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Abstract

This research addresses the challenge of identifying and preventing novel network
threats by optimising the UGRansome dataset for real-time anomaly detection. Util-
ising a hybridised approach involving naïve tree-based ensemble machine learning
and recursive feature elimination (RFE), the study achieves a balanced accuracy of
97%, with naïve Bayes (NB) emerging as the most effective classifier. The proposed
framework, combining gradient boosting (GB) and random forest (RF) as base mod-
els with NB as a blender, proves successful in detecting and preventing zero-day
vulnerabilities. UGRansome makes a substantial impact by successfully preventing
more than 100 kbps of malicious traffic using features extracted by the RFE tech-
nique. This is achieved through the utilisation of uniform resource locators (URLs)
extracted by the RFE model, surpassing the performance of existing Intrusion Detec-
tion System (IDS) datasets. Secure shell attacks are notably thwarted, showcasing
the dataset’s efficacy in enhancing network security. The study highlights significant
advancements in intrusion detection techniques. The NB model exhibits exceptional
performance, surpassing other models in accuracy, precision, and recall across all
classes, especially in zero-day vulnerability classification. Additionally, the proposed
naïve tree-based ensemble model demonstrates remarkable accuracy and stands out
as the top-performing technique among all models studied. Implementation of the
UGRansome properties-based rule resulted in discernible changes in traffic classi-
fication, reducing unknown traffic while increasing unclassified traffic, warranting
further investigation.
KEYWORDS:
UGRansome dataset, network security, machine learning, ensemble learning, deep packet inspection, pol-
icy and charging rules function

1 INTRODUCTION

The field of intrusion detection systems (IDSs) has experienced a significant increase in the number of network attacks over
the last two decades, with malicious activities proliferating across various network systems. Detecting these attacks presents
two significant challenges for IDSs. Firstly, IDSs must detect unknown threats to prevent revenue loss and secure corporate
assets1. Secondly, detection processes must minimise false alarms and unknown traffic classification rates to reduce inaccuracy
in classifying malicious activities2. These challenges have significant implications for detecting and preventing novel network
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attacks such as advanced persistent threats (APT) and zero-day attacks3. Despite the increasing prevalence of novel network
threats, the network security landscape lacks effective IDSs that are capable of accurately recognising and preventing APT and
zero-day vulnerabilities. The inefficiency arises from the absence of adequately designed and innovative datasets essential for
training and testing IDSs and implementing diverse network shaping and filtering rules4. Network shaping refers to the practice
of controlling the speed or bandwidth of network traffic4. This is often implemented to manage and prioritise data flow, ensuring
that certain types of traffic or applications receive specific levels of bandwidth4. Network shaping rules are configurations that
dictate how the available bandwidth is allocated and distributed across different types of traffic. In contrast, network filtering
rules involve controlling the passage of data packets based on specific criteria4. Filtering rules define conditions under which
packets are allowed or denied passage through a network (Figure 1 ). This could include rules based on source or destination
internet protocol (IP) addresses, port numbers, or other attributes (Figure 1 ). Filtering rules are commonly used for security
purposes to permit or block certain types of traffic4 (Figure 1 ).

FIGURE 1 Filtering and shaping rules

The optimal IDS should incorporate a range of shaping and filtering rules or policies to promptly block abnormal network
issues in real-time5 (Figure 1 ). To achieve this goal, the network engineer must discern irregular patterns to configure the pol-
icy or rule4. For instance, to thwart access to illicit websites, the policy or rule should encompass malevolent uniform resource
locators (URLs) patterns associated with these sites. Subsequently, the network engineer can eliminate these patterns from the
network traffic, effectively prohibiting access to such sites4. Similarly, malevolent ports, internet addresses, and protocols can
be configured to dismiss or discard atypical network traffic matching their patterns. Nevertheless, there are numerous emerging
threats, such as phishing and mobile attacks, that remain challenging to detect due to the absence of new patterns that can be
employed to implement networking policies and protect the network from such threats. This article explores the development of
a new IDS that can accurately identify and prevent unknown and new network threats in real time using innovative networking
policies. The central aim of this research is to enhance the capabilities of the IDS by incorporating a distinctive set of patterns
derived from an anomaly detection dataset named UGRansome6 to thwart malicious network activities. To achieve this goal,
a compilation of uncommon patterns from the UGRansome dataset was utilised to configure the network policy4,6. The IDS
has been configured to disallow any network traffic that aligns with the identified malicious patterns from the crafted UGRan-
some dataset, thereby identifying novel and menacing network activities. This study has optimised the UGRansome dataset for
real-time detection and prevention of aberrant network traffic, fortifying the organisation against malicious attacks. The network
intrusion detection problem (NIDP) is defined as an intrusion made by a novel network threat that accesses the information
system (IS) and performs illegal actions such as misusing confidential information or encrypting relevant files7. Different sys-
tems have been designed to detect network threats, but they suffer from various issues: the identification of false IP addresses,
encrypted network flow, and unknown intrusions8,7,2. Therefore, to mitigate the problem, researchers in the network security
community2,9 have proposed incorporating machine learning (ML) techniques into the IDS to improve the inaccuracies of the
detection performance10.
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These ML-based approaches aim to enhance the system’s ability to identify and classify various types of attacks, such as
novel and evolving threats, unknown patterns, and subtle anomalies, thereby bolstering the overall effectiveness and efficiency
of intrusion detection mechanisms. Nevertheless, most of the suggested techniques used a single ML classifier, which still
suffers from a false alarm rate10,9. Hence, various studies11,12,13 have proposed the use of ML based on ensemble with feature
selection14. Ensemble learning can be defined as the process of utilising various ML algorithms that are strategically combined
to resolve a specific computational problem14. With ensemble learning algorithms, an improvement in terms of the prediction
or classification of network threats is achieved by reducing the likelihood of a single ML classifier15. An ensemble learning is
different from a feature selection algorithm, which can be thought of as a feature extractor method that provides the most relevant
attribute of a given dataset to optimise the classification results16. Recursive feature elimination (RFE) is a feature selection
technique used in ML to select a subset of features by recursively removing the least important ones17. It is often applied in
conjunction with an ML model to identify and retain the most relevant features for better model performance. A general outline
of how RFE works has been presented as follows:

1. Build a model: Train an ML model on the entire set of features.
2. Rank features: Assess the importance of each feature in the model. This can be achieved using coefficients, feature

importance scores, or other relevant metrics depending on the type of model used17.
3. Eliminate features: Remove the least important feature(s) from the dataset.
4. Repeat: Iterate steps 1-3 with the reduced feature set. This process is recursive and continues until a predefined number

of features is reached or performance criteria are met.
5. Evaluate performance: Assess the model’s performance using the selected subset of features.
The RFE is commonly used with models that provide feature importance scores, such as linear models, tree-based models (like

decision trees and RF), or support vector machines (SVM)17. By iteratively eliminating the least important features, RFE helps
identify the most relevant features for a given predictive task, potentially improving model interpretability and performance17.
It also aids in reducing overfitting by focusing on the most informative features. The optimal number of features to retain is often
determined through cross-validation or other performance metrics. While RFE can be a powerful tool for feature selection, the
choice of the ML algorithm and the criteria for feature importance play a crucial role in its effectiveness.

The proposed methodology of this research combined both RFE and ensemble learning to improve and optimise the classifi-
cation accuracy of novel network-threatening behaviour. In this study, the paramount features generated by the RFE have been
utilised to configure the shaping and filtering rules to prevent zero-day vulnerabilities in real time. Zero-day vulnerabilities,
often referred to as zero-days, are security flaws or weaknesses in software applications that are unknown to the software vendor
and, therefore, lack a patch or fix18.

The term "zero-day" indicates that the developers have had zero days to address and resolve the issue, making it a critical and
potentially exploitable weakness. A network IDS is considered accurate when the intrusion rate is low in terms of false alarms
and performs a high classification rate in terms of accuracy19,18. To implement a robust network IDS, an increase in accuracy
rate and a decrease in false alarms are expected due to the classification of network events. The classification is achieved by the
decision component of the IDS, which determines if networking features are abnormal or not20.

The main issue in testing the performance of current IDSs is the recognition of zero-day vulnerabilities. A zero-day exploit
is a hidden or unknown malicious intrusion21. These types of intrusions occur without being detected by the IDS. As a result,
IDS vendors have zero days to develop keys to recognise them. Zero-day describes a novel malware that hackers utilise to
attack networks by targeting system vulnerabilities. The term zero-day is commonly used in literature to describe a situation
where developers have recently discovered a vulnerability in a system18. During this stage, attackers can exploit the network’s
vulnerabilities with ease, as no effective security measures have been implemented22. This makes zero-day intrusion a serious
security threat for any organisation.

1.1 Problem Statement
Ensemble learning and RFE methods have not been fully used in the detection and prevention of zero-day attacks. Legacy
datasets are also used in experiments reported in the current IDS literature.
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To this end, this study will optimise a new set of the UGRansome dataset to assess the classification performance of the
ensemble learning and RFE in the detection and prevention of zero-day threats and use the most relevant features produced
by the RFE to enforce various shaping and filtering rules on the network to block malicious traffic. This research will also
compare the performance of the UGRansome dataset with existing datasets. The core problem of this research is the detection
and prevention of novel malicious network concerns to optimise the security of an IDS. The core focus of the study is to optimise
the UGRansome with a set of attributes that can be used to reject or drop malicious activities on the network. The benefit of
detecting zero-day vulnerabilities is to protect information technology (IT) systems, data, and programs from cyber threats,
such as sabotage, fraudulent activities, or espionage. Cybersecurity is important because it protects all kinds of data, whether
it is personal information, intellectual property, or government information. Adequate network security policies such as robust
firewalls, advanced threat detection systems, and regular vulnerability assessments can protect individuals and businesses from
ransomware, zero-day attacks, and APT such as Cozy Bear and OceanLotus23. The greatest advantage of this study is that it
provides a cybersecurity solution to tackle zero-day vulnerabilities. The proposed solution leverages the UGRansome dataset’s
unique features, and configured shaping and filtering rules to counteract zero-day vulnerabilities effectively. This demonstrates
the solution’s capacity to safeguard businesses across various industries from emerging cybersecurity threats. Moreover, internet
data leaves businesses vulnerable to different cyber attacks that take advantage of unsecured access points. For instance, South
Africa has been listed fifth in the top 10 countries globally afflicted by cybercriminal activities (Figure 2 ).

