
1

PQC-NN:

Post-Quantum Cryptography Neural Network

Abel C. H. Chen

Information & Communications Security Laboratory,

Chunghwa Telecom Laboratories

Taoyuan, Taiwan

ORCID: 0000-0003-3628-3033; Email: chihua0826@cht.com.tw

Abstract—In recent years, quantum computers and Shor’s

quantum algorithm have been able to effectively solve NP (Non-

deterministic Polynomial-time) problems such as prime

factorization and discrete logarithm problems, posing a threat

to current mainstream asymmetric cryptography, including

RSA and Elliptic Curve Cryptography (ECC). As a result, the

National Institute of Standards and Technology (NIST) in the

United States call for Post-Quantum Cryptography (PQC)

methods that include lattice-based cryptography methods, code-

based cryptography methods, multivariate cryptography

methods, and hash-based cryptography methods for resisting

quantum computing attacks. Therefore, this study proposes a

PQC neural network (PQC-NN) that maps a code-based PQC

method to a neural network structure and enhances the security

of ciphertexts with non-linear activation functions, random

perturbation of ciphertexts, and uniform distribution of

ciphertexts. The main innovations of this study include: (1)

constructing a neural network structure that complies with

code-based PQC, where the weight sets between the input layer

and the ciphertext layer can be used as a public key for

encryption, and the weight sets between the ciphertext layer and

the output layer can be used as a private key for decryption; (2)

adding random perturbations to the ciphertext layer, which can

be removed during the decryption phase to restore the original

plaintext; (3) constraining the output values of the ciphertext

layer to follow a uniform distribution with a significant

similarity by adding the cumulative distribution function (CDF)

values of the chi-square distribution to the loss function,

ensuring that the neural network produces sufficiently uniform

distribution for the output values of the ciphertext layer. In

practical experiments, this study uses cellular network signals

as a case study to demonstrate that encryption and decryption

can be performed by the proposed PQC neural network with the

uniform distribution of ciphertexts. In the future, the proposed

PQC neural network could be applied to various applications.

Keywords—post-quantum cryptography, McEliece

cryptography, neural network

I. INTRODUCTION

In the recent years, the development of quantum
computers and Shor’s quantum algorithm [1] have been used
for effectively solving NP (Non-deterministic Polynomial-
time) problems (e.g. prime factorization and discrete
logarithm problems). Therefore, the current mainstream
asymmetric cryptography methods (e.g. RSA based on the
prime factorization problem and Elliptic Curve Cryptography
(ECC) based on the discrete logarithm problem) may be
attacked by quantum computing. Therefore, the National
Institute of Standards and Technology (NIST) in the United
States has called for Post-Quantum Cryptography (PQC)
methods [2] and collected latticed-based cryptography
methods [3], code-based cryptography methods [4-5],
multivariate cryptography methods [2], and hash-based
cryptography methods [6] based on different NP problems for

improving security. For instance, McEliece cryptography
method (i.e. one of code-based cryptography methods)
generates several matrices as the private key and the
multiplication of these matrices as the public key, and the non-
negative matrix factorization (NMF) problem (i.e. one of NP
problems) supports the security of McEliece cryptography
method. Moreover, some noises can be added into ciphertexts
for improving security, and these noises can be detected and
corrected through the error-correcting phase in McEliece
cryptography method for resisting quantum computing attacks.

Furthermore, neural networks have been a popular tool to
provide encoding and decoding. Therefore, this study
proposes PQC neural network (PQC-NN) based on the ability
of encoding and decoding in the neural network [7]. The
proposed PQC neural network can map a code-based PQC
method to a neural network structure and enhance the security
of ciphertexts with non-linear activation functions, random
perturbation of ciphertexts, and uniform distribution of
ciphertexts.

The contributions and innovations of this study are
highlighted and summarized as follows.

• Constructing a neural network structure that complies
with code-based PQC, where the weight sets between
the input layer and the ciphertext layer can be used as
a public key for encryption, and the weight sets
between the ciphertext layer and the output layer can
be used as a private key for decryption.

• Adding random perturbations to the ciphertext layer,
which can be removed during the decryption phase to
restore the original plaintext.

