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Abstract
Graph convolutional networks (GCNs) are gaining popularity
due to their powerful modelling capabilities. However, guaran-
teeing privacy is an issue when evaluating on inputs that con-
tain users’ sensitive information such as financial transactions,
medical records, etc. To address such privacy concerns, we
design Entrada, a framework for securely evaluating GCNs
that relies on the technique of secure multiparty computa-
tion (MPC). For efficiency and accuracy reasons, Entrada
builds over the MPC framework of Tetrad (NDSS’22) and en-
hances the same by providing the necessary primitives. More-
over, Entrada leverages the GraphSC paradigm of Araki et al.
(CCS’21) to further enhance efficiency. This entails design-
ing a secure and efficient shuffle protocol specifically in the
4-party setting, which to the best of our knowledge, is done
for the first time and may be of independent interest. Through
extensive experiments, we showcase that the accuracy of se-
cure GCN evaluated via Entrada is on par with its cleartext
counterpart. We also benchmark efficiency of Entrada with
respect to the included primitives as well as the framework
as a whole. Finally, we showcase Entrada’s practicality by
benchmarking GCN-based fraud detection application.

1 Introduction

Graph convolutional networks (GCNs) are gaining impor-
tance as a powerful machine learning technique for leveraging
graph-structured data. It finds use in a diverse set of applica-
tions, including traffic prediction, rumour detection, targeted
advertising and recommendation systems, to name a few. The
massive size of the input graph and multiple layers of the neu-
ral network results in GCNs being computationally intensive.
Hence, various platforms, such as Neptune ML by Amazon,
offer GCN training and inference as a service, where a data
owner (client) provides its input data in clear to the hired
servers that carry out the computations on behalf of the client.
However, the input may comprise private information such

∗“Entrada” in Spanish means an expedition into unexplored territory.

as the graph topology, node/edge features, etc., that the client
may not wish to disclose to the servers. Such threats to pri-
vacy are evident when dealing with data with respect to health
records [26], social networks [25], financial transactions [17],
etc. This necessitates designing techniques that allow clients
to outsource the computation such that their inputs remain
private while enabling servers to operate on the private inputs.
Although paradoxical, such privacy-preserving evaluation of
GCNs can be achieved via MPC.

MPC is a technique that allows a set of n mutually distrust-
ing parties to jointly evaluate a function on their private inputs.
Even in the presence of an adversary that corrupts at most
t out of the n parties, MPC guarantees that nothing beyond
the function output is revealed. In the context of secure GCN
evaluation, this translates to MPC enabling the following. The
hired servers that offer computing facilities enact the role of
the parties in the MPC protocol. The client secret-shares its
data among the hired servers, i.e., data is distributed among
the servers in a manner such that no single server or a subset
of servers can learn the data on clear. The servers run MPC
protocols designed to securely evaluate GCNs on the secret-
shared data. The output of the computation continues to be
in secret-shared form among the servers, which can then be
reconstructed towards the intended entity. Since the client’s
sensitive data remains hidden throughout the process, the so-
lution caters to the privacy requirement of the client. In fact,
there arise scenarios where data required to evaluate the GCN
could be distributed among multiple clients, each of which
regards its data as private. We illustrate this with the example
of fraudulent account detection in banks.

Consider the banking sector comprising many different
banks. Each bank has several associated accounts, and there
are financial transactions that are executed between the ac-
counts within the same bank or across two different banks.
Some accounts may be fraudulent, and it is important to detect
them in time to prevent damages caused by the fraud. Banks
would be interested in identifying such fraudulent accounts
by using the transaction data and information regarding ac-
counts that are already known to be fraudulent. Moreover,
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since fraudulent accounts constitute only a small fraction of
the accounts in a bank, it is desirable for the banks to pool
their data together and facilitate more accurate identification
of fraudulent accounts. This can be realized via GCNs, where
bank accounts constitute the nodes in the graph, while trans-
actions between the nodes correspond to an edge. Some of the
nodes are labelled as fraudulent, while the rest are unlabelled.
Each node will also be associated with additional information,
say transaction history, date of account creation, etc., that act
as the features associated with the node. The goal is to train
a GCN model on this transaction graph using the labelled
nodes and features, to facilitate labelling the unlabelled nodes
of the graph. This is referred to as the task of node classifi-
cation. Observe that GCN evaluation requires knowledge of
the global transaction graph. In practice, the graph is held in
a distributed fashion, where each bank is only aware of the
transactions associated with accounts within the bank. Thus,
each bank only possesses a partial view of the transaction
graph that comprises a subset of nodes and the edges asso-
ciated with these nodes. This necessitates cooperation from
multiple banks. However, banks may not wish to reveal their
view of the transaction graph since it contains highly sensitive
data. Thus, there is a need for designing a privacy-preserving
solution that allows securely evaluating GCN on the global
transaction graph while ensuring the privacy of the banks’
view of the transaction graph.

MPC protocols are known to have an efficiency overhead
in comparison to cleartext computation. Hence, for compute-
intensive GCNs, it is imperative to design efficient MPC
protocols. We note that works in the literature look at securely
computing neural networks (NN) via MPC [22, 23, 31];
however, GCNs have not been well explored. Prior works
that explore GCNs only consider performing secure inference
over relatively older GCN models [37]. Although one may
consider extending these works to securely realize GCNs,
they either lack the necessary primitives or the desired level of
security, efficiency and accuracy. Elaborately, several works
trade off accuracy for efficiency by relying on MPC-friendly
alternatives for non-linear functions [10, 23, 31]. Instead, we
strive to design accurate protocols for GCN evaluation while
not compromising on efficiency. To aid in this, we make
several design choices. It is well known that operating with a
small number of parties (with an honest majority) allows for
designing efficient protocols [11, 22, 23]. Further, protocols
designed to operate on the ring algebraic structure have better
efficiency than protocols designed for a field [12, 13]. Since
many real-world applications, such as prediction for health-
care and traffic, demand a fast response time, our protocols are
cast in the preprocessing paradigm. This enables offloading
heavy input-independent computations to a preprocessing
phase, paving the way for a fast input-dependent online phase.
Since the 4-party computation framework of Tetrad [23]
satisfies all of these properties and is known to outperform
other frameworks in small-party (honest-majority) setting,

we choose to build Entrada over Tetrad. Further discussion
on the choice of Tetrad appears in §2.

1.1 Our contributions
Consequent to the above discussion, we design Entrada, a
secure framework for efficiently evaluating GCNs. To the best
of our knowledge, this is done for the first time. Entrada not
only allows performing secure inference, but it also supports
secure training of GCNs. Further, Entrada enables operating
on homogeneous as well as heterogeneous GCN, where the
former operates on a graph comprising a single type of edge,
while the latter accounts for multiple types of edges.

To highlight the performance of Entrada, we carry out ex-
tensive experiments. Entrada provides an improved GCN
accuracy of 79.3% in comparison to 74.1% of Tetrad, while
cleartext computations provide an accuracy of 79.9%. We note
that the reduced accuracy of Tetrad is due to its reliance on
approximate variants for non-linear functions (e.g., Softmax),
as opposed to Entrada which uses the accurate versions for
the same. With respect to efficiency, Entrada witnesses gains
of up to 4× in online run time, and three orders of magnitude
in preprocessing time over Tetrad for GCN training. We also
showcase the practicality of our solution by benchmarking
fraud detection algorithms of [41], [27]. These improvements
are a result of two-fold contributions. First, Entrada enhances
Tetrad by adding new primitives and improving existing prim-
itives. Second, specific to GCN, we leverage GraphSC frame-
work and bring in new contributions therein, including the
shuffle primitive. We elaborate on these below.
Enhancing Tetrad Entrada enhances Tetrad by providing
support for efficient realizations of prefix OR, double bit-
injection, exponentiation, division, and inverse square root.
While most of these are well-studied [7, 18, 21, 23], our op-
timizations aid in obtaining their efficient realizations. This
makes Entrada a more accurate, comprehensive and efficient
framework for PPML in comparison to Tetrad.
Tailoring GraphSC for GCN To further enhance efficiency,
we leverage the GraphSC paradigm [5, 32]. GraphSC is a
generic framework for efficiently realizing secure compu-
tations over graphs. It takes as input the underlying graph
stored as a list G of nodes (V ) and edges (E), where each
entry G[i] in the list is associated with data or state of the
correspoding node/edge. It considers graph algorithms that
can be expressed as message-passing algorithms, where the
latter involves updating data/state of the vertices and edges
of the graph in an iterative manner. Thus, using GraphSC,
the required updates in each iteration of the message-passing
algorithm are defined in terms of the primitive operations
of Scatter and Gather. These primitives facilitate sending
(Scatter) and receiving (Gather) messages across edges when
scanning through the entries in G, as required in the message-
passing algorithm. In this way, GraphSC entails translating the
graph algorithm as a sequence of Scatter-Gather primitives.
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Further, to ensure that the invocations of Scatter-Gather do
not leak information regarding the graph topology, G must be
securely shuffled prior to each such invocation. Thus, securely
realizing the graph algorithm reduces to securely shuffling G
and invocations of Scatter-Gather primitives across multiple
rounds by instantiating operations within them using desired
MPC protocols. Apart from operating on an efficient graph
representation, GraphSC framework also showcases how a
multiprocessor setting can be leveraged to realise parallel vari-
ants of the Scatter-Gather primitives, and further improve
the efficiency. However, GraphSC paradigm does not specify
operations within Scatter-Gather as they are specific to the
graph algorithm. Thus, our contribution entails–
(i) Cleartext to message-passing: Identifying the relevant
cleartext computations in GCNs that can benefit from
GraphSC and can be rendered as message-passing algorithms.
(ii) Message-passing to GraphSC: Redefining the graph al-
gorithm in terms of the Scatter-Gather primitives as well
as defining the GCN specific computations that are required
within these Scatter-Gather primitives. The Scatter-Gather
primitives are then securely realized via Entrada.
(iii) Secure shuffle: Designing a secure shuffle protocol as
required for GraphSC, which is done for the first time in the 4-
party setting. The protocol has an amortized communication
of 3N ring elements (where N denotes the size of the vector
to be shuffled) and 1 round of interaction in the online phase.
Note that the secure shuffle protocol forms an integral part of
various applications such as anonymous broadcast [15], secure
sorting [5], etc. Hence, the inclusion of shuffle makes Entrada
a versatile framework and opens up avenues for exploring its
use in other shuffle-based application scenarios.
Concretely, while the contribution of ‘Enhancing Tetrad’
brings in an improvement of 1.7× in the online run time
of GCN training over Tetrad (and 486× in preprocessing run
time), additionally ‘Tailoring GraphSC’ further enhances the
online efficiency up to 4× (5782× for preprocessing). In this
way, Entrada is not only a more versatile framework than
Tetrad, but is also more efficient.

Input sharing To enable multiple clients to efficiently secret-
share their input to the servers, we design a secure protocol
for input sharing. The input comprises the graph represented
as an adjacency matrix and data (features) associated with the
vertices of the graph. Note that a client’s input only comprises
a partial view of the entire graph (i.e., a subset of vertices
together with the corresponding data, and their associated
edges). Hence, ensuring that the input generated at the servers
indeed corresponds to an adjacency matrix, and the associ-
ated data adheres to the structure as required for a GCN is
challenging. Designed independent of the graph algorithm,
our input-sharing protocol to generate secret-shares of the ad-
jacency matrix and the associated data may find use in other
graph-based applications too.

Note that GraphSC operates on a list representation of the
graph. Hence, we additionally describe the method to translate

the adjacency matrix-based representation of the graph, gener-
ated as part of the input-sharing phase in secret shares, into its
list representation. Our shuffle protocol also finds use in per-
forming this translation. Note that the adjacency matrix has
|V |2 entries that account for every possible edge while the list
representation only stores information regarding edges that
are actually present. Hence, generating the (|V |+ |E |)-sized
list representation of the graph from the |V |2-sized matrix
representation while hiding the graph topology is challenging.

2 Preliminaries

We use the following notation. Matrices are denoted by bold
font capital letters, such as M, where Mi j denotes the entry
in matrix M present in ith row and jth column. Vectors are
denoted by bold font small letters, such as v.

2.1 Graph convolutional networks (GCN)
The celebrated result of Kipf and Welling [20] showcases how
convolutions can be generalized to graphs. Let G = (V ,E)
denote a graph, where V is the set of n nodes, and E is the
set of edges. Let A denote the adjacency matrix of G of di-
mension n×n, and X denote the matrix of node features of
dimension n× f , where f denotes the number of features. The
authors propose a simple GCN model which allows learning
succinct representation of nodes in the graph. In the case of
node classification via GCN, the task is to assign labels to the
unlabelled nodes in G by learning from those nodes that are
labelled. To achieve this, the GCN model is trained using the
labelled nodes provided as input, which makes up the training
phase. This entails generating labels for the (already labelled)
nodes via the computations in the forward pass, and updating
the model parameters by accounting for the difference in the
generated labels and the true labels of the nodes via the com-
putations in the backward pass. The trained model can then
be used to perform inference (i.e., classification of unlabelled
nodes). Each of these is described in detail next.
Forward pass In the forward pass, node representations H(i),
for the ith layer are computed using the following equation1.

H(i) = g(i)(Â ·H(i−1)W(i−1)) (1)

Here g(i) denotes the activation function for layer i, and
H(0) = X, W(i) is the weight matrix specific to layer i and
Â = D̃−

1
2 ÃD̃−

1
2 . Further, Ã = A+ I denotes the adjacency

matrix with self-loops, and D̃ is the degree matrix for Ã (i.e.,
D̃ stores the number of incident edges in Ã as the diagonal
entry for each node). Matrices Â, Ã, D̃ are all of dimension
n× n. Specifically, the work of [20] considers a two layer

1GCNs have a multilayered architecture. Informally H(i) in the inter-
mediate layers captures the feature maps (properties) of the nodes, and its
dimensions may vary across the layers. For the final layer, it captures the
likelihood of a node being mapped to a particular label and hence has the
dimension of n× c where c denotes the number of class labels.
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instantiation of Eq. (1), where the GCN model Z is given as a
function of X,A and is parameterised by the weight matrices
W(0),W(1) as given in Eq. (2).

Z =

H(2)︷ ︸︸ ︷
Softmax(Â ·ReLU(ÂXW(0))︸ ︷︷ ︸

H(1)

W(1)) (2)

Here, W(0) has a dimension of f × h, where h denotes the
number of feature maps, whereas W(1) is of dimension h× c,
where c is the number of labels to which the nodes of the
graph will be mapped.
Backward pass Since the weight matrices are trainable pa-
rameters, these are updated in the backward pass by account-
ing for the error in the computed output representation Z and
the true representation Y, with respect to the labelled nodes
in G . This is captured using the cross-entropy error, denoted
as L , as given in Eq. (3). Here, both Z,Y are of dimension
n× c, and L denotes the index set of labelled nodes in G and
hence is a subset of {1, . . . ,n}.

L =−∑
i∈L

c

∑
j=1

Yi j lnZi j (3)

Given loss function L , derivative of L with respect to weight
matrix W(0), and derivative of L with respect to W(1) is com-
puted. It is used to update weight matrices via stochastic
gradient descent optimizer [20] and completes backward pass.
Traning and inference Computing the forward pass, fol-
lowed by the backward pass, constitutes one epoch of the
training phase. Computations over several such epochs mini-
mize L , thereby yielding the trained weight matrices. Having
generated the trained model, performing GCN inference for
node classification is now possible by computing the forward
pass (Eq. (2)), using the obtained weight matrices2.
Heteregeneous GCN While the GCN of [20] deals with a
single type of edge, the work of [27] designs heterogeneous
GCNs. The main difference lies in the fact that the underlying
graph now consists of different types of edges, D . Specifically,
G = (V ,E) can now be seen as a collection of |D| subgraphs
{Gd = (V ,Ed)}, where each subgraph comprises all the ver-
tices of G , but edges of only type d ∈D . The heterogeneous
graph representation {Gd} leads to |D| adjacency matrices
{Ad}, each of dimension n×n. Thus, the heterogeneous GCN
computation [27] is given as H(0) = 0 and for i = 1, . . . ,T :

H(i) = g(i)
(

X ·W(i−1)+
1
|D|

|D|

∑
d=1

Ad ·H(i−1) ·W(i−1)
d

)
(4)

Here, 0 denotes the matrix of all 0s of dimension n× c where
c is the number of labels, T denotes the number of layers,
and g(i) denotes the non-linear activation function for layer i.
W(i),W(i)

d are the ith layer weight matrices of dimension c×c,
where the latter additionally depends on the edge type d. To
draw an analogy to the GCN of Kipf and Welling [20], note
that the final output Z computed in [20] is equivalent to H(T )

2Since Softmax is used to normalize the final result between [0,1], note
that inference can be performed without it.

which constitutes the final output for heterogeneous GCNs.
Further, as seen from Eq. (4), heterogeneous GCNs addition-
ally require summing the values over each of the subgraphs to
account for the heterogeneity in the edges. The cross-entropy
error for the backward pass is computed similarly to the GCN
of [20], as given in Eq. (3). In our work, we take T = 2 and
let the activation function g(1),g(2) be ReLU for the first layer
and Softmax for the second layer, respectively.

