
A Novel Power-Sum PRG with

Applications to Lattice-Based zkSNARKs

Charanjit S. Jutla∗ Eamonn W. Postlethwaite† Arnab Roy‡

December 4, 2023

Abstract

zkSNARK is a cryptographic primitive that allows a prover to prove to a resource constrained
verifier, that it has indeed performed a specified non-deterministic computation correctly, while
hiding private witnesses. In this work we focus on lattice based zkSNARK, as this serves two im-
portant design goals. Firstly, we get post-quantum zkSNARK schemes with O(log(Circuit size))
sized proofs (without random oracles) and secondly, the easy verifier circuit allows further boot-
strapping by arbitrary (zk)SNARK schemes that offer additional or complementary properties.
However, this goal comes with considerable challenges. The only known lattice-based bilinear
maps are obtained using multi-linear maps of Garg, Gentry, and Halevi 2013 (GGH13), which
have undergone considerable cryptanalytic attacks, in particular annihilation attacks.

In this work, we propose a (level-2) GGH13-encoding based zkSNARK which we show to
be secure in the weak-multilinear map model of Miles-Sahai-Zhandry assuming a novel pseudo-
random generator (PRG). We argue that the new PRG assumption is plausible based on the
well-studied Newton’s identity on power-sum polynomials, as well as an analysis of hardness of
computing Grobner bases for these polynomials. The particular PRG is designed for efficient
implementation of the zkSNARK.

Technically, we leverage the 2-linear instantiation of the GGH13 graded encoding scheme to
provide us with an analogue of bilinear maps and adapt the Groth16 (Groth, Eurocrypt 2016)
protocol, although with considerable technical advances in design and proof. The protocol is
non-interactive in the CRS model.

Keywords— zero-knowledge, succinct proof, weak multilinear model, linear interactive proofs, elimination
theory, Grobner basis, Newton’s Identity.

∗IBM T. J. Watson Research Center, NY, USA
†CWI, Cryptology Group, Amsterdam, The Netherlands
‡Mysten Labs, CA, USA

1

Contents

1 Introduction 4

2 Preliminaries 5
2.1 Fields, Rings and Ideals . 6

2.1.1 Lattices. 6
2.1.2 Geometry and Ideal Lattices. 6
2.1.3 The Ideal and Field Norms. 7
2.1.4 Lattice Gaussians. 7

2.2 Arithmetic Circuits and Quadratic Arithmetic Programs (QAPs). 7
2.3 Verifiable Computation (VC). 8

3 The (Altered) GGH13 Multilinear Map 9
3.1 Graded Encoding Schemes . 9
3.2 Altered GGH13 Graded Encoding Scheme . 9

3.2.1 Instance Generation. 10
3.2.2 Encoding. 10
3.2.3 Addition, Negation, and Multiplication. 10
3.2.4 Zero Testing. 11

3.3 Parameters Selection . 11
3.4 Zeroizing and Annihilation Attacks on [GGH13] . 12

3.4.1 Miles-Sahai-Zhandry Attack Model . 13

4 A New Generic Model for Computing Annihilators 13
4.1 Direct Generic Method to Compute an Annihilator . 16

5 The Groth16 SNARK 16
5.1 Applicability (of Graded Encodings) to Groth16 SNARK . 17

5.1.1 QAPs over Extension Fields and Rp. 17
5.1.2 Altering CRS. 17

5.2 Pairings Based Annihilation Attack . 18

6 New Candidate Multivariate PRGs 19
6.1 Cryptanalysis . 19
6.2 Generic Annihilation of polynomials T ∗ and T . 20

6.2.1 Easy Annihilation of T ∗ . 20
6.2.2 Generic Annihilation of T is hard . 20

7 Enhanced Groth16 zkSNARK 21
7.1 Proof Sketch of Soundness . 23
7.2 Proof of Security against Annihilation Attacks . 27

7.2.1 Level Two Zeroes obtained from the CRS. 27
7.2.2 Formal expressions of coefficients of g in level-two zeroes 29

A Sum collision-free sets 35

B Additional Cryptanalysis 36
B.0.1 Lattice Reduction. 36
B.0.2 The (Short) Principal Ideal Problem. 36
B.0.3 Zeroizing Attacks. 37

B.1 Avoiding Zeros . 37
B.2 Alternative Zero Testing and Level κ̂ Zeros . 38

2

B.3 “Statistical” Zeroizing . 38

3

1 Introduction

Verifiable Computation (VC) protocols allow a computationally bounded client to outsource the computation
of an expensive function on some given inputs to a more powerful worker in such a way that provides
assurances about the validity of the outputs returned by the worker. Regardless of the method used to
provide these assurances, it should require less work on the part of some verifier to enact than to simply
evaluate the outsourced function on a given input.

Groth16 [Gro16] is a scheme that achieves, for certain tasks, this notion of efficiency on the part of a
verifier, as well as some attractive theoretical properties. In Groth16 the worker, given a function, and an
input and evaluation key for said function, supplies a proof of computation. The aforementioned attractive
properties include that Groth16 is public verifier, meaning any party in possession of public information
can verify such a proof of computation, and that the proof can be made zero knowledge, in the sense that
the verifier can verify the computation without learning anything about potential inputs of the worker. On
the asymptotic efficiency side, these properties include that the proof of computation has constant size,
regardless of the function, that the setup cost is linear in the cost of evaluating the function (so that the
client may amortize this over many inputs given to the worker), and that verification has cost linear in the
number of inputs and outputs of the function.

The Groth16 proofs themselves rely on a characterization of NP called Quadratic Arithmetic Programs
(QAP) [GGPR12], and on encoding these using bilinear maps. From a technical standpoint, the assumption
on which Groth16 bases its security (which roughly equates to the worker not being able to create a proof that
passes verification for an incorrect output) is a generic bilinear group model, which is stronger than discrete
log type assumptions on elliptic curve groups. However, discrete log type assumptions are susceptible to
polynomial time quantum attacks. A natural question then arises – can a similar scheme to Groth16 be built
that relies on hard problems that are currently conjectured to be post-quantum? One way to answer this in
the affirmative would be to build a similar scheme from something approximating a bilinear map based on
the (quantum) hardness of lattice type problems. The work of [GGH13] provided such approximate maps.
However, these have been subjected to attacks such as annihilation attacks [MSZ16]. The paper also provides
a (generic) weak multilinear map model which captures such attacks. In a later work, [GMM+16] give an
obfuscation (iO) scheme that resists annihilation attacks based on the existence of PRFs in NC1, and proven
secure in the weak multilinear map mpodel. While, recently [JLS21] show iO without the generic model
and instead using well-founded assumptions, the scheme can best be described as a feasibility result.

In this work, we give a first verifiable computation and zkSNARK protocol using post-quantum techniques
(without random oracle), namely lattice-based multilinear maps, and with proof size logarithmic in circuit
size1. We prove the scheme secure in the weak multilinear model assuming the security of a novel PRG.
The size of the proof is O(log|C|) for circuits C. The spirit in which the novel PRG is employed in similar
to [GMM+16] in that the PRG is not actually used in the scheme, but rather used to prove that annihilation
attacks do not work on the multilinear setting of the scheme.

In more detail, we first describe how Groth [Gro16] adapts the linear interactive proof (LIP) methodology
of [BCI+13] to the generic bilinear group model. In the LIP methodology, one first proves security of a base
scheme against affine adversaries. This base scheme can then be lifted to a scheme secure against efficient
adversaries by encoding the public quantities in the ”exponent” of a generator(s) of a bilinear group to form
a common reference string (CRS). In lattice based schemes one can use GGH13 encodings. But, since these
encodings are susceptible to annihilation attacks, one must now upgrade the generic bilinear group model
to the weak multilinear map model. In other words, while in the elliptic-curve bilinear-group setting it was
considered safe to prove that the CRS was disclosure-free in the generic bilinear-group model, one must
now show that it is disclosure-free in an enhanced sense, namely that efficient annihilation of ring elements
corresponding to level-two zeroes is also considered a fatal disclosure.

In the weak multilinear map model, the level-two zeroes are also considered to be efficiently obtainable
only in a generic manner. However, since the generic adversary knows the algebraic structure, the potential

1We actually obtain a proof size that is O(log∗|C|) since our scheme has a very simple verification circuit, which
can then be recursively treated as a verifiable circuit problem.

4

exists that the adversary can annihilate these algebraic expressions (more precisely, in our scheme, multi-
variate polynomials). We prove that in the generic model, the only level-two zeroes that an adversary can
obtain must have a particular structure which can be modeled as the output of an efficient multivariate
candidate pseudo-random generator (PRG). A careful design of the scheme has led to this candidate PRG
to be a set of secret-weighted symmetric power-sum of secret variables. In particular, this is in contrast to
the Goldreich-PRG of set of low-degree low-weight polynomials [Gol11].

Consider a finite field F and integer parameters m,n. Define the function f from Fm+n∗m to Fn(n−1)/2

as

f(x1, ..., xm, s1,1, ..., sn,m)(i1,i2) =

m∑
j=1

xi1j ∗ si2,j + xi2j ∗ si1,j ,

where the degrees i1, i2 range from one to n and i1 6= i2. Now, let λ be a security parameter. Let F be a
field with at least 2λ elements, The candidate pseudo-random generator is given by function f with m at
least

√
λ and n > m.

Since, symmetric power-sums and elementary symmetric polynomials have been extensively studied in
mathematics and the famous Newton identity annihilates symmetric power-sums, the candidate PRG above
uses secret and linear-weighted symmetric power-sums which thwarts this line of attack and we conjecture
that annihilation of the the weighted expressions would require generic Grobner-basis elimination techniques.
We also show that the above parameters have been conservatively chosen to thwart generic Grobner-basis
attacks,

Related Works. While zk-SNARKs have been built from lattices before [BISW17, GMNO18, BISW18],
the verification algorithm was not public. For example, Gennaro et al [GMNO18] built a lattice zk-SNARK
based on Square Span Programs, but it was designated verifier; they encoded using Regev-style encryption
and the verifier needed the secret key to decode and perform multiplications.

Several works [Kil92, Mic00] can be built from lattices, but they are significantly inefficient and based
on the Random Oracle Model. Works based on the Interactive Oracle Proofs [BCS16] framework have a
dependence on circuit size and also rely on the Random Oracle Model for non-interactivity. For example,
Aurora [BCR+19] has O(log2|C|) size for circuit C.

There has been progress on basing VC schemes on falsifiable assumptions, e.g. [KPY19], but there are
fundamental barriers to achieve the same for zkSNARKs [GW11]. Our scheme achieves zero-knowledge in a
public-verifier public-prover setting and hence the reliance on non-standard non-falsifiable lattice assumptions
seems justified.

A recent work [ACL+22] has built publicly-verifiable, pre-processing and recursively composable lattice-
based SNARKs. There are some essential differences between their approach and this paper:

1. Their approach is to first reduce the NP problem to a system of quadratic equations and then essentially
give a functional commitment to these set of equations. Whereas, we translate a QAP-based SNARK
from a bilinear group setting to a quasi-bilinear lattice setting.

2. We take the more traditional approach of first constructing a core linear interactive proof system, but
enhanced with a multilinear annihilation attack model.

3. Our proof size is O(log|C|) with competitive constant factors, whereas their’s is O(polylog|C|) with
constants hard to estimate due to the existence of some recent attacks [CLM23]. [ACL+22] does have
verification run-time that is O(log|C|) (which is same as our runtime). More details of our proof size
can be found in Section 7, including the potential of using other complementary schemes for recursive
proofs.

2 Preliminaries

Notations. The inner product on Rn is defined as 〈 · , · 〉:Rn ×Rn → R, (x, y) 7→
∑
i xiyi. The Euclidean

(`2) norm is denoted by ‖ · ‖, or when required by context, by ‖ · ‖2. The `1, `∞ norms are denoted by

5

‖ · ‖1, ‖ · ‖∞ respectively.
For n ∈ Z, n ≥ 1, [n] = {1, . . . , n}.For m ∈ Z,m ≥ 1, [n]m ∈ [−m/2,m/2) is the representative element

of n modulo m in the given range, as an integer.

2.1 Fields, Rings and Ideals

In this work we will use number fields with no sub-fields other than Q, as well as having large Galois group.
One such convenient number field is suggested in [BCLv17], where K = Q[X]/(f(X)), with f(X) of the
form Xa − X − 1 for prime a. Instead of computing its ring of integers, we will work in the polynomial
ring R = Z[X]/(f(X)) (since we do not care about the ring being Dedekind Domain). We will denote Rq =
R = Z[X]/(q, f(X)).

It would be preferable to choose a so that for the underlying field Fp, the polynomial f(X) has a large
degree irreducible factor. Then by Chinese Remainder Theorem, Rp can be considered to have an extension
field of Fp of the same degree. Using Berlekamp’s algorithm it is easy to check that the choice of prime
a is quite extensive even for p = 2. For example, for a = 293, one irreducible factor has degree 279, and
for a = 521, there is one irreducible factor of degree 385 (both for p = 2). We will use ϕ to denote the
isomorphism of Rp and Fpd×R′, where f(X) has an irreducible factor of multiplicity one of degree d, modulo

p. We will abuse notation, and refer to extension field Fpd as F(f)
p .

2.1.1 Lattices.

A lattice L ⊂ Rn is a discrete additive subgroup of Rn. Every (non-trivial) lattice has a basis. A basis for a
full-rank lattice is a set of n linearly independent vectors {b1, . . . , bn} ⊂ Rn such that L = {

∑n
i=1 zibi | zi ∈ Z}.

Let all lattices we consider be full-rank. If we arrange the vectors bi as the columns of a matrix B ∈ Rn×n
then we may write L = {Bz | z ∈ Zn}. If B is a basis for L then we say that B generates L.

2.1.2 Geometry and Ideal Lattices.

Embedding K into Rn defines a geometry on K. In this work we consider the (bijective) coefficent embedding
ι:K → Qn ⊂ Rn, α0 + α1X + · · ·+ αn−1X

n−1 7→ (α0, α1, . . . , αn−1). We may therefore talk of the norm of
an element of K and write, for some α ∈ K and i ∈ {1, 2,∞}, ‖α‖i for ‖ι(α)‖i. Note that this is not the
number field norm, i.e. the determinant of the multiplication by α map, but is instead the geometric norm
of α given the coefficient embedding. We may also refer to and think of an element of K as the vector it
forms under ι and vice versa, i.e. of α as ι(α) and of ι(α) as α for any α ∈ K. A useful inequality in the
power of two cyclotomic case is for any α, β ∈ K,

‖αβ‖ ≤
√
n‖α‖‖β‖.

When considering the norm of some r′ ∈ Rq we consider the norm of the unique r = r0 + · · ·+rn−1X
n−1 ∈ R

such that [r] = r′ and each ri ∈ [−q/2, q/2).
Complex conjugation over K (and similarly R) is the map ·̄ :K → K,α0 + α1X + · · · + αn−1X

n−1 7→
α0 − α1X

n−1 − · · · − αn−1X, that is, it maps X 7→ X−1 = −Xn−1.
We also consider KR = R[X]/〈Xn + 1〉, the topological closure of K, and we extend ·̄ and ι to KR in

the natural way. It has a subring S = {x:x = x̄, x ∈ KR}, which has a subset S+ = {xx̄:x ∈ KR}. Elements
in S+ have exactly one square root in S+, denoted by the function

√
·:S+ → S+. If A:KR → S+, x 7→ xx̄

then for Σ ∈ S+, A(
√

Σ) = Σ. In short, the function A is the inverse of
√
· over S+. We follow the

convention [DP18] of denoting the inverse of x ∈ Rq as x−1 and reserving 1/x or 1
x for the inverse of x in K

or KR. For x ∈ K,x−1 is shorthand for [x]
−1

, should it exist.
Given g ∈ R\{0} consider the ideal lattice generated by I = 〈g〉. To see this object as a lattice, consider

the discrete additive subgroup of Rn it produces under ι. A basis of I is Bg = {g, gX, . . . , gXn−1}.

