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Abstract. Multi-signatures allow for compressing many signatures for the same message that were
generated under independent keys into one small aggregated signature. This primitive is particularly
useful for proof-of-stake blockchains, like Ethereum, where the same block is signed by many signers,
who vouch for the block’s validity. Being able to compress all signatures for the same block into a
short string significantly reduces the on-chain storage costs, which is an important efficiency metric for
blockchains.
In this work, we consider multi-signatures in the synchronized setting, where the signing algorithm
takes an additional time parameter as input and it is only required that signatures for the same time
step are aggregatable. The synchronized setting is simpler than the general multi-signature setting,
but is sufficient for most blockchain related applications, as signers are naturally synchronized by the
length of the chain.
We present Chipmunk, a concretely efficient lattice-based multi-signature scheme in the synchronized
setting that allows for signing an a-priori bounded number of messages. Chipmunk allows for non-
interactive aggregation of signatures and is secure against rogue-key attacks. The construction is plau-
sibly secure against quantum adversaries as our security relies on the assumed hardness of the short
integer solution problem.
We significantly improve upon the previously best known construction in this setting by Fleischhacker,
Simkin, and Zhang (CCS 2022). Our aggregate signature size is 5.6× smaller and for 112 bits of
security our construction allows for compressing 8192 individual signatures into a multi-signature of
size around 136 KB. We provide a full implementation of Chipmunk and provide extensive benchmarks
studying our construction’s efficiency.

1 Introduction

Multi-signatures [IN83, MOR01] allow for compressing distinct signatures for the same message
generated by different signers into one small aggregated signature. Such signature schemes are
a powerful tool in distributed systems, like blockchains, where parties vouch for the validity of
messages on the network by signing them. Rather than storing an amount of signatures that is
linear in the number of parties that vouched for a specific messages, multi-signatures allow for
storing a much shorter string that vouches for a message on behalf of all signers simultaneously.
Popular proof-of-stake blockchains like Ethereum3 and DFinity4 employ multi-signatures at the
core of their consensus layer.

The most popular multi-signature scheme used in practice is a construction due to Boneh,
Gentry, Lynn, and Shacham [BGLS03] based on a signature scheme due to Boneh, Lynn, and
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Shacham (BLS) [BLS01]. Their resulting multi-signatures are extremely small, but the security of
their construction relies on the assumed hardness of computing discrete logarithms over pairing-
friendly groups. It was shown by Shor [Sho94] that the discrete logarithm problem can be solved
efficiently by quantum computers, meaning that any cryptographic primitive basing its security on
such an assumption is insecure in the presence of a quantum adversary.

Luckily, not all computational hardness assumptions are created equal and some seem to re-
main hard in the presence of quantum adversaries. Building multi-signatures from computational
hardness assumptions that withstand quantum adversaries is both a theoretically and practically
important question. While it may not be clear when practically relevant quantum computers will
appear, it is important to have secure alternatives for important cryptographic primitives ahead of
time.

One class of cryptographic hardness assumptions that seems to be particularly resilient against
quantum adversaries is lattice-based cryptography. Two of the three post-quantum signature schemes
that were selected for standardization by NIST in 2022 base their security on hardness assumptions
related to lattices and, not surprisingly, there has also been significant interest in constructing multi-
signatures from lattice hardness assumptions [ES16, FH19, MJ19, PD20, KD20, FH20, DOTT21,
BTT22, FSZ22a, BT23]. The current multi-signature constructions, however, do still have signifi-
cant drawbacks that hinder their practical deployment. The constructions of El Bansarkhani and
Sturm [ES16] and Ma and Jiang [MJ19] assume that the keys of all signers are generated honestly.
This is not a realistic assumption as an adversarial signer could aim to perform a rogue-key attack by
generating a malformed verification key that depends on honest signers’ keys and allows for forging
aggregated signatures, which falsely claim that both the malicious and the honest parties signed a
message that was not actually signed by them. The scheme of Kansal and Dutta [KD20] was shown
to be insecure by Liu et al. [LTT20]. The constructions of Fukumitsu and Hasegawa [FH19, FH20],
Ma and Jiang [MJ19], and Peng and Du [PD20], and Boschini, Takahashi, and Tibouchi [BTT22] all
require interaction between the signers for generating a joint multi-signature. Such an interaction
between independent signers is difficult to realize in many distributed systems as the signers may
be online at different times and may even not know of each others existence. The construction of
Boudgoust and Takahashi [BT23] has aggregate signatures, which have a size that linearly depends
on the number of aggregated signatures.

Recently, Fleischhacker, Simkin, and Zhang [FSZ22a] presented a lattice-based multi-signature
construction named Squirrel, which allows for non-interactive aggregation and is secure against
rogue-key attacks. They consider a simplified setting, where signer’s keys are only able to sign
an a-priori bounded number of messages and where signers are synchronized in the sense that
aggregation only has to work for signatures that were generated for the same time step and same
message. This simplified setting is still sufficiently strong for most blockchain applications, where
signers do not sign more than one message per block and are naturally synchronized by the length of
the current chain. While an a-priori bound on the number of messages that can be signed may seem
like a strong limitation, one can simply set this number large enough, e.g. to 224 which would allow
a signer to sign a message every 10 seconds for 5 years non-stop. Aiming for 112 bits of security,
their individual signatures are roughly 50 KB large and aggregating 4096 signatures results in a
multi-signature that are 771 KB large.

Squirrel represents a significant step forward for multi-signature schemes that are plausibly
secure in the presence of a quantum adversary and are concretely efficient. For real-world practical
scenarios their aggregated signatures seem, however, still too large to be really used. As a point of
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reference, a full Ethereum block is on average less than 130 KB large5, which would mean that one
block could not even fit a single multi-signature.

1.1 Our Contribution

In this work we present Chipmunk6, a multi-signature scheme in the synchronized setting [GR06,
AGH10, HW18, DGNW20] with an a-priori bound on the number of signatures that can be issued
per key. We aim for the exact same setting as Squirrel [FSZ22a], but provide both theoretical and
practical improvements.

On the theoretical side, we strengthen the security notions for multi-signatures by requiring
that aggregation involving malformed but verifying adversarial signatures will succeed with high
probability. In Squirrel, aggregation was only required to work for honestly generated individual
signatures. In principle, their security model would allow an adversary to perform a denial-of-
service attack against the signature aggregation procedure by providing a single verifying, but
malformed signature. In a real-world distributed system, such an attack on liveness would be highly
problematic. We strengthen their security definitions to formally ensure that successfully verifying
individual signatures will be successfully aggregated, even if they are chosen maliciously.

On the practical side, our scheme Chipmunk produces smaller individual and aggregated signa-
tures, when compared to Squirrel. In terms of computational efficiency metrics, Chipmunk either
significantly outperforms Squirrel or remains comparable in speed. In terms of bandwidth, Chip-
munk’s aggregate signatures are smaller by a factor of 5.6×, when compared to Squirrel. For keys
that can generate 221 signatures, an individual Chipmunk signatures is 37 KB and aggregating 8192
signatures results in an aggregate signature that is 136 KB large.

We have fully implemented Chipmunk and provide extensive benchmarks and comparisons to
Squirrel in Section 7. Chipmunk currently is the most concretely efficient multi-signature known
that is based on assumptions that are assumed to remain valid in the presence of a quantum
adversary.

1.2 Technical Overview

Conceptually, Chipmunk closely follows the blueprint that was introduced by Fleischhacker, Simkin,
and Zhang [FSZ22a]. Recall that in their work and in ours we only aim to issue an a-priori bounded
number of signatures, meaning that key generation is parameterized by τ and produces a public
key that can be used to sign 2τ messages. Further recall that we are in the synchronized setting,
meaning that we only aim to aggregate signatures for the same message that were issued at the
same time step.

In Squirrel, each signer’s public key pk is a homomorphic vector commitment of length 2τ ,
where position i commits to pki, which is the public key of a key-homomorphic one-time signature
scheme. To sign message m at time step i, the signer opens the commitment pk to pki at position i
and uses the corresponding one-time signing key to sign the message m. The signature is a vector
itself that consists of pki, the corresponding opening, and the signature of m under this one-time
key. To verify that a message m was signed for time step i, the verifier checks that the given public
key pki is a valid opening of the i-th position of the corresponding signer’s public key pk and that
the given signature verifies for message m under the public key pki.

5 https://etherscan.io/chart/blocksize
6 Smaller than squirrels, cuter than squirrels.
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Aggregation of such signatures is performed by exploiting the homomorphic properties of the
vector commitment and the one-time signature scheme. To aggregate signatures, roughly speaking,
one simply adds up all the individual commitment openings, the one-time keys, and the corre-
sponding one-time signatures. The homomorphism of the vector commitment scheme ensures that
the sum of openings is a valid opening for the sum of committed messages, i.e. the one-time public
keys, under the sum of commitments. The key-homomorphic property of the one-time signature
scheme ensures that the sum of signatures for the same message verifies under the sum of one-time
public keys. Chipmunk follows this blueprint, but improves upon all building blocks that are being
used and thereby significantly reduces the multi-signature size of Chipmunk.

Key-Homomorphic One-Time Signatures. Squirrel uses a key-homomorphic one-time signature
scheme that is similar to those of Boneh and Kim [BK20] and Lyubashevsky and Micciancio [LM08].
The details of the construction are not relevant for now. For Chipmunk, we use almost the exact
same scheme, but observe by carefully inspecting their original security proof that a minor modifi-
cation of the construction used in Squirrel allows for the proof to produce much tighter parameters
and thus smaller signatures.

Homomorphic Vector Commitments. The vector commitment used by Squirrel is a homomorphic
analogue of the classical Merkle tree construction. To make a Merkle tree homomorphic, the idea is
to employ a homomorphic hash function to compute the node’s values of the tree. Now when adding
two trees node-wise, one obtains a new valid tree. Ajtai [Ajt99] introduced such a homomorphic
hash function based on the short integer solution problem. The main difficulty with using this
hash function is the fact that hash output values need to be transformed into valid hash input
values in a way that is efficient and maintains the homomorphic properties we would like our tree
to have. Without going into the details, the problem is that inputs for Ajtai’s hash function need
to have small norm, but outputs have potentially very large norms. Fleischhacker, Simkin, and
Zhang [FSZ22a] solved this problem by effectively performing a binary decomposition of the hash
function’s output values, which resulted in vectors with infinity norm one, which could then again
be used as hash function inputs. In Chipmunk, we generalize their trick of decomposing values into
binary vectors to decomposition into vectors of small norm. While conceptually simple, we show
that this change allows us to significantly reduce the size of our homomorphic vector commitment
openings.

Encoded Openings. Given a Merkle tree, one can provide an opening for leaf i by revealing all nodes
that are adjacent to those on the path from leaf i to the root. The nodes on the path can then
be computed from the given information. Computing openings for the unaggregated homomorphic
vector commitment construction of Squirrel as well as ours works essentially the same way. For
Squirrel’s and our aggregated vector commitments, the situation is unfortunately different. Once
we start aggregating trees or openings, we need to explicitly compute the nodes on the path and
provide them as part of the aggregated opening, which doubles the size of our openings if done
naively.

In Chipmunk, we present a new compression algorithm, inspired by Babai’s nearest plane algo-
rithm [Bab86], which allows us to compress the size of our openings. Instead of additionally sending
the nodes on the path, we only send the adjacent nodes and some small hints, which allow us re-
construct all needed node values. We believe that this technique may be of independent interest
and could find applications outside of our construction.
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Chipmunk Multi-Signatures. Our construction of multi-signatures from vector commitments and
one-time signatures follows the blueprint that was already outlined above. One thing we glossed
over so far are rogue-key attacks. If we were to simply add up individual signatures, then our scheme
would be susceptible to an adversary that first sees the honest parties public keys and then generates
a malicious public key that allows for forging multi-signatures involving honest signers for arbitrary
messages. To avoid this type of attack, the individual signatures are multiplied by randomizer values
before being added up. These randomizing values need to be from a space that is large enough to be
unpredictable for the adversary, but cannot be too large as the multi-signature scheme’s efficiency
would deteriorate. In Squirrel, aggregation was a one-attempt process. In Chipmunk, we repeatedly
choose fresh randomization values and attempt aggregation until the aggregated signature is “small
enough”. We show that doing this alllows us to reduce signature size without affecting the security
or the performance of our construction.

We note that we grossly oversimplified many things in our above overview and that the precise
construction and our improvements are more technically involved. While each individual improve-
ment may seem conceptually simple, they all add up to significantly improved signature sizes,
resulting in the by far most efficient multi-signature scheme from lattice assumptions to date.

New Results in Full Version. We note that the full version of this paper contains a new result, the
encoding of vector commitment openings mentioned above, which is not present in our CCS 2023
proceedings version of this paper. This new result improves our signature sizes by roughly a factor
of 1/5, when compared with the aggregate signature sizes we achieved in our proceedings paper.
You are currently reading the full version.

2 Preliminaries

This section introduces notation, some basic definitions and a few basic lemmas that we will use
throughout this work. We denote by λ ∈ N the security parameter and by poly(λ) any function
that is bounded by a polynomial in λ. A function f in λ is negligible, if for every c ∈ N, there
exists some N ∈ N, such that for all λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any
negligible function. An algorithm is PPT if it is modeled by a probabilistic Turing machine with a
running time bounded by poly(λ).

Let S be a set. We write x ← S for the process of sampling an element of S uniformly at
random. Let T be a full binary tree of depth d. We denote the root node of T by the empty string
ϵ, and for any node v, v∥0 and v∥1 denotes the left and right child of v respectively. In particular,
{0, 1}d is the set of leaves of T . A labeled full binary tree with labels in S is represented by a
labeling function label : {0, 1}≤d → S.

Let v,u be vectors of length m. We throughoutly use 1-based indices in this work. We write
v⊺ to denote the transpose of v and vi to denote the i-th entry in the vector for 1 ≤ i ≤ m. We
generalize this notation and write v<i to denote the (i − 1)-length prefix of v. We use the same
notation for a bit-string s, denoting by si the i-th bit and by s<i the prefix consisting of the first
i−1 bits of s. For 0 ≤ t ≤ 2τ−1 we denote by binτ (t) ∈ {0, 1}τ the big-endian binary decomposition
of t (possibly with leading zeros to ensure a fixed length of τ). For n ∈ N, we denote by [n] the set
{1, . . . , n}.

Our concrete construction works over a power-of-two cyclotomic polynomial ring. Let Φ2n =
Xn + 1 be the cyclotomic polynomial with n a power of two. We work in the polynomial ring
R = Z[X]/⟨Xn+1⟩. For the purpose of taking norms and transmitting data, we represent elements
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ofR as n-dimensional vectors Zn with (c1, . . . , cn)
⊺ ∈ Zn representing the ring element

∑n
i=1 ciX

i−1.
For any odd prime number q, we always represent Zq by the set {− q−1

2 , . . . , q−1
2 } centered around

0. For an odd prime q, we denote by Rq the quotient ring of R modulo q, represented by vectors
in Zn

q . Whenever we need to take representatives to view these as elements from R, we do so by
taking representatives centered around 0 as above. For efficiency reasons, our parameter choice will
always satisfy q ≡ 1 mod 2n, so we can use more efficient NTT-based multiplication in Rq. Let
c ∈ R be a ring element with coefficients (c1, . . . , cn). We work, unless specified otherwise, with
the ∥.∥∞-norm. We define ∥c∥ := ∥c∥∞ = maxi|ci| and ∥c∥1 =

∑
i|ci| on R by taking the norm of

the coefficient vector in the monomial basis. We extend these definitions to norms on Rq by taking
representatives in R using coefficients in {− q−1

2 , . . . , q−1
2 }. We also extend the definition of ∥.∥∞ to

Rm for any m by ∥c∥∞ = maxi∥ci∥∞.

Our convention is that mixed multiplication of an element from R with an element from Rq

gives an element from Rq, thereby viewing Rq as an R-module (see Definition 3 below).

We denote by Bβ,q the ball Bβ,q = {a ∈ Rq | ∥a∥ ≤ β}. We are only interested in the case β < q
2 .

By Tα = {a = (a1 + a2 ·X + · · ·+ anX
n−1) ∈ R | ∥a∥∞ ≤ 1 ∧

∑n
i=1|ai| = α} we denote the set of

polynomials with ternary coefficients, i.e. coefficients from {−1, 0, 1}, and with exactly α non-zero
coefficients.

Observe that for our choices of ring R and norm, for any a ∈ R, we have ∥a∥ = ∥X · a∥, because
multiplication by X acts on the coefficient vector as a cyclic shift (up to sign). For such rings and
norms, we can make use of the following simple lemma that allows us to bound the norm of the
product of two polynomials.

Lemma 1 ([Mic07]). Let a, b ∈ R be two polynomials. Then ∥b · a∥ ≤ ∥a∥1 · ∥b∥.

The security of our constructions relies on the hardness of the short integer solution problem
defined over rings as follows.

Definition 2 (Ring Short Integer Solution Problem). For a ring R and parameters µ, q, β ∈
N, the SISR,q,µ,β problem is hard if for all PPT algorithms A it holds that

Pr[a← Rµ
q ; s← A(a) : s ∈ B

µ
β,q \ {0} ∧ a⊺s = 0] ≤ negl(λ)

R-modules. In order to aggregate signatures, we will be taking linear combinations of individual
elements, where for security reasons the coefficients need to be from a sufficiently large space. We
use the ring R = Z[X]/⟨Xn + 1⟩ for those coefficients. This means that for both signatures and
certain intermediate objects appearing during our constructions, we need to be able to both add
them together and to multiply them with elements from R. Recall that this is precisely captured
by the notion of an R-module, so let us recall some relevant notions here for convenience to the
reader.

Definition 3 (R-module). For a commutative ring R, an R-module A is an abelian group (with
addition denoted by +) together with a multiplication operation

·A : R×A→ A, (r, x) 7→ r ·A x

satisfying (rs) ·A x = r ·A (s ·A x) (associativity), (r + s) ·A x = (r ·A x) + (s ·A x) as well as
r ·A (x+ y) = (r ·A x) + (r ·A y) (distributivity) and 1 ·A x = x for all r, s ∈ R, x, y ∈ A.
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This is really the same definition as a vector space over a field, except that we use a ring instead of
a field. As opposed to (finite-dimensional) vector spaces, not every (finitely generated) R-module is
isomorphic to Rn for some n. Similar to vector spaces, the multiplication is often denoted by just
· or even just concatenation; we only write ·A here for emphasis.

We will only consider R-modules for the specific choice of ring R = Z[X]/⟨Xn + 1⟩. The R-
modules we will need are typically of the form Rn or Rn

q for q prime and n ∈ N with module
structures given by

·Rn : R×Rn → Rn, (r, (x1, . . . , xn)) 7→ (r1x1, . . . , rnxn) resp.

·Rn
q
: R×Rn

q → Rn
q , (r, (x1, . . . , xn)) 7→ (r1x1 mod q, . . . , rnxn mod q)

It is straightforward to check that these are R-modules.