2.2 Secure multiparty computation (MPC)

On the choice of Tetrad As described earlier, small-party
MPC protocols with 2, 3, and 4 parties have been gaining
importance lately due to the various customizations they
allow resulting in highly efficient protocols. Honest majority
among the parties (i.e., at most minority of the parties are
corrupted by an adversary, leaving the majority of them being
honest) is known to further enhance the efficiency since
honest majority protocols do not require heavy public key
primitives, which are otherwise required when there exists
a dishonest majority among the parties. This rules out the
2-party computation (2PC) setting. Among 3PC and 4PC, we
note that SWIFT [22] forms the state-of-the-art robust 3PC
framework in the preprocessing paradigm that enables PPML
inference, whereas Tetrad [23] is a robust 4PC framework that
supports PPML inference as well as training. It is known that
Tetrad outperforms SWIFT not only in terms of communi-
cation cost but also in terms of computation cost. Elaborately,
the multiplication protocol of Tetrad has a communication
cost of only 2 ring elements in the preprocessing phase,
whereas SWIFT has a cost of 3 elements. Further, SWIFT
relies on computationally heavy distributed zero-knowledge
computation protocols, which are not required in Tetrad. This
makes Tetrad a more efficient framework than SWIFT for
computationally heavy applications such as GNNs. Moreover,
since both the frameworks securely realize various primitives
such as ReLU, Softmax, etc. by relying on the same
algorithms, both Tetrad and SWIFT are on par in terms of the
accuracy of these primitives. Moreover, Tetrad outperforms
other 4PC frameworks such as [10] not only in terms of effi-
ciency but also in terms of security guarantees. Further, it also
outperforms the 4PC framework of [11] in terms of efficiency.
In this way, Tetrad forms the state-of-the-art framework in
the 4PC setting. Hence, keeping in mind the goal of attaining
an efficient protocol while not compromising on accuracy, we
choose to build Entrada over the 4PC framework of Tetrad.
System and threat model We consider secure outsourced
computation in the 4-party setting of Tetrad [23], where four
hired servers enact the role of parties P = {P0,P1,P2,P3}. We
let A denote a static malicious probabilistic polynomial time
adversary which corrupts at most one party in P . Each client
(possibly malicious) secret-shares its input among servers,
who evaluate the MPC protocol to obtain the secret-shared
output. The output is then reconstructed towards the client.
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Similar to Tetrad, our constructions are secure in the real-
world/ideal-world simulation paradigm. Further, Entrada,
similar to Tetrad, enables achieving two different levels of se-
curity: (i) fairness—depending on adversary’s misbehaviour,
either all parties obtain the output of the computation, or
none do, and (ii) robustness—regardless of adversary’s misbe-
haviour, all parties are guaranteed to obtain the output of the
computation. In the remainder paper, we focus on describing
robust protocols. Their fair variants can be attained easily and
is described in A.
Overview of Tetrad [23] We begin with describing the secret-
sharing semantics in Tetrad. A value v ∈ Z2ℓ is said to be
secret-shared (or J·K-shared) if there exists mask λv ∈ Z2ℓ

and masked value mv ∈ Z2ℓ such that mv = v+ λv is held
by parties in {P1,P2,P3}, and λv is (3, 1) replicated secret-
shared (or ⟨·⟩-shared) among parties in {P1,P2,P3}, and all
its shares are known on clear to P0. Elaborately, there exist
values λ1

v,λ
2
v,λ

3
v,∈ Z2ℓ such that λv = λ1

v + λ2
v + λ3

v , which
together with mv is distributed among the parties as follows:
P0 holds λ1

v,λ
2
v,λ

3
v; P1 holds mv,λ

1
v,λ

3
v; P2 holds mv,λ

2
v,λ

3
v;

and P3 holds mv,λ
1
v,λ

2
v . Linear operations such as Jc1x+c2yK

given JxK,JyK where c1,c2 ∈ Z2ℓ are public constants can
be performed non-interactively by computing c1JxK+ c2JyK.
Boolean secret-sharing over Z2 , denoted as J·KB, is similar
to J·K except that addition operation is replaced with XOR.
In general, the Boolean world is analogous to the arithmetic
world, with arithmetic addition and multiplication operations
being replaced with Boolean XOR and AND. Arithmetic
equivalent of a bit b in ring Z2ℓ is denoted as bR.

We rely on several protocols provided in Tetrad such as
joint message passing (Πjmp), joint sharing (Πjsh), multipli-
cation, to name a few, which are described in Table 8 (§A).
Tetrad enables non-interactive generation of common random
values among parties via shared PRF keys generated during
a one-time setup phase (abstracted via an ideal functionality
Fsetup in Fig. 7). This facilitates non-interactive generation of
J·K and ⟨·⟩-shares for random values.

2.3 GraphSC paradigm

Let G (V , E , Data) denote a data augmented graph, where V
denotes the set of vertices (or nodes, used interchangeably), E
is the set of edges and Data is a set of user-defined data values
associated with each vertex and edge of the graph. GraphSC
operates on a list based representation of the data augmented
graph such that each entry in the list G stores information
corresponding to the vertices and edges in the graph. The
O(|V |+ |E |) space complexity of G makes it an efficient
alternative to the O(|V |2) representation via matrix. Given
G, evaluating a graph algorithm entails multiple invocations
of the primitive operations of Scatter and Gather. The opera-
tions in Scatter allow the vertices to propagate information
through the edges, while that in Gather allow aggregating this
information at the vertices. Efficiently performing Scatter

requires ordering the entries in G such that each entry cor-
responding to a vertex is followed by entries corresponding
to its outgoing edges, known as source ordering. This al-
lows linearly scanning through G to perform a Scatter across
all the vertices. Similarly, Gather requires ordering G such
that all entries corresponding to the incoming edges appears
before the corresponding vertex, known as destination order-
ing. A linear scan through G allows to aggregate data at all
the vertices via Gather3. In this way, message-passing graph
algorithms are expressed as a composition of Scatter-Gather.

The GraphSC paradigm [5, 32] describes a way to securely
evaluate graph algorithms by providing secure realizations
of the Scatter-Gather primitives. To perform secure compu-
tation over the graph while hiding its topology, G is secret-
shared entry-wise between the computing parties. Each entry
in G corresponding to a vertex v ∈ V is encoded as a tuple
(v,v,1,data) and that of an edge (u,v) ∈ E is encoded as
a tuple (u,v,0,data). The third entry in each tuple is a bit,
isV, which equals 1 for a vertex and 0 otherwise. Once se-
cret shared, the parties cannot distinguish between shares of
a vertex entry and that of an edge. Rather than relying on
secure sort to switch between source and destination order-
ing as required of Scatter and Gather, [5] observes that an
efficient alternative is to rely on a secure shuffle followed
by an insecure sort (where only the result of comparing two
secret shared values is revealed). Moreover, the insecure sort
is required to be performed only once in the beginning, sub-
sequent to which, the public permutation (obtained as output
from the insecure sort) can be used to sort G, non-interactively.
This change brings in significant efficiency improvements to
the GraphSC paradigm in [32]. An illustration of the opera-
tions involved in GraphSC paradigm of [5] is given in Fig.
1. The efficiency can be further enhanced via the parallel
variants of Scatter-Gather described in [32] that leverage a
multiprocessor setting. This reduces the O(|V |+ |E |) com-
plexity required for the linear scan to a sub-linear solution in
the multiprocessor setting. We refer interested readers to [32]
for further details of the parallel variant and §A for summary
of the GraphSC paradigm.

3 Secure GCN

Recall that while securely evaluating GCNs, the inputs com-
prise the matrices D̃, Ã, Â, X and Y, in secret shares. We
begin by describing the input-sharing phase which comprises
the steps to obtain these matrices (in secret-shares) from the
clients. Following this, we discuss the steps to securely eval-
uate GCN. Since output reconstruction follows from Tetrad,
we do not highlight the same.
Input sharing This phase involves generating J·K-shares of
A,X,Y. Given these matrices, the other inputs required for

3We assume data is propagated through outgoing edges and aggregated
via incoming edges.
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v1 v2 v3 v4 e12 e13 e34List G

v2 e23 e13 v1 e23 v3 e34 v4 Insecure Sort
 v1 e12 e13 v2 e23 v3 e34 v4

(PUBLICLY KNOWN MAPPING)

Order-A

e13 e12 v3 v4 e23 v1 v2 e34 v1 e12 v2 e13 e23 v3 e34 v4Order-B Insecure Sort


(PUBLICLY KNOWN MAPPING)

Source Ordering
(as required for Scatter)

Destination Ordering
(as required for Gather)

v1

v2 v3

e12

e23

e13

Graph

v4

e34e23

Denotes performing a secure shuffle
under the given permutation 

Figure 1: Computations via GraphSC. Note that each G entry vi is a tuple (vi,vi,1,Datai) and entry ei j is a tuple (vi,v j,0,Datai j).

GCN evaluation, i.e., D̃, Ã, Â, can be generated without the
involvement of the client. Recall that in a distributed setting,
the client may possess only a partial view of the input, i.e.,
information regarding some k nodes in the graph which corre-
spond to k rows of A,X and Y (see the use case in §1). Thus,
each client secret-shares entries corresponding to the rows
they possess towards the servers. Having received the entries
of all rows from the clients, the servers generate the complete
matrices by stacking up the rows (assuming the mapping be-
tween clients and rows of the matrices is known to servers).
We give a high-level overview of the challenges in achieving
this and their resolutions next.

For each of the inputs, servers must ensure that (a mali-
cious) client C consistently J·K-shares each element x in the
rows of the input matrix it possesses. This can be performed
similar to [22], where– (i) servers non-interactively generate
⟨·⟩-shares of the mask λx ∈ Z2ℓ and communicate the same
to the client, (ii) communication complexity is reduced by
ensuring one of the servers communicates only the hash cor-
responding to multiple shares, (iii) owing to the presence of
at most one corrupt server, taking a majority over the received
values enables C to obtain the correct value for each λi

x. C
then computes λx = λ1

x+λ2
x+λ3

x , mx = x+λx, and sends mx

to servers P1,P2,P3. To ensure that C has sent the consistent
mx to P1,P2,P3, they exchange the value received from C
among themselves. Since at most one among P1,P2,P3 can be
corrupt, there will exist a majority in the exchanged values,
which is taken as the final value for mx.

For structured inputs like A and Y, additional checks are
required. To verify if the resultant JAK is symmetric, servers
reconstruct A+R, and verify if this is symmetric. Here R is
a random symmetric matrix used to mask A from the servers
and can be generated non-interactively (relying on keys estab-
lished via Fsetup, §2.2). Next, to check if each entry in A is a
0/1, servers check if A2

i j−Ai j = 0. Similarly, since each row
of Y has at most one position set as 1 (and all others as 0s),
servers need to verify if the ith row {Yi1,Yi2, . . . ,Yic} satisfies
this condition. For this, following along the idea of [28], the

servers check if
(

∑
c
j=1 Yi j · r j

)2
−
(

∑
c
j=1 Yi j · r2j

)
= 0. Here,

r j ∈ Z2ℓ are random public values. Having generated JAK,
generation of JÃK = JAK+ JIK can happen non-interactively.
J·K-shares of diagonal entries of D̃ are also generated non-
interactively by summing entries in the corresponding rows
of JÃK. Finally, computing J·K-shares of Â = D̃−

1
2 ÃD̃−

1
2 , in-

volves computing element-wise inverse square-root of diag-
onal elements of D̃ via secure inverse square-root protocol
followed by matrix multiplications. Further details about input
sharing are elaborated in §B.

Secure evaluation of GCN This entails servers securely
computing secret-shares of Z via the forward pass followed
by computing the derivative of L with respect to the weight
matrices, as defined in the backward pass. Assuming the in-
puts are available in secret-shares, servers begin by initializing
random weight matrices W(0) and W(1), which can be done
non-interactively using keys established via Fsetup (see §2.2).
Secure protocols are then required for matrix multiplication,
ReLU and Softmax to compute shares of Z. Additionally, a
secure protocol for DReLU is required during back propa-
gation to compute the derivative of loss with respect to the
weights

(
δL
δW

)
. Next, using the secret-shares of Z and

(
δL
δW

)
,

servers update weight matrices. Although [20] relies on gra-
dient descent to update weights, due to drawbacks such as
slow convergence and the possibility of converging to a local
minimum, we rely on the optimized alternative of Adam [19]
optimizer. The weight update computations within Adam, and
the overall steps to evaluate a GCN are summarised in Fig. 2.

To securely evaluate GCN, each step in Fig. 2 is realized via
its secure counterpart. Elaborately, for matrix multiplication
and ReLU, we rely on the secure protocols from Tetrad [23].
Although Tetrad does not give an explicit protocol for DReLU,
we note that it can be computed as DReLU(x) = 1(x > 0)
using the comparison protocol from Tetrad. For Softmax, we
observe that Tetrad relies on an approximate variant for it.
Keeping GCN accuracy as needed for real-world applications
in mind, we instead compute Softmax(x)= ex/(∑i exi), which
is the more accurate definition. This computation requires
secure protocols for exponentiation and division. While Tetrad
does not support exponentiation, for division it relies on a
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garbled circuit (GC) based approach, which is known to be
expensive in terms of communication cost [4, 16]. Hence,
we provide efficient protocols for exponentiation as well as
division. Moreover, Tetrad does not provide support for using
Adam optimizer since it lacks square root primitive. Hence,
we also design secure and efficient protocols for the same. We
elaborate on our additions over Tetrad in §5. Although our
approach provides efficiency and accuracy improvements in
comparison to realizing GCNs via Tetrad (using SGD), we
additionally incorporate the GraphSC paradigm in Entrada
to further enhance efficiency.

Training Phase
Input: Â (normalized adjacency matrix of dimension n×n), X
(feature matrix of dimension n× f ), Y (matrix of true output for
labelled nodes of dimension n× c), #epochs (number of epochs).
Output: W(0),W(1) (trained weight matrices for layer 0,1, re-
spectively).

//Initialization
– Randomly sample W(0) ∈ R f×h, and W(1) ∈ Rh×c, where R

denotes the set of real numbers. Set β1 = 0.9,β2 = 0.999,M(0) =
M(1) = 0,V(0) = V(1) = 0, ε = 10−8.
For t in range(#epochs) do:

//Forward pass
– H(0) = ReLU(ÂXW(0)), In = ÂH(0)W(1),

Z = Softmax(In)
//Backward pass

–
(

δL
δW(0)

)
= (H(1))T(Z−Y)

–
(

δL
δW(1)

)
= (ÂX)T[DReLU(In)⊙ Â(Z−Y)(W(1))T]

//Weights update

– M(i) = β1M(i)+(1−β1)
(

δL
δW(i)

)
for layer i ∈ {0,1}

– V(i) = β2V(i)+(1−β2)
(

δL
δW(i)

)2
for layer i ∈ {0,1}

– M̂(i) = M(i)

1−(β1)t and V̂(i) = V
1−(β2)t , for layer i ∈ {0,1}

– W(i) = W(i)−M̂(i)
(

α√
V̂(i)+ε

)
, where α is learning rate.

Inference Phase
Input: Â (normalized adjacency matrix of dimension n×n), X
(feature matrix of dimension n× f ), W(0),W(1) (trained weight
matrices of dimensions h× f and f × c, respectively).
Output: Z (matrix of dimension n×c that captures the likelihood
of unlabelled nodes belonging to each class/label).
– Z = Â ·ReLU(ÂXW(0))W(1)

Algorithm GCN evaluation

Figure 2: Steps involved in training and inference phase of GCN

4 GCN evaluation via GraphSC

Recall that computations via GraphSC require performing
shuffles and invocations of Scatter-Gather operations across
multiple rounds. Since we instantiate the MPC for GraphSC
via Entrada, we first describe our shuffle protocol over the

same. Following this, we discuss the components of GCN
evaluation that can be cast in the message-passing paradigm,
and subsequently define the Scatter-Gather primitives for the
same. This entails defining GCN computations in a vertex-
centric manner, unlike matrix operations, as described in §2.1.
While the forward pass of GCN can be entirely computed
within GraphSC, for the backward pass, the computation of
derivatives of loss function benefits from GraphSC paradigm.
Thus, other computations such as updating the weight ma-
trices are performed outside GraphSC. We conclude by dis-
cussing the steps for generating the shares of the graph list G,
as required for GraphSC, from the matrix representation.

4.1 Secure shuffle
Consider a J·K-shared N-sized vector v, where each element
vi ∈ v is J·K-shared. The goal of secure shuffle protocol is
to generate a J·K-shared vector u such that it comprises the
elements in v shuffled under a secret random permutation π.
We denote this operation as u= π(v), where u is the vector
of elements vπ(1),vπ(2), . . . ,vπ(N). To ensure that π is secret
and hidden from all parties, following along the lines of [24]
we define π to be a composition of four permutations π =
π0 ◦π3 ◦π1 ◦π2 such that each party Pi misses the permutation
πi, and ◦ denotes the composition operation. The justification
for the ordering among the permutations is made clear later
and follows from the construction of our shuffle protocol.
Since the protocol heavily relies on the sharing semantics of
Tetrad and Πjmp (enables Pi,Pj ∈ P to send v to Pk such that
Pk receives the correct v, or a conflicting pair of parties among
Pi,Pj,Pk is identified), Πjsh (enables Pi,Pj ∈ P to generate JvK
where v ∈ Z2ℓ is held by Pi,Pj), we refer the readers to §A to
familiarize themselves with the same.

As per J·K-sharing semantics, u=mu−λu, where λu is ⟨·⟩-
shared. Thus, to generate JuK, our goal is to generate mu,λu ∈
ZN

2ℓ such that u = π(v) = π(mv−λv) = π(mv)− π(λv) =
mu−λu, and λu is ⟨·⟩-shared. We explain the generation of
JuK into two parts– (1) assuming that parties have generated
J·K-shares of w = π′ (v) where π′ = π3 ◦π1 ◦π2, we explain
how J·K-shares of u= π0 (w) can be generated (observe here
that u= π(v) = π0 (w) holds true since π = π0 ◦π′), (2) we
then explain how J·K-shares of w = π′ (v) can be generated
where π′ = π3 ◦π1 ◦π2.

We now describe how to realize (1) assuming that J·K-
shares of w are available, i.e., w =mw−λw where λw is ⟨·⟩-
shared and can be written as λw = λ

1
w+λ

2
w+λ

3
w. Observe that

u= π0 (w) = π0 (mw−λw) = π0(mw)−π0(λ
1
w)−π0(λ

2
w)−

π0(λ
3
w). Thus, J·K-shares of u can be generated by linearly

combining the J·K-shares of π0(mw),π0(λ
1
w),π0(λ

2
w),π0(λ

3
w).