FIGURE 2 Top ten countries by cybercrime density24

This ranking is based on the number of cybercrime victims per one million internet users, as reported to the Federal Bureau
of Investigation (FBI) during 2021 and 202224. Therefore, to protect personal information, various countries worldwide have
instituted measures such as the General Data Protection Regulation (GDPR)25. For instance, the GDPR implemented by the
European Union (EU), aims to strengthen the protection of individuals’ data and enhance their control over their informa-
tion25. It establishes strict guidelines for organisations handling personal data, including requirements for consent, data breach
notification, and the rights of individuals to access, rectify, and erase their data.
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This development stems from the fact that data security has become an essential aspect of human rights and privacy. Figure
3 illustrates the number of countries that have fully enacted data protection, those with pending enactment, and those with no
data protection initiatives as of 2023.

Electronic copy available at: https://ssrn.com/abstract=1951416
FIGURE 3 National data protection laws and bills24

Figure 4 illustrates the growth of cybercrime worldwide24. These figures depict the necessity of safeguarding information
in response to global apprehensions concerning data security (Figure 2 to Figure 4 ). Given the rising amount of infor-
mation exchanged in a network, adopting zero-day vulnerability prevention has become indispensable to protect confidential
data. Hence, this paper strives to assess the proficiency of an IDS in leveraging cyclostationary data to safeguard information,
particularly in the context of network security.

1.2 Research Question
Given the outlined research problem, the primary research question can be articulated as follows:

• How do ensemble learning and RFE contribute to identifying novel network threats while reducing false alarms, avoid-
ing misclassification of traffic as unknown, and simultaneously establishing a secure configuration based on anomalous
patterns?

To answer the main research question, the study emphasises the importance of optimising the UGRansome dataset6. This
study approaches the main research question by optimising the UGRansome dataset because the focus is on the recognition
of comprehensive, up-to-date, and labelled training sets with various novel threatening behaviour types that can be blocked by
current IDSs. This can only be possible if we optimise a novel dataset such as UGRansome. The manifestation of ensemble
learning and the RFE will depend on the classification results achieved on the optimised dataset.
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FIGURE 4 Yearly growth of cybercrime costs24

The advantage of this approach is that one can utilise the attributes provided by the RFE to enforce security on the IDS by
creating different shaping and filtering rules.

1.3 Fundamental Assumptions
Based on the aforementioned research question, the following fundamental assumptions are derived:

• Ensemble learning and the RFE will increase the classification rate of zero-day vulnerabilities on the optimised
UGRansome dataset.

• Anomaly detection through data visualisation will spot abnormal features of the optimised UGRansome dataset.
• The UGRansome attributes extracted by the RFE can be used by the IDS to block abnormal traffic.
• This research posits that the IDS can only provide sufficient results based on the quality and number of features extracted

by the RFE technique.
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• The ensemble learning and RFE framework can only feasibly yield successful performance based on the optimisation
scheme efficiency.

• This study posits that feature extraction and feature optimisation are the most integral phases in this research, as those
phases have a direct effect on the eventual classification, prediction, and prevention rates.

1.4 Delineation and Limitations
The study will not create a real-time IDS and it will not compare various feature extraction algorithms or consider the creation of
new classifiers to address the problem of zero-day vulnerabilities, classification, and prevention. By optimising the UGRansome
dataset or using the ensemble learning and RFE framework, the main research question will be answered.

1.5 Demarcation
In this research, the UGRansome dataset was subjected to a series of rigorous pre-processing and encoding steps, rendering it
comprehensible to the discerning scheme of ML algorithms. Furthermore, the RFE, a pinnacle of feature selection, was set in
motion to discern and extract the most relevant features for the subsequent stacking ensemble learning phase, which served as
the bedrock for classification and prediction. In this intricate ensemble process, the formidable alliance of gradient boosting
(GB) and random forest (RF) reigned as base models (member models), with the ever-discerning naive Bayes (NB) stepping
in as the meta-model (blender), seamlessly harmonising the distinctive strengths of the base models. The pivotal experiment
unfurled with the UGRansome dataset at its core, poised to unveil its superiority over existing datasets. Additional layers of
complexity can be added to this profound exploration with the introduction of other ML algorithms, including distinguished
tree-based models such as extreme gradient boosting (XGBoost) and extra trees. Upon the culmination of the experimentation,
the discerned paramount features, as ascertained through the collaborative efforts of ensemble learning and the RFE, assumed
the pivotal role of crafting intricate filtering and shaping network rules or policies to block malicious traffic. These policies were
meticulously tailored to preemptively thwart the progress of malevolent network traffic, thus laying the foundation for a resilient
and fortified network security infrastructure. In essence, the demarcation within this research extended beyond mere theoretical
delineation; it evolved into an empirical odyssey that paved the way for the practical application of remarkable discoveries within
the field of applied cybersecurity.

1.6 Research Objectives
This research follows the following objectives:

• Optimise a new set of the UGRansome dataset to achieve the objective of the recognition and prevention of zero-day
vulnerabilities.

• Compute an ensemble learning and RFE model on UGRansome for zero-day vulnerabilities threat recognition.
• Evaluate the performance of the proposed model with the following metrics: precision, recall, F1 score, sensitivity,

specificity, and accuracy.
• Evaluate the proposed UGRansome model’s performance against that of other models operating on established datasets

for comparison.
• Use the most optimal features of UGRansome that have been retrieved by the RFE and configure an existing IDS that will

block malicious traffic in real time.

1.7 Original Research Contribution
The proposed theoretical methodology for optimising and evaluating UGRansome will be showcased through a series of metic-
ulous experiments and comprehensive simulations, underscoring the novelty of this research. This work goes beyond merely
explaining the manifestation of RFE and ensemble learning in preventing zero-day vulnerabilities.
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Key performance objectives encompass reducing false alarms, restraining the classification of traffic as unknown, and simul-
taneously establishing a secure configuration based on anomalous UGRansome patterns. To delve into the details, the research
novelty unfolds in configuring shaping and filtering rules to block malicious traffic and mitigate unknown traffic. This is achieved
by utilising the most important features identified by the RFE. The RFE-derived features play a pivotal role in shaping the rules
and guiding the system to discern and respond to malicious patterns effectively. By incorporating these features into the shap-
ing and filtering rules, the research establishes a robust defense mechanism, minimising the chances of false alarms, curtailing
misclassification, and enhancing the overall security posture against zero-day vulnerabilities in the UGRansome context.

This article is structured into four sections: Section 2 covers the background, discussing related works. In Section 3, the
methodology is presented, focusing on the optimised UGRansome dataset. Section 4 delves into the results, covering the out-
comes of ensemble learning RFE as well as results concerning shaping and filtering rules. Finally, Section 5 comprises the
conclusion, which highlights unexpected anomalies and outlines directions for future research.

2 BACKGROUND

The recent targeting of critical infrastructure by unknown attacks has highlighted the necessity for a deeper understanding of
threat patterns and landscapes26. However, achieving this is challenging due to limited access to publicly available data. This
section aims to explicate the rationale behind creating and optimising a network anomaly detection dataset, as well as providing
a broad overview of its most significant features. Specifically, the section outlines the data structure of an anomaly detection
dataset, followed by a discussion of the packet inspection component of the IDS, which can be utilised for real time testing of the
dataset. The primary focus of this section is on the identification of useful and relevant network features that can be utilised to
develop an anomaly detection dataset. The ultimate goal of this dataset is to enhance network security through the identification
of abnormal patterns. This objective is directly linked to the research question. The section aims to provide a systematic analysis
of abnormal network feature patterns, which will aid in the detection of new network threat anomalies. Additionally, the IDS is
introduced to illustrate how abnormal patterns can be utilised to create various rules on the network to detect network concerns.

2.1 Cyclostationary Features
Cyclostationary features in an IDS refer to specific patterns or characteristics in network traffic that exhibit cyclostationary
behaviour27. Cyclostationarity is a property of network signals that exhibit statistical variations over time, but their statistical
properties repeat periodically. In the context of an IDS, cyclostationary features are utilised to detect anomalous or malicious
network activity28,6. By analysing the cyclostationary properties of network traffic, an IDS can identify patterns or deviations that
indicate potential security breaches or attacks. Cyclostationary features are characterised by abnormal and long-term evolution
traffic patterns that can lead to various types of intrusion, including phishing and secure shell attacks29. Unlike normal features,
cyclostationary features exhibit abnormal properties that vary cyclically over time30,29. Cyclostationary features can be extracted
from various aspects of network traffic, such as packet inter-arrival times, packet ports, or protocol-specific addresses. These
features are then analysed using techniques such as spectral analysis or cyclostationary analysis to detect any abnormal or
malicious activity that may indicate an ongoing attack or intrusion attempt29. Incorporating cyclostationary features into an IDS
enhances its ability to detect sophisticated attacks that may not be easily identified by traditional signature-based or anomaly-
based detection methods. By focusing on the cyclostationary properties of network traffic, an IDS can provide a more robust
and accurate detection of intrusions, ultimately improving the security of the network infrastructure. Stochastic cyclostationary
traffic can be divided into different samples, denoted as 𝑇1, 𝑇2, ..., 𝑇𝑛, with the network threat hidden in the abnormal traffic
sample that exhibits cyclic patterns 𝑐𝑡 29.

𝑇 =
𝑇𝑛
∑

𝑡=1
𝑐𝑡 = 0 (1)

T is the set of cyclostationary features, and 𝑇𝑛 is malicious when 𝑐𝑡 = 0, and normal when 𝑐𝑡 = 129.

𝑇 =
𝑇𝑛
∑

𝑡=1
𝑐𝑡 = 1 (2)
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The identification and categorisation of cyclostationary malware involve the detection and separation of malicious samples
into distinct and adjacent partitions made of 0 and 1. These partitions are then used to analyse and study the detected malware.
Each point within a partition 𝑇𝑛 represents a cyclostationary feature pattern associated with normal (1) or malicious behaviour
(0). Cyclostationary attacks differ from traditional attacks in terms of their underlying characteristics and detection methodolo-
gies29. In contrast to traditional network attacks that are no longer prevalent, cyclostationary attacks employ updated protocols
and exploit the periodicity in signal properties, making their detection more challenging using traditional methods. On the other
hand, detecting cyclostationary attacks requires specialised analysis techniques that focus on the cyclostationary properties of
signals29.

These techniques may involve cyclostationary analysis, spectral analysis, or other advanced signal-processing methods that
can capture the periodic variations in the attack behaviour31,27. The defence against cyclostationary attacks often requires
the integration of specialised detection algorithms and feature extraction methods that can effectively capture and analyse
the cyclostationary properties of signals. Cyclostationary attacks exhibit distinct behaviour patterns, require specialised detec-
tion techniques, involve higher levels of sophistication, and may require different defence mechanisms compared to traditional
attacks29. Understanding these differences is crucial for developing effective detection and prevention strategies against cyclo-
stationary attacks. Cyclostationary traffic can be classified into several categories, including connection, timestamp, protocol,
ports, and addresses.

