
Efficient Secure Multiparty Computation for
Multidimensional Arithmetics and Its Application

in Privacy-Preserving Biometric Identification
Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding

Beijing Institute of Mathematical Sciences and Applications

Abstract. Over years of the development of secure multi-party computation (MPC),
many sophisticated functionalities have been made pratical and multi-dimensional
operations occur more and more frequently in MPC protocols, especially in protocols
involving datasets of vector elements, such as privacy-preserving biometric identifica-
tion and privacy-preserving machine learning. In this paper, we introduce a new kind
of correlation, called tensor triples, which is designed to make multi-dimensional MPC
protocols more efficient. We will discuss the generation process, the usage, as well as
the applications of tensor triples and show that it can accelerate privacy-preserving
biometric identification protocols, such as FingerCode, Eigenfaces and FaceNet, by
more than 1000 times.
Keywords: Tensor triple · MPC · Beaver triple · VOLE · Privacy-preserving
biometric identification · Privacy-preserving machine learning

1 Introduction
1.1 Motivation
Secure multiparty computation (MPC) is one of the central subfields in cryptography. MPC
aims to accomplish a joint evaluation of a function over inputs provided by multiple parties
without revealing any extra information. Due to its feature on protection of the inputs, it
has been widely used in analysis and processing of private or sensitive data held by multiple
parties. Starting from Yao’s Garbled Circuit [Yao86], numerous advances have been made
on the most fundamental circuit-based MPC. Over years of development, circuit-based MPC
gradually gains capability of practically computing more and more sophisticated and large-
scale functions. Apart from one-dimensional numeric computation, the necessity of handling
higher dimensional operations has also become a concern. For instance, people for years have
explored the possibility of application of MPC on privacy-preserving biometric identification
[EFG+09,OPJM10,SSW10,BG11,HMEK11,BFCP12,LCP+12,LPS12,SSNO12,WK12,
BCP13a,BCP13b,BCF+14,BEOMC16,DCH+16,GBFG+16,HH16,GBGMF17,MLL+19],
privacy-preserving machine learning [NWI+13,BIK+17,MR18,MRT20,KPPS21] and many
other practical fields that require an intensive use of vector and matrix operations, such
as vector tensoring and matrix multiplication. Unlike the straight-forward homomorphic
encryption methods, which often behave less computationally efficient, it is crucial to find
a way to accelerate multi-dimensional arithmetics for circuit-based MPC protocols. In
recent years, apart from the classical correlation generation protocols such as OT and
Beaver triples, researchers have also attempted to find new kinds of correlations that can
fulfill different needs of MPC protocols and perform more efficiently compared to classical
ways [NP06,ADI+17,BCGI18,BCG+19]. Among these variants, VOLE, as an efficient way
to provide correlated random vector sharings for two parties, has been widely used as a

2
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

convenient auxiliary tool to accomplish circuit-based MPC involving multi-dimensional
inputs. Therefore, we would like to explore a way to boost MPC protocols involving multi-
dimensional objects, such as vectors and matrices, and we would like to take advantage of
the correlation properties of VOLE to assist the procedure.

1.2 Main contribution

The goal of this paper is to explore a more efficient way to fulfill multi-dimensional
secure multi-party computation. In this paper, we define a new kind of correlated triples,
called tensor triples, which can be generated using VOLE, or alternatively RLWE-based
homomorphic encryption. We will explain in detail how tensor triples can be generated
efficiently in several ways, making them "cheap" to generate and "convenient" to use.
We will also prove that this type of triples can be used to assist the secure multi-party
computation on multi-dimensional arithmetics and accelerate MPC protocols involving
vectors and matrices. The corresponding protocols will be much more efficient both
computationally and communicatively compared to the usual Beaver’s method. As a result,
we discover several practical applications of tensor triples on classical privacy-preserving
biometric identification and privacy-preserving machine learning protocols. As instances,
we realize implementations of three privacy-preserving biometric identification protocols,
namely FingerCode [JPHP99], Eigenfaces [TP91] and FaceNet [SKP15]. We will also
analyze the performance of the implementations and prove our claim that the tensor
triple method indeed provides a more efficient way to carry out multi-dimensional MPC
protocols.

1.3 Arrangement of paper

In Chapter 2, we introduce define necessary notions and primitives in MPC. In Chapter 3,
we define the notion of tensor triple and briefly explain the intuition and the idea how it can
be used to accelerate multi-dimensional circuit-based MPC protocols. We then proceeding
introducing several ways to generate tensor triples in Chapter 4. The protocols are focused
on resolving the generation of tensor triples for two parties, as is the usual need in most
practical applications. In Chapter 5 we explain the usage of tensor triples to accomplish
MPC of basic algebraic operations for scalars, vectors and matrices. Matrix operations,
especially matrix multiplication, are fundamental operations in biometric identification
and machine learning, and the use of tensor triples can make these operations considerably
more efficient. We will also explain in detail in the chapter the advantage of tensor triples
compared to other MPC protocols fulfilling multi-dimensional operations. In Chapter 6, we
discuss possible applications of tensor triples in pratice. It should be emphasized that tensor
triples can be used to accelerate all multi-dimensional MPC protocols universally, and the
applications we list in the chapter are merely few instances. Tensor triples can be used to
efficiently perform all kinds of MPC protocols in fields such as privacy-preserving biometric
identification and privacy-preserving machine learning. In Chapter 7 implementations of
protocols as well as results of the experiments after the execution are presented. It can
been clearly seen that the tensor triple method provide a significant speedup.

1.4 Security model

All protocols involved in the rest of the paper are secure against semi-honest and compu-
tationally bounded adversaries. Such an adversary will follow the protocol faithfully, but
may try to learn information from what it sees during the protocol procedure.

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 3

Acknowledgement
This work is supported by National Key R&D Program of China (No. 2021YFB2701304).

