible.
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aSetup(1n)

pp←$Setup(1n)

return pp

aGen(pp)

(pki, ski)i∈[ℓ+1]←$Gen(pp)

(apki, aski)i∈[ℓ] := (pki, ski)i∈[ℓ]

dkey := ({pki}i∈[ℓ+1], skℓ+1)

return ((apki, aski)i∈[ℓ], dkey)

aEnc(dkey, M, m̄)

R∗←$ fRandom({pki}i∈[ℓ], M, pkℓ+1, m̄)

ACT := {Enc(pki, mi; r
∗
i )}i∈[ℓ]

return ACT

aDec(dkey, ACT)

m̄ := dDec(skℓ+1, ACT)

return m̄

Figure 11: Receiver-anamorphic extension built on sender-anamorphic extension.

We show how to build an adversary B distinguishing with Idealℓ,PKE,B(n) and RealfRandomℓ,PKE,B (n).
In specific, B receives (pp, FPK, FSK, dpk) and can makes encryption queries with (FM, dm). The
encryption oracle encrypts FM withR∗←$ fRandom(FPK, FM, dpk, dm) in RealfRandomℓ,PKE,B (n) and (ri)i∈[ℓ]
←$R in Idealℓ,PKE,B(n).
B forwards (pp, FPK, FSK) to D. To answer the encryption query (M, m̄) from D, B queries

its encryption oracle with (M, m̄) and returns the ciphertexts to D. The simulation is perfect.
If the encryption oracle encrypts M with (ri)i∈[ℓ]←$R, B simulates nGameℓ,PKE,D(n) for D.
Otherwise, the encryption oracle encrypts M with R∗←$ fRandom(FPK, M, dpk, m̄), B simulates
faGameℓ,PKE,D(n) for D.

Obviously, not every ℓ-receiver-AME is also ℓ-sender-anamorphic. In particular, the con-
struction of ℓ-receiver-AME might rely on the anamorphic setup and key generation algorithms,
or the double key for anamorphic encryption and decryption algorithms might cannot be parsed
as a public/secret key pair.

7 Relation between ℓ-Sender-AME and Public-Key Stegosys-
tem

In this section, we recall the definition of public-key stegosystem and its security in [32], and
rigorously prove that a strongly secure ℓ-sender-AME implies a secure public-key stegosystem.

7.1 Public-Key Stegosystem

Definition 7.1 (Public-Key Stegosystem [32]). A public-key stegosystem PKS consists of four
algorithms (sSetup, sGen, sEnc, sDec)

• sSetup(1n) takes as input 1n, and returns the public parameter pp;

• sGen(pp) takes as input pp, and returns a public/secret key pair (pk, sk);

• sEnc(pk, m, h) takes pk, a string m ∈ {0, 1}∗ (i.e., the hiddentext) and a history h, and
returns a list of documents ST = (st1, st2, · · · , stℓ) (i.e., the stegotext). Also, it can
access a oracle M(h) that samples a document according to a channel distribution Ch;

• sDec(sk, ST, h) takes sk, ST = (st1, st2, · · · , stℓ) and a history h, and returns the string
m.
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and for any polynomial ℓ(n), any m ∈ {0, 1}ℓ(n),

Pr

sDec(sk, ST, h) ̸= m :

pp←$ sSetup(1n)

(pk, sk)←$ sGen(pp)

ST←$ sEnc(pk, m, h)

 ≤ negl(n) .

Definition 7.2 (CHA Security [32]). Let PKS = (sSetup, sGen, sEnc, sDec) be a public-key
stegosystem. We say PKS is secure against chosen hiddentext attacks (CHA secure) over channel
C if for any PPT warden W1,W2,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

pp←$ sSetup(1n)

(pk, sk)←$ sGen(pp)

(m∗, h∗, st)←WM(h)
1 (pp, pk)

ST0←$ sEnc(pk, m∗, h∗)

ST1←$ C|ST0|h∗

b←$ {0, 1}

b′ ←WM(h)
2 (st, STb)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(n) .

7.2 ℓ-Sender-AME ⇒ Public-Key Stegosystem

Let PKE = (Setup,Gen,Enc,Dec) be a PKE scheme. We define a channel CPKE,n(ℓ) for PKE
with security parameter n ∈ N+ and ℓ = poly(n), and specify the distributions for any history
h as below.