• Constraining the output values of the ciphertext layer
to follow a uniform distribution with a significant
similarity by adding the cumulative distribution
function (CDF) values of the chi-square distribution to
the loss function, ensuring that the neural network
produces sufficiently uniform distribution for the
output values of the ciphertext layer.

This manuscript has five sections. Section II describes a
code-based PQC method and presents the principle and
calculation examples of McEliece cryptography method.
Section III proposes PQC neural network from a neural
network for McEliece cryptography method to the advanced
neural network for PQC method. For generating secure
ciphertexts, Subsection III.C illustrates the added random
perturbations in the ciphertext layer and the added CDF values
in the loss function for the chi-test of ciphertext uniform
distribution. In Section IV, practical cellular network signals
are selected as a case study to be encrypted by the proposed
PQC neural network, and the mean-square errors and CDF
values are evaluated under different hyperparameter values.

2

Finally, Section V concludes the contributions of this study
and discusses the future work.

II. CODE-BASED POST-QUANTUM CRYPTOGRAPHY

This section presents McEliece cryptography method (i.e.
one of code-based PQC methods) and uses Hamming code
method as the error-correcting method in McEliece
cryptography method. Section II.A gives a calculation
example to explain encoding and decoding by Hamming code
method. Section II.B gives a calculation example to explain
encryption and decryption by McEliece cryptography method.

A. Hamming code method

This subsection illustrates the initial phase, encoding and
decoding phase, and error-correcting phase.

1) Initial phase
In the initial phase, Hamming code method generates three

matrices that include a generator matrix (i.e. an encoder) G,
an error-detector matrix H based on G, a decoder matrix R
based on G. This manuscript shows a calculation example to
present the matrices G, H, and R in Equations (1), (2), and (3).

𝐺 = [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

] (1)

𝐻 =

[

1 0 0
0 1 0
1
0
1
0
1

1
0
0
1
1

0
1
1
1
1]

 (2)

𝑅 =

[

0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

 (3)

2) Encoding and decoding phase
In the encoding phase, the generator matrix G can be

multiplied by the plaintext x to obtain the encoded text y
(shown in Equation (4)). Furthermore, the decoding phase, the
decoder matrix R can be multiplied by the encoded text y to
obtain the plaintext x (shown in Equation (5)). In the
calculation example, the plaintext 𝑥 = [1 0 0 0] is
selected as a case for explanation, and the encoded text y can
be calculated as [1 1 1 0 0 0 0] (shown in
Equation (6)). Furthermore, the plaintext x can be obtained by
the multiplication of the encoded text y and the decoder matrix
R (shown in Equation (7)).

𝑦 = 𝑥𝐺 (4)

𝑥 = 𝑦𝑅 (5)

𝑦 = 𝑥𝐺

= [1 0 0 0] [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

]

= [1 1 1 0 0 0 0]

(6)

𝑥 = 𝑦𝑅

= [1 1 1 0 0 0 0]

[

0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

= [1 0 0 0]

(7)

3) Error-correcting phase
For the demonstration of error-correcting phase, a random

number r is added into the encoded text y to obtain the text y’
with a noise (shown in Equation (8)). The positioning of error
bit z in the text y’ can be detected by the error-detector matrix
H (shown in Equation (9)) for correction. In the manuscript,
the random number 𝑟 = [0 0 0 0 0 0 1] is
selected to be a noise for generating the text y’ (shown in
Equation (10)). Furthermore, the error-detector matrix H can
be multiplied by the text y’ to obtain the positioning of error
bit 𝑧 = [1 1 1] (shown in Equation (11)). The seventh bit
is incorrect and detected by the positioning of error bit z, so
the seventh bit of the text y’ can be corrected to obtain the
corrected encoded text 𝑦 = [1 1 1 0 0 0 0].

