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Abstract. The existence of a quantum computer is one of the most
significant threats cryptography has ever faced. However, it seems that
real world protocols received little attention so far with respect to their
future security. Indeed merely relying upon post-quantum primitives
may not suffice in order for a security protocol to be resistant in a full
quantum world. In this paper, we consider the fundamental UMTS key
agreement used in 3G but also in 4G (LTE), and in the (recently de-
ployed) 5G technology. We analyze the protocol in a quantum setting,
with quantum communications (allowing superposition queries by the
involved parties), and where quantum computation is granted to the ad-
versary. We prove that, assuming the underlying symmetric-key primi-
tive is quantum-secure, the UMTS key agreement is also quantum-secure.
We also give a quantum security analysis of the underlying primitives,
namely Milenage and TUAK. To the best of our knowledge this paper
provides the first rigorous proof of the UMTS key agreement in a strong
quantum setting. Our result shows that in the quantum world to come,
the UMTS technology remains a valid scheme in order to secure the
communications of billions of users.

Keywords: Quantum cryptography, AKA protocol, 3G/4G/5G, Secu-
rity proofs

1 Introduction

The UMTS-AKA protocol was specified in 1999 by the 3GPP [2] with
a specific architecture in mind: a client is a subscriber of a telecommu-
nication operator for mobile services (messages, Internet use, calls, ...)
and the service is delivered through an intermediate local network oper-
ator, simply called server. Since then, this protocol has been, and still is,
the foundation of all mobile communications in the world. Indeed, the
3G standard was replaced in 2010 by the 4G one (a.k.a. LTE for Long
Term Evolution), but only one single bit of the UMTS-AKA protocol
has been added to the previous version, its purpose being for parties to
know whether the session keys must be used to protect the data (3G), or
as input to a subsequent derivation function in order to compute more
session keys (4G). Last year, the 5G specifications were released and,
again, the UMTS-AKA remains the foundation which the 5G-AKA is



based on. Some properties are added (related to the user’s privacy, and
the network’s “awareness”) but the core of the AKA is unchanged. These
adaptations are motivated by the need for new telecommunication ser-
vices, and not because of some security concerns. Presently the UMTS-
AKA protocol is used all over the world to secure the communications
of any individual using a mobile phone.
Regarding security, the main purpose of such specifications is first for the
client and the operator to authenticate to each other (through the inter-
mediary of the server), and then to provide integrity and confidentiality
of the future communications (voice and data) between the client and
the server. To obtain such a protocol, the basic idea of the 3GPP is for
the operator and the client to share a common long-term secret key sks.
Regarding servers, they are considered as trusted for delivering services
but not for keeping long-term secrets, hence the idea of designing a three-
party authenticated key agreement between the client, the server and the
operator. To add more constraints, the client side is managing a USIM
card, whose computational capabilities are limited, and in particular is
not able to generate good pseudo-random numbers.
More precisely, the main idea of the UMTS-AKA is as follows:
– the operator first generates a set of Authentication Vectors (AV)

thanks to the shared key sks, some randomness R and a counter
Sqn synchronized with the client. Such vectors are then sent to the
server;

– using the received AV, the server interacts with the client to (i)
permit the client to authenticate the operator (through an authen-
tication message denoted Auth), (ii) authenticate the client (using a
message authenticated code denoted Mac), and (iii) generate shared
session keys for integrity (key IK) and confidentiality (key CK);

– those session keys are then used to secure the communication be-
tween the client and the server.

The security of this UMTS-AKA protocol was proved in a classical (i.e.,
non-quantum) setting by Alt, Fouque, Macario-Rat, Onete, Richard [6]
(only considering the two first steps, and not treating the security of the
subsequent communication). However, if the communication between the
operator, the server and the client is now quantum, superposition queries
are allowed, and if the adversary is granted with quantum computations,
then the result given by Alt et al. no longer holds.
Consequently, in this paper, we treat the following important question:
what is the exact security of the UMTS-AKA protocol in a full quantum
world?

1.1 Quantum Threat and Current Research

Indeed, numerous computer scientists and experts consider as imminent
the advent of quantum computers. The possibility that, in a near future,
all our computational capabilities will be replaced by these new comput-
ers is today not so ludicrous, as proved by the recent IBM roadmap4.
Hence, quantum superposition and quantum entanglement will one day

4 See https://research.ibm.com/blog/ibm-quantum-roadmap



be used by any honest computing party to execute their part of a pro-
tocol, but also by any attacker against such a protocol. And it is today
well-known that such a quantum machine is one of the most significant
threats cryptography has ever faced.
In 2016 the NIST has initiated a process to design, evaluate, and eventu-
ally standardize quantum-resistant public-key algorithms. This initiative
was motivated by the well-known quantum insecurity of the most popular
asymmetric schemes still in use today.
Regarding secret-key cryptography, since the seminal works of Kuwakado
and Morii [29,30], and Kaplan, Leurent, Leverrier, and Naya-Plasencia
[27], the analysis of cryptographic primitives in a (post-)quantum setting
has produced an increasing amount of results [7,38,9,17,19,13,14,20,8,24,25].
Several of these results grant superposition queries to the adversary.
Most work concerning the analysis of (real-world) protocols in a (post-
)quantum setting focuses on the performances, and the implementation
issues (e.g., [22,35,28,34,36]). However they do not consider the possibil-
ities provided to an attacker by superposition queries.
In this regard, Ebrahimi, Chevalier, Kaplan, and Minelli [21] and Music,
Chevalier, and Kashefi [33] stand out by including in their analysis the
powers granted by such quantum queries. They focus their attention
respectively on oblivious transfer and Yao’s protocols [41]. We observe
that Music et al. modified Yao’s protocol so that the attack they present
can actually apply. Although this result demonstrates the separation
between adversaries with and without superposition access, this seems
to be based on a rather convoluted example of such a possibility.
In contrast, our paper focuses on the analysis of a quantum version of
the real-world UMTS authenticated key agreement.
Regarding the quantum threat on the 5G protocol, Mitchell [32] raises
two main issues: the size of the user symmetric key K (128 bits), and
the asymmetric scheme used to encrypt the user permanent identifier.
A single run of the 5G AKA (in fact a few data extracted from such
a run) is enough for an attacker to execute the Grover’s algorithm and
retrieve K. Moreover the asymmetric encryption scheme can be straight-
forwardly broken with the Shor’s algorithm. Mitchell recommends to use
256-bit permanent and session keys, and corresponding symmetric-key
algorithms. Note that the 4G and 5G key derivation functions already
compute 256-bit session keys, which are then truncated to 128 bits.
Therefore these functions already comply with this change. It remains to
define (in the 4G and 5G specifications) the corresponding symmetric-key
functions. Although this issue must be taken into account, we observe
that Grover’s algorithm is not the only threat against symmetric-key
functions [30,29,27,9,13,12]. Therefore the alternate algorithms must be
chosen with care. Moreover Mitchell points also out that a quantum at-
tack could target the function (undefined in the 5G specification) used by
an operator to compute the multiple subscriber keys K. If all these keys
derive from a single operator master key, then one attack may endanger
a wide set of subscribers. Finally Mitchell recommends to use a post-
quantum asymmetric encryption scheme instead of the current (classic)
algorithm. Overall, Mitchell focuses on specific cryptographic primitives



used in 5G but does not provide an extensive security analysis of the
whole protocol in a quantum setting.
Milenage has already recieved attention in the superposition access model
[39]. However, the attack targets a modified version of Milenage which al-
lows a 128-bit value instead of a 64-bit value. This attack is unapplicable
against the Milenage version used in practice.

1.2 UMTS-AKA in a Full Quantum Setting

As sketched above, we made the choice in our work to study the security
of the UMTS-AKA protocol in the strong full quantum setting (and not
only the primitives it is made of). This means that both honest parties
and adversaries are given quantum capabilities and quantum communi-
cations (i.e., superposition queries). Such a research is still in its infancy,
but brings some important specificities that should be taken into ac-
count. While it could be surprising to put our study in such a strong
setting, since this will not emerge overnight, this is indeed motivating by
several arguments that we explain in this section.

On the difficulty and necessary time to design new versions
The UMTS-AKA protocol is used since the beginning of our century. In
addition, it is the basis of the recently published 5G standard that is
currently under deployment for the next decades. Hence, any new result
related to the security of the UMTS-AKA protocol has also an impact on
the security of 5G networks. Moreover, experience shows that technology
may have a rather long lifespan. For instance 2G mobile networks are
still alive in most parts of Europe, Africa, Central and South America5

although their first deployments date from the early 90s, and are now out-
dated with the 3G and 4G technologies. The cryptographic components
of the UMTS-AKA technology are allocated among servers, smartphones,
and microchips (USIM) and it well-known that the life-cycle to replace
cryptographic schemes takes time from design and security analysis, to
(flawless) implementation and certification. No one can ensure that the
3G/4G technology will be replaced before quantum machines be fully
functional, without speaking of the retroactive threat posed by a (future
quantum) adversary that harvests data now in order to decrypt later.
Additionally, making a new standard in the telecommunication setting
is a very long process. As evidence, the work for next 6G telecommunica-
tion network has already started6 while it is planned to be only deployed
in 10 to 15 years. No one could say today whether this generation will
be fully quantum or not. Yet knowing if the UMTS-AKA can be used in
this stronger setting is an important question that should be answered as
soon as possible to be prepared to any choice for such future, and make
the right decision as of today.

5 See https://www.gsma.com/mobileeconomy/
6 See for example https://www.6gworld.com/wp-content/uploads/2021/06/

6G-Vision-Enabling-Technologies-David-Soldani-.pdf.