6

2.1.3 The Ideal and Field Norms.

Given K and R as defined above, two further norms may be defined. The first, ideal norm, considers ideals
a ∈ R and is defined as NI(a) = [R: a] = |R/a|, i.e. the number of distinct cosets of the form r + a. The
second, field norm, considers α ∈ K and can be defined as the determinant of the Q-linear map given by
multiplication by α, ϕα:K → K,β 7→ α · β and is denoted by NK/Q(α) = det (ϕα). For principal ideals,
a = 〈r〉, r ∈ R, we have NI(a) = NK/Q(r). Note that the field norm restricted to the ring of integers,
R, will always take integer values. Note also that in the case of power of two cyclotomic fields we have
det(ϕα) = res(Xn + 1, α), that is the resultant of the cyclotomic polynomial and α, by e.g. [PP19, Prop. 1].

This norm will have size roughly ‖Xn + 1‖n−1 · ‖α‖n [SV10].

2.1.4 Lattice Gaussians.

For real σ > 0, define the (centred) spherical Gaussian function on Rn with parameter σ as ρσ:Rn →
R, x 7→ exp(−π‖x‖2/σ2). Given a lattice L define ρσ(L) =

∑
x∈L ρσ(x) and the discrete spherical Gaussian

distribution over L with parameter σ as DL,σ = ρσ(x)/ρσ(L). This generalises to KR; let Σ ∈ S+ and define

the (again, centred) Gaussian function on KR with parameter
√

Σ as

ρ√Σ:KR → R, x 7→ exp

−1

2

∥∥∥∥∥ x
√

Σ

∥∥∥∥∥
2
 .

Note that this distribution is not necessarily spherical. For any (potentially fractional) ideal, I C K, and
any shift y ∈ KR, define ρ√Σ(y + I) =

∑
x∈y+I ρ

√
Σ(x) and the discrete Gaussian distribution over y + I

with parameter
√

Σ as

Dy+I,
√

Σ: y + I → R, x 7→
ρ√Σ(x)

ρ√Σ(y + I)
.

2.2 Arithmetic Circuits and Quadratic Arithmetic Programs (QAPs).

An arithmetic circuit consists of wires that carry values from a field F and connect to addition, multiplication
and multiplication by scalar gates. A Quadratic Arithmetic Program (QAP), an encoding of such a circuit,
was defined in [GGPR13] as follows.

Definition 1 (Quadratic Arithmetic Program (QAP)) A QAP Q over field F contains three sets of
µ + 1 polynomials, U = {uk(x)}, V = {vk(x)}, W = {wk(x)}, for k ∈ {0} ∪ [µ], and a target polynomial
t(x), all over F. Suppose F is a function (describing some circuit C) that takes as input n elements of F
and outputs n′ elements of F, for a total of N = n + n′ I/O elements. We say that Q computes F when:
(c1, . . . , cN) ∈ FN is a valid assignment of F ’s inputs and outputs iff there exist coefficients cN+1, . . . , cµ
such that t(x) divides p(x). The polynomial p(x) is defined as

p(x) =

(
u0(x) +

µ∑
k=1

ck · uk(x)

)
·

(
v0(x) +

µ∑
k=1

ck · vk(x)

)

−

(
w0(x) +

µ∑
k=1

ck · wk(x)

)
.

In other words, there must exist a polynomial h(x) such that t(x)h(x) = p(x). The size of Q is µ and the
degree of Q is d, the degree of t(x).

A QAP, in essence, checks that the output of each multiplication gate in the arithmetic circuit is correct
(addition and multiplication by scalar gates are compressed into their contributions to multiplication gates).

7

To do this the target polynomial t(x) =
∏
g∈Cmul

(x− fg) is formed as the product of |Cmul| (so d = |Cmul|,
where Cmul are the multiplicative gates of C) linear factors with an arbitrary, pairwise distinct, root fg
for each multiplication gate. The polynomial sets U ,V,W are then formed to encode the left inputs, right
inputs, and outputs, respectively, of a given multiplication gate. In particular each k ∈ [µ] is assosciated
to either an input wire of C or an output wire of some multiplication gate. For the root fg associated to
some g ∈ Cmul and the wire assosciated to some k ∈ [µ], the polynomial uk(fg) = 0 when this wire is not
a left input to g and uk(fg) = 1 when this wire is a left input to g. The same is true of the polynomials
in V,W, but for right inputs and outputs, respectively. To form these polynomials consider e.g. Lagrangian
interpolation over F, so that each has degree d − 1. The form of the polynomial p(x) then exactly encodes
multiplication in C, and that t(x) divides p(x) decomposes into d checks – p(fg) = 0 at each g ∈ Cmul
– that each multiplication is carried out correctly (see [PHGR13, Sec. 2.1.1] for a useful worked example
and [GGPR13, Sec. 7] for omitted technicalities).

2.3 Verifiable Computation (VC).

Following [PHGR13], we define a (public) Verifiable Computation scheme (VC) and the definitions of cor-
rectness, security, and efficiency. Such a scheme allows a computationally bounded client to outsource the
evaluation of some function F on input u to a more powerful worker. This worker, along with evaluating and
returning F (u), should provide a proof so a public party may verify the correctness of the returned value.

Definition 2 A public verifiable computation scheme consists of three polynomial time algorithms, (KeyGen,
Compute, Verify).

• (EKF ,VKF)← KeyGen(F, 1λ). A randomised algorithm that takes the function to be outsourced, F , and
a security parameter λ. It outputs a public evaluation key, EKF and a public verification key VKF .

• (y, πy) ← Compute(EKF , u). A deterministic worker algorithm that computes and outputs y = F (u)
alongside a proof πy of the correctness of this output.

• {0, 1} ← Verify(VKF , u, y, πy). A deterministic algorithm that outputs 1 if y = F (u) and 0 otherwise.

For a given function F the client runs KeyGen(F, 1λ) once and may then have the worker compute
several inputs. The cost of creating EKF ,VKF is linear in the function size, i.e. the efficiency comes from the
amortized cost of having the worker compute the function on many inputs. Intuitively such a VC scheme
is correct if for an honest output y = F (u) and correctly generated proof, the Verify algorithm always
outputs 1. It is secure if the probability of any probabilistic polynomial time adversary generating a proof
for an incorrect output that passes verification is negligible in λ, and it is efficient if (after the one time cost
for the client of KeyGen) the cost of Verify is cheaper than evaluating F . Formally,

• (Correctness.) For any function F and input u, if (EKF ,VKF)← KeyGen(F, 1λ) and (y, πy)← Compute(EKF , u),
then Verify(VKF , u, y, πy) = 1.

• (Security.) For any function F and probabilistic polynomial time adversaryA, Pr[(û, ŷ, π̂ŷ)← A(EKF ,VKF): ŷ 6=
F (û) ∧Verify(VKF , û, ŷ, π̂ŷ) = 1] = negl(λ).

• (Efficiency.) For a function F and input u, if (EKF ,VKF)← KeyGen(F, 1λ) and (y, πy)← Compute(EKF , u),
then computing Verify(VKF , u, y, πy) should be cheaper than evaluating F (u).

In Groth16, QAPs were used to build a VC scheme via encoding the polynomials vk(x) using bilinear
groups (and similarly for W,Y). In particular some secret s ∈ F is sampled uniformly and the group
elements gvk(s) are given out in either EKF or VKF (depending on k). Here g is a generator of a subgroup
of the bilinear group such that it is of prime order and isomorphic to the additive group of F. After the
worker has evaluated F (u) it has learnt all ck, k ∈ [µ] (and in particular the hitherto unknown internal wire
values). It can then form gv(s) for v(s) = v0(s) +

∑
k∈[µ] ckvk(s), or similar sums, by standard techniques,

e.g. repeated squaring to compute gckvk(s) followed by group multiplication. Given ck, k ∈ [µ] the worker

8

can also compute p(x) and therefore also h(x). If gs
i

, for sufficient powers of s, are also available to the
worker, then πy consists roughly of the elements {gv(s), gw(s), gy(s), gh(s)}. The verifier uses the bilinear map
to check that p(s) = h(s)t(s) and several conditions regarding v(s), w(s), y(s). Intuitively this, along with
the “if and only if” property of QAPs in Definition 1, checks the correctness at all internal multiplication
gates, and therefore the output y = F (u).

In this work we will adapt Groth16 [Gro16] to use the κ-Graded Encoding Scheme (multilinear map)
of [GGH13]. While the adaptation adds some technical barriers to be overcome, multilinear maps have all
the basic functionality (addition of encodings, some bounded notion of multiplication, and a form of equality
testing, see Section 3) required to emulate this style of VC scheme from QAPs.

3 The (Altered) GGH13 Multilinear Map

Here, we introduce the GGH13 scheme (in its symmetric setting), and its subsequent adaptations, that we use
to encode QAPs. Some differences between what is introduced here and the original GGH13 scheme [GGH13]
include different parameter choices, different public quantities, and a different method of generating encod-
ings; see below. In particular, the plaintext space in our scheme will be modulo a different prime p than the
integer q used for the encoding space. Another difference is our lack of the zero testing parameter h. Our
rational for this is that since our scheme will give sufficient information for h to be recovered in quantum
polynomial time we should instead discuss (Appendix B) what security we can hope to achieve and enjoy
the (slightly) improved efficiency of a scheme without h.

3.1 Graded Encoding Schemes

More formally, a graded encoding scheme (which we call multilinear map) consists of a ring QR and a system

of encoding sets S = {S(α)
i ⊂ {0, 1}∗:α ∈ QR, i ∈ {0} ∪ [κ]}, where κ is the multilinearity parameter, and

has the following properties.

1. For every fixed index i, the sets {S(α)
i }α∈QR are disjoint.

2. There is an associative binary operation, such that for every α1, α2, every index i, and every encoding

u1 ∈ S(α1)
i and u2 ∈ S(α2)

i , it holds that

u1 + u2 ∈ S(α1+α2)
i .

3. There is an associative binary operation ×, such that for every α1, α2, each pair of indices i1, i2 such

that i1 + i2 ≤ κ, and all encodings u1 ∈ S(α1)
i and u2 ∈ S(α2)

i , it holds that

u1 × u2 ∈ S(α1·α2)
i1+i2

.

3.2 Altered GGH13 Graded Encoding Scheme

The scheme is parameterised by a security parameter λ and a multilinearity parameter κ. An instance of
GGH13 encodes elements of a quotient ring R/I, where I = 〈g〉 C R (i.e. principal ideal of R generated
by g ∈ R). Thus, this forms the plaintext space in GGH13. The encodings are elements of Rq where q is a
large enough prime to support functionality. This q depends on λ, and κ. These encodings can be publicly
homomorphically added and multiplied, under some constraints, and with the above properties. It can also
be checked whether certain encodings encode the zero of R/I.

Now, we describe how our plaintext space is different from GGH13 (hint: it is similar to the difference
between plaintext space and ciphertext space in FHE schemes [BGV12]). Note that the field F, over which
function F is defined, will be some prime order field Fp. In Groth16, encodings are in a subgroup of the
bilinear group which is isomorphic to the additive group of F, i.e. this subgroup is Zp and the field is Fp.
Since their bilinear pairing is Zp-linear, this allows them to have a straightforward way of enabling (one

9

level of) multiplication in Fp. On the other hand, for security reasons in the lattice setting, and for known
graded encoding schemes, the multilinear map is only Zq-linear where q is much larger than p. However,
we make use of the indeterminate X in the polynomial ring X to enable a much larger plaintext space field
Fp[X]/(f(X)) for some irreducible polynomial f(X) over Fp. This is assured by f(X) being an irreducible
factor of the cyclotomic polynomial Xn + 1 modulo p. More details about the parameter settings follow in
Section 3.3.

The scheme consists of six polynomial time algorithms, (InstGen, enc, add,
neg,mul, isZero) given below. Parameter choices will be made explicit after these algorithms are introduced.

3.2.1 Instance Generation.

(sk, params) ← InstGen(1λ, 1κ, p). An integer n = 2u, u ∈ N, modulus q, and g ∈ R are chosen, subject to
some constraints. In particular g ← DZn,σ for some σ, and I = 〈g〉. A uniform invertible element z ∈ R×q is
sampled and the Gaussian parameters {Σi}i∈[κ] ⊂ S+ for forming encodings are set. Finally, no element

h ← DZn,
√
q is sampled and instead the “zero tester” is formed as pzt = zκg−1. Note zκ and g−1 are all

elements of Rq, so pzt ∈ Rq. The public parameters are params = {n, q, κ, pzt, {Σi}i∈[κ]} and the secret key

is sk = {g, z}.

3.2.2 Encoding.

u← enc(sk, params, a, i). The scheme encodes cosets a+ I ∈ R/I at a level i ∈ [κ]. An encoding of a+ I at
level i is

u = [a+ rg]z−i ∈ Rq,

with a+ rg a short element in a+ I. Throughout we refer to an encoding of a+ I ∈ R/I as an encoding of
a ∈ R. Such an encoding is formed by sampling from Da+I,

√
Σi

, for Σi ∈ S+ determining the distribution
to sample from at level i. These encodings are called fresh, as opposed to encodings formed from Add or
Mul. In particular, unlike in GGH13, we do not give out level 1 encodings of zero nor add randomised
combinations of these to a specific representative element of the coset a+ I.

The quantity a + rg ∈ R will be referred to as the numerator of the encoding. It will be sampled such

that its length is much less than q, this says that ‖a+ rg‖ =
∥∥∥[a+ rg]q

∥∥∥ which will not be the case if any

coefficient of a+ rg is larger than q/2. The parameter q will be chosen such that a slightly stronger property
remains true for any encoding we consider, see Add, Neg, Mul.

The method of creating encodings a priori by sampling from a discrete Gaussian over a coset came
about due to attacks on multilinear map constructions making use of low level encodings of zeros [HJ16], in
particular the level 1 encodings of zero, xi, that allowed public parties to create encodings in the original
GGH13. The different methods of sampling from [GGH13, DGG+18] were codified in [DP18] in terms of
sampling parameters Σi ∈ S+, in order to analyse the (statistical) leakage released to an adversary after
successful zero tests. A new method, the “compensation” method, was also introduced.

These sampling methods (except for the “simplistic” method of GGH13) all ensure that they are able to
efficiently sample from a distribution negligibly close to Dy+I,

√
Σi

via the techniques of [GPV08], see [DP18,
Thm. 2]. That is, the encodings themselves are independent of the secrets of the scheme.

3.2.3 Addition, Negation, and Multiplication.

u← add(u1, u2). If ui = [ai + rig]z−j encodes ai at level j ∈ [κ], then u1 + u2 encodes a1 + a2 at level j.
Furthermore q is chosen such that[

[a1 + r1g]q + [a2 + r2g]q

]
q

= [(a1 + a2) + (r1 + r2)g]q,

10

that is, there is no reduction modulo q. Therefore the lifts of [a1 + r1g]+[a2 + r2g] and [(a1 + a2) + (r1 + r2)g]
back to R (coefficients in [−q/2, q/2)) have the same length. The length of the numerator of u1 + u2 is at
most twice that of the longer numerator of u1, u2.
−u← neg(u). If u = [a+ rg]z−j encodes a at level j ∈ [κ], then −1R · u encodes −a at level j. As q will

be odd,
[
[−1R]q[a+ rg]q

]
q

= [−1R(a+ rg)]q, and the length of the numerator does not change.

u← mul(u1, u2). If u1 = [a1+r1g]z−j , u2 = [a2+r2g]z−k encode a1, a2 at levels j, k, respectively, for j, k ∈
[κ], j + k ≤ κ, then u1u2 encodes a1a2 at level jk. Again, q is chosen such that

[
[a1 + r1g]q[a2 + r2g]q

]
q

=

[(a1 + r1g)(a2 + r2g)]q and in this case the length of the numerator of u1u2 is at most
√
n times the square

of the length of the longer numerator of u1, u2.
Note that Neg multiplies an encoding at level j by an element of R. In general, multiplying u which

encodes a at level j by b ∈ R produces an encoding of ab at level j with the numerator multiplied by b.
We make use of this in our construction, multiplying by elements of R with coefficients of size up to p.
We also want this operation to have the property that the numerator does not reduce modulo q, hence the
dependence q will have on p in our construction.