To generate the J·K-shares of π0(mw), observe that P1,P2,P3
hold π0 as well as mw. Hence, parties can generate J·K-shares
of π0 (mw) non-interactively in the online phase by retaining
the masked value as π0(mw) and setting the mask as 0 (i.e.,
⟨·⟩-shares of λ are set to be 0). On the other hand, each of
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the remainder terms π0(λ
i
w) for i ∈ {1,2,3} is held by a dis-

tinct pair of parties in P1,P2,P3. Hence, in the preprocessing
phase, the corresponding pair of parties invoke Πjsh to gener-
ate J·K-shares of π0(λ

i
w) among all the parties. This completes

generation of J·K-shares of u= π0(w).
We now explain how J·K-shares of w = π′ (v) are gen-

erated where π′ = π3 ◦ π1 ◦ π2 and v = mv − λv such that
λv is ⟨·⟩-shared. One of our main goals in realizing this is
to minimize the complexity of the online phase. Towards
this, our high level approach to generate J·K-shares of w is
to generate ⟨λw⟩ non-interactively, and define mw as mw =
π′ (mv)−π′ (λv)+λw. During the generation of the J·K-shares
of w, we maintain the invariant that every message to be com-
municated is held by two parties, which allows invoking the
Πjmp protocol. This guarantees correctness of the generated
shares since invocation of Πjmp ensures that any misbehaviour
by a malicious party can be detected. In the following, we
first explain how ⟨·⟩-shares of λw can be generated followed
by generation of mw towards P2,P1,P3. Since composition of
permutations in π′ = π3 ◦π1 ◦π2 is non-commutative, genera-
tion of mw is handled differently towards each party.

Generation of ⟨·⟩-shares of λw. Relying on keys generated
via Fsetup, parties non-interactively generate ⟨·⟩-shares of λw

in the preprocessing phase, i.e., P0,P1,P3 sample λ
1
w ∈ ZN

2ℓ ,
P0,P2,P3 sample λ

2
w ∈ ZN

2ℓ , and P0,P1,P2 sample λ
3
w ∈ ZN

2ℓ .
Generation of mw towards P2. We begin with the case

of generating mw = π′ (mv)−π′ (λv)+λw towards P2. Con-
sider the first summand π′ (mv) = π3 (π1 (π2 (mv))). To com-
pute this term, P2 only misses π2. Thus, if π2 (mv) can be
made available to P2, it can compute the first summand.
Since π2 (mv) is held by both P1,P3, they can invoke Πjmp

to send π2 (mv) to P2. However, it is required that P2 does
not learn anything about π2. Hence, P1,P3 sample a ran-
dom r2 ∈ ZN

2ℓ , and instead send a2 = π2 (mv+ r2) to P2,
who can then compute π3 (π1 (a2)) = π′ (mv) + π′ (r2). In
the computation of mw, to remove π′ (r2) and account for
the missing summands π′ (λv) ,λ

1
w, P2 must be provided with

b2 = λ
1
w−π′ (λv)−π′ (r2). Obtaining b2 allows P2 to com-

pute mw = π3 (π1 (a2))+b2+λ
2
w+λ

3
w. Observe that since b2

is independent of the input, it can be generated towards P2 in
the preprocessing phase (as discussed later). Thus, generating
mw towards P2 requires communication of a single message
a2 in one round in the online phase.

Generation of mw towards P1. Similar to above, a simple
way of generating mw towards P1 is to now make P2,P3 send
π1 (a2 + r1) to P1, where r1 ∈ ZN

2ℓ is sampled randomly by
P2,P3, and serves as a mask to hide π1 from P1. Party P1
can apply π3 on the received value and add it with analo-
gous preprocessed terms (similar to b2) as described earlier
to obtain mw. However, this approach requires an additional
round of communication since P1 requires to wait until P2
receives a2 in the prior round. Instead, our approach is to
enable P1 to compute mw in the same round as P2. For this, in

the preprocessing phase we make available towards P2,P3 the
permutation πs ◦π1 ◦π2 where πs is a random permutation
known to P1,P3. Observe that presence of πs in πs ◦π1 ◦π2,
ensures that π2 remains hidden from P2. Given this permuta-
tion, generation of mw towards P1 proceeds as follows. P2,P3
compute and send a1 = πs (π1 (π2 (mv+ r1))) via Πjmp to P1.
Given b1 = λ

2
w−π′ (λv)−π′ (r1) is generated towards P1 in

the preprocessing phase (as discussed later), P1 can compute
mw = π3

(
π−1

s (a1)
)
+b1 +λ

1
w +λ

3
w. Note that P1 can com-

pute π−1
s since it has πs on clear. In this way, generating mw

towards P1 requires communicating the message a1 and no
additional rounds in the online phase.

Generation of mw towards P3. Having generated mw to-
wards P1,P2, they send it to P3 via Πjmp. Note that in scenarios
such as GraphSC, which demand several shuffle invocations,
sending of mw towards P3 with respect to all shuffle instances
can be performed in a single round, thereby amortizing the
cost of this round across several shuffle instances4. In such
scenarios, our shuffle protocol requires only a single round of
interaction per shuffle instance in the online phase. A pictorial
representation appears in Fig. 3, where arrows capture the
communication via Πjmp.

P3

P1 P2

Round 1

Round 2 (Amortized)


Inputs

Figure 3: Online phase of shuffle protocol for generating mw

where w = π′(v) and π′ = π3 ◦π1 ◦π2.

Generation of additional preprocessing data. To facilitate
the one-round online phase, we now discuss how additional
data such as πs ◦π1 ◦π2 and the terms b1,b2 can be generated
in the preprocessing phase. For P2,P3 to generate Π = πs ◦
π1 ◦π2, parties P0,P1,P3 randomly sample a permutation πs

5.
P0,P3 can then compute Π locally since they hold π1,π2, and
invoke Πjmp to send Π to P2.

For generating b1,b2, we extend the 3-party semi-honest
shuffle protocol of [5] to work in our 4-party malicious setting.
The modified protocol continues to have 2 rounds as in the
case of [5] which is possible due to the following observation.
The protocol of [5] takes as input ⟨·⟩-shares of a vector v and
outputs ⟨·⟩-shares of π′(v). Here, we can view π′= π3◦π1◦π2
which is shared among P1,P2,P3 such that parties P2,P3 hold
π1, parties P1,P3 hold π2, and parties P1,P2 hold π3. While
extending the protocol of [5] in the preprocessing phase of
our 4-party setting, we note that P0 has all the inputs held by

4Note that with respect to the framework of Tetrad, any communication
towards P3 can be deferred until output reconstruction. We refer to [23] for
further details.

5Steps for randomly sampling a permutation are elaborated in §C.1.
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P1,P2,P3. This allows P0 to compute all protocol messages
communicated in [5]. In this way, these messages can be
communicated by two senders, one of which is P0, by invoking
Πjmp. Use of Πjmp facilitates attaining malicious security.

We next describe our concrete protocol steps for generating
b2 = λ

1
w − π′ (λv− r2) towards P2. Observe that using the

protocol of [5] allows generating ⟨·⟩-shares of π′ (λv− r2).
However, the requirement is to generate λ

1
w−π′ (λv− r2) on

clear towards P2. Hence, we slightly modify the protocol
steps to instead generate this value on clear towards P2 which
entails providing P2 its missing ⟨·⟩-share of π′ (λv− r2) which
is masked with λ

1
w. Since the protocol takes as input ⟨·⟩-shares

of λv− r2, we first discuss how this is generated. Let α2 =
λv − r2, where r2 ∈ ZN

2ℓ is sampled randomly by P0,P1,P3.
Parties non-interactively generate ⟨·⟩-shares of r2 by P0,P1,P3
setting their common share as r2, and the other shares being
set as 0. Parties then generate ⟨·⟩-shares of α2 using ⟨·⟩-shares
of λv and r2, and the linearity property of ⟨·⟩-sharing. Given
⟨·⟩-shares of α2, the high-level overview of the protocol is
as follows. Parties non-interactively sample zi ∈ ZN

2ℓ for i ∈
{1,2,3}. Specifically, P0,P1,P3 sample z2, P0,P2,P3 sample
z1, while P0,P1,P2 sample z3. The zi’s serve as a random
mask to ensure that parties only see random values throughout
the protocol execution. Parties compute messages xi,yi for
i ∈ {1,2,3} such that the following invariant is maintained:
each xi +yi is always a shuffle of α2. The protocol proceeds
in rounds as described in Fig. 10. Note that all communicated
messages can be computed by P0, and hence are sent via Πjmp

which ensures security against a malicious adversary. This
communication from P0 is omitted in the figure. Correctness
of b2 follows by opening up the corresponding values of
xi,yi for i ∈ {1,2,3}. Observe that generating b2 towards P2
requires communicating 3 messages in 2 rounds.

The protocol proceeds analogously for the generation of
b1 towards P1, except that the computation happens with
α1 = λv− r1, and in the second round P2 sends y3 +λ

2
w to P1

(see §C.1 for the details). Note that generation of b1 towards
P1 can be performed in parallel to generating b2 towards P2,
and does not incur any additional rounds.

A schematic representation of the various parts in the gener-
ation of u is given in Fig. 9. The complete protocol for secure
shuffle appears in Fig. 13, Fig. 14. The communication and
round complexity of the shuffle protocol is provided in §C.1.
Security. Formal security proof appears in §F.

4.2 Scatter and gather primitives
For better readability, we define Scatter-Gather primitives
in cleartext, while their secure versions can be obtained us-
ing the secure protocols for the operations therein. Recall
that computation in the lth layer during the forward pass is
given as H(l) = g(l)(ÂH(l−1)W(l−1)), where g(l)(·) denotes
the activation function. H(0) is initialized to X, and the final
output Z = H(2). Although our goal is to compute H(l) via
Scatter-Gather, we will define Scatter-Gather to compute

H(1) = g(1)(ÂXW(0)). Computation of H(2) proceeds analo-
gously. Hence, we omit the superscript in H(1) and W(0).

We begin by describing the data components that are re-
quired to be stored at each entry G[i] in the DAG-list G (all in
secret-shares) to facilitate the computation. For a vertex entry,
G[i].deg stores the degree of the vertex which also accounts
for the self-loop (as defined in D̃) whereas G[i].deg−

1
2 stores

its inverse square-root. The ith row of X (represented as xi),
which denotes the feature vector associated with the ith vertex,
is stored at G[i].x. Note that these components are 0 if G[i]
represents an edge. Additionally, vectors G[i].dt,G[i].agg are
used to store intermediate results. We assume that W is ac-
cessible to all nodes in the graph. Given this information,
the goal of Scatter-Gather is to compute the ith row hi of
matrix H = g

(
ÂXW

)
and store it at vertex entry G[i].h. The

jth component of hi can be computed as:
hi j = Hi j = g((ÂXW)i j) = g(

n

∑
k=1

Âik (XW)k j)

= g

 n

∑
k=1

Ãik

deg
1
2
i ·deg

1
2
k

(XW)k j

 (5)

The matrix operations in Eq. (5) for computing hi j when
performed via GraphSC would involve aggregating (across
the various ks) the jth component of (xk ·W), scaling the ag-
gregated value by the degree terms, followed by application of
g(·) on the same. Observe that this aggregation accounts only
for the neighbours of node i since Ãik = 0 otherwise. Thus,

each node k can compute
xk ·W

deg
1
2
k

and scatter it across its edges.

The node i can then gather these vectors from its neighbors,

scale it using deg
− 1

2
i , and apply g(·) on this vector to generate

hi. In this way, one invocation of Scatter and Gather results
in populating G[i].h and accomplishes the computation of
H(1) = g(1)

(
ÂXW(0)

)
in a vertex-centric manner. Similarly,

Z = H(2) can also be computed. The formal protocols for
Scatter-Gather appear in Fig. 4, whose secure variant can
be obtained as described in §C.2. We remark that although
the definitions of Scatter-Gather have a linear complexity in
|V |+ |E |, their sub-linear variant can be obtained using the
technique of [33].

Scatter(G)

for i = 1 to |V |+ |E | do:
if G[i].isV then

v = (G[i].x) ·W
·(G[i].deg−

1
2 )

else
G[i].dt = v

Gather(G)

for i = 1 to |V |+ |E | do:
if G[i].isV then

G[i].h= g
(
(G[i].deg−

1
2 ) ·agg

)
agg = 0

else
agg = agg+G[i].dt

Figure 4: Scatter and Gather to compute H(1) =

g(1)
(

ÂXW(0)
)

in forward pass.
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Recall that in the backward pass, the derivative of the cross-
entropy loss with respect to the weight matrices is computed
using the output of the forward pass, Z, as well as the target
result Y for the training data. This is then used to update
the weight matrices W(0),W(1) via the Adam optimizer. We
will now showcase how the computation of the derivatives
(Eq. (6), Eq. (7)) can be performed efficiently via GraphSC
primitives of Scatter and Gather.

δL
δW(0)

= H(1)TÂ(Z−Y) (6)

δL
δW(1)

= (ÂX)T
(
DReLU(In)

⊙
Â(Z−Y)W(1)T

)
(7)

Here, In = ÂXW(0), MT denotes the matrix transpose opera-
tion, and

⊙
is the element-wise multiplication operator. As in

the case of the forward pass, we begin by describing the data
components associated with G[i]. Recall that as part of the
forward pass, the ith row of Z = H(2), denoted as zi is already
computed. Let G[i].z denote this component. Similarly, the
ith row of H(1) as well as In can be made available via the
computations performed in the forward pass. In addition to
the data components that were a part of the forward pass, the
ith row of Y that corresponds to the label for the ith node, can
be stored as a data component, G[i].y.

Scatter(G)

for i = 1 to |V |+ |E | do:

if G[i].isV then

v1 = G[i].z−G[i].y

v2 = G[i].x

v3 = (G[i].z−G[i].y)

·W(1)T

else

G[i].v1 = v1

G[i].v2 = v2

G[i].v3 = v3

Gather(G)

agg = 0
for i = 1 to |V |+ |E | do:

if G[i].isV then

G[i].v1 =
(
G[i].deg−

1
2

)
agg1

G[i].v2 =
(
G[i].deg−

1
2

)
agg2

G[i].v3 =DReLU(G[i].In)⊙(
G[i].deg−

1
2

)
agg3

for j = 1 to 3 do:
agg j = 0

else
for j = 1 to 3 do:

agg j = agg j +G[i].v j

Figure 5: Scatter and Gather to compute Â(Z−Y), ÂX,
and DReLU(In)

⊙
Â(Z−Y) in backward pass.

Computing
δL

δW(0) Note that the computation of Â(Z−Y)

in Eq. (6) can be performed via GraphSC, similar to the for-
ward pass computation. Elaborately, the ith vertex computes
and scatters v = (G[i].z−G[i].y)G[i].deg−

1
2 over its edges.

All the v components scattered by the neighbours of a node
j are then gathered in the node while also accounting for
the scaling factor of G[ j].deg−

1
2 to generate the jth row of

Â(Z−Y) stored in G[ j].v1. The Scatter-Gather primitives
for computing Â(Z−Y) appear in Fig. 5. However, compu-
tation of H(1)T

(
Â(Z−Y)

)
does not render itself well in the

message-passing paradigm. This is because the multiplica-
tions performed while computing H(1)T

(
Â(Z−Y)

)
are in-

dependent of the structure of the graph, and no longer require
the neighbourhood information (which is otherwise lever-
aged while defining the Scatter-Gather primitives). Thus, to
compute H(1)T

(
Â(Z−Y)

)
, we extract the matrices H(1) and

Â(Z−Y) from the list representation, followed by perform-
ing matrix multiplication. For this, we proceed by: (i) sorting
G such that vertex entries appear first followed by edge entries,
and (ii) extract the first |V | entries of G[i].h,G[i].v1 to gen-
erate H(1), Â(Z−Y), respectively. We then compute H(1)T

followed by multiplying with Â(Z−Y) to generate
δL

δW(0) .

Computing
δL

δW(1) With respect to the computation

of Eq. (7), we note that ÂX can be computed via
GraphSC primitives. For this vertex i scatters G[i].x
which is gathered in data component v2 of G. Similarly,
Â(Z−Y)W(1)T can be computed via GraphSC by scatter-
ing v = (G[i].z−G[i].y) ·W(1)T followed by gathering it in
data component v3 of G. Moreover, since Eq. (7) requires
computation of DReLU(In)

⊙
Â(Z−Y)W(1)T, after gath-

ering v from the neighbors, its element-wise multiplication
with DReLU(G[i].In) can be performed because the ith row
of In is held with the ith vertex in G. The formal details of
Scatter-Gather appear in Fig. 5. Next, to multiply

(
ÂX
)T

with DReLU(In)
⊙

Â(Z−Y)W(1)T, we proceed as done in
the previous case, where we extract the matrices from their
list representations, followed by matrix multiplication. This
computation is performed outside GraphSC due to similar

reasons as provided for the case of
δL

δW(0) .

4.3 Generation of shares of G

Given J·K-shares of A,X and Y, generating G, entails gener-
ating J·K-shares of (i) G[i].isV to denote if the ith tuple is a
vertex or an edge, (ii) G[i].deg and G[i].deg−

1
2 to store the

degree and inverse degree, and (iii) G[i].dt to store the data
elements, some of which comprise a row of the feature ma-
trix, row of Y, intermediate results, etc. When the ith entry
is a vertex, we set JG[i].isVK = J1K, JG[i].xK as the ith row of
X, JG[i].degK and JG[i].deg−

1
2 K as the (i, i)th entry of D̃ and

D̃−
1
2 , respectively, while remaining G[i].dt are initialized to

0 vectors. Since there may only be |E | edges but JAK consists
of |V |2 possibilities, the challenge arises in generating their
corresponding entries in G while leaking no information. For
this, we generate a list JG′K comprising of all possible edges
(i.e. every element in A). We set JG′[i].isVK = JAi jK, and all
other data components to J0K. To extract the valid |E | edges
from |V |2 entries in G′, we sort JG′K based on the values in
JisVK, extract the first |E | entries, and append these to JGK.
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Since, isV should be 1 only for vertices, values of JisVK are
set 1− JisVK for edges before appending them to JGK.

5 Improvements over Tetrad

Here, we provide a brief description of the building blocks
that were either missing in Tetrad (double bit injection, prefix
OR, exponentiation, inverse square root) or had an inefficient
realization (division). Further details are provided in §D.