This study used three main types of cyclostationary protocols of the UGRansome dataset6: User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), and Internet Control Message Protocol (ICMP)32. Unlike some other protocols, UDP
does not inherently exhibit cyclostationary properties33 but it is worth mentioning that the application or data transmitted over
UDP can introduce cyclostationary properties if the payload or pattern of the data exhibits periodic behaviour. For example, if
an application using UDP generates data with an inherent periodicity or if the payload itself has cyclostationary characteristics,
those properties could be observed in the overall UDP traffic. TCP is a connection-oriented protocol used for reliable data
transmission over networks34. As a protocol, TCP does not exhibit inherent cyclostationary properties in its design but it is
important to note that the behaviour of TCP traffic can exhibit statistical properties that may appear cyclostationary under
certain conditions. These properties can arise due to the congestion control mechanisms and underlying algorithms employed
by TCP. For example, variations in the round-trip time (RTT) and congestion window size may introduce patterns that exhibit
periodic or quasi-periodic behaviour in the statistical properties of TCP traffic. Furthermore, the behaviour of TCP traffic can
also be influenced by the applications or data being transmitted over it. If the data exhibits cyclostationary characteristics, such
as periodic data patterns or periodic data rate variations, those characteristics may be observed in the statistical properties of
the TCP traffic. ICMP messages are typically encapsulated within IP packets and are used for tasks such as ping, traceroute, and
network error notifications35. Moreover, ICMP messages do not exhibit cyclostationary properties. ICMP is primarily a message-
based protocol that provides control and informational messages rather than data transmission36. These messages are typically
small and contain specific information related to network diagnostics or error reporting. It is worth noting that ICMP traffic, like
any network traffic, can be influenced by various factors, such as network congestion, routing patterns, or the behaviour of the
applications generating ICMP messages.

These factors can introduce statistical variations in the timing or arrival patterns of ICMP messages, potentially leading
to some degree of cyclostationarity in the statistical properties of ICMP traffic. While ICMP messages do not possess inher-
ent cyclostationary properties, the statistical properties of ICMP traffic can exhibit some periodic or quasi-periodic behaviour,
depending on the underlying network conditions and the behaviour of the applications generating ICMP messages. Novel net-
work attacks exploit these statistical variations to infiltrate a system. For example, ransomware can use different ports, addresses,
and protocols at different timestamps to attack a specific network35. Such attacks can be difficult to detect due to the variability
of connection types (unicast or multicast), protocols (TCP or UDP), and addresses (IP or URL). Therefore, to construct an effec-
tive anomaly detection dataset for zero-day threat detection, the dataset’s properties must exhibit a balanced distribution and
proportion of various types of cyclostationary behaviour. The cyclostationarity of the aforementioned protocol and its exploita-
tion by zero-day attacks highlight the need for a robust anomaly detection dataset to ensure the security of a network. Figure 5
illustrates the classification of cyclostationary traffic using an IDS. By using such a system, the partitioned cyclostationary fea-
tures can be stratified and studied for malware detection. The visual representation in Figure 5 displays the combined volume of
inbound and outbound network traffic and identifies several categorised services, including YouTube, Netflix, Apple, and Face-
book. Interestingly, the unidentified traffic (377.7 Mbps) surpasses the volume of unclassified traffic (292.8 Mbps), indicating a
shortfall in detecting anomalous and cyclostationary patterns.
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An optimal solution is to use significant features from a cyclostationary dataset and configure the IDS objects to create filtering
rules that can reject malicious traffic. These rules aim to reduce unknown traffic and block abnormal traffic, ultimately enhancing
network security.

Intrusion Detection System
Objects

FIGURE 5 Classification of network traffic using an IDS

2.2 Analysis of Cyclostationary Features
A form of attack, known as the cyclostationary attack, has emerged, which encrypts data files and restricts access37. This attack
is difficult to detect due to its various penetration methods, which may include a script with malicious attachments, such as
suspected files. For instance, ransomware uses techniques like web applications, email links, and attachments to penetrate a
network. Other types of intrusion like phishing, wiretapping, denial of service (DoS), and probes have also evolved37.

A comparative study by Hindy et al38 revealed that IDSs report an alarming percentage of unknown network flow and anoma-
lies. As such, it has become imperative to understand the scale of intrusion techniques used in cyclostationary attacks to prevent
them. Signature and behavioural analyses can be used to detect cyclostationary features. Signature-based methods rely on the
real time monitoring of traffic to detect anomalies39,40. Relevant features such as network objects, system logs, and diagnostics
are analysed. On the other hand, behavioural analysis involves constructing a limited set of comprehensive and cyclostationary
features to optimise the IDS in terms of detecting novel network concerns.
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2.3 Cyclostationary Features Taxonomy
The KDD99 and NSL-KDD datasets are commonly known as legacy and cyclostationary datasets that can be utilised to clas-
sify cyclostationary features41,38. Figure 6 displays the unbalanced distribution of normal network threat categories, such as
multihop, Neptune, Nmap, and Perl, within the KDD99 dataset. This highlights the need for more robust datasets that can better
represent the current network threat landscape.

FIGURE 6 The KDD99 distribution

To analyse the cyclostationarity of the KDD99 dataset, Figure 6 visualises the difference in traffic between the source and
destination ports. However, due to its unbalanced nature, with features skewed towards the normal category as may be seen in
the bottom left side of Figure 6 , this legacy dataset does not provide effective options to study novel network threats. As shown
in Figure 6 , the classification and prediction of features are biased towards the normal category. Apart from port traffic, the
network flag can also be utilised to detect cyclostationarity, where each flag anomaly can correspond to different attacks. The
prediction computation can be expressed as follows:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑛𝑎𝑚𝑒𝑠 ← 𝑎𝑡𝑡𝑎𝑐𝑘𝑡𝑦𝑝𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

Figure 7 demonstrates various erroneous connection flags and showcases a sequence of stateless protocols, including SH,
SF, S3, S1, S0, S1, S3, RSTR, RSTO, and REJ from the NSL-KDD dataset, to identify which flag serves as a robust indicator of
cyclostationary attacks. Figure 7 demonstrates an effective approach to predict probing and DoS attacks. Network flags serve
the purpose of indicating the state of network transactions being encapsulated. For example, the push (PSH) flag is utilised by
the TCP/IP to indicate that the string buffer is empty, while the acknowledgment (ACK) flag indicates that a message has been
received34.

Similarly, the finish (FIN) flag signals the termination of a network process. Given the description of cyclostationary features,
it is important to investigate alternative data processing and encoding methods to enhance the detection of novel network threat
anomalies38,42. To predict such attacks, the present study employed the following formula:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑐𝑦𝑐𝑙𝑜𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑡ℎ𝑟𝑒𝑎𝑡𝑠 ← 𝑛𝑜𝑣𝑒𝑙𝑡𝑦𝑝𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

The aim is to enhance the overall learning process of the framework, enabling it to achieve precise outcomes in identify-
ing new network attacks. Table 1 outlines various types of features found in IDS datasets, which offer diverse categories of
cyclostationary patterns that have undergone changes and advancements. To detect anomalies in the Internet of Things (IoT),
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FIGURE 7 Network’s flag anomaly

these features can be utilised by configuring rules in the IDS to block malicious servers, databases, operating systems, and net-
work objects, which have been infected by cyclostationary attacks. These attacks utilise various cyclostationary features such as
ports, addresses, throughput, and timestamps (Table 1 ). To optimise IDS performance for the recognition of zero-day threats,
the study suggests optimising new balanced datasets that focus on such attacks. Furthermore, to generate comprehensive and
well-designed cyclostationary datasets for the detection and recognition of novel network threat anomalies, additional features
such as domain name servers (DNS), output strings, threats, and process information should also be taken into consideration.
We outline a classification of novel network threats into three categories (signature, synthetic signature, and anomaly). These
categories are part of the UGRansome dataset6 and are utilised by the proposed ensemble learning and RFE to forecast the type
of malicious activity.

2.4 Synthetic Signature Attacks
The UGRansome dataset includes synthetic signature (SS) threats that aim to disrupt the computer network’s performance6.
This type of attack generates multiple TCP connections by creating packets or frames that originate from the attacker. The attack
script uses the victim’s network traffic to finetune its behaviour by specifying open network ports and calculating a packet rate
to overwhelm incoming traffic47. Synthetic signature attacks mimic the cyclostationary properties of both known and unknown
threats, including DoS, botnets, distributed DoS (DDoS), scan, and nerisbotnet48. Although signatures have been developed and
updated to identify known threat types, such as DoS attacks, detecting unknown threats remains challenging due to the lack of
novel detection keys.

2.5 Signature Attacks
The UGRansome dataset includes the signature (S) attack category6. This type of attack leverages various network patterns,
such as traffic flow and byte sequences, to infiltrate the system. Anti-viruses can mitigate this type of intrusion by recognising
these patterns using different signatures. IDSs can detect signature attacks as their pattern recognition keys are available and
frequently updated49. Furthermore, one can develop a specific key to effectively detect them because their behaviours are well
understood.
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TABLE 1 Existing cyclostationary features

Dataset Feature Limitation Source

CAIDA Port Unbalanced -
Duplicate Ferdiana et al. (2020)10

CICIDS2017 Bugs Zero logs -
Noisy Hindy et al. (2020)38

NF-BoT-IoT-v2 Timestamps Unbalanced -
Format Ahsan, Rifat, Chowdhury, & Gomes (2022)43

UNSWNB-15 Packets Drop analysis M. Nkongolo, van Deventer, & Kasongo (2021)6
Packet inspection M. M. Nkongolo, van Deventer, & Kasongo (2021)6

WSN-DS Latency Legacy dataset Hindy et al. (2020)38
Novel patterns -

Sperotto Logs Legacy dataset -
Documentation Gaurav et al. (2022)44

MAWI Throughput Unbalanced -
Noisy Chiche & Meshesha (2021)45

UNB ISCX Protocol TCP restricted Kumar et al. (2020)11
Redundant -

CTU-13 Addresses Format -
Obfuscation Le et al. (2022)33

ADFA-LD12 Session Capturing -
Tools Krishna & Bhanu (2021)46

InSDN Packets Big data M. Nkongolo, van Deventer, & Kasongo (2021)6
Availability -

UGRansome Timestamp Duplication This work
Cryptographic M. Nkongolo and M. Tokmak (2023)18

Ransomware Attacks Encryption M. Nkongolo and M. Tokmak (2023)18

2.6 Anomalous Attacks
The anomalous (A) attack class refers to a group of unknown network threats for which detection keys have not yet been devel-
oped23. To detect such attacks, an ML framework is typically employed that compares the traffic patterns of unknown traffic
against known traffic patterns incorporated within the framework. Such a framework is trained based on the hardware and appli-
cation configurations. Although ML approaches offer better detection rates compared to signature-based IDSs and enable the
detection of unknown attacks, they may generate false alarms. The UGRansome dataset includes anomalous threats and serves
as an anomaly detection dataset that can be used to study novel network attack behaviour to enhance network security6.