3.2.4 Zero Testing.

{0, 1} ← isZero(params, u). The algorithm IsZero tests whether an encoding u at level κ is an encoding of
0. This is decided as

isZero(params, u) =

{
1 if ‖[pztu]q‖∞ < q3/4,
0 otherwise.

(1)

If u encodes zero then a ∈ I and therefore a = r′g, so u = [a+ rg]z−κ = [(r′ + r)g]z−κ. In this case, letting
r′′ = r + r′, pztu = [r′′] will have length Θ(poly(n, p)) and we set q a little larger than that which ensures
there are no false negatives. If a does not encode zero, it can be shown (via an adaptation of [GGH13,
Lemma 4]) that our choice of q also prevents false positives – this requires that I be a prime ideal. Note
that we can check whether two level κ encodings encode the same coset using Add, Neg, and IsZero.

3.3 Parameters Selection

In this section we consider choosing a number field with no sub-fields and very large extensions that become
Galois...e.g. as suggested by [BCLv17]: f(x) = xa − x − 1, where a is a prime, in which case the Galois
group is known to be of size p!. Further, we choose a so that modulo prime p, f(x) has an irreducible factor
of larger enough degree as described below.

Throughout M is the maximum length of an encoding under `∞ for the given use case (see Section 7 for
our use case and M).

• Dimension n ∈ N is chosen n = Ω(κλ log q) to achieve λ bit security against lattice attacks. Note [CDPR16],
that does the short PIP, only works for power-of prime cyclotomics. Further, [DP18] shows attacks on
NTRU-style encodings, which also works on fields with sub-fields, which our number field does not have.
For this work κ will be constant, so we omit it. The choice of e is given below.

• Multilinearity parameter κ > 0. We set κ = 2.

• Gaussian parameter σ ∈ R≥0. This parameter for a spherical Gaussian over Zn is set as σ = O(
√
n).

• Ideal I generator g ∈ R. Sampled as g ← DZn,σ, so ‖g‖ = Θ(n) with overwhelming probability [DGG+16,
Lemma. D.5]. Resampled until g is prime , ‖1/g‖ = O(n2) and g−1 ∈ Rq exists.

• Gaussian parameter Σ ∈ S+. This parameter is sampled following the “compensation” method of [DP18].
For κ = 2 it gives numerators, c = y + rg drawn from Dy+I,

√
Σ, of length ‖c‖ = Θ(n2+ε), ε > 0.2

2We note that, in the absence of h, the distortion analysis [DP18, Sec. 5] suggests we can achieve ‖c‖ = Θ(n7/4+ε).

11

• Prime modulus p ≥ 2. The modulus of the field over which we consider the circuit. Recall the worker,

while more powerful than the client, is still efficient, so |C| = poly(λ). The extension field F(f)
p should

have size large enough so that it is larger than circuit size so as to form the QAP and select our required
secret values.

• Modulus q is chosen to be a power of two (for boot-strapping the verification circuit, so that during
recursion p = 2). Chosen so that isZero remains correct for the longest numerator of a top level zero. It
is enough for q to be some polynomial in n,M , see Lemma 3 below. We prove in Section 7 that M is
polynomial in n, p, both of which are polynomial in λ, hence q is also polynomial in λ.

Lemma 3 Let M be the largest numerator, in terms of norm, of level-two encoding of zero considered during
verification. If I is a prime ideal, q = Ω(n8), and q = Ω(n10/3M4/3), then isZero does not produce false
positives or false negatives.

Proof: First, let u encode zero at level two, so u = rg ∗ z−2 mod q. We see that ‖[pztu]q‖∞ ≤ ‖[pztu]q‖ ≤∥∥g−1rg
∥∥ ≤ √n∥∥g−1

∥∥‖rg‖ = O(n5/2M)3. To ensure this quantity passes IsZero set q = Ω((n5/2M)4/3) =

Ω(n10/3M4/3). Second, let u encode a non-zero coset at level two, so u = (a+rg)z−2, a 6∈ I and assume that
‖pztu‖∞ < q3/4. To appeal to [GGH13, Lemma 3] let w = pztu and c = a+ rg. We require both ‖gw‖ and
‖c‖ to be less than q/2. That is, ‖gw‖ ≤

√
n‖g‖‖w‖ ≤ n‖g‖‖w‖∞ ≤ n2q3/4 must be less than q/2, as must

‖c‖ ≤ M . This is satisfied when q = Ω(n8) and q = Ω(M), and by the lemma we have c ∈ I, i.e. a ∈ I, a
contradiction. The q = Ω(M) condition is redundant, hence the statement. �

For our VC scheme, from end of Section 7, M = Ω(λ1/2|C|2n7/2+εp2), and therefore the relevant condition
on q is really q = Ω(n10/3M4/3). Let |C|= λc, and also assume q is polynomial in λ, say λe. Then With n =
λ log q = eλ log λ, and assuming p < λ, this amounts to q = Ω(n10/3M4/3), which is q = Ω(n8+ελ10/3+8c/3,
which implies q = Ω(λ10/3+8c/3+8+ε · (e log λ)8. Thus, conservatively, q = λ12+8c/3. If the verification circuit
is boot-strapped, so that p = 2, then q drops to λ9+8c′/3, where λc

′
is the size of the verification circuit.

This has implications for the proof size as detailed towards the end of Section 7.

3.4 Zeroizing and Annihilation Attacks on [GGH13]

Proving the security of constructions based on [GGH13] (and multilinear maps, in general) has been a subtle
art. In particular, three main kinds of attacks have been considered: (a) lattice-reduction attacks, (b) short
principal ideal generator problem, and (3) zeroizing and annihilation attacks that can lead to discovery of
short principal ideal generators. While the attacks (a) and (b) are of a more general nature and dictate
parameter selection of the rings and ideals used in the scheme, the zeroizing and annihilation attacks can
be scheme dependent, i.e. they can be more effective based on what additional information an Adversary
can garner from the protocol (e.g. the CRS or public key). Since, our scheme only uses 2-linear maps,
the low level zeroes are then just level-1 zeroes. While it will be easy to show that our scheme only gives
out encodings of level-1 zeroes with negligible probability, the annihilation attacks that employ encodings
of level-2 zeroes needs a comprehensive analysis. Thus, the focus of our analysis will be on annihilation
attacks. We refer the reader to Appendix B for more details about the general attacks (a) and (b), as well
as zeroizing attacks and “Statistical” zeroizing attacks [DP18].

In [MSZ16], it was shown that one can obtain annihilators of various top level encodings of zero for
the [GGH13] multi-linear map based obfuscation schemes, to obtain elements in the ideal 〈g〉. We briefly
describe the idea of annihilation attack, before we formalize a model for annihilation attack(as in [MSZ16])
and then further restrict it to a (new) generic model of annihilation attacks. Our brief description will focus
only on attacks that target level-1 and level-2 encodings.

As described in Section 3, each level-1 encoding (of m) is of the form (m+ rg)z−1 in the ring Rq, where
r is a randomizer. In particular, all the level-1 encodings, say N1 in number, given to the Adversary (e.g.
as part of a public key) can be written as e1i = (mi + rig)z−1 (for i ∈ [1..N1]). Thus, each encoding has

3‖rg‖ ≤M and
∥∥g−1

∥∥ ≤ n2

12

its own independent variable ri. The aim of the annihilation attack is to use 2-linear pairings of level-1
encodings to get level-2 encodings of zero. Such level-2 encodings of zero (say, of the form (r′g + r′′g2)z−2)
can then be multiplied by pzt = z2/g to cancel out g/z2, and obtain r′ + r′′g, which if both r′ and r′′ are
small, is obtained in the base polynomial ring R. Now, if further linear combination of such quantities can
even annihilate r′, we are then left with quantities of the form r′′′g. This would be a small multiple of the
secret g, which could potentially be used to find g. Hence, the goal of the Adversary in annihilation attacks
is to take linear combinations as above to annihilate r′ terms.

3.4.1 Miles-Sahai-Zhandry Attack Model

We now describe the annihilation attack model from in [MSZ16].
There are “hidden” variables s1, ..., sn (for some integer n, and collectively denoted by ~s) and r1, ..., rm

(for another integer m and collectively denoted by ~r), and g. Then there are “public” variables y1, ..., ym
(denoted ~y), which are set to yi = qi(~s) + gri for some fixed but public polynomials qi(~s) defined over a ring
R. Thus, yi is set to polynomials in R[~s, ~r, g]. The adversary is allowed to make two types of queries:

• In a Type 1 query, the adversary submits a “valid” polynomial pk in R[~y]. Here “valid” polynomials
come from some restricted set of polynomials. These restrictions are those that are enforceable using
graded encodings, e.g. some asymmetry requirements. Next, we consider pk as a polynomial of the formal

variables ~s, ~r, g, given the definition of ~y above. Write pk = p
(0)
k (~s, ~r) +gp

(1)
k (~s, ~r) +〈g2〉, where 〈g2〉 is

the ideal of R[~s, ~r, g] generated by g2. If pk is identically 0, then the adversary receives ⊥ in return. If

p
(0)
k is not identically 0, then the adversary receives ⊥ in return. If pk is not 0, but p

(0)
k is identically 0,

then the adversary receives a handle to a new variable wk, which is set to be pk/g mod 〈g〉 = p
(1)
k (~s, ~r) (a

polynomial in R[~s, ~r]).

• In a Type 2 query, the adversary is allowed to submit arbitrary polynomials a as a small algebraic circuits
on the wk that it has seen so far. Consider a(~w) as a polynomial of the variables ~s, ~r by using the definition
of wk above, and write a as a(0)(~s, ~r). If a(0) is identically zero, then the model responds with 0, i.e. the
adversary wins. Otherwise, the model responds with 1.

In other words, the adversary wins if it can find an annihilator polynomial a(~w) of the set of polynomials

{p(1)
k (~s, ~r)}. The annihilator polynomial is defined formally in the next sub-section.

4 A New Generic Model for Computing Annihilators

While the previous section modeled generic annihilation attacks in graded encoding schemes, the question
arises as to whether we can restrict the adversary further to be of a generic type when computing an
annihilator (as in Type 2 queries above). Instead of a complexity lower bounds, which are normally not
known so far, we can try to model the various algorithms known to compute annihilators, and restrict the
adversary to such algorithms. It turns out that all known algorithms, at least for set of polynomials that do
not show a particular structure, follow the same principal of Grobner Basis computation. This in turn implies
a generic complexity bound that can be given in terms of number of multi-variate polynomials, the number
of variables and the degree of the polynomials [CKPS00]. This is akin to the generic group model [?], in the
sense that the adversary is not allowed to look at the coefficients defining the polynomials. In other words,

the adversary literally only looks at the polynomials as handles wk instead of p
(1)
k (~s, ~r) (see previous section).

The actual generic model we consider below is slightly stronger in the sense that the adversary is allowed
to consider the monomials that occur in the given polynomials (i.e. the ones with non-zero coefficients). To
this end, we first start with a lemma that characterizes annihilators as a projection of an ideal.

Consider a set F of polynomials in R[~x], F = {f1(~x), ...fm(~x)}. A polynomial a(y1, ...ym) over R is
called an annihilator of F , if a(f1(~x), ..., fm(~x)) is identically zero.

13

Denoting the set of variables y1, ..., ym by ~y, consider the ideal I of the ring R[~x, ~y] generated by F∗ =
{y1 − f1(~x), ..., ym − fm(~x)}. The following lemma is well-known (e.g. Prop. 15.30 of [?]), but we give a
simple proof here for completeness.

Lemma 4 The ideal J of R[~y], defined as J = I ∩R[~y], is exactly the set of annihilators of F .

Proof: It is easy to check that J is an ideal of R[~y].
We first show that if a(~y) is in J , then a(~y) is an annihilator of F . By virtue of being in R[~y], a(~y) is

by definition a polynomial in ~y over R. Since a(~y) is also in I, by definition of an ideal, a(~y) is a linear
combination of F∗, with coefficients from the ring R[~x, ~y]. But each of the elements of F∗ is zero with fi(~x)
substituted for yi. Hence, a(~y) with fi(~x) substituted for yi is also zero.

Next, we show that if some a(~y) in R[~y] is an annihilator of F , then a(~y) is in the ideal J . Since,
a(f1(~x), ..., fm(~x)) is identically zero, we will just show that b(~x, ~y) defined as a(f1(~x), ..., fm(~x))− a(~y) is in
I (and, since it is in R[~y] it is also in J).

View a as an arithmetic circuit. We show by induction that if a1(~y)− a1(~f(~x)) and a2(~y)− a2(~f(~x)) are

both in I, then so are (ua1 + va2)(~y) − (ua1 + va2)(~f(~x)) and a1a2(~y) − a1a2(~f(~x)). The addition case is
trivial. The multiplication case is also straightforward as follows:

a1a2(~y)− a1a2(~f(~x)) = a1(~y)(a2(~y)− a2(~f(~x))) + a2(~f(~x))(a1(~y)− a1(~f(~x)))

This concludes the proof. �
The next question is whether there are efficient algorithms to compute an element of J . We will now

review [?] the Grobner-basis approach to finding such an element; in fact we will compute the (Grobner-)
basis of J . The aim is to highlight the generic nature of such a computation, in absence of any special
structure of the given generators of the ideal. As the above lemma shows, we are interested in eliminating
the ~x variables, and since the polynomial ring is not a field, we cannot resort to Gaussian elimination. But,
could something similar work?

For an ideal F of a polynomial ring S, the monomials of F are all possible monomials that occur in
any element of F . A monomial ideal is an ideal of S generated only by monomials. For example, the
ideal generated by (x2 + y) is not a monomial order, where as, the ideal generated by (x2, y) is a monomial
ideal. While monomial ideals are easy to analyze, e.g. the quotient S/J for a monomial ideal J is easy
to characterize, it is remarkable that general ideals can also be handled in a similar fashion with some
machinery.

Definition 5 Let F be an ideal of a polynomial ring S over a field k. A monomial order of F is a total
order > on the monomials of F such that if m1,m2 are monomials of F and n 6= 1 is a monomial of S, then

m1 > m2 implies nm1 > nm2 > m2

Having defined a monomial order, we can define an initial term of every polynomial f in F . Then, it
would be interesting if the ideal generated by the initial terms of F , which would be a monomial ideal, would
allow similar characterization of S/F , i.e. as if F itself was a monomial ideal. With the above requirements
on the monomial order >, for any f ∈ F , we define the initial term of f , written in>(f), to be the greatest
monomial in f with respect to > (here, we ignore the scalar multiples from field k). If M is any sub-ideal of
F , we define in>(M) to be the monomial sub-ideal generated by the elements in in>(f) for all f ∈M .

Definition 6 A Grobner basis with respect to an order > on an ideal F is a set of elements g1, ..., gt ∈ F
such that if M is the sub-ideal of F generated by these elements, then in>(g1), ..., in>(gt) generate in>(M).
We then say that g1, ..., gt is a Grobner basis for M .

There is a Grobner basis for any sub-ideal of M of F , for one can start with a finite set of generators
of M , and then keep adding finitely many more elements of M to the set till their initial terms generate
in>(M), the latter being finitely generated as well.

14

Now we state a lemma from [?] that embodies variable elimination. We first define a monomial order
which allows elimination. An order on T = S[~x] = k[~y, ~x] is called an elimination order (w.r.t. ~x) if it
satisfies: for every f in T such that the initial term of f , in>(f), is in S, it is the case that f is itself in
S. In other words, monomials purely in ~y are less than every monomial which has some degree from ~x. A
lexicographic monomial order where ~x variables are given higher precedence than ~y variables is an example
of elimination order.

Lemma 7 Let > be a monomial order on T = S[~x] = k[~y, ~x], and suppose that > is an elimination order
with respect to the variables ~x. If I ⊂ T is an ideal, then with respect to the monomial order on S obtained
by restricting >, we have

in>(I ∩ S) = in>(I) ∩ S
Further, if g1, ..., gt is a Grobner basis for I, and g1, ..., gu are those gi that do not involve the variables xi,
then g1, ..., gu form a Grobner basis in S for J = I ∩ S.