𝑦′ = 𝑦 + 𝑟 (8)

𝑧 = 𝑦′𝐻 (9)

𝑦′ = 𝑦 + 𝑟 = [1 1 1 0 0 0 0]
+ [0 0 0 0 0 0 1]

 = [1 1 1 0 0 0 1]
(10)

𝑧 = 𝑦′𝐻 = [1 1 1 0 0 0 1]

[

1 0 0
0 1 0
1
0
1
0
1

1
0
0
1
1

0
1
1
1
1]

 = [1 1 1]

(11)

B. McEliece cryptography method

This subsection illustrates the key generation phase,
encryption phase, and decryption phase.

1) Key generation phase
In the key generation phase, McEliece cryptography

method generates three matrices that include a scrambler S, a
generator matrix G, and a permutation matrix P. These three
matrices (i.e. {S, G, P}) are selected as a private key, and the
multiplication of these three matrices G’ is selected as public
key (shown in Equation (12)). For the explanation of
McEliece cryptography method, a calculation example of S, G,
and P is given in Equations (13), (1), and (14). Furthermore,
the public key G’ can be obtained by Equation (15).

𝐺′ = 𝑆𝐺𝑃 (12)

𝑆 = [

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

] (13)

𝑃 =

[

0 1
0 0

0 0
0 1

0 0 0
0 0 0

0 0
1 0

0 0
0 0

0 0 1
0 0 0

0 0
0
0

0
0

1 0
0
0

0
0

0 0 0
0
1

1
0

0
0]

 (14)

3

𝐺′ = 𝑆𝐺𝑃

 = [

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

] × [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

]

×

[

0 1
0 0

0 0
0 1

0 0 0
0 0 0

0 0
1 0

0 0
0 0

0 0 1
0 0 0

0 0
0
0

0
0

1 0
0
0

0
0

0 0 0
0
1

1
0

0
0]

 = [

0 1
1 0

1 0 1 0 1
0 0 1 0 1

1 0
1 0

1 0 1 1 0
1 1 0 0 1

]

(15)

2) Encryption phase
In the encryption phase, the public key G’ can be

multiplied by the plaintext x to obtain the ciphertext y with a
random number r (shown in Equation (16)). For random
perturbations, the same plaintext can be encrypted for
generating different ciphertexts based on different random
numbers. The plaintext 𝑥 = [1 0 0 0] and the random
number 𝑟 = [0 0 0 0 0 0 0] are selected as a
calculation example, and the ciphertext 𝑦 =
[0 1 1 0 1 0 1] can be obtained by Equation (17).
Due the random number 𝑟 = [0 0 0 0 0 0 0] for
the explanation of McEliece cryptography method, the error-
correcting phase in Subsection II.A.3 is not necessary in this
case. If other random numbers are used in the encryption
phase, the ciphertext with a noise could be denoted as y’;
furthermore, the noise in y’ can be corrected and detected by
the steps in Subsection II.A.3 for removing the influence of
random number r.

𝑦 = 𝑥𝐺′ + 𝑟 = 𝑥𝑆𝐺𝑃 + 𝑟 (16)

𝑦 = 𝑥𝐺′ + 𝑟

 = [1 0 0 0] [

0 1
1 0

1 0 1 0 1
0 0 1 0 1

1 0
1 0

1 0 1 1 0
1 1 0 0 1

]

+ [0 0 0 0 0 0 0]
 = [0 1 1 0 1 0 1]

(17)

3) Decryption phase
The ciphertext is obtained in accordance with the public

key G’ (i.e. the multiplication of S, G, and P), so the ciphertext
can be decrypted by the multiplication of the matrix P-1, the
decoder matrix R, and the matrix S-1 for obtaining the plaintext
x. Firstly, the inverse matrix of the permutation matrix P (i.e.
P-1) can be multiplied by the ciphertext y to remove the
influence of the permutation matrix P (shown in Equation
(18)). Furthermore, the error-correcting phase in Subsection
II.A.3 can be performed to remove the influence of the random
number r (i.e. 𝑟𝑃−1 in Equation (18)) and get the matrix 𝑥𝑆𝐺.
The decoding phase can be performed by Equation (19), the
decoder matrix R can be multiplied by the matrix 𝑥𝑆𝐺 to
remove the influence of the generator matrix G for getting the
matrix 𝑥𝑆. Finally, the inverse matrix of the scrambler S (i.e.
S -1) can be multiplied by the matrix 𝑥𝑆 to remove the
influence of the scrambler S (shown in Equation (20)) for
obtaining the plaintext x.

