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Abstract

Nonlinear feedback shift registers (NFSRs) are used in many stream ciphers as their main building blocks. One security

criterion for the design of a stream cipher is to assure its keystream has a long period. To meet this criterion, the NFSR

used in a stream cipher must have a long state cycle. Further, to simultaneously avoid equivalent keys, the keystream’s

period is not compressed compared to the NFSR’s state cycle length, which can be guaranteed if the NFSR is observable

in the sense that any two distinct initial states are distinguishable from their resulting output sequences. The cycle

structure of a general NFSR remains an open hard problem. Constructing Fibonacci NFSRs with maximum state cycles

has therefore attracted much attention, but so far such Fibonacci NFSRs with known feedback functions have been found

only for their stage numbers no greater than 33.

Considering that Galois NFSRs may decrease the area and increase the throughput compared to Fibonacci NFSRs,

this paper studies two types of n-stage Galois NFSRs, whose state transition matrices are circulant matrices with only

one nonzero element of 1 in each column. The cycle structure and observability of both types are disclosed using the

semi-tensor product based Boolean network approach. In the first type, each Galois NFSR has the state transition matrix,

in which the position of the element 1 in the first column is even. It has the maximum state cycle with an arbitrary stage

number and an explicit feedback functions. It is observable if and only if its output function is dependent on the first state

bit. In the second type, each Galois NFSR has the state transition matrix, in which the position of the element 1 in the

first column is 2m + 1 with positive integer m ≤ n− 1 for the NFSR’s stage number n. It has 2m cycles of length 2n−m,

and it is observable if its output function is dependent on all the state bits whose indices are no smaller than n−m + 1.

Keywords: shift register, stream cipher, cycle structure, observablility, semi-tensor product, Boolean network

1 Introduction

Shift registers are commonly used in stream cipher designs, due to their efficiency and good statistical properties.

According to whether the feedback function is linear or not, shift registers are divided into linear feedback shift registers

(LFSRs) and nonlinear feedback shift registers (NFSRs). The latter, which have taken the place of the former, are used as

the main building blocks in many stream ciphers, such as the three hardware-oriented finalists Grain [1], Trivium [2], and

Mickey [3] in the European eSTREAM project. According to the implementation structure, NFSRs are usually classified

into Fibonacci NFSRs and Galois NFSRs. A Fibonacci NFSR has the feedback only applied to the last bit, and its other

bits only involve shift, see Figure 1(a). A Galois NFSR has the feedback availably applied to every bit, shown in Figure 1(b).

An NFSR has the same mathematical model as a Boolean network, which can be described by a set of difference

equations via Boolean functions. Boolean network was firstly introduced in 1969 by Kauffman to model a genetic network

[4]. In the community of systems and control, Cheng and his collaborators developed an algebraic framework for Boolean

networks, using a powerful mathematical tool named semi-tensor product of matrices, which builds an algebraic framework

for Boolean networks [5]. This algebraic framework facilitates the solving of many fundamental problems of Boolean networks,

for instance, the observability problems. Till now, much work has been done on the observability of Boolean networks, see

e.g., [6]-[10] and their references therein.

From the security perspective, NFSR-based stream ciphers should select observable NFSRs; otherwise, they may have

equivalent keys, subject to weak key attacks [11]. In the community of cryptography, Kalouptsidis and Limniotis in 2004
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Figure 1: Galois and Fibonacci NFSRs. (a) An n-stage Galois NFSR; (b) An n-stage Fibonacci NFSR.

first proposed the notation of observability of sequence generators from the perspective of systems theory and applied it to

the generators of de Bruijn sequences [12]. Since then, only one work addressed the observability of NFSRs (over the binary

field) [13], which was soon generalized into the finite fields [14], the authors’ best knowledge.

One of security criteria for the design of a stream cipher is to assure its keystream with long period. To meet this

criterion, the NFSR used in a stream cipher must have a long state cycle. Further, to simultaneously avoid equivalent keys,

the keystream’s period is not compressed compared to the NFSR’s state cycle length, which can be guaranteed if the NFSRs

is observable in the sense that any two distinct initial states are distinguishable from their resulting output sequences.

The cycle structure of a general NFSR remains an open hard problem. LFSRs’ cycle structure has been well studied

[15]. However, NFSRs’ cycle structure has been investigated only for some special cases. An NFSR is said to be a maximum

cycle NFSR if it has the maximum cycle in its state diagram (or equivalently, has the maximum state cycle). The period of an

NFSR is the length of the longest cyclic output sequence the NFSR generates. An n-stage NFSR is called a maximum period

NFSR if it achieves the maximum period 2n. The period of an NFSR in Grain-like structure was found to be a multiple of

its LFSR’s period if the LFSR is set to nonzero initial state [16]. Short state cycles were disclosed for the Galois NFSR used

in the stream cipher Trivium [17]. For a cascade connection of a maximum period LFSR into a maximum period Fibonacci

NFSR, its cycle structure were revealed in [18].

Much attention has been paid on constructing the maximum period Fibonacci NFSRs (or equivalently, constructing de

Bruijn sequences) using the cycle joining method, for instance, see [19]-[23]. Nevertheless, in practice such Fibonacci NFSRs’

feedback functions are generally hard to get. Up to now, only the maximum period Fibonacci NFSRs with stage numbers no

greater than 33 have been found [24, 25]. In contrast, maximum period Galois NFSRs has been much less studied [26, 27],

though Galois NFSRs may decrease the area and increase the throughput [28]

This paper considers the cycle structure and observability of two types of Galois NFSRs with circulant matrices as their

state transition matrices, in which only one nonzero element of 1 in each column. In the first type, each Galois NFSR has the

state transition matrix, in which the position of the element 1 is even. It is proved to be a maximum period Galois NFSR

with arbitrary stage number, and to be observable if and only if its output function is dependent on the first state bit. In

the second type, each Galois NFSRs has the state transition matrix, in which the position of the element 1 is 2m + 1 with

positive integer m smaller than the Galois NFSR’s stage number n. It is proved to have 2m state cycles of length 2n−m, and

to be observable if its output function is dependent on all the state bits whose indices are no smaller than n−m+ 1. Those

Galois NFSRs in both types have simple feedback functions, potentially applicable to the design of new stream ciphers.

The paper is organized as follows. In Section 2, we give a brief introduction on Boolean networks and NFSRs. Our main

results on the cycle structure and observability of two types of Galois NFSRs are presented in Section 3 and 4, respectively.

Section 5 concludes the paper.
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2 Preliminaries

In this section, we review some basic concepts and related results on Boolean networks and NFSRs. Before that, we

first introduce some notations used in this paper.

Notations: F2 denotes the binary field, and Fn2 is an n-dimensional vector space over F2. Let δin stand for the i-th column

of the n × n identity matrix In. Denote ∆n = {δin|1 ≤ i ≤ n}. Lm×n is the set of m × n matrices. A matrix A ∈ Lm×n
can be written as A = [δi1m, δ

i2
m, · · · , δinm ]. For the convenience of statements, we rewrite A = δm[i1, i2, · · · , in] in a compact

form. Colj(A) (resp. Rowj(A)) represents the j-th column (resp. row) of a matrix A. +, − and × are the ordinary addition,

subtraction and multiplication in the real field, while ⊕ and � are the addition and multiplication over F2, respectively.

2.1 Boolean function

Definition 1. An n-variable Boolean function f is a mapping from Fn2 to F2.

Let a constant vector a = [a1 a2 . . . an]T ∈ Fn2 . The support set of a Boolean function f is

supp(f) = {a|f(a) = 1,a ∈ Fn2}.

