
Somewhat Homomorphic Encryption based on
Random Codes

Carlos Aguilar-Melchor1, Victor Dyseryn2, Philippe Gaborit2

1 Sandbox AQ
2 XLIM, Université de Limoges, France

Abstract. We present a secret-key encryption scheme based on random
rank metric ideal linear codes with a simple decryption circuit. It supports
unlimited homomorphic additions and plaintext absorptions as well as a
fixed arbitrary number of homomorphic multiplications.
We study a candidate bootstrapping algorithm that requires no multiplica-
tion but additions and plaintext absorptions only. This latter operation is
therefore very efficient in our scheme, whereas bootstrapping is usually the
main reason which penalizes the performance of other fully homomorphic
encryption schemes. However, the security reduction of our scheme restricts
the number of independent ciphertexts that can be published. In particu-
lar, this prevents to securely evaluate the bootstrapping algorithm as the
number of ciphertexts in the key switching material is too large.
Our scheme is nonetheless the first somewhat homomorphic encryption
scheme based on random ideal codes and a first step towards full homomor-
phism. Random ideal codes give stronger security guarantees as opposed to
existing constructions based on highly structured codes. We give concrete
parameters for our scheme that shows that it achieves competitive sizes and
performance, with a key size of 3.7 kB and a ciphertext size of 0.9 kB when
a single multiplication is allowed.

1 Introduction

Homomorphic encryption. A homomorphic encryption scheme allows to per-
form operations on plaintexts which are still in their encrypted form. Because it
enables computations in a public cloud while keeping the data private, homomor-
phic encryption has numerous applications, especially in the medical or banking
sector.

In the early years of homomorphic encryption after it was introduced by Rivest,
Adleman and Dertouzos in 1978 [28], some schemes were designed [24, 19, 27] but
they only supported a single type of operation, either an addition or a multiplication.
The scheme by Boneh, Goh and Nissim [13] was the first to support unlimited
additions and a single multiplication. A long-standing problem was finally solved
when Gentry designed in 2009 a fully homomorphic encryption (FHE) scheme [23]
able to perform unlimited additions and multiplications on encrypted data.

Many improvements have been made [14, 18, 15] since the initial proposal by
Gentry in order to make fully homomorphic encryption efficient. These efficient
schemes were built with structured lattices, making them all highly at risk should

2

an attack be found on structured lattice difficult problems.

Bootstrapping. A fundamental technique in achieving fully homomorphic en-
cryption is called bootstrapping [23]. In most systems, after some homomorphic
operations, the ciphertext suffers from a large amount of noise that prevent any
further operation. The bootstrapping technique consists in homomorphically
applying the decryption circuit, generating a new ciphertext under a new key with
a reduced amount of noise. This allows to continue with additional homomorphic
operations. However, in existing systems, the bootstrapping procedure is very
costly, making homomorphic encryption inpractical for generic applications.

Homomorphic encryption based on codes. The question of homomorphic en-
cryption based on codes was first addressed in 2011: the authors of [9] present a
symmetric scheme supporting additions and a limited number of multiplications.
Their construction relies on a class of codes called special evaluation codes whose
codewords have natural multiplicative properties. They instantiate their scheme
with Reed-Muller codes. They do not investigate bootstrapping further than show-
ing its impossibility.

In the same year, a public-key homomorphic encryption scheme based on Reed-
Solomon codes was proposed [12] but was broken shortly after its publication [22].

More recently, homomorphic computations in Reed-Muller codes were investi-
gated [16]. The authors present an operation on Reed-Muller codewords so that the
result represents an encoding of the multiplication of the messages. However, they
did not study their techniques in the presence of noise, nor did they propose an en-
cryption scheme. Therefore their work is not related to any notion of cryptographic
security.

All existing code-based homomorphic constructions thus rely on highly struc-
tured codes, which turned out in the past to be a source of numerous attacks [30, 26].

Rank metric. Rank metric is an alternative to the usual Hamming metric in
coding theory. In rank metric, vectors in the word space can be seen as matrices
and their weight is defined as the rank of that matrix. Rank metric encryp-
tion [7, 4, 1, 6, 2] and signature [5, 11] schemes have been proposed and in several
cases acheive better performance than Hamming metric cryptosystems. No other
advanced primitives were designed in the rank metric, other than an identity-based
encryption based on rank metric codes [20] that was broken shortly after [17].
Contrary to the Hamming metric, for a given support, in rank metric the number
of possible error vectors depends not only on the size of the field but also on the
length of the code. This additionnal degree of liberty could open a possibility for
an efficient fully homomorphic encryption scheme.

Our contribution. We propose the first code-based somewhat homomorphic en-
cryption scheme relying on random ideal codes. It has therefore a stronger security
reduction than existing approaches based on highly structured codes. Our construc-
tion is symmetric and supports addition, multiplication and plaintext absorption.

We also propose the first candidate bootstrapping algorithm for a code-based
homomorphic scheme that homomorphically decrypts ciphertexts produced from

3

another secret key. Remarkable for its simplicity, our algorithm enjoys no multi-
plicative depth, as it requires additions and plaintext multiplications only.

However, our scheme suffers from two major limitations that hamper its cat-
egorization as fully homomorphic. First, the number of multiplications is limited
because each operation increases the length of the ciphertext as well as the dimen-
sion of the noise space. Second, and most importantly, there is an upper bound
to the number of independent ciphertexts that can be published without a poly-
nomial key recovery attack. In particular, the number of ciphertexts required for
our bootstrapping algorithm is larger than the maximal number of publishable in-
dependent ciphertexts. To address these problems, we propose a refinement of our
homomorphic decryption algorithm by introducing the notion of ciphertext packing.
It reduces the number of bootstrapping ciphertexts very close yet still above the
maximal limit.

Still, we give concrete parameters for our scheme that shows its efficiency as
a somewhat homomorphic encryption scheme and a strong potential to be refined
into a FHE scheme. For a single multiplication, the key size is 3.7 kB and the
ciphertext size is only 0.9 kB, with competitive running times estimated to be a few
microseconds for addition and 0.5 millisecond for multiplication. Other parameters
could be found to support an arbitrary fixed number of multiplications.

Overview of our construction. Our scheme is an Aleknovich-inspired [3] con-
struction. It can be seen as a secret key version of the NIST Round 2 candidate
RQC [1], with important differences (see below). The ciphertext is a pair (u,v) of
vectors in Fn

qm where v is the noisy version of the multiplication u · s of the first
component of the ciphertext times the secret key s. The noise is taken in a secret
space and contains an encoding of the message m being a vector in Fn

q . The ci-
phertext space enjoys an Fn

q -module structure which makes addition and plaintext
multiplication completely straightforward.

Contrary to RQC in which the encoded message is a codeword of a public
Gabidulin code that can be recovered from the noise using a decoding algorithm,
in our construction the message is encoded into a vector space orthogonal to the
error vector. The decryption algorithm is thus quite simple since it consists in a
secret orthogonal projection of the noise term (i.e. a scalar product with a secret
basis). Consequently, a natural homomorphic decryption algorithm can be designed.
The key switching material consists in encrypted coordinates of the previous key
and projection vector, split against a public basis of Fqm over Fq. By splitting the
ciphertext onto the same basis and plaintext multplying each component to the
key switching material, one obtains a fresh ciphertext under a new key with no
multiplication, only with additions and plaintext multiplications.

The security of our scheme can be reduced to the well-studied ideal rank syn-
drome decoding problem (IRSD). The rate of the code tends towards 0 as the number
of independent ciphertexts increases, giving an upper bound of 2w (where w is the
rank weight of the error term in the ciphertext) to the number of ciphertexts than
can be safely published. This prevents from using safely the homomorphic decryp-
tion algorithm which requires 2m ciphertexts: one for each of the m components
against the Fqm -basis of the secret key and the projection vector.

4

Aiming at reducing the number of ciphertexts necessary to a homomorphic
decryption, we finally present a way to pack several plaintexts in a single ciphertext.
Instead of having the message encoded in a single dimension orthogonal to the
error, the idea is to increase the dimension of the encoded message, which is now a
matrix with components in Fq. Rows of the matrix can be rotated using a public
operation that allows to perform homomorphic linear combinations on the rows
of the plaintext matrix. Because the ciphertext now contains more information,
the size of the bootstrapping material is reduced to 2(w + 1). However, this is still
higher than the secure upper bound 2w.