𝑦𝑃−1 = 𝑥𝐺′𝑃−1 + 𝑟𝑃−1
 = [0 1 1 0 1 0 1]

×

[

0 0
1 0

0 1
0 0

0 0 0
0 0 0

0 0
0 1

0 0
0 0

1 0 0
0 0 0

0 0
0
0

0
0

0 0
0
1

0
0

0 0 1
0
0

1
0

0
0]

= [1 0 1 0 1 0 1]
= 𝑥𝑆𝐺𝑃𝑃−1 + 𝑟𝑃−1
= 𝑥𝑆𝐺 + 𝑟𝑃−1

(18)

𝑥𝑆𝐺𝑅 = [1 0 1 0 1 0 1]

[

0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

 = [1 1 0 1] = 𝑥𝑆

(19)

𝑥𝑆𝑆−1 = [1 1 0 1] [

1 1
1 1

0 1
0 0

0 1
1 0

1 1
0 1

]

 = [1 0 0 0] = 𝑥

(20)

For the explanation of McEliece cryptography method
with a calculation example, Hamming code method (i.e. a
linear error-correcting method) is used, but the non-linear
error-correcting methods could be used for improving security
levels. Furthermore, this section uses small matrices, but
bigger matrices could be considered for practical applications.
For instance, the McEliece cryptography method which was
submitted to NIST for PQC standardization has different sizes
of bigger matrices for the requirements of security levels in
the standard of NIST.

III. POST-QUANTUM CRYPTOGRAPHY NEURAL NETWORK

This section presents detail explanation of the proposed
PQC neural network from step-by-step. Subsection III.A
presents the structure of neural network for Hamming code
method based on the case in Subsection II.A, and Subsection
III.B presents the structure of neural network for McEliece
cryptography method based on the case in Subsection II.B.
Finally, the proposed PQC neural network is illustrated in
Subsection III.C.

A. Neural network for Hamming code method

Fig. 1 presents the structure of neural network for
Hamming code method based on the case in Subsection II.A.
The neural network has four neurons in the input layer (i.e. X
= {x1, x2, x3, x4}), seven neurons in the hidden layer (i.e. Y =
{y1, y2, …, y7}), and four neurons in the output layer. Each
neuron has no bias, and the linear function is adopted as the
activation function. The outputs of the neural network is
fitting the inputs of the neural network (i.e. an auto-encoder
network). Therefore, the weights between the input layer and
the hidden layer is a 4 x 7 matrix G (i.e. the generator matrix
G in Subsection II.A), and the value of each element in the
matrix G is denoted in Equation (1). The weights between the
hidden layer and the output layer is a 7 x 4 matrix R (i.e. the
decoder matrix R in Subsection II.A), and the value of each
element in the matrix R is denoted in Equation (3). In this
subsection, the red line is represented as the weight value of

4

one, and the black line is represented as the weight value of
zero in the structure of neural network. Therefore, Hamming
code method in Subsection II.A can be represented as the
neural network in Fig. 1 for encoding and decoding. When the
values of the input X are [1 0 0 0], the values of the
neurons in the hidden layer Y are [1 1 1 0 0 0 0]
(i.e. the encoded values). Furthermore, the encoded values can
be decoded as [1 0 0 0] through the output layer.

Fig. 1. Neural network for Hamming code method

B. Neural network for McEliece cryptography method

Fig. 2 presents the structure of neural network for
McEliece cryptography method on the case in Subsection II.B.
The neural network has four neurons in the input layer (i.e. X
= {x1, x2, x3, x4}), four neurons in the first hidden layer, seven
neurons in the second hidden layer, seven neurons in the third
hidden layer (i.e. the ciphertext layer) Y = {y1, y2, …, y7},
seven neurons in the fourth hidden layer, four neurons in the
fifth hidden layer, and four neurons in the output layer. Each
neuron has no bias, and the linear function is adopted as the
activation function. In this subsection, the red line is
represented as the weight value of one, and the black line is
represented as the weight value of zero in the structure of
neural network.