For a variable Xi ∈ F2 and a value ai ∈ F2, define Xai
i = Xi ⊕ ai ⊕ 1. Hence, Xai

i = 1 if and only if Xi = ai. And for a

binary variable vector X = [X1 X2 . . . Xn]T , define Xa = Xa1
1 Xa2

2 . . . Xan
n . Then, Xa = 1 if and only if X = a. Therefore,

the Boolean function f can be expressed by minterms as [29]:

f(X) =
⊕

a∈supp(f)

Xa =
⊕

a∈supp(f)

Xa1
1 Xa2

2 . . . Xan
n .

Let i be the decimal number corresponding to the binary (i1, i2, . . . , in) via the mapping i = i12n−1 + i22n−2 + · · ·+ in.

Then i ranges from 0 to 2n− 1. Denote f(i) = f(i1, i2, . . . , in). Then [f(2n− 1), f(2n− 2), . . . , f(0)] is called the truth table

of f , arranged in the reverse alphabet order. For the simplicity, throughout the paper the truth table of a Boolean function

always means it is arranged in the reverse alphabet order.

Definition 2 ([30, 32]). The matrix

F =

[
f(2n − 1) f(2n − 2) · · · f(0)

1− f(2n − 1) 1− f(2n − 2) · · · 1− f(0)

]
(1)

is called the structure matrix of f .

Definition 3. The function f = [f1 f2 . . . fn]T is a vectorial function if its components f1, f2, . . . , fn are all Boolean

functions.

2.2 Boolean network

Definition 4 ([33]). For an n×m matrix A = (aij) and a p× q matrix B, their Kronecker product is defined as

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

an1B an2B · · · anmB

 .

Definition 5 ([5]). For an n ×m matrix A and a p × q matrix B, let α be the least common multiple of m and p. The

semi-tensor product of A and B is defined as

AnB = (A⊗ I α
m

)(B ⊗ Iα
p

).

Lemma 1 ([30]). For any vector Z = [Z1 Z2 · · · Zr]
T ∈ Fr2, let z = [Z1 Z1⊕1]T n [Z2 Z2⊕1]T n · · ·n [Zr Zr⊕1]T .

Then the vector z = δj2n ∈ ∆2n with j = 2r − (2r−1Z1 + 2r−2Z2 + · · ·+ Zr).
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A Boolean network with n nodes and m outputs can be described as the nonlinear system:{
X(t+ 1) = g(X(t)),

Y (t) = h(X(t)), t ∈ N.
(2)

where X = [X1, X2, · · · , Xn]T ∈ Fn2 is the state, and the vectorial function g = [g1, g2, · · · , gn]T : Fn2 → Fn2 is the state

transition function, and h = [h1, h2, · · · , hn]T : Fn2 → Fm2 is the output function.

Boolean network (2) can be equivalently expressed as a linear system [30]:{
x(t+ 1) = L(x(t)),

y(t) = H(x(t)), t ∈ N.
(3)

with the state x ∈ ∆2n , the output y ∈ ∆2m , the state transition matrix L ∈ L2n×2m , and the output matrix H ∈ L2m×2n .

The j-th column of L satisfies

Colj(L) = Colj(G1)⊗ Colj(G2)⊗ · · · ⊗ Colj(Gn), j = 1, 2, · · · 2n, (4)

where Gi is the structure matrix of the i-th component gi of the vectorial function g in (2) for any i ∈ {1, 2, · · · , n}. The

j-th column of H can be computed in a way similar to Equation (4) for the j-th column of L.

The following result shows how to compute the structure matrix of each Boolean function of a Boolean network from

its state transition matrix.

Lemma 2 ([31]). Let

Mk = δ2[ Ak, Ak, · · · , Ak︸ ︷︷ ︸
2k−1

] with Ak = δ2[ 1, 1, · · · , 1︸ ︷︷ ︸
2n−k

, 2, 2, · · · , 2︸ ︷︷ ︸
2n−k

].

Then the structure matrix of gk in (2) is Gk = MkL, where L is the state transition matrix in (3).

Definition 6 ([6]). Two distinct initial states of a Boolean network are said to be indistinguishable, if their resulting output

sequences are equal. Otherwise, the two distinct initial states are said to be distinguishable. A Boolean network is said to be

observable if every two distinct initial states are distinguishable.

Definition 7 ([6]). The observability matrix of Boolean network (3) in N steps is defined as:

ON = [HT (HL)T · · · (HLN−1)T ]T .

Lemma 3 ([6]). Boolean network (3) is observable if and only if the observability matrix O2n−1 has 2n distinct columns.

2.3 Nonlinear feedback shift register

The n-stage Galois NFSR is composed of n binary storage devices, also called bits. The content of bit i is denoted as

Xi, which is updated the feedback function fi. All Xi compose the Galois NFSR’s state X = [X1 X2 . . . Xn]T , and all

feedback functions fi form the Galois NFSR’s feedback F = [f1 f2 · · · fn]T . The n-stage Galois NFSR can be expressed as

the following nonlinear system: 
X1(t+ 1) = f1(X1(t), X2(t), · · · , Xn(t)),

X2(t+ 1) = f2(X1(t), X2(t), · · · , Xn(t)),
...

Xn(t+ 1) = fn(X1(t), X2(t), · · · , Xn(t)),

(5)

where t represents time instant. Equation (5) can be rewritten in a vector form as:

X(t+ 1) = F (X(t)), (6)

where X = [X1 X2 · · · Xn]T is the state, F = [f1 f2 · · · fn]T is the feedback. If the feedback functions fi satisfy

fi(X1(t), X2(t), · · · , Xn(t)) = Xi+1 for all i = 1, 2, · · · , n− 1, then the Galois NFSR is reduced to a Fibonacci NFSR.
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The state diagram of an n-stage NFSR is a directed graph consisting of 2n vertices and 2n edges, where each vertex

represents one state, and each directed edge represents a transition between two states. For instance, if state X is updated

to state Y , then there is an edge from state X to state Y . In this case, X is called the predecessor of Y , and Y is called the

successor of X. A state sequences X1, X2, . . . , Xd form a cycle of length d if the successor of Xd is X1. An NFSR and its

state diagram are a one-to-one correspondence.

Let G = (V,A) and Ĝ = (V̂ , Â) be two directed graphs, where V and V̂ are their sets of nodes, A and Â are their sets

of edges. The two directed graphs G and Ĝ are said to be isomorphic if there exists a bijective mapping ϕ : V → V̂ such

that there is an edge E ∈ A from node N to node N̂ in G if and only if there is an edge Ê ∈ Â from ϕ(N) to ϕ(N̂) in Ĝ.

Furthermore, if the bijective mapping ϕ = D : [X1 X2 · · · Xn]T 7→ [X0
1 X0

2 · · · X0
n]T , then G and Ĝ are said to be dual

isomorphic, denoted by Ĝ = DG; if the bijective mapping ϕ = R : [X1 X2 · · · Xn]T 7→ [Xn Xn−1 · · · X1]T , then G and Ĝ are

said to be anti-isomorphic, denoted by Ĝ = RG; if the bijective mapping ϕ = D : [X1 X2 · · · Xn]T 7→ [X0
n X0

n−1 · · · X0
1 ]T ,

then G and Ĝ are said to be dual anti-isomorphic, denoted by Ĝ = DRG.

Two NFSRs of the same stage number are said to be isomorphic if their state diagrams are isomorphic, that is, their

state diagrams are of the same cycle structure.