Outline. This paper is organized as follows: Section 2 contains basic definitions.
Section 3 presents our encryption scheme and homomorphic addition. Section 4 adds
a homomorphic multiplication and builds our somewhat homomorphic encryption
scheme. Section 5 defines our homomorphic decryption algorithms. The security of
the scheme is studied in Section 6. The idea of packing is presented in Section 7 in
an attempt to reduce the number of ciphertexts required for bootstrapping. Finally,
concrete parameters for our scheme are presented in Section 8.

2 Preliminaries

In this section we first present the rings, fields and vector spaces we will work
with as well as an associated metric, and then we will define error-correcting codes
associated with this metric.

2.1 Basic notations

For a finite set S, x $← S corresponds to a uniform sampling from the set S. For
a probabilistic algorithm Alg(), x $← Alg() corresponds to sampling following the
algorithm’s output distribution. We also use the notation x ∈ {Alg()} to indicate
that x is in the set of potential outputs of Alg.

Vectors will be represented with lowercase bold letters and matrices with up-
percase bold letters. Vectors are assumed to be row vectors unless stated otherwise.
For a field F, Mn,m(F) represents the set of matrices with n rows and m columns
of elements in F. When n equals m this set, together with classical matrix sum and
product, forms a ring that we denote Mn(F). For a given vector b, we will note
b(i) its i-th coordinate, and for a given matrix B, we will note B(i) its i-th column
vector. Finally, for b a vector over a field F , and an element k ∈ F, we note the
usual scalar multiplication k ⋆ b.

2.2 Finite Fields

In the following we let q be a prime power and m,n two positive integers. We will
work with the finite fields of order q, and qm: Fq,Fqm . Of course there are multiple
isomorphic fields of a given order, with multiple representations and leading to
different calculation algorithms.

5

Finite field Fq. Generally, q will be a prime and therefore elements and compu-
tations in Fq are associated with elements and computations in the modular ring
Z/qZ. But it is important to notice that this is not mandatory and one may perfectly
choose q to be a prime power and define a proper representation and calculation
rules for this setting.

Extension of finite field Fqm . As usual, elements in extensions of the base field Fq

will be represented using quotients over the polynomial ring Fq[X]. Thus elements
and computations in Fqm are associated with polynomial representations and com-
putations over Fq[X]/ ⟨P ⟩ for P ∈ Fq[X] an irreducible monic polynomial of degree
m. We fix such a polynomial P for the rest of the article.

Element-vector transformation. An element f ∈ Fqm can be associated to a
column vector of Fm

q using the coefficients of the polynomial representation of f . It
is obviously an Fq-vector space isomorphism that we denote vec():

vec : Fqm −→Fm
q

f =
m−1∑
i=0

fiX
i 7−→

 f1
...
fm

Vector-matrix transformation. Similarly, a vector v ∈ Fn

qm can be associated
to an m × n matrix Mat(v) ∈ Mm,n(Fq) whose i-th column is vec(v(i)). (The
bold capital ‘M’ in this transformation’s name being a reminder that it outputs a
matrix).

2.3 Ideal matrices and vector-vector product

We would like to give a field structure to the set of vectors in Fn
qm . To do so, we

associate a vector v of Fn
qm to a polynomial poly(v) in the ideal ring Fqm [X]/⟨Q⟩

for Q ∈ Fqm [X] a monic irreducible polynomial of degree n whose coefficients are
in the subfield Fq

1. We fix such a polynomial Q for the rest of the article. This
transformation is an isopmorphism and can be seen as the equivalent to vec−1

(with the difference that poly operates on row vectors of length n).
We can now define the multiplication of two vectors u,v ∈ Fn

qm as

u · v = poly−1(poly(u)poly(v)).

Note that the product of polynomials is calculated modulo Q.

We can alternatively define the product of two vectors as a matrix-vector product
thanks to the definition of ideal matrices.

Definition 1 (Ideal Matrices). Let Q ∈ Fqm [X] be a polynomial of degree n
and v ∈ Fn

qm . The ideal matrix generated by v modulo Q is the matrix denoted

1 This is to ensure Fn
q is stable under multiplication.

6

IMQ(v) ∈Mn(Fqm) of the form:

IMQ(v) =

v

Xpoly(v)
...

Xn−1poly(v)

 .

The products of polynomials are also computed modulo Q and the transformation
poly−1 has been omitted for simplicity.

The multiplication of two vectors u,v ∈ Fn
qm can be then computed with

u · v = u IMQ(v).

2.4 Metric and support

Definition 2 (Rank metric over Fn
qm). Let e = (e1, . . . , en) be an element of

Fn
qm . The rank weight of e, denoted by rw(e), is defined as

rw(e) = rank(Mat(e)).

Note that the rank weight is independent from the choice of the irreducible monic
polynomial P of degree m that was chosen to define Mat(). The rank distance
between two vectors e,f ∈ Fn

qm is defined by rw(e− f).

For e = (e1, . . . , en) ∈ Fn
qm , the support E of e, denoted supp(e), is the Fq-linear

subspace of Fqm generated by the coordinates of e:

E = ⟨e1, . . . , en⟩Fq
.

Note that dim(E) = rw(e).

Snw(Fqm) stands for the set of vectors of length n and rank weight w over Fqm :

Snw(Fqm) = {e ∈ Fn
qm : rw(e) = w}

2.5 Codes and ideal codes

Definition 3 (Fqm-linear code). An Fqm-linear code C of dimension k and length
n is a subspace of dimension k of Fn

qm seen as an Fqm-linear space. The notation
[n, k]qm is used to denote its parameters.

The code C can be represented by two equivalent ways:

– by a generator matrix G ∈ Fk×n
qm . Each row of G is an element of a basis of C,

C = {xG,x ∈ Fk
qm}.

– by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-

check equation verified by the elements of C:

C = {x ∈ Fn
qm : HxT = 0}.

7

We say that G (respectively H) is under systematic form if and only if it is of the
form (Ik|A) (respectively (In−k|B)).

To describe an [n, k]qm linear code, we can give a systematic generator matrix
or a systematic parity-check matrix. In both cases, the number of bits needed to
represent such a matrix is k(n−k)m ⌈log2 q⌉. To reduce the size of a representation
of a code, we introduce ideal codes. They are a generalization of double circulant
codes by choosing a polynomial P to define the quotient-ring Fqm [X]/(P). More
details about this construction can be found in [7].

Definition 4 (Ideal codes). Let Q ∈ Fq[X] be a polynomial of degree n. For
s ≥ 2, an s-ideal code is an [sn, n]qm-code C with a generator matrix of the form
G =

(
In IMQ(g1) . . . IMQ(gs−1)

)
∈ Fn×ns

qm , where gi ∈ Fn
qm for 1 ≤ i ≤ s− 1.

The vectors (g1, · · · , gs−1) are said to be the generators of the ideal code.
Similarly, C is an ideal code if it admits a parity-check matrix of the form

H =

IMQ(h1)

⊤

In(s−1)

...

IMQ(hs−1)
⊤

 ∈ Fn(s−1)×ns
qm

where hi ∈ Fn
qm for 1 ≤ i ≤ s− 1.

2.6 Difficult Problems for Cryptography

Rank metric code-based cryptography relies on the rank syndrome decoding prob-
lem (RSD) and variants.

Definition 5 (Search RSD problem). On input (H, s⊤) ∈ F(n−k)×n
qm × F(n−k)

qm

from the RSD distribution, the syndrome decoding problem RSDn,k,w asks to find
x ∈ Snw(Fqm) such that Hx⊤ = s⊤.

The RSD problem has a decision version, which asks to decide whether the given
sample came from the RSD distribution or uniform distribution:

Definition 6 (RSD Distribution). Let n, k, w ∈ N∗, the RSDn,k,w Distribution

chooses H
$← F(n−k)×n

qm and x
$← Snw(Fqm), and outputs (H,Hx⊤).

Definition 7 (Decision RSD problem). Given (H, s⊤)
$← F(n−k)×n

qm × F(n−k)
qm ,

the decision RSD problem DRSDn,k,w asks to decide with non-negligible advantage
whether (H, s⊤) came from the RSDn,k,w distribution or the uniform distribution
over F(n−k)×n

qm × F(n−k)
qm .

In order to propose reasonable key sizes, we base our proposition on s-ideal
codes. We adapt the previous problems to this configuration.

Definition 8 (Search IRSD problem). For positive integers n, w, s, a random
parity check matrix H of an s-ideal code C and y

$← Fsn−n
qm , the Search s-ideal RSD

problem IRSDn,s,w asks to find x = (x1, . . . ,xs) ∈ Fsn
qm such that ω(x) = w, and

y = xH⊤.