We also need appropriate maps between modules that preserve this structure. Notably, a map
f : A→ B between R-modules with the same R is called R-linear, if f(x+ y) = f(x) + f(y) and
f(rx) = rf(x) holds for each x, y ∈ A, r ∈ R. The composition of R-linear maps gives a R-linear
map. Examples of R-linear maps are the modular reduction map mod q : R → Rq and maps of
the form Rn → Rm,v 7→ A ·v for a fixed matrix A ∈ Rm×n. The former follows from compatibility
of modular reduction with + and ·. The latter holds because A(v+w) = Av+Aw and Arv = rAv
for all v,w ∈ Rn, r ∈ R, A ∈ Rm×n, since R is commutative.

Norm growth. To ensure that during aggregation, our norms don’t grow too much, we will use the
following auxiliary lemma to control the growth of the norm bounds.

Lemma 4. Let n, αw, ρ, β be positive integers such that n is a power of two. Let R be the polynomial
ring Zq[X]/⟨Xn + 1⟩. Then for any ℓ ≤ ρ, for any x1, . . . ,xℓ ∈ R with ∥xi∥ ≤ β and any growth
factors ζ ≥ 1, we have

Pr

[
w1, . . . ,wℓ ← Tαw :

∥∥∥ ℓ∑
i=1

wi · xi

∥∥∥ > ζ · β

]
< 2n · exp

(
− ζ2

2αρ

)
.

Proof. Recall that Tαw denotes ternary polynomials with weight exactly αw. We will show that the
claim holds even if we fix the positions of the non-zero entries in each wi and only consider the
randomness coming from the ±1-signs. Now observe that for each fixed k, the k-th coefficient yk of∑ℓ

i=1wixi is a sum of the form

yk =

αw·ℓ∑
j=1

bjcj ,

where each bj is some coefficient of some xi and each cj ∈ {−1,+1} iid, corresponding to a sign
choice of some coefficient of some wi (everything depending on k). Thus, the expected value of yk
is 0 and |bj | ≤ β, so changing any individual cj out of the ℓαw many cj ’s can change the value of
yk by at most 2β. We can thus apply McDiarmid’s inequality [McD89] to obtain

Pr
[
|yk| > ζβ

]
≤ 2 exp

( −2(ζβ)2
ℓαw(2β)2

)
≤ 2 exp

(
− ζ2

2αwρ

)
.

Taking a union bound over all n coefficients yk of
∑ℓ

i=1wixi then gives the claim. ⊓⊔
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We will construct a particular homomorphic vector commitment (HVC) denoted by HVCChip
0

in Section 3, then improve it to a more compact HVCChip
Encoded in Section 4. In Section 5, we con-

struct a key-homomorphic one-time signature scheme (KOTS) denoted by KOTSChip. In Section 6,
we combine those components to construct a synchronized aggregatable signature scheme. Our
concrete constructions depends on a significant number of tunable parameters, whose choices affect
both security, efficiency and functionality. Table 1 gives an overview and is intended as a reference
for later, to aid the reader.

Parameter Meaning

n Dimension of the ring R = Z[X]/⟨Xn + 1⟩ we are working over; n is a power of two.
q Prime number for HVCs. Our HVCs internally work modulo q, i.e. with Rq = R/⟨q⟩.
q′ Prime number for KOTS. Our KOTS works modulo q′, i.e. with Rq′ = R/⟨q′⟩. The HVC is used to

commit to elements of Rq′ .
τ Depth of our Merkle tree. 2τ is the number of indices for the HVCs. This is also the number of time

slots for the synchronized multi-signature.
ρ Maximum number of homomorphic vector commitments or signatures that we support aggregating.
η Arity parameter. Our constructions make use of 2η + 1-ary decomposition.
κ Number of limbs used in the decomposition of Rq elements.
κ′ Number of limbs used in the decomposition of Rq′ elements.
ξ Dimension (over Rq′) of the elements our HVCs commit to.
γ Dimension (over Rq′) of public parameters and secret key components in the KOTS.

βagg Norm bound for HVCs after aggregation/homomorphic addition.
βσ Norm bound for KOTS signatures after aggregation/homomorphic addition.

βencode Norm bound for the encoded elements in the vector commitment openings.
αw Hamming weight for ring elements used as coefficients for homomorphic addition of our HVCs or KOTS.
αH Hamming weight for ring elements used as randomizers in the construction of individual KOTS signa-

tures.
φ Norm bound parameter for secret keys of the KOTS.
ε Error bound. Individual aggregation attempts may fail with at most this probability for our HVCs or

KOTS.
χ Maximum number of aggregation attempts. Aggregation ultimately fails if χ individual attempts have

failed.

Table 1: Parameters used in our concrete homomorphic vector commitment (HVC) and key-
homomorphic one-time signature (KOTS) schemes. Since we combine those to a synchronized ag-
gregatable signature scheme later, the parameters are related.

3 Homomorphic Vector Commitments

In this section, we define and instantiate homomorphic vector commitments, which allow for com-
mitting to a long vector with a short commitment value. Positions in the vector can be individ-
ually opened using a short opening value. We follow the definitions for vector commitments of
Fleischhacker, Simkin, and Zhang [FSZ22a], but we require somewhat different and incomparable
homomorphic properties. The definition of [FSZ22a] only requires honestly generated commitments
to have homomorphic properties, whereas our definition requires the homomorphism to work for
any individually verifying commitments and openings. On the other hand, [FSZ22a] requires that
the homomorphism works with probability 1, whereas we allow some noticeable error. Among other
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things, this modification of the definition allows us to instantiate homomorphic vector commitments
more compactly.

Definition 5. Let τ ∈ N be fixed. Let R be a ring and let Adom, Acom, Aop be R-modules. A
homomorphic vector commitment scheme (HVC) for domain Adom and vectors of length 2τ is
defined by six PPT algorithms HVC = (Setup,Com,Open, iVrfy, sVrfy,wVrfy).

pp← Setup(1λ) The setup algorithm takes as input the security parameter and outputs public pa-
rameters.

c← Com(pp,m) The commitment algorithm gets as input the public parameters and a vector m ∈
A2τ

dom and outputs a commitment c ∈ Acom.
d← Open(pp, c,m, t) The opening algorithm gets as input the public parameters, a commitment,

the committed vector, and an index and outputs a decommitment d ∈ Aop.
m/⊥ ← iVrfy(pp, c, t, d) The individual verification algorithm takes as input public parameters, a

commitment, an index, and a decommitment and outputs either m ∈ Adom or an error symbol.
m/⊥ ← sVrfy(pp, c, t, d) The strong verification algorithm has the same input and output domains

as the individual verification algorithm.
m/⊥ ← wVrfy(pp, c, t, d) The weak verification algorithm has the same input and output domains

as the individual verification algorithm.

For our purposes, R will always be R = Z[X]/⟨Xn + 1⟩ for n a power of two, as in Section 2. Our
domain, commitment and opening space will always be of the form Adom = Rℓdom

q′ , Acom = Rℓcom
q ,

Aop = Rℓop for some primes q, q′. Note that (correctly verifying) decommitments d ∈ Aop will have
small coefficients and undergo arithmetic modulo q, so the reader may think of them as elements

from Rℓop
q , as Squirrel [FSZ22a] does. However, we will impose some bounds on values that are not

reduced modulo q later, so we need to formally treat them as elements from Rℓop and write the
modular reduction explicitly.

We can easily generalize this definition slightly and have Acom and Aop depend on the partic-
ular choice of pp ← Setup(1λ), but will do not need that. Furthermore, the opening space Aop

may depend on t. The latter is technically needed in Definition 26. To keep our notation simple,
we only track that dependency if relevant. All our definitions and proofs directly apply to these
generalization in a straightforward way.

Definition 6 (Individual Correctness). Let HVC be a vector commitment scheme for domain
Adom and vector length 2τ . HVC is individually correct, if for all security parameters λ ∈ N, vectors
m ∈ A2τ

dom, indices 1 ≤ t ≤ 2τ , parameters pp ← Setup(1λ), commitments c ← Com(pp,m), and
decommitments d← Open(pp, c,m, t) it holds that

iVrfy
(
pp, c, t,d

)
= mt .

We require that individually verifying commitments and their respective decommitments can be
homomorphically aggregated by computing a random R-linear combination of them. Such aggre-
gated commitments and decommitments should still strongly verify with high probability over the
choice of the random linear combination, provided the coefficients of the linear combination are
from some restricted subset W (such as a set of small elements).

Definition 7 (Probabilistic Homomorphism). Let Adom, Acom, Aop be R-modules over some
ring R and τ ∈ N. Let HVC be a vector commitment scheme for domain Adom and vector length

9



2τ . Let ρ ∈ N, 0 ≤ ε ≤ 1 and W ⊆ R. HVC is (ρ,W, ε)-probabilistically homomorphic, if for all
security parameters λ ∈ N, number of aggregated commitments ℓ ≤ ρ, indices 1 ≤ t ≤ 2τ , parameters
pp← Setup(1λ), commitments ci ∈ Acom, and decommitments di ∈ Aop with iVrfy(pp, ci, t,di) = mi

such that mi ̸= ⊥ it holds that

Pr

[
w1, . . . , wℓ ←W : sVrfy

(
pp,

ℓ∑
i=1

wi · ci, t,
ℓ∑

i=1

wi · di
)
=

ℓ∑
i=1

wi ·mi
t

]
≥ 1− ε .

We additionally require that a further limited homomorphism still holds, even for maliciously
aggregated commitments. For any two, even maliciously generated, commitments and their two
respective openings that strongly verify, their difference will still weakly verify.

Definition 8 (Robust Homomorphism). Let HVC be a vector commitment scheme for domain
Adom and vector length 2τ . HVC is robustly homomorphic if for all security parameters λ ∈ N, public
parameters pp ← Setup(1λ), indices 1 ≤ t ≤ 2τ , (possibly malformed) commitments c0, c1 ∈ Acom,
and (possibly malformed) decommitments d0,d1 ∈ Aop with

sVrfy(pp, c0, t,d0) = m0 and sVrfy(pp, c1, t,d1) = m1

such that m0,m1 ̸= ⊥ it holds that

wVrfy(pp, c0 − c1, t,d0 − d1) = m0 −m1 .

Finally, we require the commitments to be position binding.

Definition 9 (Position-Binding). Let HVC be a vector commitment scheme. HVC is position
binding if for all security parameters λ and all PPT algorithms A it holds that

Pr


pp← Setup(1λ);

(c, t,d0,d1)← A(pp);
m0 ← wVrfy(pp, c, t, d0);

m1 ← wVrfy(pp, c, t, d1)

: m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1}

 ≤ negl(λ) .

3.1 Squirrel’s Homomorphic Vector Commitment

Since our homomorphic vector commitment is strongly based on Squirrel [FSZ22a], we recap their
construction, albeit informally, in a bit more detail. Somewhat simplified, this commits to 2τ (small)
entries from Adom = Rℓdom

q by using a Merkle tree with a homomorphic hash function.7 If we naively
build a Merkle tree, this would mean that we construct a complete binary tree with 2τ leaves, where
each leaf corresponds to an entry we want to commit to. To each non-leaf node v, we associate the
hash of its child nodes. See Figure 1 for a visualization, ignoring the bottom two rows for now.
Concretely, the hash function utilized is Ajtai’s hash function [Ajt99], which hashes child nodes
c1, c2 ∈ Rℓdom

q to

hAjtai(c1, c2) := a⊺
1c1 + a⊺

2c2 mod q

7 This is then extended to a scheme for (non-small) elements from Rℓdom
′

q′ . This exposition focuses on the Rℓdom
q -part

of the construction and we set ℓdom
′ = 1 for notational simplicity.
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vε

v0 v1

v00 v01 v10 v11

v0...0 v0...01 v1...10 v1...1

u1 u2 u2τu2τ−1

m1 m2 m2τm2τ−1

. . .

...
...

...
...

hAjtai(vi∥0, vi∥1) ≡ proj(vi) (mod q)

hAjtai(ui) ≡ proj(vbinτ (i−1)) (mod q)

proj(ui) ≡ mi (mod q)′

: κ many short R-elements

: κ′ many short R-elements

: Rq′ element

Fig. 1: Squirrel’s homomorphic vector commitment. The bottom 2 rows serve the purpose to commit
to vectors of Rq′ elements rather than to vectors of short Rq- or R-elements. The equations on the
right are the constraints that link the layers together, ignoring shortness constraints. Note that all
layers but the bottom one must contain short elements.

using a uniformly random Rq-linear map given by fixed public uninform a1,a2 ← Rℓdom
q . Now,

setting the relationship between parent node p and child nodes c1, c2 as p = hAjtai(c1, c2) does
not quite work: firstly, the range of the hash function is not Adom, which prevents iterating this
construction. Secondly, this hash function is only binding (based on some appropriate ring-SIS
assumption) if we restrict its input to small elements. To solve these issues, Squirrel chooses a
second (public, fixed) linear function

proj : Rℓdom
q → Rq

and sets the equation that relates the parent node p ∈ Rℓdom
q with its children c1, c2 ∈ Rℓdom

q as

hAjtai(c1, c2) = proj(p) mod q . (1)

One may view p as some kind of encoding of proj(p) here. Since p enters the hash function on the
next layer of the tree as a child, it must be small (this is checked by the verification algorithms
along with the linear relation above). So to construct the tree, we need to be able to find small
preimages of proj. In lattice terms, this means we need to solve some close(st) vector problem for
the kernel of proj. An important observation is that this construction actually works for any proj
for which we can find short preimages: the homomorphic properties of the HVC are due to the fact
that equation (1) above is phrased in terms of Rq-linear maps, and the sum of small elements stays
small. We emphasize that what primarily matters here is the linearity properties of proj and the
verification equation. The map that finds the small preimage may be thought of as auxilliary and
will not be linear.

Squirrel chooses proj as binary reconstruction proj(p) = p0 + 2p1 + 4p2 + . . .. An algorithm to
find a short inverse is then given by binary decomposition.

To commit to the correct domainRq′ , Squirrel adds some extra layers on the bottom of Figure 1.
The main improvement from Chipmunk over Squirrel comes from choosing a different map

for proj and its inverse: we propose to instead use (2η + 1)-ary decomposition rather than binary
decomposition. This turns out to give significantly better parameters.
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Some other differences in the actual construction are as follows:

– We define the commitment (corresponding to the root of the Merkle tree) to be in non-
decomposed form.

– We define proj and the 2η + 1-adic decomposition as maps over R rather than Rq.
– We constrain the size of proj(p) for any node of the tree.
– We use a more elaborate scheme to encode decommitments. This is explained in Section 4.

3.2 A Homomorphic Vector Commitment based on Ring-SIS

To construct a homomorphic vector commitment with the desired properties, we will define proj
and an inverse, called decomposition, as described above. We use (2η + 1)-ary decomposition for
the latter, which allows us to map a ring element with possibly large norm to a vector of low
norm ring elements. To be able to use the greatest arity while minimizing the infinity norm of
decomposed elements, we use a balanced (2η+1)-ary decomposition, i.e. the decomposed elements
have coefficients from {−η, . . . ,+η} centered around 0. We note that any even arity, such as the
binary decomposition used by Squirrel [FSZ22a], is strictly worse than the next greater odd arity.
We then show that the projection function has nice homomorphic properties.

Definition 10 (Projection onto R elements). Let η, κ ∈ N. For any b ∈ Zκ we define the
function

projη,κ : Zκ → Z, projη,κ(b) =
κ∑

j=1

bj · (2η + 1)j−1 .

We can extend this to a map

projη,κ : Rκ → R, projη,κ(b) =
κ∑

j=1

bj · (2η + 1)j−1 .

Definition 11 (Balanced (2η + 1)-ary decomposition of R elements). Fix some odd arity
2η + 1 and let κ ∈ N be the number of limbs. Then we can uniquely decompose any a ∈ Z into a
balanced (2η + 1)-ary decomposition with κ limbs as

a =
κ∑

i=1

ai · (2η + 1)i−1

where ai ∈ {−η, . . . , η} for all 1 ≤ i < κ. An algorithm and proof of this statement is given below
in Figure 2 and Proposition 14. Note that it is notationally convenient to allow arbitrarily sized a
in the definition and not bound aκ, thereby putting all higher-order terms into aκ. If we have the
bound |a| < (2η+1)κ

2 , then the most significant limb aκ will also be in {−η, . . . , η}.
We can extend this to a map on R by essentially decomposing each coefficient, uniquely mapping

a polynomial a ∈ R to limbs a1 . . . , aκ ∈ R such that

a =

κ∑
i=1

ai · (2η + 1)i−1

where ∥ai∥∞ ≤ η for all 1 ≤ i < κ. If ∥a∥∞ < (2η+1)κ

2 , we also have the bound ∥aκ∥∞ ≤ η for the
most significant limb.

12



Matching the notation from Definition 10, we denote this decomposition map by decη,κ, giving
a map

decη,κ : R → Rκ, a 7→ (a1, . . . , aκ) .

Definition 12 (Projection and Decomposition for Rq). Fix some odd arity (2η + 1) and let
q be prime. Set κ :=

⌈
log2η+1 q

⌉
We denote by

projq : Rκ → Rq, projq(a) := projη,κ(a) mod q ∈ Rq

and by

decq : Rq → Rκ, decq(a) := decη,κ(a
′), ,

where a′ is the representative of a in R with coefficients in {− q−1
2 , . . . ,+ q−1

2 }.

We remark that the only difference between projq and projη,κ resp. between decq and decη,κ is whether
the non-decomposed element is in Rq or R. The decomposed elements are always from Rκ. For
projq and decq, the value of η is not denoted explicitly. This is done for notational consistency with
Squirrel. In our constructions, all uses of projq and decq will use the same value for η, even if the
values of q differ.

The following proposition immediately follow from the definitions (for R-linearity, this follows
from the examples given after Definition 3).

Proposition 13. Let q be an odd integer and fix some odd arity 2η + 1. The maps projq and
projη,κ defined above are R-linear. The map decη,κ is a one-sided inverse to projη,κ, meaning that
projη,κ(decη,κ(a)) = a for any a ∈ R. Similarly, decq is a one-sided inverse to projq, meaning that
projq(decq(a)) = a for any a ∈ Rq. For a ∈ Rq, we also have ∥decq(a)∥∞ ≤ η.

