
Optimizing AES Threshold Implementation
under the Glitch-Extended Probing Model

Fu Yao1,2, Hua Chen1, Yongzhuang Wei3, Enes Pasalic4, Feng Zhou1,2 and
Limin Fan1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese
Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
yaofu2020@iscas.ac.cn, chenhua@iscas.ac.cn, zhoufeng2021@iscas.ac.cn,

fanlimin@iscas.ac.cn
3 Guilin University of Electronic Technology, Guilin, China

walker_wyz@guet.edu.cn
4 University of Primorska, FAMNIT, Koper, Slovenia

enes.pasalic6@gmail.com

Abstract. Threshold Implementation (TI) is a well-known Boolean masking tech-
nique that provides provable security against side-channel attacks. In the presence
of glitches, the probing model was replaced by the so-called glitch-extended probing
model which specifies a broader security framework. In CHES 2021, Shahmirzadi
et al. introduced a general search method for finding first-order 2-share TI schemes
without fresh randomness (under the presence of glitches) for a given encryption
algorithm. Although it handles well single-output Boolean functions, this method
has to store output shares in registers when extended to vector Boolean functions,
which results in more chip area and increased latency. Therefore, the design of TI
schemes that have low implementation cost under the glitch-extended probing model
appears to be an important research challenge. In this paper, we propose an approach
to design the first-order glitch-extended probing secure TI schemes when quadratic
functions are employed in the substitution layer. This method only requires a small
amount of fresh random bits and a single clock cycle for its implementation. In
particular, the random bits in our approach are reusable and compatible with the
changing of the guards technique. Our dedicated TI scheme for the AES cipher gives
20.23% smaller implementation area and 4.2% faster encryption compared to the TI
scheme of AES (without using fresh randomness) proposed in CHES 2021. Addi-
tionally, we propose a parallel implementation of two S-boxes that further reduces
latency (about 39.83%) at the expense of increasing the chip area by 9%. We have
positively confirmed the security of AES under the glitch-extended probing model
using the verification tool - SILVER and the side-channel leakage assessment method
- TVLA.
Keywords: Threshold Implementation · Changing of the Guards · AES · Practical
Side-Channel Leakage Assessment

1 Introduction
In the era of Internet of Things (IoT), embedded devices (including encryption algorithms)
have been widely used in various applications and their implementation security is of great
concern. Due to access to encryption devices (in many cases), an adversary can easily mon-
itor physical characteristics of the embedded devices, such as power consumption [KJJ99],
electromagnetic radiation [QS01], and execution time [Koc96] to name a few. Therefore,

mailto:yaofu2020@iscas.ac.cn
mailto:chenhua@iscas.ac.cn
mailto:zhoufeng2021@iscas.ac.cn
mailto:fanlimin@iscas.ac.cn
mailto:walker_wyz@guet.edu.cn
mailto:enes.pasalic6@gmail.com

2 Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

the embedded devices for IoT applications are vulnerable to Side-channel analysis (SCA).
Side-channel analysis (SCA) is considered to be the most powerful one, since it allows
the adversary to recover the secret data of the embedded device without being detected.
Along with the development of the side-channel analysis, different countermeasures have
been introduced during the last two decades. At the algorithm level, masking is one of
the most popular approaches for providing security against SCA attacks because it has
precise theoretical foundations.

Boolean masking is one of the most common schemes used in practice for providing
security against SCA. The basic idea of Boolean masking [GP99] is to randomize the secret
data of the cryptographic algorithm with random numbers (bits). In CRYPTO 2003,
Ishai et al. [ISW03] proposed a general method, named ISW, for constructing a masking
scheme for an AND gate, achieving any security order d. However, this masking scheme
is only applicable in software implementations, and the presence of glitches in hardware
can cause the information leakage [MPO05]. For example, Mangard et al. successfully
recovered the secret key of the masked AES hardware implementation with the presence
of (suitable) glitches [MPO05]. To address this problem, Nikova et al. [NRR06] proposed
Threshold Implementation (TI), which makes a masked hardware implementation secure
even if there are glitches in the circuit. Typically, in TI schemes, the input secret variables
are divided into several shares, and the target function is divided into several component
functions by means of Boolean masking. Each component function uses only a portion
of input shares in the computation, making the intermediate secret values impossible
to be recovered through d intermediate shares, which theoretically ensures the security
against d-order SCA in the presence of glitches. However, hardware implementations of
cryptographic algorithms protected with TI schemes require larger hardware footprints,
increased latency, and massive fresh randomness. Therefore, minimizing these parameters
is of great importance, especially for resource-constrained applications.

The primary issue with hardware implementations of block ciphers that use TI schemes
is a significantly increased chip area. The number of input shares in TI schemes satisfies
the td + 1 rule, which requires that a function with algebraic degree t should be split into
td + 1 shares [Bil15]. In this context, Moradi et al. [MPL+11] decomposed the S-box of
AES (whose algebraic degree is 7) into subfunctions of algebraic degree 2. This strategy
resulted in the first 3-share TI scheme of AES, which provides the first-order security
against SCA, requiring 11.1 kGE of chip area and 266 clock cycles for each encryption.
Subsequently, Bilgin et al. [BGN+14, BGN+15] investigated the relationship between
uniformity and the implementation performance for TI schemes, and provided a more
efficient design of a first-order 3-share TI scheme that requires 8.1 kGE of chip area and
246 clock cycles for each encryption. Because the number of input shares has a significant
impact on the chip area of TI schemes, it is necessary to use the minimum number of input
shares - d + 1 - to construct a d-th order TI scheme for the target function. The works
in [DRB+16, GMK16, GMK17, UHA17] demonstrated that designing a more compact
d-order TI scheme of AES with d+1 shares is feasible. Among these works, the first-order
2-share TI scheme in [GMK17] gave rise to an efficient implementation of AES with the
minimum chip area (approximately 6.1 kGE) without changing the latency.

Although the chip area of TI schemes could be significantly reduced, the known meth-
ods commonly require between 18 and 64 bits of fresh randomness per S-box in order to
satisfy the uniformity property of TI, as summarized in Table 2. A utilization of fresh
randomness introduces additional complexity in the implementation as it requires either
a pseudo-random number generator or a storage of these random numbers. Therefore,
minimizing the use of random bits or avoiding it completely for TI schemes is a desir-
able strategy. In this context, Daemen [Dae17] relaxed the requirement for fresh random
numbers using the strategy known as changing of the guards. It essentially employs inde-
pendent shares of the shared cipher state as fresh randomness so that bijective S-boxes can

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 3

satisfy the uniformity property. Using this approach, Wegener et al. [WM18] proposed a
first-order 4-share TI scheme for AES without fresh randomness, while sacrificing the la-
tency (2804 clock cycles for each encryption). Also, Sugawara et al. [Sug18] introduced a
certain generalization of Daemen’s method, and proposed a first-order 3-share TI scheme
for AES without fresh randomness, though increasing the chip area to 17.1 kGE.

The security of TI schemes mentioned above is theoretically evaluated by the probing
model proposed in [ISW03]. In this model, the attacker can place d probes in the circuit
to simultaneously observe d intermediate values, where d represents the order of security.
However, this abstract model does not cover the information leakage in hardware caused
by glitches, and therefore the glitch-extended probing model was introduced by Faust et al.
[FGP+18] to evaluate the security of TI schemes in the presence of glitches and coupling
errors. In this model, a probe placed at the output of a target gate is extended to multiple
probes that sense all input signals driving this gate. Compared to the probing model,
the glitch-extended probing model enables the attackers to observe more information
about the circuit when hardware implementations of encryption algorithms are considered.
This sophisticated probing model inevitably required a re-examination of the theoretical
assessment for the security of TI. Dhooghe et al. [DNR19] proved that TIs can provide first-
order and high-order univariate security in the glitch-extended probing model. Moreover,
Knichel et al. [KSM20] reconfirmed the glitch-extended probing security of AES’s TI
schemes in [DRB+16, GMK17] with their proposed verification tool - SILVER.

Recently, Shahmirzadi et al. [SM21] proposed a general search method for specifying
first-order TI schemes using 2 shares under the glitch-extended probing model. Although it
applies well to single-output Boolean functions, this method cannot be extended directly to
vectorial Boolean functions. Specifically, for an m-output Boolean function F : F n

2 → F m
2 ,

the glitch-extended probing model requires the joint outputs of some component functions
(which themselves can be viewed as a collection of several component functions of each
coordinate function) does not leak any information about the input variables. However,
the search method in [SM21] could not find a TI scheme that satisfies these conditions for
the m-output Boolean function. As a compromise, Shahmirzadi et al. opted for storing
the output shares of each coordinate function to prevent a propagation of glitches between
coordinate functions. This approach forces first-order TI schemes for m-output Boolean
functions to utilize extra storage registers and it doubles the number of clock cycles.
Therefore, the TI scheme of AES (without fresh randomness) in [SM21] requires more
chip area (about 7.71 kGE) and has a larger latency (246 clock cycles). Consequently,
more efficient TI schemes in the glitch-extended probing model with respect to chip area
and latency are highly desirable.

Our Contributions. In this work, our contributions can be summarized in the following
three main aspects.

1. We introduce an approach to construct first-order 2-share TI schemes for quadratic
function F : F n

2 → F m
2 (that implement S-boxes) that are secure in the glitch-

extended probing model, and additionally have a low hardware footprint and low
latency. The fresh random numbers in our TI schemes are both reusable after one
clock cycle, and the way of adding fresh random numbers is compatible with the
method changing of the guards. This can greatly relax the need for fresh randomness
in masked hardware implementations of encryption algorithms.