• Case 1: (h = ∅). CPKE,n,h(ℓ) is the distribution of all the public parameters generated by
Setup(1n);

• Case 2: (h = pp∥(pk1, sk1)∥ · · · ∥(pkr, skr) with r ∈ [0, ℓ− 1]). CPKE,n,h(ℓ) is the distribu-
tion of all the key pairs generated by Gen(pp);

• Case 3: (h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mr with mi ∈M, r ∈ [0, ℓ− 1]).
CPKE,n,h(ℓ) is the uniform distribution over message spaceM;

• Case 4: (h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mℓ∥ct1∥ · · · ∥ctr with mi ∈M, cti←$

Enc(pki′ , mi′), i
′ = ((i−1) mod ℓ)+1). CPKE,n,h(ℓ) is the distribution of Enc(pkr′ , mr′) where

r′ = (r mod ℓ) + 1.

Theorem 7.1. Let PKE = (Setup,Gen,Enc,Dec) be a strongly secure ℓ-sender-AME. The
public-key stegosystem PKS = (sSetup, sGen, sEnc, sDec) in Fig. 12 over channel CPKE,n(ℓ) is
CHA secure.

Proof. We demonstrate how adversary A distinguishes game Idealℓ,PKE,A(n) and RealfRandomℓ,PKE,A(n)
by leveraging the warden W1 and W2 in CHA security game. A simulates the game for W1 and
W2 as follows.
A receives pp, ℓ forced key pairs {(fpki, fski)}i∈[ℓ] and dpk, and can make encryption queries

on (FM, dm). A forwards (pp, pk) to W1 and simulates the oracle M(h) as follows.
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sSetup(1n)

pp←$PKE.Setup(1n)

return pp

sGen(pp)

(pk∗, sk∗)←$PKE.Gen(pp)

return (pk∗, sk∗)

sDec(sk∗, ST, h)

st1∥st2∥ · · · ∥st3ℓ+1 := ST

CT := {sti}i∈[2ℓ+2,3ℓ+1]

m∗ := PKE.dDec(sk∗, CT)

return m∗

sEnc(pk∗, m∗, h)

if h = ∅ :
return pp←$PKE.Setup(1n)

elseif h = pp∥(pk1, sk1)∥ · · · ∥(pkj , skj) :
return (pkj+1, skj+1)←$PKE.Gen(pp)

elseif h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mj :
return mj+1←$M

elseif h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mℓ∥
ct1∥ · · · ∥ctj :

if j = 0 :

R∗←$PKE.fRandom(PK, M, pk∗, m∗)

j′ := (j mod ℓ) + 1

return PKE.Enc(pkj′ , mj′ ; r
∗
j′)

return ⊥

Figure 12: Generic public-key stegosystem built on ℓ-sender-AME.

• If h = ∅, A returns pp to W1;

• If h = pp∥(pk1, sk1)∥ · · · ∥(pkr, skr) with r ∈ [0, ℓ− 1], A returns the (r+1)-th forced key
pair (fpkr+1, fskr+1) to W1;

• If h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mr with r ∈ [0, ℓ−1], A samples mr+1 uniformly
fromM, and outputs mr+1;

• If h = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mℓ∥ct1∥ · · · ∥ctr with r ≥ 0, A computes
ctr+1←$PKE.Enc(pkr′ , mr′), where r

′ = (r mod ℓ) + 1, and outputs ctr+1.

One can note that A simulates the channel CPKE,n(ℓ) perfectly. After receiving (m∗, h∗) from
W1, A simulates the challenge stegotext STb as follows.

• If h∗ = ∅, A outputs pp;

• If h∗ = pp∥(pk1, sk1)∥ · · · ∥(pkr, skr) with r ∈ [0, ℓ − 1], A outputs the (r + 1)-th forced
key pair (fpkr+1, fskr+1);

• If h∗ = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mr with r ∈ [0, ℓ − 1], A samples mr+1 uni-
formly fromM, and outputs mr+1;

• If h∗ = pp∥(pk1, sk1)∥ · · · ∥(pkℓ, skℓ)∥m1∥ · · · ∥mℓ∥ct1∥ · · · ∥ctr with r ≥ 0: If (r mod ℓ) = 0,
A queries the encryption oracle on M := {mi}i∈[ℓ] and m∗, saves the ciphertext set CT and
outputs the first ciphertext ct1. Otherwise, A only needs to output the r′-th ciphertext
ctr′ where r

′ = (r mod ℓ) + 1.

If A is in game Idealℓ,PKE,A(n), then STb is sampled from CPKE,n,h∗(ℓ). If A is in game
RealfRandomℓ,PKE,A(n), then STb is the output of sEnc(pk, m∗, h∗).