Double bit injection. Similar to single bit injection protocol
of Tetrad [23], we design double bit injection or 2-bit-injection
protocol (Π2−bitInj), which enables computing JabvK given
two Boolean shared bits JaKB,JbKB and an arithmetic shared
value JvK. Combining terms and computing them together
results in our protocol having same online cost as single bit-
injection, and improves online rounds and communication by
2×. To achieve this, observe that,
y = (abv)R = (ma⊕λa)

R (mb⊕λb)
R (v) =mR

am
R
bmv−mR

am
R
b λv+

+mR
a

(
1−2mR

b

)(
λ
R
bmv−λ

R
b λv

)
mR

b

(
1−2mR

a

)(
λ
R
amv−λ

R
a λv

)
+
(

1−2mR
a

)(
1−2mR

b

)(
λ
R
a λ

R
bmv−λ

R
a λ

R
b λv

)
where, arithmetic equivalent of XOR, i.e., x⊕y is xR+yR(1−
2xR). Given that J·K-shares of λ terms (and their products)
can be generated in preprocessing (as done in Tetrad via the
protocol for converting bit to its arithmetic equivalent, Πbit2A),
the online phase involves generating J·K-shares of product
terms comprising m,λ via Πjsh followed by local addition to
generate JyK. Formal details appear in Fig. 15.

Prefix OR. This protocol, denoted as ΠpreOR, forms an
important building block in division, square root, and in-
verse square root protocols. On input Boolean shared bits
xℓ−1, . . . ,x0, it outputs Boolean shared bits yℓ−1, . . . ,y0 such
that yi = ∨ℓ−1

j=i x j. We provide an efficient instantiation of pre-
fix OR, which works over rings and leverages the presence of
multi-input AND gates provided in Tetrad, to yield a protocol
that requires 3 rounds for 64-bit inputs.
The below protocols for exponentiation, division and inverse
square root follow from literature and are adapted to work
over Tetrad while introducing optimizations where possible.

Exponentiation. Denoted as Πexp, the protocol for expo-
nentiation outputs JexK on input JxK. Our protocol is similar
to [18], but has better concrete efficiency due to avoiding
the reliance on edabits, and a few intermediate conversions.
Other optimizations such as reliance on double bit injection,
avoiding the need for an explicit bit extraction circuit for com-
puting the MSB of x, etc., further aid in reducing the round
complexity of our exponentiation protocol.

Division. The garbled circuit based division in Tetrad is
known to be expensive [3, 4]. We propose a division protocol,
Πdiv, that relies on Goldschmidt’s approximation and follows
a similar approach as in [7]. This protocol on input JaK and
JbK, outputs JdK where d≈ a/b via an iterative approach.

Inverse square root. The secure protocol ΠInvSqrt, on input
JaK, outputs JyK where y ≈ 1/

√
a. Our protocol follows on

the lines of [18, 29] and uses polynomial approximation to
compute the inverse square root of x.

Security. Since our constructions use primitives from
Tetrad, their security follows directly from Tetrad.

6 Benchmarks

Benchmark environment and parameters Benchmarks
are performed over LAN using Google Cloud instances with
2.3 GHz Intel Xeon E5 v3 (Haswell) processors, 64vCPUs,
120GB of RAM memory and a bandwidth of 16Gbps. We
implement all protocols in python. We use the Crypto library
for AES and hashlib for generating SHA256 hash. We note
that our code is developed for benchmarking, is not optimized
for industry-grade use, and a C++ based implementation can
give better performance. We consider run time for one epoch
for efficiency comparison and report the online and prepro-
cessing cost. However, when reporting accuracy, we consider
a maximum of 200 epochs and stop the training earlier if the
test loss does not change for 10 consecutive epochs. As in
Tetrad, we rely on fixed-point arithmetic (FPA) to represent
decimal values. The most significant bit (MSB) of the ℓ= 64-
bit integer represents the sign bit, f = 16 least significant bits
represent the fractional part and k= 32 is input length.

6.1 Comparison of primitives
The overall performance of Entrada is heavily dependent on
the underlying primitives. Hence, we first analyze the same to
showcase the efficiency and accuracy improvements brought
in by the new primitives in comparison to the ones in the
literature. For a fair comparison, all algorithms are realized
using the MPC of Tetrad. Since our improvements are in
exponentiation and division which are also brought in by
our improved double bit injection and prefix OR protocols
in addition to other optimizations described in §5, we focus
on comparing exponentiation with the protocol of [18], and
division with GC-based division of Tetrad, in Table 1. We
note that for both, exponentiation and division, our efficiency
improvements come without compromising accuracy.

Operation Reference Communication(KB) Run time(ms) Relative
Error (%)

Preprocessing online Preprocessing Online

Exp [18] 3.91 0.91 8.21 15.29 0.24

Entrada 1.33 0.66 5.47 11.90 0.24

Div Tetrad [23] 11028.61 125.44 1704.09 1665.66 3.72

Entrada 2.94 1.99 48.57 136.45 3.72

Table 1: Comparison of primitives.

6.2 GCN
Since the secure computation framework relies on fixed-point
arithmetic (FPA), which is known to have lesser accuracy
than the floating-point counterpart, we first demonstrate the
accuracy loss of the GCN in moving from cleartext floating-
point to FPA. Moreover, due to operations such as truncation,
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and the approximations used within the secure protocols for
exponentiation, division, and inverse square root, the accuracy
of the secure GCN model may be affected. Hence, we analyze
the accuracy of secure GCN (FPA) and demonstrate that it is
on par with the cleartext (FPA) variant, and that it improves
in comparison to Tetrad. We also showcase that Entrada
outperforms Tetrad in terms of efficiency. Note that we do not
compare against the protocol of [37] since it does not consider
the GCN of [20], and only provides support for inference for a
relatively old graph neural network. Moreover, [37] operates
in a 3PC setting and provides semi-honest security (with only
privacy against a malicious adversary), as opposed to our
setting where we consider 4PC for efficiency reasons and
attain stronger security notions of fairness/robustness. Finally,
we showcase improvements brought in via GraphSC.
Dataset We use the Cora dataset to benchmark the perfor-
mance. It contains 2708 documents that are treated as nodes,
and 4732 citation links between documents, that are treated as
undirected edges. Each document has a bag of words which
is treated as the feature vector associated with the node. The
documents are classified into seven classes (or labels).
Accuracy We report the accuracy of GCN using the Cora
dataset in Table 2. A pictorial representation of variation in
accuracy and test loss with number of epochs appears in Fig.
6. As evident from Table 2, moving from cleartext floating-
point to cleartext FPA representation witnesses a slight drop
in accuracy. Keeping the cleartext FPA accuracy as the bench-
mark for the secure variants, we observe that our protocol
loses out on accuracy by only 0.4%. This is very small com-
pared to the loss in accuracy witnessed by Tetrad, which is
around 5.6%. On the contrary, realizing secure GCN via SGD
in Terad results in an accuracy which is 76.6%. We note that
the drop in accuracy in Tetrad while using Adam stems due
to the use of the approximate softmax function (ASM), which
degrades the accuracy of the overall model.

Model Cleartext Secure

Float Fixed Tetrad (fixed) Entrada (fixed)

GCN [20] 80.2% 79.7% 74.1% 79.3%

Table 2: GCN accuracy on Cora using Adam–Tetrad is en-
hanced with inverse square root protocol to support Adam.

To showcase improvement brought in by Entrada over
Tetrad, Table 3 reports impact on accuracy when sequentially
replacing each of the following primitives–division, square
root, exponentiation–in Tetrad with the newly designed ones.
Elaborately, we begin with reporting the accuracy of GCN via
Tetrad (version v1), which relies on GC-based division, ASM,
and the SGD optimizer. In the next version, v2, we replace
the GC-based division with our division protocol. As noted
earlier in Table 1, our division protocol has the same relative
error as the GC-based division of Tetrad, and hence does not
impact the accuracy of GCN. This is followed by version v3,
where ASM in v2 is replaced by the accurate computation of
softmax, resulting in improved accuracy. Finally, in version

v4, which constitutes our framework Entrada, SGD in v3 is
replaced with Adam optimizer, which drastically improves
accuracy by over 2%.

Version Accuracy
v1:= Tetrad (GC division + ASM + SGD) 76.6%
v2:= v1 - GC division + our division 76.6%
v3:= v2 - ASM + accurate softmax 77.4%
v4:= Entrada (v3 - SGD + Adam optimizer ) 79.3%

Table 3: GCN accuracy improvements (Cora dataset) when
replacing primitives in Tetrad in a step-by-step manner.

Efficiency We compare the efficiency of evaluating GCN
via Entrada and Tetrad. We first report the performance of
Entrada for GCN inference. Note that the performance of
Entrada is on par with Tetrad’s, since inference does not re-
quire any of the newly designed primitives. Specifically, it has
a run time of 2.4 seconds and 5.6 seconds in the preprocessing
and online phase, respectively, for the Cora dataset.

With respect to GCN training, recall that Entrada is de-
signed to support the Adam optimizer, and to also leverage
the GraphSC paradigm to yield an efficient solution. However,
Entrada can be modified to use SGD instead of the Adam
optimizer. One can also avoid reliance on GraphSC, depend-
ing on the application scenario. Further, recall as discussed
in §6.2, that Tetrad originally only supports SGD evaluation.
Hence, to provide a fair comparison, we also report the per-
formance Entrada when using only the SGD optimizer. In
fact, we begin by analyzing Entrada’s performance in com-
parison to Tetrad, while excluding GraphSC. As seen from
Table 4, Entrada (SGD, w/o GraphSC) outperforms Tetrad
in training. The overhead in Tetrad can be mainly attributed
to the use of the GC. Entrada (SGD, w/o GraphSC) not only
has better efficiency, but also outperforms Tetrad in terms of
accuracy (see v3 in Table 3). To further improve the accuracy,
we switch to the Adam optimizer, which results in Entrada
having an increased online time in comparison to Tetrad. This
is due to its reliance on additional operations required for sup-
porting Adam. Interestingly, the overall efficiency of Entrada
is still better than Tetrad’s by a factor of around 30×. The use
of GraphSC helps to further improve the efficiency of GCN
training, as evident from Table 4.

Variant Preprocessing Online

Tetrad 7285.076 121.577

Entrada (SGD, w/o GraphSC) 14.988 71.578

Entrada (w/o GraphSC) 30.915 211.160

Entrada (SGD) 1.269 29.601

Entrada 19.572 189.885

Table 4: Comparison of GCN performance (training).
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Figure 6: Variation in GCN test accuracy and loss with number of epochs on Cora dataset. float and fixed denote cleartext variants.
(a),(c) use Adam and (b),(d) use SGD.

6.3 Fraud detection
We use Entrada to securely realize the application of fraud
detection via GCN from the work of [41] and [27], where the
former performs fraud detection in online review platforms
using the dataset from Tencent App Store, and the latter de-
tects fraudulent accounts in online payment network of Alipay.
Given the unavailability of the datasets considered in each of
the works, we benchmark their performance on alternative
datasets, i.e. [41] is evaluated on the Yelp while [27] is eval-
uated on the DBLP dataset. As done for the case of vanilla
GCN, we first evaluate the accuracy loss, followed by ana-
lyzing the performance of the secure protocols. Our analysis
of these alternative datasets is meant to establish the relative
accuracy/performance of Entrada in comparison to the clear-
text computation. We believe similar accuracy/performance
trends will hold true when Entrada is evaluated on the actual
fraud detection datasets. Further, a comparison with Tetrad is
omitted since §6.2 establishes that we outperform it.
Dataset The work of [41] is evaluated on the Yelp dataset
that contains 45,954 reviews, each of which is treated as a
node. An edge between two nodes indicates that the corre-
sponding reviews were posted by the same user, and there
exist 3,846,979 edges. Each node/review is classified as fake
or real. Since the work of [27] operates on a heterogeneous
graph, we consider the DBLP dataset that is known to be simi-
lar to the original dataset of Alipay since both consider graphs
having heterogeneous edges (i.e., multiple edges between
the same two nodes may indicate different relations between
these nodes). The DBLP dataset consists of 14,328 papers
that are treated as nodes. There are three different types of
edges, each of which relates two papers (nodes) if they– (i)
appear in the same conference, (ii) have the same authors,
and (iii) use common terms. There are 1,70,794 edges in total.
Further, each node has an associated bag of words that are
treated as its feature vector. Each paper/node is classified into
4 different classes (labels) that include database, data mining,
machine learning, and information retrieval.
Accuracy and efficiency comparison The results appear in
Table 5, Table 6 and Table 7. For accuracy, we observe similar
trends as seen in the case of vanilla GCN, where the accuracy
of secure variant is comparable to that of cleartext. Regarding
efficiency, we observe up to 4× gain when adapting GCNs

Algorithm Metric Cleartext Secure variant

Float Fixed Entrada (Fixed)

[41]
Recall 0.513 0.507 0.507

Precision 0.681 0.676 0.669

F1 0.585 0.579 0.576

[27] Accuracy 68.5% 67.1% 66.3%

Table 5: Accuracy comparison of fraud detection algorithms.

to work with GraphSC, thereby corroborating our claim of
witnessing efficiency improvements when using GraphSC.

Algorithm Preprocessing Online

[41] 34.574 73.678

[27] 21.350 55.511

Table 6: Fraud detection algorithms on Entrada (inference).

Algorithm Preprocessing Online

[41] (w/o GraphSC) 131.433 686.272

[27] (w/o GraphSC) 73.329 350.468

[41] 32.753 431.398

[27] 32.756 425.707

Table 7: Fraud detection algorithms on Entrada (training).

7 Conclusion

We present Entrada, a 4-party computation framework for
securely and efficiently realizing GCNs, which is addressed
for the first time. Our system Entrada provides the necessary
primitives to securely realize both training as well as infer-
ence of GCN. Entrada additionally leverages the GraphSC
paradigm to improve the efficiency of the training phase. We
additionally design a secure shuffle protocol as required for
the GraphSC paradigm. Extensive experiments establish the
practicality of our solution with respect to efficiency and accu-
racy. Improving the protocols used in Entrada, and realizing
other GNNs securely, is an interesting future work.
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A Preliminaries

Shared key setup Parties can non-interactively generate
common random values among themselves by relying on the
common PRF keys established among themselves during a
one-time setup phase. This is abstracted via the ideal function-
ality Fsetup (Fig. 7). Elaborately, let F : {0,1}κ×{0,1}κ→ X
be a secure pseudo-random function (PRF), with X = Z2ℓ .
The following keys are established between parties– (i) ki j
for every pair of parties Pi,Pj, (ii) ki jk for every triple of par-
ties Pi,Pj,Pk, and (iii) kP known to all parties in P . If P0,P1
wish to sample a random value r ∈ Z2ℓ non-interactively, they
compute Fk01(id01) and obtain r. Here, id01 denotes a counter
maintained by the parties, and is updated after every PRF
invocation.

Fsetup interacts with the parties in P and the adversary S . Fsetup

picks random keys ki j and ki jk for i, j,k ∈ {0,1,2,3} and kP . Let
ys denote the keys corresponding to party Ps. Then
– ys = (k01,k02,k03,k012,k013,k023 and kP ) when Ps = P0.
– ys = (k01,k12,k13,k012,k013,k123 and kP ) when Ps = P1.
– ys = (k02,k12,k23,k012,k023,k123 and kP ) when Ps = P2.
– ys = (k03,k13,k23,k013,k023,k123 and kP ) when Ps = P3.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality Fsetup

Figure 7: Ideal functionality for shared-key setup.

The list of protocols that we rely on from Tetrad [23] ap-
pears in Table 8. Since we heavily rely on joint message
passing and joint sharing protocols, we elaborate on these
next.

Joint message passing The joint message passing primitive
Fig. 8 allows two senders Pi,Pj to relay a common message,
v ∈ Z2ℓ , to a recipient Pk, either by ensuring successful deliv-
ery of v, or by establishing a conflicting pair of parties, one
among which is guaranteed to be corrupt. This implies the
residual two parties are honest, one of which is then entrusted
to take the computation to completion by enacting the role
of a trusted third party (ttp). The instantiation of joint mes-
sage passing can be viewed as consisting of two phases (send,
verify), where the send phase consists of Pi sending v to Pk
and the rest of the protocol steps go to verify phase (which
ensures correct send or ttp identification). This requires 1
round of interaction and ℓ bits of communication. To leverage
amortization, verify is executed only once, at the end of the
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Building block Notation Description

Joint message passing Πjmp(Pi,Pj,Pk,v) Enables Pi,Pj ∈ P to send v to Pk such that Pk receives the correct v, or
a conflicting pair of parties among Pi,Pj,Pk is identified.

Joint sharing JvK = Πjsh(Pi,Pj,v) Enables Pi,Pj ∈ P to generate JvK where v ∈ Z2ℓ is held by Pi,Pj

Multiplication JzK = Πmult(JxK,JyK, f) Multiplies x,y and outputs z= x ·y truncated by f bits

Matrix Multiplication JzK = ΠMatMul(JAK,JBK, f) Multiplies matrices A,B and outputs C = A ·B

3-input multiplication JzKB = Π3-mult(JaKB,JbKB,JcKB) Multiplies (Boolean AND) 3 inputs at once

4-input multiplication JzKB = Π4-mult(JaKB,JbKB,JcKB,JdKB) Multiplies (Boolean AND) 4 inputs at once

MulR ⟨z⟩= ΠMulR(⟨x⟩,⟨y⟩) Multiplies x,y and outputs ⟨·⟩-shares of z= x ·y

Arithmetic to Boolean JxKB = ΠA2B(JxK) Converts arithmetic shares of x ∈ Z2ℓ to Boolean shares of each bit of x

Boolean to arithmetic JxK = ΠB2A(JxKB) Converts Boolean shares of x ∈ Z2ℓ to arithmetic shares

Bit2A JbK = Πbit2A(JbKB) Converts bit to its arithmetic equivalent

Bit extraction JbKB = Πbitext(JxK) Outputs b= 1 if x< 0, else outputs b= 0

Comparison JbKB = Πcomp(JxK,JyK) Outputs b= 1 if x< y, else outputs b= 0

Bit injection JzK = ΠbitInj(JbKB,JxK) Multiplies arithmetic equivalent bR ∈ Z2ℓ of b ∈ Z2 with x ∈ Z2ℓ and
outputs z= bR ·x

Oblivious select JxbK = Πsel(Jx0K,Jx1K,JbKB) Obliviously selects xb among x0,x1

Negation Jx̄KB = ΠNOT(JxKB) Outputs 1’s complement of Boolean representation of x ∈ Z2ℓ

Table 8: Description of protocols from Tetrad [23].

computation, and requires 2 rounds. The protocol also relies
on a collision resistant hash function H(·).