2. We have applied our method to design a first-order secure TI scheme for AES.
We confirm the security of our shared S-boxes using the leakage verification tool -
SILVER [KSM20]. For the sake of completeness, we practically verify the security
of our shared AES using the Sakura_G evaluation board. The implementation and
verification code of the constructed Sboxes and full ciphers are given in the GitHub.

3. We provide the serialization implementation structure for our shared AES scheme.

https://github.com/GitHub-lancel/AESTIScheme.git

4 Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

Compared to the TI scheme of AES without fresh randomness in [SM21], our shared
AES implementation requires 20.23% smaller chip area and 4.2% less clock cycles
for the encryption process. In addition, approximately 4 random bits per S-box are
needed. Moreover, we propose an alternative approach by implementing a pair of
S-boxes (instead of considering them separately) which then reduces the latency of
AES (requiring only 148 clock cycles) at the price of increased implementation cost.
More precisely, this implementation scheme has 39.83% lower latency (# of clock
cycles) than the method in [SM21], whereas the chip area is slightly increased by
9%.

2 Preliminaries
In this section, we introduce some relevant definitions and notations. Apart from that,
we briefly describe the decomposition of AES S-box, Threshold Implementation schemes,
the method changing of the guards, and the technique masking with d + 1 shares.

2.1 Definitions and Notations
The symbols ⊕, & and × will stand for the Boolean addition, Boolean multiplication,
and finite field multiplication, respectively. For convenience, ⊕ is replaced by + and & is
omitted, i.e. a&b = ab, in this article. We denote a binary variable with x ∈ F2 = {0, 1},
a binary vector with X ∈ F n>1

2 and the i-th element of X = (x0, . . . , xn−1) ∈ F n
2 with

xi. Further, we use f(.) to denote a (coordinate) Boolean function, and represent F (.) :
F n

2 → F m
2 as a collection of m coordinate Boolean functions F (.) = (f0(.), . . . , fm−1(.)).

In the d-th order Boolean masking, a secret variable x is represented by Sin shares
x = (x0, . . . , xSin−1), so that x = ⊕Sin−1

j=0 xj . The i-th secret variable xi in the secret
variable vector X = (x0, . . . , xn−1) is represented by Sin shares xi = (xi

0, . . . , xi
Sin−1),

so that xi = ⊕Sin−1
j=0 xi

j . The secret variable vector X = (x0, . . . , xn−1) can be rep-
resented by n share vectors X = (x0, . . . , xn−1) with the j-th share vector of the se-
cret variable vector X as Xj = (x0

j , . . . , xn−1
j). The (coordinate) Boolean function

f(.) is represented by Sout masking Boolean functions f(.) = (f0(.), . . . , fSout−1(.)), and
hence f(.) = ⊕Sout−1

j=0 fj(.). Each masking Boolean function fi(.) is called a compo-
nent function. A vectorial Boolean function F (.) =

(
f0(.), . . . , fm−1(.)

)
can be rep-

resented using m masking coordinate vectorial Boolean functions of length Sout, thus
F (.) =

(
f0(.), . . . , fm−1(.)

)
=

(
(f0

0 (.), . . . , f0
Sout−1(.)), . . . , (fm−1

0 (.), . . . , fm−1
Sout−1(.))

)
.

2.2 S-box decomposition
Similar to several related works, e.g., [MPL+11, DRB+16, GMK16, SM21], we employ a
tower-field approach to implement the S-box of AES. Figure 1 shows the composite-field
architecture of unshared AES S-box in this article, where the red dashed lines indicate
that the corresponding values should be stored in registers. The inversion over GF (24)
is conducted over GF (22) subfield using the same tower-field approach. Although this
increases the latency of S-boxes, the main benefit is that the algebraic degree of the
arithmetic operations in each subfield is 2 which matches with our proposed approach in
Section 3.

2.3 Threshold Implementation
Threshold Implementation (TI) was proposed by Nikova et al. [NRR06] at ICICS 2006
to ensure the robustness of masking schemes against a d-th order SCA in the presence

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 5

GF(22)

Multiplier0

GF(22)

Multiplier1

GF(22)

Square-Scale-

Multiplier

GF(24)

Square-Scale-

Multiplier

Linear Map

GF(24)

Multiplier0

GF(24)

Multiplier1

Inverse

Linear Map

S-box

Output
S-box

Input

2-bit MSB P

Q2-bit LSB

4-bit MSB

4-bit LSB

8 bits

4 bits

2 bits

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

R

S

Figure 1: Operations in unshared AES S-box in this article

of glitches. Borrowing the ideas from secret sharing, threshold cryptography, and multi-
party computation protocols, a TI scheme needs to fulfill three properties to achieve the
mentioned security. Let the input variable of an unshared function F (.) : F n

2 → F m
2 be

X = (x0, . . . , xn−1), whose output variable is Y = (y0, . . . , ym−1). Let also F (.) : F nSin
2 →

F mSout
2 denote the TI scheme for the function F (.). In the d-th order TI scheme, the input

shares of the masking function F (.) are X =
(
(x0

0, . . . , x0
Sin−1), . . . , (xn−1

0 , . . . , xn−1
Sin−1)

)
,

and the output shares are Y =
(
(y0

0 , . . . , y0
Sout−1), . . . , (ym−1

0 , . . . , ym−1
Sout−1)

)
, respectively.

Then, the TI scheme F (.) needs to satisfy the following three properties:

1. Correctness: XOR-ing Sin input shares (xi
0, . . . , xi

Sin−1) of the masking function
F (.) gives back the input secret variable xi of the unshared function F (.), that
is, ⊕Sin−1

j=0 xi
j = xi. Similarly, XOR-ing Sout output shares (yi

0, . . . , yi
Sout−1) of the

masking function F (.) recovers the output secret variable yi of the unshared function
F (.), that is, ⊕Sout−1

j=0 yi
j = yi.

2. d-th order non-completeness: In a TI scheme, each coordinate function f i(.) of an
unshared function F (.) is represented using Sout masking Boolean functions of the
form

(
f i

0(.), . . . , f i
Sout−1(.)

)
(called a shared implementation). In order to resist a

d-th order SCA in the presence of glitches, any d masking coordinate component
functions of each coordinate function f i(.) should be at least independent of one
share for each binary secret variable.

3. Uniformity: In an iterative cryptographic primitive such as a block cipher, we need
a threshold implementation of the target function that yields a uniformly shared
output if its input is uniformly shared. Otherwise, feeding the non-uniform output
shares into the subsequent masking function would lead to information leakage.

Note that the TI scheme of a binary linear function L(X) can be achieved by applying
the same function on all shares as L(X) = ⊕Sin−1

j=0 L(Xj). The difficulty lies in constructing
the TI form for the nonlinear function F (.).

2.4 Changing of the Guards
Uniformity of a TI scheme is of great importance when ensuring the security of an itera-
tive block cipher that uses cascaded masking in its round functions. However, achieving
uniformity of a TI scheme is not a trivial task. Daemen [Dae17] proposed a general tech-
nology changing of the guards that can ensure that a bijective S-box satisfies the property
of uniformity, which we discuss below.

6 Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

Let (S0, S1, S2) be a 3-share non-uniform TI scheme of a bijective S-box y = S(x),
where the input variables of S0, S1, and S2 are the shares x1, x2; x2, x0; and x0, x1, re-
spectively. Non-completeness then follows from the fact that each Si only takes two shares
as inputs. Assume there are m parallel operations to be performed using the same bijective
S-box y = S(x) in the round function of a cryptographic algorithm. The input shares of
the i-th operation are xi

0, xi
1, xi

2 and the output shares are yi
0, yi

1, yi
2 (for i ∈ [1, m]]). Then,

the j-th component function of the i-th operation is yi
j = Sj(xi

(j+1) mod 3, xi
(j+2) mod 3).

Changing of the guards method, applied to these m parallel bijective S-boxes, can be
defined as follows:

yi
0 = S0(xi

1, xi
2) + xi−1

1 + xi−1
2 (i > 0)

yi
1 = S1(xi

2, xi
0) + xi−1

2 (i > 0)
yi

2 = S2(xi
0, xi

1) + xi−1
1 (i > 0)

y0
1 = xm

2
y0

2 = xm
1 .

(1)

Firstly, we need to initialize x0
1 and x0

2 with the random numbers as the guards of the
first S-box in the first round. Then, the guards for the subsequent S-boxes are inherited
from the two input shares xi−1

1 , xi−1
2 of the previous S-box. Then, the variables y0

1 , y1
2 are

used as guards for the first S-box in the subsequent round, and for more details we refer
to the original article [Dae17].

2.5 Masking with d + 1 Shares
Numerous studies [GMK16, SM21, RBN+15] have been devoted to proposing various d-th
order TI schemes with the minimum number of d + 1 shares, relaxing the dependency of
the target function’s algebraic degree. Among them, the authors of [SM21] proposed a
general method of constructing a first-order TI scheme without fresh randomness under
the glitch-extended probing model.