2 Preliminaries and notations
2.1 Oblivious transfer (OT)
We provide a very brief introduction of oblivious transfer together with its multiple
invariants in order to import all possible notations to be used. In an oblivious trnasfer
[Rab81], the sender with a pair of messages (m0, m1) interacts with the receiver with a
choice bit b. The result ensures that the receiver learns mb but obtains no knowledge of
m1−b, while the sender obtains no knowledge of b. In an OT extension protocol OTn

l , the
input of the sender is n message pairs (mi,0, mi,1) ∈ {0, 1}2l and the input of the receiver
is a string b ∈ {0, 1}n. The result allows the receiver to learn mi,b[i] for 1 ≤ i ≤ n. In
a Random OT (ROT), the sender inputs nothing beforehand but obtains two random
strings in the outputs as the message pair, and the receiver inputs nothing either but
obtains the choice bit together with the selected message afterwards. Similiarly, a batched
version of ROT (or also known as OT extension, see [IKNP03,KK13,KKRT16]) which
generates n message pairs of bit-length l is denoted by ROTn

l . A correlated OT (COT)
[ALSZ13,BCG+19,YWL+20] is a variant of ROT that allows the sender to pre-determine
a string ∆ and obtain two correlated random strings as the message pair with their XOR
equal ∆. The extension of COT denoted by COTn

m allows the sender to choose ∆ ∈ F2m .
The protocol eventually provides two uniformly distributed vectors u ∈ Fn

2 , v ∈ Fn
2m to

the receiver, and v⊕ (u ·∆) to the sender. A subfield vector oblivious linear evaluation
(sVOLE) protocol is a generalization of COTn

m to an arbitrary finite base field. A vector
oblivious linear evaluation (VOLE) allows one party to obtain two vectors u, v ∈ Fn

p , and
the other party a scalar x ∈ Fp and the linear evaluation ux + v.

In further chapters, we will be mainly using the random variants of COTn
m and sVOLE

functionalities defined below. It is not difficult to see that RCOTn
m is a special case of

F p,m,n
RsVOLE when p = 2.

Functionality RCOTn
m

Players: The sender S and the receiver R.
Inputs: None.
Outputs:

• S outputs v ∈ Fn
2m , ∆ ∈ F2m ;

• R outputs u ∈ Fn
2 , v⊕ (u ·∆) ∈ Fn

2m .

Functionality F p,m,n
RsVOLE

Players: The sender S and the receiver R.
Inputs: A dimension pair (n, m).
Outputs:

• S outputs x ∈ Fpm , v ∈ Fn
pm ;

• R outputs u ∈ Fn
p , xu + v ∈ Fn

pm .

VOLE protocols with semi-honest and computational security in OT-hybrid model
have been defined in [ADI+17, BCG+19]. Subfield VOLE, as an important variant of
VOLE, has also been studied and implemented in various ways (See [BCGI18,BCG+19,
SGRR19,YWL+20,CRR21,RRT23]).

2.2 RLWE-based additively homomorphic encryption (RLWE-AHE)
We first define the notion of an AHE scheme. The definition is basically the same as the
one in [RSS19], with an addition of a tensorial scalar operation which is needed for further
use.

Definition 2.1. An AHE scheme is a tuple of algorithms AHE=(Gen, Enc, Dec, Add,
ScMult, ScTensor) described as follows:

4
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

• Gen(1λ)→ (pk,sk): Key Generation is a randomized algorithm that outputs a pair
of keys (pk,sk), with public key pk and secret key sk.

• Enc(pk, m) → ct: Encryption is a randomized algorithm that takes a message
m ∈ PTn,λ and the public key pk as input, and outputs a ciphertext ct ∈ CTn,λ,
where PTn,λ denotes the plaintext space of AHE for security parameter λ and rank
n, and CTn,λ the corresponding ciphertext space.

• Dec(sk,ct)→ m: Decryption is a deterministic algorithm that takes the secret key sk
and a ciphertext ct and outputs the plaintext m.

• Add(pk, ct1, ct2)→ ct+: Addition takes two ciphertexts ct1, ct2 and the public key pk
as input, and outputs a ciphertext ct+ ∈ CTn,λ. This binary operation with respect
to ct1, ct2 will be denoted by +.

• ScMult(pk,ct, s) → ct•: Scalar Multiplication takes a ciphertext ct ∈ CTn,λ, a
plaintext s ∈ PTn,λ and the public key pk as input, and outputs a ciphertext
ct• ∈ CTn,λ. This binary operation with respect to ct and s will be denoted by •.

• ScTensor(pk,ct, s⃗) → c⃗t⊗: Scalar Tensor takes a ciphertext ct ∈ CTn,λ, a constant
vector s⃗ of dimension l and the public key pk as input, and outputs an array of
ciphertexts c⃗t⊗ ∈ CTl

n,λ. This binary operation with respect to ct and s will be
denoted by s⊗ ct.

The algorithms should satisfy the following properties:

1. Correctness:

• For a generic pair of keys (pk,sk) ← Gen(1λ) and any message m, with an
overwhelming probability we have

Dec(sk, Enc(pk, m)) = m

• For a generic pair of keys (pk,sk)← Gen(1λ) and any two ciphertexts ct1, ct2,
with an overwhelming probability we have

Dec(sk, Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2)

• For a generic pair of keys (pk,sk) ← Gen(1λ), a ciphertext ct and a plaintext
scalar s, with an overwhelming probability we have

Dec(sk, ScMult(pk, ct, s)) = sDec(sk, ct)

• For a generic pair of keys (pk,sk)← Gen(1λ), a ciphertext ct and a scalar vector
s⃗, with an overwhelming probability we have

Dec(sk, ScTensor(pk, ct, s⃗)) = s⃗⊗ Dec(sk, ct),

where the decryption procedure is applied to each row of the ciphertext array.

2. Security:
The scheme is required to be IND-CPA secure.

Instances of an AHE scheme which are not based on RLWE are [Pai99,DJ01,DGK07].
While most RLWE-based instantiations of such a scheme (such as [BGV12, FV12]) are
designed to be fully homomorphic, we emphasize that the additive homomorphicity suffices
the scheme. We assume that the parameters of a RLWE-based AHE scheme have been
chosen to be large enough to allow evaluation of the circuit for further protocols and
prevent leakage through amplified ciphertext noise from homomorphic operations.

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 5

3 Tensor triple

In order to perform multi-dimensional multi-party computation, we first introduce the
notion of vector sharing.

3.1 Vector sharing

Definition 3.1. An (s, t)-secret sharing of a vector v is a set {v1, ..., vs} of s vectors,
such that there exists an efficient algorithm to reconstruct v from any t shares vi1 , ..., vit ,
but there is no algorithm that can efficiently reconstruct v from any subset of shares
with fewer cardinality. We will denote a share of v by [v] if indices are not particularly
involved. An (s, t)-vector sharing scheme involves s participants, inputs a vector v, and
outputs to each participant an (s, t)-secret sharing of v. A vector sharing scheme is called
(information-theoretically) secure, if

Pr(v = x|vi1 , ..., vit−1) = Pr(v = x′|vi1 , ..., vit−1)

for any subset {i1, ..., it−1} ⊂ {1, ..., s} and any x, x′ in the ambient space.