Lemma 4 ([34]). For an n-stage Galois NFSR1 with feedback F = [f1 f2 . . . fn]T ,

1. the state diagram of an n-stage Galois NFSR2 is dual isomorphic to that of Galois NFSR1, if and only if the feedback

DF of the Galois NFSR2 satisfies

DF = [f1(X0
1 , X

0
2 , · · · , X0

n)⊕ 1 f2(X0
1 , X

0
2 , · · · , X0

n)⊕ 1 · · · fn(X0
1 , X

0
2 , · · · , X0

n)⊕ 1]T ; (7)

2. the state diagram of an n-stage Galois NFSR3 is anti-isomorphic to that of Galois NFSR1, if and only if the feedback

RF of the Galois NFSR3 satisfies

RF = [fn(Xn, Xn−1, . . . , X1) fn−1(Xn, Xn−1, . . . , X1) . . . f1(Xn, Xn−1, . . . , X1)]T . (8)

3. the state diagram of an n-stage Galois NFSR4 is dual anti-isomorphic to that of Galois NFSR1, if and only if the

feedback DR of the Galois NFSR4 satisfies

DR = [fn(X0
n, X

0
n−1, . . . , X

0
1 )⊕ 1 fn−1(X0

n, X
0
n−1, . . . , X

0
1 )⊕ 1 . . . f1(X0

n, X
0
n−1, . . . , X

0
1 )⊕ 1]T . (9)

Lemma 5 ([12]). The period of the output sequence of a Galois NFSR with an arbitrary output function is a divisor of the

corresponding cycle’s length.

Viewing an NFSR as a Boolean Network, we can get the Equation (6) equivalently expressed as: x(t+ 1) = Lx(t). The

NFSR is nonsingular if and only if L is nonsingular, that is, L is a permutation matrix. In this paper, we consider the Galois

NFSRs with state transition matrix of form circulant matrix L = δ2n [i, i+ 1, · · · , 2n, 1, 2, · · · , i− 1].

3 The first type of Galois NFSRs

In this section, we consider a type of n-stage Galois NFSRs with state transition matrices of form

L = δ2n [i, i+ 1, · · · , 2n, 1, 2, · · · , i− 1], where i is even. (10)

We first disclose that each Galois NFSR in this type has the maximum cycle in its state diagram. We then reveal its feedback

functions. Finally, we disclose its observability with output functions that are only required to be dependent on the first

state bit.

3.1 A type of maximum cycle Galois NFSRs

Theorem 1. An n-stage Galois NFSR with state transition matrix L in (10), has the maximum cycle in its state diagram.
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Proof. For any state δi2n , the positive integer i must satisfy 1 ≤ i ≤ 2n. Moreover, note that Lδi2n = Coli(L). Then, we can

easily obtain a state sequence of the Galois NFSR as:

δ12n , δ
i
2n , δ

2(i−1) mod 2n+1
2n , · · · , δk(i−1) mod 2n+1

2n , · · · , δ(2
n−1)(i−1) mod 2n+1

2n , δ12n , · · · , . (11)

An n-stage Galois NFSR has 2n possible states. To prove the result, we are only required to prove the state sequence in (11)

has the period of 2n.

As i is even, we have δi2n 6= δ12n . Assume in (11) the state that is equal to δ12n for the first time is δ
k(i−1) mod 2n+1
2n ,

that is, k is the least positive integer such that δ
k(i−1) mod 2n+1
2n = δ12n . Then, k(i − 1) mod 2n + 1 = 1, which implies that

2n|k(i− 1). Since i is even, i− 1 is odd. Then there must exist 2n|k, which implies that the period of the state sequence in

(11) is 2n.

Corollary 1. For an n-stage Galois NFSR1 with state transition matrix L = δ2n [i, i + 1, · · · , 2n, 1, 2, · · · , i − 1], its dual

isomorphic Galois NFSR2 has the state transition matrix of DL = δ2n [2n + 2− i, 2n + 3− i, · · · , 2n, 1, 2, · · · , 2n + 1− i].

Proof. From Lemma 1, we know that a vector [X1 X2 . . . Xn]T ∈ Fn2 uniquely corresponds to a state δj2n , where

j = 2n − (2n−1X1 + 2n−2X2 + · · ·+Xn). (12)

The dual vector of [X1 X2 . . . Xn]T is [X0
1 X0

2 · · · X0
n]T . Note that X0

i = Xi ⊕ 1 = 1−Xi for all i = 1, 2, . . . , n. Then, we

have

(2n−1X1 + 2n−2X2 + · · ·+Xn) + (2n−1X0
1 + 2n−2X0

2 · · ·+X0
n) = 2n−1 + 2n−2 + · · ·+ 1 = 2n − 1. (13)

From Equations(12) and (13), we get 2n−1X0
1 +2n−2X0

2 · · ·+X0
n = j−1, which implies 2n− (2n−1X0

1 +2n−2X0
2 + · · ·+X0

n =

2n − j + 1. Hence, the dual state of δj2n is δ2
n−j+1

2n for any j ∈ {1, 2, . . . , 2n}.
The Galois NFSR1 has a state sequence:

δ12n , δ
i
2n , δ

2(i−1) mod 2n+1
2n , · · · , δk(i−1) mod 2n+1

2n , · · · δ12n , · · · .

Thus, accordingly, the Galois NFSR2 that is dual isomorphic to Galois NFSR1 has a state sequence as:

δ2
n

2n , δ
2n+1−i
2n , δ

2n−[2(i−1) mod 2n]
2n , · · · δ2

n−[k(i−1) mod 2n]
2n , · · · , δ2

n

2n · · · .

Hence, for the Galois NFSR2, its state transition matrix is DL = δ2n [2n + 2− i, 2n + 3− i, · · · , 2n, 1, 2, · · · , 2n + 1− i].

Corollary 1 shows that, if a Galois NFSR has the state transition matrix of form a circulant matrix, in which the position

of the nonzero element of 1 in the first column is even, then so is its dual isomorphic Galois NFSR. Moreover, if the feedback

F = [f1(X1, · · · , Xn) f2(X1, · · · , Xn) · · · fn(X1, · · · , Xn)]T of the Galois NFSR1, then according to Lemma 4, the feedback

DF of the dual isomorphic Galois NFSR2 is of form Equation (7).

Theorem 2. If an n-stage Galois NFSR has the state transition matrix L in (10), then its feedback function F =

[f1 f2 · · · fk−1 fk · · · fn]T satisfies the recurrence relation:

1. if k = n, then fk = X0
n;

2. if k ∈ {1, 2, · · · , n− 1}, then let j = (i− 1) mod 2n−k+2 + 1,

(a) if 1 ≤ j ≤ 2n−k, then fk−1 = X0
kfk ⊕Xk−1;

(b) if 2n−k + 1 ≤ j ≤ 2n−k+1, then fk−1 = Xkf
0
k ⊕X0

k−1;

(c) if 2n−k+1 + 1 ≤ j ≤ 2n−k+1 + 2n−k, then fk−1 = X0
kfk ⊕X0

k−1;

(d) if 2n−k+1 + 2n−k + 1 ≤ j ≤ 2n−k+2, then fk−1 = Xkf
0
k ⊕Xk−1.

Proof. According to Lemma 2, we can easily see the the structure matrix of fn is

MnL = δ2[1, 0, 1, 0, . . . , 1, 0, 1, 0]δ2n [i, i+ 1, . . . , 2n, 1, 2, . . . , i− 1] = δ2[0, 1, 0, 1, . . . , 0, 1, 0, 1],

which implies fn = X0
n.
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Table 1: The corresponding values of Xk, Xk−1, fk and fk−1

The value range of l Xk Xk−1 fk−1 fk

1 ≤ l ≤ 2n−k − i+ 1 1 1 1 1

2n−k − i+ 2 ≤ l ≤ 2n−k 1 1 1 0

2n−k + 1 ≤ l ≤ 2n−k+1 − i+ 1 0 1 1 0

2n−k+1 − i+ 2 ≤ l ≤ 2n−k+1 0 1 0 1

2n−k+1 + 1 ≤ l ≤ 2n−k+2 − i+ 1 1 0 0 1

2n−k+2 − i+ 2 ≤ l ≤ 2n−k+2 1 0 0 0

2n−k+2 + 1 ≤ l ≤ 2n−k+3 − i+ 1 0 0 0 0

2n−k+3 − i+ 2 ≤ l ≤ 2n−k+3 0 0 1 1

To compute the other feedback functions fk with k ∈ {1, 2, . . . , n− 1}, we let l := 2n − (2n−1X1 + 2n−2X2 + · · ·+Xn)

and discuss the recurrence relation between the fk and fk−1 in the cases of different range of i and l as follows.

