
Sublinear-Communication Secure Multiparty Computation
does not require FHE

Elette Boyle1,2, Geoffroy Couteau3, and Pierre Meyer1,3

1 Reichman University, Herzliya, ISRAEL. pierre.meyer@irif.fr
2 NTT Research, Sunnyvale, USA. eboyle@alum.mit.edu

3 Université Paris Cité, CNRS, IRIF, Paris, FRANCE. couteau@irif.fr

Abstract. Secure computation enables mutually distrusting parties to jointly compute a func-
tion on their secret inputs, while revealing nothing beyond the function output. A long-running
challenge is understanding the required communication complexity of such protocols—in par-
ticular, when communication can be sublinear in the circuit representation size of the desired
function. Significant advances have been made affirmatively answering this question within the
two-party setting, based on a variety of structures and hardness assumptions. In contrast, in the
multi-party setting, only one general approach is known: using Fully Homomorphic Encryption
(FHE). This remains the state of affairs even for just three parties, with two corruptions.
We present a framework for achieving secure sublinear-communication (N + 1)-party compu-
tation, building from a particular form of Function Secret Sharing for only N parties. In turn,
we demonstrate implications to sublinear secure computation for various function classes in the
3-party and 5-party settings based on an assortment of assumptions not known to imply FHE.

Keywords: Foundations · Secure Multiparty Computation · Function Secret Sharing · Private
Information Retrieval

Table of Contents

Sublinear-Communication Secure Multiparty Computation does not require FHE 1
Elette Boyle, Geoffroy Couteau, and Pierre Meyer

1 Introduction 3
1.1 Our Results . 3
1.2 Technical Overview . 6

2 Preliminaries 10
2.1 Assumptions . 10

2.1.1 Quadratic Residuosity Assumption (QR) . 10
2.1.2 Learning With Errors (LWE) . 11
2.1.3 Learning Parity with Noise (LPN) . 11
2.1.4 Decisional Diffie-Hellman (DDH) . 11
2.1.5 Decision Composite Residuosity Assumption . 11

2.2 Function Secret Sharing and Homomorphic Secret Sharing . 12
2.3 Universal Composability . 13
2.4 Notations . 13

3 General Template for (N +1)-Party Sublinear Secure Computation from N-Party
FSS 14
3.1 Requirements of the FSS Scheme . 14
3.2 The Secure Computation Protocol . 15

4 Oblivious Evaluation of LogLog-Depth FSS from PIR 18
4.1 LogLog-Depth FSS . 18
4.2 Oblivious Evaluation of LogLog-Depth FSS from PIR . 19

4.2.1 Correlated PIR. 19
4.2.2 Oblivious Evaluation of LogLog-Depth FSS from PIR. 21

5 LogLog-Depth FSS from Compact and Additive HSS 22
5.1 From Compact and Additive HSS . 22

5.1.1 An Overview of the Construction . 22
5.2 Defining the LogLog-Depth FSS Scheme. 23

5.2.1 Securely Realising FFSS
SD in Low Communication. 25

5.2.2 Building HSS for coefs. 25
5.2.3 Low-Communication Protocol for FFSS

SD . 26
5.3 From Compact and Additive HSS with Errors . 28

5.3.1 Additive FSS Scheme from Las Vegas Additive HSS. 29
5.3.2 Securely Realising Gen in Low Communication. 31

6 Instantiations 33
6.1 Sublinear-Communication Secure Multiparty Computation from PIR and Additive

HSS . 33
6.2 Four-Party Additive HSS from DCR . 34

6.2.1 4-party HSS from DCR. 34
6.2.2 Handling loglog-depth circuits. 35
6.2.3 Compactness and succinct share distribution. 35

6.3 Sublinear-Communication Secure Multiparty Computation from New Assumptions . . 36

1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a function on their secret
inputs, while revealing nothing beyond the function output. Since the seminal feasibility results of
the 1980s [Yao86,GMW87,BGW88,CCD88], a major challenge in the area has been if and when it is
possible to break the “circuit-size barrier.” This barrier refers to the fact that all classical techniques
for secure computation required a larger amount of communication than the size of a boolean circuit
representing the function to be computed. In contrast, insecure computation only requires exchanging
the inputs, which are usually considerably smaller than the entire circuit.

This challenge eluded the field for nearly two decades, aside from partial results that either re-
quired exponential computation [BFKR91,NN01], or were limited to very simple functions (such as
point functions [CGKS95, KO97, CG97] or constant-depth circuits [BI05]). This changed with the
breakthrough result of Gentry [Gen09] on fully homomorphic encryption (FHE). FHE is a power-
ful primitive supporting computation on encrypted data, which can be used to build asymptotically
optimal-communication protocols in the computational setting [DFH12,AJL+12].

In the years after, significant progress has been made toward broadening the set of techniques
and class of assumptions under which sublinear-communication secure computation can be built. A
notable such approach is via homomorphic secret sharing (HSS) [BGI16a]. HSS can be viewed as a
relaxation of FHE, where homomorphic evaluation can be distributed among two parties who do not
interact with each other, but which still suffices for low-communication secure computation. Following
this approach (explicitly, building forms of HSS for NC1), sublinear-communication secure protocols
have been developed based on the Decisional Diffie-Hellman (DDH) assumption [BGI16a], Decision
Composite Residuosity (DCR) [FGJI17,OSY21,RS21], and further algebraic structures, including a
class of assumptions based on class groups of imaginary quadratic fields [ADOS22]. It was extended
to a flavour of the Learning Parity with Noise (LPN) assumption (via HSS for log log-depth circuits)
by [CM21]. Orthogonally to these approaches, which rely on computational assumptions, [Cou19]
built sublinear-communciation secure computation under an assumption of correlated randomness.

Very recently, a work of [BCM22] demonstrated an alternative approach to sublinear secure com-
putation through a certain form of rate-1 batch oblivious transfer (OT), resulting in protocols based
on a weaker form of LPN plus Quadratic Residuosity.

However, aside from the original approach via FHE, all of the above techniques are strongly tied
to the two-party setting, as opposed to the general setting of multiple parties, where all but one can
be corrupt.

More concretely, while N -party HSS with security against (N−1) colluding parties would directly
imply the desired result, actually achieving such a primitive for rich function classes (without tools
already implying FHE) beyond N = 2, is a notable open challenge in the field. The 2-party setting
provides special properties leveraged within HSS constructions; e.g., given an additive secret sharing
of 0, it implies the two parties hold identical values. These properties completely break down as soon as
one steps to three parties with security against two. This separation can already be showcased for very
simple function classes, such as HSS for equality test (equivalently, “distributed point functions” [GI14,
BGI15]), where to this date an exponential gap remains between the best constructions in the 2-party
versus 3-party setting [BGI15]. For N ≥ 3, there are constructions of N -party FSS for all polynomial-
time computable functions, but only from LWE, by using additive-function-sharing spooky encryption
(AFS-spooky encryption) [DHRW16], or from subexponentially secure indistinguishability obfuscation
[BGI15]. Additionally, [BGI+18] turns this FSS from spooky encryption into additive HSS. Approaches
from the 2-party batch OT primitive seem also to be strongly tied to two parties.

Despite great progress in the two-party setting—and the fundamental nature of the question—to
date, sublinear secure computation results for 3 or more parties remain stuck in the “2009 era”: known
only for very simple functions (e.g., constant-degree computations), or based on (leveled) FHE.

1.1 Our Results

We present a new framework for achieving secure computation with low communication. Ultimately
our approach yields new sublinear secure computation protocols for various circuit classes in the
3-party and 5-party settings, based on an assortment of assumptions not known to imply FHE.

3

General framework. Our high-level approach centers around Function Secret Sharing (FSS) [BGI15],
a form of secret sharing where the secret object and shares comprise succinct representations of
functions. More concretely, FSS for function class F allows a client to split a secret function f ∈ F
into function shares f1, . . . , fN such that any strict subset of fi’s hide f , and for every input x in the
domain of f it holds that

∑N
i=1 fi(x) = f(x). (This can be seen as the syntactic dual of HSS, where

the role of input and function are reversed; we refer the reader to e.g. [BGI+18] for discussion.4) N -
party FSS/HSS for sufficiently rich function classes is known to support low-communication N -party
secure computation, but lack of multi-party FSS constructions effectively leaves us stuck at N = 2.

The core conceptual contribution of this work is the following simple framework, which enables
us to achieve (N + 1)-party secure computation by using a form of FSS for only N parties.

Proposition 1 ((N+1)-PC from N-FSS framework, informal). For any ensemble of polynomial-
size circuits C = {Cλ}, consider an N -party FSS scheme for the class of “partial evaluation” functions
{Cλ(·, x1, . . . , xN)}λ,x1,...,xN

, and define the following sub-computation functionalities:

– FFSS
SD : N -party secure FSS share distribution, where each party Pi holds input xi (and λ), and

learns the ith FSS key fi for the function Cλ(·, x1, . . . , xN).
– FFSS

OE : Two-party oblivious FSS evaluation, where party Pi holds an FSS key fi, party P0 holds
input x0, and P0 learns the ith output fi(x0).

Then there exists a (N + 1)-party protocol for securely computing C making one call to FFSS
SD and N

calls to FFSS
OE .

Once expressed in this form, the resulting (N + 1)-party protocol becomes an exercise: Roughly,
it begins by having parties 1, . . . , N jointly execute FFSS

SD on their inputs x1, . . . , xN to each receive
a function share fi of the secret function f(x0) := Cλ(x0, x1, . . . , xN), and then each run a pairwise
execution of FFSS

OE together with the remaining party P0 in order to obliviously communicate the ith
output share fi(x). Given these shares, P0 can compute the final output as

∑N
i=1 fi(x0). (See the

Technical Overview for more detailed discussion.)
The communication of the resulting protocol will be dominated by the executions of FFSS

SD ,FFSS
OE .

Of course, the technical challenge thus becomes if and how one can construct corresponding FSS
schemes which admit secure share distribution and oblivious evaluation with low communication.

Instantiating the framework. We demonstrate how to instantiate the above framework building
from known constructions of Homomorphic Secret Sharing (HSS) combined with a version of low-
communication PIR.

We first identify a structural property of an FSS scheme which, if satisfied, then yields a low-
communication procedure for oblivious share evaluation, through use of a certain notion of “correlated”
(batch) Symmetric Private Information Retrieval (SPIR). Loosely, correlated SPIR corresponds to a
primitive where a client wishes to make correlated queries into m distinct size-S databases held by a
single server. Without correlation between queries, the best-known PIR constructions would require
m · polylog(S) communication. However, it was shown in [BCM22] that if the m index queries (each
logS bits) are given by various subsets of a fixed bit string of length n≪ m logS held by the client,
then (using the rate-1 batch OT constructions from [BBDP22]) this batch SPIR can be performed
with significantly lower communication.

We then demonstrate that FSS schemes with the necessary structural property can be realized from
existing constructions of HSS. Loosely speaking, the FSS evaluation procedure will be expressible as
a polynomial (which depends on x1, . . . , xN) evaluated on the final input x0, and the HSS will enable
the N parties to compute additive secret shares of the coefficients of this corresponding polynomial.

We further extend the approach to support an underlying HSS scheme satisfying only a weaker
notion of correctness, with inverse-polynomial (Las Vegas) error. In such scheme, homomorphic eval-
uation may fail with noticeable probability (over the randomness of share generation), in a manner
identifiable to one or more parties. This is the notion satisfied by the 2-party HSS constructions
from Decisional Diffie-Hellman [BGI16a], or Learning With Errors with only a polynomial-size mod-
ulus [DHRW16, BKS19]. This error must be removed in our construction while incurring minimal
additional interaction. We demonstrate how to do so, using (standard) Private Information Re-
trieval [CGKS95] and punctured pseudorandom functions [BW13, KPTZ13, BGI14]. Note that the
4 Indeed, we will refer to both notions, using each when more conceptually convenient.

4

former is implied by correlated SPIR, and the latter implied by any one-way function, so that these
tools do not impose additional assumptions in the statement below.

Theorem 2 (Sublinear MPC, informal). For any ensemble of polynomial-size circuits C = {Cλ}
of size s, depth log log s, and with n inputs and m outputs, if there exists the following:

– Correlated Symmetric Batch PIR, for m size-s databases where queries come from n bits, with
communication O(n+m+ poly(λ) + comm(s)) for some function comm.

– (Las Vegas) N -party Homomorphic Secret Sharing with compact shares (size O(n) for input size
n), for the class of log log-depth boolean circuits.

Then there exists a secure (N + 1)-party computation protocol for C with communication O(n+m+
poly(λ) +N · comm(s)). In particular, sublinearity is achieved when N · comm(s) ∈ o(s).

Remark 3 (Compiling Sublinear MPC from Passive to Active Security). In this work, we focus on
security against semi-honest adversaries. However, all our results extend immediately to the malicious
setting, using known techniques. Indeed, to get malicious security while preserving sublinearity, one
can just use the seminal GMW compiler [GMW87] with zero-knowledge arguments, instantiating
the ZKA with (interactive) succinct arguments [NN01]. Using Kilian’s PCP-based 4-move argument
[Kil92], which has polylogarithmic communication, this can be done using any collision-resistant hash
function. The latter are implied by all assumptions under which we base sublinear MPC, hence our
results generalise directly to the malicious setting. This observation was made in previous works on
sublinear-communication secure computation (e.g. [BGI16a,CM21,BCM22]).

Remark 4 (Beyond Boolean circuits). The above approach can be extended to arithmetic circuits over
general fields F, by replacing the correlated SPIR with an analogous form of (low-communication)
correlated oblivious polynomial evaluation (OPE). We discuss and prove this more general result in the
main body, but focus here on the Boolean setting, as required instantiations of such correlated-OPE
beyond constant-size fields are not yet currently known.

Resulting constructions. Finally, we turn to the literature to identify constructions of the required sub-
tools, yielding resulting sublinear secure computation results from various mathematical structures
and computational assumptions.

Corollary 5 (Instantiating the framework, informal). There exists secure 3-party computa-
tion for evaluating Boolean circuits of size s and depth log log s with n inputs and m outputs, with
communication complexity O(n + m +

√
s · poly(λ) · (n + m)2/3) based on the Learning Parity with

Noise (LPN) assumption for any inverse-polynomial error rate, together with any of the following
additional computational assumptions:

– Decisional Diffie-Hellman (DDH)
– Learning with Errors with polynomial-size modulus (poly-modulus LWE)
– Quadratic Residuosity (QR) + superpolynomial LPN5

This can be extended under the same assumptions to secure 3-party computation of general “lay-
ered” (in fact, only locally synchronous6) circuits of depth d and size s with communication
O(s/ log log s + d1/3 · s2(1+ϵ)/3 · poly(λ)), for arbitrary small constant ϵ. The latter is sublinear in
s whenever d = o(s1−ϵ/poly(λ)), i.e., the circuit is not too “tall and skinny.”

If we further assume the existence of a constant-locality PRG with some polynomial stretch and the
super-polynomial security of the Decisional Composite Residuosity (DCR) assumption, then the above
extends to the 5-party setting, both for loglog-depth boolean circuits and for layered boolean circuits.

5 Superpolynomial hardness of LPN with a small inverse-superpolynomial error rate, but few samples, as
assumed in [CM21].

6 A circuit is layered [GJ11] if all gates and inputs are arranged into layers, such that any wire only connects
one layer to the next, but each input may occur multiple times at different layers. A layered circuit is locally
synchronous [Bel84] if each input occurs exactly once (but at an arbitrary layer). A locally synchronous
circuit is synchronous [Har77] if all inputs are in the first layer.

5

More concretely, the required notion of correlated SPIR was achieved in [BCM22], building
on [BBDP22], from a selection of different assumptions. The required HSS follows for N = 2 from
DDH from [BGI16a], LWE with polynomial-size modulus from [DHRW16,BKS19], DCR from [OSY21,
RS21], and from superpolynomial LPN from [CM21]. It holds for N = 4 from DCR from [COS+22]
(with some extra work, complexity leveraging, and restrictions; see technical section). Note that com-
bining the works of [BBDP22,OSY21] seems to implicitly yield rate-1 batch OT from DCR, and in
turn correlated SPIR [BCM22]: if true, the assumptions for sublinear-communication five-party MPC
can be simplifed to constant-locality PRG, LPN, and superpolynomial DCR (without the need for
DDH, LWE, or QR). Since this claim was never made formally, we do not use it.

A beneficial consequence of our framework is that future developments within these areas can
directly be plugged in to yield corresponding new constructions and feasibilities.

Remark 6 (A note on the role of FSS in our template). Our template of section 3 for building (N+1)-
party sublinear-communication MPC is built from N -party FSS with low-communication protocols
for (N -party) share distribution and (2-party) oblivious share evaluation. While we believe phrasing
our template using the abstraction of FSS makes it conceptually nicer, our results can be explained
without the FSS machinery. The astute reader may observe that once the FSS scheme of section 5 is
essentially “the trivial one” , up to how we drawn the line between the share generation and evaluation.
Indeed, in lemma 23, we divide the tasks as:

1. In the (N -party) share distribution phase, parties P1, . . . , PN generate HSS shares.
2. In the ith (2-party) oblivious evaluations, party Pi first locally evaluates its HSS share to obtain

an additive share of the function’s lookup table7, then P0 and Pi perform oblivious lookups with
correlated SPIR.

If we push the local HSS evaluations to the share distribution phase, then the function secret-sharing
scheme becomes essentially trivial, although the protocols for securely distributing the function shares
and subsequently evaluating them obliviously remain highly non-trivial.

1.2 Technical Overview

General framework. Recall the secure computation framework via homomorphic secret sharing (HSS).
Given access to an N -party HSS scheme supporting homomorphic evaluation of the desired circuit
C, the parties begin by jointly HSS-sharing their inputs via a small secure computation. Each party
can then homomorphically evaluate the circuit C on its respective HSS share without interaction,
resulting in a short output share that it exchanges with all other parties. The parties can then each
reconstruct the desired output by combining the evaluated shares (for standard HSS, this operation
is simply addition). The resulting MPC communication cost scales only with the complexity of HSS
share generation plus exchange of (short) output shares, but remains otherwise independent of the
complexity of C.