Remark 3.2. By default, we set t = s. In the ideal setting, a vector sharing scheme over
finite fields consists of a trusted party and s participants. The trusted party takes the
input v, randomly samples vectors r1, ..., rs−1 and sends them to the first s−1 participants
respectively. It then sends v− r1 − ...− rs−1 to the last participant.

3.2 Definition of tensor triple

Definition 3.3 (Tensor triple). By definition, a tensor triple (u, v, W) consists of data
u ∈ Km, v ∈ Kn, W ∈Mm×n(K) satisfying u⊗ v = uvT = W .

Definition 3.4 (Tensor triple sharing). Let P1, ..., Ps be the participants of a secure
multi-party computation protocol over an ambient finite field or ring K. By definition, a
tensor triple sharing scheme provides two vectors and one matrix

ui ∈ Km, vi ∈ Kn, Wi ∈Mm×n(K)

for the participant Pi, such that ui, vi form secret sharings of u ∈ Km, v ∈ Kn respectively,
with the relation u ⊗ v = uvT =

∑s
i=1 Wi. Shares of u, v and W will be denoted by

[u], [v] and [W] if indices are not particulary involved. For our convenience, such a triple
will be called an (m, n)-triple. A tensor triple sharing scheme is called secure if the
distribution of u, v to an adversary who obtains {(ui, vi, Wi)}i̸=i∗ for any i∗ ∈ {1, ..., s} is
computationally indistinguishable from the uniform one.

4 Tensor triple generation

4.1 RLWE-based two-party tensor triple generation

A batch generation method for Beaver triples based on RLWE-AHE has been introduced
in [RSS19]. It can be modified as follows to generate tensor triples.

6
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

RLWE-based two-party tensor triple generation TT.Gen(m, n, λ)
Party P0 Party P1

(pk,sk)← AHE.Gen(1λ)

pk

u0 ←$ Km, v0 ←$ Kn u1 ←$ Km, v1 ←$ Kn

ctu ← AHE.Enc(pk, u0) Ru ←$ Mm×n(K)
ctv ← AHE.Enc(pk, v0) Rv ←$ Mn×m(K)

c⃗tRu ← AHE.Enc(pk, Ru)
c⃗tRv ← AHE.Enc(pk, Rv)

ctu, ctv

c⃗t1 ← u1 ⊗ ctv

c⃗t2 ← v1 ⊗ ctu

c⃗tWu ← c⃗t1 + c⃗tRu

c⃗tWv ← c⃗t2 + c⃗tRv

c⃗tWu , c⃗tWv

Wu ← AHE.Dec(sk, c⃗tWu)
Wv ← AHE.Dec(sk, c⃗tWv)

W0 ←Wu + W T
v + u0 ⊗ v0 W1 ← u1 ⊗ v1 −Ru −RT

v

Output u0, v0, W0 Output u1, v1, W1

4.2 sVOLE-based two-party tensor triple generation

An OT-based protocol for generating Beaver multiplication triples was proposed in [Gil99].
In [DSZ15], the authors established a more efficient protocol based on Correlated-OT
extension, which has been shown to outperform the AHE based generation method. In
this section, we propose an sVOLE-based method to efficiently generate tensor triples.

Observe that under a fixed Fp-vector space isomorphism φ : Fpm → Fm
p (for instance,

φ(a0 + a1α + ... + am−1αm−1) = (a0, ..., am−1) where Fpm is realized through an extension
Fp[α] by adding a root of an irreducible monic polynomial of degree m), F p,m,n

RsVOLE becomes
the following functionality F p,m,n

RsVOLE′ :

Functionality F p,m,n
RsVOLE′

Players: The sender S and the receiver R.
Inputs: None.
Outputs:

• S outputs x ∈r Fm
p , V ∈r Fmn

p ;
• R outputs y ∈r Fn

p , U = x⊗ y + V ∈ Fmn
p .

Given a protocol RsVOLE(m, n, λ) realizing F p,m,n
RsVOLE′ , we can easily formulate a way to

generate a tensor multiplication triple as follows:

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 7

sVOLE-based two-party tensor triple generation TT.Gen(m, n, λ)

Inputs: None.
Primitive: A random subfield VOLE protocol RsVOLE(m, n, λ).
Interacting Phase:

1. P0 and P1 launch the protocol RsVOLE(m, n, λ) where P0 acts as the sender and P1 acts as
the receiver. P0 obtains x ∈r Fm

p , V ∈r Fmn
p and P1 obtains y ∈r Fn

p , U = x⊗ y + V ∈ Fmn
p ;

2. P0 and P1 launch the protocol RsVOLE(m, n, λ) where P0 acts as the receiver and P1 acts as
the sender. P1 obtains x′ ∈r Fm

p , V ′ ∈r Fmn
p and P0 obtains y′ ∈r Fn

p , U ′ = x′ ⊗ y′ + V ′ ∈
Fmn

p ;
Outputs:

• P0 outputs (u0 = x, v0 = y′, W0 = −V + U ′ + x⊗ y′);
• P1 outputs (u1 = x′, v1 = y, W1 = U − V ′ + x′ ⊗ y).

In particular, when p = 2, one may also use COT protocols in an analogous way to generate
tensor triples over fields with even characteristics.

We use two ways to materialize RsVOLE(m, n, λ). The first method is to use COT for
the case when p = 2. The idea is similar to the one implemented in [BCG+19], and we
simply adapt it in tensor form to suit our need.

COT-based RsVOLE(m, n, λ)
Receiver R Sender S

Input y←$ {0, 1}n Input x←$ {0, 1}m

y = (y1, ..., yn) yi−→ Random OT
seedi,yi←−−−−

seedi,0,seedi,1−−−−−−−−→
si = PRG(seedi,0)⊕ PRG(seedi,1)⊕ x

s1, ..., sn
←−−−−−−−−−−−−−−−−−−−−−−

ui = PRG(seedi,yi)⊕ yisi

U = (uT
1 , ..., uT

n) V = (PRG(seedi,0)T)
Output y, U Output x, V

The second way is to use Silent OT (SOT). SOT procotol can be directly used to fulfill
RsVOLE(m, n, λ). We omit the detail and refer to [BCG+19] for brevity.