For the case of 1 ≤ i ≤ 2n−k, we can easily observe that the first values of the truth table of fk and fk−1 are both 1. In

the cases of different ranges of l , the values of Xk, Xk−1, fk and fk−1 are listed in Table 3.1.

Since i is even, the numbers of ls in the above ranges are all odd. Hence, fk−1 can be expressed by minterms of from:

fk−1 = Xk−1(Xkfk ⊕Xkf
0
k ⊕X0

kf
0
k )⊕X0

k−1X
0
kfk = X0

kfk ⊕Xk−1. (14)

In a similar way, we can get the recurrence relation the other cases of i.

Example 1. Consider an n-stage Galois NFSR1 with state transition matrix L = δ2n [2, 3, · · · , 2n, 1]. According to Theorem

2, we can get its feedback functions as:



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = Xn−2 ⊕X0
n−1X

0
n,

...

f1 = X1 ⊕X0
2X

0
3 · · ·X0

n.

(15)

From Corollary 1, we can get the Galois NFSR2 that is dual isomorphic to the Galois NFSR1 has the state transition matrix

L = δ2n [2n, 1, · · · , 2n − 2, 2n − 1], and its feedback functions are:



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = Xn−2 ⊕Xn−1Xn,
...

f1 = X1 ⊕X2X3 · · ·Xn,

(16)

which is consistent with the result of direct calculation of DF in (??).

From the feedback F of Galois NFSR1 with state transition matrix L in (10), it is easy to get the feedbacks DF,RF,RDF

of Galois NFSR2 which are dual isomorphic, anti-isomorphic and dual anti-isomorphic to Galois NFSR1, respectively. The

explicit expressions of these feedback functions are partially shown in Table 2 in Appendix.

3.2 Observability

Lemma 6. An n-stage maximum cycle Galois NFSR is observable if and only if there exists an initial state X(t0) such that

its resulting output sequence (Y (t))t≥0 satisfying Y (t0) 6= Y (t0 + 2n−1).

Proof. An n-stage maximum cycle Galois NFSR has the maximum state cycle of length 2n. Note that the divisor of 2n is

2m with nonnegative integer 0 ≤ m ≤ n. Then the result follows from Lemma 5.
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Theorem 3. An n-stage Galois NFSR with state transition matrix L in (10) is observable if and only if the output function

contains the first state bit variable X1.

Proof. According to the proof of Proposition 1, an n-stage Galois NFSR with state transition matrix L in (10) has a state

sequence in (11). For any initial state δj2n with j ∈ {1, 2, . . . , 2n} at time t ∈ N, let j = k(i− 1) mod 2n + 1 for some positive

integer k satisfying 1 ≤ k ≤ 2n. Then, according to state sequence in (11), δj2n is updated to δ
[(2n−1+k)(i−1)] mod 2n+1
2n at

time t + 2n−1. Since i is even, we have δ
[(2n−1+k)(i−1)] mod 2n+1
2n = δ

(2n−1+j−1) mod 2n+1
2n . Assume the n-dimensional vector

uniquely corresponding to the state δj2n is [X1 X2 · · · Xn]T . Then, according to Lemma 1, we have

j = 2n − (2n−1X1 + 2n−2X2 + · · ·+Xn).

Note that X0
1 = X0 ⊕ 1 = 1−X0. Then,

(2n−1 + j − 1) mod 2n + 1 = 2n − (2n−1X0
1 + 2n−3X2 + 2n−3X3 + · · ·+Xn),

which implies that the corresponding n-dimensional vectors of δj2n at time t = 0 and its successor at t = 2n−1 have the

different first state bits, but have the same other state bits. In other words, for any t ∈ N, X(t) and X(t + 2n−1) from the

state sequence over Fn2 that uniquely corresponds to the state sequence over ∆2n in (11), have the different first state bits,

but have the same other state bits, denote by Fact 1.

Sufficiency: Since the output function contains the first state bit variable X1, we can write the output function as

h(X1, X2, · · · , Xn) = X1g1(X2, · · · , Xn)⊕ g2(X2, · · · , Xn) with g1(X2, · · · , Xn) 6= 0. (17)

According to Fact 1, we have

h(X(t))⊕ h(X(t+ 2n−1)) = g1(X2(t), · · · , Xn(t)) for any t ∈ N.

As g1(X2, · · · , Xn) 6= 0, there must exist some t0 ∈ N such that such that g1(X2(t0), · · · , Xn(t0)) 6= 0, which implies that

there exists some state X(t0) such that the resulting output sequence (Y (t))t≥0 satisfying Y (t0) 6= Y (t0 + 2n−1). According

to Lemma 6, the result follows.

Necessity: Since for any initial state at time t0 and its successor at t0 + 2n−1, their corresponding n-dimensional vectors

have the different first state bits, but have the same other state bits. Assume the output function h is independent of the

first state bit variable X1. Then according to Equation 17, there must be Y (t) = Y (t + 2n−1) for any t ∈ N. According

to Lemma 6, this Galois NFSR is unobservable, which is in contradiction with the assumption that to the Galois NFSR is

observable.

4 The second type of Galois NFSRs

In this section, we consider the n-stage Galois NFSR with state transition matrix

L = δ2n [i, i+ 1, · · · , 2n, 1, 2, · · · , i− 1] where i = 2m + 1 (18)

with positive integer m satisfying 1 ≤ m ≤ n− 1.

First, we will disclose that each Galois NFSR in this type has 2m cycles of length 2n−m in its state diagram. Then, We

will reveal its the feedback functions. Finally, we will give some necessary and/or sufficient conditions for its observability.

In particular, we will show that it is observable if its output function is dependent on all the state bits whose indices are no

smaller than n−m+ 1.

4.1 A type of Galois NFSRs with equi-length state cycles

Theorem 4. For an n-stage Galois NFSR with the state transition matrix L in (18), there are 2m cycles of length 2n−m in

its state diagram.
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Proof. Similar to the proof of Theorem 1, we can easily observe that the Galois NFSR has a state sequence as:

δ12n , δ
2m+1
2n , δ2·2

m mod 2n+1
2n , · · · , δk·2

m mod 2n+1
2n , · · · , δ(2

n−m−1)·2m mod 2n+1
2n , δ12n , · · · , (19)

which contains 2n−m different states, yielding a cycle of length 2n−m. Moreover, we can see that the states contained in this

cycle has one same characterization: their superscripts divided by 2m have a remainder of 1.

Similarly, the states whose superscripts divided by 2m have the same other remainder compose another one state cycle

of length 2n−m. Therefore, the Galois NFSR has totally 2m cycles of length 2n−m in its state diagram.

Theorem 5. For an n-stage Galois NFSR1 with state transition matrix L1 = δ2n [i, i+1, · · · , 2n, 1, 2, · · · , i−1] where i = 2m,

and for an n-stage Galois NFSR2 with state transition matrix L2 = δ2n [i, i+ 1, · · · , 2n, 1, 2, · · · , i− 1] where i = 2m + 1, let

F = [f1 f2 · · · fn]T and G = [g1 g2 · · · gn]T be their feedbacks, respectively. The feedback functions in F and G have the

following relation:

1. if k = n, then gk = fk ⊕ 1;

2. if k = n− 1, then gk = fk ⊕Xn;

3. if k ∈ {1, 2, · · · , n− 2}, then gk = fk ⊕X0
k+1X

0
k+2 · · ·X0

n−mXn−m+1 · · ·Xn.