In theory, this approach provides sublinear secure computation protocols for any number of parties
N . In practice, however, we simply do not have HSS constructions for rich function classes beyond
N = 2 with security against collusion of two or more corrupted parties, crucial for providing the cor-
responding MPC security. This remains a standing open question that has received notable attention,
and unfortunately seems to be a challenging task.

A natural question is whether the above framework can somehow be modified to extend beyond
the number of parties N supported by the HSS, for example to N ′ = N +1. The issue with the above
approach is that parties cannot afford to secret share their input to any N -subset in which they do
not participate, as all parties within this subset may be corrupt, in which case combining all HSS
shares reveals the shared secrets.

Instead, suppose that only the N parties share their inputs amongst each other. In this case, there
is no problem with all N shareholding parties being corrupt, as this reveals only their own set of
inputs. But, we now have a challenge: how to involve the final party’s input into the computation?

In the HSS framework, parties each homomorphically evaluated the public C on shares. Sup-
pose, on the other hand, the HSS supports homomorphic evaluation of the class of functions Cx0

:=

7 For functions with polynomial-size lookup-tables, the “trivial” FSS scheme is the one which deals out
additive shares of the lookup-tables. This can be extended to functions which can be computed by a
loglog-depth circuits and layered circuits.

6

C(x0, ·, . . . , ·). Or, more naturally, consider a dual view: Where the N parties collectively generate
shares of a secret function C(·, x1, . . . , xN) with their inputs hardcoded, which accepts a single input
x0 and outputs C(x0, . . . , xN). That is, using function secret sharing (FSS).

Of course, normally in FSS we think of the input on which the function is to be evaluated (in
this case, x0) as a public value, which each shareholder will know. Here, this clearly cannot be the
case. Instead, we consider a modified approach, where each of the N FSS shareholders will perform a
pairwise oblivious evaluation procedure, with the final (N+1)st party P0. That is, the ith shareholder
holds the ith function key FSS ki, which defines a share evaluation function “fi”= FSS.Eval(i, ki, ·).
As a result of the oblivious evaluation, party P0 will learn the evaluation yi = FSS.Eval(i, ki, x0) of
this function on its secret input x0, and neither party will learn anything beyond this; in particular,
P0 does not learn ki, and Pi does not learn x0. At the conclusion of this phase, party P0 learns exactly
the set of N output shares, and can reconstruct the final output C(x0, · · · , xN) = y1 + · · ·+ yN and
send to all parties.

The corresponding high-level protocol template is depicted in Figure 1. Here, FFSS
SD represents an

ideal N -party functionality for N -FSS share generation (defined formally in Figure 2 of Section 3),
where each party provides its input xi and receives its FSS share ki. FFSS

OE represents an ideal two-party
functionality for oblivious FSS share evaluation (defined formally in Figure 3 of Section 3), where Pi

and P0 respectively provide inputs ki and x0, and P0 learns the evaluation FSS.Eval(i, ki, x0).

FFSS
SD

Generate FSS keys (k1, . . . , kN) for
C(·, x1, . . . , xN)

P1 P2
. . .

PN

x1 k1 x2 k2 xN kN

FFSS
OE

k1

FFSS
OE

k2

FFSS
OE

kN

P0

x0 y1 x0 y2 x0 yN

Broadcast

y1 + · · ·+ yN

First Phase: N -Party
FSS share distribution
for the “partially eval-
uated circuit”.

Second Phase: Obliv-
ious evaluation by
P0 of each function
share.

yi ← FSS.Eval(i, ki, x)

Third Phase: Output
reconstruction.

Fig. 1: Template for (N + 1)-party sublinear secure computation of C from N -party additive FSS.

Consider the (passive) security of the proposed scheme against up to N corruptions. If the cor-
rupted parties are (any subset of) those holding FSS shares, then since the parties execute a secure
computation for share generation, their view is restricted to a subset of FSS key shares (ki)i∈T , which
hides any honest parties’ inputs (xi)i∈[N]\T by the security of the FSS. (Note if all N shareholding
parties are corrupt, then this statement holds vacuously, as no honest parties’ inputs were involved.)
If the corrupted parties include P0 together with a (necessarily strict) subset of FSS shareholders,
then their collective view consists of a strict subset of FSS keys (ki)i∈T together with evaluated out-

7

put shares (yi)i∈[N]. However, the security of the FSS combined with the additive reconstruction of
output shares implies this reveals nothing beyond the function output.8

Now, in order for this framework to provide low communication, it must be the case that we have
an FSS scheme for the relevant partial-evaluation function class {fα1,...,αN

= C(·, α1, . . . , αN)}, for
which the following two steps can be performed succinctly:

– Secure N -party FSS share generation, and
– Oblivious evaluation by P0 of each function share.

We next address approaches for how each of these pieces can be achieved.

Oblivious evaluation for “Loglog-depth” FSS via PIR. Consider first the pairwise oblivious FSS evalu-
ation procedure, where P0 holds x0, party Pi holds FSS key ki, and P0 should learn FSS.Eval(i, ki, x0).

Since this is reduced to a 2-party functionality, a natural first place to look would be for FSS
schemes where FSS.Eval(i, ki, ·) is within a function class already admitting low-communication 2-
party secure computation. Unfortunately, this is more challenging than it sounds. While sublinear-
communication 2PC exists for general layered circuits from a variety assumptions, recall that the
sublinearity will be here in the complexity not of C, but of FSS.Eval, almost certainly a more complex
computation.

Indeed, the idea of increasing the number of parties by homomorphically evaluating an HSS.Eval
has previously been considered in the related setting of HSS, and hit similar limitations. For exam-
ple, relatively strong HSS schemes based on DDH or DCR support homomorphic evaluation (and
thus secure computation with very low communication) of NC1; but, the corresponding operations
required to actually compute HSS.Eval itself lies outside of NC1. In [BGI17], this was addressed by
instead securely computing a (low-depth) randomized encoding of the evaluation operation, effectively
squashing the depth of the computation to be securely performed. This enabled them to achieve low
round complexity, but resulted in large communication (scaling with the size of the entire HSS.Eval
circuit). Recently, it was shown by Chillotti et al. [COS+22] that for the specific DCR-based HSS
construction of [OSY21,RS21], HSS.Eval for homomorphically evaluating a constant-degree computa-
tion can be computed within NC1. However, this only gives low-communication secure computation
for constant-degree functions, which will not suffice for overall sublinearity.

Instead, we take a different approach, going beyond black-box use of existing sublinear 2PC results.
While the full FSS.Eval(i, ki, x0) computation itself may be complex, suppose it is the case that it
can be decomposed into two parts: (1) some form of precomputation, depending only on i and ki,
followed by (2) computation on x0, which is of low complexity. More concretely, consider the output
of part (1) to be a new circuit CEval whose input is x0 and output is FSS.Eval(i, ki, x0), and suppose it
is the case that CEval has low log log(s) depth (where s is the size of the original circuit C the parties
wish to compute in the MPC). Note that while CEval has low depth, its identity depends on the secret
ki (of Pi), so that black-box secure computation of CEval does not apply.

On the other hand, opening the box of one such recent secure computation protocol, we iden-
tify that an intermediate tool developed actually has stronger implications. The tool is correlated
batch symmetric PIR, for short correlated SPIR [BCM22], which as discussed above, enables low-
communication of several batched instances of (single-server) SPIR whose queries are correlated. In
this case, the m “databases” will be defined implicitly by the m output bits of the circuit CEval. Be-
cause CEval is log log s depth as a function of its input x0 (and circuits are taken to be fan-in 2), each
computed output bit depends on at most log s bits of x0, and as such can be represented as a size-s
database indexed by the corresponding log s input bits. Oblivious evaluation of CEval on x0 can then
be achieved by P0 making m batch queries into these databases, where the collective query bits are
all derived from various bits of the single string x0.

As a brief aside: Extending to larger arithmetic spaces, the role of correlated SPIR here can
be replaced by an analogous version of correlated Oblivious Polynomial Evaluation (OPE). Here, a
log log s depth arithmetic circuit CEval can be expressed as a secret multivariate polynomial in x0

of size poly(s), where each monomial depends on at most log s elements of the arithmetic vector
x0. Unfortunately, we are not presently aware of tools for achieving low-communication correlated

8 Note that in fact we do not need FSS with additive reconstruction, but rather any form of reconstruction
will suffice, as long as the output shares provide this property of revealing nothing beyond the function
output. We formalize this property, and prove it holds for additive reconstruction, in Lemma 17.

8

OPE beyond constant-size fields. However, we include this in the technical exposition, in case such
techniques are later developed. We note that the final steps in our instantiation (described in the
following) do hold over larger arithmetic spaces under certain computational assumptions.

“Loglog-depth” FSS from HSS. Consider an ensemble C = {Cλ} of Boolean circuits of size s and
depth log log s. The remaining goal is to obtain FSS for the corresponding class of partial-evaluation
functions {Cλ(·, x1, . . . , xN)} for which the FSS evaluation CEval is (log log s)-depth, as discussed
above.

From the structure of Cλ, the evaluation of Cλ(x0, . . . , xN) on all inputs can be expressed as a
poly(s)-size multivariate polynomial in the bits xi[j] of the xi, where each monomial is of degree
at most log s. When viewed as a function of just x0, we thus have poly(s)-many monomials in the
bits of x0 whose coefficients pj are each formed by the product of at most log s bits from the inputs
x1, . . . , xN . That is,

∑
j pj

∏
ℓ∈Sj

x0[ℓ], where each |Sj | ≤ log s is a publicly known set.

If the N parties can somehow produce additive secret shares {p(i)j }i∈[N] of each one of these
coefficients pj , then this would constitute the desired FSS evaluation: Indeed, the ith share eval-
uation FSS.Eval(i, ki, x0) would be computable as y(i) =

∑
j p

(i)
j

∏
ℓ∈Sj

x0[ℓ], satisfying
∑N

i=1 y
(i) =∑

j pj
∏

ℓ∈Sj
x0[ℓ] = Cλ(x0, . . . , xN). Further, each FSS.Eval(i, ki, ·) is expressible as a (log log s)-depth

circuit in x0—as required from the previous discussion.
The question is how to succinctly reach a state where the N parties hold these coefficient secret

shares. Of course, direct secure computation is not an option, as even the output size is large, poly(s).
However, this is not a general computation. Suppose we have access to an HSS scheme supporting
homomorphic evaluation of log log s depth operations. Such constructions are known to exist from a
variety of assumptions (as discussed after Corollary 5). Then, if the parties HSS share their respective
inputs x1, . . . , xN , they can locally evaluate additive shares of the corresponding (log s)-products pj .

The corresponding FFSS
SD operation will thus correspond to the HSS.Share procedure of the HSS

scheme on the parties’ collective inputs. If the HSS scheme has a compact sharing procedure, then
this will be computable with sufficiently low communication. Note that vanilla usage of some HSS
schemes will not provide the required compactness (e.g., including structured ciphertexts of the input
bits); however, using standard hybrid encryption tricks this can be facilitated.

“Loglog-depth” FSS from Las Vegas HSS. An additional challenge arises, however, when the underlying
HSS scheme we attempt to use provides correctness only up to inverse-polynomial error. This is the
case, for example, in known 2-party HSS schemes for NC1 from DDH [BGI16a] or from LWE with
polynomial-size modulus [DHRW16, BKS19]. In these schemes, the inverse-polynomial error rate δ
can be chosen as small as desired, but shows up detrimentally as 1/δ in other scheme parameters
(runtime for the DDH scheme; modulus size for LWE).

This means with noticeable probability, the shares of at least one of the coefficients pj from above
will be computed incorrectly. Even worse, as typical in these settings, the parties cannot learn or
reveal where errors truly occurred, as this information is dependent on the values of the secret inputs.
This remains a problem even if the HSS scheme is “Las Vegas,” in the sense that for every error
at least one of the parties will identity that a potential-error event has occurred (i.e., will evaluate
output share as ⊥). Even then, the flagging party must not learn whether an error truly took place,
and the other party must not learn that a potential error was flagged.

We present a method for modifying the HSS-based FSS sharing procedure from above, to remove
the error in the required homomorphic evaluations, while hiding from the necessary parties where
these patches took place. We focus on the 2-party case, and further assume the HSS has a succinct
protocol (communication linear in the input size, up to an additive poly(λ) term) for distributing
the shares of the HSS, where homomorphic evaluation can take place across different sets of shared
values. This is the case for known Las Vegas HSS schemes.

This procedure can be viewed as a modification to either the Share or Eval portion of the FSS.
By viewing it as part of FSS.Share, we automatically fit into the framework of the previous sections.
Namely, this can be viewed as a new FSS.Share (or FFSS

SD) procedure with relatively large computational
complexity (comparable to the truth table of the shared function), but which we show admits a low-
communication secure computation procedure. We describe the sharing procedure directly via the
achieving protocol; the corresponding FSS.Share procedure can be inferred.

First, note that by taking the inverse-polynomial error rate δ to be sufficiently small, we can
guarantee with high probability that the total number of potential-error flags ⊥ obtained by any

9

party is at most the security parameter, λ. The sharing protocol begins by HSS sharing the inputs
(s0, s1)← HSS.Share(x1, x2) as usual. Then, each party homomorphically evaluates all required values
corresponding to shares of each of the coefficients pj . For each party Pi (i ∈ {1, 2}), denote these
values in an array Ti, which contains at most λ positions in which Ti[j] = ⊥. For each such position
j∗, FFSS

SD sets Ti[j
∗] = 0, and must now “patch” the missing value. Consider this procedure for party

P1 (P2 will be reversed).
In order to compute the correct output (i.e., coefficient pj) in this position, the parties run a small-

scale secure protocol that HSS shares the index position j∗ of each ⊥ symbol of P1. This enables them
to homomorphically re-evaluate shares of the corresponding coefficient term pj∗ , in a way that hides
the index j∗ from P2 (note that this computation, with index selection, remains within NC1). In
fact, by re-evaluating this computation λ-many times, then with overwhelming probability, at least
one is error-free. By running a small-scale secure computation on these shares, we can assume that
the parties hold additive shares of the correct value pj∗ .

It would seem the remaining step is for P1 to somehow learn the correct value pj∗ offset by P2’s
share T2[j

∗], while keeping j∗ hidden from P2. However, the situation is somewhat more sticky. The
problem is that in the original HSS evaluation, P1 learns not only ⊥, but also a candidate output
share. By receiving the correct output share (pj∗ − T2[j

∗]), party P1 would learn whether or not
an error actually occurred, leaking sensitive information. This means that inherently, P2 must also
modify its share in position j∗ as part of the correction procedure. But, this must be done in a way
that both hides the identity of j∗, and also does not affect the secret sharing across the two parties
in other positions.

This will be done in two pieces: (1) P1 will learn (T2[j
∗]−r), for some secret mask r chosen by P2;

and (2) they will both perform some operation on their local Ti array that offsets the value shared in
position j∗ by exactly (pj∗ − T2[j

∗]) while preserving the values shared in all other j′ ̸= j∗.
The first of these tasks can be performed by executing a standard single-server polylogarithmic

symmetric PIR protocol, where P1 acts as client with query index j∗, and P2 acts as server with the
r-shifted database T ′2[j] = T2[j]− r, for random r of its choice.

The second task will be performed by a low-communication private increment procedure using dis-
tributed point functions (DPF): namely, FSS for the class of point functions (equivalently, compressed
secret shares of a secret unit vector). Actually, since party P1 knows the identity of j∗, a weaker tool
of punctured PRFs suffice; however, we continue with DPF terminology for notational convenience
(both are implied by one-way functions). More concretely, the parties will run a small-scale secure
computation protocol on inputs j∗, (T2[j

∗] − r) (held by P1), the additive shares of pj∗ , and r (held
by P2), which outputs short DPF key shares k1, k2 to the respective parties, with the property that
DPF.Eval(1, k1, j) + DPF.Eval(2, k2, j) = 0 for every j ̸= j∗, and = (pj∗ − T2[j

∗]) for j = j∗. Each
party thus modifies its Ti array by offsetting each position j with the jth DPF evaluation, yielding
precisely the required effect.

This procedure is performed for every flag position j∗, and for each party P1, P2. (Note that the
parties should always perform the above steps λ times, sometimes on dummy values, in order to hide
the true number of flagged positions.) The final resulting scheme provides standard FSS correctness
guarantees, removing the inverse-polynomial error, and thus can be plugged into the approach from
above. As mentioned, the new resulting FFSS

SD functionality is now a complex procedure, with runtime
scaling as the entire truth table size of the shared function. But, the above-described protocol provides
a means for securely emulating FFSS

SD with low communication: scaling just as λ-many small-scale
secure computations and PIR executions.

2 Preliminaries

2.1 Assumptions

2.1.1 Quadratic Residuosity Assumption (QR) We say that N is a Blum integer if N = p · q
for some primes p and q such that p (mod 4) ≡ q (mod 4) ≡ 3. We denote by JN the multiplicative
group of the elements in Z⋆

N with Jacobi symbol +1 and by QRN the multiplicative group of quadratic
residues modulo N with generator g. Note that QRN is a subgroup of JN , and that QRN and JN
have order ϕ(N)

4 and ϕ(N)
2 respectively, where ϕ(·) is Euler’s totient function. It is useful to write

JN : H×QRN , where H is the multiplicative group (±1, ·) of order 2. Note that is N is a Blum integer
then gcd(2, ϕ(N)

4) = 1 and −1 ∈ JN \QRN .

10

Definition 7 (Quadratic Residuosity Assumption, [GM82]). Let N be a uniformly sampled
Blum integer and let QRN be the multiplicative group of quadratic residues modulo N with generator
g. We say the QR assumption holds with respect to QRN if for any p.p.t. adversary A

| Pr
a

$←QRN

[A(N, g, a) = 1]− Pr
a

$←QRN

[A(N, g, (−1) · a) = 1]| ≤ negl(λ).

2.1.2 Learning With Errors (LWE)

Definition 8 (Decisional Learning with Errors). Let n ≥ 1 and q ≥ 2 be integers. Let χ be an
error distribution over Z and χsk be a secret key distribution over Zn. For s⃗

$← χsk, define LWEχ,s⃗

to be the distribution obtained by sampling a⃗
$← Zn

q uniformly at random, e⃗
$← χ, and outputting

(⃗a, b =< a⃗, s > +e) ∈ Zn+1
q . The decisional-LWEn,q,χ,χsk

problem asks to distinguish polynomially
many samples (⃗ai, bi)

$← LWEχ,s⃗ from the same number of samples taken from the uniform distribution
on (Zn

q ,Zp), where the secret s⃗ is sampled accordng to χsk.