Full quantum setting is the practical step regarding secu-
rity The most immediate step concerning security is looking at post-
quantum security where legitimate parties use classical computing but
adversaries have access to quantum computing. However the world of
security has shown us to look for stronger security properties than the
immediate one due to misuse. Perhaps the most telling example is that
the authenticated encryption with associated data schemes (AEAD) of
the LWC Nist competition are expected to hold key indistinguishability
even in the case of nonce misuse i.e., even if the usual security claims
need the nonce to change, these schemes are also evaluated with respect
to an adversary using the same nonce many times. With this in mind,
resistance in the full quantum setting is a desirable quality, especially
regarding a possible future disorganized transition to quantum comput-
ing. We stress that our goal in this paper is not to discuss the feasibility
or (ir)relevance of using quantum communications on the radio interface
in mobile telecom networks. We advocate that considering a security
model that enables an adversary to use superposition queries is a rele-
vant source of information on the (quantum) security of protocols like
the one analysed in this paper.

Strong security implies weak security When analysing symmetric-
key functions, superposition queries are granted to the adversary (as re-
called in the previous section). When the symmetric-key functions are
incorporated into an interactive protocol this implies quantum commu-
nications for both honest parties and adversaries. Moreover such a se-
curity model straightforwardly incorporates the case when honest mes-
sages are classical, which corresponds then to a weaker security config-
uration. Therefore, our setting allows us to be as general as possible,
and directly proves the security of the UMTS-AKA protocol against a
quantum-capable adversary, the exchanges between the client, the server
and the operator being either classical or quantum.

One step on the security of a quantum Internet Finally, the
simplicity of the UMTS-AKA protocol and the way it uses symmetric
cryptography and anti-replay techniques (using random queries and syn-
chronized sequences) make it a good example for how to make a security
proof for fully quantum protocols. Hence, the techniques that we intro-
duce in this paper can be used to prove the security of the core protocols
deployed in the current Internet, such as TLS, IPSec, SSH, etc. The
discussion on the definition of a future quantum Internet has already
begun7 and its security must be based on the fully quantum versions of
all those protocols.

1.3 Our Contribution

In this paper, we first define a security model that does not rely on
unconditional security and allows honest parties and attackers to use

7 See for example https://www.energy.gov/articles/

quantum-internet-future-here.



superposition messages. In particular, assuming that we are in a quantum
world, we provide a discussion on what can be put into superposition by
the client, the server and the operator during a honest execution of such
quantum UMTS-AKA protocol. More precisely, the quantum version of
the UMTS-AKA that we describe assumes quantum computations as
well as quantum communications (i.e., the messages that are exchanged
between parties are in a superposition of quantum states).
We then formally prove that this quantum version of the UMTS-AKA
is as secure in this quantum model as it is in the classical setting [6].
As the quantum version we built is an extension of the classical one,
the attack by Zhang is still valid [45]. It consists in using the extra
authentication vectors of a corrupted server by the attacker elsewhere to
make an unauthorized authentication. As a supplementary contribution,
we also exhibit a new attack against the state confidentiality of a mobile
user. This attack holds in the quantum but also in the classical setting.
We finally study the security of the underlying primitives that can in-
stantiate the UMTS-AKA, Milenage and TUAK. We show an attack on
Milenage as a qPRF, however the context of the UMTS-AKA makes this
attack unrealistic and we further prove the security of Milenage based
on the security of AES. We also show a reduction from the security of
TUAK to the security of Keccak-f.
We believe that our work will pave the way for the systematic analysis
and the better understanding of the currently deployed real-world proto-
cols with regard to the quantum threat, and help design secure quantum
networks.

2 The AKA Protocol

In this section, we present the standard protocol AKA used in the 3G
and 4G infrastructure, and which is also the basis of the 5G AKA. The
we describe a quantum variant supposed to be run between quantum
computers and through superposition-allowing channels.

2.1 The Classic Version of AKA

The AKA procedure consists of an exchange of Message Authentica-
tion Codes (MAC) and key derivations from a fresh random value, and
static secret keys shared by the client (Mobile Equipment/User Sub-
scriber Identity Module, ME/ USIM) and the operator (Home Location
Register, HLR). It is executed as a challenge-response scheme through a
server (Visited Location Register, VLR).

Elements of the protocol The main elements are the following.

Pseudo-random functions The protocol defines seven functions f1, f2,
f3, f4, f5, f

∗
1 , f

∗
5 which take as input the secret keys and the random value

R. f1 and f∗
1 take as additional inputs the sequence number (SqnC or

SqnOp,C), and an Authentication Management Field (AMF ). f1 outputs



the MAC tag MacS sent to the client. f2 outputs the MAC tag MacC
sent to the server. f3 and f4 output respectively the session keys CK
(Confidentiality Key) and IK (Integrity Key). f5 outputs an Anonymity
Key (AK) used to mask Sqn. f∗

1 and f∗
5 intervene in place of f1 and f5

during the the re-synchronization procedure. In practice, these functions
are instantiated by either Milenage [1] or TUAK [4].

Static secret keys The client key (skC) is known by the client and
the operator. From the latter and the operator key (skOp) an inter-
mediate value (skOp,C) is derived as skOp,C = KD(skC , skOp).

8 The
client stores skOp,C while skOp is known only to the operator. We note
sks = skC ||skOp,C .
By the standard, the skOp are not required to be secret. In that case, we
consider the skOp,C to be random secret values (still obtainable trough
skC) and the mentions of the key-derivation KD can be ignored as its
only use in the security proofs is to make the couples (skC , {skOp,C}Op)
look random and protect skOp when it is secret.

Random value A fresh random value R is generated during each session,
and used as challenge for the client. It aims at protecting the client and
the operator from replay attacks.

Sequence number The client and the operator keep respectively the se-
cret values SqnC and SqnOp,C , which number the executions of the pro-
tocol, and prevent replay attacks against the client. A re-synchronization
procedure may be executed in case of discrepancy.
We consider that the values SqnC do not repeat (otherwise the client
would accept values from a previous execution of the protocol). To be
sure the operators do not allow for a repetition of SqnC , we restrict
the number of authentication vector all operators can produce with the

same skC to be at most 2|SqnC |

∆
(since a client uses the same SqnC for

every operator), where ∆, chosen by the operator, defines an acceptance
interval.

Description of an Execution The main steps are depicted by Fig-
ure 1.

Generation of the challenge First the server requests from the client
an UID, which is an IMSI (International Mobile Subscriber Identify)
or a TMSI (Temporary Mobile Subscriber Identity), a value agreed in
a previous session. The server forwards it to the operator. The opera-
tor produces n Authentication Vectors (AV ), sends them to the server,
and updates SqnOp,C to SqnOp,C + n. Each vector AV i, 1 ≤ i ≤ n, is

8 skOp is denoted as OPC in Milenage and TOPC in TUAK.
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computed from a fresh random value Ri as follows:

Sqni=SqnOp,C + i
MaciS=f1(sks,R

i, Sqni, AMF )
MaciC=f2(sks,R

i)
CKi=f3(sks,R

i)
IKi=f4(sks,R

i)
AKi=f5(sks,R

i)
Authi=Sqni ⊕AKi∥AMF∥MaciS
AV i=(Ri, CKi, IKi, Authi,MaciC)

Challenge-Response The server picks a vector AV i and sends the cor-
responding Ri to the client. In turn, the latter computes

AKi=f5(sks,R
i) Sqni=AKi ⊕Authi

1

Mac′iS=f1(sks,R
i, Sqni, AMF ) Mac′iC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)

The client verifies that Mac′iS = MaciS , sends an abort message if not,
and checks if the challenge is fresh, i.e., Sqni ∈ [SqnC + 1, SqnC + ∆].
Next it sets SqnC to Sqni, and replies to the server with Mac′iC . If this
answer is incorrect, the server sends to the operator a report containing
the Ri of the used AV i, the client’s UID, and a failure code. In such a
case the operator updates SqnOp,C to Sqni.

Re-synchronisation If Sqni /∈ [SqnC + 1, SqnC +∆] the client triggers
a re-synchronization procedure (see Figure 1). First it computes

AK∗=f∗
5 (sks,R

i) Mac∗S=f∗
1 (sks,R

i, SqnC , AMF )
Auts=(SqnC ⊕AK∗)∥Mac∗S

where Ri corresponds to the current challenge. The client sends Auts
to the server which forwards it along with Ri to the operator. Then the
operator computes

AK∗=f∗
5 (sks,R

i) SqnC=AK∗ ⊕Auts1
Mac′∗S =f∗

1 (sks,R
i, SqnC , AMF )

and verifies if Mac′∗S = Mac∗S . If so, it updates SqnOp,C to SqnC , other-
wise it aborts the procedure.

2.2 Quantum AKA Protocol

In this section we describe a quantum variant of the AKA protocol.
More precisely, we consider a version within a full quantum world, where
both honest and dishonest parties are given quantum capabilities. Hence,
each party is able to perform quantum computations, and communica-
tion allows transferring qubits in superposition. Since the values can still
be computed classically (measurements are still possible), this quantum
variant is obviously an extension of the classical AKA.



Modelization of Quantum Communications We base our modelization
of quantum communications on the work of Yao [42]. For a communica-
tion between Alice and Bob, the total state |a⟩|c⟩|b⟩ is composed of three
parts:
– |a⟩ is Alice’s secret part and modifiable only by her;
– |b⟩ is Bob’s secret part and only modifiable by him;
– |c⟩ is the state of the channel, it is modifiable by everyone, or only Al-

ice and Bob if the channel is secure (like the ones between operators
and servers).

Other modelizations Other modelizations of quantum communications
exists, like [18], where communications are made using EPR-pairs, pairs
of entangled qubits shared by Alice and Bob. While this englobes our
modelization, it implies making and storing those pairs. The latter seems
highly unpractical.