Proof. According to Lemma 2, the structure matrix of the n-th feedback function gn of NFSR1 is

Gn = MnL1 = δ2[1 0 1 0 . . . 1 0 1 0]δ2n [2m + 1, 2m + 2, · · · , 2n, 1, 2, · · · , 2m] = δ2[1 0 1 0 . . . 1 0 1 0].

Hence, gn = Xn = fn ⊕ 1.

If we use minterms to represent a Boolean function, we are only required to consider the state at which the Boolean

function takes value 1. The states δ12n , δ
2
2n , · · · , δ2

n−1

2n over ∆2n corresponds to those states whose first components are 1 over

Fn2 . To compute the support set of the first feedback function f1 of Galois NFSR1, we only need to compute the predecessors

of states δ12n , δ
2
2n , · · · , δ2

n−1

2n . Note that (a+b) mod n = [(a mod n)+(b mod n)] mod n. Then, according to the state sequence

in (11) of Galois NFSR1, the predecessor of state δj2n for any j ∈ {1, 2, . . . , 2n} is

δ
[(2n−1)(2m−1)+j−1] mod 2n+1
2n = δ

(j−2m) mod 2n+1
2n =

2n − 2m + j + 1, if 1 ≤ j ≤ 2m,

j − 2m + 1, if 2m + 1 ≤ j ≤ 2n.

Taking into account 1 ≤ m ≤ n − 1, yielding 2 ≤ 2m ≤ 2n−1, we can deduce that the support set of the first feedback

function f1 of Galois NFSR1 is:

supp(f1) = {δ2
n−2m+2

2n , δ2
n−2m+3

2n , δ
(3−2m) mod 2n+1
2n , · · · , δ(2

n−1−1−2m) mod 2n+1
2n , δ2

n−1−2m+1
2n }. (20)

Similarly, according to the state sequence in (19) of Galois NFSR2, the predecessor of state δj2n for any j ∈ {1, 2, . . . , 2n}
is

δ
[(2n−m−1)2m+j−1] mod 2n+1
2n = δ

(j−2m−1) mod 2n+1
2n =

2n − 2m + j, if 1 ≤ j ≤ 2m + 1,

j − 2m, if 2m + 2 ≤ j ≤ 2n.

Hence, the support set of the first feedback function g1 of Galois NFSR2 is:

supp(g1) = {δ2
n−2m+1

2n , δ2
n−2m+2

2n , δ2
n−2m+3

2n , δ
(3−2m) mod 2n+1
2n , · · · , δ(2

n−1−1−2m) mod 2n+1
2n }. (21)

From Equations (20) and (21), we can easily see that the support sets supp(f1) and supp(g1) of f1 and g1 have only two differ-

ent states δ2
n+1−2m

2n and δ2
n−1+1−2m

2n , whose corresponding n-dimensional vectors, respectively, are a = [0, 0, · · · , 0︸ ︷︷ ︸
n−m

, 1, 1, · · · , 1︸ ︷︷ ︸
m

]T

and b = [1, 0, 0, · · · , 0︸ ︷︷ ︸
n−m−1

, 1, 1, · · · , 1︸ ︷︷ ︸
m

]T . Therefore,

f1 ⊕ g1 = Xa ⊕Xb = X0
1X

0
2 · · ·X0

n−mXn−m+1 · · ·Xn ⊕X1X
0
2 · · ·X0

n−mXn−m+1 · · ·Xn = X0
2 · · ·X0

n−mXn−m+1 · · ·Xn,

yielding g1 = f1 ⊕X0
2 · · ·X0

n−mXn−m+1 · · ·Xn.

keeping the same reasoning, we can get gn−1 = fn−1 ⊕ Xn, and gk = fk ⊕ X0
k+1 · · ·X0

n−mXn−m+1 · · ·Xn for all

k = 2, 3, · · · , n− 2.
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The feedback functions of Galois NFSR1 whose state transition matrix is a circulant matrix L = δ2n [i, i+1, . . . , 2n, 1, 2, . . . ,

i − 1] with i = 2m have been given in the Appendix. So, it is easy to get the feedback functions of Galois NFSR2 whose

state transition matrix is a circulant matrix L with i = 2m + 1.

Example 2. For an n-stage Galois NFSR with state transition matrix L = δ2n [3, 4, · · · , 2n, 1, 2], according to Theorem 5,

its feedback functions can be derived from the Galois NFSR in Example 1 as:

gn = fn ⊕ 1 = X0
n ⊕ 1,

gn−1 = fn−1 ⊕Xn = Xn−1 ⊕X0
n ⊕Xn,

gn−2 = fn−2 ⊕X0
n−1Xn = Xn−2 ⊕X0

n−1X
0
n ⊕X0

n−1Xn,

gn−3 = fn−3 ⊕X0
n−2X

0
n−1Xn = Xn−3 ⊕X0

n−2X
0
n−1X

0
n ⊕X0

n−2X
0
n−1Xn,

...

g1 = f1 ⊕X0
2 · · ·X0

n−1Xn = X1 ⊕X0
2X

0
3 · · ·X0

n ⊕X0
2 · · ·X0

n−1Xn.

, (22)

yielding 

gn = Xn,

gn−1 = X0
n−1,

gn−2 = Xn−2 ⊕X0
n−1,

gn−3 = Xn−3 ⊕X0
n−2X

0
n−1,

...

g1 = X1 ⊕X0
2X

0
3 · · ·X0

n−1.

(23)

For an n-stage NFSR whose state transition matrix is a circulant matrix L = δ2n [i, i + 1, . . . , 2n, 1, 2, . . . , i − 1] with

i = 2m + 1, we can get its feedback function in a similar way. But its cycle structure and observability is related to the

relation between n and m, which is much more complicated to discuss. We do not discuss this case in the paper.

4.2 Observability

Proposition 1. For an n-stage Galois NFSR with state transition matrix L in (18), if its output function h(X1, X2, · · · , Xn) =

Xj for any j ∈ {1, 2, · · ·n}, then the Galois NFSR is unobservable.

Proof. For any j ∈ {1, 2, · · ·n}, the function h(X1, X2, · · · , Xn) = Xj has the structure matrix

H = [ A A . . . A︸ ︷︷ ︸
2j−1

] with A = δ2[ 1, 1, . . . , 1︸ ︷︷ ︸
2n−j

, 0, 0, . . . , 0︸ ︷︷ ︸
2n−j

]. (24)

According to Theorem 4, the Galois NFSR has 2m cycles of length 2n−m, which implies the order of the state transition

matrix L is the least common multiple of 2m repeated numbers of 2n−m, namely, the order of L is 2n−m. Therefore, for any

positive integer l, the observability matrices O2n−m+l and O2n−m have the same number of different columns, denoted by

Fact 2.

Since L is a circulant matrix, we can infer that for any positive integer k ≤ 2n−m − 1, at the k-th iteration the matrix

HLk−1 multiplies the circulant matrix L, and the column vectors of HLk−1 circularly move to the left by 2m, resulting the

matrix HLk. Note that H has totally 2n columns. As 1 ≤ m ≤ n− 1, we have n ≥ 2 and therefore, we can equally partition

the 2n columns into 2n−m blocks, that is, we rewrite H as

H = [B1 B2 . . . B2n−m ]

with each Bs ∈ L2×2m for each s ∈ {1, 2, . . . , 2n−m}. Taking into count Equation (24), we can easily observe the following

facts.

1) If n− j ≥ m, then each Bs has only one different column.