The core idea of [SM21] is to search for special component functions of TI schemes for
the target function to achieve the first-order glitch-extended probing security without fresh
randomness. For example, a first-order secure TI scheme1 for each coordinate function
f i(.) of the function (x, y) = F (b, c, d) = (b + bd + cd, c + bd)2, with input shares b0, b1,
c0, c1, d0, d1 and the output shares x0, x1, y0, y1, can be implemented as follows,

f0
0 = c0 + b0d0 + c0d0 → [x′

0]r
f0

1 = b0 + c0 + b0d1 + c0d1 → [x′

1]r x
′

0 + x
′

1 = [x0]r
f0

2 = c1 + b1d0 + c1d0 → [x′

2]r x
′

2 + x
′

3 = [x1]r
f0

3 = b1 + c1 + b1d1 + c1d1 → [x′

3]r

f1
0 = b0 + c0 + b0d0 → [y′

0]r
f1

1 = b0 + b0d1 → [y′

1]r y
′

0 + y
′

1 = [y0]r
f1

2 = b1 + c1 + b1d0 → [y′

2]r y
′

2 + y
′

3 = [y1]r
f1

3 = b1 + b1d1 → [y′

3]r

(2)

Since the TI scheme designed with the method in [SM21] have no composability, the
output shares x0, x1, y0, and y1 can not be freely given to the next function. They have
to be stored in registers (as shown as [.]r in Equation 2) to prevent the glitches from
propagating between different coordinate functions f0(.) and f1(.), which leads to more
area consumption and larger latency.

1It is obtained with the search method in [SM21]
2The second and third coordinate functions of Q4

12 class in [BNN+12]

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 7

In this paper, assuming the glitch-extended probing model, we introduce an approach
to construct first-order TI schemes for the quadratic functions of AES (using the subfield
decomposition) using as less logic gates as possible. The reduction of hardware resources
is achieved by minimizing the number of component functions. We adjust the mathemat-
ical properties of desirable component functions in the search process and add the same
random number ri to all component functions of each coordinate function f i(.), which can
ensure the composability of TI schemes for different coordinate functions. Consequently,
our TI implementation of AES minimizes the latency and requires a single clock to guar-
antee the security in the presence of glitches, which essentially provides a solution to the
problem stated in [SM21]. Although our method employs some fresh random numbers,
due to the employment of the changing of the guards technique their amount is quite low.

3 Masking AES S-box with 2 shares
In this section, we first present our method to design a first-order secure TI scheme for
each coordinate function of these quadratic functions. Then, we discuss requirements that
these TI schemes of coordinate functions must fulfill when combined together, so that the
entire TI scheme is resistant against first-order SCA cryptanalysis in the glitch-extended
probing model. Having designed the TI schemes for each subfield operation, we present a
method that ensure the resistance of the entire S-box against first-order SCA.

3.1 Masking single-output Boolean functions
3.1.1 Masking structure

For convenience, we specify the coordinate functions of the operations over GF (24) and
GF (22), which are quadratic single-output Boolean functions of the form y = f(x0, . . . , xn−1),
where n = 4 or 8. Each quadratic term of this function y = f(x0, . . . , xn−1) has always
a variable from < x0, . . . , x

n
2 −1 > and the other one from < x

n
2 , . . . , xn−1 >. Then, a

detailed description of our first-order TI scheme for y = f(x0, . . . , xn−1) is provided.
In order to achieve first-order security, we split each input variable xi into two shares xi

0
and xi

1. A variant of y = f(x0, . . . , xn−1) can be obtained by replacing each input variable
xi with xi

0 + xi
1. Since the shared form of each quadratic term xixj has quadratic terms

xi
0xj

0, xi
0xj

1, xi
1xj

0, and xi
1xj

1, we use four component functions f0≤k≤3(.) to design the TI
scheme of y = f(x0, . . . , xn−1), which can minimize the number of component functions.
Figure 2 illustrates our first-order TI scheme structure of y = f(x0, . . . , xn−1), which is
divided into two parts with a register stage. In the first part, each component function
fk(.) only involves one share xi

0 or xi
1 of each input variable xi to fulfill non-completeness of

TI. Which shares are involved in each component function fk(.) is an important question.
A feasible approach is to use the three methods in Table 1 of assigning the input shares
xi

0 and xi
1 of each input variable xi to the component functions f0≤k≤3(.) which are the

shared form of y = f(x0, . . . , xn−1) (used to ensure the correctness of TI). For more
details about the Table 1, we can refer to the paper [SM21]. Then, the intermediate share
y

′

k is calculated by performing an XOR operation on the component function fk(.) and
the same single-bit random number r, which is then stored in a register to prevent the
glitches from propagating backward. This part, specifically devoted to the computation
of the component functions f0≤k≤3(.), is referred to as the expansion layer. In the second
part, the registered outputs y

′

0≤k≤3 are XORed to generate the output shares y0 and y1,
i.e., y0 = y

′

0 + y
′

1 and y1 = y
′

2 + y
′

3, to ensure that the number of next function’s input
shares remains 2. This part compresses four intermediate shares y

′

0≤k≤3 into two output
shares y0, y1, which is referred to as the compression layer.

8 Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

(x0
0
, x1

0
)

(x0
1
, x1

1
)

(x0
n-1, x1

n-1) r

y'
0

y'
1

y0

y'
2

y'
3

y1

f2

f3

r

f0

f1

Expansion layer Compression layer

Figure 2: Our first-order TI scheme structure for y = f(x0, . . . , xn−1) with 2 shares

Table 1: Methods of assigning each input variable xi’s two shares xi
0, xi

1, used in the
component functions f0≤k≤3(.)

Method f0(.) f1(.) f2(.) f3(.)
1 xi

0 xi
0 xi

1 xi
1

2 xi
0 xi

1 xi
0 xi

1
3 xi

0 xi
1 xi

1 xi
0

3.1.2 Security analysis

We now analyze the security of our masking structure in the glitch-extended probing model,
and specify certain mathematical properties that the component functions f0≤k≤3(.) need
to satisfy. In our first-order TI scheme, each function fk(.)+r receives only one share xi

0 or
xi

1 of each input variable xi and follows a uniform distribution. As a consequence, a probe
on any function fk(.) + r does not reveal any useful information. In the glitch-extended
probing model, a probe on an output share yl∈[0,1] can be extended to two simultaneous
probes on its corresponding inputs y

′

2l, y
′

2l+1. This requires that the joint outputs of the
functions f2l(.)+r, f2l+1(.)+r are independent of the input variables (x0, . . . , xn−1). Since
they are XOR-ed with the same random number r instead of two different random numbers,
the component functions f2l(.), f2l+1(.) should satisfy Proposition 1 to ensure the above
requirements. Moreover, the output shares y0 and y1 serve as the input shares to the
subsequent (shared) function, and therefore yl should follow a uniform distribution. This
is equivalent to requiring that f0(.) + f1(.) and f2(.) + f3(.) satisfy a uniform distribution,
respectively. Since the functions f0(.) + f1(.) and f2(.) + f3(.) are not re-masked with
the random number r, we should search suitable component functions f0≤k≤3(.) to ensure
that the output shares y0 and y1 follow the uniform distribution.

Note that we ensure the glitch-extended probing security of our first-order TI scheme
with the mathematical properties of the component functions (i.e., Proposition 1) and the
single bit random number r, and ensure the uniformity of the output share yl with the
mathematical properties of the functions f2l(.) + f2l+1(.).

Proposition 1. For masking a quadratic single-output Boolean function y = f(x0, . . . , xn−1)
with 2 shares, where each component function fl(.) is XOR-ed with the same random bit
r, the joint outputs of the functions f2l(.) + r, f2l+1(.) + r (l ∈ [0, 1]) are independent of
the input variables X = (x0, . . . , xn−1) if and only if the following equation holds for all

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 9

possible values γ = (γ0, . . . , γn−1) of the input variables X = (x0, . . . , xn−1),

P (f2l(.) = 0, f2l+1(.) = 0|X = γ)
+P (f2l(.) = 1, f2l+1(.) = 1|X = γ)
= αl

where γi ∈ [0, 1] and αl is a constant.

Proof. The proof can be found in Appendix.

3.1.3 A general search procedure

Based on the analysis in Subsubsection 3.1.2, our first-order glitch-extended probing secure
TI scheme of y = f(x0, . . . , xn−1) should satisfy the following two conditions:

1. P (f2i(.) = 0, f2i+1(.) = 0) + P (f2i(.) = 1, f2i(.) = 1) = αi for all possible values of
input variables (x0, . . . , xn−1), where i ∈ [0, 1].

2. The functions f0(.) + f1(.) and f2(.) + f3(.) follow the uniform distribution, respec-
tively.

Performing an exhaustive search for finding TI schemes that satisfy the two conditions
mentioned above for y = f(x0, . . . , xn−1) is a computationally demanding task. Therefore,
we develop a general search procedure, which is inspired by the method in [SM21].

Since there are many choices for the basis of each sub-field, the coordinate function
y = f(x0, . . . , xn−1) may have a non-zero constant term f(0, . . . , 0). Our search procedure
only takes the constant-free function y = f(x0, . . . , xn−1) into account. If the target func-
tion y = f(x0, . . . , xn−1) + f(0, . . . , 0) is not constant-free, the first-order glitch-extended
probing secure TI scheme of y = f(x0, . . . , xn−1) + f(0, . . . , 0) can be obtained by adding
the non-zero constant term f(0, . . . , 0) to a component function fi(.) of the constant-free
function y = f(x0, . . . , xn−1).

Let the four component functions of the constant-free function y = f(x0, . . . , xn−1) be
f0≤i≤3(.). Then, achieving a first-order secure TI scheme in the glitch-extended probing
model for y = f(x0, . . . , xn−1), can be obtained following the five steps below:

1. Determine the assignment of two shares xi
0 and xi

1 (for each input variable xi) to
the component functions f0≤i≤3(.) with these three methods in Table 1. Selecting
an appropriate assignment for each input variable xi is of crucial importance in
this context, for the purpose of filtering out unsatisfactory outcomes. For instance,
using the first method to assign the two shares xi

0 and xi
1 of each input variable

xi to the component functions f0≤i≤3(.) for the quadratic coordinate function y =
f(x0, x1) = x0x1, one obtains the four component functions f0(x0

0, x1
0), f1(x0

0, x1
0),

f2(x0
1, x1

1), and f3(x0
1, x1

1), which do not involve the shared terms x0
0x1

1 and x0
1x1

0.