Thus, by Lemma 4, it follows that a basis for the ideal of annihilators of F is a Grobner basis B of I, with
elimination-order w.r.t. ~x, restricted to the subset of generators in B that are purely in ~y.

There exists an algorithm to compute Grobner Basis due to Rechberger [?]. Further, many variants
of this algorithm are known which can be potentially more efficient depending on the given ideal and the
monomial order. The main idea of the algorithm is to start with any basis of the ideal, and considering any
two generators in this basis, say g1 and g2, compute a new generator

g = g2 ∗ in>(g1)/gcd(in>(g1), in>(g2))− g1 ∗ in>(g2)/gcd(in>(g1), in>(g2)).

By definition of in>, the initial term of g is strictly less than the initial term of both g1 and g2. If g can be
written as sum of many figi, with each fi in S, and in>(g) ≥ in>(figi) for all i, then we stop, otherwise we
add g to the basis and repeat. Note, termination is guaranteed as the process is well-founded.

Since we seek to eliminate ~x, and hence use an elimination order where ~x are given higher precedence than
~y, the above elimination process would start with generators having initial terms that are purely composed
of ~x, and hence the new generator “g” would be obtained by multiplication of g1 and g2 by monomials in ~x
(see above). Subsequently, however, the monomials being multiplied in to get “g” may contain both ~x and
~y, and eventually possibly just ~y. Moreover, if the starting basis of ideal M is not a monomial basis, and is
of a more generic nature, i.e. has generators with many monomials whose structure can not be exploited,
the above process is captured by the following Macaulay matrix. Assume that the given basis of M has
generators with maximum degree d. We can homogenize the generators so that all monomials in all the
generators are of degree d by introducing a new variable, say z, and assigning z the lowest precedence in the
lexicographic elimination order. The Macaulay matrix of the given basis of M at level d+ t is then obtained
by multiplying each of the generators with every possible monomial of degree t (in the variables ~x, ~y, z), and
then writing each such newly obtained polynomial’s coefficients as a row in the Macaulay matrix (coefficients
of monomials of degree d+ t).

If the monomials are arranged according to the elimination order, with the highest precedence monomials
on top, i.e. all monomials containing at least one degree from ~x on top, then the k-vector space J which is
the ideal M restricted to ~y, z and degrees restricted to d+ t, is generated by linear combination of rows of the
Macaulay matrix with the coefficients of all ~x involving monomials zero. This basis of J is easily obtained
by Gaussian elimination. The assumption that there is only a generic way to obtain a non-tivial element in
J then amounts to there being more rows in the Macaulay matrix than there are ~x involving monomials of
total degree d+ t.

To analyze this further, to start with, if there are m polynomials in n variables ~x of maximum degree
d in the set F , the ideal I is then generated by m homogeneous polynomials in ~x, ~y, z of degree d. Then, a
generic elimination of ~x variables requires a Macaulay matrix at level at least d + t such that m times the
number of monomials of degree t is more than the number of monomials of degree d + t (involving at least
one degree from ~x). This leads to the following inequality

m ∗
(
m+ n+ 1 + t− 1

t

)
≥

(
m+ n+ 1 + d+ t− 1

d+ t

)
−
(
m+ 1 + d+ t− 1

d+ t

)
(2)

15

Since, the generators F∗ of I only have simple degree one ~y monomials, an efficient annihilation computation
may not necessarily be generic w.r.t. ~y, and may only be generic w.r.t. ~x variables. However, even for any
fixed monomial m′ in ~y, z, the number of equations obtained by multiplying I by all monomials m such that
m = m′ ∗m′′, with m′′ a monomial in ~x (of degree t), must exceed the total number of monomials m of the
form m = m′ ∗m′′′ with m′′′ a monomial in ~x of degree t+ d. This is so because otherwise these monomials
containing ~x degrees cannot be eliminated. Thus, the following inequality must still be satisfied

m ∗
(
n+ t− 1

t

)
≥

(
n+ d+ t− 1

d+ t

)
(3)

As already shown by [CKPS00], this is satisfied only if d + t ≥ n
m1/d . However, this model is weak since

even though the coefficients of polynomials of F may be generic, the monomials in F may not be generic.
For example, all the monomials could be high degree in a single variable, and low total degree in all other
variables. We strengthen the generic model in the next sub-section.

4.1 Direct Generic Method to Compute an Annihilator

Since, we seek only one annihilator and not the whole set of generators of the ideal of annihilators, the
above methodology based on Macaulay matrix suggests a direct generic method (instead of defining ideal I
generated by F∗ and then computing its Grobner basis w.r.t. an elimination order). Treat the monomials
in F = {f1(~x), ..., fm(~x)} as new variables W = {w1, ..., wm}. The number of monomials in W of degree t
is
(
m+t−1

t

)
. Let Mt be number of monomials in ~x in any such degree t polynomial viewed as a polynomial

over ~x (by substituting fi(~x) for wi). Thus, this leads to an annihilator if
(
m+t−1

t

)
> Mt. The generic model

then assumes that this inequality must also hold to find an annihilator.
Generic Annihilation Assumption (Informal) Given a set of polynomials F = {f1(~x), ..., fm(~x)} in n
variable ~x, let t∗ be the smallest t such that Mt (defined above) is less than

(
m+t−1

t

)
. Then, the time to

compute an annihilator of F is at least Ω(Mt∗).
A more formal statement in terms of ensemble of polynomials {F} will be given in the full version of the

paper.

5 The Groth16 SNARK

We now describe the pairing-based NIZK argument for quadratic arithmetic programs given by Groth
[Gro16]. Consider a relation R over the field Fp, defined by the QAP (`, {ui(X), vi(X), wi(X)}mi=0, t(X)),
with log(p) = poly(λ). The relation defines a language of statements (a1, · · · , a`) ∈ F`p and witnesses

(a`+1, ..., am) ∈ Fm−`p such that with a0 = 1:

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X).
A bilinear group system (G1,G2,GT , e, g, h) is generated with an Fp-bilinear operator e : G1 × G2 → GT

and generators g and h for G1 and G2 respectively. Next, the (Setup, Prove, Vfy, Sim) algorithms are
described as below. The notations [x]1, [y]2 denote gx ∈ G1, h

y ∈ G2 respectively.

Setup(R)→ (σ, τ) : Pick α, β, γ, δ, x← Z∗p. Define τ = (α, β, γ, δ, x) and compute σ = ([σ1]1, [σ2]2), where:

σ1 =

α, β, δ, {xi}n−1
i=0 ,

{
βui(x)+αvi(x)+wi(x)

γ

}`
i=0

,{
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

,
{
xit(x)
δ

}n−2

i=0

 , σ2 =
(
β, γ, δ, {xi}n−1

i=0

)
.

16

Prove(R, σ, a1, · · · , am)→ π : Pick r, s← Zp and compute π = ([A]1, [C]1, [B]2), where

A = α+

m∑
i=0

aiui(x) + rδ B = β +

m∑
i=0

aivi(x) + sδ

C =

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+Br − rsδ

Vfy(R, σ, a1, · · · , a`, π) : Check if:

[A]1 · [B]2 = [α]1 · [β]2 +
∑̀
i=0

ai

[
βui(x) + αvi(x) + wi(x)

γ

]
1

· [γ]2 + [C]1 · [δ]2

Sim(R, τ, a1, · · · , a`) : Pick A,B ← Zp and compute π = ([A]1, [C]1, [B]2) with:

C =
AB − αβ −

∑`
i=0 ai(βui(x) + αvi(x) + wi(x))

δ

5.1 Applicability (of Graded Encodings) to Groth16 SNARK

Once we encode elements with our multilinear map we have reduction modulo f(X) and modulo q, but
lose reduction modulo (the much smaller) p. That is, even if the numerators are equal modulo p, they can
represent different cosets of Rq. We therefore want both to think of elements of our QAP modulo f(X) and
to account for this lost reduction modulo p.

5.1.1 QAPs over Extension Fields and Rp.

We build our QAP modulo f(X) via the Chinese Remainder Theorem, as described in Section 2.1. The

circuit takes wire values in Fp and the QAP is first built over F(f)
p . Note that in this case the wire values c′k

will be the constant polynomials of the extension field, and these are represented directly as c′k in Rq.

5.1.2 Altering CRS.

To account for the lost reduction modulo p we note that any equivalence modulo p can be expressed as an
equivalence over the integers with a correction factor divisible by p. Thus, let U(x) = u0(x)+

∑
k∈[µ] ckuk(x) ∈

R[x] and similarly for V(x),W(x). Note that, from Definition 1 of a QAP

U(x)V(x)−W(x) = h(x)t(x) mod p. (4)

The worker can therefore calculate various ri(x) ∈ R[x] with coefficients in [−(p − 1), p − 1] such that the
following equation is exact over R[x],

U(x)V(x)−W(x) = h(x)t(x) +

η∑
i=1

pi · ri(x), (5)

for η < logp

(
3p4(1 + µ)

2
nd
)

= O(λ).

Hence for any s ∈ Rp we have equality in the following over R,

U(s)V(s)−W(s) = h(s)t(s) +

η∑
i=1

pi · ri(s). (6)

We therefore must give the worker the ability to communicate (as encodings) the ri(s) required to
make (5) equal over R. The ri(x) are polynomials over R of degree 2d − 2. This results in more powers sj

being encoded and included in CRS.
Finally, based on these changes we must calculate the largest numerator required to pass isZero and set

q accordingly. For the full description, see Section 7.

17

5.2 Pairings Based Annihilation Attack

We now show a annihilation attack on the above natural extension of Groth16. Moreover, this attack can
be demonstrated in the generic annihilation attack model of [MSZ16] described in Section 3.4.1.

Each level-1 encoding (of s) is of the form (s+rg)z−1 in the ring Rp, where r is known as the randomizer.
In particular, all the level-1 encodings, say N1 in number, given as part of the public key can be written as

e
(1)
i = (si + rig)z−1 (for i ∈ [1..N1]). Thus, each encoding has its own independent variable ri. The aim of

the annihilation attack is to use 2-linear pairings of level-1 encodings (along with given level-2 encodings) to
get level-2 encodings of zero. Such level-2 encodings of zero (say, of the form (r′g + r′′g2)z−2) can then be
multiplied by h = z2/g to cancel out g/z2, and obtain r′+ r′′g, which if both r′ and r′′ are small, is obtained
in the base polynomial ring R. Thus, the r′ correspond to the handles wk obtained by Type 1 queries in
Section 3.4.1. Now, if further algebraic combination of such quantities can even annihilate r′, we are then
left with quantities of the form r′′′g. This algebraic combination is the polynomial a(~w of Section 3.4.1. This
would be a small multiple of the secret g, which could potentially be used to find g. Hence, the goal of the
Adversary in annihilation attacks is to take algebraic combinations to annihilate r′ terms.

Now, looking at the form of r′ terms, we note that these were obtained either by pairings of level-1
encodings or directly from given level-2 encodings. In the former case, r′ has the form sirj + sjri (when

obtained from pairing of e
(1)
i and e

(1)
j).

Let’s say a level-2 encoding of zero is obtained by∑
k∈[N2]

bke
(2)
k +

∑
k1,k2∈[N1]

ak1,k2 ∗ e(1)
k1 e

(1)
k2 ,

the first sum ranging over given level-2 encodings (of quantities Sk) and the second sum ranging over level-1
encodings (of sk1 and sk2 resp.). This requires that∑

k

bkSk +
∑
k1,k2

ak1,k2sk1sk2 = 0 (7)

Suppose we get N linearly-independent level-2 encodings of zero. By linear-independence it is meant that
the coefficients of g (i.e. r′) in these level-2 encodings can be viewed as belonging to the number field
Q[X]/(Xn + 1). Note that r′ in any of these N level-2 encodings of zero has the form∑

k

bkrk +
∑
k1,k2

ak1,k2(mk1rk2 +mk2rk1)

At this point, it is best to characterize the Q-vector space of the coefficients of g (i.e. r′) more rigorously.
While, the encoding randomness rk1 etc. can be treated as independent variables, the expressions mk1

must be treated more carefully, as these are rational functions of many secret quantities. In fact, these are
polynomial expressions in δ, γ, α, β, α′, β′, x, y, except for terms δ−1 and γ−1.

Going back to upper bounding N above, we first note that the quantities mk1 that are encoded in the
CRS are δ, γ, α, β, α′, β′, ui(x), ui(y), θvi(x), θ′vi(y), and various other expression in encodings ec, ed and
et. We can view each encoded expression mk1 as a fresh variable, or treat the expressions as polynomials
over x, y and other Greek symbols. In the latter case the resulting equations (in terms of x, y etc.) will have
a high degree, and the annihilation heuristic would fail as the number of equations N is at most quadratic
in the number of encodings. Thus, we can focus on the number of (quadratic) equations of the form (7)
that can be obtained in variables that are of the form mk1. A naive calculation would imply that the kernel
would be of size zero as there are at most

(
m
2

)
+ m pairings of the m encodings, and there are m variables

(one for each encoding), and hence
(
m
2

)
+ m quadratic monomials. However, some of these monomials can

be same, e.g. xixj is same as xi
′
xj
′

if i+ j = i′+ j′. Thus, if there are N less total monomials than
(
m
2

)
+m,

then there is a possibility of N independent quadratic equations.
However, the way we choose the exponents of x (and also y) in the various encodings (i.e. as described

in Section A), N is at most sub-quadratic. We remark that even though in the encodings et, encodings for

18

all powers are given (and not just the subset as from Section A), any pairing of (θxit(x) + θ′yit(y)) with
(θxjt(x) + θ′yjt(y)) would yield terms of the type xiyj , and thus do not yield a contribution to the kernel as
there are precisely m2 different terms xiyj (which is the same as the number of such pairings). This is the
main reason our construction had to introduce the additional variable y 4. Hence, by the generic annihilation
model, the Adversary only has a super-polynomial time complexity attack.

Referring to requirement in inequality (3), it was observed there that this inequality is satisfied only if

d+ t ≥ n

m1/d
,

where m is the number of degree d polynomials in n variables, and t is the additional degrees required in
the Macaulay matrix. In other words, just the total number of monomials required would be

(
n+d+t+1

d+t

)
.

6 New Candidate Multivariate PRGs

Consider a finite field F and integer parameters m,n. Define the function f from Fm+n∗m to Fn(n−1)/2 as

f(x1, ..., xm, s1,1, ..., sn,m)(i1,i2) =
m∑
j=1

xi1j ∗ si2,j + xi2j ∗ si1,j ,

where the degrees i1, i2 range from one to n and i1 6= i2.
Now, let λ be a security parameter. Let F be a field with at least 2λ elements, The candidate pseudo-

random generator is given by function f with m at least
√
λ and n > m.

A more efficient candidate version of the PRG requires the s variables to be in {0, 1}. In this case the
PRF is a function from m∗ log |F|+m∗n bits to n(n−1)/2∗ log |F| bits. So, the field size can technically be
chosen as small as λ elements. In this work, we will not use this more efficient candidate, and it is described
here only for future applications.

6.1 Cryptanalysis

Since f is defined over a finite field F, any non-negligible probability correlation (over the uniform random
choice of the input) amongst the n(n− 1)/2 ∗ λ output bits is most likely to be a generic, i.e. an annihilator
of the output (multivariate) polynomials Ti1,i2 (for i1 6= i2)) defined by

Ti1,i2 =

m∑
j=1

xi1j ∗ si2,j + xi2j ∗ si1,j

We first consider a simpler set of polynomials, which are effectively built from symmetric power sum poly-
nomials, i.e. symmetric power sums of variables x1, ..., xm linearly combined using variables s1, ..., sn:

T ∗i1,i2 =

m∑
j=1

xi1j ∗ si2 + xi2j ∗ si1

= (si2 ∗
m∑
j=1

xi1j) + (si1 ∗
m∑
j=1

xi2j)

= si2 ∗ pi1(~x) + si1 ∗ pi2(~x),

where pk(~x) is the usual power-sum symmetric polynomial of degree k in the m variables ~x. Note that the
number of s variables have been reduced to n, as opposed to n ∗m in the definition of polynomials T .