8

Although there is no general complexity result for ideal codes, decoding these
codes is considered hard by the community. There exist general attacks which use the
cyclic structure of the code [29, 25] but these attacks have only a very limited impact
on the practical complexity of the problem. The conclusion is that in practice, the
best attacks are the same as those for non-ideal codes up to a small factor. IRSD is
also at the core of the security of other encryption schemes such as NIST Round 2
candidates ROLLO [4] or RQC [1].

We also define the decision version of the IRSD problem:

Definition 9 (IRSD Distribution). For positive integers n, w and s, the
IRSDn,s,w distribution chooses uniformly at random a parity check matrix H

$←
F(sn−n)×sn
qm of an s-ideal code C (see definition 4) together with a vector x =

(x1, . . . ,xs)
$← Fsn

qm such that ω(x) = w, and outputs (H,Hx⊤).

Definition 10 (Decision IRSD problem). For positive integers n, w, s, a bit
b, a random parity check matrix H of an s-ideal code C and y

$← Fsn−n
qm , the deci-

sion s-ideal RSD problem DIRSDn,s,w asks to decide with non-negligible advantage
whether (H,y⊤) came from the IRSDn,s,w distribution or the uniform distribution
over vectors of parity b in F(sn−n)×sn

qm × F(sn−n)
qm .

3 Additive Scheme

In this section we present an additive secret key encryption scheme. It can also
multiplicatively absorb a plaintext.

3.1 Fundamental Algorithms

The three polynomial-time algorithms constituting our the additive scheme AHE
(for Additively-Homomorphic Encryption) are depicted in Fig. 1. The scheme is
parametrized by:

– q, the base field cardinality;
– m, the dimension of the field extension;
– n, the length of the vectors;
– w, the rank weight of the error; it must be that w < m.

Remark 1. EncryptAHE and DecryptAHE are functions, not randomized algorithms. In
general we will hide the randomness in the encryption function: EncryptAHE(sk,m)

being the randomized algorithm that samples r
$← Fn

qm ×Mw,n(Fq) and returns
EncryptAHE(sk,m, r).

Remark 2. In EncryptAHE, having e = fR2 with R2
$← Mw,n(Fq) is equivalent to

having e
$← Fn. As for m̂, it belongs to (⟨g(1)⟩Fq

)n.

9

– KeyGenAHE():
• samples f = (f1, . . . , fw)

$← Sw
w (Fqm)

• extends f into a basis b = (f1, . . . , fw, g1, . . . , gm−w) ∈ Sm
m (Fqm)

• defines g = (g1, . . . , gm−w)
• computes the matrix B = Mat(b)
• defines D as the last m− w columns of its transposed inverse (B−1)T

• samples s
$← Fn with F = supp(f)

• returns sk = (f , g,D, s).

– EncryptAHE(sk = (f , g,D, s),m ∈ Fn
q , r ∈ Fn

qm ×Mw,n(Fq)): notes (r1,R2) = r,
defines u = r1, e = fR2 and sets v = s · u + e + m̂ with m̂ = g(1) ⋆ m ∈ Fn

qm .
Returns ct = (u,v).

– DecryptAHE(sk = (f , g,D, s), ct = (u,v)): returns dTMat(v−s·u) with d = D(1).

Fig. 1. Description of the additive scheme.

Proposition 1 (Fresh Ciphertext Decryption Correctness). For sk
$←

KeyGenAHE(), m ∈ Fn
q and r ∈ Fn

qm ×Mw,n(Fq) it holds that

DecryptAHE (sk,EncryptAHE (sk,m, r)) = m.

Proof. We suppose in this proof that the KeyGenAHE and EncryptAHE protocols are
well defined and can be executed properly. We just note that B−1 exists as b is a
basis of Fqm and thus B is of full rank.

As d is the (w+1)-th column vector of (B−1)T , we thus have that dTvec(g(1)) =
1 ∈ Fq and dTvec(x) = 0 for any x ∈ b \ {g(1)}.

The correctness is thus straightforward as, noting (u,v) = EncryptAHE(sk,m, r),
from v = s · u+ e+ m̂ we get that v − s · u = e+ m̂ and therefore

v − s · u =
∑

1≤i≤w

fi ⋆ ei + g(1) ⋆m.

with e1, . . . , ew,m ∈ Fn
q . We can thus write,

dTMat(v − s · u) =
∑

1≤i≤w

dTvec(fi) ⋆ ei + dTvec(g(1)) ⋆m

= m

using the fact that, as noted above, dTvec(g(1)) = 1 ∈ Fq and dTvec(x) = 0 for
any x ∈ b \ {g(1)}.

⊓⊔

Proposition 2 (Ciphertext Distribution). For sk
$← KeyGenAHE(), the set of

ciphertexts of zero {EncryptAHE(sk,0)} is a subgroup of Fn
qm×Fn

qm , and more gener-
ally the set of ciphertexts of a message m ∈ Fn

q are the cosets {EncryptAHE(sk,0)}+
g(1) ⋆m. The output probability distribution is uniform in the associated coset.

10

Proof. The set {EncryptAHE(sk,0)} is a subgroup as for any (u, s · u + e), (u′, s ·
u′ + e′) ∈ {EncryptAHE(sk,0)} we have that u − u′ ∈ Fn

qm and e − e′ ∈ Fn and
thus (u−u′, s · (u−u′) + (e− e′)) is in {EncryptAHE(sk,0)}. Moreover the output
distribution of EncryptAHE on this set is uniform as for a given s there is a one to
one mapping between the pairs (u, e) and (u, s · u + e) and the pairs (u, e) are
chosen uniformly on Fn

qm × Fn. Proving the rest of the proposition is trivial as the
encryption process consists exactly on generating a ciphertext of zero and adding
g(1) ⋆m to it.

⊓⊔

The security of this encryption scheme is reduced to the IRSD problem in Sec-
tion 6; the problem of decrypting ℓ independent ciphertexts is equivalent to solving
the syndrome decoding in an (ℓ + 1)-ideal code. For small values of ℓ, the IRSD is
known to be hard and is at the core of the security of other encryption schemes
such as ROLLO or RQC.

3.2 Additively Homomorphic Algorithms

Figure 2 presents the homomorphic algorithms of our additive scheme.

– AddAHE(ct = (u,v), ct′ = (u′,v′)): returns (u+ u′,v + v′) ∈ Fn
qm × Fn

qm .
– PtxtMulAHE(m′ ∈ Fn

q , ct = (u,v)): returns (m′ · u,m′ · v) ∈ Fn
qm × Fn

qm .

Fig. 2. Additively Homomorphic Algorithms.

In the following proposition we consider Fn
q as the ring (Fn

q ,+, ·), + the natural
addition in Fn

q and · the multiplication in Fq[X]/⟨Q⟩ (see subsection 2.3).

Proposition 3 (Encryption is an Fn
q -module isomorphism).

For any properly generated key sk, the function f = EncryptAHE(sk, ·, (·, ·)) is
an Fn

q -module isomorphism between (Dom(f),+) and (Im(f),+) with Dom(f) =
Fn
q × Fn

qm ×Mw,n(Fq) and Im(f) ⊂ Fn
qm × Fn

qm .

Proof. First note that (Im(f),+) is an Fn
q -module. It is a subgroup of (Fn

qm×Fn
qm ,+)

as for any two ciphertexts ct = (u, s · u + e + g(1) ⋆ m), ct′ = (u′, s · u′ + e′ +
g(1) ⋆m′), we have ct− ct′ = (u− u′, s · (u− u′) + (e− e′) + g(1) ⋆ (m−m′)) ∈
{EncryptAHE(sk,m−m′)} ⊂ Im(f). Moreover for any m′ ∈ Fn

q we have m′ · ct =
(m′ · u, s · (m′ · u) +m′ · e+ g(1) ⋆ (m′ ·m)) ∈ {Encrypt(sk,m′ ·m)} ⊂ Im(f) as
m · u ∈ Fn

qm and m′ · e ∈ Fn (F being an Fq-linear span).
To prove that (Dom(f),+) with Dom(f) = Fn

q×Fn
qm×Mw,n(Fq) is an Fn

q -module
we must define the external multiplication with an element in Fn

q . We define it by
multiplying coordinatewise. The first two coordinates correspond to multiplications
in Fq[X]/⟨Q⟩ and Fqm [X]/⟨Q⟩. For the last one we consider that the external mul-
tiplication is done with each of the w rows of the matrix over Fq[X]/⟨Q⟩. With this
operation it is trivial to verify that we obtain an Fn

q -module.

11

The identity element of (Fn
q × Fn

qm ×Mw,n(Fq),+) is (0,0,0) and f(0,0,0) =
EncryptAHE(0, (0,0)) = (0,0) the identity element of Im(f).