2. Generate the sets Fi, whose each element is the Algebraic Normal Form(ANF) of
a candidate component function fi(.). By replacing any quadratic term xixj of the
original function f(.) with the input shares (xi

0 + xi
1), and (xj

0 + xj
1), four quadratic

terms: xi
0xj

0, xi
0xj

1, xi
1xj

0 and xi
1xj

1 are created. These terms are then suitably
assigned to the four component functions f0≤i≤3(.), respectively. Notice that an
improper arrangement of these terms may imply that some component functions
fi(.) does not fulfill the d-th order non-completeness property of TI. Consequently,
the quadratic terms in the ANF of each component function fi(.) are the same as
that of the original function f(.). Therefore, the set Fi contains ANFs of all possible
constant-free quadratic functions that have the same quadratic terms as the original
function f(.).

10Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

3. Having specified the sets Fi, a search for suitable tuples in F0 × F1 that satisfy a)
P (f0(.) = 0, f1(.) = 0) + P (f0(.) = 1, f1(.) = 1) = α0 for all possible values of input
variables (x0, . . . , xn−1) and additionally that b) their XOR is a balanced function
is then conducted. Those tuples that fulfill both conditions are added to the set
F0,1. Note that the complexity of this search process is 22n.

4. Similarly, a search for tuples in F2 × F3 which satisfy a) P (f2(.) = 0, f3(.) = 0) +
P (f2(.) = 1, f3(.) = 1) = α1 for all possible values of input variables (x0, . . . , xn−1)
and b) their XOR is a balanced function is performed. The suitable tuples are added
to the set F2,3 and the complexity of this search process is also 22n.

5. Finally, we search for tuples in F0,1 × F2,3 that fulfill the correctness property of
TI, so that f0(.) + f1(.) + f2(.) + f3(.) = f(.). Only those tuples that satisfy this
condition will be added to the set F0,1,2,3.

The search algorithm is specified in Algorithm Algorithm 1.

Algorithm 1 Search the first-order glitch-extended probing secure TI scheme for the
quadratic single-output Boolean function y = f(x0, . . . , xn−1) with 2 shares
Input: y = f(x0, . . . , xn−1) ▷ target function
Output: F0,1,2,3 : {f0(.), f1(.), f2(.), f3(.)} ▷ component function

1: for i ∈ {0, 1, 2, 3} do
2: for j ∈ {0, . . . , n− 1} do
3: determine fi(.) receive the share xj

0 or xj
1 ▷ Non-completeness

4: end for
5: end for
6: for i ∈ {0, 1, 2, 3} do
7: Fi ← ∀fi(.) : F n

2 → F2 ▷ fi(.) has same quadratic terms in ANF as f(.)
8: end for
9: for i ∈ {0, 1} do

10: F2i,2i+1 ← ∅
11: for (f2i(.), f2i+1(.)) ∈ F2i ×F2i+1 do
12: if ∃ αi, ∀(x0, . . . , xn−1): P (f2i(.) = 0, f2i+1(.) = 0) + P (f2i(.) = 1, f2i+1(.) =

1) = αi then ▷ Proposition 1
13: if f2i(.) + f2i+1(.) is balanced function then ▷ Uniformity
14: F2i,2i+1 ← F2i,2i+1 ∪ (f2i(.), f2i+1(.))
15: end if
16: end if
17: end for
18: end for
19: F0,1,2,3 ← ∅
20: for ((f0, f1), (f2, f3)) ∈ F0,1 ×F2,3 do
21: if ∀(x0, . . . , xn−1): (f0(.) + f1(.) + f2(.) + f3(.) = f(x0, . . . , xn−1)) then ▷

Correctness
22: F0,1,2,3 ← F0,1,2,3 ∪ (f0(.), f1(.), f2(.), f3(.))
23: end if
24: end for

3.2 Extension to multi-output Boolean functions
3.2.1 Masking structure

In this section, relevant mappings over GF (24) are considered to be 8-bit to 4-bit quadratic
functions, whereas over GF (22) these mappings are 4-bit to 2-bit quadratic functions.

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 11

More precisely, our objective is to specify suitable quadratic multi-output Boolean func-
tions F (.) = (f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)), where n = 8, m = 4 or n = 4,
m = 2.

For each coordinate function f i(x0, . . . , xn−1) of F (.), with i = 0, . . . , m−1, Algorithm
Algorithm 1 can be used to conduct a search for secure first-order TI schemes. A TI scheme
that uses m coordinate functions of F is shown in Figure 3. Here, f i

j(.) represents the

(x0
0, x1

0)

(x0
1
, x1

1
)

(x0
n-1

, x1
n-1

)

rm-1

rm-1

f0
m-1

f1
m-1

f2
m-1

f3
m-1

y'
m-1,0

y'
m-1,1

y'
m-1,2

y'
m-1,3

ym-1,0

ym-1,1

r0

y'
0,0

y0,0

f0
0

f1
0

r0

f2
0

f3
0

y'
0,1

y0,1

y'
0,2

y'
0,3

Figure 3: The structure of our first-order TI scheme for a quadratic function F (.) with 2
shares

j-th component function of the i-th coordinate function f i(.), where i ∈ [0, m − 1] and
j ∈ [0, 3]. y

′

i,j corresponds to XOR-ing the component function f i
j(.) and the random

number ri. Similarly, yi,k represents the k-th output share of the i-th coordinate function
f i(.), where k ∈ [0, 1].

3.2.2 Security analysis

Because the output shares of F (.) are not stored in registers, we need to analyze whether
the TI schemes of coordinate functions satisfy the security criteria when these outputs are
combined together. In the glitch-extended probing model, we assume that the attacker
probes the output of a combinational gate of subsequent function, e.g. the gate z in
Figure 4. More precisely, the information about the outputs of f i

2k(.)+ri and f i
2k+1(.)+ri

(the coordinate function f i(.)) can be retrieved, where the output share yi,k is associated
with the probed gate, e.g. the gate x

′

0, x
′

1, y
′

0, y
′

1 in Figure 4. However, Algorithm
Algorithm 1 can ensure that the joint outputs of the functions f i

2k(.) + ri, f i
2k+1(.) + ri

of each coordinate function f i(.) are glitch-extended probing secure, e.g. the gates (x′

0,
x

′

1), (y′

0, y
′

1) in Figure 4, respectively. Due to the special way of adding random numbers
r0≤i≤m−1, it is not certain that the union of these functions f i

2k(.) + ri, f i
2k+1(.) + ri (0 ≤

i ≤ m−1), satisfy the security criteria related to this model, e.g. the gates (x′

0, x
′

1, y
′

0, y
′

1)
in Figure 4. In order to ensure that the TI schemes of the coordinate functions f0≤i≤m−1(.)
remain jointly secure against first-order SCA in the presence of glitches, we need to fulfill
the following requirement. More precisely, the joint outputs of arbitrary 2m functions

12Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

current function F next function G

y'
0

x0

x'
0

x1

x'
1

x'
2

x
'
3

y'
1

y0

f0
0

f1
0

f2
0

f3
0

f0
1

f1
1

y'
2

y'
3

y1
f2

1

f3
1

Combinational

 logic

z

Figure 4: Effect of probing the output of a combinational logic in the glitch-extended
probing model [SM21]

f0
2j0

(.)+ r0, f0
2j0+1(.)+ r0, . . . , fm−1

2jm−1
(.)+ rm−1, fm−1

2jm−1+1(.)+ rm−1 (j0, . . . , jm−1 ∈ [0, 1])
should be independent of the input variables (x0, . . . , xn−1), which can be ensured using
Proposition 2. Moreover, since the output shares of the considered function F (.) will act
as the input shares of the following shared function, it is necessary that these output
shares follow a uniform distribution jointly.

Proposition 2. For masking a quadratic function F (.) : F n
2 → F m

2 with 2 shares,
where the TI scheme of each coordinate function f i(.) is obtained with Algorithm Al-
gorithm 1, the joint outputs for arbitrary 2m functions f0

2j0
(.) + r0, f0

2j0+1(.) + r0, . . . ,
fm−1

2jm−1
(.) + rm−1, fm−1

2jm−1+1(.) + rm−1 (j0, . . . , jm−1 ∈ [0, 1]) are independent of the input
variables X = (x0, . . . , xn−1) if and only if for each (λ0

2j0
, λ0

2j0+1, . . . , λm−1
2jm−1

, λm−1
2jm−1+1)

the following equation holds for all possible values γ = (γ0, . . . , γn−1) of the input variables
X = (x0, . . . , xn−1),

P (
m−1∩
t=0

1∩
s=0

f t
2jt+s(.) + rt = λt

2jt+s|X = γ)

= α
j0,...,jm−1

λ0
2j0

,λ0
2j0+1,...,λm−1

2jm−1
,λm−1

2jm−1+1

where λi
2ji
∈ [0, 1], λi

2ji+1 ∈ [0, 1], α
j0,...,jm−1

λ0
2j0

,λ0
2j0+1,...,λm−1

2jm−1
,λm−1

2jm−1+1
is a constant.

Remark. The proof of Proposition 2 follows from the security requirements of the
glitch-extended probing model and can be viewed as a generalization of Proposition 1.