4.3 Third-party tensor triple generation
A third-party with computational power may be eligible to provide triples for multiple
parties in a much more efficient way. This idea has been explored by many people, such
as [ST19,MK22]. The protocol described in all these papers can be used almost directly
to generate tensor triples for multiple parties (not necessarily only two). The flexibility
of tensor triple allows the server to provide triples of fixed dimensions while fulfilling the
needs for all lower dimensional computations. More specifically, the dimensions of the
triples may be predetermined, as a generic (n, n)-triple could be tailored to serve as a pair
of triples of dimensions (s, t) and (n− s, n− t) for any s, t < n. This means the parties
need not know the precise dimensions in advance for the preprocessing procedure. A great
advantage is that a specialized server may serve as the triple generator for multiple sets of
multiple parties in order to speed up all preprocessing procedure.

8
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

5 Secure multi-dimensional arithmetic evaluations

In this section we will discuss various vector operations which may be performed securely
using Beaver’s method. Let us first discuss the degenerated case where m = n = 1.

5.1 Regular Beaver triple

When m = n = 1, we see that a tensor triple is nothin else but a regular Beaver triple.
Therefore, we see that arithmetic of numbers may be performed as being well-known.
For brevity purposes, we would assume in the remaining sections that the arithmetic of
numbers is always securely multi-party computable.

5.2 Vector addition and operations involving constants

As expected, additions and operations involving constants may all be computed locally
without any interaction by the homomorphicity. More specifically, the following operations
are securely multi-party computable and the computation can be done locally without any
interaction:

• [a] + [b] = [a + b];

• Given a public constant vector c, (a + c)1 = a1 + c, (a + c)i = ai for i ̸= 1.

• c[a] = [ca], where c ∈ K is a constant number;

• c · [a] = [c · a], where a ∈ Kn, and c ∈ Kn is a constant vector;

• c⊗ [a] = [c⊗ a], where c is a constant vector.

5.3 Dot product

Now let us consider the dot product of two vectors a, b in the same dimension n. Suppose
we have a (n, n)-triple. First we denote

a− u = s, b− v = t.

A direct computation gives us

a · b = (s + u) · (t + v)
= s · t + u · t + v · s + u · v
= s · t + u · t + v · s + tr(W).

Therefore, by Beaver’s method, each party may annouce its share of s and t to recover the
two vectors. Then they could securely compute the shares as

[a · b] = s · t + [u] · t + [v] · s + tr([W]).

Note that the last term uses the fact that the trace function is linear.

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 9

5.4 Outer product

Secure Multi-Party Outer Product Out(a, b)

Input: Pi inputs shares ai, bi of two vectors a ∈ Km, b ∈ Kn.
Primitive: A tensor triple generation protocol TT.Gen(m, n, λ)
Pre-processing Phase: The participants perform a TT.Gen(m, n, λ) protocol. Pi outputs
ui ∈ Km, vi ∈ Kn, Wi ∈Mm×n(K).
Initial Phase: Pi computes si ← ai − ui and ti ← bi − vi.
Interacting Phase:

1. Pi annouces publicly to all parties si and ti;
2. All parties recover s and t from the annoucement;
3. Each party Pi secretly computes (a⊗ b)i ← s⊗ t + ui ⊗ t + s⊗ vi + Wi

Outputs: Pi outputs (a⊗ b)i.

One can use exactly the same method to fulfill the need of an outer product. Let us
suppose all parties would like to compute the outer product a⊗ b of two vectors a ∈ Km

and b ∈ Kn with the help of an (m, n)-triple (u, v, W). First we denote

a− u = s, b− v = t.

Then similarly we could compute

a⊗ b = (s + u)⊗ (t + v)
= s⊗ t + u⊗ t + s⊗ v + u⊗ v
= s⊗ t + u⊗ t + s⊗ v + W.

Therefore we could similarly make a protocol described above.
One thing to be noted is that the triple is not aimed at fully masking the output matrix

a⊗ b. This output matrix has rank 1 and all entries will be determined once the first row
and the first column are determined. As the relation is revealed from the expression itself,
using a matrix W of rank 1 to mask the output has exactly the same effect as using a
completely random matrix.

5.5 Matrix product
As a direct application of the outer product, we could now introduce a way to securely
compute a matrix product of two matrices

A ∈Mm×k(K), B ∈Mk×n(K).

First denote the columns of A by A = (a1, ..., ak), and the rows of B by B = (b1, ..., bk)T .
As is well-known, the matrix product has the following outer product expansion formula:

AB =
k∑

i=1
ai ⊗ bi.

Therefore, it is easy to formulate a way to compute the matrix product from the outer
product primitive. All the parties may simultaneously perform k primitives to compute
each summand in the formula above and then individually add the results together without
any further interaction. A protocol is described as follows:

10
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

Secure Multi-Party Matrix Product MatProd(A, B)

Input: Pi inputs shares Ai, Bi of two matrices A ∈Mm×k(K), B ∈Mk×n(K).
Primitive: A tensor triple generation protocol TT.Gen(m, n, λ), secure multi-party outer product
protocol Out(a, b).
Pre-processing Phase: The participants perform k times of a TT.Gen(m, n, λ) protocol. Pi

outputs
(u(j)

i , v(j)
i , W

(j)
i) (j = 1, ..., k).

Initial Phase: Each party Pi pairs columns of A and transposes of rows of B by indices and
obtains k pairs of vectors (al, bl), l = 1, ..., k.
Interacting Phase: All parties perform Out(al, bl) for l = 1, ..., k. Each Pi obtains (al ⊗ bl)i.

Outputs: Pi outputs (AB)i ←
∑k

l=1(al ⊗ bl)i.

5.6 Advantages of tensor triple
Secure multi-party matrix multiplication can also be realized using Beaver triples. For a
matrix multiplication of size (m, k) by (k, n), we need k of (m, n)-triples or mnk Beaver
triples. While the cost may not seem to differ much in low dimensions, the cost of Beaver
triples will increase quadratically as the size of matrices increases. As an example, to carry
out a secure multi-party matrix multiplication between two 1024× 1024 matrices, we need
230 Beaver triples in total. Even the generation process of this many Beaver triples is a
burden to all the parties. For instance, if we use RLWE-based method [RSS19] for Beaver
triple generation, the communication cost reaches an astonishing 256TB. Meanwhile, the
parties only need to consume 1024 tensor triples to accomplish the computation. Due to
the batch generation nature of sVOLE, it is much easier to generate tensor triples of the
required amount.