Ps ∈ P initializes an inconsistency bit bs = 0. If Ps remains silent
instead of sending bs in any of the following rounds, the recipient
sets bs to 1.
– Send: Pi sends v to Pk.
– Verify: Pj sends H(v) to Pk.
◦ Pk sets bk = 1 if the received values are inconsistent or if the

value is not received.
◦ Pk sends bk to all parties. Ps for s ∈ {i, j, l} sets bs = bk.
◦ Ps for s ∈ {i, j, l} mutually exchange their bits. Ps resets bs =
b′ where b′ denotes the bit which appears in majority among
bi,b j,bl .
◦ All parties set ttp= Pl if b′ = 1, terminate otherwise.

Protocol Πjmp(Pi,Pj,v,Pk)

Figure 8: Joint message passing [23]

Joint sharing Protocol Πjsh enables parties Pi,Pj to gen-
erate J·K-share of value v. During the preprocessing phase,
shares of λv are sampled such that both Pi,Pj will get the
entire mask λv. During the online phase, Pi,Pj compute and
send mv = v+λv to parties P1,P2,P3 via Πjmp.

For joint-sharing a value v possessed by P0 along with one
other party in the preprocessing phase, the communication
can be optimized further. The protocol steps based on the
(Pi,Pj) pair are summarised below:
– (P0,P1) : P \{P2} sample λ1

v ∈Z2ℓ . Parties set λ2
v =mv = 0.

P0,P1 send λ3
v =−v−λ1

v to P2 via Πjmp.
– (P0,P2) : P \{P3} sample λ3

v ∈Z2ℓ . Parties set λ1
v =mv = 0.

P0,P2 send λ2
v =−v−λ3

v to P3 via Πjmp.
– (P0,P3) : P \{P1} sample λ2

v ∈Z2ℓ . Parties set λ3
v =mv = 0.

P0,P3 send λ1
v =−v−λ1

v to P1 via Πjmp.

Achieving fairness Although the robust version of the pro-
tocols are described, we note that their fair version can be
derived by making the following changes, as described in
Tetrad [23]:

– Use of the fair version of Πjmp instead of the robust version:
for this the Πjmp protocol is modified so that parties abort
instead of identifying a TTP in case the jmp verification fails.

– Relying on a fair reconstruction protocol: to achieve fairness,
it is necessary to ensure that all the honest parties are alive
after the verification phase before proceeding with the output
reconstruction. To accomplish this, the parties maintain an
aliveness bit, b, which is initialized as “continue”. If a party’s
verification phase is unsuccessful, it sets b to “abort”. In the
first round of reconstruction, the parties exchange their b
bit and collectively agree on the majority value. Due to the
presence of at most one corrupt party, it is guaranteed that all
the honest parties will reach a consensus on the value of b.
If b equals "continue", the parties proceed to exchange their
missing shares and accept the majority decision. According to
the sharing semantics, each missing share is owned by three
parties, with at most one corrupt party among them.
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Collision-resistant hash function [36] . A family of hash
functions {H : K ×M→ Y } is said to be collision resistant if
for all PPT adversaries A , given the hash function Hk for k ∈
K , the following holds: Pr[(x,x′)←A(k) : (x ̸= x′)∧Hk(x)=
Hk(x′)] = negl(κ), where x,x′ ∈ {0,1}m and m = poly(κ).

GraphSC paradigm This section details the GraphSC
paradigm [5,32] which was also discussed in the work of [38].

Since real-world graphs are known to be sparse, naively
using the adjacency matrix representation of the graph for
computations would be expensive. Hence, designing an effi-
cient solution to address the same involves- (i) designing an
effective representation of the graph structure, (ii) ensuring
the computation does not leak any private information, (iii)
designing solutions that are highly parallelizable. The work
by Nayak et al. [33] is the first to address the above prob-
lem and provides a framework for the same. The framework
operates on a data augmented directed graph G(V, E, Data)
which consists of a directed graph G(V, E) where V is the set
of vertices (or nodes, used interchangeably), E is the set of
edges and Data is a set of user-defined data values associated
with each vertex and edge of the graph. The data augmented
graph is expressed as a list of vertices and edges where every
vertex v ∈ V is encoded as a tuple (v,v,1,data) and every
edge (u,v) ∈ E is encoded as a tuple (u,v,0,data). The third
entry in each tuple is a bit, isV, which equals 1 for a vertex and
0 otherwise, while data refers to the state information stored
at each vertex and edge. These tuples constitute the data aug-
mented graph list (DAG-list). The DAG-list representation of
the graph is used to effectively represent the graph. Note that
an undirected graph can be converted into a directed graph
by accounting for each edge twice (incoming and outgoing
edge). To perform secure computation over the graph while
hiding its topology, each tuple in the data augmented graph is
secret-shared entry-wise between the computing parties. This
ensures that parties cannot distinguish between shares of a
tuple corresponding to a vertex from that of an edge.

In principle, the framework of [33] enables securely evalu-
ating message-passing graph algorithms. The latter are graph
algorithms that operate in multiple rounds, where in each
round, the nodes in the graph- (i) use their state informa-
tion to send messages over their outgoing edges; (ii) receive
messages along their incoming edges and aggregate these
messages; (iii) use these messages to update their state. These
three operations are abstracted into three primitives–Scatter,
Gather, and Apply, respectively. Assuming that the graph al-
gorithm can be expressed as a composition of the above prim-
itives, [33] enables its secure evaluation via MPC 6. Since
designing an MPC protocol naively may leak information
regarding the graph topology, the framework first designs a

6The operations within Scatter and Gather will vary across different
graph algorithms. Hence, [33] provides a generic GraphSC framework, where
the operations to be performed within Scatter and Gather are assumed as a
black-box.

data-oblivious algorithm for each of these primitives, followed
by a translation of the same using the generic 2-party protocol
of [42]. In general, an algorithm is said to be data-oblivious
if the instructions executed and the memory accesses made
during the run of the algorithm are independent of the input
and hence leak no information about the input. To obtain
a data-oblivious algorithm for the GraphSC primitives, it is
important to ensure that each entry in the DAG-list is vis-
ited when realizing these primitives to ensure no information
about the association between the entries (such as an edge
being incident on a node) is leaked. Observe that Apply can
be computed obliviously by scanning through the DAG-list
representation and applying the user-defined function if the
element is a vertex and performing a dummy operation other-
wise. To compute Scatter and Gather obliviously, [33] relies
on two different sorted orders of the DAG-list representation.
The source order requires the DAG-list to be sorted such that
every node in the graph is placed before all edges that origi-
nate from it. The destination order requires the DAG-list to
be sorted such that all edges that end at a particular node are
placed before that node. Consider an oblivious sort protocol
that outputs a sorted list of elements in vector x based on the
key key. Given a data-oblivious sort protocol such as Bitonic
sort [35], switching between the source order and destination
order each time a Scatter or Gather is applied, ensures obliv-
iousness as follows. Scatter can be accomplished obliviously
by linearly scanning through the DAG-list sorted in the source
order. For this, if the current tuple in the list is a node, the
data value at the node is picked up, and if the current tuple
is an edge, then the value picked up at the most recent tuple
is used to update the edges. Gather can also be done obliv-
iously by a linear scan through the DAG-list sorted in the
destination order. During the scan, if the current tuple is an
edge, its value is stored in an aggregate variable by applying
an aggregation operation, and if the current tuple is a node,
then the aggregate variable is stored along with the node. This
approach of performing Scatter and Gather by performing
a linear scan over a sorted order is oblivious as every node
and edge of the graph is operated on, without revealing the
relationship between the nodes and edges. Given that the
primitives can be performed obliviously, as described above,
the graph computation can be performed securely using MPC
protocols. To summarize, message-passing graph algorithms
can be computed obliviously by using the following steps in
every message-passing round– (i) sort based on source order,
(ii) Scatter, (iii) sort based on destination order, (iv) Gather
and (v) Apply. Further, the framework in [33] provides a par-
allel algorithm for each of the individual primitives– Scatter,
Gather, and Apply. In a multiprocessor setting, the parallel
variants allow the computations to be performed in sub-linear
complexity rather than the linear complexity of O(|V|+ |E|)
in the size of the graph. We remark that this technique of
obtaining a sub-linear solution in the multiprocessor setting
also extends to our protocols. We refer to [32] for details of
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the parallel variant.
The work of [5] improves on the work of [33]. First, it

combines Gather and Apply primitives such that both opera-
tions can be achieved in a single pass through the DAG-list.
Moreover, [5] observes that the approach of [33] has the draw-
back of requiring an oblivious sort each time a Scatter or
Gather primitive is applied. This amounts to two calls to an
oblivious sort in every message-passing round. Instead, [5]
observes that a secret shuffle followed by an insecure sort
(which reveals the result of the comparisons) can be used to
realize an oblivious sort. Let ΠShuffle(JxK) denote an oblivious
shuffle protocol that outputs the elements of x in a randomly
shuffled order. Observe that since the list is first shuffled, re-
vealing the result of comparisons during sort does not break
the obliviousness property. On the other hand, the insecure
sort is required to be performed only once in the beginning,
subsequent to which, the public permutation (obtained as out-
put from the insecure sort) can be applied to sort the DAG-list,
non-interactively. In summary, in the first message-passing
round, a secret shuffle followed by an insecure sort (e.g., a
comparison sort algorithm) is applied to get the required
source or destination order. The permutations which map
from the shuffled orders to the source and destination order
are made public, as they do not reveal any information about
the DAG-list. In the subsequent rounds, the secret shuffle,
followed by the public permutation, is applied to get the re-
quired sorted order. Since shuffle can be performed much
more efficiently than a sort, this change brings in significant
efficiency improvements. An illustration of the operations in-
volved in GraphSC paradigm of [5] is given in Fig. 1. Finally,
to perform secure computation, [5] considers a 3PC setting to
further enhance efficiency.

B Secure GCN - input sharing

Generating J·K-shares of X To ensure that a possibly mali-
cious client, C, has not cheated while secret-sharing the rows
of X, it suffices to ensure thatC consistently secret-shares each
element in the respective rows of X that it possesses. This can
be performed similar to as done in [22], albeit more efficiently
without relying on commitments. Elaborately, say x ∈ Z2ℓ is
an input element to be shared by C. Servers non-interactively
generate ⟨·⟩-shares of the mask λx ∈ Z2ℓ using Fsetup. To ob-
tain mx = x+λx from the client, λx = λ1

x +λ2
x +λ3

x is sent
to C as follows. Since each λi

x for i ∈ {1,2,3} is held by
three servers, two of them send λi

x to C, while the third sends
H(λi

x). Note that all servers are required to communicate λi
x

to C to ensure that a corrupt server’s attempt of cheating
by sending an incorrect value is subverted. Moreover, since
multiple elements are required to be shared by C, the use of
hash allows computing and sending a single hash value on the
concatenation of all these elements, thereby reducing the com-
munication complexity. Further, note that among the three
versions of the received λi

x, since at most one can be incorrect

(owing to the presence of at most one corrupt server), taking
the value which appears in majority enables C to obtain the
correct value for each λi

x. C then computes λx = λ1
x+λ2

x+λ3
x ,

mx = x+ λx, and sends mx to servers P1,P2,P3. Finally, to
ensure that C has sent the consistent mx to P1,P2,P3, they
exchange the value received from C among themselves. Since
at most one among P1,P2,P3 can be corrupt, there will exist a
majority in the exchanged values, which is taken as the final
value for mx.

Generating J·K-shares of A In addition to performing the
consistency checks as described above to ensure a consistent
sharing, servers are also required to ensure that the client’s in-
puts correspond to valid rows of A, i.e. AT = A. For this, they
non-interactively generate J·K-shares of a random symmetric
matrix R, compute JSK = JAK+ JRK, and open the resultant
matrix S. Servers can then locally verify if A is symmetric
by checking if Si j = S ji for i, j ∈ {1,2, . . . ,n}. If so, they pro-
ceed to verify whether the elements of A as generated by the
clients are 0 or a 1. For this, servers use the fact that z2−z= 0
only if the element z ∈ {0,1}. In order to verify this equation
with respect to all the elements shared by a client, servers
compute a random linear combination with respect to each
element zi shared by the client and verify if the combination
yields a 0. However, this check still allows a client to cheat
with probability 1/2 when working over the ring algebraic
structure [1, 6]. Thus, to reduce the cheating probability the
check is repeated κ times, which bounds the cheating prob-
ability by 1/2κ. If any of the checks fail, depending on the
application scenario, one of the following can be done: (i)
entries in ith row and jth column can be set to default, (ii)
entries pertaining ith and jth nodes can be deleted from the
graph (the same should be reflected in the other inputs, X,Y,
as well), (iii) the computation is halted.

Generating J·K-shares of Y Recall that each row of Y has
at most one position set as 1 (and all others as 0s). Thus, after
verifying the consistency of the received shares, to verify if the
ith row {Yi1,Yi2, . . . ,Yic} satisfies this condition, we use the

idea of [28]. The approach is to check if
(

∑
c
j=1 Yi j · r j

)2
−(

∑
c
j=1 Yi j · r2j

)
= 0. Here, r j ∈ Z2ℓ are random public values

and the check passes with high probability over a field if at
most one Yi j is a 1. However, similar to the case of A, this
check also has a failure probability of 1/2 over rings. Hence,
we repeat this check κ times to bound the failure probability
by 1/2κ.

Generating J·K-shares of D̃, Ã and Â Having gener-
ated JAK, generation of JÃK = JAK+ JIK can happen non-
interactively. The J·K-shares of diagonal entries of D̃ can
also be generated non-interactively by summing the en-
tries in the corresponding rows of JÃK. Finally, computing
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Â = D̃−
1
2 ÃD̃−

1
2 , involves computing element-wise inverse

square-root of the diagonal element of D̃ via the secure inverse
square-root protocol.

C GCN evaluation via GraphSC

C.1 Secure shuffle

Non-interactively sampling a random permutation among
a subset of parties Sampling a random permutation de-
notes choosing a random π which is a bijective function
π : {1, . . . ,N} → {1, . . . ,N}. We describe how parties Pi,Pj
can do this non-interactively using the shared key established
via Fsetup. Pi,Pj non-interactively generate N common ran-
dom values say v1,v2, . . . ,vN ∈ Z2ℓ where ℓ >> log2N. The
parties tag each of the values vi with its index to obtain a list
S = {(vi,xi)}Ni=1, where xi = i. Each party then locally sorts
this list of tuples based on the first entry vi of each tuple to
obtain a sorted list S′ = {(v′j,x′j)}Nj=1. The second element in
each tuple of S′ defines a random permutation where index
xi ∈ {1, . . . ,N} gets mapped to a unique index x′i ∈ {1, . . . ,N}.

Overview of the steps performed in secure shuffle Fig. 9
gives an overview of the steps performed in secure shuffle.

Generated in online phase

Generated in preprocessing phase



 

Figure 9: Overview of steps performed in secure shuffle.

Generation of b2 towards P2 Fig. 10 gives a schematic
representation of the steps involved in generating b2 towards
P2.

P3

P1 P2










Local sampling
Inputs

Round 1
Round 2




Figure 10: Generating b2 = λ
1
w−π′ (λv− r2) towards P2.

Generation of b1 towards P1 The protocol appears in Fig.
11. Note that fresh random values zi ∈ZN

2ℓ for i∈ {1,2,3} are
sampled to carry out this execution which are independent of
the values used while generating b2 towards P2.

P3

P1 P2










Local sampling
Inputs

Round 1
Round 2




Figure 11: Generating b1 = λ
2
w−π′ (λv− r1) towards P1.

The complete shuffle protocol The ideal functionality for
the secure shuffle appears in Fig. 12.

Without loss of generality, let Pc ∈ P denote the party corrupted
by adversary S . FShuffle interacts with parties in P and S . It
receives as input J·K-shares of the input v from all parties. Let u
denote the randomly shuffled input. FShuffle also receives from S
its J·K-shares of u.
FShuffle proceeds as follows.
• Reconstruct input v using J·K-shares of the honest parties.
• Sample a random permutation π from the space of all

permutations and generate u= π(v).
• Generate J·K-shares of u while accounting for shares received

from S . Let JuKx denotes the shares held by Px ∈ P .
• Send (Output,JuKx) to Px.

Functionality FShuffle

Figure 12: Ideal functionality for shuffle

The secure protocol for the preprocessing phase of shuffle
appears in Fig. 13, while the protocol for the online phase
appears in Fig. 14.

Preprocessing

– P0,P1,P3 sample π2; P0,P2,P3 sample π2; P0,P1,P2 sample
π3; and P1,P2,P3 sample π0, non-interactively.
– Define π = π0 ◦π3 ◦π1 ◦π2.
– P0,P1,P3 sample λ

1
w ∈ ZN

2ℓ ; P0,P2,P3 sample λ
2
w ∈ ZN

2ℓ ; and
P0,P1,P2 sample λ

3
w ∈ ZN

2ℓ , non-interactively.
– Pi,P3 for i ∈ {1,2} invoke Πjsh to generate J·K-shares of

π0

(
λ

i
w

)
. Similarly, P1,P2 invoke Πjsh to generate J·K-shares of

π0

(
λ

3
w

)
.

Protocol ΠShuffle
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//Generation of Π towards P2,P3

– P0,P1,P3 randomly sample a permutation πs.
– P0,P3 compute Π = πs ◦π1 ◦π2 locally and invoke Πjmp to

send Π to P2.

//Generation of b1 towards P1

– P0,P2,P3 non-interactively sample r1 ∈ ZN
2ℓ .