2.7 Enhancing IDS Proficiency Through Synthetic Signature Training
In the context of ML implementation, the synthetic signature (SS) category within the UGRansome dataset can serve as a
valuable resource for training IDS to identify zero-day threats in both the signature (S) and anomaly (A) categories. This means
that the SS category contributes to the comprehensive training of the IDS, enhancing its ability to recognise novel and previously
unseen network threats. The incorporation of the SS category within the IDS training framework serves as a pivotal mechanism
for augmenting the system’s ability to identify and respond to both established and previously unobserved network threats.
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This strategic inclusion empowers the IDS to transcend the constraints of solely recognising known threats, typified by the S
category, and embrace the dynamic landscape of novel anomalies found in the A category. For instance, when confronted with
an unprecedented threat, commonly referred to as a zero-day threat, the IDS can rely on the insights acquired from the SS
category. This category is constructed to emulate the behavioral characteristics of diverse threats, known and unknown alike. In
an ML analogy, it acts as a training ground for the IDS, allowing it to familiarise itself with the intricate patterns and subtleties
of hitherto unencountered network threats. This enrichment of the IDS’s training dataset facilitates its evolution into a more
adept and versatile security guardian. By harnessing the training potential of the SS category, the IDS can further sharpen its
proficiency in the realms of threat recognition and classification. It no longer restricts its vigilance to known threats but extends
its capabilities to the early detection of emerging and unfamiliar anomalies, thereby reinforcing network security and ensuring
resilience against the ever-evolving landscape of cybersecurity challenges.

2.8 Active Network Intelligence
This section debates the application of an IDS to detect novel network attacks. The importance of using cyclostationary features
to improve network security is also presented. An effort is made to define and introduce the IDS used, as well as its general
impact in terms of the detection of novel network concerns. This discussion is linked to the main research question and is related
to how an optimised anomaly detection dataset feeds into the necessity of improving the security of a network. The discussion is
important in terms of the real time testing of the UGRansome dataset for zero-day vulnerabilities prevention. Intrusion detection
solutions furnish scalable network intelligence technology, which is suitable for all types of networks, by analysing packets in the
traffic50. The IDS allows network architects to gather subscriber experience intelligence to enforce policy on their networks23.
The network topology, user license agreement, and system settings can impact the functionality delivered by any IDS. The
typical deployment of a successful IDS will have the following properties:

• Deep packet inspection: Inspects IP packets and efficiently classifies their content using a data stream recognition
definition language (DRDL)23. The DRDL analyses packets and presents them in a comprehensive and real-time manner
based on the network traffic23. The IDS uses DPI as an active intelligence technique to examine computers, clients, and
servers’ identities by managing subscriber usage, monitoring the programs transmitting and receiving traffic (also known
as active network intelligence services), and identifying the cyclostationary properties specific to each service, such as
the sender/receiver in a packet flooding process23. The list of services identified by the DRDL is frequently updated. The
network operator can also define network traffic recognition for specific services.

• Policy engine: Maps IP addresses to user identities in real time and provides the required infrastructure to manage and
create subscriber profiles and active sessions23. The policy engine distributes the network user and session information
to data plane elements to enforce applications and subscribers’ policies.

• Database: Gathers traffic information from the network to build statistics based on the configurations and settings of
statistics objects and rules. The statistics viewer object (SVO) explores the capabilities of the stored statistics features,
which are presented in the form of charts and graphs23.

• Engineering insights: Provides an interface to view the features stored in the database. Statistical data is extracted from
network traffic running through the IDS. The data is then pushed to the insights data storage component. Engineering
insights is a type of web-based visualisation tool for viewing information and cyclostationary features extracted from the
network traffic51. The proposed methodology uses engineering insights to analyse the network traffic quality and trends.

The IDS deployment can be used for any purpose where it is useful to keep track of the traffic flow in a network. The following
are examples of such purposes:

• Reporting and analytics: Examines network traffic features and represents the information in a simplistic view. Network
operators can then gain a deeper comprehension of the data traffic. They can also manage the analysed traffic and impose
various restrictions for policy enforcement52.

• Traffic management: Includes fair split-shaping functionality, which enhances the subscriber network experience at a
reduced cost53.

• Policy control: Enforces restrictions on the network to reject, block, and drop malicious activities such as unwanted
websites, ports, and IP addresses23.
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2.9 About Deep Packet Inspection
Deep packet inspection (DPI) forms the core intelligence of the IDS and can be deployed on a variety of virtual platforms and
hardware (Figure 8 ). The network intelligence component of DPI performs packet logic and flow inspection on IP packets and
groups their content (Figure 9 ). The results from this ongoing packet analysis are presented in real time52. Using the software,
users examine client and server identities by managing subscriber usage data and monitoring the applications transmitting and
receiving traffic. DPI can identify the cyclostationary properties specific to each service, such as the sender or receiver of a
packet. The graphic view represents the core feature of the network intelligence functionality. Admin users have the privilege of
determining what modules or functionality are available to normal users. For instance, all traffic shaping functionality is invisible
to users without explicit permission to configure rules set by the system admin. The system administrators can also configure the
database permissions for normal users, and monitor the installation of licenses that are necessary to enforce exclusive policies,
like channel sharing detection, content logic classification, and geolocation detection.

FIGURE 8 The DPI hardware component

FIGURE 9 The DPI software component
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2.10 Basic DPI Data Flow
The basic flow of DPI data is presented in Algorithm 1. This algorithm represents the sequential steps involved in processing
DPI data. The DPI system can stratify network traffic using subscriber devices and geolocations8. The network operator can
monitor the subscriber’s traffic activity in real time using the packet-logic rule enforcement (PRE) module (Figure 10 ). The
PRE starts by splitting the collected statistics into the packet internet container (PIC) and IDS to support asymmetric traffic. It
then uses the traffic via two interfaces (admin or aux). In some instances, asymmetric traffic is divided into a second PRE with
additional PIC and IDS (Figure 10 ), where the PIC serves as the IDS database.

Algorithm 1 Basic flow of DPI data
1: Receive a packet.
2: Analyse the packet to determine the following:

• Does the packet start a new connection, or does it belong to an existing connection?
• Does the packet connection match any defined rules?

3: Enforce all rules to which the packet’s connection applies.
4: If the packet has not been rejected or dropped during the enforcement of the rules, forward it.

PRE

Admin Aux

When  connection is available
Start scenarios:

 Split Stats collection to PIC/IDS from Admin traffic.
Asymmetric Traffic support is required to split the 
Queue sync traffic to an auxiliary PRE, PIC, and IDS.

1.
2.

Core 
Network SSH

AL Client
...

PIC

IDS

PRE

Admin Aux

Core 
Network SSH

AL Client
...

PRE

PIC/IDS

Scenario 2 Scenario 1

PRE interfaces (Admin & Aux)

FIGURE 10 The PRE module of the DPI

2.11 Enforcing Rules
A rule is a condition set on the IDS to monitor and secure the network traffic54. The rule has various cyclostationary properties. A
property object is usually created on the IDS to contain a text field that has the name of the cyclostationary feature. The network
operator can then apply a condition to block, drop, or reject any traffic related to the cyclostationary feature10. A property object
named blocked URLs is created in Figure 11 with a list of items or URLs assigned to a server. Any network traffic related to
these URLs will be restricted to specific actions that can be set to reject, drop, rewrite, inject, divert, enrich, or accept the packets
(Figure 12 ). The rule should be enabled to relinquish the action. It should contain advanced options to invoke the created
property object. The system administrator will determine if additional rules can also be processed by the same action (Figure
12 ). The study intends to extract a list of cyclostationary features from the UGRansome dataset and create different network
property objects to detect and block the network flow that uses malicious addresses, ports, and protocols.
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The blocked traffic will also be visualised by the IDS to detect abnormal flow and perform network traffic management. The
rule implemented in figures 11 , 12 , and 13 can be read in Algorithm 2. The condition set in Figure 13 will drop all the
website traffic, which uses the URLs configured in the property object.

FIGURE 11 A property object with URLs

FIGURE 12 Dropping rule

FIGURE 13 A property object condition

Algorithm 2 DPI data processing
1: Additional Rule:
2: IF Property Object == Blocked URLs WHEN URLs == Abnormal
3: AND Action == Drop
4: THEN Drop Network Traffic of URLs
5: ELSE Forward Network Traffic of URLs.
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2.12 Background Summary
We have discussed the concepts needed to detect and classify novel network threats by introducing the notion of cyclostationary
features. These features were analysed and stratified based on their intrinsic properties, such as timestamp, latency, services,
traffic, and sessions. This background section has defined cyclostationary features and discussed various approaches required
to detect them. These features were grouped into connection, timestamps, protocol, ports, and addresses. The objective was to
present the most cyclostationary features that will be useful in the optimisation of an IDS. Furthermore, the section has provided
a taxonomy of cyclostationary features using legacy datasets such as KDD99 and NSL-KDD. The drawback of existing datasets
was provided with their corresponding cyclostationary features. The abnormal network concerns were divided into signature,
synthetic signature, and anomaly threats to facilitate the prediction and classification of novel network concerns. Additionally,
the IDS was presented as an active network intelligence that performs DPI to test the UGRansome dataset in real time for
zero-day vulnerabilities prevention. Lastly, this section demonstrated the usefulness of enforcing rules on the network using
cyclostationary features to block or drop malicious traffic. The DPI can be thought of as an active IDS component that will be
used to test the UGRansome dataset in real time and examine anomalous traffic identities. Section 3 will discuss the application
of ensemble learning and RFE for the classification and prevention of novel network threats using the UGRansome dataset.