For m′ ∈ Fn
q and (m, r1,R2) ∈ Dom(f), we have f(m′ ·m,m′ · r1,m′ ·R2) =

(m′ · r1, s · (m′ · r1) + f · m′ · R2 + g(1) ⋆ m′ · m) = m′ · f(m, r1,R2) using
the commutative and associative properties of the involved polynomial operations,
which concludes the proof.

⊓⊔

Corollary 1 (Homomorphic Addition Distribution). For any m,m′ ∈ Fn
q ,

properly generated key sk, and ct ∈ {EncryptAHE(sk,m)}, let ct′′ be obtained by

ct′
$← EncryptAHE(sk,m

′)

ct′′ = AddAHE(ct, ct′)

and let ct′′′ be obtained by

ct′′′
$← EncryptAHE(sk,m+m′).

Then the distributions of ct′′ and ct′′′ are identical.

Proof. The proof is immediately derived from Proposition 3 as it proves that ct′′ =
EncryptAHE(sk,m+m′, r+ r′) with r′ uniformly sampled and r independent from
r′, and thus r + r′ is uniform in Fn

qm ×Mw,n(Fq).

Note that obtaining the same distribution as a fresh ciphertext of the sum is a
much stronger property than decrypting to the sum. In practice it implies (among
other things) that no information about a computation, besides the result, can
leak from the output ciphertext if one of the input ciphertexts was generated with
EncryptAHE and unknown to the decrypter (which is definitely not naturally true
with lattice-based schemes). It also implies that there is no bound on the amount
of ciphertexts that can be added (which again is not naturally true for lattice-based
schemes), but we delay the formalization of these properties into an associated
corollary to make it more general so that it takes into account arbitrary linear
combinations of ciphertexts. We prove thus first that multiplications of ciphertexts
by plaintexts also lead to the same distribution as fresh ciphertexts.

Corollary 2 (Homorphic Plaintext Multiplication Distribution). For any
m ∈ Fn

q , m′ ∈ Fn
q {0} and properly generated key sk, let ct′ be obtained by

ct
$← EncryptAHE(sk,m) and ct′ = m′ · ct. Let ct′′ be obtained by ct′′

$←
EncryptAHE(sk,m ·m′). The distributions of ct′ and ct′′ are identical.

Proof. Again, the proof is immediately derived from 3 as it proves that ct′ =
EncryptAHE(sk,m′ ·m,m′ · r) with r uniformly sampled and m′ independent from
r, and thus m′ · r is uniform in Fn

qm ×Mw,n(Fq) as m′ is invertible (Fq[X]/⟨Q⟩
being a field) and it therefore does not alter the uniform distribution.

⊓⊔

We are now ready to prove the corollary summarizing the results of this section.

12

Corollary 3. Any non-null linear combination, with coefficients in Fn
q , of inde-

pendent ciphertexts follows the same distribution as a fresh encryption of the same
linear combination over the associated plaintexts. The resulting ciphertext decrypts
correctly.

Proof. The first result is obtained by removing first the null coefficients (not all
are null as it is a non-null linear combination). Then we apply corollary 2 to each
plaintext multiplication and corollary 1 iteratively. The second result is obtained
using the first result and proposition 1.

⊓⊔

The case in which some ciphertexts are inter-dependent, even maliciously, is
more complex and beyond the scope of this paper. However it is important to note
that with the properties described in this section it is quite manageable, unlike for
lattice-based homomorphic encryption schemes for which this issue is quickly very
complex.

Remark 3. Functions AddAHE and PtxtMulAHE corresponding to natural operations,
from now on we will in general not call these functions explicitly replacing directly
AddAHE(ct, ct′) with operation ct+ ct′ and PtxtMulAHE(m, ct) with m · ct (where
m multiplies each of the two coordinates of the vector ct).

4 Somewhat Homomorphic Scheme

In this section we extend our additive scheme to a somewhat homomorphic scheme
that can perform unlimited additions and one multiplication. The homomorphic
multiplication operation transforms a two-component ciphertext into a three-
component ciphertext, which can be decrypted with an alternative decryption al-
gorithm.

4.1 Fundamental and Additively Homomorphic Algorithms

The fundamental algorithms constituting our scheme SHE, and the additively homo-
morphic algorithms directly inherited from AHE are depicted in Fig. 3. The scheme
is parametrized by the same variables than the previous scheme, with a different
condition on the weight w:

– q, the base field cardinality;
– m, the dimension of the field extension;
– n, the length of the vectors;
– w, the rank weight of the error; it must be that w(w+3)

2 + 1 < m.

As for AHE we define a randomized algorithm EncryptSHE(sk,m) that samples
r

$← Fn
qm ×Mw,n(Fq) and returns EncryptSHE(sk,m, r). The SHE scheme does not

change the encryption, decryption, addition and plaintext multiplication algorithms,
it only gives a stronger constraint on w when defining the parameters and has a
more complex key generation algorithm to ensure that noise can be separated from
the message space even after a homomorphic multiplication.

13

– KeyGenSHE():
• samples g1

$← Fqm , f = (f1, . . . , fw)
$← Sw

w (Fqm)
• defines F = supp(f1, . . . , fw) and F̃ = supp(f , g1 ⋆ f , (fifj)1≤i,j≤w)

• computes f̃ = (f1, . . . , fd
F̃
) ∈ Sd

F̃
d
F̃
(Fqm) a basis of F̃ with dF̃ = dim(F̃)

• defines g2 = g1g1
• checks that rw(f1, . . . , fd

F̃
, g1, g2) = dF̃ + 2 (if not it restarts)

• extends this vector into a basis b = (f1, . . . , fd
F̃
, g1, . . . , gm−d

F̃
) ∈ Sm

m (Fqm)
• defines g = (g1, . . . , gm−d

F̃
)

• computes the matrix B = Mat(b)
• defines D as the last m− dF̃ columns of (B−1)T

• samples s
$← Fn with F = supp(f)

• returns sk = (f , g,D, s).

– EncryptSHE = EncryptAHE.
– DecryptSHE = DecryptAHE.
– AddSHE = AddAHE.
– PtxtMulSHE = PtxtMulAHE.

Fig. 3. Description of the fully homomorphic scheme.

Proposition 4 (Extension of AHE properties to SHE). Propositions 2, 1, and 3
and Corollaries 1, 2 and 3 remain true when replacing AHE with SHE.

Proof. The associated proofs only use properties of D and the definitions of
EncryptAHE, DecryptAHE, AddAHE and PtxtMulAHE. It can be easily checked that
the used properties of D are maintained and that the definitions of EncryptAHE,
DecryptAHE, AddAHE and PtxtMulAHE are unchanged.

⊓⊔

4.2 Multiplicative Homomorphic Algorithms

– Mul(ct = (u,v), ct′ = (u′,v′)): returns (v · v′,−(u · v′ + u′ · v),u · u′) ∈
Fn
qm × Fn

qm × Fn
qm

– DecryptMul(sk = (f , g,D, s), (a, b, c)): computes tmp = a + s · b + s · s · c, and
returns dTMat(tmp) with d = D(2).

Fig. 4. Multiplicative Homomorphic Algorithms.

Proposition 5 (Homomorphic Multiplication Decryption Correctness).
For any m,m′ ∈ Fn

q , and properly generated key sk, let ct ∈ {Encrypt(sk,m)}
and ct′ ∈ {Encrypt(sk,m′)}. We have DecryptMul(sk,Mul(ct, ct′)) = m ·m′.

14

Proof. Let’s note ct = (u,v), ct′ = (u′,v′) and Mul(ct, ct′) = (a, b, c). We then
have

tmp = a+ s · b+ s · s · c
= v · v′ − s · (u · v′ + u′ · v) + s · s · u · u′

= (v − s · u) · (v′ − s · u′)

= (m̂+ e) · (m̂′ + e′)

= m̂ · m̂′ + m̂′ · e+ m̂ · e′ + e · e′

with m̂ · m̂′ = g(1)g(1) ⋆m ·m′ and m̂′ · e+ m̂ · e′ + e · e′ ∈ F̃n. We thus can write

tmp = g(1)g(1) ⋆m ·m′ +
∑

1≤i≤d
F̃

fi ⋆ ei with ei ∈ Fn
q .

As g(1)g(1) = g(2) and d = D(2), dTvec(g(2)) = 1 and dTvec(fi) = 0 for 1 ≤ i ≤
dF̃ , we thus have dTMat(tmp) = m ·m′.