3.2.3 A general search procedure

Based on the above analysis, the individual TI schemes of m coordinate functions (ob-
tained using Algorithm Algorithm 1) has first-order glitch-extended probing security and
additionally the following two conditions must be fulfilled:

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 13

1. For each (j0, . . . , jm−1)3, the joint outputs of 2m functions f0
2j0

(.)+r0, f0
2j0+1(.)+r0,

. . . , fm−1
2jm−1

(.)+rm−1, fm−1
2jm−1+1(.)+rm−1 should be independent of the input variables

(x0, . . . , xn−1).

2. The output shares should jointly follow a uniform distribution.

Let F i be a set containing the first-order TI schemes of each coordinate function f i(.).
The most challenging task is to identify a suitable candidate from each F i (one for each
coordinate function) that fulfill the above two conditions. Since the number of possibilities
is very large, we propose a general search procedure (as shown in Algorithm Algorithm 2)
for finding suitable TI schemes (in general there might exist many solutions). This search
is performed by incrementing a set of suitable candidates, thus we first identify a pair of TI
schemes for the first and second coordinate functions f0(.), f1(.) that satisfies the above
two conditions (this corresponds to the lines 7 − 8 of Algorithm Algorithm 2). Then, a
search for the third coordinate function f2(.) is performed the TI schemes of f0(.), f1(.),
f2(.) satisfy the above two conditions, and so on. Moreover, we additionally need to
ensure that these TI schemes jointly follow a uniform distribution, which is implemented
at line 9 of Algorithm Algorithm 2.

Algorithm 2 Search a first-order glitch-extended probing secure TI scheme for quadratic
multi-output Boolean function F : F n

2 → F m
2 with 2 shares

Input: F0, . . . ,Fm−1 ▷ TI schemes set for each coordinate function f i(.)
Output: F (.) : (f0

∗ , . . . , fm−1
∗), f i

∗ = {f i
0(.), f i

1(.), f i
2(.), f i

3(.)} ▷ TI scheme of target
quadratic function F (.)

1: for i = 0 to m− 1 do
2: for f i(.) ∈ F i do
3: f i

∗ ← f i(.)
4: F i ← F i − f i(.)
5: if i = 0 then
6: break
7: else if ∀(j0, . . . , ji), ∃αj0,...,ji

λ0
2j0

,λ0
2j0+1,...,λi

2ji
,λi

2ji+1
, ∀(x0, . . . , xn−1), ∀ (λ0

2j0
, λ0

2j0+1,

. . . , λi
2ji

, λi
2ji+1):

8: P

(
i∩

t=0

1∩
s=0

f t
2jt+s(.) + rt = λt

2jt+s

)
= αj0,...,ji

λ0
2j0

,λ0
2j0+1,...,λi

2ji
,λi

2ji+1
then ▷ Proposition 2

9: if (f0
0 (.) + f0

1 (.), . . . , f i
0(.) + f i

1(.)) is jointly uniform then ▷ Uniformity
10: break
11: end if
12: end if
13: if F i = ∅ then
14: i = i− 1
15: end if
16: end for
17: end for

3.3 TI scheme of S-box
Since our first-order TI scheme of each operation is not a composable gadget, we now
present solutions for combining the TI schemes of different operations in the S-box. Be-
cause of space limitations, we uploaded the specific masking expressions of each operation
to the GitHub.

3There are in total 2m possible cases.

https://github.com/GitHub-lancel/AESTIScheme.git

14Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

Square-scale-multiplier over GF (24): Applying Algorithm Algorithm 1 to each coordi-
nate function f i(.) leads to millions of first-order secure and uniform TI schemes (denoted
as F i). Then, to specify a TI scheme for the square-scale-multiplier over GF (24), Al-
gorithm Algorithm 2 is applied for identifying suitable TI schemes in the sets F0≤i≤3

(one for each coordinate function), which jointly follow a uniform distribution (added the
random bits r0≤j≤3). Several different quadruples of TI schemes that satisfy the security
criteria have been found by Algorithm Algorithm 2. We mention that multi-threading
technology has been employed to shorten the search time.

Square-scale-multiplier over GF (22): We can apply Algorithm Algorithm 1 and Algo-
rithm 2 to specify 917503 combinations (referred as F0,1) for this operation. Based on the
block diagram in Figure 1, as its input variables, the multipliers over GF (22) receive the
outputs of square-scale-multiplier over GF (22) as well as either 2-bit MSB P or 2-bit LSB
Q of the square-scale-multiplier over GF (24)’s outputs. Thus, output shares of the square-
scale-multiplier over GF (22) should be jointly-uniform with the square-scale-multiplier
over GF (24)’s output shares to ensure the uniform masking for the input variables of the
multipliers over GF (22). However, this is not covered by Algorithm Algorithm 1 and
Algorithm 2, and therefore 4-bit fresh random numbers R0≤i≤3 are added. Let F (.) be an

element of the set F0,1. Thus, F0(.) =
{

(f0
0 (.) + r4, f0

1 (.) + r4, f0
2 (.) + r4, f0

3 (.) + r4)
(f1

0 (.) + r5, f1
1 (.) + r5, f1

2 (.) + r5, f1
3 (.) + r5)

and F1(.) =
{

(f0
0 (.) + r6, f0

1 (.) + r6, f0
2 (.) + r6, f0

3 (.) + r6)
(f1

0 (.) + r7, f1
1 (.) + r7, f1

2 (.) + r7, f1
3 (.) + r7) are two glitch-extended prob-

ing secure and jointly-uniform TI schemes for the square-scale-multiplier over GF (22). We
have re-masked the functions f0

0 (.) + r4, f0
2 (.) + r4 of the first coordinate function f0(.)

with the fresh random number R0 and the functions f1
0 (.) + r5, f1

2 (.) + r5 of the second
coordinate function f1(.) with the fresh random number R1. The TI scheme F

′
0(.) after

re-masking F0(.) with the random numbers R0, R1 is shown on Equation 3.

y
′

0,0 = f0
0 (.) + r4 + R0

y
′

0,1 = f0
1 (.) + r4 y

′

0,0 + y
′

0,1 = y0,0

y
′

0,2 = f0
2 (.) + r4 + R0 y

′

0,2 + y
′

0,3 = y0,1
y

′

0,3 = f0
3 (.) + r4

y
′

1,0 = f1
0 (.) + r5 + R1

y
′

1,1 = f1
1 (.) + r5 y

′

1,0 + y
′

1,1 = y1,0

y
′

1,2 = f1
2 (.) + r5 + R1 y

′

1,2 + y
′

1,3 = y1,1
y

′

1,3 = f1
3 (.) + r5

(3)

Using this approach, the output shares of the TI scheme F
′
0(.) and the output shares of

the square-scale-multiplier over GF (24) are jointly-uniform. Similarly, another TI scheme
F

′
1(.) after re-masking F1(.) with the random numbers R2, R3 is shown on Equation 4.

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 15

The input variables of multiplier1 over GF (22) are then uniformly shared.

z
′

0,0 = f0
0 (.) + r6 + R2

z
′

0,1 = f0
1 (.) + r6 z

′

0,0 + z
′

0,1 = z0,0

z
′

0,2 = f0
2 (.) + r6 + R2 z

′

0,2 + z
′

0,3 = z0,1
z

′

0,3 = f0
3 (.) + r6

z
′

1,0 = f1
0 (.) + r7 + R3

z
′

1,1 = f1
1 (.) + r7 z

′

1,0 + z
′

1,1 = z1,0

z
′

1,2 = f1
2 (.) + r7 + R3 z

′

1,2 + z
′

1,3 = z1,1
z

′

1,3 = f1
3 (.) + r7

(4)

Multiplier over GF (22): There are 917503 possibilities of specifying the multiplier over
GF (22) using Algorithm Algorithm 2. The 2-bit fresh random numbers required for the
TI schemes of the multiplier0 and multiplier1 over GF (22) are denoted by r8, r9 and r10,
r11, respectively. As the cascade of output shares of the multiplier0 and multiplier1 over
GF (22) serves as the input shares of the multipliers over GF (24), they should follow a
jointly-uniform distribution. On the other hand, based on the block diagram in Figure 1,
joint uniformity between the cascade of output shares of the multiplier0, multiplier1 over
GF (22) and the output shares of the linear map operation should be preserved, in or-
der to make the input variables of two multipliers over GF (24) uniformly shared. Let
(a, b, c, d) be the 4-bit input variables of the multipliers over GF (22), where (a, b) denotes
the output of square-scale-multiplier over GF (24) and (c, d) denotes the output of square-
scale-multiplier over GF (22). The shares of (a, b) depend on the output shares of the linear
map operation, whereas the shares of (c, d) are independent of the output shares of the
linear map operation because of the re-masking operation with the four random numbers
R0≤i≤3 in Equation 3 and Equation 4. Therefore, we search for a particular implementa-
tion of a multiplier over GF (22) among 917503 plausible candidates, such that its output
shares are independent of the shares of input variables (a, b), which essentially implies that
it only depends on the shares of input variables (c, d). Since the shares of input variables
(c, d) of the multiplier0 over GF (22) are re-masked with the random numbers R0, R1 and
that of the multiplier1 over GF (22) are re-masked with the random numbers R2, R3, the
cascade of output shares of the multiplier0 and multiplier1 over GF (22) jointly follow a
uniform distribution. In addition, the cascade of output shares of the multiplier0 and
multiplier1 over GF (22) is independent of the output shares of the linear map operation,
ensuring that the multipliers over GF (24)’s input variables are uniformly shared.