We remark that not every public-key stegosystem implies an ℓ-sender-AME. In particular,
the chosen-stegotext secure construction in [32] also uses the secret key of sender (i.e., Alice) to
generate the stegotexts, while the input of algorithm fRandom in ℓ-sender-AME only involves
public keys and plaintexts.
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8 Relation between AME and Generalized ASA on PKE

8.1 ASA Model for PKE

In this section, we extend the generalized ASA model in [8] for PKE. Unlike symmetric encryp-
tion, PKE uses public key to encrypt messages, and it is impossible to extract the corresponding
secret key from the ciphertext. Hence, one natural goal of ASA against PKE is recovering un-
derlying plaintext or other subliminal messages from the ciphertext.

Definition 8.1 (Generalized ASA on PKE). Let PKE = (Setup,Gen,Enc,Dec) be a PKE. For
pp←$PKE.Setup(1n) and (pk, sk)←$PKE.Gen(pp), an ASA on PKE is ASA = (Gen,Enc,Ext).

• ASA.Gen(pp) returns a subversion key skey.

• ASA.Enc(skey, sm, pk, m, τ) takes as input skey, a subliminal message sm ∈ M, a public
key pk, an encryption message m ∈ M and a (possible) state τ , returns a ciphertext ct
and updates the state τ .

• ASA.Ext(skey, {cti}i∈[ℓ]) takes as input skey and a ciphertext set {cti}i∈[ℓ] with ℓ =
poly(n), and returns the subliminal message sm.

We remark that when message sm is set as plaintext m, the goal of ASA is recovering the
plaintext from ciphertext. In some cases, it is unlikely to encode all the bits of message sm

into one ciphertext ct. Instead, adversary takes advantage of the fact that the user would
invoke algorithm ASA.Enc multiple times to embed the message sm into a bunch of ciphertexts
{cti}i∈[ℓ], and the subverted encryption algorithm can be denoted as below.

ASA.Encℓ(skey, sm, PK := {pki}i∈[ℓ], M := {mi}i∈[ℓ])

1 : τ := ε

2 : for i ∈ [ℓ] do :

3 : cti←$ASA.Enc(skey, sm, pki, mi, τ)

4 : return CT := {cti}i∈[ℓ]

We say ASA is asymmetric if 1) subversion key skey can be parsed as a subversion key pair
(psk, ssk), 2) ASA.Enc takes public subversion key psk as input instead of skey and 3) ASA.Ext
takes secret subversion key ssk as input instead of skey. The generalized ASA in Def. 8.1 can
be regarded as symmetric. Clearly, asymmetric ASA is a special case of symmetric ASA. The
definitions of properties for these two types of ASAs are slightly different.

To capture the recovery of subliminal message, we present the definition of recoverability as
follows. In particular, for asymmetric ASA, only public subversion key psk is hardwired into
the subverted encryption algorithm ASA.Enc, and extracting subliminal message requires secret
subversion key ssk.

Definition 8.2 (Recoverability). Let ASA = (Gen,Enc,Ext) be an ASA on PKE = (Setup,Gen,
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UndetASA,D(n)

pp←$PKE.Setup(1n)

(pki, ski)i∈[ℓ]←$PKE.Gen(pp)

skey←$ASA.Gen(pp)

(psk, ssk)←$ASA.Gen(pp)

b←$ {0, 1}
b′ ← DENC(·,·)(pp, PK, SK)

b′ ← DENC(·,·,·)(pp, PK, SK, psk)

return [b = b′]

ENC(M, sm)

if b = 0 :

for i ∈ [ℓ] do :

cti←$PKE.Enc(pki, mi)

CT := {cti}i∈[ℓ]

else

CT←$ASA.Encℓ(skey, sm, PK, M)

CT←$ASA.Encℓ(psk, sm, PK, M)

return CT

Figure 13: Definition of game UndetASA,D(n).

Enc,Dec). We say ASA satisfies recoverability if for any M ∈Mℓ and any sm ∈M,

Pr


ASA.Ext(skey, CT) ̸= sm

ASA.Ext(ssk, CT) ̸= sm
:

pp←$PKE.Setup(1n)

skey←$ASA.Gen(pp)

(psk, ssk)←$ASA.Gen(pp)

(pki, ski)i∈[ℓ]←$PKE.Gen(pp)

CT←$ASA.Encℓ(skey, sm, PK, M)

CT←$ASA.Encℓ(psk, sm, PK, M)


≤ negl(n) .

The differences of recoverability for asymmetric ASA are marked with dashed boxes.

The stealthy feature of ASA on PKE requires that the ordinary users cannot distinguish the
honest or subverted implementation of encryption algorithm with overwhelming advantage.

Definition 8.3 (Undetectability). Let ASA = (Gen,Enc,Ext) be an ASA on PKE = (Setup,Gen,
Enc,Dec). We say ASA satisfies secret undetectability if for any PPT detector D, the advantage
of D in game UndetASA,D(n) is negligible.