⊓⊔

It is possible to define an encryption function that directly creates ciphertexts
of the form (a, b, c) (with noise drawn from F̃) and show that the result of
the multiplication of two fresh ciphertexts of the form (u,v) follows the same
distribution as a fresh three-coordinate ciphertext associated with the product of
plaintexts. It is also possible to show that non-null linear combinations of these
three-coordinate ciphertexts have the same distributions as fresh three-coordinate
ciphertexts. We do not delve into these proofs as in practice three-coordinate
ciphertexts will be transformed back to two coordinate ciphertexts. However if
for some reason (e.g. computing a degree two polynomial with a simple scheme)
one wants to handle three-coordinate ciphertexts it is important to understand
that the nice distributional properties of two-coordinate ciphertexts are maintained.

The Somewhat Homomorphic Encryption scheme described above can be
adapted so as to perform the evaluation of a arbitrary polynomial of degree d.
However this has two implications that we state informally. First, the ciphertext
is expanded to d + 1 coordinates. Second, multiplications are expanding the noise
space, meaning that the parameters must satisfy wd = O(m). These two conditions
require the choice of large and impractical parameters for high values of d.

5 (Insecure) Bootstrapping and Fully Homomorphic
Encryption

In this section we present bootstrapping algorithms that homomorphically applies
either DecryptSHE or DecryptMulSHE on a ciphertext. Our bootstrapping algorithm
has no multiplicative depth so it produces a two-component (u,v) fresh ciphertext
with a new key. The simplicity of our construction gives a glimpse of a practical Fully
Homomorphic Encryption scheme that would allow to compute arbitrary circuits.

However, this first bootstrapping construction is unsecure as the number of
bootstrapping keys (2m for the case of a homomorphic evaluation of DecryptSHE)

15

is higher than the upper bound on the number of independent ciphertexts allowed
(2w, cf. Section 6). Therefore, at the moment, it cannot be used for a secure FHE.

We first present in Figure 5 a homomorphic decryption algorithm that works
on two-component (u,v) ciphertexts, then present in Figure 6 a bootstrapping
relinearization algorithm that is a homomorphic decryption on three-component
(a, b, c) ciphertexts.

5.1 Homomorphic Decryption Algorithms

In this section we explicitly note (γ1, . . . , γm) the public basis in which an element
of Fm

q represents an element of Fqm .

– GenKeySwitchSHE(sk1 = (f1, g1,D1, s1)):
• generates a new basis b2 of Fqm , and sk2 = (f2, g2,D2, s2) as in KeyGenSHE

• for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(1)
1

• defines ksk = (ksk1, . . . , kskm), with kski
$← EncryptSHE(sk2, s1,i)

• for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

• defines projk = (projk1, . . . , projkm) with projki
$← EncryptSHE(sk2,pi)

• returns (sk2, ksk, projk)
– HomDecryptSHE(ksk, projk, ct = (u,v)):
• defines ui ∈ Fn

q such that u =
∑

1≤i≤m γi ⋆ ui

• defines vi ∈ Fn
q such that v =

∑
1≤i≤m γi ⋆ vi

• computes ct1 =
∑

1≤i≤m vi · projki
• computes ct2 =

∑
1≤i≤m ui · kski

• returns ct1 − ct2

Fig. 5. Homomorphic Decryption Algorithms.

Proposition 6 (Homomorphic Decryption Distribution). For any properly
generated key sk1, any ct ∈ (Fn

qm)∗ × (Fn
qm)∗ such that DecryptSHE(sk1, ct) = m ∈

Fn
q , and (sk2, ksk, projk)

$← GenKeySwitchSHE(sk1), let ct′ be obtained by ct′ =

HomDecryptSHE(ksk, projk, ct) and let ct′′ be obtained by ct′′
$← EncryptSHE(sk2,m).

The distributions of ct′ and ct′′ are identical.

Proof. As ct is non-null, ct1 − ct2 is a non-null linear combination of the ci-
phertexts projki and kski, that have been generated independently. Thus, us-
ing Corollary 3 and Proposition 4, ct1 − ct2 follows the same distribution as
ct′′′

$← EncryptSHE(sk2,
∑

1≤i≤m vi · pi −
∑

1≤i≤m ui · s1,i).
We thus only need to prove that

∑
1≤i≤m vi · pi −

∑
1≤i≤m ui · s1,i = m. We

have

16

∑
1≤i≤m

vi · pi −
∑

1≤i≤m

ui · s1,i =
∑

1≤i≤m

vi · d(i) ⋆ (1, 0, . . . , 0)−
∑

1≤i≤m

ui · s1,i

=
∑

1≤i≤m

d(i) ⋆ vi −
∑

1≤i≤m

ui · s1,i

= dTMat(v)−
∑

1≤i≤m

ui · s1,i

= dTMat(v)−
∑

1≤i≤m

ui · dTMat(γi ⋆ s1)

noting that dTMat(γi ⋆ s1) =
∑

j d
(j)ℓj with ℓj the lines of Mat(γi ⋆ s1) we

can use the distributivity of the polynomial multiplication over the addition to get
ui · dTMat(γi ⋆ s1) = dTMat(γi ⋆ ui · s1). We thus obtain

∑
1≤i≤m

vi · pi −
∑

1≤i≤m

ui · s1,i = dTMat(v)− dTMat(
∑

1≤i≤m

γi ⋆ ui · s1)

= dTMat(v − u · s1)

= m

which concludes the proof.
⊓⊔

It is very important to note that Proposition 6 ensures that the output of
HomDecryptSHE is a well formed and well distributed ciphertext even if ct is not,
as long as it decrypts to m. There are many implications to Proposition 6. Among
them we can highlight that it opens the path to fast and simple algorithms for:
bootstrapping relinearization, and trans-encryption. It also allows to rerandomize
a ciphertext (assuming that the key switching key is well-formed).

5.2 Bootstrapping relinearization

Proposition 7 (Relinearization Distribution). For any properly generated key
sk1, non-null (a, b, c) ∈ Fn

qm ×Fn
qm ×Fn

qm such that DecryptMulSHE(sk1, (a, b, c)) =

m ∈ Fn
q , and (sk2, ksk, ksksq, projk)

$← GenRelinKeySHE(sk1), let ct′ be obtained

by ct′ = RelinearizeSHE(ksk, ksksq, projk, (a, b, c)) and let ct′′ be obtained by ct′′
$←

EncryptSHE(sk2,m). The distributions of ct′ and ct′′′ are identical.

Proof. The proof is very similar to the one of HomDecryptSHE. We use the fact
that (a, b, c) is not null and the ciphertexts generated in GenRelinKeySHE are in-
dependently generated to show that the result is uniformly distributed among the
encryptions of a given plaintext. We then show that this plaintext is m by evaluating
the correctness.

For the correctness we show that cta is in EncryptSHE(sk2,d
TMat(a)),

then that ctb is in EncryptSHE(sk2,d
TMat(s1 · b)), and finally that ctc is in

EncryptSHE(sk2,d
TMat(s1 · s1 · c)). As a consequence we obtain that ct is in

EncryptSHE(sk2,DecryptMulSHE(sk1, (a, b, c)) and thus in EncryptSHE(sk2,m).
⊓⊔

17

– GenRelinKeySHE(sk1 = (f1, g1,D1, s1, P)):
• generates a new basis b2 of Fqm , and sk2 = (f2, g2,D2, s2, P) as in KeyGenSHE

• for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(2)
1

• for 1 ≤ i ≤ m defines s1sq,i = dTMat(γi ⋆ s1 · s1)

• defines ksk = (ksk1, . . . , kskm), with kski
$← EncryptSHE(sk2, s1,i)

• defines ksksq = (ksksq1, . . . , ksksqm), with ksksqi
$← EncryptSHE(sk2, s1sq,i)

• for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

• defines projk = (projk1, . . . , projkm) with projki
$← EncryptSHE(sk2,pi)

• returns (sk2, ksk, ksksq, projk)
– RelinearizeSHE(ksk, ksksq, projk, (a, b, c) ∈ (Fn

qm)∗ × (Fn
qm)∗ × (Fn

qm)∗)):
• defines ai ∈ Fn

q such that a =
∑

1≤i≤m γi ⋆ ai

• defines bi ∈ Fn
q such that b =

∑
1≤i≤m γi ⋆ bi

• defines ci ∈ Fn
q such that c =

∑
1≤i≤m γi ⋆ ci

• computes cta =
∑

1≤i≤m ai · projki
• computes ctb =

∑
1≤i≤m bi · kski

• computes ctc =
∑

1≤i≤m ci · ksksqi
• returns cta + ctb + ctc

Fig. 6. Relinearization Algorithms.