On the other hand, the tensor multiplication triples are more flexible and applicable for
matrix operations. As mentioned in previous sections, any (n, n)-triple can be trimmed to
serve as two triples of size (s, t) and (n− s, n− t) respectively, for any s, t < n. Therefore,
secure multi-party matrix operations with different matrix sizes can be achieved using
tensor triples of a universal size.

More importantly, when tensor triple technique is applied to achieve the secure multi-
party matrix multiplication A ·B, the number of columns of A (which equals the number
of rows of B) can be arbitrary. This is extremely convenient in some applications, for
example the ones we will introduce in Chapter 6. For instance, if the parties choose
to generate "matrix triples" ([X], [Y], [Z] = [X · Y]) to assist the computation of matrix
multiplication, since the size of matrices may not be determined beforehand by the nature
of "pre"-computation process, the parties must choose the dimensions of X, Y, Z large
enough to satisfy all possible needs, and this may turn out to become an overkill when the
protocol is executed. Hence it is convenient to use tensor triples, as the method does not
require the parties to know anything about k while still being able to accomplish 100%
utilization of the pre-computed triples.

6 Applications
6.1 Batched squared Euclidean distance computing
Squared Euclidean distance is a widely-used and crucial function in biometric identification
and machine learning. In biometric identification, it is often the case the client needs to
launch multiple queries, and the server needs to compute the squared Euclidean distance
between each query with all references in its own dataset. This type of batched queries

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 11

essentially portraits a matrix multiplication functionality. Therefore one can use tensor
triple to accelerate this process. We will explain by presenting concrete examples as follows.

6.2 Batched privacy-preserving biometric identification
In this chapter we show applications for vector triples on privacy-preserving biometric
identification protocols. Biometric identification, such as face recognition and fingerprint
recognition, often involves computation between biometric samples and references in a
dataset. In this scenario, Euclidean distance computing between a vector and a fixed family
of vectors is implemented each time a query is launched. We demonstrate tensor triples
can be used for batched queries in privacy-preserving biometric identification protocols to
extremely increase the efficiency.

6.2.1 FingerCode

FingerCode [JPHP99,HMEK11] is a fingerprint recognition algorithm. In the setting of
FingerCode, the server holds a dataset of references Y = (yT

1 , ..., yT
n) ∈ Mk×n(K). The

client would like to securely make a batch of queries X = (xT
1 , ..., xT

m)T ∈Mm×k(K) for
recognition. The protocol should proceed as described below.

1. The parties obtain shares of the squared Euclidean distance between the queries
and references from the dataset. In expressions, the parties securely compute
D = DX + DY −XY ∈Mm×n(K), where DX = (x1xT

1 , ..., xmxT
m)⊗ (1, 1, ..., 1) and

DY = (1, 1, ..., 1)⊗ (y1yT
1 , ..., ynyT

n);

2. The parties securely compare entries of D with the predetermined threshold d.
Recognize xi as yj if Dij ≤ d;

Note DX and DY can be computed locally. Therefore the first step can be fulfilled by
implementing MatProd(X, Y) using tensor triples. The second step can be done using any
regular implementation of the secure comparison protocol.

6.2.2 Eigenfaces

Eigenfaces [TP91] is a classical face recognition algorithm. In the setting of Eigenfaces, the
server holds a dataset of Eigenfaces U = (uT

1 , ..., uT
n) ∈Mk×n(K), an average face ū ∈ Kk,

and a dataset of N projected faces Y = (yT
1 , ..., yT

N) ∈Mn×N (K). The client would like
to securely make a batch of queries X = (xT

1 , ..., xT
m)T ∈Mm×k(K) for recognition. The

protocol should proceed as described below.

1. The parties subtract the average face and obtain shares of the projected faces
X̄ = (x̄T

1 , ..., x̄T
m)T onto the eigenbasis. More specifically, the parties securely

compute X̄ = (X − Ū)U ∈Mm×n(K), where Ū = (ūT , ..., ūT)T ∈Mm×k(K);

2. The parties obtain shares of the squared Euclidean distance between the projected
faces and those in the dataset. In expressions, the parties securely compute D =
DX + DY − 2X̄Y ∈ Mm×N (K), where DX = (x̄1x̄T

1 , ..., x̄mx̄T
m) ⊗ (1, 1, ..., 1) and

DY = (1, 1, ..., 1) ⊗ (y1yT
1 , ..., yN yT

N). More specifically, they use Beaver triple to
compute ⟨x̄i, x̄i⟩ and tensor triple to compute X̄Y . Also note DY can be computed
locally;

3. The parties securely compare entries of D with the predetermined threshold d.
Recognize xi as yj if Dij ≤ d;

12
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

6.2.3 FaceNet

FaceNet [SKP15] is a more recent facial recognition system based on deep learning. It was
proposed in 2015 and successfully provided a way to generate a very high-quality mapping
from face images to their vector representatives. In its setting, the server holds a dataset of
references Y = (yT

1 , ..., yT
n) ∈Mk×n(K). The client would like to securely make a batch of

queries X = (xT
1 , ..., xT

m)T ∈Mm×k(K) for recognition. We assume all the data have been
pre-processed through a well-trained network. The protocol should proceed as described
below.

1. The parties obtain shares of the squared Euclidean distance between the queries
and references from the dataset. In expressions, the parties securely compute
D = DX + DY −XY ∈Mm×n(K), where DX = (x1xT

1 , ..., xmxT
m)⊗ (1, 1, ..., 1) and

DY = (1, 1, ..., 1)⊗ (y1yT
1 , ..., ynyT

n);

2. The parties securely compare entries of D with the predetermined threshold d.
Recognize xi as yj if Dij ≤ d;

Here again, DX and DY can be computed locally. The MPC part of the overall protocol
proceeds exactly the same as in the FingerCode case.

As a remark, we see that the flexibility of tensor triples allows us to apply all protocols
above on a dataset of vectors in an arbitrary dimension. This is extremely useful as
dimensions of data points many vary in different settings. Therefore, tensor triple generation
may well be considered as a genuine "pre-computation" process, as the triples generated
are suitable for MPC on datasets in all dimensions.