Multiplier over GF (24): We have found several suitable implementations of multipliers
over GF (24) with Algorithm Algorithm 1 and Algorithm 2. The 4-bit fresh random
numbers required for the TI schemes of the multiplier0 and multiplier1 over GF (24) are
denoted as r12≤j≤15 and r16≤j≤19, respectively. Since both multiplier0 and multiplier1
over GF (24) receive the outputs from the same operation (namely the cascaded output
of the multiplier0 and multiplier1 over GF (22)), the output shares of multiplier0 over
GF (24) are not necessarily jointly-uniform with the shares of multiplier1 over GF (24).
We therefore search for a suitable combination for the multiplier over GF (24) within our
pool of candidates, such that the output shares of multipliers over GF (24) are independent
of its input shares that come from the multipliers over GF (22). If this is satisfied, the
output shares of multiplier0 and multiplier1 over GF (24) are jointly-uniform. Notice that
Algorithm Algorithm 2 cannot guarantee the combined glitch security of multiplier0 and
multiplier1 over GF (24) if the output shares of both operations are not stored in registers.
Hence, we should store the output shares of the multiplier0 and multiplier1 over GF (24)
in registers to prevent the propagation of glitches.

16Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

Employing the changing of the guards technique. A shared S-box requires 24-bit fresh
random numbers R0≤i≤3, r0≤j≤19, as discussed above, to guarantee its first-order security.
Unlike regular applications of the changing of the guards method, to protect a specific
S-box, we use an 8-bit input share of another shared S-box as guards for specifying the 20-
bit random numbers r0≤j≤19. Let us denote the guards as two nibbles (Pguards, Qguards).
Based on Figure 5, Qguards (as shown Stage 2) is used to replace the 4-bit fresh random
numbers r0≤j≤3 for the square-scale-multiplier over GF (24). Pguards (as shown in Stage
3) is used to replace the 4-bit fresh random numbers r4≤j≤7 for the square-scale-multiplier
over GF (22). The purpose of the fresh random numbers R0≤i≤3, as shown in Stage 3, is to
re-mask the output shares of square-scale-multiplier over GF (22), ensuring that the input
variables of the multiplier over GF (22) are uniformly shared. The input/output shares of
the multipliers over GF (22) and GF (24), respectively, are statistically dependent on these
4-bit fresh random numbers. It is worth of mentioning, that if the input shares of other
shared S-boxes are used as guards instead of these 4-bit random numbers, the output
shares of this shared S-box and of the other S-box under consideration do not necessarily
jointly follow a uniform distribution, which then affects the security of the operation
MixColumns. Therefore, we employ a PRNG (pseudo random number generator) to
generate these these 4-bit random numbers. Notice also that the nibble guards Qguards of
the square-scale-multiplier over GF (24) are removed by XOR operation in the compression
layer. So we can reuse the Qguards as a new guard to replace the fresh random numbers
r8≤j≤11 of the multiplier over GF (22), as shown Stage 4. The 4-bit input shares (from
the linear map operation, denoted by S in Figure 5) of the multiplier1 over GF (24), are
independent of the input shares of multiplier0 over GF (24), and therefore can be used as
4-bit guards to replace the 4-bit random number r12≤j≤15, and vice versa. To summarize,
each shared S-box only requires 4-bit fresh random numbers R0≤i≤3 to achieve the first-
order glitch-extended probing security.

4 bits

2 bits

8 bits

Stage 5Stage 1

GF(24)

Square-Scale-Multiplier

GF(24)

Multiplier1

GF(24)

Multiplier0

Linear Map
GF(22)

Square-Scale-Multiplier

Stage 2 Stage 3 Stage 4 Stage 6

8-bit

guards

4-bit LSB

Qguards

Qguards

4-bit MSB

Pguards GF(22)

Multiplier0

GF(22)

Multiplier1

R
0

R
1

R
R

2
R

3
R

3
R

R

S

Figure 5: A single S-box implementation of the shared inversion over GF (28) with 2 shares

4 IMPLEMENTATION AND ARCHITECTURE
In this section, we introduce two implementation structures for our shared AES based on
single S-box and double S-boxes on hardware circuits.

4.1 A single S-box implementation of our TI scheme for AES
Similarly to the works in [MPL+11, BGN+14, DRB+16, GMK16], we implement our
shared AES as a serialization of different operations. An overview of the data path,
for a single S-box implementation of AES, is depicted in Figure 6. It consists of three
main modules, that is, Key Register module, State Register module and GF (28) inversion
module.

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 17

State Registers
GF(28) Inverter

S2 S6 S10 S14

S3 S7 S11 S15

S1 S5 S9 S13

S0

MUX3

OA

OA

OA

OA

MC

M
U

X
1

K14 K10 K6 K2

K15 K11 K7 K3

K13 K9 K5 K1

K12 K8 K4 K0

Key Registers

MUX2

Rcon

MUX4

Guards

MUX5

Key

Plaintext

Cipher

MUX6

OA

reg

S4 S8 S12

M
U

X
7

8 bits

OA

Figure 6: Hardware implementation for our shared AES based on single S-box

In this case, the encryption process of a plaintext block requires 236 clock cycles,
and this process can be divided into two phases. In the first phase, the plaintext and
keys are loaded during the first 16 clock cycles. Then, in the second phase, 10 shared
round functions are executed from the 17th to the 236th clock cycle, using 22 clock
cycles for implementing the operations in each round . Each (shared) round function
executes two different operations, namely the encryption and key expansion schedule.
More specifically, the first 16 clock cycles are used to perform the inversion over GF (28) for
each plaintext byte, whereas four clock cycles (from 17th to 20th) are used for computing
the inverse over GF (28) of the last four key bytes. Then, the 22nd clock cycle is used for
the ShiftRows operation, which is not shown in Figure 6 for the sake of simplicity. Since the
output isomorphism, affine transformation, MixColumns (MC for short in Figure 6) and
AddRoundKey are linear operations, they can be performed with a combinational logic in
the first 16 clock cycles of the next shared round function. Note that we store the output
shares of the multiplier1 and multiplier2 over GF (24) in either State Registers module
or some extra registers (reg in Figure 6) before the OA(.) to prevent the propagation
of glitches. Moreover, for ease of implementation, we perform the ShiftRows operation
before performing the OA(.).

4.2 A double S-box implementation of our TI scheme for AES
According to Subsection 3.3, each S-box needs an 8-bit input share of another S-box as
guards to ensure its glitch-extended probing security. On the other hand, implementing
two adjacent S-boxes as a single unit can be quite beneficial in terms of a reduced chip
area for storing guards in the GF (28) inverter module and lower latency of the cipher. In
this section, we briefly discuss a double S-box implementation of the shared AES, which
is illustrated in Figure 7.

The proposed double S-box implementation of AES requires only 148 clock cycles to
encrypt a single plaintext block . Initially, before the encryption process has started, two
shares of the i-th (i ∈ [0, 7]) portion of the plaintext block (consisting of two bytes, half-
word) and of the key are, respectively, stored in the cells (S2i, S2i+1) and (K2i, K2i+1)
in Figure 7, which takes 8 clock cycles. Then, 10 shared round functions are executed
during the next 140 clock cycles (14 clock cycles per round are needed). For a shared
round function, the first 8 clock cycles are used to perform the GF (28) inversion for

18Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

MC

S1

S0

S3

S2

S5

S4

S7

S6

S9

S8

S11

S10

S13

S12

S15

S14

OA

OA

M
U

X
1

OA

OA MUX3

K9

K8

K11

K10

K5

K4

K7

K6

K1

K0

K3

K2

MUX4

reg

OA OA

Rcon

MUX2

Cipher

M
U

X
5

GF(28) Inverter

GF(28) Inverter

State Registers Key Registers

K13

K12

K15

K14

16 bitsPlaintext

MUX6

Key

OA OA

Figure 7: Hardware implementation for our shared AES based on double S-boxes

each intermediate data half-word (the implementation structure is shown in Figure 8),
the 9th and 10th clock cycles are used to perform the GF (28) inversion for two key
half-words (K13, K14) and (K15, K12), and the 14th clock cycle is used to execute the
ShiftRows operation. The output isomorphism, affine transformation, MixColumns, and

4 bits

2 bits

8 bits

Stage 5Stage 1

GF(24)

Square-Scale-Multiplier

GF(24)

Multiplier1

GF(24)

Multiplier0

Linear Map
GF(22)

Square-Scale-Multiplier

Stage 2 Stage 3 Stage 4 Stage 6

GF(22)

Multiplier0

GF(22)

Multiplier1

R
0

R
1

R
R

2
R

3
R

3
R

GF(24)

Square-Scale-Multiplier

GF(24)

Multiplier1

GF(24)

Multiplier0

Linear Map
GF(22)

Square-Scale-Multiplier

GF(22)

Multiplier0

GF(22)

Multiplier1

R
4

R
5

R
5

R
R

6
R

7
R

7
R

Q
b

guards

4-bit MSB

4-bit LSB

4-bit MSB

4-bit LSB

Q
a

guards P
a

guards

P
b

guards

Q
b

guards

Q
a

guards

Figure 8: Our construction for the shared inversion over GF (28) with 2-share based on
double S-boxes

AddRoundKey operations are performed using combinational logic during the first 8 clock
cycles of the next shared round function.

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 19

5 SCA Evaluation and Implementation Cost
This section presents a comprehensive evaluation of the proposed shared AES in the
glitch-extended probing model, with a focus on its first-order security.

5.1 GF (28) Inverter Module Verification Using SILVER
We used the tool SILVER to verify the security of GF (28) inverter module based on single
S-box (Figure 5) and double S-boxes (Figure 8). Synopsys Design Compiler with NanGate
45nm ASIC standard cell library to synthesize these designs and generate their gate-level
netlists. We disabled any optimization within and across different modules in the process
of synthesis to maintain the non-completeness property of TI.

