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Abstract. VOX [PCF+23] has been submitted to the NIST Round 1 Additional
Signature of the Post-Quantum Signature Competition in June 2023. VOX is a
strengthened variant of UOV which uses the Quotient-Ring (QR) setting to reduce
the public-key size. At the end of August 2023, Furue and Ikamatsu posted on the
NIST mailing-list a post, indicating that the parameters of VOX can be attacked
efficiently using the rectangular attack in the QR setting.
In this note, we explain the attack in the specific case of VOX, we detail the complexity,
and show that as Furue and Ikematsu indicated, the attack can be completely avoided
by adding one more constraint on the parameter selection. Finally, we show that this
constraint does not increase the sizes of the public keys or signature.
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1 The Rectangular MinRank Attack on VOX
This attack has been discovered by Ward Beullens on the UOV scheme [Beu21], and has
been recently generalized to the Quotient Ring (QR) setting by Furue and Ikematsu at
IWSEC 2023 in [FI23]. The QR setting consists in reducing the public key by replacing
c × c coefficients in Fq of the public-key matrix by one coefficient in Fqc as in [FIKT21].
This allows to reduce by a factor c the matrices and the public key. The attack applies to
VOX, which uses the QR-setting, but not to FOX, which does not use that setting.

1.1 Notation
Let o and v denote the number of Oil and Vinegar variables, and let n = o + v. All
these quantities have a common divisor c, and we write O = o/c, V = v/c, N = n/c. We
denote by t the number of totally random secret polynomials in N variables over Fqc . Let
{ei, i = 1, . . . , N} be a canonical vector base of FN

qc .

1.2 Description of the attack
The original attack exploits the fact that a specific (rectangular) matrix built up by
composing the polar forms of the public polynomials by a random vector may have a
low rank if the vector happens to belong to the secret Oil space. Therefore, solving a
MinRank problem enables to find the secret Oil space. Using the notations of [Beu21],
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2 Rectangular Attack on VOX

the rectangular matrix can be expressed as the representation of the linear mapping Lx

defined by:
Lx(y) =

(
∆Pub(x, y)

)
where ∆Pub(x, y) = Pub(x + y) − Pub(x) − Pub(y) is the polar form of the public key.
Indeed, for a random vector x, the expected rank of the rectangular matrix is min(o, N).
For a vector x in the secret oil space, this rank is bounded by min(o, N, V + t). In the
case o > N , the MinRank attack is applicable whenever t < O. Indeed, in that parameter
regime, min(o, N, V + t) = V + t < N = min(o, N), so the behavior of the rank differs
between the two cases.

1.3 Complexity of the attack
The underlying MinRank problem: Let x =

∑N
i=1 xiei be an unknown vector. So Lx =∑N

i=1 xiLei
has rank at most V + t when x is in the secret oil space, and has a greater

rank with overwhelming probability otherwise. Since the secret oil space has dimension
O, with high probability, there is still a solution to the MinRank problem for x such
that O − 1 of its coordinates are set to 0. So we have to solve Rank(

∑k
i=1 xiLei

) ≤ r
where we note r = V + t and k = V + 1. Furthermore, we can consider the MinRank
problem with N × o or o × N matrices, whichever choice leads to a better efficiency for
the attack. It appears that for the set of VOX parameters, the second choice is better. We
use the Support Minors Modeling to solve the MinRank problem [BBC+20]. For a better
efficiency, we can also choose to select only m columns from the MinRank problem, with
r + 1 ≤ m ≤ N . Using the notation of [Beu21] section 7, let nx = k be the number of xi

variables, and ny =
(

m
r

)
the number of Minors variables. The MinRank problem can be

expressed as a bilinear system of equations in two groups of nx and ny variables. This
problem is solved by the XL algorithm on the first group of variables, that is we look for
the minimum degree b, such that multiplying all the equations by all the monomials of the
first group of variables, of degree b − 1, then the resulting system has more free equations
than the resulting number of monomials, which therefore have bi-degree (b, 1). And then
replacing all monomial by new variables (linearization), a solution can be found by the
block-Wiedemann algorithm, since all equations are sparse and contains the same number
of terms, given by w = nx(r + 1). The number of monomials of bi-degree (b, 1) in (nx, ny)
variables is M(b) =