2.1.3 Learning Parity with Noise (LPN) Our constructions rely on the Learning Parity with
Noise assumption [BFKL94] (LPN) over F2 (which is the most standard variant of LPN, but other
fields can be considered), a.k.a. binary LPN. Unlike the LWE assumption, in LPN the noise is assumed
to have a small Hamming weight. Concretely, the noise is 1 in a small fraction of the coordinates
and 0 elsewhere. Berr(F2) denote the distribution which outputs 1 with probability r, and 0 with
probability 1− r.

Definition 9 (Learning Parity with Noise (LPN)). For dimension k = k(λ), number of samples
(or block length) q = q(λ), noise rate r = r(λ), the F2-LPN(k, q, r) assumption states that

{(A, b⃗) | A $← Fq×k, e⃗
$← Berr(F2)

q, s⃗
$← Fk

2 , b⃗← A · s⃗+ e⃗}
c
≈{(A, b⃗) | A $← Fq×k

2 , b⃗
$← Fq

2}

Here and in the following, all parameters are functions of the security parameter λ and computa-
tional indistinguishability is defined with respect to λ.

Note that the search LPN problem, of finding the vector can be reduced to the decisional LPN
assumption [BFKL94,AIK09].

2.1.4 Decisional Diffie-Hellman (DDH)

Definition 10 (Decisional Diffie-Hellman). We say that the Decisional Diffie-Hellman assump-
tion (DDH) holds if there exists a PPT group generator IG with the following properties. The output
of IG(1λ) is a pair (G, g) where G describes a cyclic group of a prime order q (where we use multi-
plicative notations for the group operation) and g describes a group generator. We assume that q is
included in the group description G. We also assume the existence of an efficient algorithm that given
G and descriptions of group elements h1, h2 outputs a description of h1h2. Finally, we require that
for every nonuniform polynomial-time algorithm A there is a negligible function ϵ such that:

|Pr[A(G, g, ga, gb, gab) = 1: (G, g)
$← IG; (a, b) $← Z2

q]−

Pr[A(G, g, ga, gb, gc) = 1: (G, g)
$← IG; (a, b, c) $← Z3

q]| ≤ ϵ(λ).

2.1.5 Decision Composite Residuosity Assumption Let SampleModulus be a polynomial-time
algorithm that on input the security parameter λ, outputs (N, p, q), where N = pq for λ-bit primes p
and q.

Definition 11 (Decision Composite Residuosity assumption, [Pai99]). Let λ be the secu-
rity parameter. We say that the Decision Composite Residuosity (DCR) problem is hard relative to
SampleModulus if (N, x)

c
≈ (N, xN) where (N, p, q)

$← SampleModulus(1λ), x
$← Z∗N2 , and xN is

computed modulo N2.

Note that Z∗N2 can be written as a product of subgroups H×NRN , where H = {(1+N)i : i ∈ [N]}
is of order N , and NRN = {xN : x ∈ Z∗N2} is the subgroup of N -th residues that has order ϕ(N).

11

2.2 Function Secret Sharing and Homomorphic Secret Sharing

We follow the function secret sharing definition of [BGI16b], for the specific leakage function which
reveals the input and output domain sizes (1n, 1m) of the secret function.

Definition 12 (Function Secret Sharing (FSS)). An N -party Function Secret-Sharing (FSS)
scheme (with additive reconstruction) for a function family F is a pair of algorithms FSS = (FSS.Gen,
FSS.Eval) with the following syntax and properties:

– Gen(1λ, f̃) is a probabilistic polynomial-time key generation algorithm, which on input 1λ (a
security parameter) and f̃ ∈ {0, 1}⋆ (the description of some function f : {0, 1}n → {0, 1}m ∈ F),
outputs an N -tuple of keys (k1, . . . , kN). Each key is assumed to contain 1n and 1m.

– Eval(i, ki, x) is a deterministic polynomial-time evaluation algorithm, which on input i ∈ [N] (the
party index), ki (a key defining fi : {0, 1}n → {0, 1}m), and x ∈ {0, 1}n (an input for fi), outputs
a value yi ∈ {0, 1}m (the value of fi(x), the ith share of f(x)).

– Correctness: For all λ ∈ N, all f ∈ F (described by f̃), and all x ∈ {0, 1}n,

Pr

[
y1 + · · ·+ yN = f(x) :

(k1, . . . , kN)
$← FSS.Gen(1λ, f̃)

yi ← FSS.Eval(i, ki, x), i = 1 . . . N

]
= 1 .

– Security: For every set of corrupted parties D ⊊ [N], there exists a probabilistic polynomial-time
algorithm SimFSS (a simulator), such that for every sequence of functions f1, f2, · · · ∈ F (described
by f̃1, f̃2, . . .), the outputs of the following experiments RealFSS and IdealFSS are computationally
indistinguishable:
• RealFSS(1λ) : (k1, . . . , kN)

$← Gen(1λ, f̃λ); Output (ki)i∈D.
• IdealFSS(1λ) : Output SimFSS(1λ, 1N , 1n, 1m).

For consistency, we consider a definition of Homomorphic Secret Sharing with an analogous
simulation-based security guarantee, with “leakage” corresponding to the input length n. This no-
tion is equivalent to the natural indistinguishability-based definition (where simulation takes place
by simply sharing a fixed input of required length).

Definition 13 (Homomorphic Secret Sharing). An N -party Homomorphic Secret-Sharing (HSS)
scheme (with additive reconstruction) for a class F of functions over a finite field F is a pair of algo-
rithms HSS = (HSS.Share,HSS.Eval) with the following syntax and properties:

– Share(1λ, x): On input 1λ (the security parameter) and x ∈ Fn(λ) (the input), the sharing algo-
rithm Share outputs N input shares (x(1), . . . , x(N)).

– Eval(i, f, x(i)): On input i ∈ [N] (the party index), f ∈ F (the function to be homomorphically
evaluated, implicitly assumed to specify input and output lengths n,m), and x(i) (the ith input
share), the evaluation algorithm Eval outputs the ith output share y(i) ∈ Fm.

– Correctness: For any 1λ, input x ∈ Fn(λ), and any function f ∈ F ,

Pr

[
y(1) + · · ·+ y(N) = f(x) :

(x(1), . . . , x(N))
$← HSS.Share(1λ, x)

y(i)
$← HSS.Eval(i, f, x(i)), i = 1 . . . N

]
= 1 .

– Security: For every set of corrupted parties D ⊊ [N], there exists a probabilistic polynomial-time
algorithm SimHSS (a simulator), such that for every sequence of inputs x1, x2, · · · ∈ Fn(λ) the
outputs of the following experiments RealHSS and IdealHSS are computationally indistinguishable:
• RealHSS(1λ) : (x(1), . . . , x(N))

$← HSS.Share(1λ, xλ); Output (x(i))i∈D.
• IdealHSS(1λ) : Output SimHSS(1λ, 1N , 1n).

Remark 14 (Compact Single-Function HSS). A single-function HSS is an HSS scheme for a singleton
function class. Let F be a (not necessarily singleton) function class. We say there exists compact single-
function HSS for any function in C, if for every f : Fn → Fm ∈ F there exists an HSS scheme HSSf
for {f} such that the circuit-size of HSSf .Share is a fixed polynomial in n (and otherwise independent
of f).

This notion can be seen as a weakening of compact HSS for C where the function to be homomor-
phically evaluated is known when running the sharing algorithm.

12

Definition 15 (Las Vegas HSS). A Las Vegas N -party homomorphic secret-sharing scheme with
additive reconstruction is defined as above, with the following modification:

1. The algorithm Eval takes as input a failure bound δ, and additonnally outputs a confidence flag
flagb ∈ {⊥,⊤} to indicate full confidence (⊤) or a possibility of failure (⊥). Eval can run in time
polynomial in its input length and in 1/δ.

2. The correctness notion is relaxed to the following notion of Las Vegas correctness: for every input
x ∈ Fn, function f ∈ F with input length n, and failure bound δ > 0, we have:

Pr [∃i ≤ N, (flagi = ⊥)] ≤ δ,

and Pr[(∃i ≤ N, (flagi = ⊤) ∧ (⊕i≤ny
(i) ̸= f(x))] = 0,

where the probability is taken over the coins of Gen and Eval(·, ·, ·, δ). We implicitly assume each
execution of Eval to take an additional nonce input, which enables different invocations to have
(pseudo)-independent failure probabilities. (See [BGI16a] for more a long-form discussion.)

2.3 Universal Composability

We refer the reader to [Can01] for details on the universal composability framework. The framework
is based on the real/ideal paradigm for arguing about the security of a protocol. We say that a
protocol π UC-realises (with computational security) an ideal functionality F in the presence of static
semi-honest adversary corrupting at most t parties, if for any p.p.t. static semi-honest t-adversary A
and any p.p.t. environment Z, there exists a p.p.t. ideal-model t-adversary Sim such that the output
distribution of Z in the ideal-model computation of F with Sim is computationally indistinguishable
from its output distribution in the real-model execution of π with A. The composition theorem
of [Can01] states the following.

Theorem 16 (Composition Theorem [Can01], informal). Let ρ be a protocol that UC-realises
F in the presence of adaptive semi-honest t-adversaries, and let π be a protocol that UC-realises G in
the F-hybrid model in the presence of adaptive semi-honest t-adversaries. Then, for any p.p.t. adap-
tive semi-honest t-adversary A and any p.p.t. environment Z, there exists a p.p.t. adaptive semi-
honest t-adversary Sim in the F-hybrid model such that the output distribution of Z when interacting
with the protocol π and Sim is computationally indistinguishable from its output distribution when
interacting with the protocol πρ (where every call to F is replaced by an execution of ρ) and A in the
real model.

2.4 Notations

Throughout this paper, N denotes a number of parties (but the total number of parties is sometimes
N +1). The number of inputs and outputs of an arithmetic circuit are denoted n and m respectively.
If f is a function, f̃ is used to describe a polynomial-size description of f .

By default, vectors are assumed to be column vectors. If x⃗ and y⃗ are two (column) vectors, we
use x⃗||y⃗ to denote the (column) vector obtained by their concatenation. We write x⃗⊗ y⃗ to denote the
tensor product between x⃗ and y⃗, i.e., the vector of length nxny with coordinates xiyj (where nx is the
length of x⃗ and ny is the length of y⃗). We write x⃗⊗2 for x⃗⊗ x⃗, and more generally, x⃗⊗k for the k-th
tensor power of x⃗, x⃗⊗ x⃗⊗ · · · ⊗ x⃗ (k times). Observe that evaluating a degree-d n-variate polynomial
on some size-n vector x⃗ can be done by computing the inner product of the vector of coefficients
of the polynomial with x⃗⊗d∥ . . . ∥x⃗⊗1∥1). Indeed, each x⃗⊗k corresponds the vector of every degree-k
monomial in the coordinates of x⃗.

If k ≥ 1 is an integer, [k] denotes the set {1, . . . , k}, [0, k] denotes the set {0, 1, . . . , k}, and Sk

denotes the symmetric group of order k, i.e. the set of all permutations on [k]. If A and B are sets,
AB denotes the set of all functions from A to B.

We say that a function negl : N → R+ is negligible if it vanishes faster than every inverse poly-
nomial. For two families of distributions X = {Xλ} and Y = {Yλ} indexed by a security parameter
λ ∈ N, we write X

c
≈ Y if X and Y are computationally indistinguishable (i.e. any family of circuits of

size poly(λ) has a negligible distinguishing advantage), X
s
≈ Y if they are statistically indistinguish-

able (i.e. the above holds for arbitrary, unbounded, distinguishers), and X ≡ Y if the two families
are identically distributed.

13

3 General Template for (N + 1)-Party Sublinear Secure Computation
from N -Party FSS

In this section we present a generic template for building (N +1)-party sublinear secure computation
from an N -party additive function secret sharing scheme (for a well-chosen function class) with two
specific properties. We require of the FSS scheme that there exist low-communication protocols to
realise the following tasks:

– N -Party Share Distribution: N servers generate FSS shares of some function of their inputs; the
ideal functionality FFSS

SD is provided in fig. 2.
– Two-Party Oblivious Share Evaluation: A client obliviously evaluates an FSS share held by a

server; the ideal functionality FFSS
OE is provided in fig. 3.

Theorem 18 proves that the protocol provided in fig. 5 is an (N + 1)-party secure computation
scheme in the (FFSS

SD ,FFSS
OE)-hybrid model. This template achieves sublinear secure computation pro-

vided FFSS
SD and FFSS

OE can be realised with low enough communication. A high level overview of the
protocol is provided in fig. 1.

3.1 Requirements of the FSS Scheme

We start by isolating in lemma 17 the properties we require of the FSS scheme to fit our template for
sublinear secure computation, and show that they are satisfied by any additive FSS scheme. At a high
level, we require that given a strict subset of the FSS keys, together with the evaluated output shares
of all keys on some known input x, it should be computationally hard to recover any information
about the secret shared function f beyond its evaluation f(x).

Lemma 17. Let FSS = (FSS.Gen,FSS.Eval) be an N -party additive function secret sharing scheme
for some function family F , and let SimFSS be a simulator defined as in definition 12. Then, the
following holds:

Reconstruction-Only (given some keys, all shares, the input, and auxiliary informa-
tion): Let info : {0, 1}⋆ → {0, 1}⋆ be any function which, on input the description f̃ of some func-
tion f ∈ F , outputs some partial information info(f̃) about f . For every set of corrupted parties
D ⊊ [N], there exists a probabilistic polynomial-time algorithm SimFSS

rec,info (a simulator), such that
for every sequence f̃1, f̃2, . . . of polynomial-size function description of functions f1, f2, · · · ∈ F ,
for every sequence of inputs (xλ)λ∈N⋆ ∈ Df1 ×Df2 × . . . , the outputs of the following experiments
Realrec,info and Idealrec,info are computationally indistinguishable:
– Realrec,info(1

λ) :
• (k1, . . . , kN)

$← Gen(1λ, f̃λ);
• yi ← Eval(i, ki, xλ) for i /∈ D;
• Output (xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)).

– Idealrec,info(1
λ) : Output Simrec,info(1

λ, 1n, 1m, xλ, fλ(xλ), info(f̃λ)).

Proof. We first consider the intermediary step of “Function Secrecy (given some keys, and auxiliary
information)”.

1. Function Secrecy (given some keys, and auxiliary information): Let info : {0, 1}⋆ →
{0, 1}⋆ be any function which, on input the description f̃ of some function f ∈ F , outputs some
partial information info(f̃) about f . For every set of corrupted parties D ⊊ [N], there exists
a probabilistic polynomial-time algorithm SimFSS

info (a simulator), such that for every sequence
f̃1, f̃2, . . . of polynomial-size function description of functions f1, f2, · · · ∈ F (we denote n(λ) and
m(λ) respectively the input and output length of fλ for λ ∈ N⋆), the outputs of the following
experiments Realinfo and Idealinfo are computationally indistinguishable:
– Realinfo(1

λ) : (k1, . . . , kN)
$← Gen(1λ, f̃λ); Output ((ki)i∈D, info(f̃λ)).

– Idealinfo(1
λ) : Output SimFSS

info (1
λ, 1N , 1n(λ), 1m(λ), info(f̃λ)).

And furthermore, such a simulator can be built as:

SimFSS
info (1

λ, 1N , 1n(λ), 1m(λ), info(f̃λ)) : Output (SimFSS(1λ, 1N , 1n(λ), 1m(λ)), info(f̃λ)).

The above is true because the notion of FSS security is hereditary in that any FSS scheme for
some function class F is also an FSS scheme for any subclass F ′ ⊆ F , and furthermore the same
simulator can be used. In particular this is true for F ′ obtained by quotienting F by the auxiliary
information given to an adversary.

14

2. Reconstruction-Only (given some keys, all shares, and the input): We now prove the
lemma. Let info : {0, 1}⋆ → {0, 1}⋆ be any function which, on input the description f̃ of some
function f ∈ F , outputs some partial information info(f̃) about f . Let info′ be the function
which, on input f̃λ, outputs info′(f̃λ) := (xλ, fλ(xλ)). Let D ⊊ [N], and let D⋆ be any size-(N−1)
superset of D in [N] (i.e. D ⊆ D⋆ ⊊ [N], |D⋆| = N − 1). Denote u the unique element of [N] \D⋆.
Let (fλ)λ∈N⋆ ∈ FN⋆

and (xλ)λ∈N⋆ ∈ (Df1 ×Df2 × . . .). By function secrecy (given some keys, and
auxiliary information), there exists a simulator SimFSS

(info′,info) such that the following distributions
∆1 and ∆2 are computationally indistinguishable:

∆1 :=
{
((ki)i∈D⋆ , info′(f̃λ), info(f̃λ)) : (k1, . . . , kN)

$← Gen(1λ, f̃λ)
}

∆2 :=
{
SimFSS

(info′,info)(1
λ, 1N , 1n(λ), 1m(λ), info′(f̃λ), info(f̃λ))

}
.

Now consider the distributions ∆3, ∆′3, ∆4, and ∆′4 defined as:

∆3 :=

{
(xλ, (ki)i∈D, (yi)i∈D⋆\D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), i ∈ D⋆ \ D

}
∆′3 :=

{
(xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), for i /∈ D

}

∆4 :=

{
(α, (ki)i∈D, (yi)i∈D⋆\D, γ) :

((ki)i∈D⋆ , (α, β), γ)
$← SimFSS

(info′,info)

yi ← Eval(i, ki, α), for i ∈ D⋆ \ D

}
∆′4 :=

(α, (ki)i∈D, (yi)i/∈D, γ) :
((ki)i∈D⋆ , (α, β), γ)

$← SimFSS
(info′,info)

yi ← Eval(i, ki, α), for i ∈ D⋆

yu ← β −
∑

i∈D⋆ yi

 .

