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Abstract. CRYSTALS-Kyber is a key-encapsulation mechanism, whose
security is based on the hardness of solving the learning-with-errors
(LWE) problem over module lattices. As in its specification, Kyber pre-
scribes the usage of the Number Theoretic Transform (NTT) for efficient
polynomial multiplication. Side-channel assisted attacks against Post-
Quantum Cryptography (PQC) algorithms like Kyber remain a concern
in the ongoing standardization process of quantum-computer-resistant
cryptosystems. Among the attacks, correlation power analysis (CPA) is
emerging as a popular option because it does not require detailed knowl-
edge about the attacked device and can reveal the secret key even if the
recorded power traces are extremely noisy. In this paper, we present a
two-step attack to achieve a full-key recovery on lattice-based cryptosys-
tems that utilize NTT for efficient polynomial multiplication. First, we
use CPA to recover a portion of the secret key from the power consump-
tion of these polynomial multiplications in the decryption process. Then,
using the information, we are able to fully recover the secret key by con-
structing an LWE problem with a smaller lattice rank and solving it with
lattice reduction algorithms. Our attack can be expanded to other cryp-
tosystems using NTT-based polynomial multiplication, including Saber.
It can be further parallelized and experiments on simulated traces show
that the whole process can be done within 20 minutes on a 16-core ma-
chine with 200 traces. Compared to other CPA attacks targeting NTT
in the cryptosystems, our attack achieves lower runtime in practice. Fur-
thermore, we can theoretically decrease the number of traces needed
by using lattice reduction if the same measurement is used. Our lattice
attack also outperforms the state-of-the-art result on integrating side-
channel hints into lattices, however, the improvement heavily depends
on the implementation of the NTT chosen by the users.

Keywords: CRYSTALS-Kyber, lattice, side-channel attack, number the-
oretic transform

1 Introduction

1.1 Background

With the development of quantum computation, what is usually hard to solve on
the traditional computer (factorization, DLP, etc) will become efficiently solvable
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by applying Shor’s algorithm [26], which will make the public-key cryptosystems
most people use now unreliable. Thus, there is a significant interest in post-
quantum cryptography (PQC) algorithms, which are based on mathematical
problems presumed to resist quantum attacks. To standardize such algorithms,
the National Institute of Standards and Technology (NIST) initiated a process
to solicit and evaluate PQC candidates being submitted [22]. After three rounds
of the process, they had identified four candidate algorithms for standardization
and four more to be evaluated in round 4.

CRYSTALS-Kyber (Kyber) [2] is one out of the four candidates that are
confirmed to be standardized in July, 2022, and it is the only public-key encryp-
tion and key-establishment algorithm. It belongs to the category of lattice-based
cryptography, and in particular a module Learning With Errors (module-LWE)
scheme. Kyber prescribes the usage of the Number Theoretic Transform (NTT)
for efficient polynomial multiplication. Via point-wise multiplication of trans-
formed polynomials, i.e., ab = NTT−1(NTT(a)◦NTT(b)), multiplication can be
performed in time O(n log n), where n is the degree of polynomial a and b. Ky-
ber has three parameter sets: Kyber512, Kyber768 and Kyber1024 with security
level similar to that of AES128, AES192 and AES256.

Power analysis attacks, introduced by Kocher [15,16], exploit the fact that
the instantaneous power consumption of a cryptographic device depends on the
data it processes and on the operation it performs. There exist simple power
analysis attacks on Kyber that can compromise a message or private key using
only one or several traces. In particular, Primas et al. [24] and Pessl et al. [23]
recover data passed through an NTT by templating the multiplications or other
intermediate values within the NTT. Hamburg et al. [13] present a sparse-vector
chosen ciphertext attack strategy, which leads to full long-term key recovery.
These attacks are still limited in that they either require extensive profiling
efforts or they are only applicable in specific scenarios like the encryption of
ephemeral keys.

As opposed to above methods, Mujdei et al. [21] showed that leakage from
the schoolbook polynomial multiplications after the incomplete NTT can be
exploited through correlation power analysis (CPA) style attacks. CPA attacks
exploit the dependency of power consumption on intermediate values, we provide
an introduction of CPA attacks below and refer to work of Mangard et al. [18]
for further details. The presented attack required 200 power traces to recover
all the coefficients, which enables full key recovery. More precisely, they guess
two coefficients at once within the range

(
− q

2 ,
q
2

]
, implying a search over q2

combinations.
In order to model the effect of these side-channel leakage, Dachman-Soled

et al. [8] proposed a general lattice framework that quantifies the LWE security
loss when revealing a so-called hint (v,w, l) ∈ Zn

q × Zm
q × Z satisfying

⟨(v,w), (s, e)⟩ = l.