Fig. 2. Neural network for McEliece cryptography method

Encryption can be performed from the input layer to the
third hidden layer (i.e. the ciphertext layer). In the neural
network, the weights between the input layer and the first
hidden layer is a 4 x 4 matrix S (i.e. the scrambler S in
Subsection II.B), and the value of each element in the matrix
S is denoted in Equation (13). The weights between the first
hidden layer and the second hidden layer is a 4 x 7 matrix G
(i.e. the generator matrix G in Subsection II.A), and the value
of each element in the matrix G is denoted in Equation (1).
The weights between the second hidden layer and the third
hidden layer is a 7 x 7 matrix P (i.e. the permutation matrix P
in Subsection II.B), and the value of each element in the
matrix P is denoted in Equation (14). When the values of the
input X are [1 0 0 0], the values of the neurons in the
third hidden layer (i.e. the ciphertext layer) Y are
[0 1 1 0 1 0 1] (i.e. the values of ciphertexts).

Decryption can be performed from the third hidden layer
(i.e. the ciphertext layer) to the output layer. In the neural
network, the weights between the third hidden layer and the
fourth hidden layer is a 7 x 7 matrix P-1 (i.e. the inverse matrix

of the permutation matrix P in Subsection II.B). The weights
between the fourth hidden layer and the fifth hidden layer is a
7 x 4 matrix R (i.e. the decoder matrix R in Subsection II.A),
and the value of each element in the matrix R is denoted in
Equation (3). The weights between the fifth hidden layer and
the output layer is a 4 x 4 matrix S -1 (i.e. the inverse matrix of
the scrambler S in Subsection II.B). When the values of the
neurons in the third hidden layer (i.e. the ciphertext layer) Y
are [0 1 1 0 1 0 1] (i.e. the values of ciphertexts),
the values of the neurons in the output layer [1 0 0 0]
(i.e. the decrypted values).

C. Post-quantum cryptography neural network

Subsection III.B shows that the neural network can be
constructed for McEliece cryptography method, so this study
proposes an advanced PQC method based on neural networks.
Non-linear functions can be adopted as the activation
functions, and random numbers can be added to the neurons
in the ciphertext layer (i.e. the third hidden layer in Fig. 3) for
random perturbations and security improvement. From the
ciphertext layer and the output layer, the random perturbations
can be removed through the calculation of neural network to
obtain plaintexts for decryption.

For the explanation of the proposed PQC neural network,
the case in Subsection III.B is used to construct the neural
network with an input layer, five hidden layers, and an output
layer. For encryption, the structure of neural network includes
four neurons (i.e. X = {x1, x2, …, xc } and the number of inputs
c is four) in the input layer, four neurons in the first hidden
layer, seven neurons in the second hidden layer, and seven
neurons in the third hidden layer (i.e. the ciphertext layer). The
weights between the input layer and the first hidden layer is a
4 x 4 matrix S; the weights between the first hidden layer and
the second hidden layer is a 4 x 7 matrix G; the weights
between the second hidden layer and the third hidden layer is
a 7 x 7 matrix P. Furthermore, the notation ⨂ is denoted as
the non-linear activation functions in each layer for generating
the n-dimension ciphertexts (i.e. n neurons in the ciphertext
layer Y = {y1, y2, …, yn}) by Equation (21). For improving the
security, random numbers can be added to the output of the
ciphertext layer. For instance, the i-th neuron in the ciphertext
layer yi can add the random number ri based the weight 𝛼 by
Equation (22). For decryption, the structure of neural network
includes seven neurons in the fourth hidden layer, four
neurons in the fifth hidden layer, and four neurons in the
output layer. The weights between the third hidden layer and
the fourth hidden layer is a 7 x 7 matrix L; the weights between
the fourth hidden layer and the fifth hidden layer is a 7 x 4
matrix M; the weights between the fifth hidden layer and the
output layer is a 4 x 4 matrix N for decrypting the ciphertexts
and obtain the c-dimension plaintexts (i.e. O = {o1, o2, …, oc})
by Equation (23). Furthermore, the Mean-Square Error (MSE)
function is adopted as a part of loss function to reduce the
errors of decrypted data.