Superposition or Not We detail below whether the parameters of
the protocol may be used as values in superposition in the quantum
variant.

Static secret keys These keys are long-term values whose lifespan de-
pends only on the time needed by an attacker to find them. Having
long-term keys maintained in superposition seems obviously unpractical.
From now on, we consider client and operator keys (skC , skOp) to be in
a classical state. Consequently skOp,C is also in classical state.

Sequence number We consider sequence numbers to be in classical state.

Random value The random R does not need to be stored from one
session to another. Therefore it is a matter of choice to keep it in clas-
sical state or superposition state. As the latter is a generalization of
the former, we allow for the random values to be used in superposition.
The operator can generate authentication vectors in superposition, and
the attacker is allowed to send superposition queries to client and server
parties.

Confidentiality and integrity keys As R is allowed to be in superpo-
sition, we expect the session keys CK and IK to be in superposition
too.

Challenge Generator In the classical case [6], R is expected to be
an unpredictable value from {0, 1}|R|. In a quantum setting, the states

of R are elements of C2|R| . Therefore our expectations of its randomness
are meant to change. While the pseudo-random functions now has to
resist quantum attacks, one could think the generation of R would face
a similar challenge. Yet our security proofs only involve few properties
of such a generator.



Expectations We expect the function that generates R =
∑2|R|−1

i=0 ai|i⟩
to have the following properties:
– a newly generated R is not entangled to any other R;
– for all i ∈ {0, 1, ..., 2|R| − 1}, E[∥ai∥2] = 2−|R|.

We want the random generator to produce independent uncorrelated
values as we want to take care of minimal long-term values (we have the
keys for black-boxing G and Sqn for resistance toward replay attack).
We want also the random generator to have a good distribution to make
use of the full space of possible challenges.

Useful property for security proofs in later sections Then
we have the following property: with n values R1,...,Rn, the probability

to measure a collision among R1,...,Rn is less than n2

2|R|
.

Possible construction Note that R = 1

2|R|/2

∑2|R|−1
i=0 |i⟩ is a possible

option of generation that respects our expectations. While this challenge
generation does not contain any randomness, it still has the properties
we need. Indeed, as the further computations of G entangle R with other
elements of the protocol that are uncomputable by the adversary, the
underlying measurement results in the variability of the protocol.

Description of a Quantum Execution The main steps of the
quantum version of the protocol are the following (see Figure 2).

Generation of the challenge For 1 ≤ i ≤ n, the operator generates
each superposition

∑
Ri aRi |Ri⟩, increments Sqni = SqnOp,C + i, and

computes the parameters entangled with Ri. The operator gets the su-
perposition: ∑

Ri

aRi |Ri,MaciS ,MaciC , CKi, IKi, AKi⟩

MaciS=f1(sks,R
i, Sqni, AMF ) MaciC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)

AKi=f5(sks,R
i)

Authi=|Sqni ⊕AKi∥AMF∥MaciS⟩
AV i=|Ri, CKi, IKi, Authi,MaciC⟩

and sends the authentication vectors AV i to the server.

Challenge-Response The server picks a vector i and sends the corre-
sponding challenge to the client. The client computes

AKi=f5(sks,R
i) Sqni=AKi ⊕Authi

1

Mac′iS=f1(sks,R
i, Sqni, AMF ) Mac′iC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)

At this point, several qubits are shared between the operator, the server
and the client. They are entangled, and every state value depends only



on the value Ri it was computed from. The quantum state of the system
can be represented as

∑
Ri

aRi| Ri

MaciS
Mac′iS
Mac′iC
CKi

IKi

AKi

SqnOp,C

,

Ri

MaciS
MaciC
CKi

IKi

AKi ⊕ SqnOp,C

,

Ri

MaciS
MaciC
CKi

IKi

AKi
⟩

The first, second and third columns correspond respectively to the client’s,
server’s, and operator’s view.
The end of the protocol goes as follows. The client measures MaciS ⊕
Mac′iS to verify that it equals 0, and sends an abort message if not.
Then it measures Sqni and checks if the challenge is fresh, i.e., Sqni ∈
[SqnC +1, SqnC +∆]. Finally the client answers the challenge, and sets
SqnC to Sqni. The server checks the answer by measuringMaciC⊕Mac′iC ,
and proceeds as in the classical protocol.

Re-synchronisation. If Sqni /∈ [SqnC + 1, SqnC + ∆], the client trig-
gers a re-synchronization procedure. First it computes the superposition∑

Ri aRi |Ri,Mac∗S , AK∗⟩ where Ri corresponds to the current challenge
and

AK∗=f∗
5 (sks,R

i) Mac∗S=f∗
1 (sks,R

i, SqnC , AMF )

The client generates Auts = |(SqnC ⊕AK∗)∥Mac∗S⟩ and sends it to the
server which forwards it as

∑
Ri aRi |Ri, Auts⟩ to the operator. Then the

operator computes

AK∗=f∗
5 (sks,R

i) SqnC=AK∗ ⊕Auts1
Mac′∗S =f∗

1 (sks,R
i, SqnC , AMF )

and verifies if the measure of Mac′∗S ⊕ Mac∗S equals 0. If so, it updates
SqnOp,C to SqnC , otherwise it aborts the procedure.

Notes on the Measurements During the protocol, we measure
SqnC as a value in classical state. We also need to measure MacS⊕Mac′S
andMacC⊕Mac′C as it decides if the protocol continues or is interrupted.
Compared to the classical protocol, allowing for answers in superposition
may mislead us into think that an adversary can have a higher probability
to get an accepting state by entering random values. As seen in the
description of the protocol, every value is determined by Ri. For each Ri,
the probability of acceptance being identical, the same holds regarding
the superposition of Ri.
Another way to see this phenomenon is to pass the deciding measure-
ments, the answer needs to be measured as the expected superposition
which is entangled with R.



3 Adversarial Model and Building Blocks

In this section, we define the quantum adversarial model for a quantum
variant of the UMTS-AKA protocol, and some building blocks we need.
We here adapt the work of Alt, Fouque, Macario, Onete and Richard [6]
(done in a classical context) to our quantum setting.

3.1 Oracles

The adversary interacts with the system by means of the following or-
acles, in addition to the functions f1, f2, f3, f4, f5, f∗

1 , f∗
5 and KD

through their specifications.
– CreateClient(Op) → (skC , IDC , SqnC): this oracle (used by the

challenger) creates a client C with unique identifier IDC , the client’s
secret keys skC and skOp,C = KD(skC , skOp) and the sequence
number SqnC . The tuples (IDC , skC , skOp,C , SqnC) are associated
with the client IDC and with the corresponding operator Op (i.e.,
each “copy” of Op in each server does this). The operator sets
SqnOp,C := SqnC and then keeps track of SqnOp,C . The adversary
is given IDC .

– CreateOperator() → (skOp, IDOp): this oracle (used by the chal-
lenger) creates an operator Op with unique identifier IDOp, the op-
erator’s secret keys skOp. The adversary is given IDOp.

– CreateServer(Op) → (IDS): This oracle (used by the challenger)
creates an server S with unique identifier IDS . The challenger makes
a secure channel between the new server and the operator Op. The
adversary is given IDS .

– NewInstance(P ) → (Pj ,m): this oracle instantiates the new in-
stance Pj , of party P , which is either a client or a server. Further-
more, the oracle also outputs a message m, which is either the first
message in an honest protocol session (if P is a server) or ⊥ (if P is
a client).

– Execute(C, i, S, j) → τ : selects the client C and the server S, creates
(fresh) instances Ci, Sj , allocates the necessary quantum memory for
these instances, then runs the protocol between them using the allo-
cated quantum memory. The adversary has access to the transcript
of the protocol instance τ via the channel state.
As for the immediate description of the protocol, there is no use
of the results CK, IK, the adversary gets maximum control of the
transcript by making the client uncompute its quantum values of the
protocol (except R as it comes from the challenge sent by the server)
and the challenger uncompute the quantum values of the protocol
in the sever and in the operator (except R, as it links the quantum
state of the protocol, and the ones concerned by a RevealSession
or Test query, see below) in the clients, servers and operators. Then
the only remaining value in superposition are the R in the client and
in the operator which are sent to the attacker (it already has access
to it).9

9 This process separates the used memory of previous executions entangled with the
attacker and the memory in new executions of the protocol.



(One could consider the whole system to be a simulation and then
executing the protocol on superpositions of clients, servers and op-
erators but this is not our interest here. As such, this oracle takes
classical values but returns a script written on qubits and most often
in superposition, as specified in Section 2.2).

– Send(P, i,m) → m′: simulates sending the message m to the in-
stance Pi of P . The output is a response message m′ (which is set
to ⊥ in case of an error or an abort). As our protocol is meant to
run on superposition allowing channels, the messages m and m′ use
qubits and can be in superposition.

– RevealSession(P, i) → {K,⊥}: this oracle can be used just after
an execution of the protocol. If the party has not terminated in an
accepting state, this oracle outputs ⊥, else it outputs the session
keys K = (CK, IK) computed by Pi on the last execution involving
Pi (as explained in Section 2.2 the session keys are expected to be a
superposition of values).

– CorruptClient(C) → (skC , {skOp,C}): this oracle corrupts C and
returns the long-term client key skC and skOp,C (not in superposi-
tion), but not skOp as the client is not given the operator keys.

– CorruptServer(S): This oracle corrupts the server S and gives the
adversary access to a special oracle OpAccess.

– OpAccess(S,C) → m: for a corrupted server S, this oracle gives the
adversary access to the server’s local copy of all the operators, in
particular returning the message that the operator Op would output
to this server for initializing an execution of the protocol with the
client C. (We do not consider superpositions of parties, and the
output message can be a superposition.)