3 METHODOLOGY

In 2021, Nkongolo et al.6 introduced a significant contribution to the field of cybersecurity: the UGRansome dataset (Table 2
and Figure 17 -18 ). This dataset has received citations from Suthar et al. (2022)55, Janicke, and Ferrag (2022)56, Komisarek
et al. (2023)57, Gil Bravo58, and Ramahlosi and Akanbi (2023)59. Furthermore, in their work, N. Zhang et al. (2023)60 and M.
Tokmak (2022)22 discussed various evaluation models to assess the effectiveness of the UGRansome dataset. Rege and Bleiman
(2023)26 defined the UGRansome as a detection-based ransomware dataset, while Shankar, George, S, and Madhuri (2023)42
stated that the UGRansome was designed to improve the detection of unknown network attacks, and was specifically created to
include previously unexplored attacks (Figure 14 ). According to them42, further research in network security should prioritise
detecting unknown UGRansome attacks (Figure 15 ). What sets UGRansome apart from other datasets in the IDS landscape is
its comprehensive coverage of previously unexplored ransomware attack types (Figure 16 )61. Shankar, George, S, and Madhuri
(2023)42 therefore recommended the use of the UGRansome dataset while Singh et al. (2023)62 reported that the UGRansome
performed better in terms of classification accuracy when compared to previous datasets used in similar experiments or research.
Lastly, Okafor et al. (2023)63 delved into the application of the UGRansome, utilising a qualitative technique that employs an
analytical case study method to explore the intricate realm of healthcare cybersecurity. This sector, frequently singled out for
its invaluable and sensitive data, was the focal point of their investigation. Our research thus aims to contribute significantly to
network security by utilising a stacking ensemble learning to further evaluate this dataset and enhance its capability to detect
zero-day vulnerabilities in real time. The UGRansome has proven to be an invaluable resource for identifying and countering
ransomware attacks, even those considered zero-day threats42,55,64.

Within its dataset, it encompasses a spectrum of malware categories, including Signature (S), Anomaly (A), and Synthetic
Signature (SS), with meticulously labeled instances of well-known ransomware variants such as Locky, CryptoLocker, JigSaw,
EDA2, TowerWeb, Flyper, Razy, and WannaCry, as well as APT (Figure 14 , 15 , 16 )26. Figure 17 depicts the three predictive
classes (S, SS, and A) and their corresponding labels. Each predictive class is linked to specific ransomware types, including but
not limited to Locky, CryptoLocker, APT, SamSam, and Globe. To delve deeper into the dataset’s characteristics, we direct our
attention to Table 2 , which provides a concise overview of its key attributes. The UGRansome dataset stands as a vital tool for
researchers and cybersecurity professionals in the ongoing battle against ransomware threats within critical infrastructure. A ZIP
file was acquired via download from the following URL: https://doi.org/10.13140/RG.2.2.23570.07363/1. This archive houses a
dataset, consisting of 207 533 rows, stored in comma-separated values (CSV) format, albeit without any initial column headings
(Figure 18 ). To facilitate further analysis, the dataset’s headers were subsequently renamed by the specified attributes delineated
in Table 2 , encompassing labels such as timestamp, protocol, flag, ransomware family, clusters, and more. To prepare the raw
data for analysis, we employed a statistical approach to address issues such as data messiness and duplicate entries (Figure 18 ).
Utilising the Python Data prep package and its comprehensive reporting function, which offers a thorough examination of the
entire dataset and its variables, we obtained the following findings. As illustrated in Figure 18 (left side), no missing cells were
identified, but a redundancy rate of 28.2% was observed. In response to this discovery, we proceeded to eliminate the duplicate
entries, comprising a total of 58 491 rows.

https://doi.org/10.13140/RG.2.2.23570.07363/1
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FIGURE 14 Ransomware financial impacts in the
UGRansome dataset

FIGURE 15 Ransomware ports in the UGRansome
dataset

Subsequently, we re-evaluated the redundancy rate, as depicted in Figure 18 (right side), revealing that the cleaned dataset
exhibited a 0.0% redundancy rate. This outcome indicated that the data was now prepared for processing and rigorous analysis.
The resultant clean dataset, complete with column names, was then exported, encompassing 149 043 rows, making it ready
for data processing and RFE. A series of mathematical transformations were implemented on these features (149 043 rows)
to mitigate their skewed distributions, ultimately seeking to achieve either a normal distribution or a less-skewed distribution
(Figure 19 ).

3.1 Recursive Feature Elimination
RFE is a fundamental technique in data analysis, commonly employed to obtain a representative subset of data from a larger
dataset65. In this context, Algorithm 3 illustrates the process of RFE utilised in this research. The objective is to randomly
select 1 000 data points from the original UGRansome dataset, which can be particularly useful for various tasks, including data
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FIGURE 16 Financial impact of various threats in the
UGRansome dataset

FIGURE 17 The UGRansome model

processing, model training, and statistical analysis. Let’s denote the original feature set as 𝑋, the target variable as 𝑦, and the
estimator as 𝐸. The goal is to select a subset of features 𝐹selected containing 𝑘 features as follows (Figure 20 ):

1. Data splitting: The dataset 𝑋 is split into training and testing sets: 𝑋train, 𝑋test, 𝑦train, 𝑦test.
2. RFE initialisation: RFE is initialised with the chosen estimator 𝐸 and the specified number of features to select, 𝑘.
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FIGURE 18 The dataset statistics and insights

FIGURE 19 Normalised and smoothed numerical features

3. RFE fitting: RFE is fitted to the training data: 𝑟𝑓𝑒.fit(𝑋train, 𝑦train).
4. Feature selection: The selected features are determined based on the support from RFE:

𝐹selected = 𝑋.columns[𝑟𝑓𝑒.support_].
5. Data transformation: The training and testing data are transformed to include only the selected features:

𝑋train_selected = 𝑟𝑓𝑒.transform(𝑋train)

𝑋test_selected = 𝑟𝑓𝑒.transform(𝑋test)

6. Output: The algorithm returns the selected features 𝐹selected (Figure 22 ).

3.2 Data Processing and Optimisation
After the RFE, the data was processed to transform categorical variables into numerical values to prepare it for ML computations
(Figure 21 ). Duplicate values were removed (Figure 18 ), and any data entries with negative timestamps were also filtered out
during this data preprocessing phase (Figure 19 ). This rigorous data preparation ensures the dataset is clean and suitable for
the proposed ensemble learning.
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TABLE 2 Attributes of the UGRansome dataset
Attribute Meaning Type Example

Time Timestamp of network attacks Numeric 50s
Protocol Network protocol Categorical TCP

Flag Connection status Categorical ACK
Family Ransomware family Categorical WannaCry, JigSaw,

SamSam, Locky
Clusters Malware groups Numeric 1-12

SeedAddress Ransomware links Categorical 1SYSTEMQ,
1GZkujBR,
1KZKcvx4,
1DA11mPS

ExpAddress Ransomware links Categorical 18e372GN,
1BonuSr7,
1DiCeTjB, 1AEo-
HYZ, 1NKi9AK5,
17dcMo4V,
1Lc7xTpP

BTC Ransomware Bitcoin transactions Numeric 90.0
USD Ransomware USD transactions Numeric 32 465

Netflow Bytes Bytes transferred in network flow Numeric 45 389
IP Address IP addresses Categorical Class A

Threats Malware Categorical Blacklist, SSH, Bot-
net, Spam, Scan

Port Network port number Numeric 5062
Prediction Outcomes of predictive models (tar-

get variable)
Categorical A, S, and SS

FIGURE 20 RFE results

FIGURE 21 Encoded RFE results

FIGURE 22 Python RFE code

3.3 Ensemble Learning
Ensemble learning combines predictions from multiple ML models to enhance overall performance66. It is a powerful technique
for tackling complex problems.
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Algorithm 3 RFE algorithm
Training dataset 𝑋, Target variable 𝑦, Estimator 𝐸 (RF), Number of features to select 𝑘, Selected features 𝐹selected
Step 1: Split the dataset into training and testing sets 𝑋train, 𝑋test, 𝑦train, 𝑦test ← train_test_split(𝑋, 𝑦, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 = 0.2)
Step 2: Initialise the RFE with the estimator and the number of features to select 𝑟𝑓𝑒 ← RFE(𝐸, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑜_𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑘)
Step 3: Fit RFE on the training data 𝑟𝑓𝑒.fit(𝑋train, 𝑦train)
Step 4: Get the selected features 𝐹selected ← 𝑋.columns[𝑟𝑓𝑒.support_]
Step 5: Transform the training and testing data to include only the selected features 𝑋train_selected ← 𝑟𝑓𝑒.transform(𝑋train)
𝑋test_selected ← 𝑟𝑓𝑒.transform(𝑋test)
Step 6: Output the selected features return 𝐹selected

In our context, ensemble learning involves combining the strengths of the tree-based models such as RF and GB67. There
are several types of ensemble learning methods, each with its approach to combining the individual models. Table 3 presents
some common types of ensemble learning methods. This study uses the 𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 ensemble approach.

3.4 Proposed Stacked Ensemble Model
To achieve optimal zero-day threat detection, we propose a stack ensemble model that leverages the capabilities of gradient
boosting (GB) and random forest (RF) as base models, with naive Bayes (NB) serving as the blender or meta-model. This stack
ensemble model presented in Figure 23 is designed to extract valuable insights from each base model and make an informed
prediction. The stacking approach involves training the base models independently and then combining their predictions using
the NB meta-model. This hierarchical approach harnesses the strengths of each base model (RF and GB) while mitigating their
weaknesses. The components of the framework illustrated in Figure 23 will be discussed in the upcoming sections. For our
zero-day vulnerabilities detection system, we introduce a naive stack ensemble model that effectively leverages the capabilities
of individual base models such as RF and GB to enhance prediction accuracy using NB as a meta-model (Figure 23 )71. This
ensemble model is designed to address the complexities of zero-day threat prevention by stacking two tree-based models. The
ensemble learning will be evaluated with a confusion matrix (Table 4 ). The confusion matrix provides a detailed breakdown of
the model’s predictions, including true negatives (TN), true positives (TP), false negatives (FN), and false positives (FP) (Table
4 )71.