– Parties non-interactively generate ⟨r1⟩, and set ⟨α1⟩= ⟨λv⟩−
⟨r1⟩.
– P0,P1,P3 sample z21 ∈ ZN

2ℓ ; P0,P2,P3 sample z11 ∈ ZN
2ℓ ; and

P0,P1,P2 sample z31 ∈ ZN
2ℓ , non-interactively.

– P0,P3 compute x11 = π2(α
1
1 +α2

1 +z21), and x21 = π1(x11 +
z11), where α1

1,α
2
1 denote two of the three ⟨·⟩-shares of α1. In

parallel, P0,P1 compute y11 = π2(α
3
1−z21).

– P0,P3 invoke Πjmp to send x21 to P1, while P0,P1 invoke Πjmp

to send y11 to P2.
– P0,P2 compute y21 = π1(y11−z11), and y31 = π3(y21 +z31).
– P0,P2 invoke Πjmp to send λ

2
w−y31 to P1.

– P1 computes x31 = π2(x21− z31), and sets b1 = λ
2
w−y31−

x31.

//Generation of b2 towards P2

– P0,P1,P3 non-interactively sample r2 ∈ ZN
2ℓ .

– Parties non-interactively generate ⟨r2⟩, and set ⟨α2⟩= ⟨λv⟩−
⟨r2⟩.
– P0,P1,P3 sample z22 ∈ ZN

2ℓ ; P0,P2,P3 sample z12 ∈ ZN
2ℓ ; and

P0,P1,P2 sample z32 ∈ ZN
2ℓ , non-interactively.

– P0,P3 compute x12 = π2(α
1
2 +α2

2 +z22), and x22 = π1(x12 +
z12), where α1

2,α
2
2 denote two of the three ⟨·⟩-shares of α2. In

parallel, P0,P1 compute y12 = π2(α
3
2−z22).

– P0,P3 invoke Πjmp to send x22 to P1, while P0,P1 invoke Πjmp

to send y12 to P2.
– P0,P1 compute x32 = π3(x22−z32), and invoke Πjmp to send

λ
1
w−x32 to P2.
– P2 computes y22 = π1(y12− z12), y32 = π3(y22 + z32), and

sets b2 = λ
1
w−x32−y32.

Figure 13: Preprocessing phase of secure shuffle protocol.

Online

– P1,P3 compute and send a2 = π2 (mv+ r2) to P2 via Πjmp. In
parallel, P2,P3 compute and send a1 = πs (π1 (π2 (mv+ r1))) via
Πjmp to P1.

– P2 computes mw = π3 (π1 (a2))+b2+λ
2
w+λ

3
w. P1 computes

mw = π3
(
π−1

s (a1)
)
+b1 +λ

1
w+λ

3
w.

– P1,P2 send mw to P3 via Πjmp.
– Parties non-interactively generate J·K-shares of mw.

– Compute JuK = JmwK − Jπ0

(
λ

1
w

)
K − Jπ0

(
λ

2
w

)
K −

Jπ0

(
λ

3
w

)
K.

Protocol ΠShuffle

Figure 14: Online phase of secure shuffle protocol.

Communication and round complexity. Observe that the
online phase involves sending a message of Nℓ bits towards
P1,P2 via Πjmp in a single round of interaction. Since P1,P2
hold the required shares to evaluate the function under con-
sideration, the Πjmp towards P3 can be deferred. Thus, in
applications such as GraphSC that entail multiple shuffle in-
vocations, the Πjmp execution towards P3 for the multiple
shuffle instances can be performed in a single round, where
each instance requires communication Nℓ bits. In this way,
the amortized online round complexity of our shuffle proto-
col is 1 round and has a communication of 3Nℓ bits. In the
preprocessing phase, observe that generation of J·K-shares of
π0

(
λ

1
w

)
,π0

(
λ

2
w

)
,π0

(
λ

3
w

)
requires a total communication

of 3Nℓ bits. Further, generating b1,b2 entails a total commu-
nication of 6Nℓ bits. Finally, sending πs ◦π1 ◦π2 towards P2
requires communicating Nℓ bits. Thus, the total communica-
tion cost in the preprocessing phase is 10Nℓ bits.

C.2 Scatter-Gather primitives
The secure variants of the Scatter-Gather primitives can be
obtained using the secure protocols for the operations therein.
We note that the primitives are defined such that the number of
iterations in each looping construct is dependent on a publicly
known value (|V |+ |E | in this case). Further, all the private
values such as the entries in G and other intermediate variables
used in Scatter-Gather are operated on as secret-shares. The
primitives additionally have branching statements such as the
if-else construct. We rely on the Πsel primitive (see Table 8)
to obliviously evaluate only those steps within the correct
branch of the construct. More specifically, every assignment
operation within both the branches is evaluated via Πsel. How-
ever, based on the branch condition provided as input to Πsel,
only those assignment statements where the condition is met
is updated, while the others will remain unchanged.

D Building blocks

D.1 Formal protocols
Double bit injection The formal protocol appears in Fig.
15.

Preprocessing

– Invoke preprocessing phase of Πbit2A to generate ⟨ua⟩= ⟨λR
a ⟩

and ⟨ub⟩= ⟨λR
b ⟩.

– Invoke ΠMulR to compute ⟨uab⟩= ⟨λR
a λR

b ⟩, ⟨uav⟩= ⟨λ
R
a λv⟩,

⟨ubv⟩= ⟨λR
b λv⟩ and ⟨uabv⟩= ⟨uabλR

v ⟩.

Online
Let xa = mR

a ,xb = mR
b ,xab = (mamb)

R, and xabv =

(mamb)
Rmv.

Protocol Π2−bitInj
(
JaKB,JbKB,JvK

)
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– P1,P2 compute y1 = xabv − xabu
1
v + xa(1− 2xb)(mvu

1
b −

u1
bv)+ xb(1−2xa)(mvu

1
a−u1

av)+(1−2xa)(1−2xb)(mvu
1
ab−

u1
abv).
– P2,P3 compute y2 = −xabu2

v + xa(1− 2xb)(mvu
2
b − u2

bv) +
xb(1−2xa)(mvu

2
a−u2

av)+(1−2xa)(1−2xb)(mvu
2
ab−u2

abv).
– P3,P1 compute y3 = −xabu3

v + xa(1− 2xb)(mvu
3
b − u3

bv) +

xb(1−2xa)(mvu
3
a−u3

av)+(1−2xa)(1−2xb)(mvu
3
ab−u3

abv).

– (P1,P2),(P2,P3) and (P3,P1) invoke Πjsh on y1,y2 and y3,
respectively, to generate Jy1K,Jy2K and Jy3K.
– Output JyK = Jy1K+ Jy2K+ Jy3K.

Figure 15: Protocol for computing 2-bit-injection.

Prefix OR The protocol proceeds as follows. We define an
operator Ψ which operates on a block of bits and outputs the
prefix OR of the bits in the block. The ΠpreOR protocol is
designed to recursively call the Ψ operator such that in each
round the size of the block increases exponentially, leading
to a protocol with logarithmic rounds. Elaborately, our pro-
tocol proceeds in rounds such that after the jth round, prefix
OR of up to 4 j bits is computed. To achieve this, we define
an operator Ψ which takes as input a block of bits t (where
the number of bits in t is a power of 4), which is a concate-
nation of the bits in the four sub-blocks, b3,b2,b1,b0, i.e.,
t = b3||b2||b1||b0. Here, each sub-block, b3,b2,b1,b0, is such
that it is already the prefix OR of some input sub-block, i.e.
there exist input sub-blocks a3,a2,a1,a0 such that bi is the
prefix OR of ai for i ∈ {0,1,2,3}. The operator Ψ is defined
to output the prefix OR, t ′, of the bits in t. Computation of
Ψ proceeds as follows. Let the last bit of sub-block bi be de-
noted as zi and let t ′ = b′3||b′2||b′1||b′0. Since each sub-block bi
already satisfies the prefix OR requirement, observe that we
can set b′3 = b3. To compute the jth bit in b′2, it suffices to com-
pute the OR of z3 with the jth bit in in b2, because the latter is
already the prefix OR of the bits in a2. Similarly, jth bit in b′1
can be computed as the OR of z3,z2 with the jth bit in in b1.
Finally, jth bit in b′0 can be computed as the OR of z3,z2,z1
with the jth bit in in b0. In this way, t ′ = b′3||b′2||b′1||b′0 can
be generated by performing 2/3/4-input OR, which can be
reduced to a combination of NOT and multi-input AND. For-
mal details of Ψ appear in Fig. 16. Having defined Ψ, we next
describe how to compute prefix OR of {xi}0

i=ℓ−1 with the help
of Ψ. The protocol proceeds in rounds, where in the jth round,
a processed version of {xi}0

i=ℓ−1 is split into ℓ/4 j blocks, t i,
each of which consists of 4 j bits. Observe that when each
t i comprises four bits (in the initial round), each sub-block
bi consists of a single bit and already satisfies the prefix OR
requirement. Thus, applying Ψ on t i ensures that the invariant
of each input sub-block to Ψ being a prefix OR is satisfied.
At the end of round 1, the application of Ψ on each of the
four-bit block t i, generates the prefix OR of the first four bits,
as well as the prefix OR for each subsequent block of four
bits. Thus, applying Ψ in the second round on each of the

sixteen-bit blocks, generates the prefix OR for the first 16 bits,
as well as the prefix OR for each subsequent block of 16 bits.
In this way, at the end of j rounds, the prefix OR of 4 j bits can
be generated. The protocol for computing prefix OR appears
in Fig. 17. For our choice of k= 32, we note that the prefix
OR can be computed in 3 rounds.

Input: JtKB =
(
Jb3KB,Jb2KB,Jb1KB,Jb0KB) where each bi is

block of d bits and constitutes the prefix OR of some sub-block
of bits. Let the jth bit in bi be denoted as bi, j and its last bit be
denoted as zi.
Output: Jt ′KB such that bits in t ′ comprise the prefix OR of the
bits in t.
– For i ∈ {0,1, . . . ,d−1}, set
◦ Jb′3,iK

B = Jb3,iKB

◦ Jb′2,iK
B = ΠNOT

(
Πmult

(
Jz̄3KB,Jb̄2,iKB))

◦ Jb′1,iK
B = ΠNOT

(
Π3-mult

(
Jz̄3KB,Jz̄2KB,Jb̄1,iKB))

◦ Jb′0,iK
B = ΠNOT

(
Π4-mult

(
Jz̄3KB,Jz̄2KB,Jz̄1KB,Jb̄0,iKB))

– Return Jt ′KB =
(
Jb′3K

B,Jb′2K
B,Jb′1K

B,Jb′0K
B)

Operator Ψ
(
JtKB)

Figure 16: Operator Ψ.

– Jb0
i K

B = JxiKB for i ∈ {0, . . . , ℓ−1}, and set k = ℓ

– for j = 0 to ⌊log4(ℓ)⌋ do: ( j denotes round number)

◦ for i =
⌊

k
4

⌋
to 1 do: (i denotes block number)

- Jt j
i K

B =
(
Jb j

4i−1K
B,Jb j

4i−2K
B,Jb j

4i−3K
B,Jb j

4i−4K
B
)

- Jb j+1
i KB = Ψ

(
Jt j

i K
B
)

◦ k =
⌊

k
4

⌋
– Return Jb⌊log4(ℓ)⌋+1

3 KB

Protocol ΠpreOR

(
{JxiK}0

i=ℓ−1
)

Figure 17: Protocol for computing prefix OR.

Exponentiation Our secure protocol for exponentiation,
denoted as Πexp, takes input JxK, and outputs JexK. Although
our protocol is inspired from [2, 14, 18], it is much more
efficient and also provides the desired accuracy as required
for the considered applications. In the following, we first give
an overview of the protocol of [2] followed by detailing our
improvements over it.

To compute ex, [2] proceeds as follows. It first computes the
absolute value of x, denoted as |x|, by obliviously selecting be-
tween (x,−x), depending on its sign. Then, |x| is split into its
fractional (r) and integer (t) parts. Observe that e|x| = et+r =
et ·er. Thus, the task reduces to computing et and er, where t, r
are J·K-shared. er is computed using polynomial approxima-
tion. To compute et, t is decomposed into bits {tk−1, . . . , t0},
and bit-wise exponentiations are used as follows

e|t| =
k−2

∏
j=f

et j ·2 j−f
=

k−2

∏
j=f

(
t j ·
(

e2 j−f
−1
)
+1
)
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where the value et j ·2 j−f
is computed by obliviously selecting

between 1 and e2 j−f
with t j as the selection bit.

Observe that if x > 0, one can safely output e|x| = et · er.
However, if x< 0, the value to be returned is 1

e|x|
. The latter

additionally requires one call to secure division. Further, to
ensure that no information about the sign of x is revealed, the
work of [2] computes both the values e|x| and 1

e|x|
, and then

obliviously selects between them depending on the sign of x.
The call to division increases the complexity of this protocol.

Unlike the approach of [2], we implicitly account for the
sign of x while performing the bit-wise exponentiation. This
allows us to explicitly avoid computing 1

e|x|
, and thereby the

call to the secure division protocol. Elaborately, we rely on
splitting x into its fractional (r) and integer (t) parts, rather
than splitting |x|, as done in [2]. The goal is to first compute
et,er and then ex = et · er. We rely on Taylor series approxi-
mation to compute er, which implicitly accounts for the sign
of x. To compute et while accounting for the sign, we make
the following observation. Let {ti}k−1

i=0 denote the bits in t.
Then,

et =

{
∏

k−2
j=f et j ·2 j−f

, if x≥ 0

∏
k−2
j=f e−t j ·2 j−f

, otherwise

Note that selection between the two cases in the above equa-
tion are handled obliviously using Πsel on inputs et j ·2 j−f

,
e−t j ·2 j−f

with the MSB of x as the selection bit. In this way,
we avoid relying on a division protocol. Concretely, the value
to be computed boils down to the following.

et =
k−2

∏
j=f

t j

(
s
(
e−2 j−f

−e2 j−f)
+e2 j−f

−1
)
+1

=
k−2

∏
j=f

t j

(
s
(
e−2 j−f

−e2 j−f))
+ t j

(
e2 j−f

−1
)
+1

where s denotes the sign bit of x and is a 1 if x< 0. The formal
protocol steps are provided in Fig. 18.

– JtK = Πtrunc (JxK, f) ·2f

– JrK = JxK− JtK, JtKB = ΠA2B (JtK) and JsKB = Jtk−1KB

– for i = 0 to k−2 do: JtiKB = JtiKB⊕ JsKB

– for j = f to k−2 do:

◦ Je′jK = ΠbitInj

(
Jt jKB,e2 j−f −1

)
◦ Je jK = Je′jK+Π2−bitInj

(
JsKB,Jt jKB,e−2 j−f − e2 j−f

)
+1

– set JdK = Je f K
– for j = f+1 to k−2 do: JdK = Πmult

(
JdK,Je jK, f

)
– JzK = Πsel

(
1,1/e,JsKB) and JdK = Πmult (JdK,JzK, f)

– set Jb0K = 1, Jb1K = JrK
– for i = 2 to θ do: JbiK = Πmult (Jbi−1K,Jb1K, f)

– JbK = ∑
θ
i=0

JbiK
i! , JgK = Πmult (JdK,JbK, f)

Protocol Πexp (JxK)

Figure 18: Protocol for exponentiation

While the high level approach of our protocol is similar to

that of the one in [18], we note that our optimizations such
as reliance on double bit injection, avoiding the need for an
explicit bit extraction circuit for computing the MSB of x, etc.,
further aid in improving the efficiency of our exponentiation
protocol. In our work, we take θ = 4 since any higher value
does not aid in improving the accuracy for GCNs.

Division When computing a/b where the divisor b is pub-
licly known, and a is secret-shared, division can be performed
easily by computing 1/b on clear followed by secure mul-
tiplication with a. On the contrary, division when b is also
secret-shared is non-trivial. Departing from the GC-based
approach in Tetrad, we propose a division protocol, Πdiv, that
relies on Goldschmidt’s approximation [30]. This protocol
takes as input JaK and JbK, and outputs JdK where d ≈ a/b.
Although one would expect the circuit-based approach via
GC to provide higher accuracy, we note in Table 2 of the
paper that we do not lose out on accuracy. Alternatively, [40]
also provides a ring-based protocol for division. However, it
suffers from requiring the scaling factor (described later) to
be made public, whereas all intermediate values in our proto-
col are kept private. Further, [40] requires linear number of
rounds as opposed to logarithmic in ours.

To design Πdiv, we follow a similar approach as in [7],
which involves computing an initial guess for 1/b, followed
by iteratively computing the approximation of a/b. To ensure
a fast convergence of this iterative method, the choice of the
initial guess forw= 1/b is critical. To compute w, we proceed
along the lines of [7, 8]. We first compute the initial guess
w′ for the normalized input b′, which is then used to obtain
the initial guess w for the input b. Elaborately, if b> 0, it is
normalized to b′ ∈ [0.5,1) and w′ = 1/b′ is approximated as
2.9142−2b′. Else, if b< 0, it is normalized to b′ ∈ (−1,−0.5]
and w′ = 1/b′ is approximated to −2.9142− 2b′. We refer
readers to [8, 30] for the choice of the constant. Given w′, the
initial guess for 1/b is computed as w = w′ ·v, where v is the
scaling factor used to obtain the normalized b′ = bv. We let
ΠappRec denote the protocol that computes the initial guess.