For the sake of readability we will at times abuse notation slightly and apply decq resp. decη,κ
to vectors of Rq resp. R elements, which is to be understood as the component-wise application
of decq resp. decη,κ with subsequent concatenation of the resulting vectors. Similarly, projq resp.
projη,κ may be applied to vectors of a length that is a multiple of κ to result in a vector of Rq resp.
R elements. The above discussion generalizes to this extension.

decη,κ(a)

r1 := a

for 1 ≤ i ≤ κ− 1

Choose ai ∈ {−η, . . . ,+η} with ai ≡ ri mod (2η + 1)

ri+1 := ri−ai
2η+1

// Numerator is divisible by 2η + 1

aκ := rκ

return (a1, . . . , aκ)

Fig. 2: Algorithm for balanced (2η + 1)-ary decomposition of integers a ∈ Z. The corresponding
algorithm for a ∈ R works by applying this coefficient-wise.
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Proposition 14 (balanced (2η + 1)-ary decomposition). Let η, κ ∈ N. The algorithm in Fig-
ure 2 runs in polynomial time. For any a ∈ Z, it outputs the unique (a1, . . . , aκ) with

a =

κ∑
i=1

ai · (2η + 1)i−1 (2)

and ai ∈ {−η, . . . ,+η} for 1 ≤ i ≤ κ− 1.

Proof. The algorithm is clearly polynomial time. r− ai is divisible by 2η+1 by construction of ai.
By definition, a1, . . . , aκ−1 ∈ {−η, . . . ,+η}. We show by induction that we have for all 1 ≤ i ≤ κ−1

a = ri · (2η + 1)i−1 +
i−1∑
j=1

aj(2η + 1)j−1 .

This is clear for i = 1. Using induction, we compute

ri+1 · (2η + 1)i +

i∑
j=1

aj(2η + 1)j−1

=(ri − ai) · (2η + 1)i−1 +
i∑

j=1

aj(2η + 1)j−1 (Def. of ri+1)

=ri · (2η + 1)i−1 +

i−1∑
j=1

aj(2η + 1)j−1 = a (induction hypothesis)

For i = κ, this yields a =
∑κ

i=1 ai · (2η + 1)i−1. For uniqueness, note that we just showed that
the map {−η, . . . , η}κ−1 × Z → Z, (a1, . . . , aκ) 7→

∑κ
i=1 ai · (2η + 1)i−1 is surjective. Taking this

modulo (2η + 1)κ−1 gives us that {−η, . . . ,+η}κ−1 → Z(2η+1)κ−1 , (a1, . . . , aκ−1) 7→
∑κ−1

i=1 ai · (2η +
1)i−1 mod (2η+1)κ−1 is surjective, hence injective (because domain and range have the same finite
size). So a1, . . . , aκ−1 are uniquely determined. Plugging this into Equation 2 shows that aκ is
uniquely determined as well. ⊓⊔

This lets us define a labeling function for a full binary tree matching Figure 1.

Definition 15 (Labeled Full Binary Tree). Let n, q, q′, ξ ∈ N with n a power of two and q, q′

primes. Let m = (m1, . . . ,m2τ )
⊺ ∈ (Rξ

q′)
2τ , g ∈ Rξ⌈log2η+1 q

′⌉
q and h0,h1 ∈ R

⌈log2η+1 q⌉
q be fixed. We

define the labeling function labelg,h0,h1 : (Rξ
q′)

2τ × {0, 1}≤τ → R⌈log2η+1 q⌉ for a labeled full binary
tree of depth τ as

labelg,h0,h1(m, v) :=


decq(g

⊺ · decq′(mv+1)) if |v| = τ

decq

(
h⊺
0 · labelg,h0,h1(m, v∥0)

+h⊺
1 · labelg,h0,h1(m, v∥1)

)
if |v| < τ

.

For this, remember that multiplication of elements from Rq and R is always understood8 to give
an element in Rq. For mv+1, we interpret v ∈ {0, 1}τ as an integer in {0 . . . , 2τ − 1} in big-endian
encoding and add 1 (i.e. the inverse of taking t̃ = binτ (t− 1)).

8 as opposed to taking some canonical representative of Rq-elements in R and then multiplying in R
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Using the labeling function, we can define Chipmunk’s HVC as in Figure 3.

Definition 16. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers such that n is a power of two
and q, q′ are primes. Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩ and Zq′ [X]/⟨Xn + 1⟩
respectively. We define the homomorphic vector commitment HVCChip

0 for domain Adom = Rξ
q′ and

vectors of length 2τ by the algorithms given in Figure 3. Its commitments and openings are from
Acom = Rq and Aop = (Rκ)2τ × (Rκ′

)ξ, where κ =
⌈
log2η+1 q

⌉
, κ′ =

⌈
log2η+1 q

′⌉.
Setup(1λ)

g ←Rξκ′
q

h0 ←Rκ
q

h1 ←Rκ
q

return (g,h0,h1)

Com(pp,m)

p0 := labelg,h0,h1(m, ϵ)

c := projq(p0)

return c ∈ Rq

Open(pp, c,m, t)

t̃ := binτ (t− 1)

for 1 ≤ j ≤ τ

pj := labelg,h0,h1(m, t̃<j∥t̃j)
sj := labelg,h0,h1(m, t̃<j∥(t̃j ⊕ 1))

u := decq′(mt)

return (p1, . . . ,pτ , s1, . . . , sτ ,u)

Vrfy(pp, c, t,d, β)

parse d as (p1, . . . ,pτ , s1, . . . , sτ ,u)

t̃ := binτ (t− 1)

if ∥u∥ > β or g⊺ · u ̸= projq(pτ )

return ⊥
if c ̸= h⊺

t̃1
· p1 + h⊺

t̃1⊕1
· s1

return ⊥
for 2 ≤ j ≤ τ

if projq(pj−1) ̸= h⊺
t̃j
· pj + h⊺

t̃j⊕1
· sj

return ⊥
for j ∈ {1, . . . , τ}

if
∥∥pj

∥∥ > β or ∥sj∥ > β

return ⊥

if
∥∥projη,κ(pj)

∥∥ > qβ
2η

or
∥∥projη,κ(sj)

∥∥ > qβ
2η

return ⊥

return projq′(u) ∈ R
ξ
q′

iVrfy(pp, c, t,d)

return Vrfy(pp, c, t,d, η)

sVrfy(pp, c, t,d)

return Vrfy(pp, c, t,d, βagg)

wVrfy(pp, c, t,d)

return Vrfy(pp, c, t,d, 2βagg)

Fig. 3: The construction of the homomorphic vector commitment HVCChip
0 for message space Adom =

Rξ
q′ based on a labeled binary tree, cf. Definition 16. Commitments c are in Acom = Rq. Openings

are small elements in Aop = (Rκ)2τ × (Rκ′
)ξ, where κ =

⌈
log2η+1 q

⌉
, κ′ =

⌈
log2η+1 q

′⌉. Let us
clarify again that multiplication of Rq with R elements as done in the Ajtai hashes like g⊺ · u is
understood to give an element in Rq, i.e. we perform modular reduction here.

Remark 1. Before proving security of HVCChip
0 , let us give some remarks on the construction itself.
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1. Chipmunk’s final homomorphic vector commitment actually employs a space-efficient non-trivial
way to encode and decode (verifying) decommitments d = (p1, . . . pτ , s1, . . . , sτ ,u). To simplify

the exposition, HVCChip
0 in Figure 3 is described without these encoding and decoding schemes,

which are formally part of the opening and verification algorithms. We describe this encoding
and decoding separately in Section 4, giving an improved HVC denoted by HVCChip

Encoded there.
2. The tree labels constructed by the labeling function that constitute the Merkle path pj with its

sibling nodes sj are decomposed elements, i.e. short elements in R. For efficiency reasons, the
commitment c itself is not p0, but rather in non-decomposed form. This is done to ensure the
commitment is inRq rather thanR, which is slightly more efficient when aggregating. Regarding
analysis, observe that if we set p0 as in the definition of Com, the condition c = h⊺

t̃1
·p1+h⊺

t̃1⊕1
·s1

is actually equivalent to
projq(p0) = h⊺

t̃1
· p1 + h⊺

t̃1⊕1
· s1 .

Hence, we may treat this condition as the special case j = 1 of the condition projq(pj−1) =
h⊺
t̃j
· pj + h⊺

t̃j⊕1
· sj .

3. Let κ :=
⌈
log2η+1 q

⌉
. The inequality checks in the definition of Vrfy all compare elements from

Rq and are to be taken modulo q. By contrast, the norm-bounds are to be taken in R. For the
individual verification, the condition that

∥∥projη,κ(pj)
∥∥ ≤ qβ

2η boils down to
∥∥projη,κ(pj)

∥∥ ≤ q
2 .

This is trivially satisfied by any decomposition of an element from Rq and just means that pj =
decq(projq(pj)). If we did not require this, a dishonestly generated signature could choose pj as

the decomposition of an element whose coefficients are not in {− q−1
2 , . . . , q−1

2 }, but still bounded
by (2η+1)κ−1

2 . In particular, if q is significantly smaller than (2η + 1)κ, adding this condition
actually gives a stronger shortness bound for the most significant limbs of the decomposition.
These tighter bounds are not present in Squirrel or in the extended abstract of this work,
but they significantly help to make our encoding of openings both more efficient and easier to
analyze later.

Theorem 17. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1 such that n is a
power of two, q, q′ are prime, and

βagg ≥ η
√
2αwρ

(
ln 2n

ε + ln(2τ
⌈
log2η+1 q

⌉
+ ξ⌈log2η+1 q

′⌉+ 2τ)
)
.

Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩ and Zq′ [X]/⟨Xn + 1⟩ respectively. If the

SISR,q,2⌈log2η+1 q⌉,4βagg
problem and the SISR,q,ξ⌈log2η+1 q

′⌉,4βagg
problem are hard, then HVCChip

0 is an

individually correct, (ρ, Tαw , ε)-probabilistically homomorphic, robustly homomorphic, and position

binding HVC for domain Rξ
q′ and vector length 2τ .

Proof. The theorem follows from Lemma 18, Lemma 19, Lemma 20, and Lemma 21 proven below.
⊓⊔

Lemma 18. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1, such that n is a power
of two, q, q′ are prime. Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩ and Zq′ [X]/⟨Xn + 1⟩
respectively. Then HVCChip

0 is an individually correct HVC for domain Rξ
q′ and vector length 2τ .

Proof. Let m ∈ (Rξ
q′)

2τ , c = Com(pp,m), t ∈ [2τ ], (p1, . . . ,pτ , s1, . . . , sτ ,u)
⊺ = Open(pp, c,m, t).

Let p0, t̃ be as in the definition of Com. We first observe that for all j ∈ {1, . . . , τ} it holds in Rq
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that

projq(pj−1) = projq
(
labelg,h0,h1(m, t̃<j)

)
(Def. of Com and Open)

= projq

(
decq

(
h⊺
0 · labelg,h0,h1(m, t̃<j∥0)

+h⊺
1 · labelg,h0,h1(m, t̃<j∥1)

))
(Definition 15)

= h⊺
0 · labelg,h0,h1(m, t̃<j∥0) + h⊺

1 · labelg,h0,h1(m, t̃<j∥1) (Proposition 13)

= h⊺
t̃j
· labelg,h0,h1(m, t̃<j∥t̃j) + h⊺

t̃j⊕1
· labelg,h0,h1(m, t̃<j∥(t̃j ⊕ 1))

= h⊺
t̃j
· pj + h⊺

t̃j⊕1
· sj . (Def. of Open)

Observe that for j = 1, this gives c = h⊺
t̃1
· p1 + h⊺

t̃1⊕1
· s1 in Rq. Further it holds that

projq(pτ ) = projq(labelg,h0,h1(m, t̃)) (Def. of Com and Open)

= projq(decq(g
⊺ · decq′(mt))) (Definition 15)

= g⊺ · decq′(mt) (Proposition 13)

= g⊺ · u. (Def. of Open)

Therefore it only remains to check that the norm bounds are not violated. For every j ∈ [τ ], pj and
sj are outputs of the labelg,h0,h1 function and thus, by definition of labelg,h0,h1 , decompositions of
elements from Rq. Similarly, u is the output of decq′ , applied to a vector of elements from Rq′ . By
design, this implies that the resulting coefficients are in {−η, . . . , η} and so the norm of each pj

and sj as well as u is at most η. It also implies that applying projη,κ to pj or sj gives back the

representative with coefficients in {− q−1
2 , . . . , q−1

2 } that was decomposed. Consequently, we have∥∥projη,κ(pj)
∥∥,∥∥projη,κ(sj)∥∥ ≤ q−1

2 . ⊓⊔

Lemma 19. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1, such that n is a power
of two, q, q′ are prime, and

βagg ≥ η
√

2αwρ
(
ln 2n

ε + ln(2τκ+ ξκ′ + 2τ)
)
,

where κ =
⌈
log2η+1 q

⌉
and κ′ = ⌈log2η+1 q

′⌉. Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩
and Zq′ [X]/⟨Xn +1⟩ respectively. Then HVCChip

0 is a (ρ, Tα, ε)-probabilistically homomorphic HVC

for domain Rξ
q′ and vector length 2τ .

Proof. Let pp← Setup(1λ), ci ∈ Rκ
q , 1 ≤ t ≤ 2τ , t̃ = binτ (t− 1), di = (pi

1, . . . ,p
i
τ , s

i
1, . . . , s

i
τ ,u)

⊺ ∈(
R⌈log2η+1 q⌉

)2τ × Rξ⌈log2η+1 q
′⌉ with iVrfy(pp, ci, t,di) = mi

t ̸= ⊥ as specified in Definition 5. We
first note that even for arbitrary w1, . . . , wℓ ∈ Tαw it holds for all 2 ≤ j ≤ τ that

projq

( ℓ∑
i=1

wi · pi
j−1

)
=

ℓ∑
i=1

wi · projq(pi
j−1) (Proposition 13)

=
ℓ∑

i=1

wi · (h⊺
t̃j
· pi

j + h⊺
t̃j⊕1
· sij) (Def. of iVrfy)

=

ℓ∑
i=1

h⊺
t̃j
· wipi

j + h⊺
t̃j⊕1
· wisij

17



= h⊺
t̃j
·
( ℓ∑
i=1

wi · pi
j

)
+ h⊺

t̃j⊕1
·
( ℓ∑
i=1

wi · sij
)
.

and similarly

projq

( ℓ∑
i=1

wi · pi
τ

)
=

ℓ∑
i=1

wi · projq(pi
τ ) (Proposition 13)

=
ℓ∑

i=1

wi · (g⊺ · ui) (Def. of iVrfy)

= g⊺ ·
ℓ∑

i=1

wiui

and similarly that

ℓ∑
i=1

wi · ci ≡
ℓ∑

i=1

wi · h⊺
t̃1
· pi

1 + h⊺
t̃1⊕1
· si1

≡ h⊺
t̃1
·

ℓ∑
i=1

wi · pi
1 + h⊺

t̃1⊕1
·

ℓ∑
i=1

wi · si1

Therefore it only remains to verify that the norm-checks go through with sufficient probability.
Writing out the conditions, this means that we need to show that

P := Pr
[
w1, . . . , wℓ ← Tαw : ∃j ∈ [τ ].

∥∥ ℓ∑
i=1

wi · pi
j

∥∥ > βagg ∨
∥∥ ℓ∑
i=1

wi · sij
∥∥ > βagg ∨

∥∥ ℓ∑
i=1

wi · ui
∥∥ > βagg ∨

∥∥ ℓ∑
i=1

wi · projη,κ(pi
j)
∥∥ >

qβagg

2η ∨

∥∥ ℓ∑
i=1

wi · projη,κ(sij)
∥∥ >

qβagg

2η

]
≤ ε .

Observe that this is an ∥.∥∞-bound for a total of

Nbounds := τℓκ+ τℓκ+ ℓξκ′ + τℓ+ τℓ

many ring elements. For each of the Nbounds ring elements, we can individually apply Lemma 4
with the same growth factor ζ =

βagg

η . Taking a Nbounds-fold union bound then gives

P ≤ Nbounds · 2n exp
(
−

β2
agg

2η2αwρ

)
.

Our condition on βagg is chosen exactly to guarantee that
β2
agg

2η2αwρ
≥ ln

(
2nNbounds · 1ε

)
. This gives

P ≤ ε. It follows that with probability at least 1− ε, the strong verification algorithm outputs

projq′
( ℓ∑
i=1

wi · ui
)
=

ℓ∑
i=1

wi · projq′(ui) (Proposition 13)
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=
ℓ∑

i=1

wi · iVrfy(pp, ci, t,di) (Def. of iVrfy)

=
ℓ∑

i=1

wi ·mi
t ,

as required. ⊓⊔

Lemma 20. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1, such that n is a power
of two, q, q′ are prime. Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩ and Zq′ [X]/⟨Xn + 1⟩
respectively. Then HVCChip

0 is a robustly homomorphic HVC.

Proof. The proof of this lemma is taken almost verbatim from [FSZ22a]. It deviates only insofar
as the full construction and proof was split in two in [FSZ22a], whereas it is combined in one here.
Since the proof is short, we include it here for the sake of completeness. Let c0, c1 ∈ Rℓcom

q , and

d0,d1 ∈ Rℓop , and 1 ≤ t ≤ 2τ , t̃ = binτ (t− 1) be arbitrary, such that

sVrfy(pp, c0, t,d0) = m0 and sVrfy(pp, c1, t,d1) = m1 (3)

with m0,m1 ̸= ⊥. Let di parse as (pi
1, . . . ,p

i
τ , s

i
1, . . . , s

i
τ ,u

i)⊺ for i ∈ {0, 1}. We first note that if

wVrfy(pp, c0 − c1, t,d0 − d1) ̸= ⊥, then it holds in Rξ
q′ that

wVrfy(pp, c0 − c1, t,d0 − d1)

= projq′(u
0 − u1) (Def of sVrfy)

= projq′(u
0)− projq′(u

1) (Proposition 13)

= sVrfy(pp, c0, t,d0)− sVrfy(pp, c1, t,d1) (Def. of sVrfy)

= m0 −m1. (Equation 3)

It thus remains to show that wVrfy(pp, c0 − c1, t,d0 − d1) ̸= ⊥. For this, let further pi
0 = ci. By

definition of the strong verification algorithm, and since m0,m1 ̸= ⊥ it holds that for i ∈ {0, 1}
and j ∈ [τ ] that the following two conditions hold∥∥pi

j

∥∥ ≤ βagg and
∥∥sij∥∥ ≤ βagg (4)

projq(p
i
j−1) = h⊺

t̃j
· pi

j + h⊺
t̃j⊕1
· sij . (5)

Similarly it holds that ∥∥ui
∥∥ ≤ βagg and projq(p

i
τ ) = g⊺ · ui . (6)

We also get the bounds on the projections∥∥projη,κ(pi
j)
∥∥ ≤ qβagg

2η
and

∥∥projη,κ(sij)∥∥ ≤ qβagg
2η

. (7)

From Equation 4 and Equation 6 it follows that for all j ∈ [τ ]∥∥p0
j − p1

j

∥∥ ≤∥∥p0
j

∥∥+ ∥∥p1
j

∥∥ ≤ 2βagg
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∥∥s0j − s1j
∥∥ ≤∥∥s0j∥∥+ ∥∥s1j∥∥ ≤ 2βagg

and ∥∥u0 − u1
∥∥ ≤ ∥∥u0

∥∥+ ∥∥u1
∥∥ ≤ 2βagg .