– RevealState(C, i, b) → SqnC : for a client C, if b = 0, then this oracle
reveals the current state of Ci, else, if b = 1, then the oracle returns
the state the operator stores for C (SqnC is not a superposition).

– Test(P, i) → K: this oracle can be used just after an execution of
the protocol. It is initialized with a secret random bit b and secret
random functions f ′

3 and f ′
4 whose outputs are in the same space as

CK and IK respectively. It returns ⊥ if the instance Pi is not fresh
or if it has not terminated in an accepting state (with a session key
CK, IK). If b = 0, then the oracle returns CK = f3(R), IK = f4(R),
else it returns CK′ = f ′

3(R), IK′ = f ′
4(R). We assume that the

adversary makes a single Test query.

Partners Two instances Pi and P ′
j are partners if:

– one is from a server and one is from a client;
– both instances are in accepting state;
– they share the same entangled superposition sid = (R,AK⊕SqnC =

AK ⊕ SqnOp,C).
Note that sid is a superposition included in the challenge transmitted by
the server to the client. sid still contains information corresponding to
the operator and the intended client as it is computed using their keys.
The sid are entangled values not only in themselves but also between the
partnered instances as seen in the description of the quantum protocol.
Then, deciding whether two instances are partnered can be done by



xoring their sid. The result is 0 if they are effectively partnered and
not 0 with overwhelming probability otherwise (two entities sharing the
same sid without partnering would mean a collision on R, which is the
limiting factor for many security properties we prove in Section 4).

Communications between operators and servers Many elements that
could easily break the security of the authentication are communicated
between the operators and the servers. As such we consider the channels
of communications between the operators and the servers to be secure.

3.2 Pseudo-random Function

As seen in Section 2, the protocol’s security depends on the functions f1,
f2, f3, f4, f5, f

∗
1 , f

∗
5 implemented with either Milenage or TUAK. We

need to assess how they impact the protocol security. For convenience,
we denote G = (f1, f2, f3, f4, f5, f

∗
1 , f

∗
5 )skOp,C ,skC .

Following Alagic, Broadbent, Fefferman, Gagliardoni, Schaffner, Jules [5]
and Zhandry [44], we estimate the protocol’s security based on the se-
curity of G. As such, the latter is defined by the ability to distinguish a
group of implementations of G from random functions with the property
that only the outputs of f1 and f∗

1 depend on SqnOp,C and AMF .

Quantum advantage on a group of pseudo-random functions More
precisely, we define the game for the quantum pseudo-randomness of G
as follows.
1. The challenger generates random independent classical keys skC,1, . . . ,

skC,nC and skOp,C,1,1, . . . , skOp,C,nC ,nOp to key the pseudo-random

functions f1, f2, f3, f4, f5, f
∗
1 , f

∗
5 , and 7nOpnC random functions.10

The challenger gives the attacker either the random functions or
the pseudo-random ones as a quantum black box Ofi,skC,j,skOp,C,j,j′

such that Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) = |x⟩|y⊕ fi,skC,j ,skOp,C,j,j′ (x)⟩.

2. The attacker can use the given function in quantum circuits.
3. The attacker guesses if the given black box is an implementation of

the pseudo-random functions or random ones, and wins if is is right.
The pseudo-random function is (q, t, nOp, nC , ϵ)-indistinguishable if no
attackerA running in time t with q uses of any black boxOfi,skC,j,skOp,C,j,j′

has an advantage Adv(A) = 2(P(A wins)− 1
2
) more than ϵ. We also de-

fine Adv(G)q,tnOp,nC
= supA{Adv(A)}.

Note that our definition is similar to what is usually depicted as advan-
tage on a secret-key quantum pseudo-function. The main difference is
the reuse of skC with different skOp,C . This notion makes related-key
attacks happen faster than the standard case having the full keys being
random when the key difference is on skOp,C .

10 This is the amount of generated functions since for each couple (C,Op) there is a
generation of G.



3.3 Pseudo-random Key-derivation

Through corruption, one can reasonably expect some keys skC and skOp,C

to get leaked. Such an event can occur but should not reveal anything
about any skOp or unleaked skC and skOp,C . As said in Section 2, the
skOp,C are obtained trough a key derivation function KD. We define the
advantage on KD against both of these issues.

Advantage on a pseudo-random key-derivation function We define
the game about the pseudo-randomness of KD as a key-derivation func-
tion as follows.
1. The challenger generates random independent classical keys skC,1, . . . ,

skC,nC and skOp,1, . . . , skOp,nOp . The challenger generates the de-
rived keys skOp,C,i,j = KD(skC,i, skOp,j). The challenger gives the
attacker the client keys and either the derived keys or random values
of the same length.

2. The attacker guesses if the given keys are generated with KD or
random values. The attacker wins if the guess is right.

The pseudo-random key derivation is (t, nOp, nC , ϵ)-indistinguishable if
no attackerA running in time t has an advantage Adv(A) = 2(P(A wins)−
1
2
) more than ϵ. We also define Adv(KD)tnOp,nC

= supA{Adv(A)}.
Note that guessing a value skOp is an attack. For one operator, this game
can be seen as a known-plaintext game for the pseudo-random function
skC 7→ KD(skC , skOp).

4 Quantum Security of the UMTS-AKA
Protocol

In this section, we present detailed definitions of the security properties
by means of games executed between a challenger and an attacker. Then,
we prove the adversary’s advantages on those games to be negligible with
the use of secure primitives. In this section, we consider a generic secure
pseudo random function G. As said above, it can be instantiated using
either Milenage or TUAK. The exact quantum security of those two
instances are studied in Sections 5 and 6 respectively.

4.1 Session Keys Indistinguishability

Freshness: session keys indistinguishability An instance Pi is fresh if
the adversary has not used the oracles CorruptClient, CorruptServer
or RevealSession on Pi or on any of its partners.

Session Keys Indistinguishability Game We define the session keys
indistinguishability game as follows.
1. The challenger generates nOp operators, nS servers and nC clients

and their respective keys.
2. The attacker fixes a target (a server or a client) and an operator.
3. The attacker is an active MitM for executions of the protocol whose

participants are decided by the attacker.



4. The attacker uses the Test query on a fresh instance of the target.
5. The attacker is an active MtiM for executions of the protocol whose

participants are decided by the attacker (second phase).
6. The attacker guesses the secret bit b of the Test query. The attacker

wins if the guess is right and the target instance is still fresh.
The protocol is (qexec, qres, qOp, t, ϵ)-strongly key-indistinguishable if no
attacker A running in time t with qexec executions of the protocol,
qres re-synchronizations and qOp authentication vectors asked by a cor-
rupted server (outside an execution of the protocol) has an advantage
Adv(A) = P(A wins)− 1

2
more than ϵ.

Theorem 1 (Session Keys Indistinguishability). The advantage
on the session keys indistinguishability game for the UMTS-AKA proto-
col is bounded as follows:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
1

2|MacS | +
(qexec + qOp)

2

2|R|

where qreq = 10qexec + 5qOp + 4qres.

Proof. Game G0: This is the game of the definition.

P(A wins Gqexec,qres,qOp,t

0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD
with a perfect key derivation KD′ on which there is no advantage.
Transition G0 → G1: An attacker for G0 either attacks G1 or uses a
property of KD. To put it in another way, one can use an attack that
is successful against G0 but fails against G1 to distinguish between KD
and KD′. More formally, using the best adversary A0 for G0, we can
build an adversary AKD for the game against KD.
AKD will take the given values as keys skC and skOp,C to generate
the clients and operators. Then it will run the adversary A0 with the
generated clients and operators then if A0 is right, AKD will answer
“the keys are generated” and if A0 is wrong, AKD will answer “the keys
are random”.
In the case the tuple of keys is the generated one, A0 works normally. If
it is the random one A0 will work as an adversary for the game G1. The
probability of the described events is reported as follows:

keys
A0

right wrong

generated
P(A wins G

qexec,qres,qOp,t

0 )

2

1−P(A wins G
qexec,qres,qOp,t

0 )

2

random ≤ P(A wins G
qexec,qres,qOp,t

1 )

2
≥ 1−P(A wins G

qexec,qres,qOp,t

1 )

2

Adv(KD)tnOp,nC
≥ P(A wins Gqexec,qres,qOp,t

0 )

− P(A wins Gqexec,qres,qOp,t

1 )



P(A wins Gqexec,qres,qOp,t

0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+ Adv(KD)tnOp,nC

Game G2: We define the game G2 as the same as G1 but we replace G
with a perfect pseudo-random function G′ on which there is no advan-
tage.
Transition G1 → G2: An attacker for G1 either attacks G2 or uses a
property of G. To put it in another way, one can use an attack against
G1 but fails against G2 to distinguish between G and G′. More formally,
using the best adversary A1 for G1, we can build a quantum adversary
AG for the game against G with a total of qreq = 10qexec + 5qOp + 4qres
requests11 for keyed G as a black box.
AG will take the black boxes to generate the clients and operators. Then
it will run the adversaries A1 with the generated clients and operators
then if A1 is right, AG will answer “the functions are generated” and if
A1 is wrong, AG will answer “the functions are random”.
In the case the functions are the generated one, A1 works normally. If
they are the random one A1 will work as an adversary for the game G2.
The probability of the described events is reported as follows:

G
A1

right wrong

generated
P(A wins G

qexec,qres,qOp,t

1 )

2

1−P(A wins G
qexec,qres,qOp,t

1 )

2

random ≤ P(A wins G
qexec,qres,qOp,t

2 )

2
≥ 1−P(A wins G

qexec,qres,qOp,t

2 )

2

Adv(G)
qreq,t
nOp,nC ≥ P(A wins Gqexec,qres,qOp,t

1 )−P(A wins Gqexec,qres,qOp,t

2 )

P(A wins Gqexec,qres,qOp,t

1 ) ≤ P(A wins Gqexec,qres,qOp,t

2 )+Adv(G)
qreq,t
nOp,nC

Our next step is to reduce the configuration to one client, one server and
one operator.
Game G3: We define the game G3 as the same as G2 but there is only
one client and one operator.
Transition G2 → G3: As G′ and KD′ are perfect, the keyed G′ are
uncorrelated. Thus the attacker does not have benefits from having other
clients or operators. An attacker for G3 could simply simulate other
uncorrupted clients by reusing the target client and corrupted clients
by generating random keys for an attacker in G2. As in G0 → G1 or
G1 → G2, a difference would mean an advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t

2 ) = P(A wins Gqexec,qres,qOp,t

3 )

Game G4: We define the game G4 as the same as G3 but there is only
one server now.
Transition G3 → G4: As servers are interchangeable in the sense that
the values exchanged do not depend on the server, we essentially make

11 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.



the attacker unable to corrupt servers. Since corruption of servers only
gives access to authentication vectors which would be given during an
execution and reveal, the queries from a corrupt server are now counted
as additional executions of the protocol: q′exec = qexec + qOp.