2) If n− j < m, then each Bs has two different columns; moreover,

B1 = B2 = . . . = B2m−n = [ A A . . . A︸ ︷︷ ︸
2m−n+j−1

].
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Note that HLk = [Bk+1, Bk+2, . . . , B2n−m , B1, B2, . . . , Bk] for any positive integer k ≤ 2n−m − 1. Therefore, if n − j ≥ m,

then the observability matrix O2n−m has at most 2n−m different columns; if n− j < m, then O2n−m has 2 different columns.

Since m ≥ 1 and n ≥ 2, we have 2n−m < 2n and 2 < 2n. Together considering Fact 2, we can deduce that the number

of difference columns of the observability matrix O2n−1 is smaller than 2n. According to Lemma 3, the Galois NFSR is

unobservable.

The following lemma can be directly obtained.

Lemma 7. Denote the number of d-period binary sequences as d̃. Then d̃ = 2d − d̃1 − d̃2 − · · · − d̃m, where d1, d2, · · · , dm
is the proper factor of d.

Proposition 2. For an n-stage Galois NFSR with state transition matrix L in (18), if

22
n−m
− 22

n−m−1

≥ 2n, (25)

then there must exist an output function such that the NFSR is observable.

Proof. There are 2̃n−m binary sequences of period 2n−m in total. According to the lemma 7,

2̃n−m = 22
n−m
− ˜2n−m−1 − ˜2n−m−2 − · · · − 1̃.

Since ˜2n−m−1 = 22
n−m−1− ˜2n−m−2− ˜2n−m−3−· · ·−1̃, there is N = 2̃n−m = 22

n−m−22
n−m−1

different 2n−m-period sequences.

According to Equation (25), we have N ≥ 2n. Hence, there exists an output function h such that the Galois NFSR produces

2n different output sequences that are from N sequences of period 2n−m, which implies different initial states of the Galois

NFSR produces different output sequences as according Theorem 4 and Lemma 5, the period of the Galois NFSR’s output

sequences is the devisor of 2n−m . Therefore, the Galois is observable.

Consider an n-stage Galois NFSR with state transition matrix L in (18). For for any q ∈ {1, 2, · · · , 2m}, denote by Cq

the cycle that is formed by the states δq+k·2
m

2n for all k = 0, 1, · · · , 2n−m − 1. Since q is the remainder divided by 2m, the

corresponding n-dimensional vectors of the states contained in cycle Cq have the same last m bits, which implies that the

corresponding n-dimensional vectors of the states on the Cq are of form

[X1 X2 · · · Xn−m qn−m+1 qn−m+2 · · · qn]T ,

where

q = 2m − (2m−1qn−m+1 + 2m−2qn−m+2 + · · ·+ qn). (26)

Take cycle C1 as an example. The corresponding n-dimensional vectors of the states on the C1 are of form

[X1 X2 · · · Xn−m 1 1 · · · 1︸ ︷︷ ︸
m

]T .

An n-variable Boolean function h can be expressed as

h(X1, X2, . . . , Xn)

=
∑

(q1,q2,...qn)∈Fn2

h(q1, q2, . . . qn)Xq1
1 X

q2
2 . . . Xqn

n

=
∑

(qn−m+1,qn−m+2,...qn)∈Fm2

 ∑
(q1,q2,...qn−m)∈Fn−m

2

h(q1, q2, . . . qn)Xq1
1 X

q2
2 . . . X

qn−m
n−m

Xqn−m+1

n−m+1X
qn−m+2

n−m+2 . . . X
qn
n

:=
∑

(qn−m+1,qn−m+2,...qn)∈Fm2

hqX
qn−m+1

n−m+1X
qn−m+2

n−m+2 . . . X
qn
n ,

where

hq =
∑

(q1,q2,...qn−m)∈Fn−m
2

h(q1, q2, . . . qn)Xq1
1 X

q2
2 . . . X

qn−m
n−m , q = 1, 2, . . . , 2n−m (27)
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with q satisfying Equation (26). Clearly, each hq is an (n−m)-variable Boolean function, and it is unique for a given Boolean

function h. For the convenience, we rewrite the Boolean function h as

h = h1X
1
n−m+1 · · ·X1

n−1X
1
n+h2X

1
n−m+1 · · ·X1

n−1X
0
n+ · · ·+hqX

qn−m+1

n−m+1 · · ·X
qn−1

n−1 X
qn
n + · · ·+h2mX

0
n−m+1 · · ·X0

n−1X
0
n. (28)

Assume h in (28) is an output function of the Galois NFSR with transition matrix L in (18). Thus, if the output function h

is limited to the states on the cycle Cq, then it becomes:

h(X1, X2, · · · , Xn) = h1 · 0 + · · ·+ hq−1 · 0 + hq(X1, X2, · · · , Xn−m) · 1 + hq+1 · 0 + · · ·+ h2m · 0 = hq(X1, X2, · · · , Xn−m).

Proposition 3. For an n-stage Galois NFSR with state transition matrix L in (18) and output function h in (28), each hq

in the function h is dependent on the variable X1 for each q ∈ {1, 2, · · · , 2m}, if and only if any two distinct states on each

cycle are distinguishable.

Proof. Sufficiency: If the any two distinct states on each cycle are distinguishable, there must exist a state X(t) ∈ Fn2
at time t on each cycle whose output is different from that of the state X(t + 2n−m−1) at time t + 2n−m−1, namely,

hq(X(t)) 6= h(X(t + 2n−m−1). Otherwise, the output sequence of a cycle Cq0 is a divisor of 2n−m. Then, there are two

distinct initial states from the cycle Cq0 resulting the same output sequence. Thus, the two states on the cycle Cq0 are

indistinguishable, which is contrary.

According to a state sequence in (19) of the Galois NFSR, the initial state x(t) = δq2n ∈ ∆2n at time t is updated

to x(t + 2n−m−1) = δq+2n−m−1×2m
2n = δq+2n−1

2n at time t + 2n−m−1. Their corresponding n-dimensional vectors X(t) and

X(t + 2n−m−1) have the same other bits except the first bit. Hence, hq is dependent on the variable X1 for any q ∈
{1, 2, · · · , 2m}; Otherwise, hq(X(t)) = h(X(t+ 2n−m−1), a contradiction.

Necessity: If the output function h is limited to the states on the cycle Cq, then h becomes

h(X1, X2, · · · , Xn) = hq(X1, X2, · · · , Xn−m) = hq1(X2, · · · , Xn−m)X1 + hq2(X2, · · · , Xn−m).

As hq is dependent on the variable X1, we can deduce that hq1 6≡ 0.

Since the first n−m variables of states on cycle Cq go through all states in Fn−m2 , there must exist state X0 ∈ Fn−m−12

such hq1(X0) = 1. Then there exists initial state X(t) = [1 X0 qn−m+1 qn−m+2 · · · qn]T at time t whose output is different

from that of the state X(t+ 2n−m−1) = [0 X0 qn−m+1 qn−m+2 · · · qn]T at time t+ 2n−m−1. Therefore, the states in each

cycle are distinguishable separately.

For the statement ease, we introduce some notations, which will be used in the sequence. It is helpful to keep them in

mind.

First, we define two sets:

Aqn−m = {qn−m = [q1 q2 . . . qn−m]T |q = [q1 q2 . . . qn−m qn−m+1 . . . qn]T on the cycle Cq and h(q) = 1}, (29)

and

Âqn−m = {q̂|q̂ = 2n−m − 1− (2n−m−1q1 + 2n−m−2q2 + · · ·+ qn−m), [q1 q2 . . . qn−m]T = qn−m ∈ Aqn−m}. (30)

Next, we define a vector

q̂ = (q̂1, q̂2, . . . , q̂N ), (31)

where q̂1, q̂2, . . . , q̂N ∈ Âqn−m satisfy q̂1 < q̂2 < . . . < q̂N , and N is the cardinality of the set Âqn−m .