The inner product of this equation is usually performed in Zq, which is referred
to as modular-hint. They also dealt with leakage l before mod q reduction, a
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so-called perfect hint. Their results was later improved by May and Nowakowski
[19], where they only addressed hints for the secret s only, i.e., hints (v, l) with
⟨v, s⟩ = l.

1.2 Our Contribution

In this paper, we propose a way that utilizes correlation power analysis to fully
recover the secret key of Kyber. Our attack consists of two steps. First, by
exploiting the correlation of Hamming weight of some intermediates and the
power consumption of the decryption process in Kyber, precisely the part where
we multiply the secret polynomial with ciphertext, we can recover some of the
coefficients of the secret key in the NTT domain. Secondly, since there will be
some ambiguity about whether the recovered coefficients are indeed correct, we
sample part of the recovered coefficients and construct a lattice problem by
Kannan’s embedding proposed by [14]. Then one can recover the entire secret
key by solving the lattice problem by using lattice reduction algorithms such as
BKZ [5].

We also examined the attack on simulated traces of ARM cortex-M0 gen-
erated by a toolkit named ELMO [10]. Experiments show that we can indeed
recover the secret key with 200 traces. With some fine-tuning on the acceptance
threshold of power analysis, we can even have guaranteed success in sampling
all correct coefficients with 600 traces and still have enough ones to construct a
solvable lattice problem.

There are three parameter sets for Kyber, and our attack can be easily
adapted to all parameter sets. The time it takes to recover the secret key is
linear to the number of coefficients in the secret key. The power analysis part
of our attack can be parallelized to further accelerate the process. Although the
idea of our attack is similar to that of Mujdei et al.[21], we only require O(q)
search, which directly reflects on the runtime of the CPA. For reference, our
attack is about 16 times faster than Mujdei et al. [21] without parallelization.
Since our SCA and that of [21] use different methods of measurement, it is hard
to compare the result. However, if we use the same measurement, by using the
lattice reduction, we can theoretically decrease the number of required power
traces. It may get some wrong coefficients by doing so, but we can fix that by
sampling portion of recovered coefficients and using lattice reduction to find the
rest of them.

For the lattice attack part of our attack, as opposed to the above methods,
our approach uses divide-and-conquer methods in a way that we only consider a
portion of the secret key at a time. That is, the hints ⟨v, s⟩ = l gathered from our
method are inner products of vectors with smaller dimension. This can be done
because in the computation of decryption of Kyber, the secret key is divided
into blocks by the intrinsic property of module-LWE. Furthermore, the NTTs
of each sub-key are usually incomplete since it can achieve fastest speed in that
way [6]. Due to these properties of Kyber, The techniques of Dachman-Soled et
al. [8] and May et al. [19] to solve the LWE instance are not suitable for our
cases. Since we only consider a portion of the secret key at a time. The number
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of hints we need is extremely lower than their methods. However, we do need to
perform multiple times of the lattice reduction to achieve a full key recovery.

Our lattice attack can be applied to other cryptosystems that utilizes NTT-
based polynomial multiplications. For example, Saber [9] is a lattice-based KEM
based on Module Learning With Rounding problem. Although it is not specifi-
cally designed to use NTT by choosing an NTT-friendly ring, it is still possible to
achieve fast computation by NTT by enlarging the ring as shown in the work by
Chung et al. [6]. However, the improvement from our attack depends on the im-
plementation of the NTT, namely how many layers of NTT the implementation
chooses to apply to it.

We use the official reference implementation of the Kyber key encapsulation
mechanism provided by the authors [3] as the target. We also provide an effi-
cient open-source Python implementation of our framework. The source code is
available at https://github.com/kuruwa2/kyber-sca.
Organization. The rest of this paper is organized as follows. In Section 2,
we introduce how Kyber is implemented with Number Theoretic Transform. In
Section 3, we illustrate how to apply differential power analysis to the NTT
part of Kyber. In Section 4, we construct a simpler lattice problem from the
recovered coefficients and conduct an experiment by lattice reduction algorithm
to determine the least number of coefficients we need to recover from differential
power analysis. In Section 5, we analyze the success rate of our attack and
conclude the paper.

2 Preliminaries
In this section, we explain the lattices and module-learning with errors problem,
go into some details about Kyber, and review the Number Theoretic Transform.