Fig. 3. PQC neural network

0

1

0

0

0

1
1

1

1

0

0

0

0

Input Layer

Plaintexts X

Hidden Layer

Encoded Texts Y
G R

0

0

Output Layer

Plaintexts X

1

1

0

1

1

0

1

0

1

0

1

Input Layer

Plaintexts X

Ciphertext Layer

Ciphertexts Y

G R
1

0

0

0

1

0

1

0

1

0

1
1

1

1

0

PS
0

1

1

0

1

0

1

P-1

1

0

0

0

S-1

Output Layer

Plaintexts X

Input Layer

Plaintexts X

Ciphertext Layer

Ciphertexts Y’

G MPS L N

Output Layer

Plaintexts O

5

𝑌 = 𝑋⨂𝑆 ⊗ 𝐺 ⊗ 𝑃 (21)

𝑦𝑖 ′ = 𝑦𝑖 + 𝛼 × 𝑟𝑖 (22)

𝑂 = 𝑌′⨂𝐿 ⊗ 𝑀 ⊗ 𝑁 (23)

For improving the security of ciphertexts, the outputs of
the ciphertext layer subject to an uniform distribution in this
study. The ciphertext layer has n neurons, and the value of
each neuron is normalized. The normalization of the i-th
neuron value yi’ with a random number ri is performed to be
the variable hi. This study considers m intervals and groups
each variable into a range. Furthermore, the probability of
each range can be estimated; for instance, the probability of
the j-range is denoted as pj. This study adopts the CDF value
of chi distribution (i.e. (1 – p-value in chi-squared test) to
analyze the outputs of the ciphertext layer for testing the
subjection to uniform distribution. The chi-squared value 𝜒2
and the CDF value 𝜃 of chi distribution based on degrees of
freedom (i.e. m – 1 in this case) are measured by Equations

(24) and (25). The gamma function is denoted as Γ (
𝑚−1

2
), and

the incomplete gamma function is denoted as 𝛾 (
𝑚−1

2
,
𝜒2

2
). If

the CDF value is smaller than 0.5, the distribution of
ciphertexts is similar to an uniform distribution with a
significance. Therefore, this study adopts the CDF value 𝜃 in
Equation (25) as a part of loss function 𝐹(𝑋) to improve the
security of encrypted data by Equation (26).

𝜒2 = ∑
(𝑝𝑗 −

1
𝑚

)
2

1
𝑚

𝑚

𝑗=1

= 𝑚 ∑(𝑝𝑗 −
1

𝑚
)

2𝑚

𝑗=1

 (24)

𝜃 =
𝛾 (

𝑚 − 1
2

,
𝜒2

2
)

Γ (
𝑚 − 1

2
)

 (25)

𝐹(𝑋) = 𝜃 +
1

𝑐
∑(𝑜𝑖 − 𝑥𝑖)

2

𝑐

𝑖=1

 (26)

In the proposed PQC neural network, the matrix set {S, G,
P} is adopted as the public key for encryption, and the other
matrix set {L, M, N} is adopted as the private key for
decryption. The ciphertexts have random perturbations based
on random numbers, and the distribution of ciphertexts is
subject to an uniform distribution for obtaining secure
ciphertexts. Furthermore, the random perturbations can be
removed through the decryption neural network for restoring
plaintexts. In this subsection, a small neural network is given
as a case, but deeper and wider PQC neural networks with
billion neurons can be designed for encrypting more data and
provide higher security.

IV. PRACTICAL EXPERIMENTAL RESULTS AND DISCUSSIONS

For the evaluation of the proposed PQC neural network,
the data from the previous study [8] is adopted to perform
practical experimental results. The cellular network signals
are adopted as training data and testing data, and the encrypted
cellular network signals can be obtained by the proposed PQC
neural network. The number of inputs and outputs is 361 (i.e.
c = 361), and the number of neurons in the ciphertext layer is
64 (i.e. n = 64).