If detector D in game UndetASA,D(n) is not provided with SK = {ski}i∈[ℓ], we say ASA
satisfies public undetectability.

8.2 Symmetric ASA on PKE ⇒ ℓ-Receiver-AME

Theorem 8.1. Let ASA = (Gen,Enc,Ext) be an ASA on CPA-secure PKE = (Setup,Gen,Enc,Dec)
with subliminal message space M. Then, PKE is a secure ℓ-receiver-AME with extension in
Fig. 14 and anamorphic plaintext spaceM.

Proof. By the recoverability of ASA, PKE with extension in Fig. 14 is an ℓ-receiver-AME with
anamorphic plaintext spaceM.

One can note that for every M̂ ∈Mℓ, fAME
M̂

is a symmetric encryption scheme.
Next we prove that if ASA satisfies indistinguishability, then PKE with algorithms in Fig. 14

satisfies the third condition of secure ℓ-receiver-AME. In particular, we show how to break the
indistinguishability of ASA using the adversary D in game nGamePKE,D(n) or faGamePKE,D(n).
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PKE.aSetup(1n)

pp←$PKE.Setup(1n)

return pp

PKE.aGen(pp)

(apki, aski)i∈[ℓ]←$PKE.Gen(pp)

skey←$ASA.Gen(pp)

dkey := ((apki)i∈[ℓ], skey)

return ((apki, aski)i∈[ℓ], dkey)

PKE.aEnc(dkey, M, m̄)

ACT←$ASA.Encℓ(skey, m̄, {apki}i∈[ℓ], M)

return ACT

PKE.aDec(dkey, ACT)

m̄ := ASA.Ext(skey, ACT)

return m̄

Figure 14: Generic ℓ-receiver-AME built on ASA against PKE.

ASA.Gen(pp)

(dpk, dsk)←$PKE.Gen(pp)

return skey := (dpk, dsk)

ASA.Ext(skey, CT)

sm′ := PKE.dDec(dsk, CT)

return sm′

ASA.Encℓ(skey, sm, PK, M)

τ := ε

for i ∈ [ℓ] :

r∗i ←$PKE.fRandomsub(pki, mi, dpk, sm, τ)

cti := PKE.Enc(pki, mi; r
∗
i )

return CT := {cti}i∈[ℓ]

Figure 15: Generalized ASA on PKE from ℓ-sender-AME.

Simulator B plays the role of detector in game UndetASA,B(n) and simulates the game
nGamePKE,D(n) or faGamePKE,D(n) for D as follows. B receives (pp, PK, SK) and forwards them
to D. To answer the encryption query (M, m̄) from D, B queries its own encryption oracle on
(M, m̄) and returns the results to D.

The simulation above is perfect. If b = 0 in game UndetASA,B(n), B simulates nGamePKE,D(n)
for D; Otherwise, it simulates faGamePKE,D(n).

We remark that not every ℓ-receiver-AME implies an ASA on PKE. In particular, the
subversion key in ASA is independent of public and secret keys, while the double key in ℓ-
receiver-AME might include the secret key. Thus, it might be impossible to build algorithm
Gen for ASA with algorithm aGen in ℓ-receiver-AME. See Appendix C.1 for concrete example.

8.3 ℓ-Sender-AME ⇒ Asymmetric ASA on PKE

Note that the algorithm ASA.Encℓ runs the subverted encryption ASA.Enc for ℓ times sequen-
tially. To achieve this, it is required that the algorithm PKE.fRandom could be rewrote as
the iteration of running (possibly stateful) sub-algorithm PKE.fRandomsub that take as input a
forced public key, a forced plaintext, a duplicate public key, a duplicate plaintext and a state
(if exists), and outputs a randomness. In this case, the subverted encryption ASA.Enc runs
PKE.fRandomsub to generate randomness r∗i and PKE.Enc to encrypt the forced plaintext mi
with forced public key pki and randomness r∗i .

Theorem 8.2. Let PKE be a strongly secure ℓ-sender-AME associated with algorithm fRandom
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and dDec. Then, there exists an asymmetric ASA on PKE, as shown in Fig. 15, satisfying both
recoverability and secret undetectability.

Proof. By the definition of ℓ-sender-AME, for any FM ∈Mℓ, any dm ∈M,

Pr


PKE.dDec(dsk, CT)

̸= dm
:

pp←$PKE.Setup(1n)

(fpki, fski)i∈[ℓ]←$PKE.Gen(pp)

(dpk, dsk)←$PKE.Gen(pp)

R∗←$PKE.fRandom(FPK, FM, dpk, dm)

CT := {PKE.Enc(fpki, fmi; r∗i )}i∈[ℓ]


≤ negl(n)

According to the description of ASA in Fig. 15, one can note that the following inequality
also holds for any M ∈Mℓ and any sm ∈M.

