
Compromising sensitive information through
Padding Oracle and Known Plaintext attacks

in Encrypt-then-TLS scenarios

Daniel Espinoza Figueroa

Department of Electronic Engineering,

Universidad Técnica Federico Santa Maŕıa, Chile

daniel.espinozaf@sansano.usm.cl

November 20, 2023

Abstract

Let’s consider a scenario where the server encrypts data using AES-
CBC without authentication and then sends only the encrypted ci-
phertext through TLS (without IV). Then, having a padding oracle,
we managed to recover the initialization vector and the sensitive data,
doing a cybersecurity audit for a Chilean company.

1 Introduction

In the World Wide Web, Transport Layer Security (TLS) is the well-known
cryptosystem that handles all the interactions between different services on
the Internet, providing Confidentiality, Integrity, and Authentication as a
complete cryptographic protocol [1]. Depending on the implementation,
some services may require encrypting data even if TLS is active, namely
the Encrypt-then-TLS approach, due to end-to-end encryption solutions or
some specific requirements, where data is encrypted at the application layer
[2]. Having advantages and disadvantages, some implementations don’t pro-
vide authentication, so even if we are protected with TLS to prevent Man

1

mailto:daniel.espinozaf@sansano.usm.cl


in the Middle (MitM) attacks, users can modify their HTTP requests on
the way. That was the case for a web application audited for a well-known
Chilean company, where the AES-CBC encryption algorithm was used. With
a padding oracle and a known plaintext attack, we recovered the initialization
vector considered private and sensitive information, namely a card number.

2 Padding Oracle attack in AES-CBC

Encrypting with AES in Cipher Block Chaining (CBC) mode works by mak-
ing each block influence the next encrypted block through the following for-
mula:

Ci = AESk(Pi ⊕ Ci−1)

where Pi is the plaintext and Ci the ciphertext. Decryption is computed as

Pi = AES−1
k (Ci)⊕ Ci−1

If authentication is not presented, an attacker can modify Ci−1 in order to
change Pi directly. Also, padding is used because the information has to be
a multiple of 16 bytes in length, typically using PKCS #7 [3]. This padding
scheme works as follows:

• Consider the following message: ”D-Cryp7 was here!” with 17 bytes
long. For the message to be a multiple of 16 bytes long, we have to
append 32 - 17 = 15 bytes with the value ”15” in hex (0f). Then, the
padded message will be

”D-Cryp7 was here!\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f
\x0f\x0f\x0f\x0f”

Even if the message is a multiple of 16 bytes, the message will be padded,
adding 16 bytes of ”16” in hex (10). As an attacker, we send the encrypted
message and the server decrypts it, returning an error if the padding cannot
be removed. Modifying a message will return a padding error, as noted in
Figure 1, but for the last byte, we can change it until the server removes
the padding of the modified message correctly. In that case, the last byte
will be \x01, and we will recover the last byte of AES−1

k (Ci) and Pi. We
continue changing the next byte searching for a \x02 and so on. Of course,

2



C1 C2

AES−1
k (C1) AES−1

k (C2)

⊕
IV

⊕

P1

Remove padding Invalid padding

Success decryption

P2

Figure 1: AES in Cipher Block Chaining (CBC) mode decryption diagram.
The red square in C1 means a possible byte modification, which makes a
change in P1.

we can recover whatever plaintext block we want, if and only if we can set
the initialization vector (IV) that the server is going to use. If not, we can’t
recover the first block. This well-known vulnerability is called Padding Oracle
attack [4].
For the next section, we consider that the initialization vector (IV) is static,
so the server doesn’t return it to us. However, we can combine the padding
oracle with a known plaintext attack in order to recover the IV, and then the
sensitive information.

3



3 Combining Padding Oracle and Known Plain-

text attack in AES-CBC

In a cybersecurity audit for a Chilean company, we found that the server
returns two ciphertexts:

• An encrypted card number. The card number itself has 16 bytes, so
the resulting ciphertext has 32 bytes assuming PKCS #7 padding.

• An encrypted JSON which contains the user’s JWT and some addi-
tional information. We executed padding oracle in few blocks in order
to came up with this conclusion.

As a note, the server doesn’t return the initialization vector (IV), so we can’t
recover the first block of the encrypted card number directly. Then, we define
the following equations, considering two encrypted blocks:

S1 = AES−1
k (Sc

1)⊕ IV

S2 = AES−1
k (Sc

2)⊕ Sc
1

J1 = AES−1
k (J c

1)⊕ IV

J2 = AES−1
k (J c

2)⊕ J c
1

where Si, S
c
i , Ji and J c

i are the plaintext and encrypted versions of the card
number and the JSON user data, respectively. Knowing Ji and J c

i , we can
recover the IV as follows:

• Send (J c
2 , J

c
1) to the server i.e. the encrypted JSON data, changing the

order of the ciphertext blocks. The server computes

J2 = AES−1
k (J c

2)⊕ IV

J1 = AES−1
k (J c

1)⊕ J c
2

• Use the padding oracle attack for recovering the intermediate bytes:
AES−1

k (J c
1).

• Compute the initialization vector (IV) as

IV = J1 ⊕ AES−1
k (J c

1)

4



Next, we recover the card number (S1) as follows:

• Send (Sc
2, S

c
1) to the server i.e. the encrypted card number, changing

the order of the ciphertext blocks. The server computes

S2 = AES−1
k (Sc

2)⊕ IV

S1 = AES−1
k (Sc

1)⊕ Sc
2

• Use the padding oracle attack for recovering the intermediate bytes:
AES−1

k (Sc
1).

• Compute the card number (S1) as

S1 = AES−1
k (Sc

1)⊕ IV

4 Conclusions

Since Transport Layer Security (TLS) provides Confidentiality, Integrity, and
Authentication in web applications, some companies have to implement an
additional layer of security. Still, they ignore the fact that users can mod-
ify the original information before sending the HTTP payload through the
secure channel. We named this an Encrypt-then-TLS scenario, where vul-
nerabilities can occur in legacy applications or when there’s a misconception
about the total safety that TLS provides. The proposed attack was exploited
on a real company during a cybersecurity audit in Chile, so the user’s sen-
sitive information is not compromised. However, it is crucial to keep the
systems updated with the world’s security needs; AES-CBC is an encryp-
tion algorithm we don’t recommend using without authentication. Finally,
we demonstrate that, given a context where we don’t have the static ini-
tialization vector (IV) and known plaintexts, we can recovering and decrypt
sensitive information, being able to recover the card numbers of several users.

References

[1] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018.

5



[2] Mohamed Nabeel. The many faces of end-to-end encryption and their
security analysis. In 2017 IEEE International Conference on Edge Com-
puting (EDGE), pages 252–259, 2017.

[3] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5.
RFC 2315, March 1998.

[4] Juliano Rizzo and Thai Duong. Practical padding oracle attacks. In 4th
USENIX Workshop on Offensive Technologies (WOOT 10), Washington,
DC, August 2010. USENIX Association.

6


	Introduction
	Padding Oracle attack in AES-CBC
	Combining Padding Oracle and Known Plaintext attack in AES-CBC
	Conclusions