Note that the relinearization bootstraps the ciphertext. Unlike in previous FHE
schemes, the resulting ciphertext is fresh. It has, exactly the same amount of noise as
the fresh ciphertexts used for the relinearization. Note that these are direct results
of Corollary 3 (doing linear combinations of ciphertexts with coefficients in Fq does
not change the distribution). This seems to be a very powerful property.

Another very interesting property that makes these algorithms possible is the
structure of the coefficients of the polynomials forming the ciphertexts. As these
coefficients have structure it is much easier to project and reconstruct inside a ci-
phertext than it would be with bits inside an integer (as in lattice cryptosystems).
This structure can also lead to many interesting applications such as directly en-
coding structured plaintexts (e.g. AES states if we take Fq = F28×4×4).

6 Problem: Limitation on the number of independent
ciphertexts

Even though it is beautiful, this FHE is not secure because, as we will demonstrate
in this section, the number of ciphertexts that allows an attacker to retrieve the
secret key in polynomial time (2w) is lower than the number of ciphertexts of the
bootstrapping material (2m).

Definition 11 (Rank-SHE Ciphertext Learning Problem (RCL)). Let sk =

(f , g,D, s)
$← KeyGenSHE(). Let O be an oracle which samples randomly indepen-

dent encryptions of 0 under secret key sk. The problem RCLn,ℓ,w is to recover
F = supp(f) given ℓ accesses to the oracle.

We will prove below the following result which upper bounds to 2w the number
of independent ciphertexts that can be crafted with the same key. For the sake of the

18

security reduction, we will now assume that w is below the rank Gilbert-Varshamov
bound for parameters (q, ℓn, n,m) for every ℓ > 1, in order to guarantee the unicity
of a solution to the considered problems.

Proposition 8. RCLn,ℓ,w can be solved in polynomial time when ℓ ≥ 2w.

The proof requires the following lemma that connects RCL and IRSD.

Lemma 1. IRSDn,ℓ+1,w is polynomially equivalent to RCLn,ℓ,w.

Proof. Suppose we have a solver for RCLn,ℓ,w. Let (H,y = He⊤) ∈ Fℓn×(ℓ+1)n
qm ×

Fnℓ
qm be an instance of IRSDn,ℓ+1,w.

By applying Gaussian elimination on the ideal blocks of H, we can reduce H to
its systematic form. Namely there exists an invertible matrix M ∈Mℓn(Fqm) such
that:

H = M

In IMQ(u1)

In IMQ(u2)
. . .

...
In IMQ(uℓ−1)

In IMQ(uℓ)

 (1)

By rewriting M−1y as (v1, · · · ,vℓ) where the vi are in Fn
qm , and e as (e1, · · · , eℓ, s)

we get the following equalities :

v1 = u1 · s+ e1

...
vℓ = uℓ · s+ eℓ

Therefore, as the distributions of e in IRSD on one hand, and (e1, · · · , eℓ, s)
in RCL on the other hand, are the same, (ui,vi)i≤ℓ is a (random) instance
of RCLn,ℓ,w (for a secret key sk = (f , g,D, s) such that supp(f) = supp(e))
so a solver can recover the support of e. It is only a matter of linear algebra
to compute the exact coordinates of e and thus to solve the instance of IRSDn,ℓ+1,w.

Conversely, suppose we have a solver for IRSDn,ℓ+1,w. Let sk = (f , g,D, s) and
let (ui,vi = ui · s + ei)i≤ℓ be an instance of RCLn,ℓ,w. We then draw a random
invertible matrix M and apply the same transformation as before: define a matrix
H as in Equation 1 and y = (Mv1, · · · ,Mvℓ) .We obtain a random instance
(H,y) of IRSDn,ℓ+1,w,we can use our solver, and thanks to the unicity of a solution,
the support of the recovered error will precisely be the secret space F .

All transformations in this proof are obviously polynomial so we get that
IRSDn,ℓ+1,w and RCLn,ℓ,w are polynomially equivalent. ⊓⊔

Proof (of Proposition 8). We use the linearization attack against RSD presented
in [21, Proposition 2] that is effective against small rate codes. This attacks solves the
decoding problem with weight w in an [n, k]qm code under the following condition:

n ≥ (k + 1)(w + 1)− 1.

19

As seen in the above lemma, the ideal code constructed from the RCLn,ℓ,w in-
stance is an [n(ℓ + 1), n]qm code. In that setting, the linearization attack works
when

n(ℓ+ 1) ≥ (n+ 1)(w + 1)− 1,

i.e.
ℓ+ 1 ≥ w +

w

n
.

Because n ≥ 1, this clearly shows that ℓ ≥ 2w is a sufficient condition to break RCL
in polynomial time. ⊓⊔

Remark 4. The RCL problem is defined for encryptions of 0, so it is not obvious
whether the polynomial attack would work for encryptions of random messages m.
However, we find this attack sufficiently dangerous to claim that 2w is the maximal
number of ciphertexts that can be safely published, even for non-zero messages.

7 Reducing the number of bootstrapping ciphertexts

In order to reduce the number of ciphertexts, we pack the plaintext into several com-
ponents which are linked publicly so that the server can select which component
of the packing they want. It allows to reduce the number of bootstrapping cipher-
texts from 2m to 2(w+1), which is a major improvement but is unfortunately still
unsecure.

7.1 Packing plaintexts

In order to simplify and since our bootstrapping procedure does not need any
multiplication, we only present packing for the additive homomorphic scheme. It
could be easily extended to the somewhat homomorphic scheme.

In this section we present a variant of AHE which packs as many plaintexts in Fn
q

as possible in a single ciphertext. We call this variant PAHE (for Packed Additively
Homomorphic Encryption).

The fundamental algorithms constituting our scheme PAHE, and the additively
homomorphic algorithms directly inherited from AHE are depicted in Fig. 7. The
scheme has now a public key pk that consists of a field element ρ ∈ Fqm that will
be used for manipulating packed ciphertexts.

The scheme is parametrized by an additional parameter t that accounts for the
size of the packing:

– q, the base field cardinality;
– m, the dimension of the field extension;
– n, the length of the vectors;
– w, the rank weight of the error;
– t, the maximal number of plaintexts that can be packed in a single ciphertext;

it must be that t(w + 1) ≤ m and that m is divisible by t.

20

– KeyGenPAHE():
• samples ρ

$← Fqm such that ρt = 1.
• samples g0

$← Fqm , f = (f1, . . . , fw)
$← Sw

w (Fqm)
• defines F̃ = V ectFq ((ρ

jfi)1≤i≤w,0≤j≤t−1)

• computes f̃ = (f1, . . . , fd
F̃
) ∈ Sd

F̃
d
F̃
(Fqm) a basis of F̃ with dF̃ = dim(F̃)

• defines gi = ρ−ig0
• checks that rw(f1, . . . , fd

F̃
, g0, ..., gt−1) = dF̃ + t (if not it restarts)

• extends this vector into a basis b = (f1, . . . , fd
F̃
, g0, . . . , gm−d

F̃
−1) ∈ Sm

m (Fqm)
• defines g = (g0, . . . , gm−d

F̃
−1)

• computes the matrix B = Mat(b) and its transposed inverse (B−1)T

• defines D as the last m− dF̃ columns of (B−1)T

• samples s
$← Fn with F = supp(f)

• returns (sk = (f , g,D, s) ,pk = ρ).

– EncryptPAHE(sk, (m0, . . . ,mt−1), r ∈ Fn
qm × Mw,n(Fq)) with mi ∈ Fn

q): notes
r = (r1,R2), defines u = r1 and e = fR2 and sets v = s · u + e + m̂ with
m̂ =

∑
0≤i<t gi ⋆mi ∈ Fn

qm . Returns ct = (u,v).

– DecryptPAHE(sk, ct = (u,v)): returns (m0, . . . ,mt−1) with mi =
(D(i+1))TMat(v − s · u).

– AddPAHE = AddAHE.
– PtxtMulPAHE = PtxtMulAHE.

Fig. 7. Description of the packed additive homomorphic scheme.

Actually, in the following we will consider that the equality is met for the above
condition, i.e. t(w+1) = m, because it is the optimal setup to have the least number
of bootstrapping ciphertexts.

Proposition 9 (Extension of AHE properties to PAHE). Proposition 1, and
Corollaries 1, 2 and 3 remain true when replacing AHE with PAHE. Propo-
sition 2 remains true except for the definition of the cosets which are now
{EncryptPAHE(sk,0)}+

∑
0≤i<t gi ⋆mi.

Proof. For proposition 1 we can follow the same proof noting that

v − s · u =
∑

1≤i≤w

fi ⋆ ei +
∑

0≤i<t

gi ⋆mi.