P(A wins Gqexec,qres,qOp,t

3 ) = P(A wins Gq′exec,qres,t
4 )

Game G5: We define the game G5 as the same as G4 but the defender
now generates the Ri before the game and measures the property of Ri

being all different.
Transition G4 → G5: With our specifications on the generation of Ri,

the probability of not measuring this property is about
q′2exec

2|R|
.

P(A wins Gq′exec,qres,t
4 )

= P(A wins Gq′exec,qres,t
4 and some Ri are equal)

+ P(A wins Gq′exec,qres,t
4 and the Ri are all differents)

P(A wins Gq′exec,qres,t
4 ) ≤ (q′exec)

2

2|R| + P(A wins Gq′exec,qres,t
5 )

Ending: The attacker has access to a superposition of authentication
vectors such that none of the states contained in the superposition holds
any significant information. It has to distinguish between values gener-
ated by a perfect pseudo-random function from different Ri and true
random values. To attack a client, the attacker can also try to send a
different challenge which means guessing the output MacS of a perfect
pseudo-random function with a value SqnC never seen before.

P(A wins Gq′exec,qres,t
5 ) ≤ 1

2
+

1

2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ 1

2|MacS | +Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
(qexec + qOp)

2

2|R|

4.2 Client-impersonation Resistance

Freshness: client-impersonation resistance An instance Pi is consid-
ered fresh if the adversary has not used the oracles CorruptClient or
CorruptServer on Pi or on any of its partners.

Relay: client-impersonation The attacker is considered to be a simple
relay during an execution of the protocol between a server instance Sj

and a client instance Ci if the following events happened in the following
order:
1. use of the oracle Send(S, j,m) where m is the UID of the client C,

initializing the execution of the protocol;
2. use of the oracle Send(C, i,m′) wherem′ is a projection of the output

of Send(S, j,m);
3. use of the oracle Send(S, j,m′′) where m′′ is a projection of the

output of Send(C, i,m′).



Client-impersonation Resistance Game We define the client-imperso-
nation resistance game as follows.
1. The challenger generates nOp operators, nS servers and nC clients

and their respective keys.
2. The attacker fixes a target (a server) and an operator.
3. The attacker is allowed to corrupt any number of clients and servers

except the target.
4. The attacker is an active MitM for executions of the protocol whose

participants are decided by the attacker.
5. The attacker wins if he successfully breaks the client-impersonation

resistance for the target server, i.e., makes the target server instance
accept, is still fresh and either the server instance is not partnered
with the intended client, the server instance is partnered with a non
intended client or the attacker has not been a simple relay.

The protocol is (qexec, qres, qOp, t, ϵ)-strongly client-impersonation resis-
tant if no attacker A running in time t with qexec executions of the
protocol, qres re-synchronizations and qOp authentication vectors asked
by a corrupted server has an advantage Adv(A) = P(A wins) more than
ϵ.

Theorem 2 (Client-impersonation resistance). The advantage on
the client-impersonation resistance game for the UMTS-AKA protocol is
bounded as follows:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
(qexec + qOp)

2

2|R| +
qexec

2|MacC |

where qreq = 10qexec + 5qOp + 4qres.

Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t

0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD
with a perfect key derivation KD′ and G with a perfect pseudo-function
G′ on which there is no advantage.
Transition G0 → G1: An attacker for G0 either attacks G1 or uses a
property of KD or G. To put it in another way, one can use an attack
against G0 but fails against G1 to distinguish between KD and KD′ or
between G and G′. One can easily use the same argument used in Section
4.1 with qreq = 10qexec + 5qOp + 4qres requests12.

P(A wins Gqexec,qres,qOp,t

0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+Adv(KD)tnOp,nC
+Adv(G)

qreq,t
nOp,nC

12 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.



Our next step is to reduce the configuration to one client, one server and
one operator.
Game G2: We define the game G2 as the same as G1 but there is only
one client and one operator.
Transition G1 → G2: As G′ and KD′ are perfect, the keyed G′ are
uncorrelated. Therefore the attacker does not have benefits from having
other clients or operators. An attacker for G2 could simply simulate other
uncorrupted clients by reusing the target client and corrupted clients
by generating random keys for an attacker in G2. As in G0 → G1, a
difference would mean an advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t

1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Game G3: We define the game G3 as the same as G2 but there is only
one server now.
Transition G2 → G3: As servers are interchangeable in the sense that
the values exchanged do not depend on the server, we essentially make
the attacker unable to corrupt servers. Since corruption of servers only
gives access to authentication vectors which would be given during an
execution and reveal, the queries from a corrupt server are now counted
as additional executions of the protocol: q′exec = qexec + qOp. For the
next games, those additional executions will be marked as not valid for
wining the game, qvalid = qexec is the number of valid executions for
wining. The first executions are the marked ones and the valid ones are
last, doing so does not remove generality.

P(A wins Gqexec,qres,qOp,t

2 ) = P(A wins Gq′exec,qres,qvalid,t
3 )

Game G4: We define the game G4 as the same as G3 but the defender
now generates the Ri before the game and measures the property of Ri

being all different.
Transition G3 → G4: With our specifications on the generation of Ri,

the probability of not measuring this property is about
q′2exec

2|R|
.

P(A wins Gq′exec,qres,qvalid,t
3 )

= P(A wins Gq′exec,qres,qvalid,t
3 and some Ri are equal)

+ P(A wins Gq′exec,qres,qvalid,t
3 and the Ri are all differents)

P(A wins Gq′exec,qres,qvalid,t
3 ) ≤ (q′exec)

2

2|R| + P(A wins Gq′exec,qres,qvalid,t
4 )

Ending: The attacker has access to a superposition of authentication
vectors such that none of the states contained in the superposition holds
any significant information. Since the uncorrupted server needs the first
and the last message in that order to be able to accept the execution,
the attacker cannot ask the answer to the client or it will be a simple
relay and then has to guess values MacC generated by a perfect pseudo-
random function with a Ri different from what he has seen.

P(A wins Gq′exec,qres,qvalid,t
4 ) =

qvalid
2|MacC |



Then by recalling the previous transitions, we get:

Adv(A) ≤ (qexec + qOp)
2

2|R| +Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
qexec

2|MacC |

4.3 Weak Server-impersonation Resistance

Freshness: server-impersonation resistance An instance Pi is consid-
ered fresh if the adversary has not used the oracles CorruptClient or
CorruptServer on Pi or on any of its partners.

Relay: server-impersonation The attacker is considered to be a simple
relay during an execution of the protocol between a server instance Sj

and a client instance Ci if the following events happened in the following
order:
1. use of the oracle Send(S, j,m) where m is the UID of the client C,

initializing the execution of the protocol;
2. use of the oracle Send(C, i,m′) wherem′ is a projection of the output

of Send(S, j,m).13

Weak Server-impersonation Resistance Game We define the weak
server-impersonation resistance game as follows.
1. The challenger generates nOp operators, nS servers and nC clients

and their respective keys.
2. The attacker fixes a target (a client) and an operator.
3. The attacker is allowed to corrupt any number of clients except the

target.
4. The attacker is an active MitM for executions of the protocol whose

participants are decided by the attacker.
5. The attacker wins if he successfully breaks the server-impersonation

resistance for the target client, i.e.s makes the target client instance
accept, is still fresh and either the client instance is not partnered
with the intended server, or is partnered with an other server, or the
attacker has not been a simple relay.

The protocol is (qexec, qres, t, ϵ)-weakly server-impersonation resistant if
no attacker A running in time t with qexec executions of the protocol and
qres re-synchronizations has an advantage Adv(A) = P(A wins) more
than ϵ.

Theorem 3 (Weak server-impersonation resistance). The advan-
tage on the server-impersonation resistance game for the UMTS-AKA
protocol is bounded as follows:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
qexec

2|MacS | +
q2exec
2|R|

where qreq = 10qexec + 4qres.

13 We do not consider the last message of the protocol in the client-impersonation game
as it does not interfere with the client acceptance.



Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD
with a perfect key derivation KD′ and G with a perfect pseudo-function
G′ on which there is no advantage.
Transition G0 → G1: An attacker for G0 either attacks G1 or uses a
property of KD or G. To put it in another way, one can use an attack
against G0 but fails against G1 to distinguish between KD and KD′ or
between G and G′. One can easily use the same argument used in Section
4.1 with qreq = 10qexec + 4qres requests 14.