Note that the only difference between ∆3 and ∆′3 (resp. ∆4 and ∆′4) is whether or not yu is
part of the output of the distribution (where {u} = [N] \ D⋆). Because ∆1

c
≈ ∆2, the following

algorithm cannot distinguish between ∆1 and ∆2: On input ((ki)i∈D⋆ , info(f̃λ) = (α, β)), set
yi ← Eval(i, ki, α) for i ∈ D⋆ \ D, then output (α, (ki)i∈D, (yi)i∈D⋆\D). This implies, by perfect
correctness of the additive FSS scheme, that ∆3

c
≈ ∆4, which in turn implies that the following

algorithm cannot distinguish between ∆3 and ∆4: On input(α, (ki)i∈D, (yi)i∈D⋆\D), set yu ←
β −

∑
i∈D⋆ yi, and output (α, (ki)i∈D, (yi)i/∈D). Therefore, ∆′3

c
≈ ∆′4.

3.2 The Secure Computation Protocol

We define the ideal functionalities FFSS
SD (fig. 2) for N -party FSS share distribution, and FFSS

OE (fig. 3)
for 2-party oblivious evaluation of FSS shares. We then introduce in fig. 5 the generic template for
secure computation from additive FSS in the (FFSS

SD ,FFSS
OE)-hybrid model.

Functionality FSS Share Distribution FFSS
SD

Parameters: The ideal functionality FFSS
SD is parameterised by a number of parties

N , a function class C = {fα1,...,αN
}(α1,...,αN)∈Fℓ1×···×FℓN , and an additive FSS scheme

FSS = (FSS.Gen,FSS.Eval) for C.

FFSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) where xi ∈ {0, 1}ℓi from each party Pi (for 1 ≤ i ≤ N).

Output: Run (k1, . . . , kN)
$← FSS.Gen(1λ, f̃x1,...,xN

), where f̃x1,...,xN
is a description of fx1,...,xN

;
Output ki to each party Pi (for 1 ≤ i ≤ N).

Fig. 2: Ideal functionality FFSS
SD for the generation of FSS keys of a distributed function.

15

Functionality Oblivious Evaluation of FSS Shares FFSS
OE

Parameters: The ideal functionality FFSS
SD is parameterised by a number of parties N , and an

additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for some function class C.

FFSS
OE interacts with two parties, Alice (“the client”) and Bob (“the server”), in the following

manner.

Input: Wait to receive (Client, x) from Alice and (Server, i, ki) from Bob, and record (i, ki, x).

Output: Run yi ← FSS.Eval(i, ki, x); Output yi to Alice.

Fig. 3: Ideal functionality FFSS
OE for the two-party oblivious evaluation of FSS shares.

Functionality FSFE(C)

The functionality is parameterised with a number N and an arithmetic circuit C with
n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (0 ≤ i ≤ N), where xi ∈ Fℓi , and set
x⃗← x0∥x1∥ . . . ∥xN .

Output: Compute y⃗ ← C(x⃗); Output y⃗ to all parties P0, P1, . . . , PN .

Fig. 4: Ideal functionality FSFE(C) for securely evaluating an arithmetic circuit C among N+1 parties.

Protocol ΠC

Parties: P0, P1, . . . , PN

Parameters: The protocol is parameterised with a number of parties (N + 1), an arith-
metic circuit C : Fn → Fm with n = ℓ0 + ℓ1 + · · · + ℓN , and an additive FSS scheme
FSS = (FSS.Gen,FSS.Eval) for the following function family of “partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

(sid1, . . . , sidN) are N distinct session ids.

Hybrid Model: The protocol is defined in the (FFSS
SD ,FFSS

OE)-hybrid model.

Input: Each party Pi holds input xi ∈ Fℓi .

The Protocol:

1. Each party Pi for i ̸= 0 sends (input, i, xi) to FFSS
SD (C), and waits to receive ki.

2. For each i = 1, . . . , N :
(a) Party P0 sends (sidi, Client, x0) to FFSS

OE (C) and Pi sends (sidi, Server, i, ki) to FFSS
OE (C)

(b) Party P0 waits to receive (sidi, yi) from FFSS
OE (C).

3. Party P0 sets y⃗ ← y1 + · · · yN , and sends y⃗ to all parties.
4. Every party outputs y⃗.

Fig. 5: (Sublinear) secure computation protocol in the (FFSS
SD ,FFSS

OE)-hybrid.

16

Theorem 18 (Template for (N+1)-Party Sublinear MPC from N-Party FSS). Let N ≥ 2.
Let C : Fn → Fm be an arithmetic circuit with n = ℓ0 + ℓ1 + · · · + ℓN inputs over a finite field F,
and let FSS = (FSS.Gen,FSS.Eval) be an (additive) FSS scheme for the following function family of
“partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

The protocol ΠC provided in fig. 5 UC-securely implements the (N + 1)-party functionality FSFE(C)
in the (FFSS

SD (C),FFSS
OE (C))-hybrid model, against a static passive adversary corrupting at most N out

of (N + 1) parties. The protocol uses N ·m · log |F| bits of communication, and additionally makes
one call to FFSS

SD (C) and N calls to FFSS
OE (C).

Proof. Let A be a semi-honest, static adversary that interacts with parties P0, P1, . . . , PN running
protocol ΠC in the (FFSS

SD ,FFSS
OE)-hybrid model. We construct in fig. 6 a simulator Sim such that no

environment Z can distinguish with non-negligible probability whether it is interacting with A and
ΠC in the (FFSS

SD ,FFSS
OE)-hybrid model, or with Sim and FSFE(C).

Simulator Sim

Let D ⊊ [0, N] be the subset of statically corrupted parties, and let H := [0, N] \D be the (non-
empty) set of honest parties. Let (xi)i∈D be the set of inputs of the semi-honestly corrupt parties.

Requires: Simulator SimFSS is defined as in definition 12. If P0 is corrupted (i.e. 0 ∈ D), then
let function info be defined on C as info(gα1,...,αN

) := (αi)i∈D\{0}, and let simulator SimFSS
rec,info be

defined as in lemma 17, so that:{
(xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), for i /∈ D

}
c
≈
{
Simrec,info(1

λ, 1n, 1m, xλ, fλ(xλ), info(f̃λ))
}

.

Simulation:

– Simulating the communication with Z: Every input value that Sim receives from Z
is written on A’s input tape (as if coming from A’s environment), and every output value
written by A on its output tape is copied to Sim’s own output tape (to be read by Z).

– Simulating the protocol’s execution:
1. Sim activates A and receives the messages (input, i, xi)i∈D\{0} that A would send to
FFSS

SD (C) (on behalf of the corrupted parties) in a real execution.
2. If P0 is honest, Sim sets

(ki)i∈D
$←

{
SimFSS(1λ, 1N , 1ℓ0 , 1m) if D ≠ [1, N]

FSS.Gen(1λ, gx1,...,xN
) if D = [1, N] .

If P0 is corrupted, Sim instead sets

(−, (ki)i∈D\{0}, (yi)i∈[1,N]\D,−)
$← SimFSS

rec,info(1
λ, 1N , 1ℓ0 , 1m, x0, y, (xi)i∈D\{0}) .

In either case, Sim then writes (ki)i∈D\{0} on A’s input tape (as if FFSS
SD (C) sent ki to

Pi for each i ∈ D \ {0}).
3. If P0 is corrupted:

Sim waits to receive the messages (sidi, Client, x0)i∈D\{0} that A would send to
FFSS

OE (C) (on behalf of the P0).
4. Sim sends (input, i, xi)i∈D to FSFE(C) and waits to receive y (on behalf of the corrupted

parties).

17

5. If P0 is corrupted:
For i /∈ D, Sim writes (sidi, yi) (recall that yi was defined in step 2. above) on A’s
input tape (as if Pi sent it to P0).

6. If P0 is not corrupted then, for i ∈ D, Sim writes y on A’s input tape (as if P0 sent it to
Pi).

Fig. 6: Simulator Sim for an execution of protocol ΠC .

In order to prove that no environment Z can distinguish between the real and ideal worlds, we proceed
by a case analysis over the set of corrupted parties D.

– If only P0 is honest (i.e. D = [1, N]): In this case the simulation is perfect. Indeed, the
simulator knows the corrupt parties’ inputs x1, . . . , xN , which allows it to perfectly emulate the
ideal functionality FFSS

SD (C). The only other incoming messages received by the corrupted parties is
the broadcast output, which is identical both in the real and ideal worlds by (perfect) correctness
of the FSS scheme.

– If P0 and at least one other Pi are honest (i.e. D ⊊ [1, N]): The only difference between
the real and the ideal worlds is whether the corrupted parties receive real FSS keys or simulated
ones. Indeed, by (perfect) correctness of the FSS the broadcast message received is identical in
the real and the ideal world. By the first part of lemma 17 (function secrecy given some keys, and
auxiliary information), the joint views of Z and A are indistinguishable in the real and the ideal
worlds: even given the auxiliary information (y, (xi)i∈D) about the function, it cannot distinguish
the real corrupted keys (ki)i∈D from (ki)i∈D

$← SimFSS(1λ, 1N , 1ℓ0 , 1m).
– If P0 is corrupt (i.e. D ̸⊆ [1, N]): Note that since the adversary is only allowed to corrupt

up to all but one parties, if P0 is corrupt then at least one Pi (i ∈ [1, N]) is honest. The only
difference between the real and the ideal world is whether the corrupted keys (ki)i∈D\{0} and the
honest shares (yi)i∈[1,N]\D are real or simulated by SimFSS

rec,info. It follows from the second part of
lemma 17 (reconstruction-only given some keys, all shares, and auxiliary information) that the
joint views of Z and A are indistinguishable in the real and the ideal worlds.

4 Oblivious Evaluation of LogLog-Depth FSS from PIR

In the previous section we provided a generic template for (N+1)-party sublinear secure computation
from N -party additive function secret sharing for which FFSS

SD and FFSS
OE can be securely realised

with low communication. In this section we introduce the notion of loglog-depth for (additive) FSS
schemes, and show that this property allows FFSS

OE to be securely realised with low communication
using correlated symmetric PIR (corrSPIR), a primitive introduced in [BCM22] (and which can be
instantiated from standard assumptions using the rate-1 batch OT from [BBDP22]).

4.1 LogLog-Depth FSS

A depth-d, n-input, m-output arithmetic circuit with gates of fan-in at most two over a finite field F
can be associated with the degree-(≤ 2d) n-variate m-output9 polynomial with coefficients in F that it
computes. In all generality, a degree-2d n-variate polynomial can have up to nbn,2d =

∑2d

k=0

(
k+n−1
n−1

)
different monomials (which can be verified using a stars-and-bars counting argument). In this section
we will only be interested in circuits whose representation as a polynomial is the sum of poly(λ)
monomials (where λ is the security parameter). A sufficient condition is for it to have n = poly(λ)
inputs and depth d ≤ log log(n); we refer to this property as a circuit being “of loglog-depth”. Indeed,
because we only consider circuits whose gates have fan-in at most two, if a circuit has depth d then
it is 2d-local (i.e. each of its m outputs is a function of only at most 2d inputs). Therefore each of its
outputs is computed by a polynomial with at most nb2d,2d ≤ 22

d+2d monomials, which is poly(λ) if

9 An m-output (multivariate) polynomial can be seen as a tuple of m (multivariate) polynomials.

18

d = log log n = log log λ+O(1).

We extend in definition 19 the above notion of “loglog-depth” circuits to “loglog-depth” FSS schemes.

Definition 19 (LogLog-Depth FSS). Let F be a class of functions with n inputs and m outputs
over a finite field F. We say that an N -party FSS scheme FSS = (FSS.Gen,FSS.Eval) for F whose
evaluation algorithm FSS.Eval is explicitly described as an arithmetic circuit, has loglog-depth (alter-
natively, FSS is a loglog-depth function secret sharing scheme) if for every party index i ∈ [N] and
every key ki ∈ Supp([FSS.Gen]i) the circuit FSS.Eval(i, ki, ·) (which has hardcoded i and ki) has depth
log log(n).

Throughout this section we will be using “loglog-depth” circuits and FSS schemes, but it should be
noted that all of our results go through if this is replaced everywhere with the more obtuse notion
of “circuits (resp. FSS evaluation) whose polynomial representation has a polynomial number of
coefficients”.

When considering “loglog-depth” circuits, which in particular are “log-local” because each gate has
fan-in at most two, we will be interested in the log-sized subsets of the inputs on which each output
depends. We say that an FSS scheme is (S1, . . . , Sm)-local if the jth output of FSS.Eval, which takes
as input a party index i, a key ki, and an input x, only depends on (i, ki, x[Sj]). In other words, an
FSS scheme is (S1, . . . , Sm)-local if its evaluation algorithm is (S1, . . . , Sm)-local in its last input. We
emphasize that a loglog-depth circuit or FSS scheme is always log-local, but that the converse is not
necessarily true if F ̸= F2.
We recall in definition 20 the notion of locality for circuits, and extend it to FSS schemes. We
emphasize that a loglog-depth circuit or FSS scheme is always log-local, but that the converse is not
necessarily true if F ̸= F2.

Definition 20 (Log-locality). Let F be a class of functions with n inputs and m outputs over a
finite field F, and let S1, . . . , Sm ⊆ [n].

– Locality of functions. We say a function f ∈ F is (S1, . . . , Sm)-local if, for every j ∈ [m], the
jth output of f can be expressed as a function of the inputs indexed by Sj. If there exists a such
a tuple (S1, . . . , Sm) such that furthermore ∀i ∈ [1,m], |Si| ≤ (log n/ log log n), we say that f is
log-local.

– Locality of function classes. We say that F is (S1, . . . , Sm)-local if every function f ∈ F is. If
there exists a such a tuple (S1, . . . , Sm) such that furthermore ∀i ∈ [1,m], |Si| ≤ (log n/ log log n),
we say that F is log-local.

– Locality of FSS schemes. We say that an additive10 FSS scheme for F is (S1, . . . , Sm)-local
(resp. log-local) if its evaluation algorithm is (S1, . . . , Sm)-local (resp. log-local) in its last input.
In other words, the FSS.Eval algorithm can be decomposed as deterministic algorithms
Eval1, . . . ,Evalm for which:

FSS.Eval(i, ki, x) = (Eval1(i, ki, x[S1]), . . . ,Evalm(i, ki, x[Sm]).

That is, each Evalj takes as input the corresponding subset of bits x[Sj] of the input x, and outputs
the jth bit of FSS.Eval.

4.2 Oblivious Evaluation of LogLog-Depth FSS from PIR

We first discuss the notion of PIR we need, then show how it can be leveraged to build oblivious
evaluation of any loglog-depth FSS scheme.

4.2.1 Correlated PIR. We recall the ideal functionality for batch SPIR with correlated “mix and
match” queries (FcorrSPIR, fig. 7) from [BCM22], which we extend from the boolean to the arithmetic
setting as batch Oblivious (Multivariate) Polynomial Evaluation with correlated “mix and match”
queries (FcorrOPE, fig. 8).
In the boolean world, this corresponds to a batched form of SPIR, querying into k size-N databases,
10 This notion of locality could be extended beyond additive FSS schemes.

19

where the queries are not independent. Rather, the queried indices can be reconstructed via a public
function that “mixes and matches” individual bits of a single bitstring α⃗ = (α1, . . . , αw) of length
w < k logN , in a public manner. What this means is that each of the (n = logN)-bit queries to
a single database can be obtained by concatenating n of the bits αi, possibly permuted. In the
arithmetic world, this corresponds to batch multivariate OPE, where each database corresponds to a
polynomial, and the evaluation inputs are various subvectors of some joint input vector, comprised
of w field elements. More specifically, the input to a single d-variate polynomial (in the batch to be
obliviously evaluated) is a size-d ordered subset of the joint inputs.
We will be interested in how many times a given bit of entropy (resp. input) αi appears within the
k queries (resp. input)–counted by the occurrence function ti below–, as well as how many times it
appears in specific index position j′ ∈ [n] within the k queries (resp. input)–denoted below by ti,j′–.
To the best of our knowledge, there are no protocols realising corrOPE over superpolynomial-size
fields without FHE, and the only protocol realising corrSPIR without FHE requires introducing this
notion of “balance between the queried bits”.

Definition 21 (“Mix and Match” Functions, adapted from [BCM22]). A “mix and match”
function MixAndMatch : Fw → (FNvar)k is one parameterised by k ordered subsets of Nvar elements of
[w], Sj = (sj,1, . . . , sj,n) ∈ [w]Nvar for j ∈ [k] such that:

∀α⃗ = (α1, . . . , αw) ∈ Fw,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),

with xj := αsj,1 · · ·αsj,n ∈ (FNvar).

Such a function is associated with an occurrence function, which counts the occurrences of each input
position in the outputs:

t· : [w]→ [k]

i 7→ ti =
k∑

j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1 + · · · + ti,Nvar , where ti,j′ is equal to the number of
values of j ∈ [k] such that sj,j′ = i.

– MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [Nvar], ti,j′ ≤ T .
– MixAndMatch is said to be T -balanceable if it can be expressed as the function MixAndMatch =

(MixAndMatch′ ◦ replicate), where MixAndMatch : Fw′ → (FNvar)k is a T -balanced mix-and-match
function and replicate is defined as:

replicate : Fw → Fw′

(b1, . . . , bw) 7→ (b
∥⌈t1/T⌉
1 ∥ . . . ∥b∥⌈tw/T⌉

w)

where w′ :=
∑
i∈[w]

⌈ti/T ⌉.

Functionality FcorrSPIR

The functionality FcorrSPIR is parameterised by the number k of SPIRs in the batch, the size N of
each database, and the number w of selection bits. Furthermore, it is parameterised by a public
T -balanceable “mix and match” function (definition 21) MixAndMatch : {0, 1}w → [N]k. FcorrSPIR

interacts with an ideal sender S and an ideal receiver R via the following queries.

1. On input (sender, M⃗ = (m⃗i)i∈[k]) from S (where m⃗i = (mi,j)j∈[N] ∈ {0, 1}N), store M⃗ .
2. On input (receiver, (αj)j∈[w]) from R (where (αj)j∈[w] ∈ {0, 1}w), check if a tuple of inputs

M⃗ has already been recorded; if so, compute (x1, . . . , xk) := MixAndMatch(α1, . . . , αw) ∈
[N]k, send (mi,xi

)i∈[k] to R, and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Fig. 7: Ideal Functionality FcorrSPIR for Batch SPIR with Correlated “Mix and Match” Queries

20

Functionality FcorrOPE

The functionality FcorrOPE is parameterised by a finite field F, the number k of oblivious (mul-
tivariate) polynomial evaluations (OPE) in the batch, the number Nvar of variables of each
polynomial, the degree d of each polynomial, and the size w of the joint inputs vector. Let
nbNvar,d :

∑d
d′=0

(
Nvar+d′

Nvar

)
denote the maximum number of monomials of a degree-d Nvar-variate

polynomial. Furthermore, it is parameterised by a public polylog-balanced “mix and match” func-
tion (definition 21) MixAndMatch := Fw → Fk. FcorrOPE interacts with an ideal sender S and an
ideal receiver R via the following queries.