4It is easy to check that if there was no y variable in the encodings et, we would get O(m2) equations by such
pairings of different components of et.

19

Also, recall the elementary symmetric polynomials ek(~x) :

ek(~x) =
∑

1≤j1<j2<...<jk≤m

xj1xj2 ...xjk

Note that ek for k > m is defined to be zero.
We have the famous Newton’s identity between the elementary symmetric polynomials and the power-

sum symmetric polynomials, in terms of matrix determinant as follows:

ek =
1

k!

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 ...
p2 p1 2 0 ...
...

. . .
. . .

pk−1 pk−2 ... p1 k − 1
pk pk−1 ... p2 p1

∣∣∣∣∣∣∣∣∣∣∣
Now, since em+1(~x) is zero, the above identity gives an annihilator of power-sum symmetric functions of
degree up to and including (m+ 1). However, if one requires homogeneous annihilation, i.e. an annihilation
polynomial that has all monomials of the same degree, then the above identity is not useful. Indeed, the
degree one s-variables in each monomial of the functions T ∗i1,i2 force any annihilation of T ∗i1,i2 to be a
homogeneous annihilation of the power-sum polynomials and hence the above identity does not work on T ∗.
Since the subject of power-sum symmetric polynomials is well-studied, to the best of our knowledge this is
the only possibility of getting an annihilation using known identities. In view of this, the only alternative to
get an annihilation is the general annihilation model attack of Section 4.1.

6.2 Generic Annihilation of polynomials T ∗ and T

6.2.1 Easy Annihilation of T ∗

We first investigate generic-annihilation of the simpler T ∗, (with i1 6= i2). In this case, an adversary may
just introduce new variables pi for power-sum of degree i, and we are then left with n(n− 1)/2 functions T ∗

in 2 ∗ n variables, i.e. n s-variables and n p-variables. Moreover, an adversary may restrict itself to consider
only the first d < n degrees, i.e. i1, i2 ≤ d, and this d can be much less than m =

√
λ.

Now, the number of monomials of degree t in T ∗i1,i2 (with i1, i2 < d, i1 6= i2) is
(
d(d−1)/2+t−1

t

)
. The

number Mt of monomials (in s and p variables) in any such degree t monomials is at most
(
d+t−1
t

)2
. Thus,

there will be an annihilator polynomial if(
d(d− 1)/2 + t− 1

t

)
>

(
d+ t− 1

t

)2

It is not difficult to see that this is satisfied for t = 4 and a small constant d, leading to constant time
annihilation of T ∗.

6.2.2 Generic Annihilation of T is hard

As opposed to the polynomials in T ∗, the polynomials in T involve more s variables, i.e. n ∗m in number.
Although, just as for T ∗, an adversary may try to get annihilation for polynomials restricted to degrees d or
less (for d ≤ n).

Case 1: First let d ≤ 2 ∗ m. Recall, each polynomial in T , say Ti1,i2 with i1, i2 ≤ d, now involve all m
x-variables, and they cannot be bundled together into a single p-variable as in the case of polynomials T ∗.
Thus, while the total number of monomials of degree t in the functions T remain

(
d(d−1)/2+t−1

t

)
, the total

number of monomials Mt (in s and x variables) will be much larger than in the case of T ∗ above. To estimate
a lower bound for Mt, in this Case 1, we ignore the x-variables and just count the number of monomials in

20

s-variables. The total number of s-variables is d∗m. And hence, Mt is at least
(
d∗m+t−1

t

)
. For,

(
d(d−1)/2+t−1

t

)
to exceed this bound on Mt, it must hold that d(d− 1)/2 > d ∗m, and thus, d > 2 ∗m. Hence, there is no
generic attack if d ≤ 2 ∗m.

Case 2: The case d > 2 ∗m > 2 ∗
√
λ and t < m2 < d ∗m/2. To get a lower bound on Mt, we restrict

the monomials to a subset of all potential monomials in x and s variables in the count Mt as follows: each
s variable may have degree at most one in any monomial, and for each such monomial (in the s-variables)
each x variable, say xi may have degree as high as d ∗ t. Since, high degrees in a single variable such as xi
may force the s-variable monomials to be of a restricted form, we will only allow an x variable a degree of
at most d. Thus, this restricted set of monomials (that contribute to Mt) is at least

(
d∗m
t

)
∗ dt. Thus, to get

an annihilator, the adversary would need(
d(d− 1)/2 + t− 1

t

)
>

(
d ∗m
t

)
∗ dt

Since d > 2 ∗m > 2 ∗ t, the above is satisfied approximately at

(d2/t)t > (d ∗m/t)t ∗ dt,

or for no such value of t.

Case 3: t > m2 > λ. At this point, just the number of monomials in the T variables is exponential in λ,
and hence the annihilation is not expected in any lesser time.

7 Enhanced Groth16 zkSNARK

Let η be as in Section 5.1, and the VC scheme follow Definition 2.3. Throughout add, neg,mul on encodings
are replaced with the conventional symbols, +,−, ·.

• crs ← KeyGen(F, 1λ). Let F be a function over Fp with ` I/O wires. Convert F into an arithmetic
circuit C and build the corresponding QAP Q = (t(x),U ,V,W) of size m and degree d over Rp as described
after Definition 1, except that the roots of t(x) are now chosen as powers of a primitive element. Recall
d = |Cmul|. Let Imid = {`+1, . . . ,m}, i.e. the non I/O indices. Let (InstGen, enc, isZero) be algorithms from
an encoding scheme (see Section 3). We run InstGen(1λ, 1κ, p) to obtain params = (N, q, κ, pzt, {Σi}i∈[κ])

and sk = (g, z). We will let n = 2d (with no confusion with degree of the defining polynomial of ring R,
which is denoted by N for this section).

Let T ⊆ [0..3n2] be the ”sum collision-free” subset as defined in Section A. Recall |T |= n, and let
ψ : [0..n − 1] → T be the sum-collision-free mapping. The polynomials ui(x), vi(x), wi(x) can still be
defined with the same semantics as before but by utilizing only the monomials xj , with j ∈ T as follows:
since each gate g now have values fg associated with it that is power of a common value (see above), the
resulting matrix that needs to be inverted to obtain each ui(x) is still a Vandermonde matrix, which is
well known to be invertible.

Let λ′ be a parameter defined from the security parameter λ (e.g. λ′ =
√
λ as required in Section 6).

Choose uniform δ′, γ′, and α′j , β
′
j , θ
′
j , x
′
j ← F(f)

p , for each j ∈ [0..λ′ − 1], and define δ = ϕ−1(δ′, 0), γ =

ϕ−1(γ′, 0), and further define αj = ϕ−1(α′j , 0), . . . , xj = ϕ−1(x′j , 0)}. Recall ϕ is the isomorphism underly-
ing the CRT decomposition of ring Z[X]/(f(X)). In the below, all encodings are level 1 (or level-2, when
stated) using params, so we suppress these in enc. Construct public crs as:

− eδ = enc(δ), eγ = enc(γ),

− eα = {(eα,j =) enc(αj)}j∈[0..λ′−1], eβ = {(eβ,j =) enc(βj)}j∈[0..λ′−1],

21

− ex = {(ex,i,j =) enc(x
ψ(i)
j)}

i∈[0..n−1],j∈[0..λ′−1]
,

− ew = {(ew,i,j =) enc(θjx
ψ(i)
j)}

i∈[0..n−1],j∈[0..λ′−1]
,

− ed =
{

(ed,i =) enc
(∑

j βjui(xj)+αjθjvi(xj)+θjwi(xj)

γ

)}
i∈[0,`]

,

− ec =
{

(ec,i =) enc
(∑

j βjui(xj)+αjθjvi(xj)+θjwi(xj)

δ

)}
i∈[`+1,m]

,

− et =

{
(et,i =) enc

(∑
j θjx

i
jt(xj)

δ

)}
i∈[0,2(n2−1)]

−
{
ep,i,k = Level-2-enc

(
pi(
∑
j θjx

k
j)
)}

i∈[0,η−1],k∈[0,2(n2−1)]

− Φ = Level-2-enc
(∑

j αjβj

)
• (y, πy) ← Compute(crs, u). On input u the worker evaluates the circuit for F to obtain y = F (u) and

the wire values {c′k}k∈Imid
in Fp ⊂ F(f)

p . From this obtain ck = ϕ−1(c′k, c
′
k) ∈ Rp. Note that base field

entries map via this isomorphism to constant polynomials in Rp. It solves for h(x) ∈ Rp[x]. It then solves

for ri(x) ∈ R[x], i ∈ [η] (using Equation 5) and lets ri(x) = ri,0 + · · · + ri,2(n2−1)x
2(n2−1), ri,j ∈ R with

coefficients in [−(p− 1), p− 1].

Let ēx,i,j =
∑n−1
i′=0 ui,i′ex,i′,j , where ui,i′ is the coefficient of xψ(i′) in ui(x), and let ēw,i,j =

∑n−1
i′=0 vi,i′ew,i′,j ,

where vi,i′ is the coefficient of xψ(i′) in vi(x), (note, ew,i′,j has a θ factor). Let ēy,i,j =
∑n−1
i′=0 ui,i′ey,i′,j ,

and let ēz,i,j =
∑n−1
i′=0 vi,i′ez,i′,j (note, ez,i′,j has a θ′ factor).

Let c be the vector of coefficients {ck}. Pick the quantities {r∗j , s∗j}j randomly and independently from

F(f)
p .

So, let the proof πy be computed as:

− Aj = eα,j + r∗j eδ + c> · ēx,·,j , for j ∈ [0..λ′ − 1],

− Bj = eβ,j + s∗jeδ + c> · ēw,·,j , for j ∈ [0..λ′ − 1],

− C =
∑
j

(
s∗jAj + r∗jBj − (r∗j s

∗
j)eδ

)
+
∑m
i=`+1 ciec,i +

∑2(n2−1)
i=0 hiet,i

− P =
∑η
i=1

∑2(n2−1)
k=0 ri,kep,i−1,k

• {0, 1} ← Verify(crs, u, y, πy). The verification of an alleged proof with elements {Aj , Bj}j∈[0..λ′−1], C, P

uses the public CRS crs. Using elements from crs compute Vio =
∑`
i=0 c̃ied,i and check the following,

which is effectively Equation 6.

isZero

params, C · eδ + Vio · eγ −
∑
j

Aj ·Bj + Φ− pP

 . (8)

• πy ← Sim(τ, u, y). Sample Aj , Bj , P
′ from the Gaussian distribution Dp∗Ig,p∗σ.

Compute vio =
∑`
i=0 c̃i

∑
j(βjui(xj) +αjθvi(xj) + θjwi(xj)) and c = δ−1(−vio +

∑
j AjBj −αjβj + pP ′).

Output simulated proof πy = (enc(Aj), enc(Bj), enc(c), enc(p
′)).

22

The correctness of the protocol is standard, but we need to bound the quantity M as required in lemma 3.
This is the largest numerator obtained of a level-two zero above during verification. Since, the encodings due
to the compensation method (see Section ??) have size n7/4+ε, the multiplication by scalars of the encodings

can cause M to go up. These come from {r∗j , s∗j}j chosen randomly from F(f)
p . Their quadratic contribution

in C, on pairing, cancels out in correct verification, so the main contribution to M is from pairing-sum of
Aj and Bj which has the term c> · ēx,·,j . Each component of c is itself in Fp (and not in the extension field)
This leads to an upper bound of

M < λ′ ∗
(
p ∗max(n, d) ∗ n7/4+ε

)2

The soundness proof is given in Section 7.1 and 7.2 and is based on the generic model given in Section 4
and the candidiate PRG assumption of Section 6. The statistical zero-knowledge proof follows from the
smoothing lemma of [MR04].

Proof Size For a circuit C defined over Fp, the proof size above is 2 · λ′ encodings in Rq. From the
discussion after lemma 3, q = λ12+8c/3, where |C|= λc. Thus the proof size is λ1/2 · n · log q ≤ λ3/2 log2 q
≤ λ3/2 ∗ (12 + 8/3 ∗ log |C|/log λ) log λ ≤ λ3/2 ∗ (12 log λ+ 8/3 ∗ log |C|) = O(log |C|). More concretely, since
the verification circuit is linear in F2 (because q is power of two), one can require the prover to just prove
that the verification equation holds for the above verification equation treated as a boolean circuit, i.e. with
p = 2, and with witness the above proof components. Recall, from Section ??, for p = 2, q drops to λ9+8c′/3,
where λc

′
is the size of the verification circuit. Let us estimate the size of the above verification circuit

treated as a boolean circuit. The above verification requires pairing, i.e. multiplication of two Rq encodings
or polynomials, followed by a zero test, which itself requires multiplication by the zero-testing parameter,
another element in Rq. For polynomial multiplication we can use Number Theory Transforms, but since
the underlying defining polynomial is not cyclotomic, this requires a factor four blowup in degree. Thus, we
require 4∗n∗ log n multiplications of integers of size at most 2∗ log q (possibly using residue-number-system).
However, we can require the prover to provide the NTT version of the encodings. Thus the verification circuit
size can be estimated to be O(16 ∗ λ′ ∗ n ∗ log q log log q, which is about 16 ∗ λ3/2 log2 λ). Thus, c′ can be
conservatively taken to be two. Thus, after one recursion, q can be taken to be λ15, and hence the final proof
size is 225 ∗ λ3/2 log2 λ. For λ = 128, this amounts to a proof size of 225 ∗ (128)3/2 ∗ 50 ≈ 16Mbits.

One can also employ Random Oracle based schemes recursively, e.g. Aurora [BCR+19], that have proof
size O(log2 |C|) but with small constants in the big-O notation. Since our verification circuit has size λ2,
this can lead to a rather short sized proof, albeit in a Random-Oracle based scheme.

7.1 Proof Sketch of Soundness

In the next section we establish that generic annihilation attacks do not work against our construction. This
is a property that just the CRS needs to provide, as the CRS setup phase is the only phase where the ideal g
is used and short vectors are sampled. The prover and verifier algorithms just use these public parameters to
derive other elements, but do not produce any “fresh” encodings. In other words, annihilation resistance is
an intrinsic property of the CRS. What remains now is to prove the VC security property, namely soundness,
which we proceed to do now. Soundness is proved in the generic bilinear group model, just as in Groth16,
although the proof is much more intricate. We establish this with a sequence of lemmas.

Lemma 8 The set of polynomials W consisting of all polynomials {wi(x)}i∈[l+1..m] and {xit(x)}i∈[0..3n2−1]

are linearly independent over the field F(f)
p .

Proof: Let ci, dj ∈ F(f)
p , i ∈ [l + 1..m], j ∈ [0..3n2 − 1], be such that

m∑
i=l+1

ci ∗ wi(x) +

3n2−1∑
j=0

dj ∗ xjt(x) = 0.

23

We now show that all ci, dj must be zero. Note each wi(x) is defined to be a polynomial that evaluates to
one at each (unique) βi such that βi is the root of t(x) corresponding to the unique gate that has output wire
numbered i, and evaluates to zero at all other β that are roots of t(x). Then, since βi is a root of t(x), we
have that the above sum evaluates to ci at βi, which forces ci to be zero. Thus, the above sum is essentially

h(x)t(x), for some polynomial h(x) of degree 3n2 − 1. But, for this polynomial to be zero over F(f)
p , h(x)

must be identically zero as F(f)
p [x] is a unique factorization domain. This forces all dj to be zero as well. �

Let ζ stand for the vector of 2n variables {αj , βj}j∈[0..n−1]. Assume that the adversarially generated Aj

(for each j) contains a linear term encoding aj(ζ) = ~aj
> · ζ (using eα, eβ in the crs) Similarly, suppose Bj

contains a linear term encoding bj(ζ) = ~bj
>
· ζ, Of course, Aj is allowed to have other linear combinations

of the level-one encodings in the crs, but the contributions from encodings of ζ is stipulated to be aj(ζ).