For adding random perturbations, the random number ri is
added based on the weight 𝛼. This section evaluates the MSEs
and CDF values under different weights, and the results are
shown in Table 1. For comparison, the same random seed is

considered to generate random numbers, so the CDF values of
uniformed random numbers is 0.009227 (i.e. 0.009227 < 0.05)
under different weights. In the practical experimental results,
the distribution of ciphertexts is subject to an uniform
distribution with a higher significance when the weight 𝛼 is
bigger than 0.4; for instance, the value of weight 𝛼 is 0.4, the
CDF value of ciphertexts Y’ is 0.038992 with a significance
(i.e. 0.038992 < 0.5). However, if the weight 𝛼 is smaller, the
MSEs of the output layer is lower (i.e. precise decrypted
values); for instance, the MSE of the output layer is 3.74E-05,
but the CDF value of ciphertexts Y’ is 0.303414 with no
significance (i.e. 0.303414 > 0.5) when the value of weight 𝛼
is 0.1. Therefore, in this case, the value of weight 𝛼 is
recommended as 0.4 to provide uniformed ciphertexts and
precise decrypted values.

TABLE I. THE MSES AND CDF VALUES UNDER DIFFERENT VALUES

OF 𝛼

Weight 𝛼
The MSEs of

output layer

The chi-test CDF
values of random

numbers

The chi-test CDF
values of

ciphertexts Y’

0.1 3.74E-05 0.009227 0.303414

0.2 5.86E-05 0.009227 0.202276

0.3 6.84E-05 0.009227 0.089382

0.4 8.27E-05 0.009227 0.038992

0.5 0.0001 0.009227 0.018034

0.6 0.0001 0.009227 0.013643

0.7 0.0002 0.009227 0.016572

0.8 0.0002 0.009227 0.012751

0.9 0.0003 0.009227 0.017519

1 0.0003 0.009227 0.017685

V. CONCLUSIONS AND FUTURE WORK

This study proposes a PQC neural network based on a
code-based PQC method (i.e. McEliece cryptography
method). In the proposed PQC neural network, non-linear
activation functions, random perturbations, and uniformed
ciphertexts with a significance are performed for improving
the security of ciphertexts. In experiments, the practical
cellular network signals are analyzed and encrypted by the
proposed PQC neural network, and the distribution of the
encrypted cellular network signals is subject to an uniform
distribution (i.e. a lower CDF value) with precise decrypted
values (i.e. a lower MSE). Although the small neural networks
are presented in this study, deeper and wider PQC neural
networks with billion neurons can be designed for encrypting
more data and provide higher security.

In the future, more efficient and more secure activation
functions can be designed for encryption and decryption with
less computation time. Furthermore, the proposed PQC neural
network can be applied to a wide variety of applications.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Journal on
Computing, vol. 26, no. 5, pp. 1484-1509, 1997.

[2] G. Alagic et al., “Status report on the third round of the NIST post-
quantum cryptography standardization process,” NIST Special
Publication, NISTIR 8413, 2022.

6

[3] H. Nejatollahi et al., “Post-quantum lattice-based cryptography
implementations: a survey,” ACM Computing Surveys, vol. 51, no. 6,
p. 129, 2019.

[4] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” JPL Deep Space Network Progress Report, vol. 42-44, pp.
114-116, 1978.

[5] J. -P. Thiers, J. Freudenberger, “Code-based cryptography with
generalized concatenated codes for restricted error values,” IEEE Open
Journal of the Communications Society, vol. 3, pp. 1528-1539, 2022.

[6] T. Sahraneshin et al. “Securing communications between things
against wormhole attacks using TOPSIS decision-making and hash-
based cryptography techniques in the IoT ecosystem,” Wireless
Networks,” vol. 29, pp. 969-983, 2023.

[7] C. Guo et al., “De-correlation neural network for synchronous
implementation of estimation and secrecy,” IEEE Communications
Letters, vol. 27, no. 1, pp. 165-169, 2023.

[8] L. Wu, C. -H. Chen, Q. Zhang, “A mobile positioning method based on
deep learning techniques. Electronics, vol. 8, no. 1, p. 59, 2019.