Finally, we define the distance tuple of q̂ as

dist(q̂) = ((q̂1 − q̂N ) mod 2n−m, q̂2 − q̂1, q̂3 − q̂2, · · · , q̂N − q̂N−1). (32)

Similarly, we can define dist(p̂) for the cycle Cp.

Lemma 8. Each component of dist(q̂) is equal to the path length of two states from two neighboring components of the

vector q̂.
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Proof. The states of the cycle Cq are of form δ2
mk+q

2n in ∆2n , where k ∈ {0, 1, · · · , 2n−m − 1}. Their corresponding n-

dimensional vector is (X1, X2, · · · , Xn−m, qn−m+1, · · · , qn), where q = 2m − (2m−1an−m+1 + 2m−2an−m+2 + · · · + an). Ac-

cording to Lemma 1 and Equation (30) , we have

2mk + q = 2n − (2n−1X1 + 2n−2X2 + · · ·+ 2mXn−m + 2m−1qn−m+1 + 2m−2qn−m+2 + · · ·+ qn),

yielding

k = 2n−m − 1− (2n−m−1X1 − 2n−m−2X2 + · · ·+Xn−m) ∈ Âqn−m .

The cycle Cq has a 2n−m-period state sequence:

δq2n , δ
2m+q
2n , δ2·2

m+q
2n , · · · , δk·2

m+q
2n , · · · , δ(2

n−m−1)·2m+q
2n .

Clearly, the path length of any two states δ2
mk+q

2n and δ2
ml+q

2n with positive integers k, l satisfying k < l, is l − k. Then the

result follows from the definition of dist(q̂) in (32).

Proposition 4. For an n-stage Galois NFSR with state transition matrix L in (18), there exist indistinguishable states on

different cycles Cp and Cq, if and only if dist(p̂) is shift equivalent to dist(q̂).

Proof. Let dist(ν) = (dν1 , d
ν
2 , . . . , d

ν
N ) with ν = p̂, q̂. Then, from the proof of Lemma 8, we know that for each k ∈

{1, 2, . . . , N}, each dνk uniquely corresponds to an output sequences 1 00 . . . 0︸ ︷︷ ︸
dνk−1

1 of length dνk. Thus, dist(ν) uniquely

corresponds to an output sequence Sν of length dν = dν1 + dν2 + . . . + dνN . Hence, dist(p̂) is shift equivalent to dist(q̂) if

and only if the output sequence Sq̂ uniquely corresponds to dist(q̂) is shift equivalent to the output sequence Sp̂ uniquely

corresponds to dist(p̂), which is equivalent to saying that there exist two indistinguishable states on different cycles Cp and

Cq as both cycles has the same length.

Corollary 2. For an n-stage Galois NFSR with state transition matrix L in (18), if it is observable, then its output function

h is dependent on the variables Xk for any k ∈ {n−m+ 1, n−m+ 2, · · · , n}.

Proof. If the output function h is not dependent on some variable Xk with some k ∈ {n −m + 1, n −m + 2, · · · , n}, then

there exists hq = hq+2n−k for q = 1. According to Equations (27) and (29)-(32), we can deduce dist(q̂) = dist( ̂q + 2n−k) for

q = 1. From Proposition 4, there exist two indistinguishable states on different cycles Cq and Cq+2n−k for q = 1, which is

contrary. Hence, the result holds.

Theorem 6. For an n-stage Galois NFSR with state transition matrix L in (18) satisfying the equation(25), it is observable

if and only if:

1) The hq contains the variable X1 for any q ∈ {1, 2, · · · , 2m};
2) dist(p̂) is not shift equivalent to dist(q̂) for any p, q ∈ {1, 2, · · · , 2m}, where p 6= q.

Proof. According to Proposition 3, Condition 1) holds if and only if any two distinct states in each cycle are distinguishable.

From Proposition 4, Condition 2) holds if and only if any two distinct states on different cycles are distinguishable.

Corollary 3. For an n-stage Galois NFSR with feedback function satisfying Equation (23), if its output function is

h(X1, X2, · · · , Xn) = Xb0
1 g1(X2, · · · , Xn−1)⊕ g2(X2, · · · , Xn−1)⊕Xb1

1 X
b2
2 · · ·Xbn

n ,

where each bi ∈ F2 for each i ∈ {0, 1, 2, · · · , n}, g1 6≡ 0 and g1 6= Xb2
2 · · ·X

bn−1

n−1 , then the Galois NFSR is observable.

Proof. The state diagram of the Galois consists of two cycles of length 2n−1:

Cycle C1 : δ12n → δ32n → δ52n → · · · → δ2k−12n → · · · → δ2
n−1

2n → δ12n ;

Cycle C2 : δ22n → δ42n → δ62n → · · · → δ2k2n → · · · → δ2
n

2n → δ22n .

Rewrite the output function h as:

h(X1, X2, · · · , Xn) = Xb0
1 g1(X2, · · · , Xn−1)(Xbn

n ⊕X
b0n
n )⊕ g2(X2, · · · , Xn−1)(Xbn

n ⊕X
b0n
n )⊕Xb1

1 X
b2
2 · · ·Xbn

n

= (Xb0
1 g1 ⊕ g2 ⊕X

b1
1 X

b2
2 · · ·X

bn−1

n−1 )Xbn
n ⊕ (Xb0

1 g1 ⊕ g2)X
b0n
n .

(33)

13



Let hp(X1, X2, · · · , Xn−1) = Xb0
1 g1 ⊕ g2 ⊕ Xb1

1 X
b2
2 · · ·X

bn−1

n−1 and hq(X1, X2, · · · , Xn−1) = Xb0
1 g1 ⊕ g2. As g1 6≡ 0 and

g1 6= Xb2
2 · · ·X

bn−1

n−1 , we easily observe that hp is dependent on the variable X1. Clearly, hq is also dependent on the

variable X1. So, hp and hq satisfy Condition 1) in Theorem 6. Clearly, hp ⊕ hq = Xb1
1 X

b2
2 · · ·X

bn−1

n−1 , which indicates

|Apn−1
| − |Aqn−1

| = 1 or −1, where |Apn−1
| and |Aqn−1

| are the cardinality of Apn−1
and Aqn−1

. Hence, dist(p̂) is not shift

equivalent to dist(q̂), which satisfies Condition 2) in Theorem 6. Therefore, according to Theorem 6, the Galois NFSR is

observable.

5 Conclusion

The paper considered two classes of Galois NFSRs. Their cycle structure and observability were disclosed using the semi-

tensor product based Boolean network approach. Each Galois NFSRs in the first classes has the maximum state cycle with

an arbitrary stage number and explicit feedback functions, which breaks the longstanding dilemma that it is quite difficult to

construct a maximum cycle NFSR (even if a maximum cycle Fibonacci NFSR) with an arbitrary state number and explicit

feedback functions; moreover, an easily verifiable necessary and sufficient condition was given to determine whether a Galois

NFSR in the first class with an output function is observable, which guarantees the period of output sequences is maximum as

well, namely, is equal to the length of the maximum state cycle. Each Galois NFSR in the second class has equi-length state

cycles with an arbitrary stage number and explicit feedback functions as well. Some (easily verifiable) necessary and sufficient

conditions were given to determine whether a Galois NFSR in the second class with an output function is observable. In the

future work, it is interesting to use those Galois NFSRs in both classes or their isomorphic Galois NFSRs or their variant

Galois NFSRs with output functions to design new stream ciphers by taking into account their security and implementation

efficiency.
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Appendix

Table 2: The feedback functions.

i feedback explicit expression of feedback function

2

F



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = Xn−2 ⊕X0
n−1X

0
n,

...

f1 = X1 ⊕X0
2X

0
3 · · ·X0

n.

DF



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = Xn−2 ⊕Xn−1Xn,
...

f1 = X1 ⊕X2X3 · · ·Xn.