Pr

ASA.Ext(skey, CT) ̸= sm :

pp←$PKE.Setup(1n)

(pki, ski)i∈[ℓ]←$PKE.Gen(pp)

skey←$ASA.Gen(pp)

CT←$ASA.Encℓ(skey, sm, PK, M)

 ≤ negl(n) .

To prove the secret undetectability of ASA, we demonstrate how adversary A distinguishes
game Idealℓ,PKE,A(n) and RealfRandomℓ,PKE,A(n) in Fig. 2 by leveraging the detector D in UndetASA,D(n).
Adversary A plays the role of challenger for D as follows.
A receives pp, ℓ forced public/secret key pairs {(fpki, fski)}i∈[ℓ] and duplicate public key

dpk, and can make encryption query for normal plaintext set M = {mi}i∈[ℓ] and anamorphic
plaintext m̄. A forwards (pp, FPK := {fpki}i∈[ℓ], FSK := {fski}i∈[ℓ], dpk) to D and answers
the encryption query from D with the ciphertexts generated by the oracle. If A is in game
Idealℓ,PKE,A(n), then A simulates the game UndetASA,D(n) with b = 0. Otherwise, A is in game
RealfRandomℓ,PKE,A(n) and simulates the game UndetASA,D(n) with b = 1.

Finally, we remark that not every asymmetric ASA on PKE directly implies that the un-
derlying PKE is an ℓ-sender-AME. In particular, when the generation of subversion key pair in
asymmetric ASA is different from the key generation of PKE, we might be unable to construct
coin-toss faking algorithm fRandom using the idea of this ASA. See Appendix C.2 for example.
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A Omitted Definitions and Proof

A.1 Anamorphic Encryption

Definition A.1 (Receiver-Anamorphic Encryption [26]). Let PKE be a public key encryption
scheme. We say PKE is receiver-anamorphic if there exists a receiver-anamorphic extension
(aSetup, aGen, aEnc, aDec)

• aSetup(1n) takes as input 1n, and produces the public parameter pp;

• aGen(pp) takes as input pp, and produces an anamorphic public/secret key pair apk and
ask, and a double key dkey;

• aEnc(dkey, m0, m1) takes as input dkey, a normal plaintext m0 and an anamorphic plaintext
m1, and produces an anamorphic ciphertext act;

• aDec(dkey, act) takes as input dkey and act, and returns the anamorphic plaintext m1,

and for any m0 ∈M, any m1 ∈M,

Pr

aDec(dkey, act) ̸= m1 :

pp←$ aSetup(1n)

(apk, ask, dkey)←$ aGen(pp)

act←$ aEnc(dkey, m0, m1)

 ≤ negl(n) ,

whereM andM are the space of normal and anamorphic plaintext respectively.

Definition A.2 (Secure Receiver-AME [26]). Let PKE be a receiver-AME associated with
extension (aSetup, aGen, aEnc, aDec). PKE is a secure receiver-AME if following conditions hold,

• PKE is CPA secure;

• For any plaintext m̂ ∈ M, fAMEm̂ = (aSetup, aGen3, aEnc1,m̂, aDec) is a symmetric en-
cryption scheme, where aGeni denotes selecting the ith component of the triplet generated
by aGen as the output, aEnc1,m̂ denotes running aEnc with the first message m0 = m̂;

• For any PPT adversary D,

|Pr[nGamePKE,D(n) = 1]− Pr[faGamePKE,D(n) = 1]| ≤ negl(n) .
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nGamePKE,D(n)

pp←$Setup(1n)

(pk, sk)←$Gen(pp)

b← DENC(·,·)(pp, pk, sk)

return b

ENC(m0, m1)

return Enc(pk, m0)

faGamePKE,D(n)

pp←$ aSetup(1n)

(apk, ask, dkey)←$ aGen(pp)

b← DAENC(·,·)(pp, apk, ask)

return b

AENC(m0, m1)

return aEnc(dkey, m0, m1)

Figure 16: Definitions of game nGamePKE,D(n) and faGamePKE,D(n).

IdealPKE,A(n)

pp←$ Setup(1n)

(fpk, fsk)←$Gen(pp)

b← AENC(·,·)(pp, fpk)

return b

ENC(fm, dm)

r←$R
return Enc(fpk, fm; r)

RealfRandomPKE,A (n)

pp←$ Setup(1n)

(fpk, fsk), (dpk, dsk)←$Gen(pp)

b← AENC′(·,·)(pp, fpk)

return b

ENC′(fm, dm)

R←$ fRandom(fpk, fm, dpk, dm)

return Enc(fpk, fm; r)

Figure 17: Definition of game IdealPKE,A(n) and RealfRandomPKE,A (n).