From Equation 7 and linearity of projη,κ, it follows that∥∥projη,κ(p0
j − p1

j )
∥∥ =

∥∥projη,κ(p0
j )− projη,κ(p

1
j )
∥∥ ≤∥∥projη,κ(p0

j )
∥∥+ ∥∥projη,κ(p1

j )
∥∥ ≤ qβagg

η∥∥projη,κ(s0j − s1j )
∥∥ =

∥∥projη,κ(s0j )− projη,κ(s
1
j )
∥∥ ≤∥∥projη,κ(s0j )∥∥+ ∥∥projη,κ(s1j )∥∥ ≤ qβagg

η .

By Equations 5 and 6 and the linearity of projq it follows that for all j ∈ [τ ], it holds in Rq that

projq(p
0
j−1 − p1

j−1) = projq(p
0
j−1)− projq(p

1
j−1) (Proposition 13)

= (h⊺
t̃j
· p0

j + h⊺
t̃j⊕1
· s0j )− (h⊺

t̃j
· p1

j + h⊺
t̃j⊕1
· s1j ) (Equation 5)

= h⊺
t̃j
· (p0

j − p1
j ) + h⊺

t̃j⊕1
· (s0j − s1j ) .

and

projq(p
0
τ − p1

τ ) = projq(p
0
τ )− projq(p

1
τ ) (Proposition 13)

= (g⊺ · u0 − g⊺ · u1) (Equation 6)

= g⊺ · (u0 − u1) .

Thus, all checks in the weak verification algorithm go through and wVrfy(pp, c0−c1, t,d0−d1) ̸= ⊥.
⊓⊔

Lemma 21. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1, such that n is a power
of two, q, q′ are prime. Let Rq,Rq′ be the polynomial rings Zq[X]/⟨Xn + 1⟩ and Zq′ [X]/⟨Xn + 1⟩
respectively. If the SISR,q,2⌈log2η+1 q⌉,4βagg

problem and the SISR,q,ξ⌈log2η+1 q
′⌉,4βagg

problem are hard,

then HVCChip
0 is position binding.

Proof. This proof once again follows very closely the proof shown in [FSZ22a]. We will prove this
lemma by leveraging that any pair of valid decommitments for different messages will lead to a
collision somewhere in the generalized hash tree, which can be turned into a solution for one of the
SIS instances.

Let A be an arbitrary PPT adversary against the position binding property of the construction.
By the law of total probability it holds that

Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1}]
= Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1} ∧ projq(p

0
τ ) = projq(p

1
τ )]

+ Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1} ∧ projq(p
0
τ ) ̸= projq(p

1
τ )] .

We now bound the two probabilities separately.

Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1} ∧ projq(p
0
τ ) = projq(p

1
τ )]

≤ Pr[projq′(u
0) ̸= projq′(u

1) ∧ g⊺ · u0 = g⊺ · u1 ∧
∥∥u0

∥∥ ≤ 2βagg ∧
∥∥u1

∥∥ ≤ 2βagg] (Def. of wVrfy)
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≤ Pr[u0 ̸= u1 ∧ g⊺ · (u0 − u1) = 0 ∧
∥∥u0 − u1

∥∥ ≤ 4βagg]

= Pr[(u0 − u1) ∈ Bξ⌈log2η+1 q
′⌉

4βagg,q
\ {0} ∧ g⊺ · (u0 − u1) = 0]

≤ negl(λ) ,

where the last inequality follows from the assumed hardness of the SISR,q,ξ⌈log2η+1 q
′⌉,4βagg

problem
and the fact that all involved algorithms are PPT.

We now analyze

Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1} ∧ p0
τ mod q ̸= p1

τ mod q] .

We construct a PPT algorithm A that solves the SISR,q,2⌈log2η+1 q⌉,4βagg
problem as follows. Upon

input a = (a1, . . . , a2⌈log2η+1 q⌉)
⊺, A sets h0 := (a1, . . . , a⌈log2η+1 q⌉)

⊺ and h1 := (a⌈log2η+1 q⌉+1, . . . ,

a2⌈log2η+1 q⌉)
⊺, samples g ← Rξ⌈log2η+1 q

′⌉
q , sets pp := (g,h0,h1) and runs (c, t,d0,d1)← A(pp). For

i ∈ {0, 1} let mi := wVrfy(pp, c, t,di). If m0 = m1, ⊥ ∈ {m0,m1}, or projq(p
0
τ ) = projq(p

1
τ ), A

aborts. Otherwise, parse di as (pi
1, . . . ,p

i
τ , s

i
1, . . . , s

i
τ ,u

i), set pi
0 := decq(c), t̃ := binτ (t− 1).

Let j∗ ∈ [τ + 1] be the largest index, such that projq(p
0
j∗−1) ̸= projq(p

1
j∗−1). Note that such an

index always exists, since p0
0 = decq(c) = p1

0, and that j∗ < τ , since projq(p
0
τ ) ̸= projq(p

1
τ ). If t̃j∗−1 =

0, A outputs z := (p0
j∗ , s

0
j∗)

⊺ − (p1
j∗ , s

1
j∗)

⊺, if t̃j∗−1 = 1, A outputs z := (s0j∗ ,p
0
j∗)

⊺ − (s1j∗ ,p
1
j∗)

⊺.

We now analyze the success probability of A. It holds that projq(p0
j∗−1) = projq(p

1
j∗−1) and by

the definition of the weak verification algorithm that

h⊺
t̃j∗
· p0

j∗ + h⊺
t̃j∗⊕1

· s0j∗ = h⊺
t̃j∗
· p1

j∗ + h⊺
t̃j∗⊕1

· s1j∗

⇐⇒ h⊺
t̃j∗
· (p0

j∗ − p1
j∗) + h⊺

t̃j∗⊕1
· (s0j∗ − s1j∗) = 0

⇐⇒ a⊺ · z = 0 .

It further holds by the definition of the weak verification algorithm that∥∥p0
j∗
∥∥ ≤ 2βagg,

∥∥s0j∗∥∥ ≤ 2βagg,
∥∥p1

j∗
∥∥ ≤ 2βagg,

∥∥s1j∗∥∥ ≤ 2βagg .

Therefore, the norm of z can be bounded as

∥z∥ ≤ max{
∥∥p0

j∗
∥∥, ∥∥s0j∗∥∥}+max{

∥∥p1
j∗
∥∥, ∥∥s1j∗∥∥} ≤ 4βagg .

It remains to show that z ̸= 0. Since j∗ is the largest index such that

projq(p
0
j∗−1) = projq(p

1
j∗−1) ,

it holds that
projq(p

0
j∗) ̸= projq(p

1
j∗)

and thereby that
p0
j∗ ̸= p1

j∗ .

Therefore z ̸= 0. Thus, whenever A is successful, A is successful with probability 1 and we can
conclude that

negl(λ) ≥ Pr[a← R2⌈log2η+1 q⌉
q ; z ← A(a) : z ∈ B2⌈log2η+1 q⌉

4βagg,q
\ {0} ∧ a⊺z ≡ 0]
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= Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1} ∧ p0
τ mod q ̸= p1

τ mod q] .

Combining the above, it follows that

Pr[m0 ̸= m1 ∧ ⊥ ̸∈ {m0,m1}] ≤ negl(λ) ,

as required. ⊓⊔

4 Encoding HVC openings

To reduce the size needed to transmit openings in our final HVC construction, we employ a non-
trivial encoding scheme. Let us first sketch the idea and how it relates to lattice enumeration, before
defining it more formally in Figure 4.

Our HVC construction is, except for projections and decompositions, a Merkle tree with a
homomorphic hash function. Time slots t correspond to paths in the Merkle tree and our openings
contain the labels pi along the path, together with the sibling nodes’ labels si. Usually, when
opening a path of a Merkle tree, it is not necessary to actually include most of the nodes pi along
the Merkle path in the opening, but only the sibling nodes si (ignoring possible special handling
at the root or leaf). The reason is that for any valid opening of a usual Merkle tree, we have

H(pi, si) = pi−1 or H(si,pi) = pi−1 ,

where H is the hash function used in the construction (concretely for us, Ajtai’s hash function
hAjtai). This allows the verifier to compute pi−1 from pi by itself, if given si.

For us, the corresponding relation (ignoring smallness constraints) instead reads

H(pi, si) = projq(pi−1) or H(si,pi) = projq(pi−1)

throwing projq, i.e. projη,κ and reduction modulo q, in the mix, which complicates things.

Now, for individually verifying openings, the above idea still works out due the size constraints:
the bounds ∥pi∥ ≤ η and

∥∥projη,κ(pi)
∥∥ ≤ q−1

2 for individually verifying openings imply that pi is
actually uniquely determined by projq(pi). Indeed, pi is given by pi = decq(projq(pi)), leading to

pi−1 = decq(H(pi, si)) or pi−1 = decq(H(si,pi)) .

For aggregate openings, this unfortunately no longer holds: for any given output of Ajtai’s hash
function, which we will denote as hint ∈ Rq in our algorithm, the equation projq(pi) = hint can
have many solutions that satisfy the more relaxed size constraints that we impose on aggregate
openings.

Ignoring any size constraints, for a given hint ∈ Rq, the set of solutions to projq(pi) = hint is
a lattice coset C of the form C = ΛR,q + t, where ΛR,q := {x ∈ Rκ | projη,κ(x) mod q = 0}, with
κ =

⌈
log2η+1 q

⌉
. The vector t depends on hint. Note that while the coset C is uniquely determined

by hint, there are multiple possible choices for t. The different possible choices differ exactly by
elements from ΛR,q. Our task now boils down to efficiently encode small elements pi (in ∥.∥∞-norm)
from this lattice coset C. Both encoder and decoder know hint (and hence C) from hashing the child
nodes; note that for notational convenience, our encoder defined in Figure 4 instead determines hint
by computing projq(pi).
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Before formally defining our encoding and decoding algorithms, let us give some more informal
remark that explains the basic idea and how it relates to Babai’s algorithm and lattice enumeration.
Note that our actual algorithm in Figure 4 and its formal analysis given below will be fully self-
contained and do not rely on this remark in any way.

Remark 2 (Lattice enumeration). Let us now explain how our encoding and decoding is connected
to Babai’s algorithm [Bab86] (more precisely, the generalization in [LP11]) and lattice enumeration.
The problem we need to solve is to encode some v ∈ C = t + Λ via an encoding v, where short v
should correspond to short(er) v. Here, Λ can be an arbitrary (full-rank) lattice at first that we will
later take to be ΛR,q. Let us assume we have some pre-agreed basis B = {b1, b2, . . .} for Λ, either
over Z or (if Λ is a free R-module) over our ring R.

The most simple idea, corresponding to what’s called Babai rounding, is to deterministically
(so both encoder and decoder agree on it) determine some tref from hint, or, equivalently, from C,
such that C = tref +Λ. Then v− tref ∈ Λ and we can encode v by the coordinate vector (α1, α2 . . .)
of v − tref with respect to the basis B.

How good this is (i.e. how small the αi are) depends on both how “good” the basis B is and how
we choose tref . For the latter, we want v − tref to be small, so tref should itself be small. One way
(phrased for a Z-basis for simplicity) called Babai rounding to choose tref is to set tref =

∑
i tibi

with real-valued coefficients −1
2 < ti ≤ 1

2 . Observe that we have v =
∑

i(ti + αi)bi. This means
that this approach essentially computes the αi by writing v with respect to B and rounding the
coefficients to the nearest integers.

Note that this approach first computes a short reference tref ∈ C in some way and then separately
encodes v by encoding the difference. An equivalent, useful view, is to consider this as a single
algorithm akin to lattice enumeration: we want to output not just a single short vector tref of a
lattice coset, but rather enumerate (candidate) short vectors v. For this, we don’t set a single ti’s
with −1

2 < ti ≤ 1
2 , but rather enumerate possible candidate short vectors by also trying larger

values of ti, parameterized by αi’s. In lattice enumeration, where the goal is to find a vector as
short as possible, we usually try a large number of such candidates and settle for the shortest one
we found (usually, this takes super-polynomial time). Here, we are given v and we encode v by the
branch (parameterized by αi) a lattice enumeration algorithm would need to take to output v.

This point of view lets us use Babai’s algorithm proper rather than the more naive Babai
rounding: here, we (greedily) choose coefficients wrt. a given basis B, but differently to Babai
rounding, we choose coefficients one-by-one and each choice is affected by the previous choices.

For a recursive description of Babai’s algorithm / enumeration, pick one9 of the basis vectors
b∗ ∈ B and decompose B into a disjoint union B = {b∗}∪B′. This decomposes Λ as Λ = Λ′⊕Span b∗,
where Λ′ is the lattice generated by B′. We now choose t

(1)
ref ∈ C and then pick the unique α∗ such

that v ∈ α∗b∗+t
(1)
ref +Λ′. This is similar to the approach before, except that now we only determine

a single coefficient α∗. Note that the choice of t
(1)
ref only matters modulo Λ′, so only the single

(real-valued) b∗-component of t
(1)
ref matters. This is hence a 1-dimensional problem and Babai’s

algorithm (which only works for Z-coefficients and is designed for the ∥.∥2-norm) chooses t
(1)
ref such

that the ∥.∥2-distance between t
(1)
ref and SpanR B′ is minimized (with some arbitrary deterministic tie-

breakers). We then recurse into the new problem instance given by v ∈ C′ with C′ = Λ′+α∗b∗+t
(1)
ref

9 The choice of b∗ matters. This algorithm is typically applied to bases (b1, . . .) obtained from lattice reduction.
Lattice reduction outputs an ordered basis and with the ordering convention from lattice reduction, the appropriate
choice for Babai’s algorithm is to choose the last basis element as b∗
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of dimension 1 less than the original. Note that to get a full-rank lattice, we may orthogonally
project out the orthogonal complement to SpanR Λ′. The 0-dimensional base case is trivial. Babai’s
algorithm itself only considers α∗ = 0, lattice enumeration branches into several candidate α∗ and

our approach sets α∗ from v. Importantly, the next t
(2)
ref chosen in the next step during the recursion

depends on C′ and hence on the previous choice of α∗.
For our problem with Λ = ΛR,q and C determined by hint ∈ Rq, we do not work over the

∥.∥2-norm, but rather the ∥.∥∞-norm. Fortunately, our lattice has a very good basis for this norm
(close to the coordinate axes). We take a very similar general approach, but instead of choosing

t
(1)
ref via a ∥.∥2-minimization problem, we directly choose t

(1)
ref := decq(hint). Note that this equals

t
(1)
ref = decq(projq(v)). In the next recursion step, we set t

(2)
ref as decη,κ(projη,κ(v)). Note here that

our basis element b∗ in the first step is given by (q, 0, 0, . . .). Essentially, determining α∗ in the first
recursion step allows us to “update” the information hint we are given from something modulo q to

something unreduced, which helps the algorithm by choosing a better t
(2)
ref . Our algorithm does not

need to perform any orthogonal projections and works over R. We also only perform this recursive
step once and use the Babai rounding approach after one step; the reason is that the shape of our
basis is so good that this is sufficient.

Let us now proceed to define our encoding and decoding formally. For this, we need bases of
the relevant lattices.

Proposition 22. Let q, η be positive integers with q prime. Set κ :=
⌈
log2η+1 q

⌉
and define lattices

ΛR :={v ∈ Rκ | projη,κ(v) = 0}
ΛR,q :={v ∈ Rκ | projq(v) = 0}

for the kernels of projη,κ and projq, respectively. Define vectors b∗ and b1, . . . , bκ−1 ∈ Rκ as

b∗ = (q, 0, 0, . . . , 0)

b1 = (−(2η + 1), 1, 0, 0, . . . , 0)

b2 = (0,−(2η + 1), 1, 0, . . . , 0)

. . .

bκ−1 = (0, 0, . . . , 0,−(2η + 1), 1) .

Then ΛR and ΛR,q are R-module lattices (i.e. lattices that are also free R-modules). A basis (over
R) for ΛR is given by B := {b1, . . . , bκ−1} and a basis over R for ΛR,q is given by {b∗, b1, . . . , bκ−1}.

Proof. Note that R is a free Z-module, i.e. R ∼= Zn as a Z-module (but not as a ring), so the whole
notion of R-module lattice even makes sense. Being kernels of appropriate R-linear maps, ΛR and
ΛR,q are clearly R-module lattices. Recall that projη,κ is defined as

projη,κ : Rκ → R, projη,κ(v1, . . . , vκ) =
κ∑

i=1

(2η + 1)i−1 · vi .

We easily compute that projη,κ(b∗) = q and projη,κ(bi) = 0 for 1 ≤ i ≤ κ − 1. Hence, all bi and
b∗ are in the appropriate lattices. They are also clearly linearly independent due to the triangular
shape of {b∗} ∪ B.
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We now need to show that they also span ΛR resp. ΛR,q, i.e. that ΛR ⊂ SpanR B and ΛR,q ⊂
SpanR(B∪{b∗}). For this, consider any x ∈ Rκ. Without the first column, B, viewed as a matrix, is
a (κ−1)× (κ−1) lower triangular matrix with 1’s on the diagonal. This implies that the projection
of SpanR B onto the last κ− 1 coefficients (over R) is all of Rκ−1, and this projection is bijective.
This means we can find a unique x̃ ∈ SpanR B matching x on the last κ − 1 coefficients, giving a
unique decomposition

x = (x′, 0, . . . , 0) + x̃

with x′ ∈ R, x̃ ∈ SpanR B. Since SpanR B ⊂ ΛR, we have

projη,κ(x) = projη,κ((x
′, 0, . . . , 0)) + projη,κ(x̃) = x′ + 0 = x′ .

Consequently, if x ∈ ΛR, we have by definition projη,κ(x) = 0, so x′ = 0 and x = x̃. This means
x = x̃ ∈ SpanR B, giving ΛR ⊂ SpanR B. Similarly, if x ∈ ΛR,q, we have projη,κx ≡ 0 mod q,
so x′ mod q = 0. This gives (x′, 0, . . . , 0) ∈ SpanR b∗. Together with x̃ ∈ SpanR B, this implies
x ∈ SpanR(B ∪ {b∗}).

⊓⊔

Formally, we define encoding and decoding algorithms EncodeBη,q and DecodeBη,q as in Figure 4.

EncodeBη,q(v)

κ :=
⌈
log2η+1 q

⌉
hint := projq(v) ∈ Rq

Represent hint by hint′ ∈ R,
∥∥hint′∥∥ ≤ q−1

2

α∗ :=
projη,κ(v)− hint′

q
∈ R // numerator divisible by q

δv := v − decη,κ(projη,κ(v)) ∈ R
κ

Find α1, . . . , ακ−1 ∈ R s.t. // Exist by Lemma 23

δv = α1b1 + . . .+ ακ−1bκ−1

return v = (α∗, α1, . . . , ακ−1)

DecodeBη,q(v, hint)

κ :=
⌈
log2η+1 q

⌉
Represent hint ∈ Rq by hint′ ∈ R,

∥∥hint′∥∥ ≤ q−1
2

parse v as (α∗, α1, . . . , ακ−1)

h′′ := hint′ + q · α∗ // We show h′′ = projη,κ(v)

δv := α1b1 + . . .+ ακ−1bκ−1

return decη,κ(h
′′) + δv ∈ Rκ

Fig. 4: Algorithms for encoding and decoding an element v ∈ Rκ. Decoding requires hint = projq(v).
The vectors b1, . . . , bκ−1 are the basis of ΛR as defined in Proposition 22.