Now, arrange in a matrix F the columns {~bj , ~aj}j∈[0..n−1].
Let In be the (n× n) identity matrix. Define a 2n× 2n matrix σ as follows

σ = In ⊗
(

0 1
1 0

)
(9)

Note that σ is orthogonal and symmetric. Thus σ = σ> = σ−1.

Lemma 9 If the verification equation holds, then with high probability the matrix F is invertible.

Proof: If the verification holds, then the encoding Φ of
∑
j αjβj must be cancelled by other terms. A quick

inspection of the remaining terms in the verification equations shows that this cancellation can only come
from

∑
j Aj ·Bj . In particular, by Schwartz-Zippel theorem, it must hold that∑

j

αjβj =
∑
j

aj(ζ) ∗ bj(ζ).

Since
∑
j αjβj can be written as 1

2 · ζ
> · σ · ζ, the above is equivalent to the requirement that

ζ> · σ · ζ = ζ> · F · σ · F> · ζ,

and again by Schwartz-Zippel, with high probability the following holds

σ = F · σ · F>. (10)

The claim follows by taking determinant of both sides, and noting that determinant of σ is non-zero, and
det (F>) = det F, and that determinant commutes with (square-) matrix product. �

Lemma 10 In an affine proof that passes the verification equation, the elements Aj , Bj (for all j ∈ [0..n−1])
can have no linear contributions from ec,i and et,i.

Proof:
Fix a j∗ ∈ [0..n− 1].
Note that given the level-one encodings in the crs, the only monomials in powers of xj∗ and θj∗/δ come

from θj∗wi(xj∗)/δ (in encodings ec,i) and θj∗x
i
j∗t(xj∗)/δ (in encodings et,i). Let the linear contributions to

Aj from eci and et,i be given by coefficients Ad,i,j and At,i,j respectively. Similarly, the linear contributions
to B are given by coefficients Bd,i,j and Bt,i,j . Then the net contribution to the verification equation with
monomials in powers of xj∗ and (linear in) ζ ∗ θj∗/δ is∑

j

(∑
Ad,i,jθj∗wi(xj∗)/δ +

∑
At,i,jθj∗x

i
j∗t(xj∗)/δ

)
∗ bj(ζ) +

∑
j

(∑
Bd,i,jθj∗wi(xj∗)/δ +

∑
Bt,i,jθj∗x

i
j∗t(xj∗)/δ

)
∗ aj(ζ)

24

If the vector xj∗ denotes the list of monomials {xi+kj∗ }i∈I,k∈[0..n2−1], the set of polynomialsWj∗ (consisting of

all polynomials {wi(xj∗)}i∈[l+1..m] and {xij∗t(xj∗)}i∈[0..n2−1]) can be written as W·xj∗ . Lemma 8 showed that
W is invertible (it is easy to check that it is a square matrix). Next we write the vector of coefficients Ad,i,j
appended by coefficients At,i,j as ~Aj , and similarly the vector of coefficients Bd,i,j appended by coefficients

Bt,i,j as ~Bj , and so forth Then the above expression can be written as∑
j

~A>j Wxj∗ ∗ bj(ζ) ∗ θj∗/δ + ~B>j Wxj∗ ∗ aj(ζ) ∗ θj∗/δ

Note that “∗” denotes polynomial multiplication. However, since the polynomials are over different set of
variables, namely xj∗ and ζ ∗ θj∗/δ, the above can be written as a tensor product as follows. We first write

each of aj(ζ), bj(ζ) as ~a>j · ζ, ~b>j · ζ. Then the above becomes∑
j

~A>j Wxj∗ ∗ (~b>j · ζ ∗ θj∗/δ) + ~B>j Wxj∗ ∗ (~a>j · ζ ∗ θj∗/δ)

=∑
j

~A>j (~b>j ⊗W) · (ζ ∗ θj∗/δ ⊗ xj∗) + ~B>j (~a>j ⊗W) · (ζ ∗ θj∗/δ ⊗ xj∗)

If we now concatenate all the coefficients ~Aj , ~Bj into a single vector ~D, the above becomes

~D>(F> ⊗W) · (ζ ∗ θj∗/δ ⊗ xj∗)

Since F is invertible by lemma 9, and so is W, this then implies that if the above is zero then ~D is zero. �

Lemma 11 In an affine proof that passes the verification equation, the elements Aj , Bj (for all j ∈ [0..n−1])
can have no linear contributions from ed,i or eγ .

Proof: The proof for no linear contributions from ed,i is same as the proof of previous lemma 10, but with
monomials of powers of xj∗ and θj∗/δ replaced by monomials of powers of xj∗ and θj∗/γ. For eγ , note that
as in the proof of lemma 10, the linear terms aj(ζ), bj(ζ) in Aj , Bj are linearly independent by lemma ??.
Since, there is no other way to generate γ · ζ in the verification equation, the contributions from eγ must be
zero in all of Aj , Bj . �

Lemma 12 In an affine proof that passes the verification equation, the element C can have no linear con-
tributions from ed,i and eγ .

Proof: Since there is no linear contribution from eγ in any of Aj , Bj by lemma 11, any linear contribution
from eγ to C would yield a encoding of (linear in) δγ in the verification equation. Since it cannot be canceled
by any other term in the verification equation, this contribution must be zero. Similar consideration with
δ/γ shows that there can be no non-trivial linear contribution from ed,i to C. Further, since wi(xj) are
linearly independent by lemma 8, there can in fact be no linear contribution from ed,i. �
Proof: (Soundness) By above lemmas, it follows that Aj , Bj are of the form

Aj =
(
~A>x,j · ex + ~A>w,j · ew

)
+ ~a>j · ζ + ra,jeδ

Bj =
(
~B>x,j · ex + ~B>w,j · ew

)
+~b>j · ζ + rb,jeδ

Now, write A as the 2 ∗ n2 × 2 ∗ n matrix with columns comprising of { ~Ax,j , ~Bx,j}. Similarly, let E be

the vector (ex, ew). Let F be the 2n× 2n matrix with columns {~bj ,~aj}j (note the permuted order). Finally,
let the vector {ra,j , rb,j}j be denoted by R.

25

Then, the above is written more succinctly as

[...Aj Bj ...]
> = A> · E + F> · ζ + eδR

Further, by lemma 12, C is of the form

C =
∑

c̃iec,i +
∑

hiet,i +
(∑

Cx,i,jex,i,j + ...+
∑

Cw,i,jew,i,j

)
+ ~c> · ζ + rceδ,

for some c̃i, hi, Cx,i,j , ..., Cw,i,j and ~c, rc. The vector of c̃i values (including those for input and output wires)
will be written as c̃. Now, given that the verification equation must pass, and by matching coefficients of
various monomials it follows that ∑

Cx,i,jex,i,j + ...+
∑

Cw,i,jew,i,j

= R> · A · E, (11)

~c> · ζ = R>F> · ζ, (12)

rc =
∑
j

raj ∗ rb,j , (13)

and finally (modulo p)

Φ + δ∗
m∑

i=l+1

c̃iec,i + δ ∗
n−2∑
i=0

hiet,i + γ ∗
l∑
i=0

c̃ied,i

=
∑
j

(
~A>x,j · ex + ~A>w,j · ew + ~a>j · ζ

)
∗
(
~B>x,j · ex + ~B>w,j · ew +~b>j · ζ

)
(14)

Let u(x) stand for the vector of polynomials ui(x). Similarly, define v(x) and w(x). Further, instead of E,
define X as the vector with 2n components {u(xj), θjv(xj)} (i.e. 2n2 expanded components). Also, redefine

the matrix A as the 2∗n2×2∗n matrix with columns comprising of { ~A′x,j , ~B′x,j}, where the primed vectors
are now coefficients in terms of X instead of E. Also, let h(x) be the polynomial with coefficients hi. Since
the encodings are additively homomorphic, the above equation (14) then imply the requirement (mod p)

X> · (σ ⊗ c̃) · ζ +
∑
j

θjw(xj)
> · c̃ + h(xj)θjt(xj) +

∑
j

αjβj

=
∑
j

(
X> · A2j + ~a>j · ζ

)
∗
(
X> · A2j+1 +~b>j · ζ

)
(mod p) (15)

By Schwartz-Zippel5, all the variables {xj , αj , βj , θj}, can be treated as independent variables. Thus,
the above equation can be seen as polynomial equation in these variables over the underlying ring Zp. Thus,
the above can be broken down into separate requirements∑

j

αjβj =
∑
j

(ζ> · ~aj) ∗ (~b>j · ζ) (16)

∑
j

θj · (w(xj)
> · c̃ + h(xj)t(xj)) =

∑
j

(
X> · A2j

)
∗
(
X> · A2j+1

)
(17)

(X> · (σ ⊗ c̃) · ζ) =
∑
j

(
X> · A2j ∗~b>j · ζ

)
+
(
X> · A2j+1 ∗ ~a>j · ζ

)
(18)

5slight variant for rings Zp, where p is power of prime

26

We have already encountered and used equation (16) in lemma 9, which was used to show that F is
invertible. Now, the last equation (18) implies

σ ⊗ c̃ = A · F>. (19)

which is equivalent to
A = (σ ⊗ c̃) · F−> = (σ · F−>)⊗ c̃. (20)

Now, since the right hand side of equation (17) is a symmetric bilinear form in X, it can be re-written as∑
j

θj · (w(xj)
> · c̃ + h(xj)t(xj))

=
(
X> · A · σ · A> · X

)
=
(
X> · (σ · F−>)⊗ c̃ · σ · (F−1 · σ)⊗ c̃> · X

)
=
(
X> · (σ · F−>)⊗ c̃ · (σ ⊗ 1) · (F−1 · σ)⊗ c̃> · X

)
=
(
X> · ((σ · F−>) · σ · (F−1 · σ))⊗ (c̃ · c̃>) · X

)
,

where we used the fact that for arbitrary matrices A,B,C,D (of compatible sizes) it is the case that (A ⊗
B)(C ⊗D) = (AC ⊗BD). Further, using (10), which impies that F−> = σ−1 ·F ·σ, and using the fact that
σ−1 = σ, the above simplifies to∑

j

θj · (w(xj)
> · c̃ + h(xj)t(xj)) =

(
X> · (σ)⊗ (c̃ · c̃>) · X

)
.

Now, we will write the polynomial u(x)> · c̃ as U(x) and v(x)> · c̃ as V(x). Then, X> · c̃ is the vector
{U(xj), θjV(xj)}j . Further, equating monomials involving powers of x1 and (linear in) θ1, we get from above
that

w(x1)> · c̃ + h(x1)t(x1) = U(x1)V(x1) mod p

= (u(x1)>c̃) ∗ (v(x1)>c̃) mod p.

Noting that c̃ is consistent with input and output wires, the proof of soundness follows from property of
QAP. �

7.2 Proof of Security against Annihilation Attacks

7.2.1 Level Two Zeroes obtained from the CRS.

In this section, we study the (encodings of) level-two zeroes that can be obtained identically from the
CRS elements. Since these would be encodings of zero, many such encodings can be used to annihilate
the coefficient of g in the encoding, and hence obtain an element in the ideal 〈g〉 (after multiplying by the
provided zero-testing element).

Since the verification test itself provides instances of encodings of zero, we will now characterize all
possible encodings of zero that can be obtained identically from the CRS elements. Note, we restrict
ourselves to obtaining level-two zeroes, as the zero-testing element is required to cancel out the secret z, and
the provided zero-tester can only be used gainfully on level-two zero encodings.

This restriction on how only level-two zeroes can be used for annihilation, and that these level two
zeroes are only obtained by pairings, fits with type I queries of the Miles-Sahai-Zhandry weak multilinear
map model.

First point of observation is that the encodings of powers of xj , i.e. ex, cannot by itself be used to obtain
encodings of zero as ψ is a sum-collision-free mapping. So, the first thing to analyze is the encodings that can

27

be paired so as to be useful in obtaining a level-two zero. In particular, each such pairing will result in terms
that employ the auxiliary variables α, β, γ, δ, θ or their reciprocal or none of these. So, for all the potential
monomials that can be obtained from these (including one), the zeroes must be obtained individually for
each such monomial. We will refer to these various monomials, such as αj/γ, as auxiliary monomials.

1. The pairing of ex with itself will have auxiliary monomial one. As we will see, no other pairing has
auxiliary monomial one. Similarly, pairing of ex with any of ec, ed or et, obtains auxiliraly monomials
that cannot be obtained by any other way of pairing.

2. The pairing of ew with itself will have auxiliary monomials θjθj′ . As we will see, no other pairing
has such auxiliary monomials. Similarly, pairing of ew with any of ec, ed or et, obtains auxiliraly
monomials that cannot be obtained by any other way of pairing.

3. The pairing of ex and ew will have auxiliary monomials θj . These can also be obtained by pairing eγ
with ec or pairing eδ with et or ed. Moreover, the level two encodings ep also have the same auxiliary
monomials,

4. Pairing of eα with ew and pairing of eβ with ex also obtain auxiliary monomials that are obtained in
the previous item.

5. The Pairing of eαj
and eβj

obtain auxiliary monomials that are the same in the given level two
encoding Φ.

From the above it is clear that any level-two zero that can be obtained will actually have a structure
similar to the verification test. More precisely, it will be of the form∑

j

Aj ·Bj + Φ− pP + C · eδ +D · eγ ,

where

− Aj and Bj are a linear combination of eα, eβ , eδ and ēx. Here j may range beyond [n], but it is worth
proving that it suffices to only consider j ∈ [n].

− C is a linear combination of eα, eβ , eδ, ec, and et, ēx and ēw.

− P is a linear combination of ep,i,k,

− D is a linear combination of ed.

From the above consideration, as in Section 7.1, let Aj , Bj be of the form

Aj =
(
~A>x,j · ex + ~A>w,j · ew

)
+ ~a>j · ζ + ra,jeδ

Bj =
(
~B>x,j · ex + ~B>w,j · ew

)
+~b>j · ζ + rb,jeδ

Now, write A as the 2n2 × 2n matrix with columns comprising of { ~Ax,j , ~Bx,j}. Similarly, let E be the

vector (ex, ew). Let F be the 2n× 2n matrix with columns {~bj ,~aj}j (note the permuted order). Finally, let
the vector {ra,j , rb,j}j be denoted by R.