P(A wins Gqexec,qres,qOp,t

0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+Adv(KD)tnOp,nC
+Adv(G)

qreq,t
nOp,nC

Our next step is to reduce the configuration to one client, one server and
one operator.
Game G2: We define the game G2 as the same as G1 but there is only
one client and one operator.
Transition G1 → G2: As G′ and KD′ are perfect, the keyed G′ are
uncorrelated. Therefore the attacker does not have benefits from having
other clients or operators. An attacker for G2 could simply simulate other
uncorrupted clients by reusing the target client and corrupted clients
by generating random keys for an attacker in G2. As in G0 → G1, a
difference would mean an advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t

1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Game G3: We define the game G3 as the same as G2 but the defender
now generates the Ri before the game and measures the property of Ri

being all different.
Transition G2 → G3: With our specifications on the generation of Ri,

the probability of not measuring this property is about
q2exec

2|R|
.

P(A wins Gqexec,qres,t
3 ) = P(A wins Gqexec,qres,t

3 and some Ri are equal)

+P(A wins Gqexec,qres,t
3 and the Ri are all differents)

P(A wins Gqexec,qres,t
3 ) ≤ (qexec)

2

2|R| + P(A wins Gqexec,qres,t
4 )

Game G4: We define the game G4 as the same as G3 but there is only
one server.

14 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . There is no server corruption

(i.e. qOp = 0).



Transition G3 → G4: As servers are incorruptible, they can only part-
ner with a client that shares the same R they got from an operator.
Then, as the R are all differents, an unintended server will not partner.

P(A wins Gqexec,qres,t
3 ) = P(A wins Gqexec,qres,t

4 )

Ending: The attacker has access to a superposition of authentication
vectors such that none of the states contained in the superposition holds
any significant information. Since the uncorrupted client needs the sec-
ond message to accept, the attacker cannot ask the answer to the server
or it will be a simple relay and then has to guess values MacS generated
by a perfect pseudo-random function with a SqnC different from what
he has seen.

P(A wins Gqexec,qres,qG
4 ) =

qexec
2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ qexec
2|MacS | +

q2exec
2|R| +Adv(G)

qreq,t
nOp,nC +Adv(KD)tnOp,nC

4.4 Soundness

Soundness Game We define the soundness game as follows.
1. The challenger generates nC clients and nOp operators and their re-

spective keys. Then the defender generates qOp authentication vec-
tors and reveal them to the attacker.

2. The attacker is the server for executions of the protocol with the
clients decided by the attacker.

3. The attacker wins if he makes qOp + 1 executions of the protocol
accept.

The protocol is (qexec, qres, qOp, t, ϵ)-server-sound if no attacker A run-
ning in time t with qexec executions of the protocol and qres re-synchroni-
zations has an advantage Adv(A) = P(A wins) more than ϵ.

Theorem 4 (Soundness). The advantage on the soundness game for
the UMTS-AKA protocol is bounded as follows:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
qexec + qOp

2|MacS |

where qreq = 10qexec + 5qOp + 4qres.

Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t

0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD
with a perfect key derivation KD′ and G with a perfect pseudo-function
G′ on which there is no advantage.



Transition G0 → G1: An attacker for G0 either attacks G1 or uses a
property of KD or G. To put it in another way, one can use an attack
against G0 but fails against G1 to distinguish between KD and KD′ or
between G and G′. One can easily use the same argument used in Section
4.1 with qreq = 10qexec + 5qOp + 4qres requests 15.

P(A wins Gqexec,qres,qOp,t

0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+Adv(KD)tnOp,nC
+Adv(G)

qreq,t
nOp,nC

Our next step is to reduce the configuration to one client and one oper-
ator.
Game G2: We define the game G2 as the same as G1 but there is only
one client and one operator.
Transition G1 → G2: As G′ and KD′ are perfect, the keyed G′ are
uncorrelated. Therefore the attacker does not have benefits from having
other clients or operators. An attacker for G2 could simply simulate other
uncorrupted clients by reusing the target client and corrupted clients
by generating random keys for an attacker in G2. As in G0 → G1, a
difference would mean a advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t

1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Ending: Then the attacker has to guess values MacS generated by a
perfect pseudo-random function with a SqnC different from what he has
seen.

P(A wins Gqexec,qres,qOp,t

2 ) ≤ qexec + qOp

2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ qexec + qOp

2|MacS | +Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

4.5 State Confidentiality

Freshness: state confidentiality An entity P is fresh if the adversary
has not used the oracles CorruptClient or RevealState on any instance
of P .

State Confidentiality Game We define the state confidentiality game
as follows.
1. The challenger generates nOp operators, nS servers and nC clients

and their respective keys.
2. The attacker fixes a target (a client) and an operator.
3. The attacker corrupts any number of clients except the target.
4. The attacker is the server for executions of the protocol with the

clients decided by the attacker.

15 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.



5. The attacker sends a tuple (skC , skOp,C , skOp, n, SqnC,n), wins if he
guesses right any of the values skC , skOp,C , skOp or SqnC,t which
is the value SqnC at the end of the execution n of the target client,
and the client is still fresh.

The protocol is (qexec, qres, qOp, t, ϵ)-state-confidential if no attacker A
running in time t with qexec executions of the protocol, qres re-synchronizations
and qOp authentication vectors asked by a corrupted server has an ad-
vantage Adv(A) = P(A wins) more than ϵ.

Theorem 5 (State-Confidentiality). The advantage on the state con-
fidentiality game for the UMTS-AKA protocol is bounded as follows:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
8∆qexec
2|SqnC | +

1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

where qreq = 10qexec + 5qOp + 4qres.

Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t

0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD
with a perfect key derivation KD′ and G with a perfect pseudo-function
G′ on which there is no advantage.
Transition G0 → G1: An attacker for G0 either attacks G1 or uses a
property of KD or G. To put it in another way, one can use an attack
against G0 but fails against G1 to distinguish between KD and KD′ or
between G and G′. One can easily use the same argument used in Section
4.1 with qreq = 10qexec + 5qOp + 4qres requests16.

P(A wins Gqexec,qres,qOp,t

0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+Adv(KD)tnOp,nC
+Adv(G)

qreq,t
nOp,nC

Our next step is to reduce the configuration to one client and one oper-
ator.
Game G2: We define the game G2 as the same as G1 but there is only
one client and one operator.
Transition G1 → G2: As G′ and KD′ are perfect, the keyed G′ are
uncorrelated. Therefore the attacker does not have benefits from having
other clients or operators. An attacker for G2 could simply simulate other
uncorrupted clients by reusing the target client and corrupted clients

16 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.



by generating random keys for an attacker in G2. As in G0 → G1, a
difference would mean a advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t

1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Ending: The attacker can only win by sending the correct value for
skC , skOp,C or skOp or getting a right couple (n, SqnC,n).
For obtaining the secret keys, since G′ and KD′ are perfect, the attacker
can only guess them.
Since the attacker is the server, it controls and knows the differences
SqnC,n+1−SqnC,n of the value SqnC at times n and n′ (which by design
is between 1 and ∆).
From executions and resynchronisations, the attacker only gets SqnOp,C,n⊕
AKn and SqnC,n ⊕ AK∗n. Since G′ and KD′ are perfect, the attacker

can only learn SqnC,n⊕SqnC,n′ when Rn is the same as Rn′ (which can
happen since the attacker can use an old authentication vector and get
the result from the resynchronisation procedure).
The attacker then can learn the value of all the bits of SqnC,n that
changes through the game. For example, SqnC ⊕ (SqnC + 1) is of the
form 0 . . . 01 . . . 1 where the number of 1 is one more than the 2-adic
valuation of SqnC +1 (the details of this property change with the value
of the difference between the successive values but the principle remains
the same). As we expect around log(∆qexec) + 3 bits to be affected, the
probability for the attacker of guessing a good couple (n, SqnC) is at
most 8∆qexec

2|SqnC |
.

P(A wins Gqexec,qres,qOp,t

2 ) ≤ 8∆qexec
2|SqnC | +

1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

Then by recalling the previous transitions, we get:

Adv(A) ≤ Adv(G)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

+
8∆qexec
2|SqnC | +

1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

5 Quantum Security of Milenage

In this section we discuss the quantum security of Milenage.

5.1 Description of Milenage

Milenage is a construction based on a block cipher noted E that acts on
128-bit messages (KASUMI for 3G and AES for 4G/5G).

Key Derivation The keys skOp,C are computed as skOp,C = EskC (skOp)⊕
skOp.



Functions f1, f2, f3, f4, f5, f
∗
1 , f

∗
5 From the input R, Sqn, AMF ,

intermediate values T and I are computed as T = EskC (R⊕skOp,C) and
I = Sqn∥AMF∥Sqn∥AMF .
Then five values are computed as follows:
– out1 = EskC (T ⊕ rot64(I ⊕ skOp,C))⊕ skOp,C

– out2 = EskC (c2 ⊕ rot0(T ⊕ skOp,C))⊕ skOp,C

– out3 = EskC (c3 ⊕ rot32(T ⊕ skOp,C))⊕ skOp,C

– out4 = EskC (c4 ⊕ rot64(T ⊕ skOp,C))⊕ skOp,C

– out5 = EskC (c5 ⊕ rot96(T ⊕ skOp,C))⊕ skOp,C

– f1 outputs the first 64 bits of out1
– f∗

1 outputs the last 64 bits of out1
– f2 outputs the last 64 bits of out2
– f3 outputs out3
– f4 outputs out4
– f5 outputs the first 48 bits of out2
– f∗

5 outputs the first 48 bits of out5

5.2 Attack on Milenage as a Pseudo-random Function

We present a quantum attack against Milenage as a pseudo-random func-
tion in complexity 240.3. It is based on the Grover-meets-Simon algorithm
[31,11].
The previous cryptanalysis [39] ignored the pre-proccessing of Milenage,
considering that the attacker could input anything for I instead of the
doubled input SQN∥AMF∥SQN∥AMF .
We present the main algorithmic components before the complete attack,
Grover’s search [23] and Simon’s algorithm [37].