Remark 3. We mention that our formal description in Figure 4 of the algorithm is self-contained

and actually makes no explicit mention of t
(1)
ref or t

(2)
ref as defined in Remark 2. However, it is easy

to see that (in the notation given in the algorithm) δv = v − t
(2)
ref and we just encode that by

coefficients as in Babai rounding. With t
(1)
ref = decq(hint), the definition of α∗ given in Remark 2

means that this α∗ is such that v = α∗b∗ + decq(hint) + v′ with v′ ∈ Λ′ = ΛR.
Observe that projη,κ(b∗) = q, projη,κ(decq(hint)) = hint′ and projη,κ(v

′) = 0. This gives

projη,κ(v) = projη,κ(α∗b∗) + projη,κ(decq(hint)) + projη,κ(v
′) = α∗q + hint′ .

From this, it follows that the definition of α∗ from Figure 4 as α∗ :=
projη,κ(v)−hint′

q and the one
from Remark 2 actually coincide.
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Lemma 23 (Properties of EncodeBη,q and DecodeBη,q). Let q, η, κ be positive integers with q prime
and κ =

⌈
log2η+1 q

⌉
. Then the deterministic encoding and decoding algorithms defined in Figure 4

satisfy the following properties:

1. Coefficients α∗, α1 . . . , ακ−1 as required in EncodeBη,q exist, are unique and can be found in poly-
nomial time.

2. For any v ∈ Rκ, hint = projq(v) and v ← EncodeBη,q(v) we have DecodeBη,q(v, hint) = v.

3. For any v ∈ Rκ, hint ∈ Rq and v ← DecodeBη,q(v,hint), we have

projq(v) = hint and EncodeBη,q(v) = v.

4. For any v ∈ Rκ and (α∗, α1, . . . , ακ−1)← EncodeBη,q(v), we have

∥α∗∥ <
∥∥projη,κ(v)∥∥

q
+

1

2
and

∥αi∥ <
∥v∥
2η

+
1

2
for 1 ≤ i ≤ κ− 1 .

Proof. For each of the individual claims, let notation be as in the definitions of the algorithms
in Figure 4. Note that variables α∗, δv, hint,hint

′, α1 . . . , ακ−1 appearing in both EncodeBη,q and

DecodeBη,q with the same name actually have the same value as far as this proof is concerned. This
only matters for item 2, where it is obvious, and for item 3, where we actually need to prove it for
δv, α∗, α1, . . . , ακ−1.

Let us now prove each individual claim in order.

For item 1, note that hint′ ≡ projη,κ(v) mod q by definition, so the division by q makes sense in
R. For the αi, note that projη,κ(decη,κ(x)) = x for all x ∈ R. This implies that

projη,κ(δv) = projη,κ(v)− projη,κ(decη,κ(projη,κ(v))) = projη,κ(v)− projη,κ(v) = 0 .

So δv ∈ ΛR and, by Proposition 22, coefficients αi exist and are unique. They can clearly be
found by solving an (overdetermined) system of linear equations (over R). In fact, B is already in
appropriate echelon form, so this can even be done without divisions in R and is clearly polynomial
time. We will write down another solution explicitly alongside the proof of item 4.

Let us now tackle item 2. During decoding, note that

h′′ = hint′ + q · α∗ = hint′ + q ·
projη,κ(v)− hint′

q
= projη,κ(v) .

It follows that

DecodeBη,q(v, h) = decη,κ(h
′′) + δv = decη,κ(projη,κ(v)) + (v − decη,κ(projη,κ(v))) = v ,

as desired.

For item 3, let α∗, δv, αi,hint, hint
′ denote the values used during the computation by DecodeBη,q.

While the equally named values in EncodeBη,q are actually the same, we need to prove this. First,

26



note that projη,κ(bi) = 0 for all 1 ≤ i ≤ κ− 1. By R-linearity, it follows that projη,κ(δv) = 0. From
this, we get

projη,κ(v) = projη,κ(decη,κ(h
′′) + δv) = h′′ = hint′ + q · α∗ ≡ hint′ ≡ hint mod q ,

so projq(v) = hint. In particular, the values of hint and hint′ used in EncodeBη,q match those in

DecodeBη,q. During the computation of EncodeBη,q(v) with v = decη,κ(h
′′) + δv output by DecodeBη,q,

we compute

projη,κ(v)− hint′

q
=

projη,κ(decη,κ(h
′′) + δv)− hint′

q
=

h′′ − hint′

q
= α∗ ,

using again linearity and that projη,κ(δv) = 0. So the value of α∗ recovered inside EncodeBη,q is the

same as the value of α∗ in DecodeBη,q. Similarly, during the computation in EncodeBη,q, we have

v − decη,κ(projη,κ(v)) = decη,κ(h
′′) + δv − decη,κ(projη,κ(decη,κ(h

′′) + δv))

= decη,κ(h
′′) + δv − decη,κ(projη,κ(decη,κ(h

′′)) + projη,κ(δv))

= decη,κ(h
′′) + δv − decη,κ(projη,κ(decη,κ(h

′′)) + 0)

= decη,κ(h
′′) + δv − decη,κ(h

′′) = δv ,

so the value for δv obtained in EncodeBη,q is the same as that in DecodeBη,q. Since B is an R-basis, it
follows that the values of the αi are also the same, which proves this item.

We now tackle the last item 4, giving bounds on the encodings. The first bound is just an easy
application of the triangle inequality:

∥α∗∥ =

∥∥∥∥∥projη,κ(v)− hint′

q

∥∥∥∥∥ ≤ 1

q

(∥∥projη,κ(v)∥∥+∥∥hint′∥∥) ≤ 1

q

(∥∥projη,κ(v)∥∥+ q−1
2

)
<

∥∥projη,κ(v)∥∥
q

+
1

2

For the other bound, let us look at the individual components of v and decη,κ(projη,κ(v)) ∈ Rκ.
For this, set (w1, . . . , wκ) := decη,κ(projη,κ(v)) and (v1, . . . , vκ) := v with vi, wi ∈ R. By definition
of decη,κ, we have ∥wi∥ ≤ η for 1 ≤ i < κ. Note that this bound excludes the most significant limb.
Writing the equation δv = α1b1 + . . .+ακ−1bκ−1 in its components, using the definition of B gives
the following linear system of equations (over R) in unknowns α1, . . . , ακ−1.

v1 − w1 = −(2η + 1)α1

v2 − w2 = α1 − (2η + 1)α2

v3 − w3 = α2 − (2η + 1)α3

. . .

vκ−1 − wκ−1 = ακ−2 − (2η + 1)ακ−1

vκ − wκ = ακ−1

We now prove the bound for ∥αi∥ by induction over i, using those equations1011.

10 We have more equations than variables αi and we will not use the last equation.
11 It may be helpful to think of these equations as equations between polynomials where we allow rational coefficients.

By item 1, we know a priori that the (unique) rational solution for the αi will turn out integral.
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For i = 1, the first equation above gives α1 = −v1−w1
2η+1 . This implies

∥α1∥ ≤
∥v1∥+ ∥w1∥

2η + 1
≤ ∥v∥

2η + 1
+

η

2η + 1
<
∥v∥
2η

+
1

2
.

For 1 ≤ i ≤ κ− 1, we have αi = −vi−wi−αi−1

2η+1 . By induction, we can bound this as

∥αi∥ ≤
∥vi∥+ ∥wi∥+ ∥αi−1∥

2η + 1
<
∥v∥+ η + ∥v∥

2η + 1
2

2η + 1
=
∥v∥
2η

+
1

2
,

which finishes the proof. ⊓⊔

Definition 24. Let n, η, q, q′, ξ ∈ N with n a power of two, q, q′ primes. Consider the HVC con-
struction HVCChip

0 from Figure 3 with openings from Aop = (Rκ)2τ × (Rκ′
)ξ, where κ =

⌈
log2η+1 q

⌉
,

κ′ =
⌈
log2η+1 q

′⌉. Let pp← Setup(1λ) be fixed, defining coefficients g,h0,h1 for Ajtai’s hash func-
tions.

We call an opening d = (p1, . . . ,pτ , s1, . . . , sτ ,u) linearly verifying for time slot t, 1 ≤ t ≤ 2τ

iff the following conditions hold

g⊺ · u = projq(pτ )

projq(pj−1) = h⊺
t̃j
· pj + h⊺

t̃j⊕1
· sj for all 2 ≤ j ≤ τ ,

where t̃ = binτ (t− 1) is the binary decomposition of t− 1. We define At
op,lin ⊂ Aop to be the subset

of all linearly verifying openings for t. Since At
op,lin is defined via R-linear constraints, At

op,lin is an
R-submodule of Aop.

By construction, any opening that passes either individual, weak or strong verification must be lin-
early verifying. Whether a given opening d is linearly verifying or not can be checked in polynomial
time, given only d and public data pp and t.

We now define an efficient encoding scheme for linearly verifying openings in Figure 5.

Encodeop(pp, t,d)

parse d as (p1, . . . ,pτ , s1, . . . , sτ ,u)

if d /∈ At
op,lin

return ⊥
for j ∈ {1, . . . , τ}

pj := EncodeBη,q(pj)

d := (p1, . . . ,pτ , s1, . . . , sτ ,u)

return d

Decodeop(pp, t,d)

t̃ := binτ (t− 1)

parse d as (p1, . . . ,pτ , s1, . . . , sτ ,u)

hintτ := g⊺ · u ∈ Rq

for j ∈ {τ, . . . , 1} // loop downward

pj := DecodeBη,q(pj , hintj)

hintj−1 := h⊺
t̃j
· pj + h⊺

t̃j⊕1
· sj ∈ Rq

// Note: hint0 is unused

d := (p1, . . . ,pτ , s1, . . . , sτ ,u)

return d

Fig. 5: Algorithms for encoding and decoding openings for a given time slot.
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Theorem 25 (Efficient encoding of decommitments). Let n, q, q′, η, ξ ∈ N with n a power
of two, q, q′ primes. Let pp ← Setup(1λ) be fixed, defining coefficients g,h0,h1 for Ajtai’s hash
functions. Fix a time slot t with 1 ≤ t ≤ 2τ . Define At

op,lin ⊂ Aop as in Definition 24, where12

Aop = Rℓop. Then Encodeop and Decodeop, as defined in Figure 5 satisfy the following properties.

1. Encodeop and Decodeop are deterministic polynomial time algorithms.
2. For any d ∈ Aop,d := Encodeop(pp, t,d), we have d = ⊥ iff d /∈ At

op,lin.

3. For any d ∈ Rℓop ,d := Decodeop(pp, t,d), we have d ∈ At
op,lin.

4. For fixed pp and time slot t, the functions

Encodeop(pp, t, .) : At
op,lin → Rℓop , d 7→ Encodeop(pp, t,d)

Decodeop(pp, t, .) : Rℓop → At
op,lin, d 7→ Decodeop(pp, t,d)

are inverses to each other.
5. Let d ∈ Aop and (p1, . . . ,pτ , s1, . . . , sτ ,u) := d := Encodeop(pp, t,d). Let c ∈ Acom be any (pos-

sibly maliciously generated) commitment and let Vrfy be as in Figure 3. If Vrfy(pp, c, t,d, β) ̸= ⊥
for some β, then

∥pi∥ <
β

2η
+

1

2
for all i .

We remark that for individually verifying openings, we have β = η above, so the bound reads
∥pi∥ < 1 for this case, meaning that pi = 0. This just captures the fact that in this case, we can
use the usual Merkle tree trick of not transmitting the pi, but letting the verifier compute them.

Proof. For item 1 and for item 2, there is nothing to show, really.

Let us show item 3 now: by Lemma 23, item 3, the pi constructed by Decodeop satisfy projq(pj) =
hintj for all 1 ≤ j ≤ τ . With the way Decodeop chooses hintj , the definition of what it means for
an opening to be linearly verifying precisely reads projq(pj) = hintj . So d output by Decodeop is
linearly verifying.

For item 4, let us first show that Decodeop(pp, t,Encodeop(pp, t,d)) = d for all d ∈ At
op,lin. To

disambiguate, we temporarily denote the equally named values pj and d appearing in both Encodeop
and Decodeop by penc

j and denc resp. pdec
j and ddec. Of course, these are equal, but that’s precisely

what we need to show here. For this, we show that

– hintj constructed by Decodeop satisfies hintj = projq(p
enc
j ) and

– penc
j = pdec

j

for each τ ≥ j ≥ 1 by induction over j (starting at j = τ and going down):
For j = τ , since denc is linearly verifying, projq(p

enc
τ ) = g⊺ · u. From this we get projq(p

enc
τ ) =

hintτ . Using Lemma 23, item 2, this gives pdec
τ = penc

τ . For τ > j ≥ 1, we have

projq(p
enc
j ) = h⊺

t̃j+1
· penc

j+1 + h⊺
t̃j+1⊕1

· sj+1 (denc linearly verifying)

= h⊺
t̃j+1
· pdec

j+1 + h⊺
t̃j+1⊕1

· sj+1 (induction hypothesis)

12 We write the domain of Encodeop as Aop resp. At
op,lin and the range as Rℓop . Even though those are the same as

sets, we only view the domain as an R-module in the usual way.
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= hintj . (Definition of hintj in Decodeop)

Again, using Lemma 23, item 2, we can conclude pdec
j = penc

j , finishing the induction. This gives

ddec = denc, showing Decodeop(pp, t,Encodeop(pp, t,d)) = d.

Now consider the other direction, i.e. that Encodeop(pp, t,Decodeop(pp, t,d)) = d for all d ∈
Rℓop . By Lemma 23, item 3, we get projq(pj) = hintj (so d is linearly verifying and Encodeop does
not abort) and that the values of pj constructed by Encodeop are the same as those in Decodeop,
which shows the claim.

For item 5, write d = (p1, . . . ,pτ , s1, . . . , sτ ,u). Recall that Vrfy(pp, c, t,d, β) ̸= ⊥ checks among
other things that ∥∥pj

∥∥ ≤ β and
∥∥projη,κ(pj)

∥∥ ≤ qβ

2η
for all 1 ≤ i ≤ τ .

Plugging this into item 4 of Lemma 23 directly gives
∥∥pj

∥∥ < β
2η + 1

2 for all j. ⊓⊔

We can use Encodeop(pp, t, .) and Decodeop(pp, t, .) to store and transmit openings: By item 5 of
Theorem 25, the encoded openings have smaller norm than the unencoded versions, which can be
used to save space. The restriction that Encodeop(pp, t, .) only works for linearly verifying openings
is immaterial, as openings violating this condition will never be valid anyway.

Formally, we can define an encoded version of Chipmunk’s HVC as follows:

Definition 26. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers such that n is a power of two, q, q′

are prime. Let HVCChip
0 = (Setup,Com,Open, iVrfy, sVrfy,wVrfy) be the HVC from Figure 3 for its

domain Adom and vectors of length 2τ . Denote by Aop and Acom the R-modules where the openings
and commitments are from. Recall that Aop has the form Aop = Rℓop.

We can then define an encoded version HVCChip
Encoded = (Setup′,Com′,Open′, iVrfy′, sVrfy′,wVrfy′)

by simply encoding/decoding the openings as follows:

Setup′(1λ): Identical to Setup.
Com′(pp,m): Identical to Com.

Open′(pp, c,m, t): Run d← Open(pp, c,m, t) and output d = Encodeop(pp, t,d).
iVrfy′(pp, c, t,d): Run d← Decodeop(pp, t,d). Output whatever iVrfy(pp, c, t,d) outputs.
sVrfy′(pp, c, t,d): Run d← Decodeop(pp, t,d). Output whatever sVrfy(pp, c, t,d) outputs.
wVrfy′(pp, c, t,d): Run d← Decodeop(pp, t,d). Output whatever wVrfy(pp, c, t,d) outputs.

Note that the opening space of HVCChip
Encoded is Rℓop . However, to perform homomorphic operations

on openings, we need to operate on the unencoded values, since encoding/decoding is not a R-
linear operation with the usual R-module structure on Rℓop . To formally satisfy the homomorphism
requirements, we therefore need to endow the set Rℓop with a (non-standard) R-module structure
At

op = (Rℓop ,⊙,⊕), where scalar multiplication ⊙ by ring elements and the addition ⊕ are given by

⊙ : R×At
op → At

op, w ⊙ d := Encodeop(pp, t, w · Decodeop(pp, t,d))
⊕ : At

op ×At
op, d1 ⊕ d2 := Encodeop(pp, t,Decodeop(pp, t,d1) + Decodeop(pp, t,d2))

This gives an R-module At
op, which is the opening space of HVCChip

Encoded. Note that it depends on t.
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Theorem 27. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers and 0 < ε ≤ 1 such that n is a power

of two and q, q′ prime. Let HVCChip
0 = (Setup,Com,Open, iVrfy, sVrfy,wVrfy) be the homomorphic

vector commitment from Figure 3 and HVCChip
Encoded = (Setup,Com,Open′, iVrfy′, sVrfy′,wVrfy′) be the

encoded version from Definition 26 based on it for those parameters. Then HVCChip
Encoded is individually

correct, (ρ, Tαw , ε)-probabilistically homomorphic, robustly homomorphic and position binding for

domain Rξ
q′ and vector length 2τ , provided HVCChip

0 has those properties.

Proof. There is really not much to show here.
Individual correctness follows directly from item 4 of Theorem 25.
The robust homomorphism properties also follows from this, together with the way we defined

At
op. Notably, assume we have pp ← Setup(1λ), 1 ≤ t ≤ 2τ , commitments c0, c1 ∈ Adom and

d
0
,d

1 ∈ At
op with

sVrfy′(pp, c0, t,d
0
) = m0 and sVrfy′(pp, c1, t,d

1
) = m1

such that m0,m1 ̸= ⊥. We need to show that

wVrfy′(pp, c0 − c1, t,d
0 ⊖ d

1
) = m0 −m1 ,

where ⊖ is the subtraction in At
op corresponding to ⊕.

Let d0 := Decodeop(pp, t,d
0
),d1 := Decodeop(pp, t,d

1
). By definition of sVrfy′, we have

m0 = sVrfy(pp, c0, t,d0) and m1 = sVrfy(pp, c1, t,d1) .

Since HVC is robustly homomorphic, this yields

wVrfy(pp, c0 − c1, t,d0 − d1) = m0 −m1 .