TP are cases where the model correctly identifies attacks, whether they are anomalies (attacks without signatures), signa-
ture attacks (attacks with known signatures), or synthetic signature attacks (attacks with both known signatures and unknown
components)6. In other words, TP represents the number of correct attack predictions. TN are cases where the model correctly
identifies non-attacks, such as normal network behavior6. In this context, TN indicates that the model accurately recognises
instances that do not attack, regardless of whether they involve anomalies, signature attacks, or synthetic signature attacks. TN
represents correct non-attack predictions. FN occurs when the model mistakenly classifies attacks as non-attacks6. For instance,
if an attack is misclassified as normal behavior, it would be considered a FN. In the context of anomaly, FN implies the fail-
ure to detect these stealthy attacks. For signature attacks, FN means failing to identify them as attacks. Similarly, for synthetic
signature attacks, FN indicates that the model failed to recognise these complex attacks. FP represents cases where the model
incorrectly predicts an attack when it is not an attack6. This can occur when the model misclassifies normal behavior as an
attack. In the context of anomaly attacks, FP means incorrectly flagging benign activities as attacks. For signature attacks, FP
implies the false identification of normal activities as malicious. In the case of synthetic signature attacks, FP means the incorrect
classification of non-attacks as attacks. TP and TN reflect correct predictions, while FN and FP represent errors in the model’s
predictions6. These definitions apply to various types of attacks, including anomalies, signature-based attacks, and synthetic
signature attacks, making them applicable in a cybersecurity context where different threat scenarios may occur6. The proposed
ensemble learning will be evaluated using the following ML evaluation metrics:

• Precision (P): measures the accuracy of positive predictions71. It is defined as:
𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

• Accuracy (A): measures the overall correctness of predictions71. It is defined as:
𝐴 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)
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UGRansome Dataset

Feature Extraction (RFE)

Stacking Ensemble Learning(NB(GB, RF))

GB RF
Meta-Model(Blender(NB))

Evaluation Matrix
FIGURE 23 Proposed ML framework

TABLE 4 Confusion matrix
Actual positive Actual negative

Predicted positive TP FP
(Outcome correct)
Predicted negative FN TN
(Outcome correct)

• F1 Score (F1): it is the harmonic mean of precision and recall71. It is defined as:
𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅

𝑃 + 𝑅
(5)

• Recall (R): measures the model’s ability to identify all relevant instances71. It is defined as:
𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

Meta-Model
To harmonise the predictions from our base models, we employ a meta-model, known as NB (Figure 23 ). The role of the meta-
model is to combine the outputs of the base models, making the final prediction. Mathematically, the meta-model is defined
as:

NB(𝑋) = 1
𝑛

𝑛
∑

𝑖=1
Decision𝑖(𝑋) (7)

The NB is the meta-model that blends the predictions of base models (RF and GB) by aiming to achieve a robust and accurate
zero-day vulnerability recognition system (Figure 23 ).

Stacking with a tree-based ensemble learning: Stacking, or stacked generalisation, is an ensemble learning technique
that combines multiple base models to improve predictive performance72. In the proposed tree-based ensemble learning, this
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approach involves the use of two algorithms as base models (Figure 23 ). We propose the following breakdown of our stacking
ensemble learning presented in Figure 23 :

1. Base models: The process begins with a set of base models, typically tree-based models like GB and RF.
2. Training phase: In this phase, we train each of these base models on the same UGRansome dataset to predict the target

variable (A, S, and SS) (Figure 17 and Table 2 )6.
3. Meta-model: In this process, we use an NB meta-model, often referred to as a blender, which naively takes the predictions

from the base models as its input features72.
4. Meta-model training: In this phase, we train the meta-model on these predictions to produce a final prediction. The NB

learns to combine the outputs of the base models, effectively determining a weighted average of their predictions.
5. Predictions: When making predictions on new data, the proposed scheme uses the base models to predict the target variable.

Then, feed these predictions into the meta-model to obtain the final prediction. Stacking leverages the strengths of individual
base models, allowing them to work together to make more accurate final predictions. It is a potent technique for enhancing
model performance, especially in situations involving complex datasets or challenging prediction tasks73. In the context of tree-
based ensemble learning, stacking was highly effective as it combines the strengths of GB and RF, leading to superior predictive
performance.

3.5 Machine Learning
We present the selected ML models in this section. GB is an ensemble learning technique that builds a series of weak learners
(usually decision trees) sequentially6. Each subsequent model corrects the errors of the previous one. The final model is a
weighted sum of the individual weak models.

Mathematical representation: The loss function is minimised iteratively:

Loss =
𝑁
∑

𝑖=1
𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)) + Ω(ℎ𝑚)

Here, 𝐿 is the loss function, 𝑦𝑖 is the true label, 𝐹𝑚−1(𝑥𝑖) is the predicted value from the previous models, ℎ𝑚(𝑥𝑖) is the new
model’s prediction, and Ω(ℎ𝑚) is a regularisation term74. RF builds multiple decision trees and merges their predictions6. It
introduces randomness by considering a random subset of features at each split, reducing overfitting.

Mathematical representation: RF involves constructing 𝑇 decision trees:

RF prediction = 1
𝑇

𝑇
∑

𝑡=1
Decision Tree𝑡(𝑥)

NB is a probabilistic classification algorithm based on Bayes’ theorem6. It assumes that features are conditionally independent
given the class label.

Mathematical representation: The probability of a class given features 𝑃 (𝑦|𝑋) is calculated using Bayes’ theorem:
𝑃 (𝑦|𝑋) =

𝑃 (𝑋|𝑦)𝑃 (𝑦)
𝑃 (𝑋)

Decision Trees (DTs) recursively split the dataset based on feature conditions, aiming to create homogeneous subsets in terms
of the target variable6.

4 EXPERIMENTAL RESULTS

In this section, we commence by showcasing the outcomes of feature extraction through RFE and the subsequent ensemble
learning results. The experimentation will proceed by employing the most pertinent features identified by the RFE to establish
shaping and filtering rules, aiming to thwart zero-day vulnerabilities in real-time. Figure 24 illustrates feature importance as
determined by the RFE Gini impurity74. In the context of feature importance, Gini impurity of the RFE quantifies how well
a feature separates classes or categories within the UGRansome dataset75. Features that lead to better separation and lower
impurity are considered more important as they contribute more to the decision-making process in the extraction tasks. The
correlation matrix of the extracted features is visually represented in Figure 24 . It reveals a significant correlation coefficient of
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0.26 between the ransomware cluster and predicted Bitcoins (BTC) transactions. This finding underscores a robust association
between specific ransomware attack types and distinctive patterns within cryptocurrency transactions.

FIGURE 24 Relevant features and their correlations

4.1 Machine Learning Results
We will showcase the ML results achieved by the selected base models, namely GB and RF. Furthermore, we will present the
outcomes of the meta-model, NB. Lastly, we will unveil the results of our ensemble learning model. For each of these algorithms,
we will provide comprehensive insights into the associated evaluation metrics, including precision, accuracy, F1 score, and
recall. The confusion matrix of the proposed ensemble learning will also be presented. Table 5 provides a summary of the ML
models utilised and their corresponding parameter configurations. It includes information on label encoding, the train-test split,
and the specifications for each model, such as max depth, number of estimators, learning rate, and other relevant parameters.
Additionally, it highlights the stacking classifier with its component models and the final estimator, NB.

TABLE 5 Model and parameter specifications

Model Parameters
Encoding Label Encoding()

Train-Test Split Test Size: 20%
Decision Tree (DT) Max Depth: 5
Random Forest (RF) Max Depth: 9, Estimators: 100, Max Features: 1 000

Gradient Boosting (GB) Estimators: 100, Learning Rate: 1.0, Max Depth: 1, Random State: 42
Stacking Classifier Estimators:

- RF (Max Depth: 9, Estimators: 100, Max Features: 1 000)
- GB (Estimators: 100, Learning Rate: 1.0, Max Depth: 1, Random State: 42)

Final Estimator: NB (BernoulliNB())
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4.2 Decision Tree Results
The DT model seems to be effective at identifying Signature attacks (S) and Synthetic Signature (SS) attacks with 98% and
100% of recall but may need some improvement in recognising Anomaly attacks (A), depending on the specific context and
goals of the IDS application (Table 6 ).

TABLE 6 DT classifier report

Precision Recall F1-Score Support
Anomaly (A) 0.9848 0.8784 0.9286 74
Signature (S) 0.9467 0.9861 0.9660 72

Synthetic Signature (SS) 0.9153 1.0000 0.9558 54
Accuracy: 0.9500 200

Macro Avg 0.9489 0.9548 0.9501 200
Weighted Avg 0.9523 0.9500 0.9494 200

4.3 Gradient Boosting Results
The DT model exhibits strong predictive performance compared to the GB model. It demonstrates high precision and recall for
all three classes: Anomaly (A), Signature (S), and Synthetic Signature (SS) (Table 6 ). With an accuracy of 95%, the DT model
excels in correctly classifying instances across these classes, yielding a well-balanced F1 score. However, in Table 7 , the GB
model’s results are somewhat less favorable. While it maintains a reasonable accuracy of 72.5%, its precision and recall values
for the Anomaly (A) class are lower (63%-66%), indicating more false negatives and fewer true positives. This suggests that the
GB model may be less effective at detecting zero-day attacks. On the other hand, it performs relatively well in identifying S and
SS attacks. The DT model outperforms the GB model in terms of classification accuracy balanced precision, and recall across
different attack types. The choice of model can significantly impact the effectiveness of a cybersecurity system in detecting and
classifying different types of attacks.

TABLE 7 GB classifier report

Class Precision Recall F1-Score Support
Anomaly (A) 0.6912 0.6351 0.6620 74
Signature (S) 0.8125 0.9028 0.8553 72

Synthetic Signature (SS) 0.6346 0.6111 0.6226 54
Accuracy: 0.7250 200

Macro Avg 0.7128 0.7163 0.7133 200
Weighted Avg 0.7196 0.7250 0.7209 200

4.4 Naive Bayes Results
The NB model outperforms both DT, RF, and GB in terms of accuracy, precision, and recall across all classes (Table 8 ). It
achieves the highest accuracy (96%) and F1 scores, indicating a better overall classification performance (Table 8 ). The DT
model also performs well but has slightly lower accuracy (95%). In contrast, the GB model exhibits lower precision and recall,
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particularly for the Anomaly (A) class. The NB model seems to be the most effective algorithm for classifying these types of
attacks.

TABLE 8 NB classifier report

Precision Recall F1-Score Support
Anomaly (A) 0.9855 0.9189 0.9510 74
Signature (S) 0.9600 1.0000 0.9796 72

Synthetic Signature (SS) 0.9464 0.9815 0.9636 54
Accuracy: 0.9650 200

Macro Avg 0.9640 0.9668 0.9648 200
Weighted Avg 0.9658 0.9650 0.9647 200

4.5 Ensemble Learning Results
The ensemble model shows the highest accuracy (97%) and competitive precision, recall, and F1 score values, making it the
top-performing model among all the models (Table 9 and Figure 25 ). NB also performed well, closely following the ensem-
ble model. DT and GB have lower accuracy and F1 scores, indicating that they are less effective for this classification task.
The confusion matrix depicted in Figure 26 provides insights into the classification outcomes of attacks across three distinct
categories: Anomaly (A), Signature (S), and Synthetic Signature (SS). The matrix showcases a remarkable level of accuracy,
characterised by high TP rates across all categories, signifying the correct classification of the majority of attacks (Figure 26 ).
Specifically, the Signature (S) and Synthetic Signature (SS) categories demonstrate outstanding precision, with minimal classi-
fication errors, featuring just one FP for the SS category (Figure 26 ). In contrast, the Anomaly (A) category, while generally
accurate, shows a slightly elevated number of FN (2 and 3 instances), implying the misclassification of a few Anomaly (A)
attacks as non-anomaly (Figure 26 ). These classification results are robust and dependable, particularly for the Signature (S)
and Synthetic Signature (SS) attack types, encompassing 72 and 53 instances, respectively (Figure 26 ).