Then, the above is written more succinctly as

[...Aj Bj ...]
> = A> · E + F> · ζ + eδR

Again by above considerations, let C be of the form

C =
∑

c̃iec,i +
∑

hiet,i +
(∑

Cx,i,jex,i,j + ...+
∑

Cw,i,jew,i,j

)
+ ~c> · ζ + rceδ,

28

for some c̃i, hi, Cx,i,j , ..., Cw,i,j and ~c, rc. The vector of c̃i values (including those for coefficients of ed coming
from D) will be written as c̃. Now, given that we get a zero, and by matching coefficients of various
monomials it follows that ∑

Cx,i,jex,i,j + ...+
∑

Cw,i,jew,i,j

= R> · A · E, (21)

~c> · ζ = R>F> · ζ, (22)

rc =
∑
j

raj ∗ rb,j , (23)

and finally (modulo p)

Φ + δ∗
m∑

i=l+1

c̃iec,i + δ ∗
n−2∑
i=0

hiet,i + γ ∗
l∑
i=0

c̃ied,i

=
∑
j

(
~A>x,j · ex + ~A>w,j · ew + ~a>j · ζ

)
∗
(
~B>x,j · ex + ~B>w,j · ew +~b>j · ζ

)
(24)

Let u(x) stand for the vector of polynomials ui(x). Similarly, define v(x) and w(x). Further, instead of E,
define X as the vector with 2n components {u(xj), θjv(xj)} (i.e. 2n2 expanded components). Also, redefine

the matrix A as the 2∗n2×2∗n matrix with columns comprising of { ~A′x,j , ~B′x,j}, where the primed vectors
are now coefficients in terms of X instead of E. Also, let h(x) be the polynomial with coefficients hi. Then,
as in the proof of soundness, it follows that

σ ⊗ c̃ = A · F>. (25)

which is equivalent to
A = (σ ⊗ c̃) · F−> = (σ · F−>)⊗ c̃. (26)

7.2.2 Formal expressions of coefficients of g in level-two zeroes

Since, in this section we will be looking for coefficients of g in the encoding of zeroes obtained above, we
introduce terminology to represent the randomness used in the encodings. Recall, an encoding of a is
(a + s · g)/z. Thus, the variables representing the randomness s, are conveniently represented by boldface
sx to represent the whole set sx,i,j , similar to how ex stands for the set ex,i,j . We extend this notation to
all encodings such as sc etc. Also, for purpose of analysis in this section, we will ignore the term z−1 in the
encoding. Thus,

ex = {(ex,i,j =) enc(x
ψ(i)
j)}i,j

= {xψ(i)
j + sx,i,j · g}i,j

Thus, while in Section 7.1,
∑
j(ζ
> ·~aj) ∗ (~b>j · ζ) was equivalently written as half of ζ> · F · σ · F> · ζ, we

now include the ”g” term in the encoding to this equation and then we obtain the expression

(ζ + sζg)> · F · σ · F> · (ζ + sζg)

For convenience, we will denote the payload in encodings ec as yc, and similarly for other encodings. In
other words, ec = yc + scg. So, while the equation 24 above must hold to obtain an encoding for zero, the

29

coefficient of g in this encoding of zero will be

sΦ + sδ∗
m∑

i=l+1

c̃iyc,i + δ ∗
m∑

i=l+1

c̃isc,i+

sδ ∗
n−2∑
i=0

hiyt,i + δ ∗
n−2∑
i=0

hist,i+

sγ ∗
l∑
i=0

c̃iyd,i + γ ∗
l∑
i=0

c̃isd,i−∑
j

(
~A>x,j · sx + ~A>w,j · sw + ~a>j · sζ

)
∗
(
~B>x,j · yx + ~B>w,j · yw +~b>j · ζ

)
−

∑
j

(
~A>x,j · yx + ~A>w,j · yw + ~a>j · ζ

)
∗
(
~B>x,j · sx + ~B>w,j · sw +~b>j · sζ

)
(27)

We make the task of the Adversary easier, by focusing only on the terms involving sx, sw, sζ , as these
must be annihilated as well. Then the above expression simplifies to∑

j

(
~A>x,j · sx + ~A>w,j · sw + ~a>j · sζ

)
∗
(
~B>x,j · yx + ~B>w,j · yw +~b>j · ζ

)
+

∑
j

(
~A>x,j · yx + ~A>w,j · yw + ~a>j · ζ

)
∗
(
~B>x,j · sx + ~B>w,j · sw +~b>j · sζ

)
(28)

Now, writing the encoding for X as X + Sg, the above can be written more succinctly as

X> · (AσA>) · S+

ζ> · (FA>) · S+

s>ζ · (FA
>) · X+

s>ζ · (FσF
>) · ζ (29)

Since, from the requirements imposed for obtaining zero encodings, AσA> = σ⊗(c̃c̃>) and FA> = σ⊗c̃>,
and also FσF> = σ, the above simplifies to

X> · (σ ⊗ (c̃ c̃>)) · S + ζ> · (σ ⊗ c̃>) · S + s>ζ · (σ ⊗ c̃>) · X + s>ζ · σ · ζ (30)

Now, note that the adversary may choose to take c̃ = 0, in which case the Adversary obtains only a
single expression s>ζ · σ · ζ, i.e. independent of A. On the other hand, with many different c̃ 6= 0, he may
take linear combinations of the above expressions to obtain

X> · (σ ⊗ C̃) · S,

where C̃ is any n× n symmetric matrix, and in fact all n× n elementary symmetric matrices. In the above,
we have ignored the terms involving sζ , as it only makes the task of the Adversary easier.

For example, if C̃ is the elementary diagonal matrix (hence, symmetric) with only the i-th diagonal entry
on and equal to one, the above simplifies to∑

j

(ui(xj) + θjvi(xj))sx,i,j

30

Further if the elementary symmetric matrix C̃ has only the (i1, i2)-th and (i2, i1)-th entry on and one, we
get the expression ∑

j

(ui1(xj) + θjvi1(xj))sx,i2,j + (ui2(xj) + θjvi2(xj))sx,i1,j

We can now ignore θj terms, to make the task easier for the adversary, and also take ui(xj) = x
ψ(i)
j or

even simpler, ui(xj) = xij . Then the above simplifies to (call these terms Ti1,i2)

Ti1,i2 =
∑
j

xi1j sx,i2,j + xi2j sx,i1,j (31)

Employing the PRG Assumption to rule out Annihilation Since the multivariate polynomials
above in equations 31 are the same as the defining polynomials of the candidate PRG from section 6, the
assumption that the polynomials form a PRG implies that there is no efficient annihilator of equations 31.

Acknowledgements

The authors would like to thank Craig Gentry and Shai Halevi for initial discussions. In particular, they
broached the idea of bootstrapping the verification circuit, which is a rather simple circuit for lattice based
schemes.

References

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas, A subfield lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes, CRYPTO 2016, Part I
(Matthew Robshaw and Jonathan Katz, eds.), LNCS, vol. 9814, Springer, Heidelberg, August
2016, pp. 153–178. B.0.1

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Kr-
ishnan Thyagarajan, Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively
composable - (extended abstract), CRYPTO 2022, Part II, LNCS, Springer, Heidelberg, August
2022, pp. 102–132. 1, 3

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth, Succinct
non-interactive arguments via linear interactive proofs, TCC 2013 (Amit Sahai, ed.), LNCS,
vol. 7785, Springer, Heidelberg, March 2013, pp. 315–333. 1

[BCLv17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal,
NTRU prime: Reducing attack surface at low cost, SAC 2017 (Carlisle Adams and Jan Ca-
menisch, eds.), LNCS, vol. 10719, Springer, Heidelberg, August 2017, pp. 235–260. 2.1, 3.3

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward, Aurora: Transparent succinct arguments for R1CS, EUROCRYPT 2019,
Part I (Yuval Ishai and Vincent Rijmen, eds.), LNCS, vol. 11476, Springer, Heidelberg, May
2019, pp. 103–128. 1, 7

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner, Interactive oracle proofs, TCC 2016-
B, Part II (Martin Hirt and Adam D. Smith, eds.), LNCS, vol. 9986, Springer, Heidelberg,
October / November 2016, pp. 31–60. 1

[BEF+17] Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and Paul Kirch-
ner, Computing generator in cyclotomic integer rings - A subfield algorithm for the principal ideal
problem in (1 2) and application to the cryptanalysis of a FHE scheme, EUROCRYPT 2017,

31

Part I (Jean-Sébastien Coron and Jesper Buus Nielsen, eds.), LNCS, vol. 10210, Springer, Hei-
delberg, April / May 2017, pp. 60–88. B.0.2

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (Leveled) fully homomorphic en-
cryption without bootstrapping , ITCS 2012 (Shafi Goldwasser, ed.), ACM, January 2012,
pp. 309–325. 3.2

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu, Lattice-based SNARGs and their ap-
plication to more efficient obfuscation , EUROCRYPT 2017, Part III (Jean-Sébastien Coron
and Jesper Buus Nielsen, eds.), LNCS, vol. 10212, Springer, Heidelberg, April / May 2017,
pp. 247–277. 1

[BISW18] , Quasi-optimal SNARGs via linear multi-prover interactive proofs , EUROCRYPT 2018,
Part III (Jesper Buus Nielsen and Vincent Rijmen, eds.), LNCS, vol. 10822, Springer, Heidelberg,
April / May 2018, pp. 222–255. 1

[BS16] Jean-François Biasse and Fang Song, Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields , 27th SODA (Robert
Krauthgamer, ed.), ACM-SIAM, January 2016, pp. 893–902. B.0.2

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev, Recovering short generators of
principal ideals in cyclotomic rings , EUROCRYPT 2016, Part II (Marc Fischlin and Jean-
Sébastien Coron, eds.), LNCS, vol. 9666, Springer, Heidelberg, May 2016, pp. 559–585. 3.3,
B.0.2

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd, Soliloquy: A cautionary tale ,
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/

S07_Groves_Annex.pdf, 2014. B.0.2

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee, An algorithm for ntru problems and
cryptanalysis of the ggh multilinear map without a low-level encoding of zero , LMS Journal of
Computation and Mathematics 19 (2016), no. A, 255–266. B.0.1

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir, Efficient algorithms for
solving overdefined systems of multivariate polynomial equations , EUROCRYPT 2000 (Bart
Preneel, ed.), LNCS, vol. 1807, Springer, Heidelberg, May 2000, pp. 392–407. 4, 4

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta, Lattice-based succinct arguments from
vanishing polynomials - (extended abstract) , CRYPTO 2023, Part II, LNCS, Springer, Heidel-
berg, August 2023, pp. 72–105. 3

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee, Obfuscation
from low noise multilinear maps , Cryptology ePrint Archive, Report 2016/599, 2016, https:
//eprint.iacr.org/2016/599. 3.3

[DGG+18] , Obfuscation from low noise multilinear maps , INDOCRYPT 2018 (Debrup
Chakraborty and Tetsu Iwata, eds.), LNCS, vol. 11356, Springer, Heidelberg, December 2018,
pp. 329–352. 3.2.2

[DP18] Léo Ducas and Alice Pellet-Mary, On the statistical leak of the GGH13 multilinear map and
some variants , ASIACRYPT 2018, Part I (Thomas Peyrin and Steven Galbraith, eds.), LNCS,
vol. 11272, Springer, Heidelberg, December 2018, pp. 465–493. 2.1.2, 3.2.2, 3.3, 2, 3.4, B.0.3,
B.3

[EHKS14] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song, A quantum algorithm for
computing the unit group of an arbitrary degree number field , 46th ACM STOC (David B.
Shmoys, ed.), ACM Press, May / June 2014, pp. 293–302. B.0.2

32

https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://eprint.iacr.org/2016/599
https://eprint.iacr.org/2016/599

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi, Candidate multilinear maps from ideal lattices
, EUROCRYPT 2013 (Thomas Johansson and Phong Q. Nguyen, eds.), LNCS, vol. 7881,
Springer, Heidelberg, May 2013, pp. 1–17. (document), 1, 2.3, 3, 3.2.2, 3.2.4, 3.3, 3.4, B.0.3,
B.2, B.3

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova, Quadratic span programs
and succinct NIZKs without PCPs , Cryptology ePrint Archive, Report 2012/215, 2012, https:
//eprint.iacr.org/2012/215. 1

[GGPR13] , Quadratic span programs and succinct NIZKs without PCPs , EUROCRYPT 2013
(Thomas Johansson and Phong Q. Nguyen, eds.), LNCS, vol. 7881, Springer, Heidelberg, May
2013, pp. 626–645. 2.2, 2.2

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark
Zhandry, Secure obfuscation in a weak multilinear map model , TCC 2016-B, Part II (Martin
Hirt and Adam D. Smith, eds.), LNCS, vol. 9986, Springer, Heidelberg, October / November
2016, pp. 241–268. 1

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù, Lattice-based zk-SNARKs
from square span programs , ACM CCS 2018 (David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, eds.), ACM Press, October 2018, pp. 556–573. 1

[Gol11] Oded Goldreich, Candidate one-way functions based on expander graphs , Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation: In
Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi,
Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil
Vadhan, Avi Wigderson, David Zuckerman (2011), 76–87. 1

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan, Trapdoors for hard lattices and new
cryptographic constructions , 40th ACM STOC (Richard E. Ladner and Cynthia Dwork, eds.),
ACM Press, May 2008, pp. 197–206. 3.2.2

[Gro16] Jens Groth, On the size of pairing-based non-interactive arguments , EUROCRYPT 2016,
Part II (Marc Fischlin and Jean-Sébastien Coron, eds.), LNCS, vol. 9666, Springer, Heidelberg,
May 2016, pp. 305–326. 1, 2.3, 5

[GW11] Craig Gentry and Daniel Wichs, Separating succinct non-interactive arguments from all falsifi-
able assumptions , 43rd ACM STOC (Lance Fortnow and Salil P. Vadhan, eds.), ACM Press,
June 2011, pp. 99–108. 1

[HJ16] Yupu Hu and Huiwen Jia, Cryptanalysis of GGH map , EUROCRYPT 2016, Part I (Marc
Fischlin and Jean-Sébastien Coron, eds.), LNCS, vol. 9665, Springer, Heidelberg, May 2016,
pp. 537–565. 3.2.2, B.0.2

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai, Indistinguishability obfuscation from well-founded
assumptions , ACM Press, 2021, pp. 60–73. 1

[KF17] Paul Kirchner and Pierre-Alain Fouque, Revisiting lattice attacks on overstretched NTRU pa-
rameters , EUROCRYPT 2017, Part I (Jean-Sébastien Coron and Jesper Buus Nielsen, eds.),
LNCS, vol. 10210, Springer, Heidelberg, April / May 2017, pp. 3–26. B.0.1

[Kil92] Joe Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract) , 24th
ACM STOC, ACM Press, May 1992, pp. 723–732. 1

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang, How to delegate computations publicly , 51st
ACM STOC (Moses Charikar and Edith Cohen, eds.), ACM Press, June 2019, pp. 1115–1124.
1

[Mic00] Silvio Micali, Computationally sound proofs , SIAM J. Comput. 30 (2000), no. 4, 1253–1298. 1

33

https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2012/215

[MR04] Daniele Micciancio and Oded Regev, Worst-case to average-case reductions based on Gaussian
measures , 45th FOCS, IEEE Computer Society Press, October 2004, pp. 372–381. 7

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry, Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13 , CRYPTO 2016, Part II (Matthew
Robshaw and Jonathan Katz, eds.), LNCS, vol. 9815, Springer, Heidelberg, August 2016,
pp. 629–658. 1, 3.4, 3.4.1, 5.2, B.0.3

[Pel18] Alice Pellet-Mary, Quantum attacks against indistinguishablility obfuscators proved secure in
the weak multilinear map model , CRYPTO 2018, Part III (Hovav Shacham and Alexandra
Boldyreva, eds.), LNCS, vol. 10993, Springer, Heidelberg, August 2018, pp. 153–183. B.0.2, B.2,
6

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova, Pinocchio: Nearly practical
verifiable computation , 2013 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, May 2013, pp. 238–252. 2.2, 2.3

[PP19] Thomas Pornin and Thomas Prest, More efficient algorithms for the NTRU key generation using
the field norm , PKC 2019, Part II (Dongdai Lin and Kazue Sako, eds.), LNCS, vol. 11443,
Springer, Heidelberg, April 2019, pp. 504–533. 2.1.3

[SV10] Nigel P. Smart and Frederik Vercauteren, Fully homomorphic encryption with relatively small
key and ciphertext sizes , PKC 2010 (Phong Q. Nguyen and David Pointcheval, eds.), LNCS,
vol. 6056, Springer, Heidelberg, May 2010, pp. 420–443. 2.1.3

34

A Sum collision-free sets

In this section we construct a set that satisfies the combinatorial constraints needed to defy generic annihi-
lation attacks. In particular, for a given n, q, we need a set with n elements such that there are no “addition
collisions” modulo q: two pairs of elements which add up to the same quantity. One such natural set is
powers of 2. However, we want a set whose elements are upper bounded in value by a small polynomial in
n. We show how to construct such a set with values in O(n2).

Theorem 13 Let n, q ∈ Z with n prime, 2n coprime to q and q > 3n2. There is a set S of size n with
entries in [1, 3n2], such that for all x, y, z, w ∈ S, with {x, y} 6= {z, w} we have x+ y 6= z + w (mod q).