By definition, Decodeop(pp, t,d
0 ⊖ d

1
) = d0 − d1. Putting these together, we obtain

wVrfy′(pp, c0 − c1, t,d
0 ⊖ d

1
)

=wVrfy(pp, c0 − c1, t,Decodeop(pp, t,d
0 ⊖ d

1
))

=wVrfy(pp, c0 − c1, t,d0 − d1)

x =m0 −m1 .

For the probabilistic homomorphism property, let pp← Setup(1λ), ℓ < ρ and 1 ≤ t ≤ 2τ .

For 1 ≤ i ≤ ℓ, consider commitments ci ∈ Acom, decommitments d
i ∈ At

op with iVrfy′(pp, ci, t,d
i
) =

mi such that mi ̸= ⊥. We need to show that

Pr

[
w1, . . . , wℓ ←W : sVrfy′

(
pp,

ℓ∑
i=1

wi · ci, t,
ℓ⊕

i=1

wi ⊙ d
i
)
=

ℓ∑
i=1

wi ·mi
t

]
≥ 1− ε .

For this, set di := Decodeop(pp, t,d
i
). By definition of iVrfy′, we have iVrfy(pp, ci, t,di) = mi. Then

we get

sVrfy′
(
pp,

ℓ∑
i=1

wi · ci, t,
ℓ⊕

i=1

wi ⊙ d
i
)
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=sVrfy
(
pp,

ℓ∑
i=1

wi · ci, t,Decodeop
(
pp, t,

ℓ⊕
i=1

wi ⊙ d
i
))

=sVrfy
(
pp,

ℓ∑
i=1

wi · ci, t,
ℓ∑

i=1

wi · di
)

The claim then follows from the probabilistic homomorphism property of HVC.

Let us look at the position-binding property. For any adversary A against the position-binding
property of HVCChip

Encoded, we construct an adversary B against HVC as follows.

B(pp) runs (c, t,d0,d1) ← A(pp) and outputs (c, t,Decodeop(pp, t,d0),Decodeop(pp, t,d1)). It
is easy to see that A is successful iff B is. ⊓⊔

Remark 4. Let n, q, q′, αw, ρ, η, τ, ξ, βagg be positive integers such that n is a power of two and q, q′

prime. Let us collect in Table 2 the individual components of our HVC constructions and look at
the bit-sizes of commitments and (individually or strongly verifying) openings as functions of the
parameters. Note that the strongly verifying case will correspond to the contribution for the size
of aggregated signatures later in Section 6, and this size is the most important metric we want to
minimize.

A commitment is a (non-short) single element from Rq. This means we can use n⌈log q⌉
bits to store it.13 In the variant without our elaborate encodings, an opening consists of ℓop =
2τ
⌈
log2η+1 q

⌉
+ ξ
⌈
log2η+1 q

′⌉ many elements from R. Each element is ∥.∥∞-bounded: for individu-
ally verifying openings, the bound is η, giving nℓop⌈log(2η + 1)⌉ bits. For strongly verifying opening,
the bound is βagg, giving nℓop⌈log(2βagg + 1)⌉ bits.

For HVCChip
Encoded, an opening consists of the same number of elements from R, but we have

tighter size constraints for τ
⌈
log2η+1 q

⌉
of them. For the individually verifying case, those ele-

ments are actually 0. In the strongly verifying case, the (non-attained) bound is
βagg

2η + 1
2 , giving

nτ
⌈
log2η+1 q

⌉⌈
log(2⌊βagg

2η + 1
2⌋+ 1)

⌉
≤ nτ

⌈
log2η+1 q

⌉⌈
log(⌊βagg

η ⌋+ 2)
⌉
many bits for the pi’s.

size in bits

commitments n⌈log q⌉

opening
HVCChip

0

individually verifying
(
2τκ+ ξκ′)n · ⌈log(2η + 1)⌉

strongly verifying
(
2τκ+ ξκ′)n · ⌈log(2βagg + 1)⌉

HVCChip
Encoded

individually verifying
(
τκ+ ξκ′)n · ⌈log(2η + 1)⌉

strongly verifying
(
τκ+ ξκ′)n · ⌈log(2βagg + 1)⌉+ τκn⌈log(⌊βagg

η
⌋+ 2)⌉

Table 2: bitlength of our HVC constructions. We denote by κ =
⌈
log2η+1 q

⌉
and κ′ =

⌈
log2η+1 q

′⌉
the number of limbs for the decompositions of Rq resp. Rq′ elements.

13 In principle, we could do ⌈n log q⌉ by using some clever arithmetic encoding; however, for simplicity, we assume
here that every coefficient is stored individually.
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5 Key-Homomorphic One-Time Signatures

In this section, we define and instantiate key-homomorphic one-time signatures, which are a weak
form of a digital signature scheme that is only guaranteed to be unforgeable, if at most one signature
is published under any given public key. A one-time signature is called key-homomorphic, if the
linear combination of separate signatures for the same message verifies under the linear combination
of the corresponding public keys.

Our definitions again follow the definitions of [FSZ22a] closely, but are incomparable just as
in Section 3. As with the vector commitments, we have the stronger requirement that the homo-
morphism works for any individually verifying signature, not just honestly created ones. But, this
homomorphism is allowed to have a noticeable correctness error.

The construction presented in this section is a modification of the construction of [FSZ22a],
which itself was a modification of the one-time signature schemes by Boneh and Kim [BK20] and
Lyubashevsky and Micciancio [LM08].

Definition 28 (Key-Homomorphic One-Time Signature). Let R be a ring. Let Aopk and Asig

be R-modules denoting the spaces where the public keys and signatures are from. A key-homomorphic
one-time signature scheme (KOTS) over R with public key space Aopk and signatures from Asig is
defined by six PPT algorithms KOTS = (Setup,KGen,Sign, iVrfy, sVrfy,wVrfy).

pp← Setup(1λ) The setup algorithm takes as input the security parameter and outputs public pa-
rameters.

(osk, opk)← KGen(pp) The key generation algorithm takes as input the public parameters and out-
puts a key pair with opk ∈ Aopk.

σ ← Sign(pp, osk,m) The signing algorithm takes as input the public parameters, a one-time signing
key, and a message and outputs a signature σ ∈ Asig.

b← iVrfy(pp, opk,m, σ) The individual verification algorithm takes as input the public parameters,
a verification key, a message, and a candidate signature and outputs a bit indicating accep-
tance/rejection.

b← sVrfy(pp, opk,m, σ) The strong verification algorithm has the same input and output domains
as the individual verification algorithm.

b← wVrfy(pp, opk,m, σ) The weak verification algorithm has the same input and output domains
as the individual verification algorithm.

Note that for us, we will always have R = Z[X]/⟨Xn + 1⟩ for n a power of two and Asig = Rℓsig
q′ ,

Aopk = R
ℓopk
q′ for some prime q′.

Definition 29 (Individual Correctness). Let KOTS be a key-homorphic one-time signature
scheme. KOTS is individually correct, if for all security parameters λ ∈ N, parameters pp ←
Setup(1λ), key pairs (osk, opk)← KGen(pp), messages m ∈ {0, 1}∗, and signatures σ ← Sign(pp, osk,m)
it holds that

iVrfy(pp, opk,m, σ) = 1 .

We require that individually verifying signatures can be homomorphically aggregated by com-
puting a random linear combination of them. Such aggregated signatures should still strongly verify
with high probability over the choice of the random linear combination.
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Definition 30 (Probabilistic Homomorphism). Let KOTS be a one-time signature scheme
over a ring R with public key space Aopk and signatures from Asig. Let ρ ∈ N, error bound 0 ≤ ε ≤ 1
and W ⊆ R. KOTS is (ρ,W, ε)-probabilistically homomorphic, if for all security parameters λ ∈ N,
number of aggregated signatures ℓ ∈ [ρ], parameters pp ← Setup(1λ), public keys opki ∈ Aopk,
messages m ∈ {0, 1}∗ and signatures σi ∈ Asig with iVrfy(pp, opki,m,σi) it holds that

Pr

[
w1, . . . , wℓ ←W : sVrfy(pp,

ℓ∑
i=1

wi · opki,m,
ℓ∑

i=1

wi · σi) = 1

]
≥ 1− ε .

As with the vector commitments from the previous section, we additionally require that a
further limited homomorphism still holds, even for maliciously aggregated signatures. For any two,
even maliciously generated, signatures that strongly verify under potentially maliciously generated
public keys, their difference will still weakly verify.

Definition 31 (Robust Homomorphism). Let KOTS be a key-homomorphic one-time signa-
ture scheme over a ring R with public key space Aopk and signatures from Asig. KOTS is robustly
homomorphic if for all security parameters λ ∈ N, public parameters pp ← Setup(1λ), messages
m ∈ {0, 1}∗, (possibly malformed) public keys opk0, opk1 ∈ Aopk, and (possibly malformed) signa-
tures σ0,σ1 ∈ Asig with

sVrfy(pp, opk0,m,σ0) = 1 and sVrfy(pp, opk1,m,σ1) = 1

it holds that
wVrfy(pp, opk0 − opk1,m, (σ0 − σ1)) = 1.

The following definition of a multi-user version of (one-time) existential unforgeability under
rerandomized keys is taken directly from [FSZ22a].

Definition 32 (Multi-User Existential Unforgeability under Rerandomized Keys). A
(ρ,W, ε)-homomorphically correct KOTS is W ′-existentially unforgeable under rerandomized keys
(EUF-RK), if for all security parameters λ, any T = poly(λ) ∈ N and all stateful PPT algorithms
A it holds that

Pr


pp← Setup(1λ);

∀i ∈ [T ]. (oski, opki)← KGen(pp);

(i∗,m∗, σ∗, w∗)← AS̃ign(·,·)(pp, opk1, . . . , opkT )

:
wVrfy(pp, w∗ · opki∗ ,m∗, σ∗) = 1

∧m∗ ̸∈ Qi∗ ∧ |Qi∗ | ≤ 1 ∧ w∗ ∈W ′

 ≤ negl(λ) ,

where the oracle S̃ign(·, ·) is defined as S̃ign(i,m) := Sign(oski,m) and Qi denotes the set of messages
for which a signing query with index i has been made.

Figure 6 shows the construction of the KOTS we will use. The construction is almost identical
to the construction from [FSZ22a] but differs from it in its choice of the ball from which the
secret keys are chosen. Specifically, the components of the secret keys are allowed to have a larger
infinity norm. This is beneficial, because the security proof partially relies on fact that the function
mapping secret keys to public keys and signatures is highly compressing. With a larger secret key-
space the compression ratio increases, allowing us to reduce the size of other parameters, ultimately
decreasing the size of the signatures.
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Setup(1λ)

a←Rγ
q′

return a

KGen(pp)

s0 ← Bγ
φ,q′

s1 ← Bγ
φ·αH ,q′

v0 := a⊺ · s0

v1 := a⊺ · s1

return ((s0, s1), (v0, v1))

Sign(pp, osk,m)

parse osk as (s0, s1)

σ := s0 ·H(m) + s1

return σ

iVrfy(pp, opk,m,σ)

return Vrfy(pp, opk,m,σ, 2φαH)

sVrfy(pp, opk,m,σ)

return Vrfy(pp, opk,m,σ, βσ)

wVrfy(pp, opk,m,σ)

return Vrfy(pp, opk,m,σ, 2βσ)

Vrfy(pp, opk,m,σ, β′)

parse opk as (v0, v1)

if ∥σ∥ > β′

return 0

if a⊺ · σ ̸= v0 ·H(m) + v1

return 0

return 1

Fig. 6: Description of our key-homomorphic one-time signature scheme KOTSChip from Defini-
tion 33. H is a collision-resistant hash function mapping bit-strings to TαH . Our key space is
Aopk = R2

q′ . The signature space is Asig = Rγ
q′ .

Definition 33. Let n, q′, αH , φ, γ, βσ be integers and H be a hash function mapping bit strings to
TαH . Let R = Z[X]/⟨Xn+1⟩ and Rq′ = Zq′ [X]/⟨Xn+1⟩. We define KOTSChip = (Setup,KGen,Sign,
iVrfy, sVrfy,wVrfy) as the key-homomorphic one-time scheme over R as in Figure 6. Its public key
space is Aopk = R2

q′ and its signature space is Asig = Rγ
q′.

Theorem 34. Let λ, αw, αH , φ, γ, ρ, βσ, n, q
′ be integers and 0 < ε < 1 such that q′ is prime

and q′ > 16αwαHφ, n is a power of two and there exists δ with

22λ ≤ |TαH | ≤ 22λ+δ,

βσ ≥ 4φαH

√
1
2αwρ · ln 2nγ

ε

γ ≥ ((3λ+ δ)/n+ log2 q
′) log−1

2 (φ+ 1
2) .

Let H : {0, 1}∗ → TαH be a hash function. Let W ′ = {w0 − w1 | w0, w1 ∈ Tαw ∧ w0 ̸= w1}. If the
SISR,q′,γ,2βσ+4αwαHφ problem is hard and H is collision resistant, then the construction KOTSChip

from Figure 6 is an individually correct, (ρ, Tαw , ε)-probabilistically homomorphic, robustly homo-
morphic KOTS that is W ′-multi-user existentially unforgeable under rerandomized keys.

Proof. The theorem follows from Lemma 35, Lemma 36, Lemma 37, and Lemma 38. ⊓⊔

The following four lemmas state that our construction satisfies the desired homomorphic prop-
erties and that it is unforgeable.

Lemma 35. Let λ, αw, αH , φ, γ, ρ, βσ, n, q
′ be positive integers, such that n is a power of two, q′

is prime. Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn+1⟩. Let H : {0, 1}∗ → TαH be a hash function.
Then KOTSChip as in Figure 6 is a individually correct one time signature scheme.
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Proof. Let pp ← Setup(1λ), (osk, opk) ← KGen(pp), m ∈ {0, 1}∗ and σ ← Sign(pp, osk,m) be
arbitrary. We first observe that the check on the value of the signature goes through, as

a⊺σ = a⊺(s0 ·H(m) + s1) (Def. of Sign)

= a⊺s0 ·H(m) + a⊺s1 (Distributivity)

= v0 ·H(m) + v1. (Def. of KGen)

The signature also does not violate the norm bound, as

∥σ∥ = ∥s0 ·H(m) + s1∥ (Def. of Sign)

≤ ∥s0 ·H(m)∥+ ∥s1∥
≤ ∥s0∥ · ∥H(m)∥1 + ∥s1∥ (Lemma 1)

= 2φαH . (Def. of KGen)

The lemma thus follows. ⊓⊔

Lemma 36. Let λ, αw, αH , φ, γ, ρ, βσ, n, q
′ be positive integers and 0 < ε < 1, such that

βσ ≥ 4φαH

√
1
2αwρ · ln 2nγ

ε .

Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn + 1⟩. Let H : {0, 1}∗ → TαH be a hash function. Then
KOTSChip as in Figure 6 is a (ρ, Tαw , ε)-probabilistically homomorphic one time signature scheme.

Proof. Let ℓ ∈ [ρ], m ∈ {0, 1}∗, and pp ← Setup(1λ) and for i ∈ [ℓ] let opki = (v0, v1) ∈ R2
q′ and

σi ∈ Rγ
q′ be arbitrary such that for all i ∈ [ℓ], iVrfy(pp, opki,m,σi) = 1.

We first note that even for arbitrary w1, . . . , wℓ ∈ Tα it holds that

a⊺ ·
ℓ−1∑
i=1

wi · σi =
ℓ∑

i=1

wi · a⊺σi (Distributivity)

=
ℓ∑

i=1

wi · (vi0 ·H(m) + vi1) (Def. of iVrfy)

=
( ℓ∑
i=1

wivi0

)
·H(m) +

( ℓ∑
i=1

wivi1

)
. (Distributivity)

Therefore, it only remains to verify that the norm-check goes through with sufficient probability.
That means we need to show that

P := Pr

[
w1, . . . , wℓ ← Tαw :

∥∥∥ ℓ∑
i=1

wi · σi
∥∥∥ > βσ

]
≤ ε .

For each individual σi, it holds by the definition of iVrfy that
∥∥σi

∥∥ ≤ 2φαH . What we need show
here is a norm bound inRγ , i.e. the bound holds even if we do not reduce modulo q′. Using Lemma 4
with ζ = βσ

2φαH
and taking a union bound over all γ entries immediately gives

P ≤ γ · 2n exp
(
− β2

σ

8φ2α2
Hαwℓ

)
≤ 2γn exp

(
− β2

σ

8φ2α2
Hαwρ

)
. (8)
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Our condition βσ ≥ 4φαH

√
1
2αwρ · ln 2nγ

ε is chosen as to be equivalent to

β2
σ

8φ2α2
Hαwρ

≥ ln
(2γn

ε

)
.

Plugging this into Equation 8 directly gives P ≤ ε. It thus follows that with probability at least
1− ε the strong verification algorithm outputs 1 as required.

Lemma 37. Let λ, αH , φ, γ, βσ, q
′, n be positive integers. As usual, let Rq′ be the polynomial ring

Zq′ [X]/⟨Xn + 1⟩. Let H : {0, 1}∗ → TαH be a hash function. Then KOTSChip as in Figure 6 is
robustly homomorphic.

Proof. Let pp← Setup(1λ), m ∈ {0, 1}∗, opk0 = (v00, v
0
1), opk

1 = (v10, v
1
1) ∈ R2

q , and σ0,σ1 ∈ Rγ
q′ be

arbitrary such that sVrfy(pp, opk0,m,σ0) = 1 and sVrfy(pp, opk1,m,σ1) = 1.
By the definition of the strong verification algorithm, it holds that∥∥(σ0 − σ1)

∥∥ ≤ ∥∥σ0
∥∥+ ∥∥σ1

∥∥ ≤ 2βσ ,

thus the norm check goes through. It remains to verify that the second check also goes through.

a⊺ · (σ0 − σ1) = a⊺ · σ0 − a⊺ · σ1

= (v00 ·H(m) + v01)− (v10 ·H(m) + v11) (Def of sVrfy)

= (v00 − v10) ·H(m) + (v01 − v11) .

Therefore, the lemma statement follows. ⊓⊔

Lemma 38. Let n, γ, q′, αH , αw, λ be positive integers with q′ prime and n a power of two, with
q′ > 16αwαHφ. Let H : {0, 1}∗ → TαH be a hash function. If the SISR,q′,γ,2βσ+4αwαHφ problem is
hard and H is collision resistant, then KOTSChip as in Figure 6 is existentially unforgeable under
rerandomized keys.

Proof. Let A be an arbitrary adversary against the multi-user W ′-existentially unforgeability un-
der rerandomized keys with success probability ν(λ). We construct an algorithm A that solves
SISR,q′,γ,2βσ+4αwαHφ as follows. Given a ∈ Rγ

q′ , A honestly chooses secret keys (si0, s
i
1) ∈ B

γ
φ,q′ ×

BγφαH ,q′ uniformly at random for i ∈ [T ] and invokes A on public keys (vi0, v
i
1), with vib := a⊺ · sib.