Definition A.3 (Sender-Anamorphic Encryption [26]). Let PKE be a public key encryption
scheme. We say PKE is sender-anamorphic if there exists an algorithm fRandom that takes
as input forced public key fpk, forced plaintext fm, duplicate public key dpk and duplicate
plaintext dm, and returns randomness r∗ such that for any fm ∈M, any dm ∈M, we have

Pr

Dec(dsk, ct) ̸= dm :

pp←$ Setup(1n)

(fpk, fsk), (dpk, dsk)←$Gen(pp)

r∗←$ fRandom(fpk, fm, dpk, dm)

ct := Enc(fpk, fm; r∗)

 ≤ negl(n) .

Definition A.4 (Secure Sender-AME [26]). Let PKE be a sender-AME associated with algo-
rithm fRandom. We say PKE is a secure sender-AME if 1) PKE is CPA secure, and 2) for any
PPT adversary A in Fig. 17,∣∣∣Pr[IdealPKE,A(n) = 1]− Pr[RealfRandomPKE,A (n) = 1]

∣∣∣ ≤ negl(n) .

A.2 Symmetric Encryption

A symmetric encryption scheme SE consists of following algorithms:
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• Gen(1n) takes as input 1n, and returns a key k which is an implicit input of encryption
and decryption algorithms.

• Enc(k, m) takes as input k and a plaintext m, and returns a ciphertext ct.

• Dec(k, ct) take as input k and ct, and returns m or an abort symbol ⊥.

We say SE has indistinguishable encryptions in the presence of an eavesdropper if for any
PPT adversary A, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

(m0, m1)← A(1n)

k←$Gen(1n)

b←$ {0, 1}

ct←$Enc(k, mb)

b′ ← A(ct)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

A.3 On the CPA Security of Hybrid PKE

Theorem A.1. Let PKE be a hybrid PKE in Fig. 5 with KEM satisfying key-pseudo-randomness
and DEM that has indistinguishable encryptions in the presence of an eavesdropper. Then, PKE
is CPA secure.

Proof. Let H0 denote the CPA game for PKE with the challenge ciphertext ct∗ = (C, π,D).
We consider game H1 that is the same as H0 except that the key K used to encrypt mb is
uniformly sampled from KKEM.

Lemma A.2. By the key-pseudo-randomness of KEM, H0 ≈c H1.

Proof. We show how to break the key-pseudo-randomness of KEM with the adversary D dis-
tinguishing H0 and H1. The adversary A in the game of key-pseudo-randomness receives
(pp, ek,K,C), then generates (tk, vk)←$KEM.Tk(pp), sets pk = (ek, tk) and forwards (pp, pk)
to D. After receiving a pair of plaintexts (m0, m1) from D, A picks a random bit b, computes
D := DEM.Enc(K, mb), π := KEM.Vf(vk, C) and sets (C, π,D) as the challenge ciphertext.

If K is generated by KEM.Kg, then A simulates H0 for D. Otherwise, K is uniformly
sampled from KKEM, and A simulates H1 for D.

Lemma A.3. By the indistinguishable encryptions of DEM, the advantage of adversary A in
H1 is negligible.

Proof. We show how to break the indistinguishable encryptions of DEM with adversary A in
H1. The simulator B computes pp←$Setup(1n), (pk, sk)←$Gen(pp), and forwards (pp, pk) to
A. After receiving (m0, m1) from A, B forwards (m0, m1) to its challenger, and receives a challenge
ciphertext D∗. Then, B computes (C, π) using pk as in PKE.Enc, and sets (C, π,D∗) as the
challenge ciphertext for A.

The simulation above is perfect. B outputs the bit returned by A.

The CPA security of PKE follows from Lemma A.2 and Lemma A.3.
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NYE/DSE.fRandom(fpk, fm, dpk, dm)

dpk := ((ek0, tk0), (ek1, tk1))/
∗NYE∗/

dpk := (ek0, tk0)/
∗DSE∗/

r0←$KEM.Rg(pp)

t1 := Hk̂(KEM.Kg(ek0, r0))

r1 := t1 + dm · 1RKEM

return (r0, r1)

NYE/DSE.dDec(dsk, ct)

dsk := ((dk0, vk0), (dk1, vk1))/
∗NYE∗/

ct := ((C0, π0, D0), (C1, π1, D1), π)

dsk := (dk0, vk0)/
∗DSE∗/

ct := ((C0, π0, D0), (C1, π1, D1))

t1 := Hk̂(KEM.Kd(dk0, C0))

r01 := t1; r
1
1 := t1 + 1RKEM

C0
1 := KEM.Cg(r01); C

1
1 := KEM.Cg(r11)

if C1 = C0
1 then

dm′ := 0

elseif C1 = C1
1 then

dm′ := 1

else

return ⊥
return dm′

Figure 18: Sender-anamorphic extension for cryptosystem over hybrid PKE.