7 Implementation and performance

In this chapter, our implementations are based on C++. The experiments are run on
desktop with AMD 3950X CPU and 48GB RAM. We considered both simulated LAN and
WAN environments with 500 mbps bandwidth and 20 ms one-way latency. The protocols
are suitable for multi-threading by parallel computation, but we measure the performance
in single thread setting. The experiments are executed multiple times and the medians of
the results are presented in the following tables.

7.1 Tensor triple generation

We mainly choose to use the subfield VOLE method to generate triples as it generally
have a better performance than the RLWE method. We implement both Correlated OT
based protocol and silent OT based protocol for RsVOLE. We also use libOTe library to
fulfill basic functionalities such as COT and OT extension. For silent OT, we used the
expand-convolute code from [RRT23] with expander weight 7 and convolution state size
24. The hamming weight of the sparse vector in this setting is 400, which means each
silent VOLE requires an execution of an OT extension based subfield VOLE of size 400.

It can be seen from the tables that COT method is more efficient when tensor triples
of small sizes are needed, while SOT method allows generation of tensor triples of large
sizes with moderate communication cost.

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 13

Table 1. Performance of COT-based 32-bit (m, n)-tensor triple generation (in milliseconds).
For each size we generate 1, 25, 210 number of triples (arranged in rows) and run the protocol
both in LAN and WAN environments (arranged in columns).

m
n 23 28 210 214

23
10 188 10 312 12 394 53 985
14 317 23 649 60 1596 748 19153
287 5836 567 15354 1771 45577 22378 597527

28
29 654 108 1603 3906 22553
409 9356 1737 37379 85391 602922

12603 309499 57274 1181690

210
638 5530 22323 92565

14003 149363 567917 2665457
425520 4732780

Table 2. Performance of SOT-based 32-bit (m, n)-tensor triple generation (in milliseconds).
For each size we generate 1, 25, 210 number of triples (arranged in rows) and run the protocol
both in LAN and WAN environments (arranged in columns).

m
n 23 28 210 214

23
104 529 93 528 93 576 193 691
3865 4554 3765 4651 3840 4690 7922 7972

123127 143559 122763 143203 122937 140101 257346 267526

28
593 1603 591 1646 763 1733

24532 33195 24534 32774 31096 37629
786790 1047499 788486 1052955 1006983 1193853

210
2271 4850 2647 5252
92154 137287 104976 142970

2991083 4441299 3395699 4606848

Table 3. Communication cost of COT-based 32-bit (m, n)-tensor triple generation (in
megabytes). For each size we test the cost for 1, 25, 210 number of triples (arranged in
rows).

m
n 23 28 210 214

23
0.032 0.52 2.02 32.02
0.76 16.26 64.26 1024.26
12.10 260.10 1028.10 16388.08

28
16.26 64.26 1024.26
520.01 2056.01 32776.01
8320.08 32896.08

210
257.01 4097.02
8224.01 131104.04

130969.60

14
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

Table 4. Communication cost of SOT-based 32-bit (m, n)-tensor triple generation (in
megabytes). For each size we test the cost for 1, 25, 210 number of triples (arranged in
rows).

m
n 23 28 210 214

23
1.00 1.00 1.00 1.23
32.86 32.86 32.86 39.31
525.82 525.82 525.82 628.95

28
28.79 28.79 28.99
921.21 921.21 927.65

14739.36 14739.36 14842.48

210
114.76 114.96
3672.21 3678.65
58755.36 58858.48

We present here also a high-level analysis of the two methods. In small cases, COT-
based generation method is straightforward and faster, while it may take a considerable
amount of time for SOT-based method to finish the structure building for the protocol.
When one deals with matrices of large dimensions or needs a large amount of tensor triples,
since there is a linear overhead in the communication cost of COT-based generation method,
the data transfer may become intolerable for the parties to generate these triples. While
on the other hand, as the communication cost of the SOT-based generation method is
sublinear asymptotically, it requires much less communication to generate all the necessary
tensor triples.

As a brief comparison, based on the performance tables provided by [RSS19], it takes
approximately 2300 milliseconds to generate one (210, 210)-triple RLWE-based tensor triple
generation method, with a communication cost of 256MB. We see from the example that
VOLE-based generation method indeed performs better.

7.2 Matrix multiplication

For l-bit matrix multiplication of size (m, k) by (k, n), we need k pairs vector triples of
size (m, n) for k outer products. The total online communication is therefore is 2lk(m + n)
bits. As a reference, the total communication cost for applying Beaver triple to perform
matrix multiplication is 2lkmn bits. We see the usage of tensor triples accelerates the
computation significantly. In the following tables, we choose l = 32.

Table 5. Performance of tensor triple-based 32-bit (m, k)× (k, n) matrix multiplication
time (in milliseconds). The protocol is run both in LAN and WAN environments (arranged
in columns).

k
(m, n) (23, 23) (25, 25) (28, 28) (210, 210)

23 1 26 1 26 1 27 11 44
28 1 26 1 37 22 62 292 323
210 1 37 2 44 71 128 1062 1289

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 15

Table 6. Communication cost of tensor triple-based 32-bit (m, k)× (k, n) matrix multipli-
cation (in megabytes).

k
(m, n) (23, 23) (25, 25) (28, 28) (210, 210)

23 0.001 0.004 0.031 0.125
28 0.031 0.125 1 4
210 0.125 0.5 4 16

7.3 Batched privacy-preserving biometric identification
In this section we present tensor triple based implementations of batched queries of
FingerCode [JPHP99] and Eigenfaces [TP91] protocols with a comparison of the efficiency
with the GSHADE [BCF+14] protocol, and FaceNet [SKP15] with a comparison with the
[NB18] protocol. For FingerCode, we use 640-dimensional vectors of 8-bit elements, and
we use 32 bits to record each square Euclidean distance. For EigenFaces, we use 10304-
dimensional vectors of 8-bit elements, and we use 32 bits to record each square Euclidean
distance. For FaceNet, the database consists of 128-dimensional vectors of elements with
floating point precision, but a truncation will be applied to all of the elements to map
them into 8-bit strings, and each final square Euclidean distance consumes 64 bits. It can
be seen from the comparison the tensor triple significantly accelerates the identification
process. The data for the performance of FingerCode and FaceNet protocols are collected
individually according to our experiments. The experiments for all implementations are
run in the same environment introduced at the beginning of this chapter.