TABLE 9 Ensemble learning report

Precision Recall F1-Score Support
Anomaly (A) 0.93 0.99 0.96 70
Signature (S) 1.00 0.97 0.99 74

Synthetic Signature (SS) 0.98 0.95 0.96 56
Accuracy: 0.97 200

Macro Avg 0.97 0.97 0.97 200
Weighted Avg 0.97 0.97 0.97 200

The obtained results shed light on the effectiveness of selected ML models in recognising zero-day vulnerabilities threats.
These threats are categorised as Anomaly (A), Synthetic Signature (SS), and Signature (S) (Figure 25 and Figure 26 ). Among
the models evaluated, the proposed ensemble model, which combines the strengths of individual base models, showcased the
highest accuracy of 97% (Figure 25 ). This exceptional performance signifies its proficiency in identifying the most challenging
zero-day threats. Furthermore, the ensemble model exhibited outstanding precision and recall for all three threat categories,
with F1 scores close to 1.0 for Signature attacks (S) (Table 9 ). NB, while not as accurate as the ensemble model, also achieved
notable results.
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FIGURE 25 Algorithmic comparative analysis

FIGURE 26 The ensemble learning confusion matrix

These findings imply that the combination of models in the ensemble and the advanced boosting techniques employed by GB
is particularly well-suited for the task of recognising zero-day vulnerabilities threats. On the other hand, DT and GB showed
lower accuracy and F1 scores, indicating that they may not be the ideal choice for tackling such sophisticated threats. This
experiment underscores the significance of ensemble learning in enhancing the security posture against zero-day threats and
illustrates the need for selecting relevant features for the task of effectively mitigating advanced cybersecurity challenges using
ML models. In the upcoming section, we employ the most pertinent features identified by the RFE (Figure 24 ) to evaluate the
UGRansome dataset in real-time.
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4.6 Intrusion Prevention Simulation
In the simulation experiments, the study ensured that the virtual private network (VPN) tunnel was properly configured and
maintained to establish a secure connection between the computer and the IDS server. The VPN tunnel’s performance and
uptime were monitored to ensure a consistent and secure connection, minimising any potential risks or downtime. To establish
a remote connection to the IDS, the following SSH command was used:

𝑠𝑠ℎ − 𝑝 42002 𝑖𝑑𝑠@16.23.19.19

Here, the p flag denotes the specific port to be used (e.g. 42002), while 16.23.19.19 represents the server’s IP address, and ids
indicates the IDS server’s name. The IDS server includes a DPI component that captures network traffic. The IDS server can be
viewed as a complex system composed of several interconnected processes or daemons that work together to ensure the security
of the network. Each daemon performs specific tasks, and they communicate with each other to extract and process information.
The workflow used to test UGRansome in real time using the IDS is depicted in Figure 27 . This approach highlights the
effectiveness of DPI with UGRansome data in improving network security by identifying and mitigating potential threats. The
research designed a property object that includes extracted features of UGRansome such as seed or expended addresses, flags,
and ports. By incorporating these features, the study creates a rule that can either reject or drop any abnormal traffic, reducing
unknown traffic classification and ultimately improving network security. With this approach, the study could ensure that any
malicious traffic utilising UGRansome features will be rejected, thus mitigating potential network threats. The research uses the
IDS to visualise the traffic that triggered the rule set, offering real-time testing of UGRansome. In this experiment, the extracted
UGRansome data is uploaded to the IDS file manager, where it can be processed and analysed to detect any malicious activity
(Figure 28 ). As illustrated in Figure 29 , the study has generated a property object. The aforementioned property, labelled
infected sites, encompasses all the seed or expended addresses contained in the UGRansome dataset, such as 1DA11mPS,
1diceyg, and 4ePEyktk (see Figure 29 where * means applied to all specified addresses). This meticulous approach serves to
enhance network security by blocking all traffic that will use the specified UGRansome addresses in the property object. In the
field of cybersecurity, it is crucial to have such mechanisms in place that can detect and prevent potential threats from entering
a network. One such mechanism is the proposed use of rules to filter network traffic based on UGRansome addresses. In this
case, the research utilised the seed or expended addresses of the UGRansome dataset to create a property object named infected
sites (Figure 29 ).

FIGURE 27 Real time testing workflow using UGRansome

To further enhance network security, the research sets a rule to reject all network traffic that utilises UGRansome addresses,
protocols, flags, and ports (Figure 30 and 32 ). This approach ensures that any malicious traffic that uses UGRansome features
will be rejected, thereby mitigating potential threats to the network. The use of rules to filter network traffic based on certain
criteria is a critical component of network security76. By incorporating features such as seed or expended addresses, protocols,
flags, and ports, the research creates effective rules that help prevent potential threats from entering the network. To ensure
the effectiveness of UGRansome in blocking malicious network concerns, the rejected traffic is subjected to visualisation for
analysis, as shown in Figure 31 . The visualisation is crucial in determining the total traffic triggered by the rejection rule.
Results obtained indicate that the total infected sites reached more than 100 kbps, with outgoing traffic surpassing incoming
traffic. These findings are a clear indication of the efficiency of UGRansome in mitigating malicious network threats76.
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FIGURE 28 Uploading the UGRansome dataset in the IDS

FIGURE 29 The UGRansome property object

FIGURE 30 The rejection rule

The IDS configuration using UGRansome is illustrated in Figure 32 . The system is configured with three network objects:
protocol, port, and flag. The protocol object is designed to only reject UDP traffic, but it can also be configured to reject TCP
or ICMP traffic. The IDS can block malicious traffic by utilising network objects to reject the flow that uses a seed or expended
addresses of the UGRansome data (Figures 30 and 32 ). This discussion is related to the configuration and implementation
of an IDS rule to detect and block malicious traffic related to UGRansome malware (Figure 32 ). The IDS uses DPI to analyse
network traffic and identify packets that match the specified rule.

FIGURE 31 Rejected malicious traffic of infected sites

The rule is designed to reject traffic from specific IP addresses and ports associated with UGRansome malware, as well as
any flags that indicate malicious behaviour (Figure 32 ). The rule is composed of several elements, including a property object
named infected sites, which contains a list of known UGRansome seeds and expended addresses.
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FIGURE 32 The IDS configuration using the UGRansome attributes

The action is set to reject, which instructs the IDS to drop any packets that match the rule (Figure 30 ). The protocol object is
set to UDP to target the specific type of network protocol used by UGRansome (Figure 32 ). The port object is configured with
the UGRansome malicious port ranges of 5061–5063 and 5065–5067 (Figure 32 ). The flag object is also set to asymmetric,
which indicates that the packet could be altered or modified in some way, a common characteristic of malware traffic (Figure
32 ). Finally, the rule is limited to traffic that is bound to the ugransome.pkg file representing features extracted by the RFE
technique (Figure 32 ). The effectiveness of the IDS rule is demonstrated by the visualisation of the rejected traffic, which shows
102.9 kbps of infected flow being blocked (Figure 31 ). This highlights the importance of UGRansome features in detecting and
blocking malicious traffic on a network. It is important to note that the rule can also be configured to accept traffic if needed, as
demonstrated in Figure 30 . This flexibility allows the IDS to be tailored to the specific needs and requirements of the network
being protected. The upcoming section will detail the outcomes related to diverse shaping and filtering rules and the utilisation
of UGransome to diminish unknown traffic.

4.7 Shaping and Filtering Rules Results
The shaping and filtering rules are detailed in Tables 10 and 11 . Table 10 provides a breakdown and description of shaping
rules as well as blocked malicious traffic. The effectiveness of the IDS in detecting network anomalies is further supported
by Figure 33 . The incoming internal quality flow, in particular, does not show any significant fluctuations when compared to
the other rules. Furthermore, there is a direct relationship between the number of established connections and the quality of
the incoming internal traffic. This observation is indicative of the fact that the network traffic flow is being protected from any
abnormalities. The IDS configuration, therefore, appears to be effective in maintaining the quality of the network traffic flow.
Figure 33 presents a dashboard of the IDS configured with the proposed rule. The visualisation produced by the IDS indicates
that the network traffic flow is being effectively monitored and that no abnormal traffic patterns have been detected. The results
obtained from the IDS configuration suggest that the shaping rule is effective in maintaining the quality of the network traffic flow
and protecting it from any abnormalities. The plot illustrated in Figure 34 shows the fluctuation of blocked traffic for different
rules based on two zero-days vulnerabilities denoted as "A" and "SS". The x-axis represents various rules, including incoming,
outgoing, total, estimated connections, unestablished connections, and incoming internal quality (Tables 11 and 10 ).

Upon examining the plot, we can discern the rules within shaping and filtering that exhibit the most blocked URLs and infected
sites by assessing the tallest peaks for each category. Elevated peaks in the plot indicate rules that caused more blocked traffic
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TABLE 10 Description of rules
Rule Description

Incoming Incoming traffic measured in kilobits per second (kbps)
Outgoing Outgoing traffic measured in kilobits per second (kbps)

Total Total of incoming and outgoing traffic
In. CPS Incoming connections per service measured in kbps

Out. CPS Outgoing connections per service measured in kbps
Est. connections Established connections measured in kbps

Unest. connections Unestablished connections measured in kbps
In int Quality Quality of incoming internal traffic measured in kbps

TABLE 11 Description of features used to configure rules and blocked traffic (Figure 24 )
Block URLs

Extracted RFE features: address,
threats, flag, ransomware
1SYSTEMQ, APT, AP, expAddress_1,
cryptoLocker2015, ARF, 1GZku-
jBR, NoobCrypt, flag_R, 1KZKcvx4,
DMALocker, flag_APS, CryptXXX,
flag_AF, WannaCry, 1DA11mPS, JigSaw

Infected sites

Extracted RFE features: address and
ransomware
18e372GN, SamSam, 1BonuSr7, Globe,
1DiCeTjB, Cryptoitman, 1AEoHYZ,
Razy, 1NKi9AK5, Flyper, 17dcMo4V,
EDA2, 1Lc7xTpP, Locky

(URLs or infected sites) for the specified zero-day vulnerabilities "A" and "SS". Determining the most blocked categories like
Signature (S), Synthetic Signature (SS), and Anomaly (A) can be achieved by identifying the highest peaks within the S, SS, and
A categories, and one can ascertain the rules contributing the most to blocked traffic. This plot highlights the dynamic nature
of cybersecurity threats. Unknown and unpatched vulnerabilities, known as zero-day vulnerabilities, pose significant risks. The
fluctuation in blocked traffic for the "A" and "SS" categories might signify varying attack intensities or frequencies targeting
diverse zero-day vulnerabilities. These implications stress the importance of adaptive and proactive security measures. The
plot underscores the necessity for continual monitoring, agile responses, and adaptive security frameworks to counter emerging
threats. It emphasises the need for predictive analytics, machine learning, and artificial intelligence-driven security to effectively
anticipate and mitigate potential zero-day vulnerabilities. In essence, this plot signifies the evolving nature of cybersecurity
threats, demanding a holistic and adaptable approach to safeguard against emerging vulnerabilities, particularly zero-day threats,
in an ever-changing landscape.