We can thus write,

(D(j+1))TMat(v − s · u) =
∑

1≤i≤w

(D(j+1))Tvec(fi) ⋆ ei +
∑

0≤i<t

(D(j+1))Tvec(gi) ⋆mi

= mj

using the same arguments as in the proof of proposition 1.
The proofs of proposition 2, and corollaries 1, 2 and 3 do not depend on the

specific encoding we have on PAHE but only on how the noise vectors are chosen

21

and used. As this is unchanged from AHE, the proofs are immediately valid for
PAHE.

⊓⊔

7.2 Plaintext rotation

In this section we define a rotation operation that is publicly computable and rotates
plaintexts inside a packed ciphertext. It is described in Figure 8.

– RotatePAHE(ct = (u,v),pk = ρ, j ∈ N) returns (ρju, ρjv).

Fig. 8. Description of plaintext rotation.

Proposition 10 (Rotation correctness). For any (m0, ...,mt−1) ∈ Fn×t
q ,

and a properly generated key (sk,pk), let ct = (u,v) be obtained by
ct

$← EncryptPAHE(sk,m0, ...,mt+1), ct′
$← RotatePAHE(ct,pk, j). We have

DecryptPAHE(sk, ct′) = (mj , ...,mj+t−1)
2.

Proof. Like in the proof of Proposition 9, we have

v − s · u =
∑

1≤i≤w

fi ⋆ ei +
∑

0≤i<t

gi ⋆mi.

By noting ct′ = (u′,v′) and pk = ρ we get

v′ − s · u′ =
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i<t

(ρjgi) ⋆mi.

Changing variables i′ = i− j in the second sum gives

v′ − s · u′ =
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i′<t

(ρjgi′+j) ⋆mi+j

=
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i′<t

gi′ ⋆mi+j

Now just like in the proof of Proposition 9, we can write for any 0 ≤ k < t,

(D(k+1))TMat(v′ − s · u′) =
∑

1≤i≤w

(D(k+1))Tvec(ρjfi) ⋆ ei +
∑

0≤i′<t

(D(k+1))Tvec(gi′) ⋆mi+j

= mk+j

because thanks to the definition of D = (B−1)T , for any 1 ≤ i ≤ w,
(D(k+1))Tvec(ρjfi) = 0, (D(k+1))Tvec(gk) = 1 and for any 0 ≤ i′ < t, i′ ̸= k,
(D(k+1))Tvec(gi′) = 0. ⊓⊔

Remark 5. In particular, RotatePAHE(·,pk, t) = id.
2 The indexes are taken modulo t

22

7.3 Homomorphic decrytion with packing

The new relinearization with packing is presented in Figure 9. The key switching
material (ksk and projk) is now composed of 2(w + 1) packed ciphertexts (instead
of 2m simple ciphertexts in Figure 5).

– GenKeySwitchPAHE(sk1 = (f1, g1,D1, s1)):
• generates a new basis b2 of Fqm , sk2 = (f2, g2,D2, s2) and pk2 as in

KeyGenPAHE

• for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(1)
1

• defines ksk = (ksk0, . . . , kskw), with kski
$← EncryptPAHE(sk2, (s1,it+j)1≤j≤t)

• for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

• defines projk = (projk0, . . . , projkw) with projki
$←

EncryptPAHE(sk2, (pit+j)1≤j≤t))
• returns (sk2,pk2, ksk, projk).

– HomDecryptPAHE(ksk, projk, ct = (u,v),pk2):
• defines ui ∈ Fn

q such that u =
∑

1≤i≤m γi ⋆ ui

• defines vi ∈ Fn
q such that v =

∑
1≤i≤m γi ⋆ vi

• computes ct1 =
∑

1≤i≤m vi ·RotatePAHE(projk⌊(i−1)/t⌋,pk2, (i− 1))
• computes ct2 =

∑
1≤i≤m ui ·RotatePAHE(ksk⌊(i−1)/t⌋,pk2, (i− 1))

• returns ct1 − ct2

Fig. 9. Homomorphic Decryption Packing Algorithms.

The following proposition establishes that a ciphertext ct encrypting a single
plaintext m (without packing), after homomorphic decryption with a PAHE key
switching material, decrypts correctly.

Proposition 11 (Homomorphic Decryption with packing Cor-
rectness). For any properly generated key sk1 and m ∈ Fn

q , ct
$←

EncryptAHE(sk1,m), (sk2,pk2, ksk, projk)
$← GenKeySwitchPAHE(sk1),

DecryptPAHE(sk2,HomDecryptPAHE(ksk, projk, ct,pk2)) = m.

Proof. Let 1 ≤ i ≤ m. By Proposition 10,

RotatePAHE(projk⌊(i−1)/t⌋,pk2, (i− 1)) ∈ {EncryptPAHE(sk2, (pα(i,j))1≤j≤t)}.

where

α : [1,m]× [1, t] −→ [1,m]

(i, j) 7−→ ⌊ i− 1

t
⌋t+ 1 + ((i+ j − 2) mod t).

Similarly,

RotatePAHE(ksk⌊(i−1)/t⌋,pk2, (i− 1)) ∈ {EncryptPAHE(sk2, (s1,α(i,j))1≤j≤t)}.

23

Using Proposition 9

(ct1 − ct2) ∈ {EncryptPAHE(sk2,
∑

1≤i≤m

(vi · pα(i,j) − ui · s1,α(i,j))1≤j≤t)}.

Using DecryptAHE on ciphertext (ct1 − ct2) corresponds to retrieving the first
component of the packed plaintext hence

DecryptAHE(sk2,HomDecryptPAHE(ksk, projk, ct,pk2)) =
∑

1≤i≤m

vi·pα(i,1)−ui·s1,α(i,1).

Noting that for all 1 ≤ i ≤ m, we have the identity α(i, 1) = i,

DecryptAHE(sk2,HomDecryptPAHE(ksk, projk, ct,pk2)) =
∑

1≤i≤m

vi · pi − ui · s1,i

= m

using the same argument as in the proof of Proposition 6. ⊓⊔
Remark 6. After homomorphic decryption, the resulting ciphertext ct′ =
HomDecryptPAHE(ksk, projk, ct,pk2) does not belong to the distribution
EncryptAHE(sk2,m) nor EncryptPAHE(sk2, (m, ·, . . .)). Indeed, the noise com-
ponent of ct′ lives in the bigger space F̃ (as defined in KeyGenPAHE), whereas the
noise component of the freshly encrypted ciphertexts belong to F . It does not
impact security since ct′ results from public operations only with fresh ciphertexts
ct, ksk and projk.

Remark 7. Because the HomDecryptPAHE operation consists essentially in a homo-
morphic evaluation of the orthogonal projection of v − s · u on ⟨g0⟩Fq

, note that
the initial ciphertext ct does not need to be fresh (i.e. with its noise in F). In par-
ticular, Proposition 11 is still valid when ct results from a previous homomorphic
decryption with another set of keys.

Remark 8. If the initial ciphertext ct had been taken with packed plaintexts (i.e.
drawn from EncryptPAHE instead of EncryptAHE), the homomorphic decryption would
be correct only for the first component of the packed plaintext. Other components
would be lost.

8 Parameters

In this section we give example parameters for our scheme. Several sets are proposed
for different values of d, the number of possible multiplications in the SHE. The
parameter selection ran through the following steps. For given m and n, the weight
w is set to the minimum between the half-rate rank Gilbert-Varshamov bound drGV

and wd−1 (to prevent an overflow on the noise after d multiplications). We search
for the lowest n such that a sufficient number of ciphertexts ℓ = 3w/4 can be
published, i.e. the best attacks against IRSD in an s-ideal [sn, n]qm random code for
every 2 ≤ s ≤ ℓ are above the security level. Two attacks against IRSD were taken
into account:

24

– the combinatorial attack from [8] whose complexity is given by (sn −
n)ωmωqw⌈m(n+1)

sn ⌉−m for ω the linear algebra exponent;
– the algebraic attack from [10] whose complexity is given by
qawm

(
sn−n−1

w

)(
sn−a
w

)ω−1
where a is defined as the smallest integer such

that the condition m
(
sn−n−1

w

)
≥

(
sn−a
w

)
− 1 is fulfilled.