1. On input (sender, c⃗i) from S (where (c⃗i)i∈[k] ∈ Fk·nbNvar,d), store (c⃗i)i∈[k].
// c⃗i is the vector of coefficients of the ith polynomial (with zeroes).

2. On input (receiver, (αj)j∈[w]) from R (where (αj)j∈[w] ∈ Fw), check if a tu-
ple of inputs (c⃗i)i∈[k] has already been recorded; if so, compute (x1, . . . , xk) :=

MixAndMatch(α1, . . . , αw) ∈ (FNvar)k, compute yi ← c⃗i · (x⊗di ∥ . . . ∥x
⊗1
i ∥1) ∈ F for i ∈ [k],

send (yi)i∈[k] to R, and halt.
// See section 2.4 for the meaning of ⊗. Each xi is the vector of the Nvar inputs to the ith

polynomial in the batch, whose coefficients are given by c⃗i. Therefore, yi is the evaluation
of the ith polynomial on input xi.

If the functionality receives an incorrectly formatted input, it aborts.

Fig. 8: Ideal Functionality FcorrOPE for Batch Oblivious Polynomial Evaluation with Correlated “Mix
and Match” Inputs

4.2.2 Oblivious Evaluation of LogLog-Depth FSS from PIR. Let FSS = (FSS.Gen,FSS.Eval)
be a loglog-depth, (S1, . . . , Sm)-local FSS scheme (definition 19). Because FSS has loglog-depth, the
polynomial representation of FSS.Eval has m · poly(n) coefficients. Furthermore, each of its local
evaluation algorithms FSS.Evalj depends only on the inputs indexed by Sj . Therefore obliviously
evaluating FSS.Eval can be done by using batch OPE with correlated “mix and match” inputs: the
m polynomials in the batch are the FSS.Evalj(i, ki, ·), where ki is known only to the server Pi. This
protocol is formalised in fig. 9.
Note that this notion of corrOPE, as defined in fig. 8, requires the polynomials in the batch be
represented as a vector of coefficients. For this reason we impose that FSS be loglog-depth, so this
vector be polynomial-size.

Protocol Oblivious Evaluation of Partial Function Shares ΠOE

Parties: P0 (the client) and Pi (the server).

Parameters:

– Let N be a number, and let C = C1∥ . . . ∥Cm be a loglog-depth circuit (definition 19) with
n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over F such that the following function family
C is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of (log / log log)-sized subsets of [n]:

C =
{
gα1,...,αN

: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

We assume that each of the Si is ordered in such a way that the function MixAndMatch
associated with (S1, . . . , Sm) is polylog-balanceda (definition 21).

– FSS = (FSS.Gen,FSS.Eval) is an (S1, . . . , Sm)-local (additive) FSS scheme for C, whose local
evaluation algorithms are (FSS.Evalj)j∈[m].

Hybrid Model: The protocol is defined in the FcorrOPE-hybrid model (the subsets characterising
MixAndMatch, and in turn corrOPE, are (S1, . . . , Sm)).

21

Input: P0 holds input x0 ∈ {0, 1}ℓ0 , and Pi holds ki.

The Protocol:

– First Round:
1. P0 sends (receiver, x0) to FcorrOPE

2. Pi sends (sender, (c⃗j)j∈[m]) to FcorrOPE where c⃗j is the vector of coefficients of
FSS.Evalj(i, ki, ·)
// For the case F = F2 (i.e. when using FcorrSPIR), the databases can be more
simply described as the truth tables of the FSS.Evalj(i, ki, ·) for j ∈ [m], i.e.
(FSS.Evalj(i, ki, x

′))
x′∈{0,1}|Sj | .

– Second Round:
3. P0 waits to receive (yi,1, . . . , yi,m) from FcorrOPE

4. P0 outputs (yi,1, . . . , yi,m)

a By [BCM22, Lemma 9], such orderings exist and furthermore can be found in expected constant
time by random shuffling. Alternatively, since a random ordering of (S1, . . . , Sm) works with high
probability, the protocol could be modified so that P0 samples a PRG key and sends it to P1, and
both use the resulting pseudorandomness to order (S1, . . . , Sm). This additional step incurs only a
small additive overhead in communication, and the resulting protocol is still sublinear.

Fig. 9: Two-party protocol for obliviously evaluating shares of an additive loglog-depth FSS scheme.

Lemma 22 (Oblivious Share Evaluation for LogLog-Depth FSS Schemes). Let N ≥ 2. Let
C : Fn → Fm be a loglog-depth arithmetic circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs over a finite field
F, and let C be the family of “partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

If FSS is an additive loglog-depth, (S1, . . . , Sm)-local FSS scheme (definition 19) for C and corrSPIR
is a two-round batch SPIR protocol (characterised by (S1, . . . , Sm)), then the protocol ΠOE provided
in fig. 9 UC-securely implements the two-party functionality FFSS

OE against a static, passive adversary
in the FcorrOPE-hybrid model.

Proof. The protocol of fig. 9 essentially boils down to a single call with no interaction between the
players. In the real execution, the server Pi receives no incoming communication (neither from the
client P0 nor from the ideal functionality FcorrOPE), therefore simulation against a corrupted server
is trivial. The only message received by the client P0 is from the ideal functionality FcorrOPE, but
since this message is also the output of P0, the joint view of an adversary corrupting P0 and of
the environment can be perfectly simulated by obtaining said message from the ideal functionality
FFSS

OE .

5 LogLog-Depth FSS from Compact and Additive HSS

In this section we show how to use compact and additive HSS to build a loglog-depth FSS scheme
whose share distribution FFSS

SD can be realised in low communication. When combined with sections 3
and 4, this yields sublinear secure computation from compact and additive HSS. In section 5.3 we
show how to extend this construction to use the weaker primitive of Las-Vegas HSS.

5.1 From Compact and Additive HSS

5.1.1 An Overview of the Construction Let C : Fn → Fm be a log log-depth arithmetic circuit
with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs over a finite field F, and let C be the family of “partial evaluations
of C”: {

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

22

Our goal in this section is to provide a construction of a loglog-depth FSS scheme for C such
that FFSS

SD can be realised with low communication, and we do so by using compact and additive
single-function HSS (c.f. remark 14)for any function in a well-chosen function class (that of
{coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN }, as defined below).

We provide in fig. 10 a construction of loglog-depth additive FSS for C from single-function additive
HSS for the following function coefs:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the Cj(X,α1, . . . , αN),
for j ∈ [m] (which are polynomials in X, whose coefficients are themselves polynomials in α1, . . . , αN).
Because C has loglog-depth (definition 19), there are at most m · n · (1 + o(1)) such coefficients.
Furthermore, the key generation algorithm of the FSS scheme for C essentially boils down to a single
call to the share generation algorithm of the HSS scheme for coefs. Therefore, we also need to provide
an HSS scheme for coefs whose share generation can be distributed using low communication. We use
a transformation akin to hybrid encryption in order to ensure this last property: we mask the inputs
using pseudorandom generators, and reduce the problem of generating HSS shares of the inputs to
that of distributing HSS shares of the keys, which can be done generically using oblivious transfer.

More precisely, for i ∈ [N] let Gi : {0, 1}λ → Fℓi be a PRG and consider the function family
{coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN }, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . ,KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the
Cj(X, c1 − G1(K1), . . . , cN − GN (KN)), j ∈ [m] (which are polynomials in X, whose coeffi-
cents are polynomials in the bits of K1, . . . ,KN). Assuming the existence of compact and additive
single-function HSS for any function in {coefsc1,...,cN }, the construction of fig. 11 is an HSS scheme
for coefs whose share generation can be distributed using low communication (with the protocol
being provided in fig. 12).

While this assumption relating to the existence of HSS for {coefsc1,...,cN } may not seem standard, it
is weaker than each of the following assumptions:

1. HSS for NC1 and polynomial-stretch PRGs in NC1;
2. Single-function HSS for any log log-depth circuit and constant-depth PRGs with some fixed

polynomial-stretch.

5.2 Defining the LogLog-Depth FSS Scheme.

Observation 1 (Parsing Additive Shares). Let x⃗ ∈ {0, 1}n and let I ⊆ [n]. If (x⃗(1), . . . , x⃗(m))
are additive shares of x⃗, then ([x⃗(1)]I , . . . , [x⃗

(m)]I) are additive shares of [x⃗]I , where [·]I denotes the
subvector induced by the set of coordinates I.

LogLog-Depth FSS Scheme from Additive HSS

Parameters: Let N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a loglog-depth
circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over F such that the following function
family is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of (log n/ log log n)-sized subsets of
[n]:

C =
{
gα1,...,αN

: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

23

Let HSS = (HSS.Share,HSS.Eval) be an N -party additive (single-function) HSS scheme for the
function:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of
the polynomial representation of all the
Cj(X,α1, . . . , αN), j ∈ [m] (which are polyno-
mials in X, whose coefficients are themselves
polynomials in α1, . . . , αN).

// Note that since C has loglog-depth and C is (S1, . . . , Sm)-local, each of the m polynomials has
degree |Sj | and |Sj | variables, and there are therefore at most

∑m
j=1

(|Sj |+|Sj |
|Sj |

)
= m ·n · (1+o(1))

coefficients, regardless of (α1, . . . , αN).

FSS.Gen(1λ, g̃α1,...,αN
):

1. Parse g̃α1,...,αN
to retrieve (α1, . . . , αN)

2. (k1, . . . , kN)
$← HSS.Share(1λ, i, (α1, . . . , αN))

3. Output (k1, . . . , kN)

FSS.Evalj(i, ki, x
′): // x′ ∈ F|Sj | should be seen as an Sj-subset of some larger x ∈ Fℓ0 (i.e.

x′ = x[Sj]), input of FSS.Eval.

1. (p0,i, p1,i, . . .)
$← HSS.Eval(i, ki)

2. Parse (p0,i, p1,i, . . .) to retrieve shares (q0,i, q1,i, . . .) of the coefficients of Cj(·, α1, . . . , αN)
(c.f. observation 1).

3. yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . .)⊺
4. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j ← FSS.Evalj(i, ki, x[Sj])
2. Output (yi,j)j∈[m]

Fig. 10: LogLog-Depth FSS Scheme from “Single-Function” Additive HSS for every LogLog-Depth
Circuit.

Lemma 23 (LogLog-Depth FSS Scheme from “Single-Function” Additive HSS). Let N ≥
2 be a number of parties, and let C = C1∥ . . . ∥Cm be a loglog-depth circuit with n = ℓ0+ ℓ1+ · · ·+ ℓN
inputs and m outputs over F such that the following function family is (S1, . . . , Sm)-local, where
S1, . . . , Sm is some family of (log n/ log log n)-sized subsets of [n]:

C =
{
gα1,...,αN

: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

Let HSS = (HSS.Share,HSS.Eval) be an N -party (single-function) additive HSS scheme for the func-
tion:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the
coefficients of the polyno-
mial representation of all the
Cj(·, α1, . . . , αN), j ∈ [m].

Then the construction of fig. 10 is an N -party additive loglog-depth and (S1, . . . , Sm)-local FSS scheme
for C.

Proof. Consider the construction FSS = (FSS.Gen,FSS.Eval) provided in fig. 10. The fact that
FSS.Eval has loglog-depth and is (S1, . . . , Sm)-local follows immediately from inspection, and so does

24

FSS correctness (which follows from correctness of HSS). Therefore we only need to show that FSS is
a secure function secret sharing scheme. Let D ⊆ [N]. By security of HSS, for any PPT adversaries
A and A′, ∣∣∣∣∣∣∣∣Pr

b′ = b :

(x0, x1, state)← A(1λ),
b

$← {0, 1}
(x(1), . . . , x(N))← HSS.Share(xb)
b′ ← A′

(
state, (x(i))i∈D

)
− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

In particular, for every (αi)i∈[N] ∈ Fℓ1×· · ·×FℓN , {(x(i))i∈D : (x
(i))i∈[N]

$← HSS.Share(α1∥ . . . ∥αN)}
c
≈

{(x(i))i∈D : (x(i))i∈[N]
$← HSS.Share(0F

ℓ1∥ . . . ∥0FℓN)}. If we define the algorithm SimHSS as
“SimHSS(1λ, 1N , 1n, 1m) := ((x(i))i∈[N]

$← HSS.Share(0F
ℓ1∥ . . . ∥0FℓN); Output (x(i))i∈D)” then,

because the FSS.Gen essentially boils down to a single invocation of HSS.Share, for every se-
quence of functions (g̃α1,λ,...,αN,λ

)λ∈N⋆ , {(ki)i∈D : (k1, . . . , kN)
$← FSS.Gen(1λ, g̃α1,λ,...,αN,λ

)}
c
≈

{SimHSS(1λ, 1N , 1n, 1m)}, and therefore FSS is a secure function secret sharing scheme.

5.2.1 Securely Realising FFSS
SD in Low Communication. The FSS scheme FSS =

(FSS.Gen,FSS.Eval) of fig. 10 is parameterised by an additive single-function HSS scheme for the
function coefs. We provide in fig. 11 such an HSS scheme with the additional property that it yields
FSS for which FFSS

SD can be securely realised in low communication (the protocol is described in fig. 13).
As explained in the overview of section 5.1.1, we use a standard hybrid encryption trick in order to
build HSS for coefs from HSS for {coefsc1,...,cN }. This allows us to securely distribute the shares of
HSS for coefs (and hence the keys of the FSS scheme of fig. 10) by using generic secure computation
to distribute the shares of HSS for {coefsc1,...,cN } (which can be done in complexity poly(λ+N)).

Lemma 24 (FFSS
SD for the LogLog-Depth FSS scheme of fig. 10 can be realised with low

communication). Let N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a loglog-depth
circuit with n = ℓ0+ℓ1+ · · ·+ℓN inputs and m outputs over F such that the following function family
is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of (log / log log)-sized subsets of [n]:

C =
{
gα1,...,αN

: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

For i ∈ [N], let Gi : {0, 1}λ → Fℓi be a constant-depth PRG.

Let HSS = (HSS.Share,HSS.Eval) be an N -party compact and additive HSS scheme for any function
in {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN }, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . ,KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of
the polynomial representation of all the
Cj(X, c1 −G1(K1), . . . , cN −GN (KN)),
j ∈ [m] (which are polynomials in X).

Then the protocol ΠSD provided in fig. 13 UC-securely implements the N -party functionality FFSS
SD in

the FHSS
SD -hybrid model against a static, passive adversary. Furthermore, assuming oblivious transfer,

there exists a protocol (in the real world) using (N ·λ)O(1)+N(N−1) ·n · log |F| bits of communication
which UC-securely implements the N -party functionality FFSS

SD against a static, passive adversary.

The FSS scheme FSS = (FSS.Gen,FSS.Eval) of fig. 10 is parameterised by an additive single-function
HSS scheme for the function coefs. We provide in fig. 11 such an HSS scheme with the additional
property that it yields FSS for which FFSS

SD in can be securely realised in low communication. The
protocol is described in fig. 10.

5.2.2 Building HSS for coefs.

25

HSS Single-Function HSS for coefs

Parameters:

– For i ∈ [N], Gi : {0, 1}λ → Fℓi is a PRG.
– HSS′ = (HSS′.Share,HSS′.Eval) is an N -party compact and additive single-function (re-

mark 14) HSS scheme for any function in {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN },
where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . ,KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the Cj(X, c1 −
G1(K1), . . . , cN − GN (KN)), j ∈ [m] (which are polynomials in X, whose coefficents are
polynomials in the bits of K1, . . . ,KN).

HSS.Share(1λ, (α1, . . . , αN)):

1. For i = 1, . . . , N :
(a) Sample a PRG seed Ki

$← {0, 1}λ (for Gi : {0, 1}λ → Fℓi)
(b) Set ci ← αi +Gi(Ki)

2. (kHSS
′

1 , . . . , kHSS
′

N)
$← HSS′.Share(1λ, (K1∥ . . . ∥KN))

3. For i ∈ [N], set ki ← (Ki, k
HSS′

i , (c1, . . . , cN))
4. Output (k1, . . . , kN)

HSS.Eval(i, ki, coefs):

1. Parse ki as ki = (Ki, k
HSS′

i , (c1, . . . , cN))

2. (p0,i, p1,i, . . .)
$← HSS.Eval(i, kHSSi , coefsc1,...,cN)

3. Output (p0,i, p1,i, . . .)

Fig. 11: HSS Scheme for coefs.

Lemma 25. With the notations of fig. 11, if G1, . . . , GN are PRGs and HSS′ is a compact and
additive single-function HSS scheme for any function in {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1×· · ·×FℓN },
then HSS is an additive single-function HSS for {coefs}.

Proof. Let D ⊊ [N], and let A,A′ be p.p.t. adversaries. For all (α1, . . . , αN) ∈ Fℓ1×· · ·×FℓN consider
the random variables (x0 = (K1,0∥ . . . ∥KN,0), x1 = (K1,1∥ . . . ∥KN,1), state)

$← A(1λ), b $← {0, 1},
(c1, . . . , cN) := (α1 + G(K1), . . . , αN + G(KN)), (kHSS

′

1,b , . . . , kHSS
′

N,b)
$← HSS′.Share(xb), (x

(i)
b)i∈[N] :=

(Ki,b, k
HSS′

i,b , (c1, . . . , cN))i∈[N], and b′
$← A′(state, (x(i)

b)i∈D). Observe that security of HSS is equivalent
to |Pr[b = b′]− 1/2| ≤ negl(λ). By security of the PRGs (Gi)i∈[N]\D, Pr[b = b′] is only changed by at
most an negligible additive factor if the law of (ci)i∈D is changed to uniformly random. Thence, the
problem of showing |Pr[b = b′] − 1/2| ≤ negl(λ) in this modified experiment for HSS reduces to the
security of HSS′ via a standard hybrid argument.