(
nx+b−1

b

)
ny. From [Beu21] Section 2, the number of free equations

can be expressed as R(k, o, m, r, b) =
∑b

i=1 (−1)i+1(
m

i+r

)(
o+i−1

i

)(
k+b−i−1

b−i

)
, whenever this

quantity does not exceed the number of monomials M(b) − 1, and is M(b) − 1 otherwise.
Finally, the complexity of the attack is 3M(bmin)2w, expressed in field multiplications,
where bmin is the minimum value of b satisfying R(k, o, m, r, b) ≥ M(b) − 1. We use the
following formula µ = 2 log2

2 qc + log2 qc to estimate the cost of a field multiplication. We
give the results in table 1.

Table 1: Complexity of the Rectangular MinRank attack on VOX parameters
λ q O V c t m b log2 C

128 251 8 9 6 6 17 3 50.8
192 1021 10 11 7 7 20 3 54.8
256 4093 12 13 8 8 22 4 55.3

2 New parameters for VOX
In the choice of our parameters, we now add the condition O ≤ t. With this additional
constraint, the Rectangular MinRank attack is no longer possible. Indeed, in that parameter
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regime, V + t ≥ N , hence min(o, N, V + t) = min(o, N): the rank difference exploited by
the attack no longer exists.

If we add this constraint in the parameter selection estimation, we can propose many
other parameter choices. The security in the last column has been evaluated using the
MQEstimator tool [BMSV22], and considering the security for quantum estimation given
by NIST1: 2143 for Level-I, 2207 for Level-III, and 2274 for Level-V.

The compressed public key size (in bytes) is given by the following formula:

32 + ⌈((o − t) ∗ o ∗ (o/c + 1)/2 ∗ ⌈log2(q)⌉)/8⌉.

The signature size (in bytes) is given by the following formula:

⌈((o + v)/c ∗ ⌈log2(q)⌉)/8⌉.

Table 2: Impact of the new constraint on VOX parameters
λ q O = o/c V = v/c c t |Sig| |cpk| Sec.

VOX-I 128 251 8 9 6 6 102B 9104B
VOX-III 192 1021 10 11 7 7 184B 30351B
VOX-V 256 4093 12 13 8 8 300B 82400B

128 251 4 5 13 6 117B 5980B 145
251 5 6 11 6 121B 8117B 151
251 6 7 9 6 117B 9104B 150

192 1021 5 6 15 7 207B 19157B 209
1021 6 7 13 7 212B 24261B 219
1021 7 8 11 7 207B 26982B 215

256 4093 6 7 17 8 332B 50337B 287
4093 7 8 14 8 315B 52920B 276
4093 8 9 13 8 332B 67392B 293

3 Conclusion
In this note, we explain how the rectangular attack can be adapted to VOX and why by
adding an extra constraint, this attack completely disappears. Moreover, we also show
that this constraint has practically no impact on the public-key and signature sizes.

Acknowledgment: We would like to thank Hiroki Furue for his help to better understand
the complexity of his attack.
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A Security Analysis
In this section we now consider, three kinds of attacks :

• the direct attacks do not take into account the inner structure of the public key,

• the Kipnis-Shamir attack that tries to guess the secret oil space as the eigenvector
space of some matrix M−1M ′ where M and M ′ are the polar forms of two public
equations, provided that the contribution of the t secret completely random equations
is cancelled,

• other UOV related attacks such as Intersection attack, for which many (at least 3)
“pure” UOV public equations are required.

Table 3: Security Analysis of new VOX parameters against direct attacks. T and M denote
the time and memory complexities. The value k denotes the number of variables we have
to guess in the F4/F5 or XLWiedemann algorithms. These attacks are direct attacks and
so are estimated on the parameters related to the ground field, and do not consider the
QR technique using the estimator [BMSV22]. Experiments on small parameters tend to
show that systems issued from a VOX system behave like random systems.