Proof: We construct S as the set of the following elements si ∈ [1, 3n2] with i ∈ [1, n]:

si = 2ni+ [i2]n,

where [.]n means the remainder when dividing by n.
For the sake of contradiction, consider indices (i, j, i′, j′), such that: si + sj = si′ + sj′ . Therefore,

2n(i+ j) + [i2]n + [j2]n = 2n(i′ + j′) + [i′
2
]n + [j′

2
]n. Both the quantities i+ j and [i2]n + [j2]n (and their

primed versions) are less than 2n. So we can interpret the above equation as a 2n-radix system. This means:

i+ j = i′ + j′ (mod n)

i2 + j2 = i′
2

+ j′
2

(mod n).

For any fixed i, j, there are at most two solutions for i′, j′ mod n. This is because, using the first linear
equation we can eliminate j′ from second equation and we are left with a non-trivial quadratic equation in
i′. Therefore, (i′, j′) = (i, j) or (j, i), as these are definitely the two solutions (and using the fact that all
indices i, j etc. are less than n). �

Generalization. We note that this technique generalizes to settings where we consider k-tuples of sums,
instead of just pairs. We briefly describe the k = 3 case at an intuitive level.

Now we take q > 10n3. Construct set S with elements:

si = i ∗ 9n2 + [i2]n ∗ 3n+ [i3]n,

for i ∈ [1, n].
Now the condition si + sj + sk = s′i + s′j + s′k translates to:

(i+ j + k) ∗ 9n2 + ([i2]n + [j2]n + [k2]n) ∗ 3n+ ([i3]n + [j3]n + [k3]n) =

(i′ + j′ + k′) ∗ 9n2 + ([i′
2
]n + [j′

2
]n + [k′

2
]n) ∗ 3n+ ([i′

3
]n + [j′

3
]n + [k′

3
]n)

Interpret the quantities in a 3n-radix system, with each co-efficient being < 3n. Therefore, they are
individually equal. So we have:

i+ j + k = i′ + j′ + k′ (mod n)

i2 + j2 + k2 = i′
2

+ j′
2

+ k′
2

(mod n)

i3 + j3 + k3 = i′
3

+ j′
3

+ k′
3

(mod n)

By Bezout’s theorem, there are at most 1 ∗ 2 ∗ 3 = 6 solutions. We know that all the 6 permutations of
(i, j, k) are solutions, so that exhausts all solutions. Hence there are no collisions.

35

B Additional Cryptanalysis

Proving the security of constructions based on GGH13 (and multilinear maps in general) has been a subtle
art. Showing any of the hardness assumptions in Section ?? to be false would undermine the security of
our QAP, and therefore here we consider the attacks on the underlying multilinear map. Given the nature
of our hardness assumptions, and our desire for our VC scheme to be plausibly post quantum, we are most
concerned with lattice reduction attacks (which recover z) and combinations of zeroizing attacks and short
principal ideal problem solvers (which would plausibly recover g), see below. There are three broad classes
of attacks that one can hope to avoid.

B.0.1 Lattice Reduction.

The first, and simplest to avoid, consists of “overstretched NTRU” style attacks, which see the inherent
NTRU like structure in GGH13, in particular that the quotient of two encodings, e1, e2, i.e. e1/e2, is a
fraction of short elements in Rq. The works of [ABD16, CJL16] and [KF17] consider the problem in subfields

and subrings respectively, and conclude that, roughly, when q is of the order 2
√
n efficient lattice reduction

attacks can be mounted to recover short multiples of e1, e2 ∈ K from e1/e2 ∈ Rq. This results in the
recovery of the secret parameter z, see [ABD16, Sec. 4.2]. To avoid these attacks it is enough to increase n

by a polynomial factor and ensure n = Ω(λ(log q)
2
), as we do in Section 3.3.

B.0.2 The (Short) Principal Ideal Problem.

The problem of being given some principal ideal a = 〈r〉, r ∈ R and recovering some generator ur, u ∈ R×
(possibly also with ur short) has received a lot of attention both classically and quantumly. More precisely, if
r is sampled from some distributionD over R the principal ideal problem (PIP) is to recover, given any Z basis
of 〈r〉 (seen as a sublattice of R), any generator ur. In the prime power cyclotomic case, the short principal
ideal problem (sPIP) is to recover ±rXi for any i [CDPR16, Pel18]. The short principal ideal problem is
pertinent to the study of multilinear maps as, given the ability to zero test, various quantities relating to
〈g〉, 〈hg〉, and 〈h〉 are potentially available to an adversary (in roughly decreasing order of severity). While
much work has considered how to restrict this information, see below, this represents one of the fundamental
obstacles hindering the development of secure multilinear maps, namely that the zero test leaks more than
a single bit of information – more than just whether an encoding is zero or not.

Classically, the algorithm of [BEF+17] can recover a short generator with complexity approximately
2
√
n+o(1), but such attacks are exponential time in our parameter setting as n = Ω(λ2+ε). Quantumly,

such attacks can be more devastating. The works [EHKS14, BS16, CGS14, CDPR16] ultimately result in
a polynomial time quantum algorithm for sPIP in prime power cyclotomics, under certain conditions. In
particular [BS16] solves PIP in quantum polynomial time in an arbitrary number field, building on the
work of [EHKS14]. Then [CDPR16, Thm. 4.1], building on an observation of [CGS14] about power of two
cyclotomics, show how to recover an sPIP solution from the output of [BS16] when r is sampled from a
discrete Gaussian over any prime power cyclotomic.

How exactly this quantum polynomial time algorithm affects security depends on what is available to
an adversary, which is closely related to whether different forms of encodings of zero can be exploited, see
“zeroizing attacks” below. For example an attack against GGH13 made use of knowledge of 〈g〉 to classically
attack multipartite key exchange [HJ16]. Given a quantum adversary, knowledge of 〈g〉may instead plausibly
result in the recovery of g and therefore a total break of the scheme (we note there is a subtlety here, in
that the Gaussian parameter of the distribution g is sampled from is slightly too small for the algorithm
of [CDPR16]).

More pertinent to us is the fact that the worker can form many level κ zeros by evaluating the outsourced
function F on inputs of its choosing, forming an honest proof and performing the isZero tests. There are also
level 2 zeros available from combinations of elements in EKF ∪VKF that are more efficient for the worker to
form, but we note that even if none such existed, it can always resort to honest evaluation of F on multiple
inputs.

36

From this, and following [Pel18], we see that, if we included it, we could recover h in quantum polynomial
time and form (quantities similar to) zero tests at levels κ̂ = νκ, for ν an integer greater than zero. As we do
not include it, we may also form these new zero tests. We discuss these zero testers further, and the forms
of these κ̂ zeros in Section B.2.

B.0.3 Zeroizing Attacks.

This style of attack makes use of the extra information given to an adversary after zero testing encodings
of zero. In a simple case, we see that zero testing a level κ encoding of zero, [rg]z−κ reveals the element
[r], which will equal r as it is short and therefore not reduced modulo q. When level κ′ < κ encodings of
zero are given, in our construction level 1 encodings, products can be taken to form [rg2]z−κ so that zero
testing returns [rg] = rg over R. Ultimately [GGH13, Sec. 6.3.1] this leads to knowledge of 〈g〉, which we
must avoid to claim any notion of post quantum security.

This style of attack can be extended in two ways; firstly it may be the case that elements of EKF ∪VKF
encode zero, and secondly via the “annihilation” style attacks, first introduced by [MSZ16], which recover
elements of 〈g〉 without requiring level κ′ encodings of zero. The first extension is considered in Section B.1.
The second extension is considered in Section 3.4.

To capture this class of annihilation attacks, the weak multilinear map model was introduced [MSZ16]
which assumes an ideal multilinear map and allows an adversary to make certain manipulations of encodings
and the values returned from zero tests. This model is important because it provides concrete theoretical
targets for constructions, however it is not without weaknesses. For example, it classically captures poly-
nomial evaluations on zero tested values, but does not capture averaging attacks that are available due to
statistical leaks from zero testing [DP18]. We discuss such “statistical” zeroizing attacks in Section B.3.

B.1 Avoiding Zeros

Given the discussion above it is important to avoid elements of EKF ,VKF being low level (henceforth level 1,
given our scheme) zeros. Given the construction of Pinocchio, however, many will naturally occur. Indeed,
a wire in a circuit encoded as a QAP can possibly be the output wire of a multiplication gate and the left
(exclusive) or right input to a single further multiplication gate. Thus, for this wire, one of v′k(x), w′k(x), y′k(x)
will be identically zero. To account for this, during the setup the client can choose a symbol, say ⊥, to use
in place of any level 1 encoding of zero. The worker or verifier, when forming the proof elements or verifing
the proof respectively, do not include contributions from any ⊥ present in EKF or VKF respectively.

It could also be the case that some values formed during the execution of the protocol are level 1
encodings of zero. We show below that this is unlikely. Every element ẽ encoded in EKF ∪ VKF is such
that ϕ(e) = (e′, 0), while g is chosen such that (ϕ ◦ ξ)(g) = (g1, g2), g2 6= 0. This is not enough to say
that sums and products of encoded elements will never land in the ideal generated by g, but we can show
that the index of relevant ideals is superexponential in λ. More precisely we have two ideals of R, I = 〈g〉
and J = 〈˜̀(X), p〉. The ideal J represents all r ∈ R such that (ϕ ◦ ξ)(r) = (r′, 0). When considering the

underlying additive groups, we will show [(J ,+): (I ∩ J ,+)] = NK/Q(g) ≈ nn = λΩ(λ2). This says that
superexponentially few elements of J , i.e. elements of R that can be formed from our encodings, are also
elements of I, and therefore encodings of zero.

Lemma 14 Let g ∈ R be a prime element. Let I = 〈g〉,J = 〈˜̀(X), p〉. Then I,J are maximal ideals.

Proof: All rings of integers of number fields are Dedekind domains, where prime ideals are maximal. As g
is a prime element, I = 〈g〉 is a prime ideal, and therefore maximal. Consider the natural surjective ring
morphism Z[X] → R. Surjective ring morphisms map maximal ideals to maximal ideals. The maximal
ideals of Z[X] are of the form 〈f(X), p〉 with p prime and f(X) irreducible modulo p. By construction `(X)
is irreducible in Fp[X], so 〈˜̀(X), p〉 is maximal in Z[X] and therefore also in R. Hence J is also maximal. �

Given a group G and subgroups K ≤ H ≤ G we have [G:K] = [G:H] · [H:K]. Setting G = R,H =
J ,K = I∩J , where we consider the additive group structure of rings or ideals as required, we see [J : I∩J] =

37

[R: I∩J]/[R:J]. Similarly we have [R: I] = [R: I∩J]/[I: I∩J]. The ideal norm NI(I) = [R: I] = NK/Q(g)
as I is principal and generated by g, so if [R:J] = [I: I ∩ J] then [J : I ∩ J] = NK/Q(g).

We prove this with the following fact, [H:H ∩ K] ≤ [G:K] with equality if HK = G. Note here
that HK = {hk:h ∈ H, k ∈ K} is a product of group subsets. Our group operation is addition, explicitly if
G = (R,+), H = (I,+),K = (J ,+) then HK is not the product of ideals IJ but rather {i+j: i ∈ I, j ∈ J }.

Ideals I,J such that there exist i ∈ I, j ∈ J , i + j = 1 are called coprime. Coprime ideals are such
that {i+ j: i ∈ I, j ∈ J } = R. Distinct maximal ideals are coprime; our ideals I,J are distinct as g 6∈ J ,
and are therefore coprime. We therefore satisfy the condition on equality above, so [R:J] = [I: I ∩ J] and

[J : I ∩ J] ≈ λΩ(λ2).

B.2 Alternative Zero Testing and Level κ̂ Zeros

In [GGH13, Sec. 6.3.3] a method is given for creating zero tests at levels κ̂ = νκ using low level zeros. In
the absence of low level zeros [Pel18] creates new zero testers from one of our form, i.e. pzt = zκg−1, as

p
(κ̂)
zt = pνzt = zνκg−ν .6 This new zero tester can only test level κ̂ zeros of particular forms. Indeed, p

ˆ(κ)
zt can

only test level κ̂ zeros of the form [rgν]z−νκ.
We make the assumption that zeros of this form can only be created from the products of level 2 zeros

with other encodings. We show that under our parameters, for some small class of obtainable level 2 zeros,
we cannot create any N such level 2 zeros without requiring at least N different encodings. Therefore each
such set of relations has at least N unknown elements r, where encodings are of the form [a + rg]z−1. We
note that we do not consider level 2 zeros which are weighted sums of other level 2 zeros.

The class of level 2 zeros obtainable from EKF ∪ VKF we consider is the zeros of the form

pj (ϕi,0 · Pi)− (ϕi+j,0 · Pi+j)

for j ∈ [η − 1], i ∈ [η − j]. While for the i, j given above, there are O(η2) such zeros and only O(η) different
encodings, we note that from the analysis at the end of Section 7 and Lemma 3 we have q ≈ p3 and so may,
in reality, only take j ∈ [3] and expect the zero test to pass. This leads to fewer relations than encodings,
and as such we conclude that this class of level 2 zeros does not aid annihilation attacks.

In general, we leave as a conjecture that the extra power of the various p
(κ̂)
zt does not aid annihilation

attacks 3.4.

B.3 “Statistical” Zeroizing

In the work of [DP18] the statistical leakage of zero tests allowed in a certain model are considered. They use
statistical techniques to argue that all previously considered encoding techniques leak quantities related to
either A(h/g) or A(hzκ/g), and that the “simplistic” encoding of [GGH13, Sec. 4.1] allows for a full recovery
of A(h/g),7 which represents a break in the weak multilinear map model. The model they use (adapted to the
symmetric setting) considers uniformly chosen plaintexts a1, a

′
1, . . . , am, a

′
m such that

∑
i∈[m] ai · a′i = 0 + I

so that ui encoding ai at some level κ′ < κ and u′i encoding a′i at level κ−κ′ are such that
∑
i∈[m] ui · u′i is a

level κ encoding of zero. They then average such top level zeros over κ′ ∈ [κ−1]. Given their findings on the
above the authors present a new encoding method, called the “compensation” method, which statistically
leaks nothing in their model. While we do not match the model of [DP18] exactly, because our plaintexts
are not sampled uniformly, we note that any top level zero created from EKF ∪ VKF will be of the form
considered, with κ = 2, κ′ = 1, and the low multilinearity parameter of our scheme gives few levels to average
over. Furthermore, the compensation method gives the shortest encodings of any proposed encoding method,
and we therefore choose to use it.

6When the element h is present and known, as in [Pel18], then one does pνzth
−ν .

7In our case, A(1/g), A(zκ/g).

38

	Introduction
	Preliminaries
	Fields, Rings and Ideals
	Lattices.
	Geometry and Ideal Lattices.
	The Ideal and Field Norms.
	Lattice Gaussians.

	Arithmetic Circuits and Quadratic Arithmetic Programs (QAPs).
	Verifiable Computation (VC).

	The (Altered) GGH13 Multilinear Map
	Graded Encoding Schemes
	Altered GGH13 Graded Encoding Scheme
	Instance Generation.
	Encoding.
	Addition, Negation, and Multiplication.
	Zero Testing.

	Parameters Selection
	Zeroizing and Annihilation Attacks on EC:GarGenHal13
	Miles-Sahai-Zhandry Attack Model

	A New Generic Model for Computing Annihilators
	Direct Generic Method to Compute an Annihilator

	The Groth16 SNARK
	Applicability (of Graded Encodings) to Groth16 SNARK
	QAPs over Extension Fields and R_p.
	Altering CRS.

	Pairings Based Annihilation Attack

	New Candidate Multivariate PRGs
	Cryptanalysis
	Generic Annihilation of polynomials T^* and T
	Easy Annihilation of T^*
	Generic Annihilation of T is hard

	Enhanced Groth16 zkSNARK
	Proof Sketch of Soundness
	Proof of Security against Annihilation Attacks
	Level Two Zeroes obtained from the CRS.
	Formal expressions of coefficients of g in level-two zeroes

	Sum collision-free sets
	Additional Cryptanalysis
	Lattice Reduction.
	The (Short) Principal Ideal Problem.
	Zeroizing Attacks.

	Avoiding Zeros
	Alternative Zero Testing and Level Zeros
	``Statistical'' Zeroizing