For the GF (28) inverter module based on single S-box, we configured the 8-bit guards
and 4-bit random number as fresh random numbers. The verification process took about
42 minutes on a machine with 32 CPU cores and 128 GB of RAM. The evaluation re-
sults show that this module provides a first-order glitch-extended probing security and
furthermore its output shares are jointly uniform, as shown in Figure 9(a).

However, SILVER is unable to directly handle the entire GF (28) inverter module
when double S-box implementation is considered, due to the impractical computational
complexities caused by high number of individual statistical test. Therefore, this module
is divided into two parts. The first part encompasses all operations from the input shares
of double S-boxes to the output shares of the multiplier over GF (22), as shown Stages 1−4
in Figure 8. We configured the 8-bit random number as fresh random numbers, and then
verified the first-order glitch-extend probing security of this part. The verification process
took about 1596 minutes on the same machine and the simulation results, as shown in
Figure 9(b), show that the first-order glitch-extended probing security is attained for this
part.

The second part encompasses four multipliers over GF (24), as shown in Stages 5, 6 in
Figure 8. We first verified the joint uniformity of the input shares of the four multipliers
over GF (24), using the C programming language. Specifically, we have considered all
possible values of the input shares for the double S-boxes, and verified that the union of
input variables for the four multipliers over GF (24) has a uniform sharing. The compu-
tational complexity for this verification is 240, and therefore we adopted multi-threading
technology to shorten the verification time. The verification result shows that the input
shares of the four multipliers over GF (24) have joint uniformity. In this case, the two mul-
tipliers over GF (24) of the top S-box in Figure 8 are unrelated to the two multipliers over
GF (24) of the bottom S-box in Figure 8. Finally, the glitch-extended probing security and
joint uniformity of the output shares of the multipliers over GF (24) had to be confirmed
for individual S-boxes, which was validated in the case of single S-box implementation.
The full verification code including the Verilog representation of the shared inversion over
GF (28) (for both the single and double S-box implementation) and the corresponding C
Code mentioned above are given in the GitHub.

5.2 Round Security Analysis
For the security of round function, we should consider two aspects, namely uniformity
and glitch-extended probing security.

1. Uniformity: The linear operations (MixColumns, ShiftRows, AddRoundKey) do
not affect uniformity, so the uniformity of the round function depends on the unifor-
mity of the masked S-box and the input uniformity of the MixColumns operation. In
Subsection 5.1, we have verified the uniformity of the masked S-box using SILVER
and our C Code. The guards of each S-box are XORed at the compression layer, so

https://github.com/GitHub-lancel/AESTIScheme.git

20Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

(a) Single S-box construction

(b) Double S-box implementation without the multipliers over GF (24)

Figure 9: Evaluation results for GF (28) inverter module using single and double S-box
implementation with SILVER

the outputs of ech S-box are independent. Since the outputs of each S-box satisfies
uniformity, the outputs of different S-boxes satisfy joint uniformity. This ensures
the inputs of MixColumns are uniformly shared.

2. Glitch-extended probing security: If the probe is placed in the masked S-box,
the securiry comes from the first-order probing security of the S-box itself which was
verifired by SILVER in Subsection 5.1. If the probe is placed in the linear operations,
it is evidently secure because these operations work share-wise.

5.3 TVLA Evaluation
SILVER has limitations in evaluating the security of large-scale circuits, such as the full
AES circuit. As a supplement, we conduct a security assessment of our shared full AES
hardware implementations (Figure 6 and Figure 7) on the Sakura_G board.

5.3.1 Experimental setup

We implemented our fully-pipelined shared AES encryption on the target Spartan-6 FPGA
of the Sakura_G board. We then monitored the voltage drop over a 1 ohm resistor placed
in the Vdd path of the target board using a digital oscilloscope, and measured the power
consumption traces. The sampling rate of digital oscilloscope was set to 500 MS/s, and the
FPGA was clocked at a frequency of 3 MHz. To ensure the security of our shared design,
we enabled the "keep_hierarchy" constraint during synthesis, which prevents Xilinx ISE
from optimizing over module boundaries.

5.3.2 Evaluation and Results

PRNG Off. We collected 5 million power consumption traces for two implementation
structures of our shared AES when the PRNG is inactive. A sample trace of each imple-
mentation structure is shown in Figure 10(a) and Figure 10(b), and each sample trace
covers 10 rounds of AES. Figure 11(a) and Figure 11(b) show the result of first-order
univariate TVLA applied on these two implementations, where the red line represents the
confidence threshold of ±4.5. The experimental results show that information leakage
surpasses the confidence threshold of ±4.5, which confirms that the experimental setup is
sound.

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 21

(a) Single S-box implementation (b) Double S-box implementation

Figure 10: Power trace of our shared AES implementation, PRNG inactive

(a) Single S-box implementation (b) Double S-box implementation

Figure 11: First-order TVLA of our shared AES implementation using 5 million traces,
PRNG inactive

PRNG on. We turned on the PRNG and collected 100 million power consumption
traces for these two implementation structures. A sample trace for each implementation
is shown in Figure 12(a) and Figure 12(b). Combining Figure 10(a) and Figure 10(b), we
discover that the power consumption traces of these two implementations are not affected
by the PRNG which therefore does not interfere with the evaluation results. We conducted
univariate TVLA to examine the first- and second-order security on the two sets of 100
million power consumption traces. As depicted in Figure 13(a) and Figure 13(b), neither
single nor double S-box implementation of shared AES based has information leakage.
However, as anticipated, both variants exhibit second-order information leakage, which is
evident from Figure 14(a) and Figure 14(b). Concludingly, our AES with shares achieves
first-order security when 100 million power consumption traces are analyzed.

(a) Single S-box implementation (b) Double S-box implementation

Figure 12: Power trace of our shared AES implementation using 100 million traces, PRNG
active

5.4 Implementation Cost
In this section, we provide a hardware performance analysis of our shared AES, focusing
on randomness, chip area, and latency. We estimated the area costs of the two hardware

22Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

(a) Single S-box implementation (b) Double S-box implementation

Figure 13: First-order TVLA of our shared AES implementation using 100 million traces,
PRNG active

(a) Single S-box implementation (b) Double S-boxes implementation

Figure 14: Second-order TVLA of our shared AES implementation using 100 million
traces, PRNG active

implementations of our shared AES using Synopsys Design Compiler with the UMC 180nm
standard cell library. We used a compile option to avoid any optimization across modules
for security reasons. To provide a comprehensive comparison, Table 2 shows full hardware
implementation costs of our shared AES and related state-of-the-art works (to the best
of our knowledge).

S-box Area. For each operation of our shared S-boxes, we searched for a first-order
TI scheme with as few terms as possible, but not exhaustively. In addition, (compared to
[SM21]), our shared S-boxes do not need to store output shares of each relevant operation.
Therefore, our shared single S-box structure (Figure 5) consumes 2.40 kGE chip area,
which is 14.8% smaller than the one using a single-bit fresh mask in [SM21] and 31.6%
smaller than another the scheme without fresh randomness in [SM21]. Compared to the
other methods in Table 2, only the implementation cost in [UHA17] is slightly smaller
than ours. On the other hand, our approach outperforms the other methods [MPL+11,
BGN+14, BGN+15, DRB+16, GMK16] (by at least 6.25% and at most 42.9%).

AES Area. Since the joint outputs of both single and double S-box implementation
are uniform, we can use combinatorial logic to perform the operations output isomorphism,
affine transformation, MixColumns and AddRoundKey within one clock cycle. Compared
to the implementation in [SM21], we removed the 64-bit registers used to store the out-
puts of β matrix (see [SM21] with saving of about 384 GE), two OA−1(.) modules (with
saving of about 65.67 GE). In short, our masked AES, with single S-box implementa-
tion, requires 6.15 kGE chip area. Compared to all works in Table 2, the chip area of
our masked AES (single S-box implementation) is slightly smaller than the construction
presented in [UHA17]. However, we cannot ignore the differences caused by different stan-
dard cell libraries, i.e., the GE values vary greatly across different standard cell libraries.
Compared to these works under the UMC 180nm standard cell library, our single S-box
implementation is the best among all the methods with (at least 13.4% and at most 46.8%
saving).

Clock cycles and randomness. Our shared AES based on single S-box requires 236

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 23

Table 2: Performance comparison of different first-order TI schemes of AES

Design Area S-box Pipeline Latency Randomness
[kGE]1 [kGE]1 phase2 [cycles] [bits]2

Standard-cell library: UMC 180nm
[BGN+15] 11.56 3.65 3 246 44
[MPL+11] 10.94 4.07 5 266 48
[BGN+14] 9.10 3.71 3 246 44
[BGN+15] 8.12 2.83 3 246 32
[SM21] 7.71 3.613 7 246 0
[GMK16] 7.60 2.80 5 216 28
[WM18] 7.604 4.20 16 2804 0
[SM21] 7.14 2.903 7 246 1
[GMK16] 7.10 2.60 8 246 18
Design15 6.15 2.40 6 236 4
Design26 8.41 4.73 6 148 8

Standard-cell library: NanGate 45nm
[Sug18] 17.10 3.50 4 266 0
[DRB+16] 6.68 1.9/2.563 6 276 54
[UHA17] 6.32 1.43/1.993 4 219 64
1 Using compile option.
2 Per S-box
3 Synthesized with authors’ implementation using UMC 180nm by ourselves.
4 Not include the area of the shared key schedule.
5 Our shared AES - single S-box strategy.
6 Our shared AES - double S-box strategy.

clock cycles to encrypt a block of plaintext, which is 9.26% more than that of [GMK16]
and 7.76% more than that of [UHA17]. However, the methods in [GMK16] and [UHA17]
require 24 and 60 extra bits of fresh randomness per S-box, respectively. Compared to
the other methods in Table 2, our single S-box implementation of shared AES achieves a
lower latency, since it needs at least 10 clock cycles less than other methods. In addition,
this TI scheme only requires 4 bits of fresh random number per S-box. Finally, our double
S-box hardware implementation is characterized by extremely low latency only 148 clock
cycles are needed for the entire encryption process.