5.2.3 Low-Communication Protocol for FFSS
SD . We now complete the construction by providing

the low-communication protocol to distribute the keys of the FSS scheme of fig. 10. The protocol itself
is relatively straightforward. The parties each sample a PRG seed and use it to mask their inputs,
then broadcast these masked values (using communication O(N · n)). The parties then use generic
MPC to distribute HSS shares of the concatenation of the N PRG seeds (the ideal functionality is
provided in fig. 12). Because the HSS scheme is compact and the input size is N · λ, this step uses
only (N · λ)O(1) bits of communication.

26

Functionality Distributed-Input HSS Share Distribution FHSS
SD

Parameters: The ideal functionality FHSS
SD is parameterised by a number of parties N and an

N -party HSS scheme HSS = (HSS.Share,HSS.Eval).

FHSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) from each party Pi.

Output: Run (x(1), . . . , x(N))
$← HSS.Share(1λ, (x1∥ . . . ∥xN)); Output x(i) to each party Pi

(1 ≤ i ≤ N).

Fig. 12: Ideal functionality FHSS
SD for the generation of HSS shares of the concatenation of the parties

inputs.

Protocol FSS Share Distribution ΠSD

Parties: P1, . . . , PN .

Parameters:

– FSS = (FSS.Gen,FSS.Eval) is the N -party loglog-depth FSS scheme defined in fig. 10;
(FSS.Evalj)j∈[m] are defined as in fig. 10. Implicitly, ΠSD inherits the parameters C : Fℓ0 ×
Fℓ1 × · · · × FℓN → Fm, C, (Sj)j∈[m],HSS, coefs of FSS.

– For i ∈ [N], Gi : {0, 1}λ → Fℓi is a constant-depth PRG.

Hybrid Model: The protocol is defined in the FHSS
SD -hybrid model.

Input: Each party Pi (i ∈ [N]) holds input xi ∈ Fℓi .

The Protocol: Each party Pi (for i ∈ [N]) does the following:

1. Sample Ki
$← {0, 1}λ and set ci ← xi +Gi(Ki)

2. For j ∈ [N] \ {i} (in parallel), send ci to Pj and wait to receive cj from Pj

3. Send (input, i,Ki) to FHSS
SD and wait to receive kHSSi from FHSS-SD

4. Set kFSSi ← (Ki, k
HSS
i , (c1, . . . , cN))

5. Output kFSSi

Fig. 13: N -party protocol for the share distribution of the loglog-depth FSS scheme from additive
HSS of fig. 10.

Lemma 26 (FFSS
SD for the LogLog-Depth FSS scheme of fig. 10 can be realised with low

communication). Let N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a loglog-depth
circuit with n = ℓ0+ℓ1+ · · ·+ℓN inputs and m outputs over F such that the following function family
is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of (log / log log)-sized subsets:.

C =
{
gα1,...,αN

: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

For i ∈ [N], let Gi : {0, 1}λ → Fℓi be a constant-depth PRG.

27

Let HSS = (HSS.Share,HSS.Eval) be an N -party compact and additive HSS scheme for any function
in {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN }, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . ,KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of
the polynomial representation of all the
Cj(X, c1 −G1(K1), . . . , cN −GN (KN)),
j ∈ [m] (which are polynomials in X).

Then the protocol ΠSD provided in fig. 13 UC-securely implements the N -party functionality FFSS
SD in

the FHSS
SD -hybrid model against a static, passive adversary. Furthermore, assuming oblivious transfer,

there exists a protocol (in the real world) using (N ·λ)O(1)+N(N−1) ·n · log |F| bits of communication
which UC-securely implements the N -party functionality FFSS

SD against a static, passive adversary.

Proof. There are two separate claims in lemma 26.

– UC-Security of ΠSD in the FHSS
SD -hybrid model. Let A be a semi-honest, static adversary that

interacts with parties P1, . . . , PN running protocol ΠSD in the FHSS
SD -hybrid model. Let us describe

a simulator Sim such that no environment Z can distinguish with non-negligible probability
whether it is interacting with A and ΠSD in the FHSS

SD -hybrid model, or with Sim and FFSS
SD . Let

D ⊊ [1, N] be the set of statically corrupted parties and let (xi)i∈D be their inputs. Sim invokes
an internal copy of A, and simulates communication with the environment in the standard way:
Every input value that Sim receives from Z is written on A’s input tape (as if coming from A’s
environment), and every output value written by A on its output tape is copied to Sim’s own
output tape (to be read by Z). Sim simulates the protocol’s execution in the following manner:

1. For each i ∈ D:
• Sim sends (input, i, xi) to FFSS

SD on behalf of the corrupted party Pi, and waits to receive
kFSSi .

• Sim parses kFSSi as kFSSi = (Ki, k
HSS
i , (c1, . . . , cN))

2. For each (i, j) ∈ ([N] \D)×D, Sim writes ci on A’s input tape (as if the honest party Pi sent
ci to Pj).

3. Sim simulates the ideal functionality FHSS
SD by writing kHSSi for i ∈ D on A’s input tape (as if

the ideal functionality FHSS
SD sent kHSSi to each corrupted party Pi).

It follows from inspection that this simulation is perfect.
– Low communication protocol in the real world. Seminal results on completeness of OT for MPC,

instantiating FHSS
SD with an oblivious transfer (protocol) can be done with communication (N +

λ)O(1).

5.3 From Compact and Additive HSS with Errors

In this section, we give a new construction of loglog-depth additive FSS scheme from additive HSS.
In contrast to the construction of the previous section, this construction starts from a Las Vegas HSS
scheme, i.e., an HSS scheme where each output has a non-negligible correctness error, which can be
reduced to an arbitrarily small inverse polynomial function (see Definition 15). A core ingredient of
our construction, beyond a Las Vegas HSS scheme, is a distributed point function (DPF, [GI14]):
a 2-party FSS scheme for the class of point functions fα,β : {0, 1}ℓ → G such that fα,β(α) = β,
and fα,β(x) = 0 otherwise. A sequence of works [GI14, BGI15, BGI16b] has led to highly efficient
constructions of DPF schemes from any pseudorandom generator (PRG). (In fact, as one of the two
parties will know the identity of the secret nonzero evaluation input, the weaker tool of a punctured
pseudorandom function will suffice for the construction as given.)

Theorem 27 (PRG-based DPF [BGI16b]). Given a length-doubling PRG PRG, and assuming
|F| ≤ 2O(ℓ), there exists a DPF for point functions fα,β : {0, 1}ℓ → F with key size O(ℓ · λ) bits. The
key generation algorithm Gen and the evaluation algorithm Eval invoke PRG at most O(ℓ) times.

28

5.3.1 Additive FSS Scheme from Las Vegas Additive HSS. In this section, we focus our
attention to the (N +1)-party setting with N = 2, in line with the fact that all known instantiations
of Las Vegas HSS are for 2 parties. As in Section 5.2, we consider a circuit C with m outputs
(denoting Ci the circuit computing the i-th) output and n = ℓ0 + ℓ1 + ℓ2 inputs, such that the
functions x→ C(α0, α1, x) are all (log / log log)-local and (log / log log)-degree (for any possible choice
of (α0, α1); note that this holds in particular when C is itself a (log log− log log log)-depth circuit).
For j = 1 to m, we let Sj denote the (log n/ log log n)-sized subset of entries of x that influences
C(α0, α1, x).
Let HSS = (HSS.Share,HSS.Eval) be a 2-party Las Vegas additive HSS scheme for a class F such
that coefs ∈ F , where coefs(α0, α1) computes the coefficients of the representation of Cj(α0, α1, ·) as
multivariate polynomials for j = 1 to m (there are at most

(
2n
n

)
= n(1 + o(1)) such coefficients for

each Cj(α0, α1, ·)).
Note that the definition of Las Vegas HSS (Definition 15) guarantees that the evaluation is (verifiably)
correct with probability 1− δ, for some inverse polynomial bound δ. Without loss of generality, when
we homomorphically evaluate functions with multiple outputs, we can actually assume that each
output fails with independent probability δ: it suffices for this to evaluate individually the function
restricted to each of its output, and to use a nonce in Eval to guarantee (pseudo)-independent failure
probabilities (see [BGI16a] for discussions about this). Furthermore, denoting B a bound on the total
number of outputs of the target function, setting the individual failure bounds δ of each output to
1/B guarantees an expected constant number of failures overall. Then, by a straightforward Chernoff
bound, one can assume that the total number of⊥ flags obtained by any party is at most λ, except with
probability negl(λ). Therefore, to simplify the description, we slightly change the template definition
of HSS.Eval:
– We assume that HSS.Eval returns a list T of outputs, together with a list flags of all the positions

of the lists for which a ⊥ flag was raised;
– we write HSS.Eval(coefs, s, λ) to indicate that coefs is homomorphically evaluated on a share s

such that the total number of ⊥ flags output by HSS.Eval (i.e. the size of flags) is bounded by λ
with overwhelming probability.

LogLog-Depth FSS Scheme from Las Vegas HSS

Parameters: A 2-party Las Vegas additive HSS scheme HSS = (HSS.Share,HSS.Eval) for a
class F such that coefs ∈ F , where coefs(α0, α1) computes the (polynomially many) coefficients
of the representation of Cj(·, α0, α1) as multivariate polynomials for j = 1 to m. Let B be the
number of outputs of coefs. In the description below, we consider two virtual parties, P0 and
P1. We use the expression “sample X for Pi” to indicate that X is sampled using the random
tape of Pi.

FSS.Gen(1λ, C(α0, α1, ·)):

1. Let (s0, s1) ← HSS.Share(α0, α1). For i ∈ {0, 1}, sample seedi
$← {0, 1}λ. Define Ri ←

PRG(seedi) to be the random tape of the (virtual) party Pi.
2. For i ∈ {0, 1}, compute (Ti, flagsi)

$← HSS.Eval(coefs, si, λ) for Pi. We assume that |flagsi| = λ
(if |flagsi| > λ, we restart from scratch; else, we pad flagsi with arbitrary indices until
|flagsi| = λ).

3. ∀i ∈ {0, 1}, let flagsi = {ji,1, · · · , ji,λ}. For k = 1 to λ, set Ti[ji,k] to 0.
4. ∀i ∈ {0, 1}, for k = 1 to λ, define fi,k to be the point function which evaluates to

coefsji,k(α0, α1) − T1−i[ji,k] on ji,k (and to 0 everywhere else), and run (ti0,k, t
i
1,k)

$←
DPF.Gen(fi,k) using fresh random coins.

5. Set ki ← (si, seedi, flagsi, (t
0
i,k, t

1
i,k)k≤λ) for i = 0, 1, and output (k0, k1).

FSS.Evalj(i, ki, x
′): we view x′ as x[Sj], i.e., the size-(log n/ log log n) subset of entries of some

vector x, indexed by Sj . Parse ki as (si, seedi, flagsi, (t
i
i,k, t

i
1−i,k)k≤λ). In the following, use Ri =

PRG(seedi) as random tape, matching the coins used in FSS.Gen.

1. Compute (Ti, flagsi)
$← HSS.Eval(coefs, si, λ). For each j ∈ flagsi, set Ti[j] to 0.

29

2. For k = 1 to λ, for j = 1 to B, compute cji,k ← DPF.Gen(t0i,k, j) + DPF.Gen(t1i,k, j). Set
Ti[j]← Ti[j] +

∑λ
k=1 c

j
i,k.

3. Parse Ti to retrieve shares (q0,i, q1,i, . . .) of the coefficients of Cj(α0, α1, ·) (such parsing is
possible because the shares are additive, c.f. observation 1).

4. Set yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . .)⊺.
5. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j
$← FSS.Evalj(i, ki, x[Sj])

2. Output (yi,j)j∈[m]

Fig. 14: LogLog-Depth FSS Scheme from Las Vegas Additive HSS for every LogLog-Depth Circuit.

Lemma 28 (LogLog-Depth FSS Scheme from Las Vegas HSS). Let C = C1∥ . . . ∥Cm be
a circuit with n = ℓ0 + ℓ1 + ℓ2 satisfying the loglog-depth constraint described above. Let HSS =
(HSS.Share,HSS.Eval) be a 2-party Las Vegas additive HSS scheme for a function class containing the
coefs function. Then the construction of fig. 14 is a 2-party additive loglog-depth FSS scheme for C.

Proof. Consider the construction FSS = (FSS.Gen,FSS.Eval) provided in fig. 14. loglog-depth is identi-
cal to that of the previous construction (from Figure fig. 10). Correctness follows from the correctness
of the HSS scheme, and from that of the DPF scheme. Concretely:

1. With probability 1, after computing (T0, flags0)
$← HSS.Eval(coefs, s0, λ) and (T1, flags1)

$←
HSS.Eval(coefs, s1, λ), for every j /∈ flags0 ∪ flags1, T0[j] + T1[j] = coefsj(α0, α1).

2. After updating Ti[j] to Ti[j] +
∑λ

k=1 ci,k (in step 2), we have

T0[j] + T1[j] = coefsj(α0, α1) +

λ∑
k=1

(cj0,k + cj1,k),

and it holds that cj0,k + cj1,k = f0,k(j) + f1,k(j) = 0, by correctness of the DPF scheme, and since
f0,k and f1,k are point functions which (in particular) evaluate to 0 on all j /∈ flags0 ∪ flags1.

3. For every j ∈ flags0 \ flags1, we have T0[j] = 0 after step 1, and T1[j] equal to some value v. Then
after step 2, we have

T0[j] + T1[j] = v +

λ∑
k=1

(cj0,k + cj1,k),

where cj0,k + cj1,k = f0,k(j) + f1,k(j). Now, since j /∈ flags1, f1,k(j) = 0 for all k, and since
j ∈ flags0, there is exactly one k such that f0,k(j) ̸= 0. For this k, f0,k = coefsj(α0, α1) − v.
Therefore, T0[j] + T1[j] = v + coefsj(α0, α1)− v.

4. The cases j ∈ flags1 \ flags0 and j ∈ flags0 ∩ flags1 are similar (in the latter, there will be exactly
one k where f0,k(j) is non-zero, and one k′, possibly equal to k, where f0,k′(j) is non-zero).

Therefore, the (T0[j], T1[j])j are indeed additive shares of the outputs of coefs on input (α0, α1), hence
(x′)⊗|Sj | · (q0,i, q1,i, · · ·)⊺ = Q(x′), where Q is the |Sj |-variate polynomials computing Cj(α0, α1, x)
for any x such that x′ = x[Sj].
We clarify a minor technicality regarding the analysis above: since Las Vegas HSS has probability 1
of yielding correct shares of the output whenever the flags are equal to ⊤, this remains true when the
randomness of Eval is sampled as Ri ← PRG(seedi) for party Pi. However, to guarantee correctness, we
must also show that with overwhelming probability, |flagsi| ≤ λ. When using true random coins, this
holds with overwhelming probability by a straightforward Chernoff bound. When using pseudorandom
coins, as we do here, this statistical property holds under the assumption that the PRG is secure (it
is a standard fact that the output of a secure PRG must pass all polynomial-time verifiable statistical

30

tests); hence, correctness holds under the existence of a secure PRG. This concludes the proof of
correctness.
It remains to show that FSS is a secure function secret sharing scheme. As before, it follows from the
fact that HSS is a secure homomorphic secret sharing scheme for which we have a simulator SimHSS.
We additionally mask each output with 2λ outputs of (2λ independent instances of) a DPF, which
can also be simulated using the simulator SimDPF.

5.3.2 Securely Realising Gen in Low Communication. We describe a low-communication
two-party protocol for securely distributing (k0, k1)

$← FSS.Gen(1λ, C(α0, α1, ·)) between two parties,
P0 and P1, holding α0 and α1 as respective inputs, in the honest-but-curious model.

Private information retrieval. A private information retrieval is a two party protocol between a server
S holding a vector z (the database) and a client C holding an integer i, where only the client receives
an output. The security parameter λ and the length n(λ) = poly(λ) = |z| of the server database are
a common (public) input. We let ViewS(λ, z, i) denote the view of S during its interaction with C on
respective inputs (z, i) with common input (λ, n = |z|), and by OutC(λ, z, i) the output of C after
the interaction.

Definition 29 (Private Information Retrieval). A private information retrieval for database
size n = n(λ) (n-PIR) is an interactive protocol between a PPT server S holding a vector z ∈ Fn and
a PPT client C holding an index i ≤ n which satisfies the following properties:

– Correctness: there exists a negligible function µ such that for every λ ∈ N, z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = zi] ≥ 1− µ(λ).

– Security: there exists a negligible function µ such that for every PPT adversary A, large enough
λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n:

|Pr[A(1λ+n,ViewS(λ, z, i)) = 1]− Pr[A(1λ+n,ViewS(λ, z, j)) = 1]| ≤ µ(λ, n).

– Efficiency: A PIR is polylogarithmic if its communication complexity c(λ, n), measured as the
worst-case number of bits exchanged between S and C (over their inputs (z, i) and their random
coins), satisfies c(λ, n) = poly(λ, log n).

We define a private shared information retrieval (PSIR) analogeously to a private information re-
trieval, except that the client C with input i and the server S with input z get as output random
shares of zi.

The protocol. As in the previous constructions, we assume that there is a succinct protocol (with
communication linear in the input size, up to an additive poly(λ) term) for distributing the shares
of HSS. Such succinct protocols are known for all known Las Vegas HSS. Furthermore, we assume
that HSS.Eval can be run on tuples of input shares (generated separately), rather than individ-
ual input shares; that is, given (x(0), x(1)) ← HSS.Share(1λ, x) and (y(0), y(1)) ← HSS.Share(1λ, y),
Eval(i, f, (x(i), y(i))) for i = 0, 1 produces shares of f(x, y). We note that known constructions of Las
Vegas HSS [BGI16a,BKS19] have a setup phase that generates public parameters, such that HSS.Eval
can be run on any tuple of HSS shares generated from the same public parameters.
The protocol operates in a hybrid model, with access to the following functionalities:

– A share distribution functionality FHSS-SD (as given on Figure fig. 12).
– A private shared information retrieval functionality FPSIR which receives i from a client, and

(z, r) ∈ Fn×F from a server. It outputs zi− r to the client, and nothing to the server. (Note that
given a PIR, our reduction from PIR to PSIR securely instantiates this functionality).