4.8 Unexpected Anomaly and Unknown Traffic Reduction
During testing of UGRansome in real time, the study identified a packet drop anomaly where network traffic decreased upon
uploading UGRansome data into the IDS to reject infected traffic (Figure 35 ). The root of this issue is unknown, and further
investigation from a packet inspection perspective is needed to determine its cause. The author resolved this incompatibility
issue by compressing and translating UGRansome into a pkg format, although some cyclostationary features were lost in the
compression process. This study provides insight into the classification of novel network threats and the use of ML algorithms
for this purpose. It also highlights the need for further investigation into packet drop anomalies presented in Figure 35 and
the importance of preserving cyclostationary features during dataset compression. The study can be criticised for not delving
deeper into the underlying causes of the identified anomalies, and for not exploring alternative approaches to resolve the packet
drop issue. Additionally, the study’s findings may not be generalisable to other datasets or contexts. The study has identified
an anomaly in the network related to the rules that were not triggered, suggesting that there were no outgoing packet drops or
latency issues in the network (Figure 36 ).
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FIGURE 33 Real-time analysis of network flow using UGRansome (Table 10 )

Moreover, the IDS generated a warning when UGRansome attributes were updated, as shown in Figure 37 . These warnings
indicate that the DPI needs to manage more traffic queues than before, which could potentially impact its performance with
packet drop shown in Figure 36 and Figure 38 . The DPI queue is a critical component of the IDS that manages the flow
properties of network traffic in real time. The UGRansome dataset has been observed to cause anomalous changes to the traffic
entries in the DPI queue (Figure 37 ). The warning message produced by the IDS indicates that the k-value store queue is full
because the cache values are exhausted (Figure 38 ), which results in the loss of some flow properties (Figure 35 and Figure
36 ). This situation requires troubleshooting measures to adjust the key-value store parameters and increase the size of the queue.
Further investigation is required to identify and analyse the factors that contribute to anomalous changes in the DPI queue. This
research could also involve the development and testing of new algorithms and techniques to optimise IDS queue management
and flow property storage. Moreover, the identification of anomalies is dependent on the quality and quantity of the RFE data
(Figure 38 and Figure 37 ), as well as the algorithms and parameters used for analysis. Therefore, there is a need for further
research to develop more robust methods for anomaly detection and investigate the impact of different parameters and algorithms
on the performance of the IDS. Upon the implementation of rules utilising the properties of UGRansome, a notable reduction
in unknown traffic was observed, as depicted in Figure 39 . It is noteworthy that the rate of unclassified traffic, i.e. traffic that
was not being analysed, increased from 378.0 kbs to 591.0 kbs after the implementation of rules, as illustrated in Figure 39 .
This unexpected outcome calls for further investigation to understand the underlying causes and implications of the observed
phenomenon. Despite this, it can be argued that the reduction in unknown traffic is a significant advantage as it enhances the
security of the network by enabling better monitoring and the detection of potential threats.
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FIGURE 34 Network flow analysis using UGRansome

FIGURE 35 The packet drop

Furthermore, the increase in unclassified traffic can potentially be addressed through the refinement of the implemented
rules or the exploration of alternative methods. The research findings indicate a decrease in unknown traffic classification
and an increase in unclassified traffic after the implementation of the UGRansome properties-based rule. This unexpected
result highlights the need for further investigation into the relationship between unknown and unclassified traffic from a DPI
perspective.

4.9 Discussion and Comparative Experimentation
The Decision Tree (DT) model exhibits a commendable efficacy in accurately identifying Signature attacks (S) and Synthetic
Signature (SS) attacks, achieving recall rates of 98% and 100%, respectively. This high recall signifies that the DT model success-
fully captures a vast majority of actual instances of these attack types. The Gradient Boosting (GB) model, although proficient,
displays relatively lower precision and recall values for the Anomaly (A) class at 63%-66%.
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FIGURE 36 The packet drop and normal network traffic

FIGURE 37 Error caused by the UGRansome dataset

FIGURE 38 The UGRansome’s system diagnosis



38

Before

After

FIGURE 39 The reduction of unknown traffic classification

This lower precision indicates a higher occurrence of false negatives and fewer instances of true positives within this class77.
Surprisingly, the Naive Bayes (NB) model surpasses both DT, Random Forest (RF), and GB models across all classes, exhibiting
superior accuracy, precision, and recall. With an accuracy rate of 96% and F1 scores reaching 97%, the NB model demonstrates
superior overall classification performance compared to its counterparts. Arguably, the NB model emerges as the most effective
algorithm for effectively classifying zero-day vulnerabilities due to its exceptional performance across multiple metrics. More-
over, an ensemble model, combining the strengths of various models, showcases the highest accuracy at 97%. This ensemble
model presents competitive precision, recall, and F1 scores, positioning it as the top-performing technique among the individual
models (DT, RF, GB, and DT). The research findings unveil a noticeable trend following the implementation of the UGRansome
properties-based rules. There is a discernible decrease in the classification of unknown traffic alongside a concurrent increase
in unclassified traffic. This shift highlights the impact of the rule, potentially affecting the classification behaviour of the models
and suggesting the need for further analysis to comprehend its implications fully. In essence, while individual models demon-
strate distinct strengths and weaknesses, the NB model excels in classifying zero-day vulnerabilities, while the ensemble model
emerges as the most accurate among the techniques explored in this study. The observed changes post-implementation of the
UGRansome properties-based rule offer insights into the complexities of traffic classification, warranting continued investiga-
tion into its effects on model performance. A comparative analysis with existing studies is presented in Table 12 . Comparing
our results to existing studies in Table 12 , it is evident that our NB model’s performance exceeds the reported metrics in most
studies. Similarly, our naive ensemble model outperforms a majority of existing techniques, indicating promising advancements
in intrusion detection methodologies.

TABLE 12 Comparison of the proposed framework with existing studies

Studies Dataset Classifier Metric %

H. Zhang et al. (2018)52 UNSW-NB Auto-encoder Precision 95%
H. Liu and Lang (2019)78 KDD99 Particle Swarm Optimisation (PSO) Precision 78%

Vinayakumar et al. (2019)79 WSN-DS SVM Recall 91%
Louati and Ktata (2020)80 KDDCup-99 SVM Accuracy 99%

M. Nkongolo and M. Tokmak (2023)18 6 UGRansome RF ROC 100%
M. Tokmak (2022)22 UGRansome Deep Forest F1 score 88%

Xu, Xiong, Zhou, and Chen (2022)81 CAIDA NB Accuracy 80%
Ahmad et al. (2022)82 CICIDS2017 GB Precision 75%

Le et al. (2022)33 NF-BoT-IoT-v2 Genetic Algorithm Recall 87%
Continued on next page
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TABLE 12 – continued from previous page
Dataset Classifier Metric %

Alzaqebah et al. (2022)83 UNSWNB-15 K-Nearest Neighbors (KNN) Sensitivity 92%
G. Liu et al. (2022)84 WSN-DS PSO Accuracy 85%

M. Nkongolo and M. Tokmak (2023)18 UGRansome Fuzzy Logic Accuracy 98%
This work UGRansome NB Ensemble F1 score 97%

Future research in IDSs, while poised for advancements, faces certain limitations. The implementation of advanced ensemble
techniques and adaptive learning models may encounter challenges in computational complexity and resource demands, poten-
tially limiting their scalability in real-time applications. Additionally, achieving explainable artificial intelligence in IDSs may
pose hurdles in balancing interpretability with model complexity. Furthermore, the dynamic nature of cyber threats might pose
difficulties in creating comprehensive threat models, potentially leading to gaps in threat coverage. Addressing these limitations
will be critical in ensuring the practical applicability and efficacy of future IDS research. In our investigation, we found that
Secure Shell (SSH) vulnerabilities stood out as the most impactful zero-day attacks. These zero-day vulnerabilities showed a
penetration rate exceeding 500 Mbps specifically within the Anomaly (A) vulnerabilities, as depicted in Figure 40 .

FIGURE 40 Attacks detected by the IDS using the UGRansome data

5 CONCLUSION

The IDS field faces challenges in detecting unknown threats and minimising false alarms while combatting novel network attacks.
Despite the rising prevalence of advanced threats and zero-day attacks, existing IDSs lack effectiveness due to inadequately
designed datasets and the absence of innovative network shaping and filtering rules. Network shaping controls data flow speed
or bandwidth, while filtering regulates data packet passage based on specific criteria such as source/destination IP addresses or
port numbers for security purposes. An optimal IDS should incorporate diverse shaping and filtering rules to promptly block
abnormal network issues. This article aims to develop an IDS empowered by innovative networking policies derived from the
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UGRansome dataset to accurately identify and prevent unknown and new network threats in real time. Based on the findings,
the study demonstrates varied performances among the models evaluated for intrusion detection. The Decision Tree (DT) model
displays effectiveness in identifying Signature (S) and Synthetic Signature (SS) attacks but exhibits limitations in precision
and recall for the Anomaly (A) class. The Naïve Bayes (NB) model surpasses other methods, showcasing superior accuracy,
precision, and recall across all classes, particularly excelling in classifying zero-day vulnerabilities. The ensemble model emerges
as the top-performing technique, showcasing high accuracy competitive precision, and recall values among all models assessed.
Lastly, this research reveals noteworthy changes in traffic classification post-implementation of the UGRansome properties-
based rule, emphasising potential enhancements in identifying network anomalies. These findings underscore the potential of
the NB model and ensemble techniques in significantly improving intrusion recognition systems’ efficiency, paving the way for
more robust and effective strategies in combating emerging zero-day vulnerabilities.
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