6 Conclusions
In this work, we have introduced a method of constructing first-order glitch-extended
probing secure TI schemes for a quadratic function F (.) : F n

2 → F m
2 with 2 shares. Com-

pared to the state-of-the-art related works, the advantage of our approach is that 1) it is
suitable for quadratic functions F (.) : F n

2 → F m
2 , 2) randomness can be reused after one

clock cycle, and 3) it is very compatible with changing of the guards technology in order
to reduce the use of fresh randomness. We have applied this technique to design first-
order glitch-extended probing secure hardware implementations of AES. More precisely,
we have presented two hardware implementations of masked AES for two different appli-
cation scenarios, namely aiming at low hardware footprint and low latency, respectively.
The tables of comparison indicate that our TI schemes outperform state-of-the-art imple-
mentations with respect to area, latency, and fresh randomness. Moreover, our approach
can be applied to other cryptographic algorithms, such as Midori, PRESENT, PRINCE,
to name a few.

Apart from the above contributions, we would like to highlight that our approach can

24Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

potentially be extended to cubic functions assuming that there are more constraints on
component functions, which is an interesting topic for future research. Whether our TI
scheme for a quadratic function F (.) : F n

2 → F m
2 fulfill the security requirements of Non-

Interference (NI) [BBD+16], Probe-Isolating Non-Interference (PINI) [CS20] and Strong
Non-Interference (SNI) [BBD+16] also needs to be investigated further.

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl, Ste-
fan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. A more efficient AES threshold implementation. In David Pointcheval
and Damien Vergnaud, editors, AFRICACRYPT 14, volume 8469 of LNCS,
pages 267–284. Springer, Heidelberg, May 2014.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-offs for threshold implementations illustrated on AES. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 34, pages 1188–1200, 2015.

[Bil15] Begül Bilgin. Threshold implementations: as countermeasure against higher-
order differential power analysis. PhD thesis, University of Twente, Nether-
lands, May 2015.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg
Stütz. Threshold implementations of all 3×3 and 4×4 S-boxes. In Emmanuel
Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS,
pages 76–91. Springer, Heidelberg, September 2012.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently com-
posing masked gadgets with probe isolating non-interference. IEEE Transac-
tions on Information Forensics and Security, 15:2542–2555, 2020.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 137–153. Springer,
Heidelberg, September 2017.

[DNR19] Siemen Dhooghe, Svetla Nikova, and Vincent Rijmen. Threshold implemen-
tations in the robust probing model. Cryptology ePrint Archive, Report
2019/1005, 2019. https://eprint.iacr.org/2019/1005.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 194–212. Springer, Heidelberg, August 2016.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR TCHES, 2018(3):89–
120, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
7270.

https://eprint.iacr.org/2019/1005
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 25

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
Cryptology ePrint Archive, Report 2016/486, 2016. https://eprint.iacr.
org/2016/486.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112.
Springer, Heidelberg, February 2017.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the “duplication” method). In Çetin Kaya Koç and Christof Paar, editors,
CHES’99, volume 1717 of LNCS, pages 158–172. Springer, Heidelberg, August
1999.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–
397. Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO 1996, pages 104–
113, Springer, Heidelberg, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical in-
dependence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 787–816.
Springer, Heidelberg, December 2020.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 69–88. Springer, Heidelberg, May 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Josyula R. Rao and Berk
Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 157–171. Springer,
Heidelberg, August / September 2005.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages 529–
545. Springer, Heidelberg, December 2006.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In Isabelle Attali and Thomas
Jensen, editors, Smart Card Programming and Security, volume 2140 of LNCS,
pages 200–210, Berlin, Heidelberg, 2001.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
764–783. Springer, Heidelberg, August 2015.

https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2016/486

26Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order mask-
ing schemes. IACR TCHES, 2021(1):305–342, 2021. https://tches.iacr.
org/index.php/TCHES/article/view/8736.

[Sug18] Takeshi Sugawara. 3-share threshold implementation of AES S-box without
fresh randomness. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2019(1):123–145, 2018.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient DPA-
resistant AES hardware architecture based on threshold implementation. In
Sylvain Guilley, editor, COSADE 2017, volume 10348 of LNCS, pages 50–64.
Springer, Heidelberg, April 2017.

[WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without
fresh randomness. In Junfeng Fan and Benedikt Gierlichs, editors, COSADE
2018, volume 10815 of LNCS, pages 245–262. Springer, Heidelberg, April 2018.

https://tches.iacr.org/index.php/TCHES/article/view/8736
https://tches.iacr.org/index.php/TCHES/article/view/8736

Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou and Limin Fan 27

A The proof of Proposition 1
Proof. For each possible value γ = (γ0, . . . , γn−1) of the input varable X = (x0, . . . , xn−1),
we denote that the corresponding output values of the functions f2l(.) + r, f2l+1(.) + r by
λ0 and λ1 respectively, where λ0, λ1 ∈ [0, 1].
Necessity: The joint outputs of the functions f2l(.) + r, f2l+1(.) + r are independent of
input variables X.
⇒∀(λ0, λ1) and ∀γ,

P (f2l(.) + r = λ0, f2l+1(.) + r = λ1|X = γ)
= 0.5 · P (f2l(.) = λ0, f2l+1(.) = λ1|X = γ)

+0.5 · P (f2l(.) = λ̄0, f2l+1(.) = λ̄1|X = γ)
= αλ0,λ1

(5)

⇒∃(λ0, λ1) = (0, 0) and ∀γ,

P (f2l(.) + r = 0, f2l+1(.) + r = 0|X = γ)
= 0.5 · P (f2l(.) = 0, f2l+1(.) = 0|X = γ)

+0.5 · P (f2l(.) = 1, f2l+1(.) = 1|X = γ)
= α0,0

(6)

⇒∀γ,
P (f2l(.) = 0, f2l+1(.) = 0|X = γ)
+P (f2l(.) = 1, f2l+1(.) = 1|X = γ)

= 2α0,0
= αl

(7)

Sufficiency:
∀(λ0, λ1) and ∀γ,

P (f2l(.) + r = λ0, f2l+1(.) + r = λ1|X = γ)
= 0.5 · P (f2l(.) = λ0, f2l+1(.) = λ1|X = γ)

+0.5 · P (f2l(.) = λ̄0, f2l+1(.) = λ̄1|X = γ)
(8)

if (λ0, λ1) = (0, 0) and ∀γ, the Equation 8 can be written as

0.5 · P (f2l(.) = λ0, f2l+1(.) = λ1|X = γ)
+0.5 · P (f2l(.) = λ̄0, f2l+1(.) = λ̄1|X = γ)

= 0.5 · P (f2l(.) = 0, f2l+1(.) = 0|X = γ)
+0.5 · P (f2l(.) = 1, f2l+1(.) = 1|X = γ)

= 0.5 · αl

(9)

if (λ0, λ1) = (1, 1) and ∀γ, the Equation 8 can be written as:

0.5 · P (f2l(.) = λ0, f2l+1(.) = λ1|X = γ)
+0.5 · P (f2l(.) = λ̄0, f2l+1(.) = λ̄1|X = γ)

= 0.5 · P (f2l(.) = 1, f2l+1(.) = 1|X = γ)
+0.5 · P (f2l(.) = 0, f2l+1(.) = 0|X = γ)

= 0.5 · αl

(10)

From Equation 8, Equation 9, Equation 10, we conclude that ∀γ,

P (f2l(.) + r = 0, f2l+1(.) + r = 0|X = γ)
= P (f2l(.) + r = 1, f2l+1(.) + r = 1|X = γ)
= 0.5 · αl

(11)

The same holds for (λ0, λ1) = (0, 1) and (λ0, λ1) = (1, 0).

28Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model

Since
P (f2l(.) + r = 0, f2l+1(.) + r = 0|X = γ)
+P (f2l(.) + r = 1, f2l+1(.) + r = 1|X = γ)
+P (f2l(.) + r = 0, f2l+1(.) + r = 1|X = γ)
+P (f2l(.) + r = 1, f2l+1(.) + r = 0|X = γ)

= 1

(12)

holds, we conclude that ∀γ,

P (f2l(.) + r = 0, f2l+1(.) + r = 1|X = γ)
= P (f2l(.) + r = 1, f2l+1(.) + r = 0|X = γ)
= 0.5− αl

(13)

According to Equation 11, Equation 13, the joint outputs of the functions f2l(.) + r,
f2l+1(.) + r are independent of input variables X.

	Introduction
	Preliminaries
	Definitions and Notations
	S-box decomposition
	Threshold Implementation
	Changing of the Guards
	Masking with d+1 Shares

	Masking AES S-box with 2 shares
	Masking single-output Boolean functions
	Extension to multi-output Boolean functions
	TI scheme of S-box

	IMPLEMENTATION AND ARCHITECTURE
	A single S-box implementation of our TI scheme for AES
	A double S-box implementation of our TI scheme for AES

	SCA Evaluation and Implementation Cost
	GF(28) Inverter Module Verification Using SILVER
	Round Security Analysis
	TVLA Evaluation
	Implementation Cost

	Conclusions
	The proof of Proposition 1