The following is the overview of ΠappRec. Observe that
given v, computing w follows directly from the sequence of
relations described earlier to compute b′ and w′. Thus, the
challenge lies in computing v, which is non-trivial to obtain
when b is available only in secret-shared format. Observe
that if |b| ∈ [2m−1,2m−1] (|b| denotes magnitude of b), then
the scaling factor v is given by 2k−m−1. Here m−1 denotes
the index of the most significant non-zero bit of b if b >
0, and the most significant zero bit of b if b < 0. Consider
the case when b > 0. To determine m, we compute prefix
OR of the bits of b to generate bits {ci}k−2

i=0 such that ci =

0 for i ≥ m, and ci = 1 for i < m. Thus, the bits {ci}k−2
i=0 ,

when composed, yield c = 2m− 1. Using this, v = 2k−m−1

can be computed as follows. We XOR the consecutive bits
in {ci}k−2

i=0 to generate {yi}k−2
i=0 which ensures that yi = 1 for

i = m, and yi = 0 otherwise. Thus, composing the bits in
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{yi}k−1
i=0 in the reverse order generates v = 2k−m−1. The same

steps can be used to compute v even when b< 0, provided we
work on the flipped bits of b. Thus, we obliviously flip/retain
the bits of b depending on its sign, before the prefix OR
computation begins. Having computed v, we can compute
b′. However, computing w′ using b′ additionally requires an
oblivious selection between 2.1942 and −2.1942 depending
on the sign of b. Then, computing w from w′ follows easily.
The formal protocol for computing w appears in Fig. 19. We
use (x)f to denote that x has a precision of f bits. Note that
this initial guess w of 1/b is known to have a relative error of
ε0 = 1−bw < 1 [9].

– α = (2.9142)k−1

– JbKB = ΠA2B (JbK)
– for i = 0 to k−2 do: Jb′iK

B = JbiKB⊕ Jbk−1KB

– {JciK}0
i=k−2 = ΠpreOR({Jb′iKB}0

i=k−2) and Jck−1KB = J0KB

– for i = k−2 to 1 do: JciKB = JciKB⊕ Jci+1KB

– JvK = ΠB2A

(
{JciKB}0

i=k−1

)
(in reverse order)

– JzKB = ΠNOT

(
Πmult

(
Jbk−1KB,Jc0KB))

– Jw′K = Πsel

(
α,−α,Jbk−1KB)−2 ·Πmult(JbK,JvK,0)

– JwK = Πmult (JvK,Jw′K,2(k− f−1))
– return JwK, JzKB

Protocol ΠappRec (JbK)

Figure 19: Protocol for computing initial approximation of 1/b

Given the initial guess w, Πdiv relies on Goldschmidt’s
method to output d which iteratively approximates a/b. The
value of d in the θth iteration is computed as dθ = dθ−1 · (1−
eθ−1). Here, eθ denotes the relative error in the θth iteration
and can be obtained as eθ = eθ−1 ·eθ−1. The algorithm begins
with initializing d0 = a ·w and e0 = ε0. Observe that after θ

iterations, dθ has a relative error of (ε0)
2θ

, indicating that the
error reduces exponentially. The formal protocol for division
appears in Fig. 20. Since division by 0 is undefined, Πdiv

additionally outputs a flag bit z (computed as part of ΠappRec)
which indicates if the divisor b is 0. For the applications
considered, we note θ = 4 suffices to obtain the desired level
of accuracy. We remark that the round optimized (log4(ℓ)
rounds) protocols for prefix OR and arithmetic to Boolean
conversion aid in attaining improved round complexity.

– JwK,JzKB = ΠappRec (JbK)
– α = (1)2f and JeK = α−Πmult (JbK,JwK,0)
– JdK = Πmult (JaK,JwK,0)
– for i = 1 to θ-1 do:
◦ JdK = Πmult (JdK,α+ JeK,2f), JeK = Πmult (JeK,JeK,2f)

– JdK = Πmult (JdK,α+ JeK,2f)
– return JdK,JzKB

Protocol Πdiv (JaK,JbK)

Figure 20: Protocol for division

Inverse square root We follow along the lines of [29]
which uses polynomial approximation to compute the inverse
square root. Similar to division, to get a good approximation
of y, the input a is first normalized to a′ ∈ (0.25,0.5]. Here,
a′ = a · v, and v = 2−(e+1) is the scaling factor (where the
most significant non-zero bit of a appears at index e+ f in the
bit representation of a, assuming v has f bit precision). Then
1/
√
a is given by:

1√
a
=

(
1√
a′

)
·2−(e+1)/2 (8)

Here, 1/
√
a′ is approximated using a low degree polynomial

g(a′) = 4.63887a′2−5.77789a′+3.14736 (9)

The protocol ΠPreInvSqrt computes the normalized input a′.
Additionally, it computes v′= 2−(e+1)/2, as required in Eq. (8).
We now give an overview of how these two components are
generated. To compute the normalized input a′ = a ·v, we first
compute v = 2f−(e+1) (accounting for f bit precision). For
this, the input a is decomposed to obtain its bit-wise Boolean
representation. These bits are manipulated using prefix OR

and local operations to compute v. Similarly, v′ = 2f−
(e+1)

2 is
also computed with f bits of precision. Observe that v′ can be
computed by shifting the bit at index e+ f+1 to index (e+ f+
1)/2. This is performed obliviously by computing the XOR
of every consecutive pair of bits of v. Following this, the v′ is
multiplied by 2

f
2 to compute 2f−(e+1)/2. Observe that when

(e+ f+1) is odd the value is computed correctly. However,
when (e+ f+ 1) is even, the value computed is offset by a
factor of

√
2. Hence, v′ should be instead multiplied by 2(

f+1
2 )

to cancel out the offset. To handle both cases obliviously, we
compute r which denotes the parity of (e+ f + 1). This is
computed as the XOR of bits in v indexed with odd numbers.
Then, invoking the Πsel(2(

f
2 ),2(

f+1
2 ),JrKB) allows computing

the correct inverse square root of the scaling factor obliviously.
Details of ΠPreInvSqrt appear in Fig. 21.

– JaKB = ΠA2B (JaK)

– {JciKB}0
i=k−2 = ΠpreOR

(
{Ja′iKB}0

i=k−2

)
and Jck−1KB =

J0KB

– Jvk−1KB = Jck−1KB

– for i = k−2 to 1 do: JviKB = JciKB⊕ Jci+1KB

– JvK = ΠB2A

(
{JviK}0

i=2f−1

)
(in reverse order)

– Ja′K = Πmult (JaK,JvK, f)

– k′ = k
2 , f
′ = f

2 ,c0 = 2
f+1

2 ,c1 = 2
f
2

– for i = 0 to k′ do: Jv′iK
B = Jv2iKB⊕ Jv2i+1KB

– JrKB = Jv1KB⊕ Jv3KB⊕ Jv5KB⊕ . . .Jvk−1KB

– Jv′K = ΠB2A

(
{Jv′iKB}0

i=2f ′−1

)
– Jv′K = Πsel(c0,c1,JrK) · JvK and return Ja′K,Jv′K

Protocol ΠPreInvSqrt (JaK)

Figure 21: Sub-protocol for inverse square root
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Given a′,v′, the protocol ΠInvSqrt computes the inverse
square root of the input a as follows. The approximate in-
verse square root of the normalized input, denoted as y, is
computed using the polynomial provided in Eq. (9). Follow-
ing this, the inverse square root of the input a is given by

1√
a
= y ·v′, which follows from Eq. (8). The formal protocol

appears in Fig. 22.

– Ja′K,Jv′K = ΠPreInvSqrt (JaK)
– Jy0K = Ja′K,Jy1K = Πmult(Ja′K,Ja′K, f)
– JyK = 4.63887Jy1K−5.77789Jy0K+3.14736
– return Πmult(JyK,Jv′K, f)

Protocol ΠInvSqrt (JaK)

Figure 22: Protocol for computing inverse square root

D.2 Complexity
In this section, we briefly discuss the complexity of the pro-
posed building blocks and primitives.

Double bit injection The protocol Π2−bitInj requires com-
munication of 3ℓ bits and 1 round in the online phase and
18ℓ+ 2 bits in the preprocessing phase. This cost is ex-
plained as follows. In the online phase of Π2−bitInj parties
compute y1,y2 and y3 locally. Following this the parties
(P1,P2),(P2,P3),(P1,P3) joint share y1,y2 and y3 respectively
in parallel. This requires 1 round and a communication of
3ℓ bits in the online phase. The communication cost for the
preprocessing phase follows from Table 9.

Prefix OR The protocol ΠpreOR requires communication
of 432 bits and 3 rounds in the online phase and 1680 bits
in the preprocessing phase. This cost is explained as follows.
For our choice of k= 32, the prefix OR can be computed in
log4 (32) = 3 rounds. Observe that each round has 16 invo-
cations of Πmult, Π3-mult, and Π4-mult that are computed in
parallel. Thus, the communication cost for the online phase is
432 bits and for the preprocessing phase is 1680 bits.

Exponentiation The protocol Πexp requires communica-
tion of 156ℓ+ u1 bits and 10 rounds in the online phase
and 364ℓ+ u′1 bits in the preprocessing phase. Here, u′1 =
2n2 + 9n3 + 24n4, u1 = 3(n2 +n3 +n4) where n2 = 216,
n3 = 184, n4 = 179 denote the number of AND gates in the
optimized PPA circuit of [34] with 2,3,4 inputs, respectively.
This cost is explained as follows. Parties first truncate the
input to compute the sharing of integer part (JtK) of the input,
followed by a call to ΠA2B to get the bitwise sharing of the
same. This requires 4 (i.e., 1+3) rounds and communication
of u1 +3ℓ bits (see Table 9) in the online phase. The parties
then XOR the bits of JtK with the MSB of JtK which is com-
puted non-interactively. Following this, the exponentiation for

the integer part and the decimal part is computed in parallel.
For the integer part, the bitwise exponentiation is computed
in parallel. This requires one call to ΠbitInj and Π2−bitInj with
respect to each bit. For our choice of k= 32 and f = 16, there
are 15 bits that correspond to the integer part. Hence, the total
cost for this step is 1 round, and 15× (3ℓ+3ℓ) = 90ℓ bits of
communication in the online phase. Following this, the parties
multiply the computed bitwise exponentiation to obtain JetK.
This requires 15 multiplications which can be computed in 4
rounds, and communication of 45ℓ bits. To compute the expo-
nentiation of the decimal part, the taylor series approximation
is used. We use θ = 4 that gives the desired accuracy. Each
iteration has one multiplication. Thus, the communication
cost for computing the exponentiation of the decimal part is
12ℓ bits in the online phase. Finally, the exponentiation of the
integer part and the decimal part is multiplied to get the output
which requires 1 round and 3ℓ bits of communication in the
online phase. Thus, the protocol Πexp requires 10 rounds and
364ℓ+ u1 bits of communication in the online phase. The
preprocessing cost follows from Table 9.

Division The protocol ΠappRec requires a communication
of 15ℓ+ u1 + 432 bits and 9 rounds in the online phase
and 205ℓ+u′1 +1681 bits in the preprocessing phase. Here,
u′1 = 2n2+9n3+24n4, u1 = 3(n2 +n3 +n4) where n2 = 216,
n3 = 184, n4 = 179 denote the number of AND gates in the
optimized PPA circuit of [34] with 2,3,4 inputs, respectively.
This cost is explained as follows. Parties run one instance
of ΠA2B which requires a communication of u1 bits (ref. Ta-
ble 9) and 3 rounds in the online phase. This is followed by
one instance of ΠpreOR, which requires 3 rounds and 432 bits
of communication. Next, the parties run one instance of ΠB2A,
which requires 1 round and 3ℓ communication. Next, the par-
ties run two instances of multiplication in parallel to compute
JzKB and Jw′K along with one instance of Πsel. This requires
1 round and has a communication cost of 9ℓ bits. Finally, the
parties run one instance of multiplication to compute the ini-
tial approximation JwK. This constitutes one round and 3ℓ bits
of communication. Thus the total online cost for ΠappRec is 10
rounds and 15ℓ+u1 +432 bits in the online phase. The pre-
processing cost follows from Table 9 and the cost of ΠpreOR.

The protocol Πdiv requires a communication of 42ℓ+u1 +
432 bits and 14 rounds in the online phase and 223ℓ+u′1 +
1681 bits in the preprocessing phase. This cost is explained
as follows. Parties invoke 1 instance of ΠappRec, which has
a communication cost of 15ℓ+ u1 + 432 and constitutes 9
rounds. This is followed by Goldschmidt’s approximation.
We observe that for our choice of k = 32 and f = 16, three
iterations (i.e θ = 4) of Goldschmidt’s approximation is re-
quired to obtain good accuracy. In each iteration, the severs
run 2 multiplications in parallel, which constitutes 1 round
and communication of 6ℓ bits per round. Finally, the parties
run another multiplication to get the final result. Thus the
total number of rounds required is 14 and the communication
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Building block Online Preprocessing

Rounds Comm. (in bits) Comm. (in bits)

Joint sharing+ 1 2ℓ -

Multiplication 1 3ℓ 2ℓ

3-input Multiplication 1 3ℓ 9ℓ

4-input Multiplication 1 3ℓ 24ℓ

MulR† - - 3ℓ

Multiplication with truncation 1 3ℓ 2ℓ

Bit to arithmetic 1 3ℓ 3ℓ+1

Boolean to arithmetic 1 3ℓ 192ℓ+1

Arithmetic to Boolean log4 ℓ u1 ℓ+u′1

Bit extraction log4 ℓ u2 ℓ+u′2

Bit injection 1 3ℓ 6ℓ+1

Comparison log4 ℓ u2 ℓ+u′2

Oblivious select 1 3ℓ 6ℓ+1

- ℓ: size of ring in bits, instantiated with ℓ= 64 in our work
- u′1 = 2n2 +9n3 +24n4, u1 = 3(n2 +n3 +n4) where n2 = 216, n3 = 184, n4 = 179 denote the number of AND gates in the optimized PPA circuit of [34]
with 2,3,4 inputs, respectively.
- u′2 = 2n2 +9n3 +24n4, u2 = 3(n2 +n3 +n4) where n2 = 41,n3 = 27,n4 = 47 denote the number of AND gates in the optimized bit extraction circuit of
[34] with 2,3,4 inputs, respectively.
+ Joint-sharing a value v in the preprocessing phase where v is held by P0 along with another party, has a communication cost of only ℓ bits. We refer readers
to [23] for further details.
† The protocol MulR is only invoked in the preprocessing phase of Π2−bitInj

Table 9: Complexity of building blocks of Tetrad [23]

cost is 42ℓ+u1 +432. The preprocessing cost follows from
Table 9 and the cost of ΠappRec.

Inverse square root The protocol ΠPreInvSqrt requires a
communication of 9ℓ+ u1 + 432 bits and 8 rounds in the
online phase and 387ℓ+u′1 +1682 bits in the preprocessing
phase. Here, u′1 = 2n2 + 9n3 + 24n4, u1 = 3(n2 +n3 +n4)
where n2 = 216, n3 = 184, n4 = 179 denote the number of
AND gates in the optimized PPA circuit of [34] with 2,3,4
inputs, respectively. This cost is explained as follows. Parties
invoke ΠA2B to decompose the input (a) into bits. This is
followed by computing prefix OR of the bits and XORing the
bits with the msb of the input, similar to the protocol ΠappRec.
This requires 4 rounds and communication u1 +432 bits in
the online phase. This is followed by an invocation of ΠB2A to
compute the scaling factor v and a multiplication to compute
the scaled input. This requires 2 rounds and communication
of 6ℓ bits in the online phase. In parallel, the parties also
compute the square root of the scaling factor(v′), which also
requires one call to ΠB2A, which requires communication
of 3ℓ bits. The bit r, denoting parity of the scaling factor,
is computed non interactively. Thus the protocol ΠPreInvSqrt

requires 8 rounds and 9ℓ+432+u1 bits of communication.
The preprocessing cost follows from Table 9 and the cost of

ΠpreOR.
The protocol ΠInvSqrt requires a communication of 15ℓ+

u1 +432 bits and 10 rounds in the online phase and 391ℓ+
u′1 + 1682 bits in the preprocessing phase. This cost is ex-
plained as follows. Parties invoke ΠPreInvSqrt to compute the
scaled input and the square root of scaling factor. Following
this, parties compute the square of the scaled input which
requires one multiplication. Following this the inverse square
root of the scaled input is computed non interactively using
the polynomial provided in (9). Finally, the parties invoke
one call to multiplications to compute the output. Thus the
protocol ΠInvSqrt requires 10 rounds and 15ℓ+432+u1 bits
of communication in the online phase. The preprocessing cost
follows from Table 9 and the cost of ΠPreInvSqrt.

E Discussion

GCN evaluation with 3PC Depending on the application
scenario, one may wish to evaluate GCNs in the 3PC setting.
Hence, for completeness, we also showcase the practicality
of GCN evaluation in the 3PC setting by relying on the state-
of-the-art robust framework of [22]. For this, we adapt the
primitives designed in our work (exponentiation and inverse
square root) as well as rely on the primitives from [38] (prefix
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OR and division) and the shuffle protocol of [39] to enhance
the 3PC of [22] to support GCN evaluation. The performance
is reported in Table 10. As expected, observe that Entrada
fares better than 3PC.

Variant Preprocessing (s) Online (s)

Inference 4.16 7.88

Training w/ Adam w/o GraphSC 57.97 277.04

Training w/ Adam w/ GraphSC 29.60 240.23

Table 10: GCN performance in 3PC.

GCN evaluation via GraphSC Observe that it is only
the training of GCNs that leverages the GraphSC paradigm.
One may be misled to believe that performing inference via
GraphSC may also lead to improved efficiency. However, the
justification for why this is not the case is as follows. Recall
that inference is the forward pass sans the Softmax, which
comprises matrix multiplications. Hence, relying on the ma-
trix representation allows performing inference in 1 round
of interaction and requires O(n2) communication and O(n3)
computations. This is because there are O(n2) dot products
that are required for matrix multiplication and all of these
can be performed in parallel and hence require just 1 round
of interaction. On the contrary, this round-efficient approach
comes at the cost of prohibitively high memory, as required
to store the underlying adjacency matrix. For instance, oper-
ating on the Yelp dataset (see §6.3) would require 50GB of
memory at a processor when executing matrix multiplication
via MPC protocol. This being the case, leveraging the mul-
tiprocessor setting to enhance the efficiency by performing
the computations in parallel via m processors would require
m×50GB memory which is prohibitively high. In fact, we
observe that for the system configuration specified in the
benchmarks, evaluating the GCN under the matrix represen-
tation for even two processors runs into insufficient memory
issues. Thus, to capitalize on the multiprocessor setting, it is
important to have a memory-efficient representation of the un-
derlying graph. Moreover, the representation must also facili-
tate leveraging the multiprocessor setting. Since the GraphSC
paradigm satisfies both the above requirements, we can rely
on the same. That is, operating over the list representation
of the graph as required by GraphSC only needs 47MB of
memory at each processor when executing the MPC protocol.
This amounts to a total of 3GB for the 64 vCPUs considered
in the current setting. Further, GraphSC provides a way to
translate matrix operations into Scatter-Gather operations
on the list that are designed to leverage the multiprocessor
setting. However, unlike the matrix representation that allows
matrix multiplications to be performed in a single round, the
GraphSC framework requires O(log(|V |+ |E |)) number of
rounds. Further it requires O(n2) communication as well as

computation, where n = |V |. Thus, performing inference via
GraphSC would incur additional overhead in comparison to
directly operating on the matrices. On the contrary, training
witnesses improvements via GraphSC (see Table 4, Table 7).
The reason for the same is as follows. Recall that training
comprises invocations of Softmax and the backward pass in
addition to the steps of inference. The improvements brought
in by the multiprocessor setting of GraphSC in the compu-
tation of Softmax significantly overpower the inefficiencies
introduced during the inference phase. This is corroborated
by the numbers reported in Table 4, Table 7.