B Construction III: Cryptosystem over Hybrid PKE

B.1 Cryptosystems over Hybrid PKE

Naor-Yung paradigm. The Naor-Yung paradigm [24] gives a CCA secure PKE from a CPA
secure PKE and a simulation sound NIZK.

In a Naor-Yung cryptosystem NYE over PKE in Fig. 6., the key generation algorithm runs
PKE.Gen to generate two key pairs (pk0, sk0) and (pk1, sk1), and samples a random string Σ.
The public key in NYE consists of pk0, pk1 and Σ. To encrypt plaintext m, the encryption
algorithm samples r0, r1 from the randomness space of PKE (i.e., RKEM), computes ct0 =
PKE.Enc(pk0, m; r0), ct1 = PKE.Enc(pk1, m; r1), and generates a proof π that ct0 and ct1 encrypt
same plaintext m. The ciphertext in NYE consists of ct0, ct1 and π.

Double-Strand Paradigm. The double-strand paradigm [16, 27, 33] is used to build universal
cryptosystem where the ciphertext can be rerandomized without any extra public information.

In a double-strand cryptosystem DSE over PKE in Fig. 6, the key generation algorithm runs
PKE.Gen to generate a key pair (pk, sk). To encrypt plaintext m, the encryption algorithm
samples r0, r1 from RKEM, computes ct0 = PKE.Enc(pk, m; r0) and ct1 = PKE.Enc(pk, 1; r1),
where 1 is the identity element. The ciphertext in DSE consists of ct0 and ct1.

B.2 Sender-Anamorphic Extension

Fig. 18 depicts the sender-anamorphic extension for cryptosystem over hybrid PKE. The feature
that one ciphertext includes two hybrid PKE ciphertexts enables such cryptosystem to be a
1-sender-AME for 1-bit duplicate message. The strong security and robustness of this 1-sender-
AME is obvious, and we omit the proofs here.
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C Examples

C.1 ℓ-Receiver-AME Does Not Imply Symmetric ASA

We first recall the well-known ElGamal encryption scheme and then provide its receiver-anamorphic
extension with ℓ = 2.

ElGamal Encryption.

• Setup(1n) samples a random generator g←$G from cyclic group G of prime order p, and
outputs pp = (p, g,G);

• Gen(pp) samples a←$Zp, computes A = ga, and outputs (pk, sk) = (A, a);

• Enc(pk, m) samples r←$Zp and outputs ct = (C1, C2) = (gr, Ar · m);

• Dec(sk, ct) outputs m′ = C2/(C
a
1 ).

Receiver-Anamorphic Extension (ℓ = 2).

• aSetup(1n) is the same as Setup(1n);

• aGen(pp) generates (A, a), (B, b)←$Gen(pp), samples k←$Zp and outputs key pairs {(A, a),
(B, b)} and a double key dkey = (A, b, k);

• aEnc(dkey, M, m̄) generates (C11, C12)←$Enc(A, m1), computes C21 = Ck
11 · m̄, C22 = Cb

21 ·m2
and outputs ACT = {(C11, C12), (C21, C22)};

• aDec(dkey, ACT) outputs m̄′ = C21/C
k
11.

Theorem C.1. ElGamal encryption scheme El is a secure 2-receiver-AME with anamorphic
plaintext space G.

Proof. One can easily verify the correctness of 2-receiver-AME for ElGamal scheme and for
any plaintext set M ∈ G2, fAMEM = (aSetup, aGen5, aEnc1,M, aDec) is a symmetric encryption
scheme. Next, we prove that for any PPT adversary D, the advantage of distinguishing games
nGame2,El,D(n) and faGame2,El,D(n) in Fig. 10 is negligible. The only difference between these
two games is the encryption oracle. We claim that the distributions of the second ciphertext
(C21, C22) generated by aEnc and normal ciphertext outputted by Enc are computationally
indistinguishable. Since k is unknown to D, C21 is uniformly distributed over G in D’s view.
Note that C22 is computed using secret key b, (C21, C22) is a valid ciphertext of m2 under public
key B.