Whenever A sends a signing query (i,m), A will respond with the honestly computed signature
σ := si0 ·H(m)+si1. Eventually A outputs a candidate forgery (i∗,m∗,σ∗, w∗) and A will compute
a signature on the same message as σ′ := w∗ · si∗0 ·H(m∗) + w∗ · si∗1 . It then outputs σ∗ − σ′.

To analyze the success probability of A suppose that A outputs a valid forgery. I.e., at most a
single query was asked for index i∗, said query was not m∗, w∗ ∈W ′ and wVrfy(a, (w∗vi

∗
0 , w∗vi

∗
1 ),m∗,

σ∗) = 1. From this and the definition of σ′ above it follows that

a⊺ · (σ∗ − σ′) = a⊺σ∗ − a⊺σ′

= (w∗ · vi∗0 H(m) + w∗ · vi∗1 )− a⊺(w∗ · si∗0 ·H(m∗) + w∗ · si∗1 )
= (w∗ · vi∗0 H(m) + w∗ · vi∗1 )− (w∗ · a⊺si

∗
0 ·H(m∗) + w∗ · a⊺si

∗
1 )

= (w∗ · vi∗0 ·H(m) + w∗ · vi∗1 )− (w∗ · vi∗0 ·H(m) + w∗ · vi∗1 ) = 0.
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as required for a solution to the SIS problem.

Next, to argue that ∥σ∗ − σ′∥ ≤ 2βσ + 4αwαHφ, note that the weak verification algorithm
guarantees that ∥σ∗∥ ≤ 2βσ. Further, since w∗ ∈ W ′ there exist w0, w1 ∈ Tαw such that w∗ =
w0 − w1 and ∥w∗∥1 ≤ ∥w0∥1 + ∥w1∥1 = 2αw. We can thus bound the norm of σ′ as∥∥σ′∥∥ =

∥∥∥w∗ · si∗0 ·H(m∗) + w∗ · si∗1
∥∥∥ (Def. of Sign)

=
∥∥∥w∗ · si∗0 ·H(m∗)

∥∥∥+ ∥∥∥w∗ · si∗1
∥∥∥ (Triangle Inequality)

= ∥w∗∥1 · ∥H(m∗)∥1 ·
∥∥∥si∗0 ∥∥∥+ ∥w∗∥1 ·

∥∥∥si∗1 ∥∥∥ (Lemma 1)

= 4αwαHφ . (w∗ ∈W ′ and H(m∗) ∈ TαH )

It follows that ∥σ∗ − σ′∥ ≤ ∥σ∗∥+ ∥σ′∥ ≤ 2βσ + 4αwαHφ as required.

Finally, we need to argue that σ∗−σ′ ̸= 0. This is the case iff σ∗ ̸= σ′. It thus suffices to bound
the probability, that σ∗ = σ′.

To this end, we observe by Lemma 39 that, since A has learned at most a single signature under
(vi

∗
0 , vi

∗
1 ), the corresponding (si

∗
0 , s

i∗
1 ) remains information-theoretically hidden from A among at

least 2 possible secret keys. Once A outputs a valid forgery (i∗,m∗,σ∗, w∗) the signing key used
for the forgery becomes uniquely determined by Lemma 40 as long as H(m∗) ̸= H(m) which is
guaranteed with overwhelming probability by the collision resistance of H. It follows that σ∗ ̸= σ′

with probability at least 1/2 − negl(λ). Therefore, the success probability of our reduction A is
(1/2 − negl(λ))ν(λ) and since the SIS problem is assumed to be hard, ν(λ) must therefore be
negligible in λ. ⊓⊔

Lemma 39. Let n, γ, q′, αH , φ, λ be positive integers such that there exists δ with γ ≥ ((3λ +
δ)/n + log2 q) log

−1
2 (φ + 1

2) and |TαH | ≤ 22λ+δ, let Rq′ = Zq′ [X]/⟨Xn + 1⟩. Then for any a ∈ Rγ
q′

and uniformly chosen (s0, s1) ∈ Bγφ,q′ × B
γ
φαH ,q′ it holds with probability at least 1 − 2−λ that for

every c ∈ TαH there exists (s′0, s
′
1) ∈ B

γ
φ,q′ × B

γ
φαH ,q′such that (s′0, s

′
1) ̸= (s0, s1), (a

⊺ · s′0,a⊺ · s′1) =
(a⊺ · s0,a⊺ · s1) and s′0 · c+ s′1 = s0 · c+ s1.

Proof. We define a function fa,c that maps any secret key (s0, s1) to a pair of public key and
signature defined as ((a⊺ ·s0,a⊺ ·s1), s0 ·c+s1). We will show that the domain of this function is at
least 23λ+δ times larger than the range. The number of possible secret keys is (2φ+1)nγ · (2φαH +
1)nγ . The number of possible signatures is at most (4φαH + 1)nγ . For fixed values a, c, s0 · c+ s1,
we observe that once a⊺ · s0 is fixed, the second component a⊺ · s1 = a⊺ · ((s0 · c + s1) − s0 · c) is
uniquely determined. Thus for a fixed signature, there are at most q′n many possible public keys
and therefore the size of the range of fa,c is at most (4φαH + 1)nγ · q′n. We observe that

(2φ+ 1)nγ · (2φαH + 1)nγ

(4φαH + 1)nγ · q′n
≥ (2φ+ 1)nγ · (2φαH + 1)nγ

(4φαH + 2)nγ · q′n

=
(2φ+ 1)nγ

2nγ · q′n

=
(
φ+ 1

2

)nγ · 1

q′n

= 2log2(φ+
1
2
)·nγ−n log2 q

′
.
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Using the condition on γ from the lemma statement, one can see that

log2(φ+ 1
2) · nγ − n log2 q

′ ≥ n
(
3λ+δ
n + log2 q

)
− n log2 q

′ = 3λ+ δ

and thus, as claimed the domain of fa,c is at least 2
3λ+δ times larger than its range.

Using Lemma 4.1 from [LM08], the probability, over a uniformly chosen secret key, that there
exists (s′0, s

′
1) ∈ B

γ
1,q′ × B

γ
βs,q′

such that (s′0, s
′
1) ̸= (s0, s1), (a

⊺ · s′0,a⊺ · s′1) = (a⊺ · s0,a⊺ · s1) and
s′0 · c + s′1 = s0 · c + s1 is at least 1 − 2−3λ−δ. By union bounding over all possible hash values
c ∈ TαH and observing that |TαH | ≤ 22λ+δ the lemma statement follows. ⊓⊔

Lemma 40. Let n, γ, q′, αH , αw be positive integers with q′ prime and n a power of two such that
q′ > 16αwαHφ and let Rq′ = Zq′ [X]/⟨Xn + 1⟩. Let a ∈ Rγ

q′, c0, c1 ∈ TαH , w0, w1 ∈ Tαw , and
σ0, σ1 ∈ R be arbitrary ring elements such that c0 ̸= c1 and w0 ̸= w1. Then there exists at most a
single pair of vectors (s0, s1) ∈ Bγφ,q′ × B

γ
φαH ,q′, such that

s0 · c0 + s1 = σ0 and (w0 − w1) · (s0 · c1 + s1) = σ1 .

Proof. Let (s0, s1) ∈ Bγφ,q′ × B
γ
φαH ,q′ and (s′0, s

′
1) ∈ B

γ
φ,q′ × B

γ
φαH ,q′ be two secret keys, such that

s0 · c0 + s1 = s′0 · c0 + s′1 =⇒ (s0 − s′0) · c0 + (s1 − s′1) = 0 (9)

and
(w0 − w1) · (s0 · c1 + s1) = (w0 − w1) · (s′0 · c1 + s′1)

=⇒ (w0 − w1)((s0 − s′0) · c1 + (s1 − s′1)) = 0 .
(10)

Equation 9 implies that
(w0 − w1)((s0 − s′0) · c0 + (s1 − s′1)) = 0.

Combined with Equation 10, we get that in Rq′

(w0 − w1)(s0 − s′0)(c0 − c1) = 0 . (11)

Since w0, w1 ∈ Tαw , s0, s
′
0 ∈ B

γ
φ,q′ , and c0, c1 ∈ TαH , it holds by Lemma 1 that∥∥(w0 − w1)(s0 − s′0)(c0 − c1)
∥∥ ≤ ∥w0 − w1∥1 · ∥c0 − c1∥1 ·

∥∥(s0 − s′0)
∥∥ ≤ 8αwαHφ ≤ q′−1

2 ,

where si ∈ R is the representative of si ∈ Rq′ with coefficients in {− q′−1
2 , . . . ,+ q′−1

2 }. Therefore
Equation 11 also holds in R. Since w0 ̸= w1, c0 ̸= c1, and R is an integral domain, it follows that
s0 = s′0. By Equation 9, it must therefore hold that (s0, s1) = (s′0, s

′
1). ⊓⊔

6 Synchronized Multi-Signatures

In this section, we show how the tools developed in the previous sections can be combined to
yield a synchronized multi-signature with the desired properties. We do this in a manner that is
almost identical to the way Squirrel [FSZ22a] does it, except that our aggregation is modified to
use a rejection sampling technique that allows us to reduce the signature size. Roughly speaking,
a public key in the multi-signature scheme is a vector commitment to a vector of independent
one-time signature public keys. To sign a message at time t, the signer publishes an opening to the
key in vector position t and signs the message with that key.

39



To aggregate these signatures, the construction computes a random linear combination of them,
using weights derived using a random oracle. The uniform distribution of weights allows us to lever-
age the probabilistic homomorphism of the KOTS and HVC schemes, such that this aggregation
procedure will be successful with probability at least 1−2ε. By rejecting unsuccessful attempts and
retrying a number of times, the overall probability of an aggregation failure can be made negligible.

We will now formally define the requirements for a synchronized multi-signature scheme. Once
again, our definitions follow the definitions of Fleischhacker, Simkin, and Zhang [FSZ22a]. In con-
trast to their work, however, we define a significantly stronger notion of correctness for aggregated
signatures. More concretely, [FSZ22a] only required that aggregation is successful for honestly gen-
erated keys and signatures. We, on the other hand, require that any sequence of individually valid
signatures can be successfully aggregated.14

Definition 41 (Synchronized Multi-Signatures). A synchronized ρ-wise multi-signature scheme
for 2τ time periods is defined by six PPT algorithms MSIG = (Setup,KGen,Sign,Aggregate, iVrfy, aVrfy).

pp← Setup(1λ) The setup algorithm takes as input the security parameter and outputs public pa-
rameters pp.

(sk, pk)← KGen(pp) The key generation algorithm takes as input the public parameters and outputs
a key-pair.

σ ← Sign(pp, sk, t,m) The signing algorithm takes as input the public parameters, a secret key, a
time period 1 ≤ t ≤ 2τ , and a message and outputs a signature.

σagg ← Aggregate(pp,P, t,m,S) The aggregation algorithm takes as input the public parameters,
a list of public keys, a time period 1 ≤ t ≤ 2τ , a message, and a list of signatures, where
|P| = |S| ≤ ρ and outputs an aggregated signature or an error ⊥.

b← iVrfy(pp, pk, t,m, σ) The deterministic individual verification algorithm takes as input the pub-
lic parameters, a public key, a time period 1 ≤ t ≤ 2τ , a message, and a signature and outputs
a bit indicating acceptance/rejection.

b← aVrfy(pp,P, t,m, σagg) The deterministic aggregated verification algorithm takes as input the
public parameters, a list of public keys, a time period 1 ≤ t ≤ 2τ , a message, and an aggregated
signature and outputs a bit indicating acceptance/rejection.

Definition 42 (Individual Correctness). Let MSIG be a synchronized ρ-wise multi-signature
scheme for 2τ time periods. MSIG is individually correct if for all security parameters λ ∈ N, public
parameters pp ← Setup(1λ), key pairs (sk, pk) ← KGen(pp), time periods 1 ≤ t ≤ 2τ , message
m ∈ {0, 1}∗, and signatures σ ← Sign(pp, sk, t,m) it holds that

iVrfy(pp, pk, t,m, σ) = 1 .

Definition 43 (Aggregation Correctness with Rogue Keys and Signatures). Let MSIG be
a synchronized ρ-wise multi-signature scheme for 2τ time periods. MSIG has correct aggregations
in the presence of rogue keys and signatures if for all security parameters λ ∈ N, public parameters
pp ← Setup(1λ), number of aggregated signatures ℓ ∈ [ρ], time periods 1 ≤ t ≤ 2τ , messages
m ∈ {0, 1}∗, public keys P = (pk1, . . . , pkℓ) and signatures S = (σ1, . . . , σℓ), such that for all
i ∈ [ℓ], iVrfy(pp, pki, t,m, σi) = 1 it holds that

Pr[σagg ← Aggregate(pp,P, t,m,S) : aVrfy(pp,P, t,m, σagg) = 1] = 1− negl(λ) .
14 It is worth noting, that the construction of Squirrel [FSZ22a] actually satisfies this stronger notion. It was just

never defined or proven.
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Definition 44 (Unforgeability). Let MSIG be a synchronized ρ-wise multi-signature scheme for
2τ time periods. MSIG is unforgeable if for all security parameters λ ∈ N, and all PPT algorithms
A it holds that

Pr


pp← Setup(1λ);

(sk∗, pk∗)←KGen(pp);

(P, t,m, σagg)← ASign(pp,sk∗,·,·)(pp, pk∗)

:

aVrfy(pp,P, t,m, σagg) = 1

∧ pk∗ ∈ P
∧ ∀ (t′,m′, σ′) ∈ Q. (t′,m′) ̸= (t,m)

∧ ∀ t′. |Qt′ | ≤ 1

 ≤ negl(λ) ,

where Q denotes the set of signing queries made by A and Qt′ denotes the set of signing queries
made for timeslot t′.

6.1 Construction

For ease of notation we define the function zip that “zips” up two vectors into a single vector of
pairs, i.e.

zip(a, b) :=

(a1, b1)
...

(aℓ, bℓ)

 .

The following theorem now states the security of our construction presented in Figure 7.

Theorem 45. Let λ, n, q′, ξ, χ, τ be positive integers and 0 < ε < 1
2 with n being a power of two, q′

being prime, and χ ≥ λ/ log2(
1
2ε). Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn + 1⟩. Let W ⊆ R be

a set such that |W | > 2λ and let W ′ := {w0 −w1|w0, w1 ∈W}. Let H : {0, 1}∗ →W ρ be a random

oracle. Let KOTS be a key homomorphic one-time signature scheme with public keys in Rξ
q′ and let

HVC be a homomorphic vector commitment for domain Rξ
q′.

If KOTS is individually correct, (ρ,W, ε)-probabilistically homomorphic, robustly homomorphic,
and W ′-multi-user existentially unforgeable under rerandomized keys and HVC is individually cor-
rect, (ρ,W, ε)-probabilistically homomorphic, robustly homomorphic, and position-binding, then the
construction from Figure 7 is an unforgeable synchronized ρ-wise multi-signature scheme that is
individually correct and has correct aggregations in the presence of rogue keys and signatures.

Proof. The theorem follows immediately from Lemma 47, Lemma 48, Lemma 49 below. ⊓⊔

Our concrete proposal is to use HVCChip
Encoded and KOTSChip to thereby construct the Chipmunk

synchronized multi-signature.

Definition 46 (Chipmunk synchronized multi-signatures). Let n, q, q′, η, τ, ρ, αH , αw, γ be
positive integers, with n being a power of two, q, q′ prime. Let R,Rq,Rq′ be as usual. We define the
synchronized multi-signature Chipmunk, denoted MSIGChip, by instanciating the construction from
Figure 7 with HVCChip

Encoded with ξ = 2 and KOTSChip.

As a corollary of Theorem 45, we obtain that MSIGChip is an unforgeable synchronized ρ-wise multi-
signature that is individually correct and has correct aggregations in the presence of rogue keys
and signatures, provided HVCChip

Encoded and KOTSChip satisfy the appropriate security properties. The
latter are guaranteed by Theorem 27 and Theorem 34, provided we set parameters appropriately
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Setup(1λ)

ppKOTS ← KOTS.Setup(1λ)

ppHVC ← HVC.Setup(1λ)

return pp := (ppKOTS, ppHVC)

KGen(pp)

foreach 1 ≤ i ≤ 2τ

(oski, opki)← KOTS.KGen(ppKOTS)

OSS = (osk1, . . . , osk2
τ

)

OPK = (opk1, . . . , opk2
τ

)

c← HVC.Com(ppHVC,OPK)

return (sk, pk) := ((OSS,OPK), c)

Aggregate(pp,P, t,m,S)

if |S| ≠ |P|
return ⊥

for (pk, σ) ∈ zip(P,S)
if iVrfy(pp, pk, t,m, σ) = 0

return ⊥
j := 0

do

j := j + 1

(w0, . . . , w|P|) := H(t,m,P, j)

σ′ :=

|P|∑
i=1

wi · σ′i

d :=

|P|∑
i=1

wi · di

while j < χ and aVrfy(pp,P, t,m, (σ′,d, j)) = 0

return σagg := (σ′,d, j)

Sign(pp, sk, t,m)

σ′ ← KOTS.Sign(ppKOTS, oskt,m)

d← HVC.Open(ppHVC, c,OPK, t)

return σ := (σ′,d)

iVrfy(pp, pk, t,m, σ)

opk← HVC.sVrfy(ppHVC, c, t,d)

if t > 2τ or opk = ⊥
return 0

else

return KOTS.sVrfy(ppKOTS, opk,m,σ′)

aVrfy(pp,P, t,m, σagg)

(w1, . . . , w|P|) := H(t,m,P, j)

c :=

|P|∑
i=1

wi · ci

opk← HVC.sVrfy(ppHVC, c, t,d)

if |P| > ρ or opk = ⊥
return 0

else

return KOTS.sVrfy(ppKOTS, opk,m,σ′)

Fig. 7: A synchronized multi-signature scheme based on homomorphic vector commitments and
key-homomorphic one-time signatures.
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and the appropriate Ring-SIS problems are hard. We collect the neccessary conditions in Table 3.
Note that W from Theorem 45 corresponds to W = Tαw .

We now proceed to show Lemma 47, Lemma 48 and Lemma 49 to actually prove Theorem 45.

Lemma 47. Let λ, n, q′, ξ, χ, ρ, τ be positive integers with n being a power of two, q′ being prime.
Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn+1⟩. Let KOTS be a key-homomorphic one-time signature

scheme with public keys in Rξ
q′ and let HVC be a homomorphic vector commitment for domain Rξ

q′.

If both KOTS and HVC are individually correct, then the construction from Figure 7 is individ-
ually correct.

Proof. Let pp = (ppKOTS, ppHVC) ← Setup(1λ), (sk, pk) = ((OSS,OPK), c) ← KGen(pp), 1 ≤ t ≤
2τ ,m ∈ {0, 1}∗, and σ = (σ′,d)← Sign(pp, sk, t,m). By definition of the signing algorithm it holds
that

σ′ ← KOTS.Sign(ppKOTS, osk
t,m) and d← HVC.Open(ppHVC, c,OPK, t) .