– An ideal ‘selection’ functionality Fsel which, given (vb1, · · · , vbλ) ∈ Fλ and (flagb1, · · · , flag
b
λ) ∈

{⊤,⊥}λ from each party Pb, returns uniformly random shares of v0i +v1i , where i is the first index
such that flag0i = flag1i = ⊤.

– An ideal functionality FDPF which distributes DPF keys given shares of (the description of) a
point function:
• FDPF takes as input (wb, j) from one party Pb, and (w1−b,⊥) from P1−b;
• it defines f the point function which evaluates to w = w0+w1 on input j (and to 0 elsewhere);
• it outputs (t0, t1)

$← DPF.Gen(f) to P0 and P1.

31

Succinct Protocol for the LogLog-Depth FSS Scheme from Las Vegas HSS

1. P0 and P1 call FHSS-SD on respective inputs α0, α1, and receive (s0, s1)
$← HSS.Share(α0, α1).

Each party Pi picks seedi
$← {0, 1}λ and stretches Ri ← PRG(seedi).

2. For i ∈ {0, 1}, Pi samples (Ti, flagsi)
$← HSS.Eval(coefs, si, λ) using Ri as random tape. We

assume that |flagsi| = λ (if |flagi| > λ, Pi aborts the protocol; else, Pi pads |flagi| with
dummy items until |flagsi| = λ).

3. For i = 0, 1, and for k = 1 to λ, denoting {ji,1, · · · , ji,λ} = flagsi, Pi sets Ti[ji,k] to 0.
4. For i = 0, 1, and for k = 1 to λ,

(a) Pi and P1−i call FPSIR, where Pi plays the role of the client with input ji,k, and P1−i

samples u1−i
i,k

$← F and plays the role of the server with inputs (T1−i, u
1−i
i,k). Let ui

i,k

denote Pi’s output. Note that by correctness of the PSIR scheme, u0
i,k + u1

i,k = Ti[ji,k].
(b) Pi and P1−i call FHSS-SD on input ji,k from Pi, and get respective outputs (s0i,k, s

1
i,k)

$←
HSS.Share(ji,k).

(c) Let coef(α0, α1, j) denote the function computing coefsj(α0, α1). Each party Pb locally
run λ independent instances (vbi,k,ℓ, flag

b
i,k,ℓ)

$← HSS.Eval(coef, (sb, s
b
i,k), 1/2) for b = 0, 1

and ℓ = 1 to λ.
(d) P0 and P1 call Fsel, where Pb’s inputs are all candidate shares (vbi,k,ℓ)ℓ≤λ and correspond-

ing flags (flagbi,k,ℓ)ℓ≤λ. Recall that Fsel identifies the first ℓ such that flag0i,k,ℓ = flag1i,k,ℓ =
⊤ (which exists with overwhelming probability), reconstructs vi,k = v0i,k,ℓ + v1i,k,ℓ (which
is equal to coef(α0, α1, ji,k) = coefsji,k(α0, α1), by correctness of the HSS scheme), and
outputs fresh random shares (v0i,k, v

1
i,k) of vi,k to P0 and P1.

(e) P0 and P1 call FDPF, where each party Pb has an wb
i,k ← vbi,k−ub

i,k; Pi has additional input
ji,k, and P1−i has additional input ⊥. FDPF outputs (t0i,k, t

1
i,k)

$← DPF.Gen(fi,k) to P0

and P1, which are DPF shares of fi,k, the point function evaluating to wi,k = w0
i,k +w1

i,k

on ji,k, and 0 elsewhere.
(f) Each party Pb outputs kb ← (sb, seedb, flagsb, (t

0
b,k, t

1
b,k)k≤λ).

Fig. 15: A succinct protocol for distributing shares of the loglog-depth FSS scheme of Figure fig. 14

Theorem 30. Assume that (HSS.Share,HSS.Eval) is a secure Las Vegas additive HSS scheme where
HSS.Eval can run on tuples of HSS shares. Then the protocol from Figure fig. 15 securely computes
the procedure FSS.Gen(1λ, C(α0, α1, ·)) of Figure fig. 14 in the (FHSS

SD ,FPSIR,Fsel,FDPF)-hybrid model.
Furthermore, instantiating FHSS

SD with a succinct HSS share distribution protocol (with communication
ℓ0+ℓ1+poly(λ)), FPSIR with a PSIR with polylogarithmic efficiency, and Fsel,FDPF with generic secure
computation protocols, yield a protocol with total communication n+ poly(λ) · polylog(n).

Proof. Correctness follows by inspection: steps (1) to (3) directly emulate the step (1) to (3) of
FSS.Gen. In step (4.a), by correctness of the PSIR, the parties obtain additive shares (u0

i,k, u
1
i,k) of

Ti[ji,k]. Step (4.b) to (4.d) let the parties generate additive shares of the value coefsji,k(α0, α1) – that
is, the value that should have been shared in (T0[ji,k], T1[ji,k]) if there was no error. This is done
by first secure sharing ji,k with HSS.Share, then running λ times the HSS.Eval algorithm with error
probability 1/2. Except with probability 1/2λ, it necessarily holds that on one of the λ executions,
both parties got a ⊤ flag (indicating no error). Step (4.d) runs a generic protocol which, given the
λ outputs of each party and their flags, identifies such an execution, reconstructs the output (which
is equal to coefsji,k(α0, α1) by Las Vegas correctness of HSS), and re-shares it (this is necessary to
avoid leaking the position of the first correct share). The generic protocol in (4.e) outputs keys for a
point function fi,k which evaluates to wi,k on ji,k. We have

wi,k = w0
i,k + w1

i,k = −u0
i,k − u1

i,k + v0i,k + v1i,k = −Ti[ji,k] + coefsji,k(α0, α1),

hence fi,k matches its definition in FSS.Gen. This concludes the proof of correctness. We turn our
attention to security. Assume that P1 is corrupted; the other case follows symmetrically. The simulator
Sim, given the target output k1 ← (s1, seed1, flags1, (t

0
1,k, t

1
1,k)k≤λ) of P1, emulates P0 as follows (note

that steps 2, 3, and 4.c only require local computation):

32

– (Step 1) It emulates FHSS-SD and sets P1’s output to s1.
– (Step 4.a) It emulates the λ invocations of FPSIR where P1 plays the role of the client (i.e. when

i = 1), sampling P1’s output u1
1,k uniformly over F.

– (Step 4.b) For i = 0, 1 and k = 1 to λ, it uses SimHSS to simulate P1’s HSS share of ji,k. Then, it
emulates FHSS

SD and sets P1’s outputs to be the simulated shares of ji,k.
– (Step 4.d) It emulates the 2λ invocations of Fsel, and set P1’s outputs from the functionality to

independent uniformly random values.
– (Step 4.e) It emulates the 2λ invocations of FDPF, and set P1’s outputs from the functionality to

(t01,k, t
1
1,k)k≤λ.

Security follows from a sequence of straightforward hybrids: H0 is the initial game. Hi,k
1 replaced

the HSS share of ji,k by a simulated HSS share using SimHSS, for i = 0 to 1 and k = 1 to λ.
Indistinguishability follows by 2λ invocations of the HSS security. H2 replaces the λ invocations of
FPSIR where P1 plays the role of the client by emulations of the functionality with a uniformly random
output u1

1,k; this game is perfectly indistinguishable from H1,λ
1 , since the outputs are distributed

exactly as in the honest game. H3 replaces the 2λ invocations of Fsel by emulations of the functionality
with uniformly random outputs, which is perfectly indistinguishable from H2, since the outputs of Fsel

are distributed exactly as in H2. Eventually, H3 replaces the 2λ invocations of FDPF by emulations
of the functionality with outputs ti1,k for i = 0, 1 and k = 1 to λ. Since the outputs are the same as
in H3, this game is perfectly indistinguishable from the previous game. This concludes the proof.

6 Instantiations

In section 6.1, we combine the results of sections 3 to 5 and achieve sublinear secure computation from
generic assumptions (HSS and forms of PIR/OLE). In section 6.2, we build four-party compact and
additive HSS for loglog-depth correlations from standard assumptions (DCR and constant-locality
PRGs). In section 6.3, we show how to combine all the above (as well as existing constructions of 2-
party HSS) in order to build sublinear secure 3- and 5-party computation from standard assumptions
not previously known to imply it (in particular, they are not known to imply FHE).

6.1 Sublinear-Communication Secure Multiparty Computation from PIR and
Additive HSS

Section 4 established that FFSS
OE for local FSS schemes can be based on batch OPE (with correlated

inputs) and section 5 builds local FSS schemes (such that FFSS
SD can be realised with low communica-

tion) from additive HSS (with or without errors). Plugging these two constructions into the template
of section 3 yields sublinear secure multiparty computation from batch OPE and additive HSS.

Theorem 31 (Sublinear-Communication Secure (N + 1)-Party Computation of Shallow
Circuits). Let N ≥ 2 be a number of parties, and let C : Fn → Fm be a depth-d (d ≤ log log n −
log log log n) arithmetic circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs over F. Assuming the existence of:
– A family of PRGs Gi : {0, 1}λ → Fℓi for i ∈ [N],
– An N -party compact and additive single-function HSS scheme for any function in the class
{coefsα1,...,αN

: (α1, . . . , αN) ∈ Fℓ1×· · ·×FℓN }, where coefsx1,...,xN
is the function which, on input

(K1, . . . ,KN) ∈ ({0, 1}λ)N , computes the (polynomially many) coefficients of the representation
of Cj(·, α1 −G1(K1), . . . , αN −GN (KN)) as ℓ0-variate polynomials for j = 1 to m,

– A protocol for UC-securely realising FcorrOPE using communication CommcorrOPE(k,Nvar,deg, w),
where k is the number of OPEs in the batch, Nvar is the number of variables of each polynomial,
deg is the degree of each polynomial, and w is the size of the joint input vector,

There exists a protocol using (N +λ)O(1)+N · [(N −1) ·n+m] · log |F|+N ·CommcorrOPE(m, 2d, 2d, n)
bits of communication to securely compute C amongst (N +1) parties (that is, to UC-securely realise
FSFE(C)) in the presence of a semi-honest adversary statically corrupting any number of parties.

Proof. The proof of theorem 31 is obtained by combining the results of sections 3 to 5. Our starting
point is the generic template of theorem 18 in the (FFSS

SD ,FFSS
OE)-hybrid model, which uses N ·m · log |F|

bits of communication and makes a single call to FFSS
SD , and N to FFSS

OE . We use the FSS scheme of
lemmas 23 and 26, for which, by lemma 22, each call to FFSS

OE can be implemented using communication
CommcorrOPE(m, 2d, 2d, n) and the single call to FFSS

SD can be implemented using communication (N ·
λ)O(1) +N(N − 1) · n · log |F|.

33

6.2 Four-Party Additive HSS from DCR

In this section, we build a 4-party compact homomorphic secret sharing scheme for the class of loglog-
depth circuits. Our starting point is the (non compact) 4-party HSS for constant degree polynomials
recently described in [COS+22]. At a high level, the scheme works by nesting a 2-party HSS scheme
inside another 2-party HSS scheme. Concretely, let HSSin and HSSout be two 2-party HSS schemes.
Then, the following is a 4-party HSS:

– HSS.Share(x) : run (x(0), x(1)) ← HSS.Sharein(x). For b = 0, 1, run (x(b,0), x(b,1)) ←
HSS.Shareout(x

(b)). Output (x(0,0), x(0,1), x(1,0), x(1,1)).
– HSS.Eval(i, f, x(i)) : parse i as (b, c) ∈ {0, 1}2. Define Gin(f) : x

(b,c) → HSSin.Eval(b, f, x
(b,c)) and

run y(i) ← HSSout.Eval(c,Gin(f), x
(b,c)).

Therefore, to get 4-party HSS for a function class F , we need (1) a 2-party HSSin for F , and (2) a
2-party HSS.out for the class F ′ = Gin(F). We state the resulting theorem in theorem 32.

Theorem 32 (Four-Party Additive HSS for Constant-Depth Circuits from DCR). As-
suming the superpolynomial hardness of DCR and the existence of PRGs with constant locality, there
exists a four-party HSS scheme for the class of loglog-depth circuits with nin inputs; the HSS scheme
has share size nin(1 + o(1)). Furthermore, there exists a protocol with communication complexity
nin · (4+ o(1)) (for large enough nin) for securely realising the four-party functionality FHSS

SD of fig. 12
for the generation of HSS shares of the concatenation of the parties inputs.

6.2.1 4-party HSS from DCR. The work of [COS+22] shows how to instantiate the above
template, using the recent DCR-based HSS scheme of [OSY21] to instantiate both HSSin and HSSout,
when the class F is restricted to constant-degree multivariate polynomials. Consider for simplicity
the evaluation of a single degree-c monomial

∏c
i=1 xi (handling arbitrary polynomials is done by

computing shares of the deg-c monomials separately, and summing the shares). Fix a modulus N for
the Paillier encryption scheme, and let d be the Paillier secret key, i.e., an integer such that given
any Paillier encryption C = (1 +N)xRn mod N2 of an input x, we have Cd = (1 +N)m mod N2.
In the scheme of [OSY21], an HSS share of xi contains (1) additive shares (over Z) of the secret
key d and (2) Paillier encryption Ci, (Ci,j)j≤|d| of xi, (xi · dj)j≤|d|, where the dj are the bits of d.
A core observation is that the ciphertexts Ci, Ci,j can remain public (in the sense that they will
be directly included in all 4-party shares, and not reshared), since they are included in all shares:
only the shares of d must be re-shared (bitwise) with the outer scheme. Now, the homomorphic
evaluation of f(x1, · · · , xc) =

∏c
i=1 xi consists in c− 1 sequential homomorphic multiplication, where

each homomorphic multiplication boils down to parallel calls to the function

MulC,v,N : d→ DDLog(Cd mod N2) + v mod N,

where v is a value known to both partie (concretely, v = Fk(id) where id is public and k is a PRF
key known to both parties, which can be included “in the clear” in the four 4-party shares), DDLog
is the function DDLog : X → ⌊X/N⌋ · (X mod N)−1 mod N , and C is one of the Paillier ciphertexts.
Now, since the ciphertexts C are known during the homomorphic evaluation of MulC,v,N by the outer
scheme, we can rewrite

Cd =

|d|∏
j=1

(C2j−1

)dj mod N2, (Cd mod N)−1 =

|d|∏
j=1

(C−2
j−1

)dj mod N2.

Since iterated products, modular reductions, rounding, and integer division are all in NC1, the
entire computation of Mul is therefore an NC1 function (and so are parallel calls to Mul). From
here, [COS+22] concludes that for every constant c, the homomorphic computation of

∏c
i=1 xi inside

the inner HSS remains an NC1 function overall. Therefore, it suffices for the outer HSS to use another
DCR-based HSS (with a different Paillier modulus N ′ = O(N)), since the latter handles all NC1

computations.

34

6.2.2 Handling loglog-depth circuits. The above nesting approach is limited to constant degree
polynomials. At a high level, this stems from the fact that computing c sequential homomorphic Mul
requires a runtime of the form poly(λ)c, where poly(λ) denotes the runtime of computing a single
Mul operation. This overhead stems from the fact that the outer HSS natively handles only functions
represented as restricted multiplication straight-line (RMS) programs, and converting an arbitrary
circuit to an RMS program incurs a cost which is exponential in the circuit depth. The inputs to (the
parallel calls to) Mul have size poly(logN) = poly(λ), the depth of the Mul circuit (which is in NC1)
is therefore O(log λ), hence the overall depth of the homomorphic computation is O(c · log λ), hence
the poly(λ)c = 2O(c·log λ) overhead.
To circumvent this limitation, we rely on complexity leveraging, and make logN slightly subpolyno-
mial in λ. Looking ahead, this will translate to assuming the superpolynomial hardness of the DCR
assumption. Writing logN = κ and by the above analysis, the overall runtime of evaluating a degree-c
monomial is κcst·c, for an appropriate constant cst. Setting κ← λ1/c, the above becomes polynomial
in λ, at the cost of assuming that DCR is secure against poly(λ) = κO(c) adversaries. For example,
setting c = log(λ) = O(log κ) means that we need the DCR assumption to hold against adversaries
running in time κO(log κ), i.e., assuming the superpolynomial hardness of DCR. Now, over F2, any
c-local function (hence, for example, every log c-depth boolean circuit) can be written as a sum of
monomials of degree at most c.

6.2.3 Compactness and succinct share distribution. The above scheme is not compact: a
4-party HSS share of a length-m vector x⃗ has size poly(κ) ·m. We show here how to transform it into
a compact scheme, with share size m+ o(m) · poly(κ), assuming the existence of local pseudorandom
generators. Local PRGs have been introduced in a seminal work of Goldreich [Gol00]. Since their
introduction, they have been investigated in numerous works [MST03, AHI04, CEMT09, CEMT14,
OW14,AL16,CDM+18], and are regularly used to achieve advanced cryptographic primitives, such
as secure computation with constant computational overhead [IKOS08, ADI+17] or more recently
indistinguishability obfuscation [JLS21, JLS22]. A local PRG G with stretch s stretches a seed seed
of size t into a length-t1+s pseudorandom string, such that every bit of G(seed) is a function of a
constant number of bits of seed.
To achieve compactness, we use a standard hybrid encapsulation technique with a local PRG. Con-
cretely, let HSS be the non-compact 4-party HSS scheme constructed above. We construct a new
scheme HSS′ as follows:

– HSS′.Share(x) : given a length-m vector x of inputs, sample four seeds (seedi)i≤4 for a local PRG G
with stretch s and seed size m1/(1+s). Compute (x(i))i≤4 ← HSS.Share(seed1||seed2||seed3||seed4),
and y ← x⊕G(seed1)⊕G(seed2)⊕G(seed3)⊕G(seed4). Output (x(i), z) to each party i.

– HSS′.Eval(i, f, (x(i), z)) : define the function

f ′z : (seedi)i≤4 → f

(
z ⊕

4⊕
i=1

G(seedi)

)
.

Output y(i) ← HSS.Eval(i, f ′z, x
(i)).