We claim this 2-receiver-AME does not imply symmetric ASA on ElGamal scheme. It is
unlikely to build the subversion key generation algorithm Gen of ASA with algorithm aGen
above. In particular, the double key dkey outputted by aGen includes the secret key b, while
the subversion key skey in ASA is independent of public and secret keys.

C.2 Asymmetric ASA Does Not Imply ℓ-Sender-AME

We first depict an asymmetric ASA on Cramer-Shoup encryption scheme and then demonstrate
it does not imply ℓ-sender-AME.

Cramer-Shoup Encryption. Let H : G×G×G→ Zp be a collision-resilient hash function.

• Setup(1n) samples random generators g1, g2←$G from cyclic group G of prime order p,
and outputs pp = (p, g1, g2,G);
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• Gen(pp) samples x1, x2, y1, y2, z1, z2←$Zp, computes X = gx1
1 g

x2
2 , Y = gy11 g

y2
2 , Z = gz11 g

z2
2

and outputs (pk, sk) = ((X,Y, Z), (x1, x2, y1, y2, z1, z2));

• Enc(pk, m) samples r←$Zp and outputs ct = (C1, C2, C3, C4) = (gr1, g
r
2, X

r · m, (Y Zγ)r

where γ = H(C1, C2, C3);

• Dec(sk, ct) computes γ′ = H(C1, C2, C3), m
′ = C3/(C

x1
1 Cx2

2 ) and checks C4 = Cy1+z1γ′

1 Cy2+z2γ′

2 .
If holds, outputs m′; otherwise, outputs ⊥.

Asymmetric ASA. Let F = {Fk}k∈K be a keyed and entropy smoothing hash function family
associated with key space K, groups G,Zp and hash function Fk : G→ Zp.

• ASA.Gen(pp) samples a←$Zp, computes A = ga1 , and outputs (psk, ssk) = (A, a);

• ASA.Enc2(psk, sm ∈ {0, 1}, PK, M) computes ct1←$Enc(pk1, m1). Let r1 denote the ran-
domness of ct1, it computes r2 = Fk(A

r
1) + sm and generates ct2 ← Enc(pk2, m2; r2) with

randomness r2. Finally, it outputs {ct1, ct2};

• ASA.Ext(ssk, {ct1, ct2)} computes r′2 = Fk(C
a
11), C

′
21 = g

r′2
1 and checks C ′

21 = C21. If
holds, it outputs 0. Otherwise, it checks C ′

21 · g1 = C21. If holds, it outputs 1; Otherwise,
outputs ⊥.

One can verify the recoverability of ASA above easily. We show that this ASA satisfies
secret undetectability as follows.

Theorem C.2. The asymmetric ASA on Cramer-Shoup encryption above satisfies secret un-
detectability.

Proof. LetH0 denote the game UndetASA,D(n). For secret undetectability, D is allowed to access
the secret keys SK. We assume that D makes at most q encryption queries.

Let H1 be the same as H0 except that in ASA.Enc2, randomness r2 = Fk(B) + sm where
B←$G. By the hardness of DDH assumption over G, we have H0 ≈c H1. In specific, given
a DDH instance (ga1 , g

b
1, g

c
1), the DDH adversary simulates the game for D by setting psk = ga1

and running ASA.Enc2 as follows. It samples r←$Zp, computes C11 = (gb1)
r, C12 = gr2 and

derives C13, C14 using secret key sk1. Then, it computes r2 = Fk((g
c
1)

r) + sm and generates ct2
using randomness r2. If g

c
1 = gab1 , DDH adversary simulates H0. Otherwise, it simulates H1.

Let H2 be the same as H1 except that in ASA.Enc2, randomness r2←$Zp is uniformly sam-
pled from Zp. The advantage of adversary D in H2 is 0. Let H1,i be the same as H1,i−1 except
that in ASA.Enc2, randomness r2←$Zp is uniformly sampled from Zp for the i-th encryption
query. We have H1 = H1,0 and H2 = H1,q By the entropy smoothness of hash function fam-
ily, we have Hi−1 ≈c Hi for i ∈ [q]. In specific, given a entropy smoothness instance (k′, δ),
the adversary simulates the game for D by setting r2 = Fk′(δ) + sm in ASA.Enc2 for the i-th
encryption query. Clearly, if δ←$Zp, it simulates Hi. Otherwise, it simulates Hi−1.

We claim that this asymmetric ASA over Cramer-Shoup encryption does not imply ℓ-sender-
AME. In particular, the subversion key pair is not generated using the key generation algorithm
of encryption scheme, while the fake coin-tossing algorithm fRandom only takes normal pub-
lic keys as input. It is impossible to build algorithm fRandom with algorithms ASA.Gen and
ASA.Enc2 above.
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