Security Parameters set Hybrid Hybrid
Level (n, m, c, t, q) F5 XLWiedemann

T M k T M k
128 (110,50,10,6,251) 139.6 116.9 2 145.7 69.2 2

(143) (121,52,13,6,251) 145.1 122.4 6 151.3 72.0 2
(121,55,11,6,251) 151.9 121.2 3 158.2 71.5 3
(117,54,9,6,251) 150.6 127.8 2 156.9 74.9 2

192 (165,75,15,7,1021) 209.8 172.6 3 216.5 98.1 3
(207) (169,78,13,7,1021) 219.8 182.5 3 226.6 103.2 3

(165,77,11,7,1021) 215.3 178 3 222.1 101 3
256 (201,98,14,8,4093) 276.6 244.9 2 283.8 135.2 2

(274) (221,102,17,8,4093) 287.6 255.9 2 294.9 140.8 2
(221,104,13,8,4093) 293.2 261.3 2 300.4 143.6 2

https://vox-sign.com/
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Table 4: Security Analysis of new VOX parameters against Kipnis-Shamir. T and M
denote the time and memory complexities. This attack requires to guess at least 2 public
equations for which the t secret random equations are cancelled. This extra cost is q2t,
which is a safe margin against this attack. Once the secret equations are cancelled, we
have to solve an instance of UOV and we used the estimator [BMSV22].

Security Parameters set Kipnis
Level (n, m, c, t, q) Shamir

T M
128 (110,50,10,6,251) 93.2 + 95 = 188.2 20.3

(143) (121,52,13,6,251) 149.3 + 95 = 244.3 20.7
(121,55,11,6,251) 101.5 + 95 = 196.5 20.7
(117,54,9,6,251) 85.4 + 95 = 180.4 20.6

192 (165,75,15,7,1021) 164.6 + 139 = 303.6 22.0
(207) (169,78,13,7,1021) 144.7 + 139 = 283.7 22.2

(165,77,11,7,1021) 124.6 + 139 = 263.6 22
256 (201,98,14,8,4093) 183.4 + 191 = 374.4 23.1

(274) (221,102,17,8,4093) 219.5 + 191 = 410.5 23.3
(221,104,13,8,4093) 171.5 + 191 = 362.5 23.3

Table 5: Security Analysis of new VOX parameters against Intersection attack and others
UOV related attacks that would require to guess by brute force at least 2 public equations for
which the t secret random equations are cancelled. The complexity of the best intersection
attack uses the value for k. The complexity would be qkt times the intersection attack.
We can see here that k > 2.

Security Parameters set Intersection
Level (n, m, c, t, q) Attack

T M k
128 (110,50,10,6,251) 62.5 + 95 = 157.5 52.9 5

(143) (121,52,13,6,251) 89.7 + 95 = 184.7 80.5 4
(121,55,11,6,251) 64.0 + 95 = 159.0 54.2 5
(117,54,9,6,251) 62.5 + 95 = 157.5 52.7 5

192 (165,75,15,7,1021) 78.2 + 139 = 217.2 68.0 5
(207) (169,78,13,7,1021) 69.9 + 139 = 208.9 59.2 6

(165,77,11,7,1021) 67.1 + 139 = 206.1 56.8 5
256 (201,98,14,8,4093) 73.9 + 191 = 264.9 62.4 7

(274) (221,102,17,8,4093) 84.4 + 191 = 275.4 73.2 6
(221,104,13,8,4093) 72.5 + 191 = 263.5 61.4 6

Table 6: The security parameters q and t have been chosen so that q3t satisfies the NIST
security levels. This is the cost to recover 3 UOV polynomials without the randomized
secret random quadratic forms.

Security Parameters set q3t

Level (t, q)
128 (6,251) 143

(143)
192 (7,1021) 209

(207)
256 (8,4093) 287

(274)
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