Correctness is clear by inspection. The security analysis of HSS′ proceeds in two simple games: in
the first game, using the security of HSS, simulate the shares of (seed1, · · · , seed4). In the second
game, since the seeds seedi are not used anymore, invoke the pseudorandomness of G to replace z by
a uniformly random string. For efficiency, observe that since G has constant locality (and constant
depth), whenever f is a loglog-depth function, so is f ′.
It remain to discuss compactness. The size of a share is |x(i)| + |z| = poly(κ) · m1/(1+s) + m =
m+ o(m) · poly(κ). Furthermore, the scheme admits a straightforward succinct protocol for securely
distributing shares of an input vector x. Assume that the parties Pi have shares xi of the input
vector x (the case where x is the concatenation of their joint input is directly implied by this case).
Each party Pi locally samples seedi, and the party jointly run a generic secure computation pro-
tocol (e.g. using DCR-based oblivious transfer, with security parameter κ) for securely computing
HSS.Share(seed1||seed2||seed3||seed4). Then, each party Pi broadcasts zi ← xi⊕G(seedi), and all par-
ties reconstruct z =

⊕4
i=1 zi. The total communication of the protocol is 4m + poly(κ, o(m)), which

is m · (4 + o(1)) for a large enough m.

35

6.3 Sublinear-Communication Secure Multiparty Computation from New
Assumptions

Combining section 6.1 with instantiations of corrSPIR and additive HSS from the literature (and
section 6.2) yields sublinear-communication secure 3- and 5-party computation of shallow boolean
circuits from a variety of assumptions. Layered boolean circuits are boolean circuits whose gates can
be arranged into layers such that any wire connects adjacent layers. It is well-known from previous
works [BGI16a, Cou19, CM21] that sublinear protocols for low-depth circuits translate to sublinear
protocols for general layered circuits: the parties simply cut the layered circuit into low-depth “chunks”,
and securely evaluate it chunk-by-chunk. For each chunk, a sublinear secure protocol is invoked to
compute the low-depth function which maps shares of the values on the first layer to shares of the
values on the first layer of the next chunk.

Theorem 33 (Secure (N + 1)-Party Computation with Sublinear Communication from
New Assumptions).

– 3-PC of Shallow Circuits: Let C : {0, 1}n → {0, 1}m be a size-s, depth-d (d ≤ log log s −
log log log s) boolean circuit. Let ϵ ∈ (0, 1). Assuming the Learning Parity with Noise (LPN)
assumption with dimension dim = poly(λ), number of samples num = (n + m)1/3 · λO(1), and
noise rate ρ = numϵ−1 (for some constant 0 < ϵ < 1) together with any of the following additional
computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the security against time-
λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity λO(1)+O(n+m+2d+2d ·poly(λ) ·
polylog(n) · ((n+m)2/3 + (n+m)(1+2ϵ)/3)) to securely compute C (that is, to UC-securely realise
FSFE(C)) in the presence of a semi-honest adversary statically corrupting any number of parties.
In particular, if d ≤ (log log s)/4 the communication complexity is λO(1)+O(n+m+

√
s ·poly(λ) ·

polylog(n) · ((n + m)2/3 + (n + m)(1+2ϵ)/3)) (for some arbitrarily small constant 0 < δ < 1/2),
which is sublinear in the circuit-size, as detailed in remark 34.

– 3-PC of Layered Boolean Circuits: Let C : {0, 1}n → {0, 1}m be a size-s, depth-d layered
boolean circuit. Let ϵ ∈ (0, 1). Assuming the Learning Parity with Noise (LPN) assumption with
dimension dim = poly(λ), number of samples num = ((s/d)2/sϵ)1/3 · poly(λ), and noise rate
ρ = num−1/2 together with any of the following additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the security against time-
λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity O(n+m+d1/3 ·s2(1+ϵ)/3 ·poly(λ)+
s/(log log s)) to securely compute C (that is, to UC-securely realise FSFE(C)) in the presence
of a semi-honest adversary statically corrupting any number of parties. In particular, if d =
o(s1−ϵ/poly(λ)) (i.e. the circuit is not too “tall and skinny”) the communication complexity is
O(n+m+ s

log log s), which is sublinear in the circuit-size.

– 5-PC of Shallow Circuits: Let ϵ ∈ (0, 1). Assuming the existence of a constant-locality
PRG with polynomial stretch, there exists a constant c ≥ 3 such that for any boolean circuit
C : {0, 1}n → {0, 1}m of size s and depth d (d ≤ (log log s− log log log s)/2c), assuming the super-
polynomial Decision Composite Residuosity (DCR) assumption, the Learning Parity with Noise
(LPN) assumption with dimension dim = poly(λ), number of samples num = (n +m)1/3 · λO(1),
and noise rate ρ = numϵ−1 (for some constant 0 < ϵ < 1), as well as any of the following
computational assumptions:
• Decisional Diffie-Hellman (DDH)
• Learning with Errors with polynomial-size modulus (poly-modulus LWE)
• Quadratic Residuosity (QR) and Superpolynomial F2-LPN (i.e. assuming the security

against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ samples, and rate
λ/(2λlog λ)).

36

There exists a 5-party protocol with communication complexity λO(1) + O(n + m + 2d/2
c+2d/2

c

·
poly(λ) ·polylog(n) · ((n+m)2/3+(n+m)(1+2ϵ)/3)) to securely compute C (that is, to UC-securely
realise FSFE(C)) in the presence of a semi-honest adversary statically corrupting any number of
parties. In particular, if d ≤ (log log s)/2c+2 the communication complexity is λO(1) +O(n+m+√
s · poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ϵ)/3)) (for some arbitrarily small constant

0 < ϵ < 1/2), which is sublinear in the circuit-size, as detailed in remark 34.

– 5-PC of Layered Boolean Circuits: Let ϵ ∈ (0, 1). Assuming the existence of a constant-locality
PRG with polynomial stretch, there exists a constant c ≥ 3 such that for any layered boolean circuit
C : {0, 1}n → {0, 1}m of size s and depth d, assuming the superpolynomial Decision Composite
Residuosity (DCR) assumption, assuming the Learning Parity with Noise (LPN) assumption with
dimension dim = poly(λ), number of samples num = ((s2c/d)2/sϵ)1/3 · poly(λ), and noise rate
ρ = num−1/2 together with any of the following additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the security against time-
λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 5-party protocol with communication complexity O(n+m+d1/3 ·s2(1+ϵ)/3 ·poly(λ)+
s/(log log s)) to securely compute C (that is, to UC-securely realise FSFE(C)) in the presence
of a semi-honest adversary statically corrupting any number of parties. In particular, if d =
o(s1−ϵ/poly(λ)) (i.e. the circuit is not too “tall and skinny”) the communication complexity is
O(n+m+ s

log log s), which is sublinear in the circuit-size.

Note that combining the works of [BBDP22,OSY21] seems to implicitly yield rate-1 batch OT from
DCR, and in turn correlated SPIR [BCM22]: if true, the assumptions for sublinear-communication
five-party MPC can be simplifed to constant-locality PRG, LPN, and superpolynomial DCR (without
the need for DDH, LWE, or QR). Since this claim was never made formally, we do not use it.

Proof.

– 3-PC: The first, DDH-based, instantiation follows the template of building loglog-depth FSS
from additive Las-Vegas HSS, and all others follow the template of building loglog-depth FSS
from additive HSS directly.
• From DDH and LPN: We instantiate the template of section 3 (parameterised by an FSS

scheme, in the (FFSS
SD ,FFSS

OE)-hybrid model) with the loglog-depth FSS scheme of lemma 28,
which we in turn instantiate using the Las-Vegas HSS scheme of [BGI16a]. By theorem 30,
FFSS

SD can be realised in communication n+poly(λ)·polylog(n) using polylog PSIR. Recall from
section section 5.3 that any PIR scheme yields a PSIR scheme with the same communication
complexity using a straightforward reduction: S picks r $← F and substracts r to all entries of
z, getting a new vector z′. Then, C and S use a PIR scheme with respective inputs i and z′.
C outputs z′i and S outputs r, which form random shares of zi, as desired. We can therefore
use the polylogarithmic PIR protocol from DDH in [DGI+19]. Finally, we use the two-round
correlated SPIR with mix-and-match queries in [BCM22] from DDH (and based on the rate-1
batch-OT from DDH in [BBDP22]).
• From polynomial-modulus LWE and LPN: We instantiate theorem 31 using the additive HSS

scheme for NC1 of [BKS19] from polynomial-modulus LWE and the two-round correlated SPIR
with mix-and-match queries in [BCM22] from polynomial-modulus LWE and LPN (and based
on the rate-1 batch-OT from polynomial-modulus LWE and LPN in [BBDP22]).
• From QR and Superpolynomial LPN: We instantiate theorem 31 using the single-function

additive HSS scheme for any (log log s)/4-depth circuit from from quasi-polynomial LPN
implicitly present in [CM21] (and based on the PCG for “subsets tensor powers”) and the
two-round correlated SPIR QR-modulus LWE and LPN (and based on the rate-1 batch-OT
from polynomial-modulus LWE and LPN in [BBDP22]).

– 5-PC: We instantiate theorem 31 using the four-party additive HSS scheme for NC1 of sec-
tion 6.2.1 from DCR and the two-round correlated SPIR with mix-and-match queries in [BCM22]
from LPN and any of polynomial-modulus LWE, DDH, or QR.

37

We conclude by remarking that while this may not be immediately apparent due to the complicated
expressions, the communication complexities from theorem 33 do indeed qualify as “sublinear in the
circuit-size”.

Remark 34 (The Expressions of Theorem 33 are Sublinear in the Circuit Size). Recall that a protocol
for securely computing a size-s circuit with n inputs and m outputs is sublinear in the circuit-size
if its communication complexity is of the form λO(1) + poly(n +m) + o(s), where poly is some fixed
polynomial. The communication of our protocols for loglog-depth circuits, both in the 3- and the 5-
party case, are sublinear in the circuit-size. For 3PC and 5PC of loglog-depth circuits, the expression
is the following:

λO(1) +O(n+m+
√
s · poly(λ) · polylog(n) · ((n+m)2/3 + (n+m)(1+2ϵ)/3)).

where ϵ ∈ (0, 1) is some constant tied to the strength of the LPN assumption. Because we view s
as an arbitrarily large polynomial in the security parameter (in other words we are interested in an
asymptotic notion of sublinearity), there exists an arbitrarily small constant δ ∈ (0, 1

2) such that
poly(λ) ≤ sδ. Therefore the complexity can be simplified as:

λO(1) +O(n+m+ s
1
2+δ · polylog(n) · ((n+m)2/3 + (n+m)(1+2ϵ)/3)).

Whenever sδ ≥ polylog(n) · ((n+m)2/3+(n+m)(1+2ϵ)/3), the above expression is λO(1)+O(n+m+
s1+2δ). Whenever sδ < polylog(n) ·((n+m)2/3+(n+m)(1+2ϵ)/3), the entire expression is already some
fixed polynomial in n+m. Therefore, our final complexity is of the form λO(1)+polyδ(n+m)+s

1
2+2δ.

Acknowledgments

We thank the anonymous reviewers of Eurocrypt 2023 for their helpful comments and careful proof-
reading, which helped to improve the paper. Elette Boyle and Pierre Meyer were supported by
AFOSR Award FA9550-21-1-0046, a Google Research Award, and ERC Project HSS (852952). Ge-
offroy Couteau was supported by the French Agence Nationale de la Recherche (ANR), under grant
ANR-20-CE39-0001 (project SCENE), and by the France 2030 ANR Project ANR22-PECY-003 Se-
cureCompute.

References

ADI+17. Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arith-
metic computation with constant computational overhead. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 223–254. Springer, Heidelberg, Au-
gust 2017.

ADOS22. Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An algebraic framework for
silent preprocessing with trustless setup and active security. Cryptology ePrint Archive, 2022.

AHI04. Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. In Josep Díaz, Juhani Karhumäki, Arto
Lepistö, and Donald Sannella, editors, ICALP 2004, volume 3142 of LNCS, pages 84–96. Springer,
Heidelberg, July 2004.

AIK09. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input locality.
Journal of Cryptology, 22(4):429–469, October 2009.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

AL16. Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and
their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages
1087–1100. ACM Press, June 2016.

BBDP22. Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-OT with optimal rate. In
Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 157–186. Springer, Heidelberg, May / June 2022.

BCM22. Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear secure computation from new as-
sumptions. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part II, volume 13748
of LNCS, pages 121–150. Springer, Heidelberg, November 2022.

38

Bel84. Edward G. Belaga. Locally synchronous complexity in the light of the trans-box method. In
M. Fontet and K. Mehlhorn, editors, STACS 84, pages 129–139, Berlin, Heidelberg, 1984. Springer
Berlin Heidelberg.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives
based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 278–291. Springer, Heidelberg, August 1994.

BFKR91. Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security with low communi-
cation overhead. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537
of LNCS, pages 62–76. Springer, Heidelberg, August 1991.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer,
Heidelberg, March 2014.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer,
Heidelberg, April 2015.

BGI16a. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation
under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 509–539. Springer, Heidelberg, August 2016.

BGI16b. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

BGI17. Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing rounds,
communication, and computation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 163–193. Springer, Heidelberg,
April / May 2017.

BGI+18. Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of homomor-
phic secret sharing. In Anna R. Karlin, editor, ITCS 2018, volume 94, pages 21:1–21:21. LIPIcs,
January 2018.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

BI05. Omer Barkol and Yuval Ishai. Secure computation of constant-depth circuits with applications to
database search problems. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
395–411. Springer, Heidelberg, August 2005.

BKS19. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without FHE.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 3–33. Springer, Heidelberg, May 2019.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
280–300. Springer, Heidelberg, December 2013.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

CDM+18. Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella. On the
concrete security of Goldreich’s pseudorandom generator. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 96–124. Springer, Heidelberg,
December 2018.

CEMT09. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way function
candidate and myopic backtracking algorithms. In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 521–538. Springer, Heidelberg, March 2009.

CEMT14. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. On the one-way function candidate
proposed by goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14, 2014.

CG97. Benny Chor and Niv Gilboa. Computationally private information retrieval (extended abstract).
In 29th ACM STOC, pages 304–313. ACM Press, May 1997.

CGKS95. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval.
In 36th FOCS, pages 41–50. IEEE Computer Society Press, October 1995.

CM21. Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for secure computation
under quasi-polynomial LPN. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part II, volume 12697 of LNCS, pages 842–870. Springer, Heidelberg, October
2021.

39

COS+22. Ilaria Chillotti, Emmanuela Orsini, Peter Scholl, Nigel Paul Smart, and Barry Van Leeuwen.
Scooby: Improved multi-party homomorphic secret sharing based on FHE. SCN 2022, 2022.
https://eprint.iacr.org/2022/862.

Cou19. Geoffroy Couteau. A note on the communication complexity of multiparty computation in the
correlated randomness model. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 473–503. Springer, Heidelberg, May 2019.

DFH12. Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low com-
munication. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 54–74. Springer,
Heidelberg, March 2012.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg, August
2019.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its
applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 93–122. Springer, Heidelberg, August 2016.

FGJI17. Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homomorphic secret
sharing from paillier encryption. In Provable Security - 11th International Conference, ProvSec
2017, Xi’an, China, October 23-25, 2017, Proceedings, volume 10592, pages 381–399, 2017.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–
658. Springer, Heidelberg, May 2014.

GJ11. Anna Gál and Jing-Tang Jang. The size and depth of layered boolean circuits. Information
Processing Letters, 111(5):213–217, 2011.

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In 14th ACM STOC, pages 365–377. ACM Press, May 1982.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–
229. ACM Press, May 1987.

Gol00. Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology ePrint
Archive, Report 2000/063, 2000. https://eprint.iacr.org/2000/063.

Har77. Lawrence H. Harper. An log lower bound on synchronous combinational complexity. 1977.
IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant

computational overhead. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 433–442. ACM Press, May 2008.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded as-
sumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 60–73, 2021.

JLS22. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer, Heidelberg, May / June
2022.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pages 723–732. ACM Press, May 1992.

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th FOCS, pages 364–373. IEEE Computer
Society Press, October 1997.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In 44th
FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

NN01. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function evaluation.
In 33rd ACM STOC, pages 590–599. ACM Press, July 2001.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 678–708. Springer, Heidelberg, October
2021.

OW14. Ryan ODonnell and David Witmer. Goldreich’s prg: evidence for near-optimal polynomial stretch.
In Computational Complexity (CCC), 2014 IEEE 29th Conference on, pages 1–12. IEEE, 2014.

40

https://eprint.iacr.org/2022/862
https://eprint.iacr.org/2000/063

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Heidelberg, May
1999.

RS21. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and
applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of
LNCS, pages 687–717, Virtual Event, August 2021. Springer, Heidelberg.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society Press, October 1986.

41

	Sublinear-Communication Secure Multiparty Computation does not require FHE
	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Assumptions
	Quadratic Residuosity Assumption (QR)
	Learning With Errors (LWE)
	Learning Parity with Noise (LPN)
	Decisional Diffie-Hellman (DDH)
	Decision Composite Residuosity Assumption

	Function Secret Sharing and Homomorphic Secret Sharing
	Universal Composability
	Notations

	General Template for (N+1)-Party Sublinear Secure Computation from N-Party FSS
	Requirements of the FSS Scheme
	The Secure Computation Protocol

	Oblivious Evaluation of LogLog-Depth FSS from PIR
	LogLog-Depth FSS
	Oblivious Evaluation of LogLog-Depth FSS from PIR
	Correlated PIR.
	Oblivious Evaluation of LogLog-Depth FSS from PIR.

	LogLog-Depth FSS from Compact and Additive HSS
	From Compact and Additive HSS
	An Overview of the Construction

	Defining the LogLog-Depth FSS Scheme.
	Securely Realising FSDFSS in Low Communication.
	Building HSS for coefs.
	Low-Communication Protocol for FSDFSS.

	From Compact and Additive HSS with Errors
	Additive FSS Scheme from Las Vegas Additive HSS.
	Securely Realising Gen in Low Communication.

	Instantiations
	Sublinear-Communication Secure Multiparty Computation from PIR and Additive HSS
	Four-Party Additive HSS from DCR
	4-party HSS from DCR.
	Handling loglog-depth circuits.
	Compactness and succinct share distribution.

	Sublinear-Communication Secure Multiparty Computation from New Assumptions