If no such n can be found, the process restarts with an increased m. The SageMath
script of our parameter selection is available at:

https://www.github.com/victordyseryn/rank-fhe-parameter-selection

The key and ciphertext sizes in bits are given by the following formulas:

|sk| = log2(q)(m
2 + nw)

|ct| = 2 log2(q)mn

The approximate timings for addition, multiplication and bootstrapping opera-
tions are estimated as follows:

– The addition consists in the sum of two vectors in Fn
qm , the number of bit

operations is then

TAdd = 2mn;

– The multplication consists in three multiplications of vectors in Fn
qm . The use

of the Karatsuba algorithm gives a number of bits operations of

TMul = 3(mn)1.6;

– The bootstrapping requires 2m plaintext absorptions, i.e. a multiplication of
a vector in Fn

q times a vector in Fn
qm . With Karatsuba algorithm, the number

of bit operations of a plaintext absorption is mn1.6, hence the total cost of
bootstrapping is

TBootstrap = 2m2n1.6.

The bootstrapping time is informative only as it is unsecure as proven in Sec-
tion 6.

The timing in milliseconds are then computed by diving the number of bit opera-
tions by 3 millions, accounting for a processor running at 3 GHz. Note that this is
an extremely conservative estimation, as many modern processors run several bit
operations in one clock cycle.

Our parameters are presented in the following table:

https://www.github.com/victordyseryn/rank-fhe-parameter-selection

25

d q m n w ℓ Security Key size ct size Add Mul Bootstrap

1 2 172 20 13 9 128 3.7 kB 0.9 kB 0.002 ms 0.5 ms 2 ms
2 2 367 183 7 5 128 17.0 kB 16.8 kB 0.04 ms 52 ms 374 ms
3 2 1296 314 6 4 128 210 kB 102 kB 0.3 ms 944 ms 11 s
4 2 3125 713 5 3 128 1.22 MB 557 kB 1 ms 14.3 s 239 s

Table 1. Example of paramaters for our SHE scheme, with associated sizes and execution
timings. d is the number of possible multiplications. q, m and n are parameters of the
rank linear code and w is the rank weight of the error. ℓ is the number of independant
ciphertexts that can be published.

The sizes and expected performance of our somewhat homomorphic encryption
scheme are very positive, and could already be used for practical applications with
a small number of multiplications.

These numbers additionally show a strong potential regarding bootstrapping,
should it be repaired. With bootstrapping enabled, the only parameters to consider
would be those for which d = 1, and in such a context bootstrapping would be very
efficient with an unoptimized running time of only 2 milliseconds. For example, it
is more than 6 times more efficient than the bootstrap in TFHE [15], one of the
most popular and widely used lattice-based FHE framework. Our scheme shows
that error correcting codes can lead to very competitive FHE constructions.

References

[1] Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Zémor, G., Couvreur, A., Hauteville, A.: RQC. Tech-
nical report, National Institute of Standards and Technology (2019) avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions. 2, 3, 8

[2] Aguilar-Melchor, C., Aragon, N., Dyseryn, V., Gaborit, P., Zémor, G.: LRPC codes
with multiple syndromes: near ideal-size KEMs without ideals. In: International Con-
ference on Post-Quantum Cryptography, Springer (2022) 45–68 2

[3] Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS,
IEEE Computer Society Press (October 2003) 298–307 3

[4] Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta,
O., Tillich, J.P., Zémor, G., Aguilar Melchor, C., Bettaieb, S., Bidoux, L.,
Bardet, M., Otmani, A.: ROLLO. Technical report, National Institute of Stan-
dards and Technology (2019) available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-2-submissions. 2, 8

[5] Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: A rank
metric based signature scheme. In Ishai, Y., Rijmen, V., eds.: EUROCRYPT 2019,
Part III. Volume 11478 of LNCS., Springer, Heidelberg (May 2019) 728–758 2

[6] Aragon, N., Dyseryn, V., Gaborit, P., Loidreau, P., Renner, J., Wachter-Zeh, A.:
LowMS: a new rank metric code-based KEM without ideal structure. Cryptology
ePrint Archive, Report 2022/1596 (2022) https://eprint.iacr.org/2022/1596. 2

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://eprint.iacr.org/2022/1596

26

[7] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check
codes: New decoding algorithms and applications to cryptography. IEEE Transactions
on Information Theory 65(12) (2019) 7697–7717 2, 7

[8] Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving
the rank syndrome decoding problem. In: 2018 IEEE International Symposium on
Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, IEEE (2018) 2421–
2425 24

[9] Armknecht, F., Augot, D., Perret, L., Sadeghi, A.R.: On constructing homomor-
phic encryption schemes from coding theory. In: IMA International Conference on
Cryptography and Coding, Springer (2011) 23–40 2

[10] Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R.A., Smith-Tone, D.,
Tillich, J.P., Verbel, J.A.: Improvements of algebraic attacks for solving the rank
decoding and MinRank problems. In: ASIACRYPT 2020, Part I. LNCS, Springer,
Heidelberg (December 2020) 507–536 24

[11] Bidoux, L., Chi-Domínguez, J.J., Feneuil, T., Gaborit, P., Joux, A., Rivain, M.,
Vinçotte, A.: RYDE: A Digital Signature Scheme based on Rank-Syndrome-Decoding
Problem with MPCitH Paradigm. arXiv preprint arXiv:2307.08726 (2023) 2

[12] Bogdanov, A., Lee, C.H.: Homomorphic encryption from codes. Cryptology ePrint
Archive, Report 2011/622 (2011) https://eprint.iacr.org/2011/622. 2

[13] Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005. Proceedings 2, Springer (2005) 325–341
1

[14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (stan-
dard) LWE. SIAM Journal on computing 43(2) (2014) 831–871 1

[15] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology 33(1) (January 2020) 34–91 1, 25

[16] Cho, J., Kim, Y.S., No, J.S.: Homomorphic computation in reed-muller codes. Cryp-
tology ePrint Archive, Report 2020/565 (2020) https://eprint.iacr.org/2020/565.
2

[17] Debris-Alazard, T., Tillich, J.P.: Two attacks on rank metric code-based schemes:
RankSign and an IBE scheme. In Peyrin, T., Galbraith, S., eds.: ASIACRYPT 2018,
Part I. Volume 11272 of LNCS., Springer, Heidelberg (December 2018) 62–92 2

[18] Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In Oswald, E., Fischlin, M., eds.: EUROCRYPT 2015, Part I. Volume
9056 of LNCS., Springer, Heidelberg (April 2015) 617–640 1

[19] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985) 469–472 1

[20] Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.P.: Identity-based encryption from
codes with rank metric. In Katz, J., Shacham, H., eds.: CRYPTO 2017, Part III.
Volume 10403 of LNCS., Springer, Heidelberg (August 2017) 194–224 2

[21] Gaborit, P., Ruatta, O., Schrek, J.: On the Complexity of the Rank Syndrome De-
coding Problem. IEEE Trans. Inf. Theory 62(2) (2016) 1006–1019 18

[22] Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomor-
phic encryption scheme relying on reed-solomon codes. Cryptology ePrint Archive,
Report 2012/168 (2012) https://eprint.iacr.org/2012/168. 2

[23] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing. (2009) 169–178 1, 2

[24] Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, ACM Press (May 1982)
365–377 1

https://eprint.iacr.org/2011/622
https://eprint.iacr.org/2020/565
https://eprint.iacr.org/2012/168

27

[25] Hauteville, A., Tillich, J.P.: New algorithms for decoding in the rank metric and an
attack on the LRPC cryptosystem (2015) abs/1504.05431. 8

[26] Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. Journal of Cryptology 21(2) (April 2008) 280–301 2

[27] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In Stern, J., ed.: EUROCRYPT’99. Volume 1592 of LNCS., Springer, Heidelberg (May
1999) 223–238 1

[28] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of secure computation 4(11) (1978) 169–180 1

[29] Sendrier, N.: Decoding one out of many. In: Post-Quantum Cryptography 2011.
Volume 7071 of LNCS. (2011) 51–67 8

[30] Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on general-
ized Reed-Solomon codes. (1992) 2

	Somewhat Homomorphic Encryption based on Random Codes
	Introduction
	Preliminaries
	Basic notations
	Finite Fields
	Ideal matrices and vector-vector product
	Metric and support
	Codes and ideal codes
	Difficult Problems for Cryptography

	Additive Scheme
	Fundamental Algorithms
	Additively Homomorphic Algorithms

	Somewhat Homomorphic Scheme
	Fundamental and Additively Homomorphic Algorithms
	Multiplicative Homomorphic Algorithms

	(Insecure) Bootstrapping and Fully Homomorphic Encryption
	Homomorphic Decryption Algorithms
	Bootstrapping relinearization

	Problem: Limitation on the number of independent ciphertexts
	Reducing the number of bootstrapping ciphertexts
	Packing plaintexts
	Plaintext rotation
	Homomorphic decrytion with packing

	Parameters