Theorem 6 (Theorem 2 in [15]). Let A be a quantum algorithm that
uses no measurements, let f : X → {0, 1} be a boolean function that tests
if an output of A is “good”. Let a be the success probability of A. Let O0 be
the “inversion around zero” operator that does: O0|x⟩ = (−1)x ̸=0|x⟩ and
Of a quantum oracle for f : Of |x⟩ = (−1)f(x)|x⟩. Let θa = arcsin

√
a and

0 < θa ≤ π
2
. Let t =

⌊
π

4θa

⌋
). Then by measuring (AO0A†Of )

tA|0⟩, we

obtain a “good” result with success probability greater than max(1−a, a).

Theorem 7 (Theorem 2 in [31]). Suppose that f : {0, 1}n → X has
a period s, i.e. f(x⊕ s) = f(x) for all x ∈ {0, 1}n and satisfies

max
t/∈{0,s}

P(f(x⊕ s) = f(x)) ≤ 1

2

When we apply Simon’s algorithm to f , it returns s with a probability at
least 1− 2n · (3/4)cn. It is running in cn queries to f and time cn2.

Simon’s algorithm can be used without measurements and can answer
whether s exists or not by making the classical post-processing of the
Simon’s algorithm into quantum. This procedure (Grover-meets-Simon)
has been widely described in [31,11]. For our use, c = 5 will ensure
a failing probability lower than 2−n, which makes this algorithm look
exact up to 2n uses. The final algorithm has a time complexity of 5n3

binary operations and 5n queries to f (the bigger factor in our case).



Idea of the Attack The attack relies on the following property of Mile-
nage.
For any value R0 and R1 for R, let us consider E(R0 ⊕ skOp,C) = A∥B,
E(R1⊕skOp,C) = C∥D, if A⊕B = C⊕D (probability 2−64 to happen),
then for x = SQN∥AMF and b ∈ {0, 1}, F : b∥x 7→ f1(Rb, Sqn,AMF )
had a period 1∥(A⊕C). (This should not happen for a random function.)
We will fix R0 and search for a R1 such that F has a period.
(Then querying F on 0∥x will give the value of F on 1∥(x ⊕ A ⊕ C),
which also breaks the security of f1 as a MAC function.)

Algorithm of the Attack We present a quantum attack on Milenage
that uses 240.3 Milenage computations. Classical cryptanalysis [3] uses
264 classical Milenage computations which can be accelerated to 242.7

quantum Milenage computations with quantum collision search [16].

Algorithm 1 Quantum attack on Milenage

Input: superposition oracle access to G, or a random function
Output: “Milenage” or “Random”

1: Fix a value R0

2: Apply Grover’s search with π
4
264/2 repetitions on R1

3: Apply Simon’s algorithm on the function F : b∥x 7→ f1(Rb, Sqn,AMF )
▷ costs 5× 64 = 28.3 Milenage computations per use

4: If F is found to be periodic then
5: the state (R1) is “good” Else the state (R1) is “bad”
6: EndGrover
7: Measure and check if a solution was found
8: If it was found return “Milenage” Else return “Random”

5.3 Security Proof of Milenage in AKA

The attack we showed has some extensive use of adaptive superposition
queries on Milenage. However, the AKA protocol severely limits the pos-
sibilities for such queries. Thus, the above attack can be seen as only
theoretical since hard to be put in practice in UMTS-AKA. Consider-
ing that, we below define a new game for the security of the primitive
that reflects those constraints. We then prove that Milenage is quantum
secure using that “practical in-AKA” game.

In-AKA-distinguishing Game We define the G-in-AKA-distinguishing
game:
1. The challenger generates random independent keys in pure states

skC,1,..., skC,nC and skOp,C,1,1, ..., skOp,C,nC ,nOp for the studied
pseudo-random functions f1, f2, f3, f4, f5, f

∗
1 , f

∗
5 and 7nOpnC ran-

dom functions17. The challenger will use either the random functions

17 This is the number of generated functions since for each couple (C,Op) there is a
generation of G.



or the pseudo-random ones as a quantum black boxOfi,skC,j,skOp,C,j,j′

such that Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) = |x⟩|y⊕ fi,skC,j ,skOp,C,j,j′ (x)⟩.

2. The challenger now simulates the AKA protocol with the chosen
oracles.

3. The attacker can ask for executions of the protocol where he is a
Man-In-the-Middle and has access to corrupted servers.

4. The attacker guesses whether the protocol is using G or random
functions and wins if the guess is right.

A pseudo-random function is (qexec, qres, qOp, t, ϵ)−strongly in AKA-in-
distinguishable if no attacker A running in time t with qexec instances
of the protocol, qres re-synchronizations and qOp authentication vectors
asked by a corrupted server (outside an execution of the protocol) has
an advantage Adv(A) = P(A wins)− 1

2
more than ϵ.

Note that in the In-AKA-distinguishing game, the pseudo-random func-
tion is still queried in superposition like in the AKA protocol and that
the superposition is fixed by the challenger and not the attacker.
We now show that Milenage is G-in-AKA indistinguishable by proving
the following theorem.

Theorem 8 (G-in-AKA indistinguishability). The advantage on
the G-in-AKA indistinguishability game for Milenage is bounded as fol-
lows:

Adv(A) ≤ 24(qexec + qOp)(qexec + qres)

2|R| +
50(qexec + qOp)

2

2|R| +
qexec + qres
|MacS |

+Adv(E)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

where qreq = 6qOp + 8qexec + 2qres.

The rest of this section is dedicated to proving this theorem.

Note on AES AES has been studied in the classical case for over 20
years. While the same cannot be said for the quantum case, the work
of Bonnetain, Naya-Plasencia and Schrottenloher [14] seems convincing
that AES can be considered quantum-safe for now.

Security of the Key Derivation As stated in 3.3, the model for evalu-
ating the key derivation is a known-plaintext model on AES. It can be
considered safe.

Note on the advantage on E The use of fixed superposition may mis-
lead us to think only the classical security of E is needed. However,
an example for a quantum attack happening is the one-time pad distin-
guisher from [10] (Proposition 7.1). This distinguisher happens with only
one query on H|0⟩ against a one-time pad (where a classical distinguisher
would need at least two queries) as G is a kind of one-time pad when E
is a one-time pad.



Rewriting of the Game From the structure of UMTS-AKA, an execu-
tion of the protocol uses G only twice: once for generating the authen-
tication vectors and once to verify them. Note that in order to get an
interesting answer from the client, the attacker needs to pass through the
client verification with a different element. The verification of the server
is not an oracle since it exclusively uses the authentication vector it is
given, which the attacker has also access to). For simplicity, we give the
attacker the values out1,out2,out3,out4,out5 instead of f1, f2, f3, f4, f5,
f∗
1 , f

∗
5 with no loss of generality (we actually give more to the attacker

this way). We recall that Sqn and AMF are classical values. Then we
can replace the previous game with the following (named G0) which is
obviously exactly equivalent to the one above. There is no difference in
winning one or the other game.

1. The challenger generates random independents keys in pure states
skC,1,..., skC,nC and skOp,C,1,1, ..., skOp,C,nC ,nOp for the studied
pseudo-random functions out1,out2,out3,out4,out5 and 5nOpnC ran-
dom functions. The challenger will use either the random functions or
the pseudo-random ones as a quantum black box Ofi,skC,j,skOp,C,j,j′

such thatOfi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) = |x⟩|y⊕outi,skC,j ,skOp,C,j,j′ (x)⟩.

2. The challenger now gives the attacker authentication vectors and the
associated answers (i.e., elements

∑
R aR|R, out1, out2, out3, out4, out5⟩)

and access to black-box verification functions F1 and F ∗
1 that take

quantum superpositions of states |x, y⟩ and measures whether y =
f1(x, Sqn,AMF ) and y = f∗

1 (x, Sqn,AMF ) respectively and give
the result on a classic bit.

3. The attacker is free to interact with those elements.
4. The attacker guesses whether the challenger is using G or random

functions and wins if the guess is right.

The number of given authentication vectors is bounded by qvect = qexec+
qOp, the number of calls to F1 is bounded by qF1 = qexec and, the number
of calls to F ∗

1 is bounded by qF∗1 = qres.

Use of E We define the game G1 as the same as G0 except in Milenage
we use a perfect quantum pseudo-random permutation E′ instead of E
and a perfect key derivation KD′ instead of KD.

Lemma 1

P(A wins G
qvect,qF1

,qF∗1
,t

0 ) ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 )

+Adv(E)
qreq,t
nOp,nC +Adv(KD)tnOp,nC

The attacker either uses a property of E with at most qreq = 6qvect +
2qF1 + 2qF∗1 queries or it attacks G1.