Although one may be mislead to believe that performing
inference part of forward pass via matrices and switching to
GraphSC for the rest of the computations in training would be
more efficient, we would like to note that this approach is com-
putationally expensive. This is because, switching between
the matrix and the list based representation would require
expensive sort operations. For instance, updating entries from
(GraphSC) list representation to the matrix representation in a
data-oblivious manner would first require transforming the list
of O(|V |+ |E|) entries to a list with O(|V |2) entries followed
by sorting the latter list to obtain the matrix representation.
Sorting the O(|V |2) list would thus require O(|V |2 log(|V |))
computations. This would render the solution highly ineffi-
cient. Further, note that this operation of sort is required each
time we switch between the representations and hence would
be required in each epoch.

F Security proofs

The simulation-based security proofs for the designed prim-
itives are presented in this section. At a high level, observe
that the designed protocols rely on invoking protocols given
in Tetrad [23] whose security was established therein in the
standard real-world/ideal-world simulation paradigm. Hence,
the security of the designed protocols follows directly from
the security of the underlying protocols of Tetrad. We next
elaborate on these.

We let the following denote the ideal functionalities for the
protocols provided by Tetrad.

1. Fmult-Tr: This functionality takes as input J·K-shares of
x,y and outputs J·K-shares of z= x · y by truncated by f
bits using probabilistic truncation.

2. FA2B: This functionality takes as input J·K-shares of
a value x, and outputs J·KB-shares for its equivalent
Boolean representation.

3. FBitInj: This functionality takes as input J·K-shares of x
and J·KB-shares of a bit b and outputs J·K-shares of b ·x.

Prefix OR

The ideal functionality for prefix OR appears in Fig. 23.
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FPreOr interacts with the parties in P and the ideal world mali-
cious adversary S , and proceeds as follows.
– Receive as input the J·KB-shares of bits xℓ−1, . . . ,x0 from all
parties.

– Let yℓ−1, . . . ,y0 denote the output bits. Receive from S its J·KB-
shares of the output bits.

– Reconstruct xℓ−1, . . . ,x0 using the shares of honest parties.

– Compute yi = ∨ℓ−1
j=i x j for i ∈ {0, . . . , ℓ−1}.

– Generate J·KB-shares of yi for i ∈ {0, . . . , ℓ−1} accounting for
the shares received from S .

– Send (Output,JyiKB
s ) for i ∈ {0, . . . , ℓ−1} to Ps ∈ P .

Functionality FPreOr

Figure 23: Ideal functionality for prefix OR.

Lemma F.1 (Security). Protocol ΠpreOR (Fig. 17) se-
curely realizes FPreOr (Fig. 23) in the computational
4PC setting against a malicious adversary S in the
(Fmult,F3-mult,F4-mult,FNot)-hybrid model.

Proof. The simulator begins by defining the blocks
and sub-blocks. The simulator then emulates
Fmult,F3-mult,F4-mult,FNot in the order in which they
appear in the protocol. In this way, the simulation proceeds
by simulating the steps of the underlying protocols. Thus, the
indistinguishability of the simulated and real-world view of
the adversary follows from the indistinguishability of the
simulation steps of the underlying protocols.

Exponentiation

Ideal functionality for exponentiation appears in Fig. 24.

FExp interacts with the parties in P and the ideal world malicious
adversary S , and proceeds as follows.
– Receive as input the J·K-shares of x from all parties.

– Let g denote the output. Receive from S its J·K-shares of g.

– Reconstruct x using the shares of honest parties.

– Split x into its integer part t and the fractional part r such that
x= t+ r.

– Compute er using Taylor series approximation up to θ terms.

– Let {ti}k−1
i=0 denote the bits in |t| (absolute value of t). Compute

the following using probabilistic truncation after multiplication.

et =

{
∏

k−2
j=f et j ·2 j−f

, if x≥ 0

∏
k−2
j=f e−t j ·2 j−f

, otherwise

– Compute g = ex = et · er.
– Generate J·K-shares of g while accounting for the shares re-
ceived from S .

– Send (Output,JgKs) to Ps ∈ P .

Functionality FExp

Figure 24: Ideal functionality for exponentiation.

Lemma F.2 (Security). Protocol Πexp (Fig. 18) securely real-
izes FExp (Fig. 24) in the computational 4PC setting against a
malicious adversary S in the (FA2B,FBitInj,Fmult-Tr)-hybrid
model.

Proof. The simulator emulates FA2B,FBitInj,Fmult-Tr in the
order in which they appear in the protocol. In this way, the
simulation proceeds by simulating the steps of the underly-
ing protocols. Thus, the indistinguishability of the simulated
and real-world view of the adversary follows from the in-
distinguishability of the simulation steps of the underlying
protocols.

Division

The ideal functionalities for approximate reciprocal and divi-
sion appear in Fig. 25, Fig. 26, respectively.

FAppRec interacts with the parties in P and the ideal world mali-
cious adversary S , and proceeds as follows.
– Receive as input the J·K-shares of b from all parties.

– Let w,z denote the outputs. Receive from S its J·KB-shares of
the outputs.

– Reconstruct b using the shares of honest parties.

– Set z= 1 if b= 0, else set z= 0. Compute w = 1/b in fixed-
point arithmetic representation as follows using probabilistic trun-
cation when performing multiplication.
◦ If b≥ 0, normalize it to b′ ∈ [0.5,1), else if b< 0, normalize

it to b′ ∈ (−1,−0.5] by computing b′ = bv, where v is the
scaling factor used to normalize b.
◦ If b ≥ 0, approximate w′ = 1/b′ as 2.9142− 2b′, else w′ =

1/b′ is approximated to −2.9142−2b′.
◦ Set w = w′ ·v, where v is the scaling factor used to obtain the

normalized b′ = bv.

– Generate J·K-shares of w,z while accounting for the shares
received from S .

– Send (Output,JwKs,JzKs) to Ps ∈ P .

Functionality FAppRec

Figure 25: Ideal functionality for approximate reciprocal.

Lemma F.3 (Security). Protocol ΠappRec (Fig. 19) se-
curely realizes FAppRec (Fig. 25) in the computa-
tional 4PC setting against a malicious adversary S
in the (FA2B,FB2A,FPreOr,Fmult,Fmult-Tr,FSel,FNot)-hybrid
model.

Proof. The protocol does not involve any interaction apart
from what is required while invoking the protocols for
ΠA2B,ΠB2A,ΠpreOR,Πmult,Πsel,ΠNOT. Hence, the simulator
emulates FA2B,FB2A,FPreOr,Fmult,Fmult-Tr,FSel,FNot in the
order in which they appear in the protocol. In this way, the
simulation proceeds by simulating the steps of the underly-
ing protocols. Thus, the indistinguishability of the simulated
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and real-world view of the adversary follows from the in-
distinguishability of the simulation steps of the underlying
protocols.

FDiv interacts with the parties in P and the ideal world malicious
adversary S , and proceeds as follows.
– Receive as input the J·K-shares of a,b from all parties.

– Let d,z denote the outputs. Receive from S its J·KB-shares of
the outputs.

– Reconstruct a,b using the shares of honest parties.

– Set z= 1 if b= 0, else set z= 0. Compute d= a/b using Gold-
schmidt’s approximate division method in fixed-point arithmetic
representation, where 1/b is computed using the approximate
reciprocal approach described in Fig. 25.

– Generate J·K-shares of d,z while accounting for the shares
received from S .

– Send (Output,JdKs,JzKs) to Ps ∈ P .

Functionality FDiv

Figure 26: Ideal functionality for division.

Lemma F.4 (Security). Protocol Πdiv (Fig. 20) securely real-
izes FDiv (Fig. 26) in the computational 4PC setting against
a malicious adversary S in the (FAppRec,Fmult-Tr)-hybrid
model.

Proof. The simulator begins by emulating FAppRec. Following
this, it emulates Fmult-Tr as per its invocation in the real-world
protocol. In this way, the simulation proceeds by simulating
the steps of the underlying protocols. Thus, the indistinguisha-
bility of the simulated and real-world view of the adversary
follows from the indistinguishability of the simulation steps
of the underlying protocols.

Inverse square root

The ideal functionalities for ΠPreInvSqrt and inverse square
root appear in Fig. 27, Fig. 28, respectively.

Lemma F.5 (Security). Protocol ΠPreInvSqrt (Fig. 21) se-
curely realizes FPreInvSqrt (Fig. 27) in the computational
4PC setting against a malicious adversary S in the
(FA2B,FB2A,FPreOr,Fmult-Tr,FSel)-hybrid model.

Proof. The simulator emulates
FA2B,FB2A,FPreOr,Fmult-Tr,FSel in the order in which
they appear in the protocol. In this way, the simulation
proceeds by simulating the steps of the underlying protocols.
Thus, the indistinguishability of the simulated and real-world
view of the adversary follows from the indistinguishability of
the simulation steps of the underlying protocols.

Lemma F.6 (Security). Protocol ΠInvSqrt (Fig. 22) securely
realizes FInvSqrt (Fig. 28) in the computational 4PC setting
against a malicious adversary S in the (FInvSqrt,Fmult-Tr)-
hybrid model.

Proof. The simulator begins by emulating FInvSqrt. Following
this, it emulates Fmult-Tr as per its invocation in the real-world
protocol. In this way, the simulation proceeds by simulating
the steps of the underlying protocols. Thus, the indistinguisha-
bility of the simulated and real-world view of the adversary
follows from the indistinguishability of the simulation steps
of the underlying protocols.

FPreInvSqrt interacts with the parties in P and the ideal world
malicious adversary S , and proceeds as follows.
– Receive as input the J·K-shares of a from all parties.

– Let a′,v denote the outputs. Receive from S its J·K-shares of
the outputs.

– Reconstruct a using the shares of honest parties.

– Compute a′ = a ·v, which is a normalized to lie in (0.25,−.5]
in fixed-point arithmetic representation as follows using proba-
bilistic truncation when performing multiplication.
◦ Compute the scaling factor v = 2−(e+1), where the most sig-

nificant non-zero bit of a appears at index e+ f in the bit repre-
sentation of a, (with v having f bit precision).
◦ Compute a′ = a ·v.
◦ Set v′ = 2−(e+1)/2.

– Generate J·K-shares of a′,v′ while accounting for the shares
received from S .

– Send (Output,Ja′Ks,Jv′Ks) to Ps ∈ P .

Functionality FPreInvSqrt

Figure 27: Ideal functionality for ΠPreInvSqrt.

FInvSqrt interacts with the parties in P and the ideal world mali-
cious adversary S , and proceeds as follows.
– Receive as input the J·K-shares of a from all parties.

– Let y denote the output. Receive from S its J·K-shares of the
output.

– Reconstruct a using the shares of honest parties.

– Normalize a to a′ ∈ (0.25,0.5] and compute square root of the
scaling factor v′ as described in Fig. 27.

– Compute y′ = 4.63887a′2−5.77789a′+3.14736 and y = y′ ·
v′ using probabilistic truncation after multiplication.

– Generate J·K-shares of y while accounting for the shares re-
ceived from S .

– Send (Output,JyKs) to Ps ∈ P .

Functionality FInvSqrt

Figure 28: Ideal functionality for inverse square root.

Shuffle

Lemma F.7. The shuffle protocol, ΠShuffle (Fig. 13, Fig. 14)
securely realizes the functionality FShuffle (Fig. 12) against a
malicious adversary that corrupts at most one party in P , in
the Fsetup-hybrid model.
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Proof. Let S represent the ideal-world adversary and A rep-
resent the adversary in the real world. S starts by simulating
Fsetup, where common keys are established with A . These
keys are used to sample the common randomness needed
throughout the protocol. As a result, S is aware of all the
randomness that A uses (more precisely, S is aware of shares
of λv, and mv held by A) and can extract the input from A
as well as to confirm the correctness of messages sent by A .
After this, it simulates the steps of the shuffle protocol. Since
P0 is active only in the preprocessing phase and it possesses
all the input-independent data, security against P0 follows
easily. Simulation steps for a corrupt P2 are provided in Fig.
29, where the corresponding simulator is denoted as S P2 . Sim-
ulation for a corrupt P1 follows along the same lines as P2.

SP2 proceeds as follows.
Preprocessing:

– Using the keys established via Fsetup, sample the common
randomness with A .
– Simulate the steps of Πjsh acting as the sender together with

A to generate J·K-shares of π0

(
λ

i
w

)
for i ∈ {2,3}.

– Simulate the steps of Πjsh with A as the receiver to generate

J·K-shares of π0

(
λ

1
w

)
.

//Simulation of generation of b1 towards P1

– Sample a random πs,π2 and compute Π = πs ◦π1 ◦π2, where
π1 is held by A . Simulate the steps of Πjsh acting as the sender
to send Π to A .
– Sample a random z21 ∈ ZN

2ℓ and compute y11 = π2(α
3
1−z21)

as per the protocol. Simulate steps of Πjmp acting as the sender
to send y11 to A .
– Compute y21 = π1(y11−z11) and y31 = π3(y21 +z31) as per

the protocol. Simulate steps of Πjmp acting as the sender together
with A to send λ

2
w−y31 to P1.

//Simulation of generation of b2 towards P2

– Sample a random z22 ∈ ZN
2ℓ and compute y12 = π2(α

3
2−z22)

as per the protocol. Simulate steps of Πjmp acting as the sender
to send y12 to A .
– Compute x32 = π3(x22− z32) as per the protocol. Sample a

random λ
1
w ∈ ZN

2ℓ and simulate steps of Πjmp acting as the sender
to send λ

1
w−x32 to A .

Online:

– Sample a random r2 ∈ ZN
2ℓ and compute a2 = π2 (mv+ r2).

Simulate the steps of Πjmp acting as the sender to send a2 to A .
– Compute a1 = πs (π1 (π2 (mv+ r1))) as per the protocol, and

simulate steps of Πjmp acting as the sender together with A to
send a1 to P1.
– Compute mw as per the protocol, and simulate steps of Πjmp

acting as the sender together with A to send mw to P3.

Simulator SP2

Figure 29: Simulator SP2 for corrupt P2 in ΠShuffle

Observe that the messages received by A in the real-world
comprise of the random a2 in the online phase. In the pre-
processing phase, P2 receives a random permutation Π, and
y11, y12, λ

1
w− x32 which come from a uniform random dis-

tribution. Observe that in the simulation in Fig. 29, these
messages received by A continue to come from a uniform dis-
tribution. This is because each of these messages is generated
by using randomness sampled from a uniform distribution by
S P2 . Hence, the real-world and ideal world views for A are
indistinguishable.

SP3 proceeds as follows.
Preprocessing:

– Using the keys established via Fsetup, sample the common
randomness with A .
– Simulate the steps of Πjsh acting as the sender together with

A to generate J·K-shares of π0

(
λ

i
w

)
for i ∈ {1,2}.

– Simulate the steps of Πjsh with A as the receiver to generate

J·K-shares of π0

(
λ

3
w

)
.

//Simulation of generation of Π towards P2

– Compute Π = πs ◦π1 ◦π2 as per the protocol. Simulate the
steps of Πjmp acting as the sender together wit A to send Π to P1.

//Simulation of generation of b1 towards P1

– Compute x21 = π1(x11 + z11) as per the protocol. Simulate
steps of Πjmp acting as the sender along with A to send x21 to P1.

//Simulation of generation of b2 towards P2

– Compute x22 = π1(x12 + z12) as per the protocol. Simulate
steps of Πjmp acting as the sender along with A to send x22 to P1.
Online:

– Compute a1 = πs (π1 (π2 (mv+ r1))) as per the protocol, and
simulate steps of Πjmp acting as the sender together with A to
send a1 to P1.
– Compute a2 = π2 (mv+ r2) as per the protocol, and simulate

steps of Πjmp acting as the other sender together with A to send
a2 to P2.
– Compute mw as per the protocol, and simulate steps of Πjmp

acting as the sender to send mw to A .

Simulator SP3

Figure 30: Simulator SP3 for corrupt P3 in ΠShuffle

The simulation steps for a corrupt P3 are provided in Fig.
30. Observe that the messages received by A in the real-
world comprise of the random mw in the online phase. In the
preprocessing phase, P3 does not receive any values. Observe
that in the simulation in Fig. 29, these messages received by A
continue to come from a uniform distribution. This is because
each of these messages is generated by using randomness
sampled from a uniform distribution by S P3 . Hence, the real-
world and ideal world views for A are indistinguishable.

29


	Introduction
	Our contributions

	Preliminaries
	Graph convolutional networks (GCN)
	Secure multiparty computation (MPC)
	GraphSC paradigm

	Secure GCN
	GCN evaluation via GraphSC
	Secure shuffle
	Scatter and gather primitives
	Generation of shares of G

	Improvements over Tetrad
	Benchmarks
	Comparison of primitives
	GCN
	Fraud detection

	Conclusion
	Preliminaries
	Secure GCN - input sharing
	GCN evaluation via GraphSC
	Secure shuffle
	Scatter-Gather primitives

	Building blocks
	Formal protocols
	Complexity

	Discussion
	Security proofs