Table 7. Performance of secure squared Euclidean distance computation in batched
FingerCode protocol (128 queries)

N = 128 N = 1024
Protocol [BCF+14] Ours [BCF+14] Ours
Time (s) 154.37 0.016 176.64 0.082

Communication (MB, online) 1688.71 1.25 5379.24 5.63

Clearly, tensor triple method achieves a much better online performance according to
the comparison.

Table 8. Performance of Eigenfaces protocol without the secure comparison step (80
queries)

N = 320 N = 1000
Protocol Ours Ours
Time (s) 0.029 0.032

Communication (MB, online) 14.57 14.69

As a comparison to the performance in [BCF+14], a single query for the N = 320 case
would take 0.6 seconds to fulfill, and the corresponding communication cost is 7.7MB. When
N = 1000, a single query takes 1.6 seconds and costs 9.4MB. Although the performance in
[BCF+14] takes also the secure comparison step into consideration, it can still clearly be
seen that the tensor triple method behaves much better for batched queries.

16
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

Table 9. Performance (time in seconds) of secure squared Euclidean distance computation
in batched FaceNet protocol for m queries against a database of n references

(m, n)
Protocol [NB18] Ours

(24, 24) 2.58 0.00068
(24, 210) 165.95 0.0055
(210, 210) 10559.68 0.25

One may argue that there is a pre-computation cost for the tensor triple method. We
shall elaborate here with two points. First, even if one considers the generation step, the
tensor triple method still performs faster under almost all circumstances. As an instance,
it takes only several seconds to generation the necessary amount of tensor triples with
correct dimensions for the N = 128 case in FingerCode (Check Section 7.1 for details).
Second, as we have pointed out, the tensor triple method truly enables the possibility of
pre-computation process in secure multi-party matrix computation. Compared to other
protocols, for instance GSHADE for the FingerCode protocol, we do not see a way any
step in the GSHADE method can be pre-processed without the knowledge of dimensions
of the matrices involved. Therefore, it should be considered fair for such comparisons in
the tables we listed.

8 Conclusion
Tensor triple is a new kind of correlation which is very suitable for multi-dimensional
MPC. It can be used to accelerate many existing privacy-preserving biometric idenfication
protocols and privacy-preserving machine learning protocols which mainly involve vector
and matrix operations.

References
[ADI+17] B. Applebaum, I. Damgrard, Y. Ishai, M. Nielsen, and L. Zichron, Secure arithmetic

computation with constant computational overhead, Advances in cryptology – crypto 2017,
2017, pp. 223–254.

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, More efficient oblivious transfer and
extensions for faster secure computation, Proceedings of the 2013 acm sigsac conference on
computer & communications security, 2013, pp. 535–548.

[BCF+14] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, and M. Zohner, Gshade: Faster
privacy-preserving distance computation and biometric identification, Proceedings of the
2nd acm workshop on information hiding and multimedia security, 2014, pp. 187–198.

[BCGI18] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai, Compressing vector ole, Proceedings of the
2018 acm sigsac conference on computer and communications security, 2018, pp. 896–912.

[BCG+19] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl, Efficient
two-round ot extension and silent non-interactive secure computation, Proceedings of the
2019 acm sigsac conference on computer and communications security, 2019, pp. 291–308.

[BCP13a] J. Bringer, H. Chabanne, and A. Patey, Privacy-preserving biometric identification using
secure multiparty computation: An overview and recent trends, 2013, pp. 42–52.

[BCP13b] J. Bringer, H. Chabanne, and A. Patey, Shade: Secure hamming distance computation from
oblivious transfer, Financial cryptography and data security, 2013, pp. 164–176.

[BEOMC16] J. Bringer, O. El Omri, C. Morel, and H. Chabanne, Boosting gshade capabilities: New
applications and security in malicious setting, Proceedings of the 21st acm on symposium
on access control models and technologies, 2016, pp. 203–214.

[BFCP12] J. Bringer, M. Favre, H. Chabanne, and A. Patey, Faster secure computation for biometric
identification using filtering, 2012, pp. 257–264.

Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding 17

[BG11] M. Blanton and P. Gasti, Secure and efficient protocols for iris and fingerprint identification,
Computer security – esorics 2011, 2011, pp. 190–209.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (leveled) fully homomorphic encryption
without bootstrapping, Proceedings of the 3rd innovations in theoretical computer science
conference, 2012, pp. 309–325.

[BIK+17] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, Practical secure aggregation for privacy-preserving machine learning,
Proceedings of the 2017 acm sigsac conference on computer and communications security,
2017, pp. 1175–1191.

[CRR21] G. Couteau, P. Rindal, and S. Raghuraman, Silver: Silent vole and oblivious transfer from
hardness of decoding structured ldpc codes, 2021, pp. 502–534.

[DCH+16] S. Deshmukh, H. Carter, G. Hernandez, P. Traynor, and K. Butler, Efficient and secure
template blinding for biometric authentication, 2016 ieee conference on communications and
network security (cns), 2016, pp. 480–488.

[DGK07] I. Damgrard, M. Geisler, and M. Krøigaard, Efficient and secure comparison for on-line
auctions, Proceedings of the 12th australasian conference on information security and privacy,
2007, pp. 416–430.

[DJ01] I. Damgrard and M. Jurik, A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system, Public key cryptography, 2001, pp. 119–136.

[DSZ15] D. Demmler, T. Schneider, and M. Zohner, Aby - a framework for efficient mixed-protocol
secure two-party computation, 2015.

[EFG+09] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft, Privacy-
preserving face recognition, Privacy enhancing technologies, 2009, pp. 235–253.

[FV12] J. Fan and F. Vercauteren, Somewhat practical fully homomorphic encryption, IACR Cryptol.
ePrint Arch. 2012 (2012), 144.

[GBFG+16] M. Gomez-Barrero, J. Fierrez, J. Galbally, E. Maiorana, and P. Campisi, Implementation
of fixed-length template protection based on homomorphic encryption with application to
signature biometrics, 2016 ieee conference on computer vision and pattern recognition
workshops (cvprw), 2016, pp. 259–266.

[GBGMF17] M. Gomez-Barrero, J. Galbally, A. Morales, and J. Fierrez, Privacy-preserving comparison
of variable-length data with application to biometric template protection, IEEE Access 5
(2017), 8606–8619.

[Gil99] N. Gilboa, Two party rsa key generation, Advances in cryptology — crypto’ 99, 1999,
pp. 116–129.