Proof. The passage from G0 to G1 can be seen as an attack against
E. More formally, using the best adversary A0 for G0, we can build a



quantum adversary AE for the game against E with a total of qreq =
6qvect + 2qF1 + 2qF∗1 requests for keyed E as a black box.
AE takes the black boxes to generate the clients and operators. Then it
runs the adversaries A0 with the generated clients and AE answers “the
functions are generated” operators if A0 is right, and AE answers “the
functions are random” if A0 is wrong.
In the case the functions are the generated ones, A0 works normally. If
they are the random ones, A0 works as an adversary for the game G1.
The probability of the described events is reported as follows.

functions
A0

right wrong

generated
P(A wins G

qvect,qF1
,qF∗1

,t

0 )

2

1−P(A wins G
qvect,qF1

,qF∗1
,t

0 )

2

random ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 )

2
≥ 1−P(A wins G

qvect,qF1
,qF∗1

,t

1 )

2

Adv(E)
qreq,t
nOp,nC ≥ P(A wins G

qvect,qF1
,qF∗1

,t

0 )− P(A wins G
qvect,qF1

,qF∗1
,t

1 )

P(A wins G
qvect,qF1

,qF∗1
,t

0 ) ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 )+Adv(E)
qreq,t
nOp,nC⊓⊔

Use of multiple clients As we now deal with a perfect block cipher, the
different elements obtained through the different clients are unrelated.
The total advantage is the sum of the advantages against each client. We

show that for one client, the advantage is less than
24qvect(qF1

+qF∗1
)

2|R|
+

50q2vect

2|R|
+

qF1
+qF∗1

|MacS | . The resources of the attacker (access to authentica-

tion vectors, calls to F1 and F ∗
1 ) are spread between the clients (qvect =∑

clients qvect,client, qF1 =
∑

clients qF1,client and, qF∗1 =
∑

clients qF∗1 ,client).
Then the total advantage is less than∑

clients

24qvect,client(qF1,client+qF∗1 ,client)

2|R|
+

50q2vect,client

2|R|
+

qF1,client+qF∗1 ,client

|MacS | ,

which is still less than
24qvect(qF1

+qF∗1
)

2|R|
+

50q2vect

2|R|
+

qF1
+qF∗1

|MacS | . We only con-
sider the case of one client for the rest of the proof.

Use of verification functions We define an intermediate game G2 as
the following:

1. The challenger generates random independent keys in pure states
skC,1,..., skC,nC and skOp,C,1,1, ..., skOp,C,nC ,nOp for the studied pseudo-
random functions out1,out2,out3,out4,out5 and 5nOpnC random func-
tions. The challenger will use the pseudo-random ones as a quantum
black box Ofi,skC,j,skOp,C,j,j′

such that Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) =

|x⟩|y ⊕ outi,skC,j ,skOp,C,j,j′ (x)⟩.
2. The challenger now gives the attacker authentication vectors and the

associated answers (i.e., elements
∑

R aR|R, out1, out2, out3, out4, out5⟩)
and access to black-box verification functions F1 and F ∗

1 that take
quantum superpositions of states |x, y⟩ and measures whether y =
f1(x, Sqn,AMF ) and y = f∗

1 (x, Sqn,AMF ) respectively and gives
the result on a classical bit.

3. The challenger gives the attacker a value
∑

R′,h aR′,h|R′, h⟩ such that

R′ is measured to never be equal to a previous Ri.



4. The attacker is free to interact with those elements.
5. The attacker guesses the value of any part of G(R′, Sqn,AMF )

(f1, f
∗
1 , out2, out3, out4, out5) and wins if the guess is right.

Lemma 2

P(A wins G
qvect,qF1

,qF∗1
,t

2 ) ≤
24qvect(qF1+ qF∗1 )

2|R| +
qF1+ qF∗1
|MacS |

Proof. As we want to consider all possible R′, the attacker uses F1 or F ∗
1

either on an R′ or on a previous Ri. However, the attacker gains nothing
by querying F1 or F ∗

1 on a previous Ri (the result is already known).
Then we consider the attacker to only query F1 or F ∗

1 on a R′. Then
on an R′, either the result is “true” and we can declare the attacker to
win, or the result is false and it continues. Either way, the measurement
can be done at the end of the game with the final guess. Then having
qF1 access to F1 and qF∗1 access to F ∗

1 only multiplies the probability of
success.

P(A wins G
qvect,qF1

,qF∗1
,t

2 ) ≤ qF1P(A wins Gqvect,1,0,t
2 )

+ qF∗1 P(A wins Gqvect,0,1,t
2 )

There are two cases, either one of the internal value of the computation
matches one that appeared for one of the previous Ri, which happen
with probability less than 12qvect

2|R|
, 18 or there is no collision and the at-

tacker has to guess a random value such that there is no internal collision
between R′ and any Ri.

Note that there is no gain to take more R′ or a smaller part. In the first
case, the attacker would have to spread the calls to F1 or F ∗

1 between
the different values R′ to attack. In the second case, F1 and F ∗

1 would
only give a partial answer and the advantage of the attacker compared
to a perfect G would not grow.

Randomness of the initial vectors We showed that vectors outside the
initial ones cannot be used efficiently. We now focus on the initial vec-
tors. The verification function are trivial on those ones, and we can then
dispose of them. We define the game G3 as distinguishing the authenti-
cation vectors given to the attacker from vectors generated by a perfect
pseudo-random function.

Lemma 3

P(A wins Gqvect,t
3 ) ≤ 1

2
+

50q2vect
2|R|

18 There is two values for R′ as only Out1 is computed



Proof. There are two cases, either one of the internal value of the com-
putation matches one that appeared for one of the previous Ri or there

is no collision. The first one happens with probability less than
25q2vect

2|R|
.

The second one means the attacker has only the fact that there is no in-
ternal collision between the computations of out1, out2, out3, out4, out5
(which gives the same advantage).

6 Quantum Security of TUAK

In this section we discuss the security of TUAK.

6.1 Description of TUAK

TUAK is based on a permutation noted P (in practice, it is Keccak-
f[1600] [4]). The following description concerns the highest size of el-
ements (keys and MACs are 256-bit long). The lower sizes only have
some tweaks on the INSTANCE value and only output a subset of
their higher size counterparts. We note rev(M) the message M reversed,
a ∗M to be the message M repeated a times and ALGONAME to be
the 56-bit value of the ASCII representation of “TUAK1.0”.

Key derivation INSTANCE is set to 00000001,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥192∗(0)∥rev(skC)∥5∗
(1)
∥314 ∗ (0)∥(1)∥512 ∗ (0),
skOp,C is defined as the reverse of the first reversed 256 bits of P (IN).

Functions f1, f2, f3, f4, f5, f
∗
1 , f

∗
5 For f1, INSTANCE is 00100001,

IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥rev(AMF )∥
rev(Sqn)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f1 outputs the reverse of the first reversed 256 bits of P (IN).
For f∗

1 , INSTANCE is 10100001,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥rev(AMF )∥
rev(Sqn)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f∗
1 outputs the reverse of the first reversed 256 bits of P (IN).
For f2, f3, f4, f5, INSTANCE is set to 01100111,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥
64 ∗ (0)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f2 outputs the reverse of the first 256 bits of P (IN),
f3 outputs the reverse of the bits 256 to 511 of P (IN),
f4 outputs the reverse of the bits 512 to 767 of P (IN),
f5 outputs the reverse of the bits 768 to 815 of P (IN).
For f∗

5 , INSTANCE is set to 11000001,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥
64 ∗ (0)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f∗
5 outputs the reverse of the bits 768 to 815 of P (IN).



6.2 Security Proof of TUAK

From a security perspective, we look at P as a pseudo-random function
taking on input the key skOp,C on positions 0 to 255 and the key skC on
position 512 to 767. Any attack on P would be considered as an attack
against the permutation.
With this mindset, we can obviously reduce the security of TUAK to the
one of P with at most 4q queries.

Note on Keccak-f We now have to give some evidence that the underly-
ing permutation, namely Keccak-f, can be considered as quantum secure.
As Keccak is a permutation on 1600 bits, it means that the best general
attack as a qPRF is to try and fail at finding a collision which takes at
least 2533 computations to do [43] compared to the 2256 computations to
brute-force the keys. Keccak-f has been studied in the classical case since
the NIST SHA-3 competition in 2008. While the same cannot be said
for the quantum case, the fact that no practical classical attack breaks
more than 8 rounds out of 24 [46,26] (the best classical attack on the
full permutation to our knowledge uses 21573 computations [40]) seems
convincing that Keccak-f can be considered quantum-safe for now.

7 Conclusion

The UMTS-AKA protocol was designed in 1999 and intended to a classi-
cal world. With the advent of quantum computers, that multiple experts
consider as imminent, it is necessary to take a new look at such proto-
cols deployed in real life, which are used to protect the communication
of billions of users. Assessing their security anew is therefore implied by
the coming quantum era.
In this paper we have focused our attention on the UMTS authenticated
key agreement, designed for the 3G telecommunication technology, and
still at the basis of both 4G and 5G standards. This protocol is used every
day by numerous users to protect their voice and data mobile communi-
cations.
We have defined a quantum version of the genuine AKA protocol. Start-
ing from the work of Alt et al. we have derived a stronger quantum
model which grants the adversary quantum computations as well as su-
perposition queries. Then we have provided detailed security proofs of
the quantum UMTS-AKA, showing that the quantum security of the
protocol relies upon that of the underlying pseudo-random functions
(f1, . . . , f

∗
5 ). Therefore, under the assumption that they are quantum-

secure, the UMTA-AKA remains a secure scheme to protect users’ com-
munications. To the best of our knowledge this paper provides the first
rigorous proof of the UMTS-AKA in a strong quantum setting.
As supplementary contributions, we also exhibit a new attack against the
state confidentiality of a mobile user. This attack holds in the quantum
as well as in the classical setting. We also describe a quantum existential
forgery attack against the standalone f1 function when instantiated with
Milenage. We analyzed the quantum security of the underlying primitives



of UMTS-AKA, Milenage and TUAK, and conclude that, if keyed with
a 256-bit key, they are quantum secure as core functions of the UMTS-
AKA protocol.
As a next work we aim at studying in a quantum setting the new proper-
ties of user’s privacy and network’s “awareness” that are provided in the
5G technology. With the threat posed by quantum computing in mind,
the goal of the NIST’s post-quantum competition is to motivate the de-
sign of quantum-secure asymmetric schemes. Likewise we hope that our
work will contribute to the systematic analysis of the currently deployed
protocols with regard to the quantum threat they will soon face, and
help design secure quantum networks.
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