By definition of the key generation algorithm it further holds that

(oskt, opkt)← KOTS.KGen(ppKOTS) .

From the individual correctness of HVC and the definition of the individual verification algorithm
it follows that

opkt = opk← HVC.sVrfy(ppHVC, c, t,d) ,

which finally implies by the individual correctness of KOTS that

KOTS.sVrfy(ppKOTS, opk,m,σ′) = 1 .

Individual correctness thus follows. ⊓⊔

Lemma 48. Let λ, n, q′, ξ, χ, ρ, τ be positive integers and 0 < ε < 1
2 with n being a power of two,

q′ being prime and χ ≥ λ/ log( 1
2ε). Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn + 1⟩. Let W ⊆ R

be a set and let W ′ := {w0 − w1|w0, w1 ∈ W}. Let H : {0, 1}∗ → W ρ be a random oracle. Let

KOTS be a key-homomorphic one-time signature scheme with public keys in Rξ
q′ and let HVC be a

homomorphic vector commitment for domain Rξ
q′.

If both KOTS and HVC are (ρ,W, ε)-probabilistically homomorphic, then the construction from
Figure 7 has correct aggregations in the presence of rogue keys and signatures.

Proof. Let pp = (ppHVC, ppKOTS) ← Setup(1λ), ℓ ∈ [ρ], 1 ≤ t ≤ 2τ , m ∈ {0, 1}∗, P = (c1, . . . , cℓ),
and S = (σ1, . . . , σℓ) with σi = (σ′,d), be arbitrary, such that for all i ∈ [ℓ], iVrfy(pp, ci, t,m, σi).

The aggregation algorithm makes up to χ attempts to aggregate the signature and will only
output an invalid signature, if all χ attempts fail. It thus suffices to analyse the probability with
which all attempts fail.

Attempt j is performed by computing weights (w1, . . . , wℓ) := H(t,m,P, j) and computing

σ′ :=

|P|∑
i=1

wi · σ′
i and d :=

|P|∑
i=1

wi · di .
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Let c =
∑

i∈[ℓ]w
i · ci. Since the signatures individually verify, there exists a well-defined opki :=

HVC.iVrfy(pp, ci, t,di) for all i ∈ [ℓ]. Since further H is a random oracle we can apply the (ρ,W, ε)-
probabilistic homomorphism of both HVC of KOTS to conclude that

Pr
[
HVC.sVrfy(ppHVC, c, t,d) ̸=

∑
i∈[ℓ]

wi · opki
]
≤ ε .

and
Pr
[
KOTS.sVrfy

(
ppKOTS,

∑
i∈[ℓ]

wi · opki,m,σ′
)
= 0
]
≤ ε .

The aggregation attempt fails if either of these conditions is violated. Therefore, by a union bound,
each individual attempt fails with probability at most 2ε. Since each attempt is an independent
Bernoulli trial the probability of overall failure of all χ ≥ λ/ log2(

1
2ε) attempts can be bounded by

(2ε)χ ≤ 2−λ. Hence, aggregation will succeed with overwhelming probability. ⊓⊔

Lemma 49. Let λ, n, q′, ξ, χ, ρ, τ be positive integers with n being a power of two, q′ being prime.
Let Rq′ be the polynomial ring Zq′ [X]/⟨Xn + 1⟩. Let W ⊆ R be a set such that |W | > 2λ and let
W ′ := {w0 − w1|w0, w1 ∈ W}. Let H : {0, 1}∗ → W ρ be a random oracle. Let KOTS be a key-

homomorphic one-time signature scheme with public keys in Rξ
q′ and let HVC be a homomorphic

vector commitment for domain Rξ
q′.

If KOTS is W ′-multi-user existentially unforgeable under rerandomized keys and HVC is position-
binding, then the construction from Figure 7 is unforgeable.

Proof. The proof for this lemma remains essentially identical to the proof of unforgeability for
Squirrel [FSZ22a]. The entire argument is only concerned with the aggregated verification algorithm,
the unforgeability of KOTS and the position binding of HVC. None of the differences between
Chipmunk and Squirrel affect these parts, with the tiny exception that the random oracle during
verification now takes the additional input j. Literally, the only necessary change in the proof is,
therefore, that during the technically tedious forking lemma setup, the simulated random oracle
needs to also take j ∈ [χ] as input. As such, we omit the proof here and refer the interested reader
to the full version of the original Squirrel paper [FSZ22b]. We stress that the proof of unforgeability
in [FSZ22b] relies on a variant [BN06] of the forking lemma [PS96], which uses a rewinding strategy
that does not apply to quantum algorithms. ⊓⊔

7 Benchmarks

In this section, we define the parameters with which we instantiate Chipmunk and we provide
various benchmarks, showing that our new construction significantly outperforms the previous
Squirrel construction of Fleischhacker, Simkin, and Zhang [FSZ22a].

Our concretely proposed construction uses the key-homomorphic one-time signature scheme for
Figure 6 and HVCChip

Encoded for the homomorphic vector commitment.

7.1 Parameters and Security Estimates

The dimension of the ring R is fixed to n = 512. We choose q, q′, s.t. q, q′ ≡ 1 mod 2n, in order
speed up multiplications in Rq and Rq′ by using NTT. The constraints that need to be satisfied
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by our parameters are summarized in Table 3. The concrete efficiency for a given set of parameters
is determined by Table 4, which also spells out where the contributions come from. To find such
concrete parameters we used a script15, which enumerates possible parameters that satisfy all
constraints, that lead to hard ring-SIS problems, and that allow for efficient NTT evaluations. For
any choice of λ ∈ {112, 128}, ρ ∈ N, and τ ∈ N our script finds the parameter set that allows for
the smallest possible signature size. For convenience, the results of running the script for a range
of reasonable input parameters are shown in Table 8 in Appendix A.

# Source Constraint

1 Lemma 19 βagg ≥ η
√

2αwρ(ln
2n
ε

+ ln(2τκ+ ξκ′ + 2τ))

2 Lemma 19 κ =
⌈
log2η+1 q

⌉
3 Lemma 19 κ′ =

⌈
log2η+1 q

′⌉
4 Theorem 25 βencode <

βagg

2η
+ 1/2

5 Lemma 36 βσ ≥ 4φαH

√
1
2
αwρ · ln 2nγ

ε

6 Lemma 38 |TαH | ≥ 22λ

7 Lemma 39 γ ≥ ((3λ+ δ)/n+ log2 q
′) log−1

2 (φ+ 1
2
)

8 Lemma 39 |TαH | ≤ 22λ+δ

9 Lemma 40 q′ > 16αwαHφ
10 Definition 46 ξ = 2
11 Lemma 48 χ ≥ λ/ log( 1

2ε
)

12 Lemma 49 |Tαw | ≥ 2λ

Table 3: The constraints a set of Chipmunk parameters needs to satisfy to ensure that the proofs
are applicable. The parameters additionally need to be chosen such that the associated Ring-SIS
problems are hard.

Contribution Size in Bits

public parameters
HVC: Ajtai’s hash functions n(ξκ′ + 2κ)⌈log q⌉
KOTS nγ⌈log q′⌉

public key HVC commitment n⌈log q⌉
secret key 2τ KOTS keys (may regenerate on the fly)17

signatures (individual)
KOTS signature nγ⌈log(4φαH + 1)⌉
HVC opening (τκ+ ξκ′)n⌈log(2η + 1)⌉

aggregate signatures
agg. KOTS signature nγ⌈log(2βσ + 1)⌉
agg. HVC opening (τ(κ− 1) + (ξκ′ − 1))n⌈log(2βagg + 1)⌉+ τκn⌈log(⌊βagg

η
⌋+ 2)⌉

index j of aggregation attempt ⌈logχ⌉
Table 4: Space efficiency of Chipmunk as a function of the tunable parameters. κ :=

⌈
log2η+1 q

⌉
,

κ′ :=
⌈
log2η+1 q

′⌉

Let us briefly explain how our script works. First, to ensure security of Chipmunk, the specific
ring-SIS problems in Lemma 19 and 36 need to be hard. We use the same approach to derive

15 https://github.com/GottfriedHerold/Chipmunk
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the security of the parameters as was used in Squirrel [FSZ22a]. We adopt the so-called “real-
istic model” from [ADPS16]. For a BKZ of block size β, the cost in this model is estimated by
20.292β+16.4+log(#SVP calls). The LWE-estimator [APS15] shows that for a root Hermite factor of
1.005 we expect a block size of 286, which yields 112 bits of security under the above model.
Similarly, a root Hermite factor of 1.004 yields 128 bits of security.

The output length of the hash function that is used for hashing messages needs to be large
enough to prevent meet-in-the-middle type of attacks and from the security proofs we also need
that for given public parameter a, a fixed hash digest in TαH , and a signature σ for the one
time signature scheme, there exists at least two short corresponding (s0, s1) with overwhelming
probability. Lastly, we also require every randomizer to be unguessable, and therefore |Tαw | ≥ 2λ.

7.2 Implementation

Chipmunk was implemented in Rust. The source code, as well as the scripts for parameter derivation
are released to the open domain15.

Comparison. For evaluating the performance of Chipmunk, there are two natural points of ref-
erence, which are the trivial solution of just storing a list of ρ Falcon signatures naively and using
Squirrel [FSZ22a], the previous state-of-the-art construction. The data for Chipmunk and Squirrel
are collected over a same benchmark platform, an AMD 5900x with 24 threads and 32 Gigabytes
of memory. The data for Falcon-512 is collected from the official website16. All three candidates are
instantiated to yield 112 bits security.

In Table 5, we compare the three solutions for a fixed parameters set, where we only change the
number of signatures that are being aggregated. The comparison with the trivial Falcon solution is
quite straightforward as the size of the naive solution’s aggregated signatures grows linearly in the
number of signers. For an aggregate signature involving 8192 signers, Chipmunk outperforms the
trivial solution by a factor of 40 in terms of aggregate signature size. Obviously, the improvement
only gets larger as the number of signers increases, In comparison to Squirrel, we see that for
both 1024 and 8192 aggregated signatures, our scheme is better in all metrics. There are two main
obstacles, namely the key generation time and the aggregate signature size, that would prevent
Squirrel from being widely deployable. Our benchmarks show that Chipmunk’s key generation
time is better by a factor of 7.4 and that the size of the aggregate signatures is smaller by a factor
of 5.6.

Cost of encoding. We benchmark the cost of encoding mechanism. On a single thread, the
encoding algorithm takes 7.3µs to convert a single node into its encoded form and the decoding
algorithm takes 6.6µs for the reverse direction. Even though the costs of encoding and decoding
are negligible themselves, they do affect the overall performance of the verification significantly.
Without our encoding algorithm, during verification each layer in the HVC opening can be verified
in parallel. With our encoding algorithm a serial dependency is introduced and for this reason the
verifier needs to compute the hint from the previous layer before decoding the current layer. This
introduces a trade-off between verification cost and the aggregated signature size, as captured in
Table 6.

16 https://falcon-sign.info/
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# signers Falcon Squirrel Chipmunk Imp. Falcon Imp. Squirrel

Key Generation 8.6 ms 4 min 32.3 sec - 7.4×
Signing 0.17 ms 2.1 ms 0.4 ms - 5.2×
Fresh Sig. Size 666 Bytes 45 KB 32 KB - 1.4×

1024

Aggregation - 1.2 sec 0.57 sec - 2.1×
Batch Verification 36.7 ms 19.5 ms 7.7 ms 4.8× 2.5×
Agg. Sig. size 682 KB 572 KB 118 KB 5.7× 4.8×

8192

Aggregation - 9.6 sec 4.6 sec - 2.1×
Batch Verification 294 ms 53 ms 45 ms 6.5× 1.2×
Agg. Sig. size 5.5 MB 762 KB 136 KB 40 × 5.6×

Table 5: Comparison of Chipmunk, Squirrel, and a trivial solution of just concatenating all indi-
vidual signer’s Falcon-512 signatures. Squirrel and Chipmunk are instantiated with λ = 112 and
τ = 21.

Tree Height
With Encoding Without Encoding

Signature size Verification time Signature size Verification time

21 118 KB 8.6 ms 142 KB 7.3 ms

24 133 KB 8.9 ms 160 KB 7.5 ms

26 143 KB 9.4 ms 172 KB 7.1 ms

Table 6: Trade-off between signature size and verification cost via encoding algorithm. Instantiated
with λ = 112 and ρ = 1024.

Note that with encoding, although the verification algorithm becomes serial across different
layers of the tree, the main computation (i.e., the ring multiplications) within each layer is still
parallelization friendly. Overall, for the platform that we tested (with 24 threads), we only observe
a slight decrease in the verification speed compared to non-encoding method. We conclude that it
is always beneficial to use our encoding mechanism.

Scalability in terms of τ . To investigate Chipmunk’s practicality, we take a closer look at the
key generation time and the aggregated signature size. For this purpose, we conducted a benchmark
over a typical server that is equipped with an AMD 7773x with 64 cores and 1 Terabytes of memory.
In Table 7, we show how the efficiency of Chipmunk behaves, when the tree height τ grows. Notice
that this platform is different from that of Section 7.2 and that it more accurately simulates the
computational power of real-world nodes running blockchains.

In Figure 8, we also plotted the key generation times and aggregate signature sizes of Chipmunk
for a growing tree height τ . One can see that both of these benchmarks scale linearly in the number
of leaves of the tree as expected. For the largest parameter set with τ = 26 we can generate a
keypair in just 4 minutes, significantly improving over the 2 hour key generation time of Squirrel.

17 Similar to Squirrel [FSZ22a], Chipmunk is an online-offline signature scheme, since the opening of the vector
commitment can be computed ahead of time without knowing the message to be signed. This means that online
signing only consists of computing the one-time signature. The secret key of Chipmunk is a large tree, which can
be re-derived from a pseudorandom seed whenever needed. This is computationally quite expensive, but a signer
can trade storage size against offline signing speed by caching the top layers of the tree. The reported times for
signing correspond to the online signing time.
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Tree Height Key Generation Online Signing17 # Signers Aggregation Verification Agg. Sig. Size

21 9.1 sec 0.40 ms
1024 468 ms 8.6 ms 118 KB

8192 3.8 sec 42.6 ms 136 KB

24 37.4 sec 0.44 ms
1024 516 ms 8.9 ms 133 KB

8192 4.1 sec 46 ms 153 KB

26 4 min 0.44 ms
1024 630 ms 9.4 ms 143 KB

8192 4.6 sec 51 ms 164 KB

Table 7: Benchmark results

Such a key would be sufficient for 21 years of usage assuming each block takes 10 seconds to finalize
as in the case of Ethereum. We conclude that the key generation time is no longer a bottleneck for
practical deployment.
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Fig. 8: Plots showing the scaling characteristics of the key generation time and aggregated signature
size of Chipmunk.

One Aggregate Signature under the Microscope. To better understand the size of Chipmunk
aggregate signatures, we also inspected the sizes of the aggregate signature’s individual components.
For the sake of concreteness, let us just consider τ = 21 and ρ = 1024. An aggregated signature
of size approx 118 Kilobytes, fitting inside a single ethereum block whose peak size is around 130
Kilobytes18. It consists of the following three components.

First, an encoding of the aggregated path and its adjacent nodes. The aggregated path and its
adjacent nodes belong to the homomorphic vector commitment, i.e. 2τκ polynomials in R with
an infinity norm bound βagg. We use the encoding method to encode half of those ring elements.
Therefore, all these nodes can be represented with τκ polynomials bounded by βencode; and another
τκ polynomials bounded by βagg. The total size of the path is τκn((log(βencode)+ 1)+ (log(βagg)+
1)) = 102 Kilobytes.

18 https://etherscan.io/chart/blocksize
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The aggregated decomposed public keys for the one time signature scheme, i.e., 2κ′ polynomials
in R with a same norm bound βagg. This requires 2κ

′n(log(βagg) + 1) = 8 Kilobytes.

The last component is the aggregated one time signature, i.e., γ polynomials in R with norm
bound βσ < 220, that constitutes γn(log(βσ) + 1) = 8 Kilobytes.

The total size of the aggregated signature is therefore 102 + 8 + 8 = 118 Kilobytes.

References
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A Concrete Parameters

We used a script19 to find concrete parameters that allow for instantiating Chipmunk based on
a hard ring-SIS problem. We have used a fixed ring dimension n = 512. A selection of possible
parameter choices is given in Table 8.

Parameter Sets KOTS Parameters HVC Parameters Agg. Sig. Size

λ τ ρ αw χ αH φ γ βσ q′ η βagg q (Kilobytes)

112

1024 16 12 37 13 6 761464 3115009 29 24750 202753 118 KB

21 8192 16 12 37 16 6 2650762 10684417 49 118278 962561 136 KB

131072 16 12 37 13 7 8649632 34676737 98 946220 7591937 159 KB

1024 16 12 37 13 6 761464 3115009 29 24797 202753 128 KB

23 8192 16 12 37 16 6 2650762 10684417 49 118506 962561 147 KB

131072 16 12 37 13 7 8649632 34676737 98 948044 7591937 172 KB

1024 16 12 37 13 6 761464 3115009 29 24820 202753 133 KB

24 8192 16 12 37 16 6 2650762 10684417 49 118613 962561 153 KB

131072 16 12 37 13 7 8649632 34676737 98 948899 7591937 179 KB

1024 16 12 37 13 6 761464 3115009 29 24862 202753 143 KB

26 8192 16 12 37 16 6 2650762 10684417 49 118814 962561 164 KB

131072 16 12 37 13 7 8649632 34676737 98 950510 7616513 192 KB

128

1024 19 14 44 9 7 685898 2836481 31 28830 249857 120 KB

21 8192 19 14 44 8 8 1730419 7026689 12 31766 270337 168 KB

131072 19 14 44 9 8 7786884 31221761 17 180007 1454081 197 KB

1024 19 14 44 9 7 685898 2836481 31 28886 249857 129 KB

23 8192 19 14 44 8 8 1730419 7026689 12 31827 270337 182 KB

131072 19 14 44 9 8 7786884 31221761 17 180351 1454081 214 KB

1024 19 14 44 9 7 685898 2836481 31 28912 249857 134 KB

24 8192 19 14 44 8 8 1730419 7026689 12 31855 270337 189 KB

131072 19 14 44 9 8 7786884 31221761 17 180512 1454081 222 KB

1024 19 14 44 9 7 685898 2836481 31 28961 249857 144 KB

26 8192 19 14 44 8 8 1730419 7026689 12 31909 270337 203 KB

131072 19 14 44 9 8 7786884 31221761 17 180816 1454081 238 KB

Table 8: Parameter sets for Chipmunk for a fixed ring dimension n = 512.

19 https://github.com/GottfriedHerold/Chipmunk
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