RF



f1 = X0
1 ,

f2 = X2 ⊕X0
1 ,

f3 = X3 ⊕X0
2X

0
1 ,

...

fn = Xn ⊕X0
n−1X

0
n−2 · · ·X0

1 .

RDF



f1 = X0
1 ,

f2 = X2 ⊕X1,

f3 = X3 ⊕X2X1,
...

fn = Xn ⊕Xn−1Xn−2 · · ·X1.

4

F



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = X0
n−2 ⊕Xn−1Xn,

fn−3 = Xn−3 ⊕X0
n−2 ⊕X0

n−2Xn−1Xn,

fn−4 = Xn−4 ⊕X0
n−3X

0
n−2 ⊕X0

n−3X
0
n−2Xn−1Xn,

...

f1 = X1 ⊕X0
2X

0
3 · · ·X0

n−2 ⊕X0
2X

0
3 · · ·X0

n−2Xn−1Xn.

DF



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = X0
n−2 ⊕X0

n−1X
0
n,

fn−3 = Xn−3 ⊕Xn−2 ⊕Xn−2X
0
n−1X

0
n,

fn−4 = Xn−4 ⊕Xn−3Xn−2 ⊕Xn−3Xn−2X
0
n−1X

0
n,

...

f1 = X1 ⊕X2X3 · · ·Xn−2 ⊕X2X3 · · ·Xn−2X
0
n−1X

0
n.
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i feedback explicit expression of feedback function

RF



f1 = X0
1 ,

f2 = X2 ⊕X1,

f3 = X0
3 ⊕X2X1,

f4 = X4 ⊕X0
3 ⊕X0

3X2X1,

f5 = X5 ⊕X0
4X

0
3 ⊕X0

4X
0
3X2X1,

...

fn = Xn ⊕X0
n−1X

0
n−2 · · ·X0

3 ⊕X0
n−1X

0
n−2 · · ·X0

3X2X1.

RDF



f1 = X0
1 ,

f2 = X2 ⊕X0
1 ,

f3 = X0
3 ⊕X0

2X
0
1 ,

f4 = X4 ⊕X3 ⊕X3X
0
2X

0
1 ,

f4 = X5 ⊕X4X3 ⊕X4X3X
0
2X

0
1 ,

...

fn = Xn ⊕Xn−1Xn−2 · · ·X3 ⊕Xn−1Xn−2 · · ·X3X
0
2X

0
1 .

6

F



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = X0
n−2 ⊕X0

n−1X
0
n,

fn−3 = X0
n−3 ⊕Xn−2 ⊕Xn−2X

0
n−1X

0
n,

fn−4 = Xn−4 ⊕X0
n−3X

0
n−2 ⊕X0

n−3Xn−2X
0
n−1X

0
n,

...

f1 = X1 ⊕X0
2X

0
3 · · ·X0

n−2 ⊕X0
2 · · ·X0

n−3Xn−2X
0
n−1X

0
n.

DF



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = X0
n−2 ⊕Xn−1Xn,

fn−3 = X0
n−3 ⊕X0

n−2 ⊕X0
n−2Xn−1Xn,

fn−4 = Xn−4 ⊕Xn−3Xn−2 ⊕Xn−3X
0
n−2Xn−1Xn,

...

f1 = X1 ⊕X2X3 · · ·Xn−2 ⊕X2 · · ·Xn−3X
0
n−2Xn−1Xn.

RF



f1 = X0
1 ,

f2 = X2 ⊕X0
1 ,

f3 = X0
3 ⊕X0

2X
0
1 ,

f4 = X0
4 ⊕X3 ⊕X3X

0
2X

0
1 ,

f5 = X5 ⊕X0
4X

0
3 ⊕X0

4X3X
0
2X

0
1 ,

...

fn = Xn ⊕X0
n−1X

0
n−2 · · ·X0

3 ⊕X0
n−1 · · ·X0

4X3X
0
2X

0
1 .

RDF



f1 = X0
1 ,

f2 = X2 ⊕X1,

f3 = X0
3 ⊕X2X1,

f4 = X0
4 ⊕X0

3 ⊕X0
3X2X1,

f5 = X5 ⊕X4X3 ⊕X4X
0
3X2X1,

...

fn = Xn ⊕Xn−1Xn−2 · · ·X3 ⊕Xn−1 · · ·X4X
0
3X2X1.
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i feedback explicit expression of feedback function

F



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = Xn−2 ⊕Xn−1Xn,

fn−3 = X0
n−3 ⊕Xn−2Xn−1Xn,

fn−4 = Xn−4 ⊕X0
n−3 ⊕X0

n−3Xn−2Xn−1Xn,
...

f1 = X1 ⊕X0
2X

0
3 · · ·X0

n−3 ⊕X0
2 · · ·X0

n−3Xn−2Xn−1Xn.

8

DF



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = Xn−2 ⊕X0
n−1X

0
n,

fn−3 = X0
n−3 ⊕X0

n−2X
0
n−1X

0
n,

fn−4 = Xn−4 ⊕Xn−3 ⊕Xn−3X
0
n−2X

0
n−1X

0
n,

...

f1 = X1 ⊕X2X3 · · ·Xn−3 ⊕X2 · · ·Xn−3X
0
n−2X

0
n−1X

0
n.

RF



f1 = X0
1 ,

f2 = X2 ⊕X1,

f3 = X3 ⊕X2X1,

f4 = X0
4 ⊕X3X2X1,

f5 = X5 ⊕X0
4 ⊕X0

4X3X2X1,
...

fn = Xn ⊕X0
n−1X

0
n−2 · · ·X0

4 ⊕X0
n−1 · · ·X0

4X3X2X1.

RDF



f1 = X0
1 ,

f2 = X2 ⊕X0
1 ,

f3 = X3 ⊕X0
2X

0
1 ,

f4 = X0
4 ⊕X0

3X
0
2X

0
1 ,

f5 = X5 ⊕X4 ⊕X4X
0
3X

0
2X

0
1 ,

...

fn = Xn ⊕Xn−1Xn−2 · · ·X4 ⊕Xn−1 · · ·X4X
0
3X

0
2X

0
1 .

...

2n−1

F



fn = X0
n,

fn−1 = Xn−1 ⊕Xn,

fn−2 = Xn−2 ⊕Xn−1Xn,

fn−3 = Xn−3 ⊕Xn−2Xn−1Xn,
...

f2 = X2 ⊕X3X4 · · ·Xn,

f1 = X0
1 ⊕X2X3 · · ·Xn.

DF



fn = X0
n,

fn−1 = Xn−1 ⊕X0
n,

fn−2 = Xn−2 ⊕X0
n−1X

0
n,

fn−3 = Xn−3 ⊕X0
n−2X

0
n−1X

0
n,

...

f2 = X2 ⊕X0
n−3X

0
n−2X

0
n−1X

0
n,

f1 = X0
1 ⊕X0

2X
0
3 · · ·X0

n.
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i feedback explicit expression of feedback function

RF



f1 = X0
1 ,

f2 = X2 ⊕X1,

f3 = X3 ⊕X2X1,

f4 = X4 ⊕X3X2X1,
...

fn−1 = Xn−1 ⊕Xn−2Xn−3 · · ·X1,

fn = X0
n ⊕Xn−1Xn−2 · · ·X1.

RDF



f1 = X0
1 ,

f2 = X2 ⊕X0
1 ,

f3 = X3 ⊕X0
2X

0
1 ,

f4 = X4 ⊕X0
3X

0
2X

0
1 ,

...

fn−1 = Xn−1 ⊕X0
n−2X

0
n−3 · · ·X0

1 ,

fn = X0
n ⊕X0

n−1X
0
n−2 · · ·X0

1 .

End of Table
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