[HH16] C. Hahn and J. Hur, Efficient and privacy-preserving biometric identification in cloud, ICT
Express 2 (2016), no. 3, 135–139. Special Issue on ICT Convergence in the Internet of Things
(IoT).

[HMEK11] Y. Huang, L. Malka, D. Evans, and J. Katz, Efficient privacy-preserving biometric identifi-
cation, Network and Distributed System Security Symposium (2011).

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, Extending oblivious transfers efficiently,
Advances in cryptology - crypto 2003, 2003, pp. 145–161.

[JPHP99] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, Fingercode: a filterbank for fingerprint
representation and matching, Proceedings. 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149) 2 (1999), 187–193 Vol. 2.

[KK13] V. Kolesnikov and R. Kumaresan, Improved ot extension for transferring short secrets,
Advances in cryptology – crypto 2013, 2013, pp. 54–70.

[KKRT16] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, Efficient batched oblivious prf with
applications to private set intersection, 2016.

[KPPS21] N. Koti, M. Pancholi, A. Patra, and A. Suresh, SWIFT: Super-fast and robust Privacy-
Preserving machine learning, 30th usenix security symposium (usenix security 21), August
2021, pp. 2651–2668.

[LCP+12] Y. Luo, S.-c. Cheung, T. Pignata, R. Lazzeretti, and M. Barni, An efficient protocol for
private iris-code matching by means of garbled circuits, 2012, pp. 2653–2656.

[LPS12] R. D. Labati, V. Piuri, and F. Scotti, Biometric privacy protection: Guidelines and tech-
nologies, E-business and telecommunications, 2012, pp. 3–19.

[MK22] P. Muth and S. Katzenbeisser, Assisted mpc, 2022. https://eprint.iacr.org/2022/1453.
[MLL+19] Z. Ma, Y. Liu, X. Liu, J. Ma, and K. Ren, Lightweight privacy-preserving ensemble classifi-

cation for face recognition, IEEE Internet of Things Journal 6 (2019), no. 3, 5778–5790.

https://eprint.iacr.org/2022/1453

18
Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its

Application in Privacy-Preserving Biometric Identification

[MR18] P. Mohassel and P. Rindal, Aby3: A mixed protocol framework for machine learning, Pro-
ceedings of the 2018 acm sigsac conference on computer and communications security, 2018,
pp. 35–52.

[MRT20] P. Mohassel, M. Rosulek, and N. Trieu, Practical privacy-preserving k-means clustering,
Proceedings on Privacy Enhancing Technologies 2020 (2020), 414–433.

[NB18] V. Naresh Boddeti, Secure face matching using fully homomorphic encryption, 2018 ieee
9th international conference on biometrics theory, applications and systems (btas), 2018,
pp. 1–10.

[NP06] M. Naor and B. Pinkas, Oblivious polynomial evaluation, SIAM Journal on Computing 35
(2006), no. 5, 1254–1281, available at https://doi.org/10.1137/S0097539704383633.

[NWI+13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, Privacy-preserving
ridge regression on hundreds of millions of records, 2013, pp. 334–348.

[OPJM10] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, Scifi - a system for secure face
identification, 2010, pp. 239–254.

[Pai99] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, Advances
in cryptology — eurocrypt ’99, 1999, pp. 223–238.

[Rab81] M. O. Rabin, How to exchange secrets with oblivious transfer, TR-81 edition (1981).
[RRT23] S. Raghuraman, P. Rindal, and T. Tanguy, Expand-convolute codes for pseudorandom

correlation generators from lpn, Advances in cryptology – crypto 2023, 2023, pp. 602–632.
[RSS19] D. Rathee, T. Schneider, and K. K. Shukla, Improved multiplication triple generation over

rings via rlwe-based ahe, Cryptology and network security, 2019, pp. 347–359.
[SGRR19] P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova, Distributed vector-ole: Improved

constructions and implementation, Proceedings of the 2019 acm sigsac conference on computer
and communications security, 2019, pp. 1055–1072.

[SKP15] F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition
and clustering, 2015 ieee conference on computer vision and pattern recognition (cvpr), 2015,
pp. 815–823.

[SSNO12] S. F. Shahandashti, R. Safavi-Naini, and P. Ogunbona, Private fingerprint matching, Infor-
mation security and privacy, 2012, pp. 426–433.

[SSW10] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, Efficient privacy-preserving face recognition,
Information, security and cryptology – icisc 2009, 2010, pp. 229–244.

[ST19] N. P. Smart and T. Tanguy, Taas: Commodity mpc via triples-as-a-service, Proceedings of
the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop (2019).

[TP91] M. Turk and A. Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience
3 (1991), no. 1, 71–86, available at https://direct.mit.edu/jocn/article-pdf/3/1/71/
1932018/jocn.1991.3.1.71.pdf.

[WK12] K.-S. Wong and M.-H. Kim, A privacy-preserving biometric matching protocol for iris codes
verification, 2012 third ftra international conference on mobile, ubiquitous, and intelligent
computing, 2012, pp. 120–125.

[Yao86] A. C.-C. Yao, How to generate and exchange secrets, 27th annual symposium on foundations
of computer science (sfcs 1986), 1986, pp. 162–167.

[YWL+20] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, Ferret: Fast extension for correlated ot
with small communication, Proceedings of the 2020 acm sigsac conference on computer and
communications security, 2020, pp. 1607–1626.

https://doi.org/10.1137/S0097539704383633
https://direct.mit.edu/jocn/article-pdf/3/1/71/1932018/jocn.1991.3.1.71.pdf
https://direct.mit.edu/jocn/article-pdf/3/1/71/1932018/jocn.1991.3.1.71.pdf

	Introduction
	Motivation
	Main contribution
	Arrangement of paper
	Security model

	Preliminaries and notations
	Oblivious transfer (OT)
	RLWE-based additively homomorphic encryption (RLWE-AHE)

	Tensor triple
	Vector sharing
	Definition of tensor triple

	Tensor triple generation
	RLWE-based two-party tensor triple generation
	sVOLE-based two-party tensor triple generation
	Third-party tensor triple generation

	Secure multi-dimensional arithmetic evaluations
	Regular Beaver triple
	Vector addition and operations involving constants
	Dot product
	Outer product
	Matrix product
	Advantages of tensor triple

	Applications
	Batched squared Euclidean distance computing
	Batched privacy-preserving biometric identification

	Implementation and performance
	Tensor triple generation
	Matrix multiplication
	Batched privacy-preserving biometric identification

	Conclusion