2.1 Lattices
Let B = [b1, ...,bn] ∈ Zm×n be an integer matrix. We denote by

Λ(B) := {α1b1 + ...+ αnbn | αi ∈ Z}

the lattice generated by B. If the rows of B are linearly independent, B is a
basis matrix of Λ(B). The number of rows n in any basis matrix of some lattice
Λ is called the rank of Λ. The determinant of a lattice Λ with basis matrix B is
defined as

det(Λ) :=

√
det(BBT )

The determinant does not depend on the choice of basis. We also denote by λi(Λ)
the i-th successive minimum of Λ. A lattice vector v ∈ Λ such that ∥v∥ = λ1(Λ) is
called the shortest vector of Λ. λ1(Λ) can be estimated by the following heuristic.
Heuristic 1 (Gaussian Heuristic) Let Λ be an n-dimensional lattice. Gaussian
heuristic predicts that the norm of the shortest vector λ1(Λ) equals

gh(Λ) :=

√
n

2πe
det(Λ)1/n.

https://github.com/kuruwa2/kyber-sca
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2.2 Module-LWE

Learning with errors (LWE) problem [25] and its extension over rings [17] or
modules are the basis of multiple NIST PQC candidates.

Let Zq be the ring of integers modulo q and for given power-of-2 degree n,
define Rq = Zq[x]/(x

n+1) as the polynomial ring of polynomials modulo xn+1.
For any ring R, Rℓ×k denotes the ring of ℓ×k-matrices over R. We also simplify
Rℓ×1 to Rℓ if there is no ambiguity. Single polynomials are written without
markup, vectors are bold lower case a and matrices are denoted with bold upper
case A. βη denotes the centered binomial distribution with parameter η and 0

denote the uniform distribution. If χ is a probability distribution over a set S,
then x ← χ denotes sampling x ∈ S according to χ. If χ is only defined on Zq,
x ← χ(Rq) denotes sampling the polynomial x ∈ Rq, where all coefficients of
the coefficients in x are sampled from χ.

The learning with errors (LWE) problem was introduced by Regev [25] and its
decision version states that it is hard to distinguish m uniform random samples
(ai, bi)← 0(Zn

q × Zq) from m LWE-samples of the form(
ai, bi = a⊤i s+ ei

)
∈ Zn

q × Zq,

where the secret vector s ← βη(Zn
q ) is fixed for all samples, ai ← 0(Zn

q ) and
ei ← βη(Zq) is a small error. A module version of LWE, called Mod-LWE [4]
essentially replaces the ring Zq in the above samples by a quotient ring of the
form Rq with corresponding error distribution βη(Rq).(

ai, bi = a⊤i s+ ei
)
∈ Rk×1

q ×Rq.

The rank of the module is k and the dimension of the ringRq is n. The case k = 1
corresponds to the ring-LWE problem introduced in [17]. We also commonly
integrate m number of samples by the matrix multiplication,

(A,b = As+ e) ∈ Rm×k
q ×Rm

q .

Let λi(Λ) denote the i-th minimum of lattice Λ. The LWE problem can
be considered as an average version of the Bounded Distance Decoding (BDD)
problem: Given a vector such that its distance from the lattice is at most λ1(Λ)/2,
the goal is to find the closest lattice vector to it. A dual problem of BDD is the
so-called unique Shortest Vector Problem (uSVP): Given γ ≥ 1, and lattice Λ
such that λ2(Λ) ≥ γ · λ1(Λ), the goal is to find a non-zero vector v ∈ Λ of norm
λ1(Λ). The reduction between LWE, BDD, and uSVP will be further discussed
in Section 4.2.

2.3 CRYSTALS-Kyber

Kyber [2] is a Key Encapsulation Mechanism (KEM) submitted to the NIST
standardization process, and it is among the four confirmed candidates to be
standardized [22]. The security of Kyber is based on the module-LWE prob-
lem. For the three parameter sets in the proposal, Kyber512, Kyber768, and
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Table 1: Parameter sets for Kyber [1].
name n k q η1 η2
Kyber512 256 2 3329 3 2
Kyber768 256 3 3329 2 2
Kyber1024 256 4 3329 2 2

Kyber1024, the parameters are all set to n = 256 and q = 3329. For most
parameters η = 2 is used, except for Kyber512, where η = 3. The parameter
sets differ in their module dimension k = 2, 3, and 4 respectively. The three
parameter sets listed in Table 1.

Kyber consists of the CCA2-KEM Key Generation, PKE- and CCA2-KEM-
Encryption, and CCA2-KEM-Decryption algorithms, which are summarized in
Algorithms 1, 2, 3 and 4, respectively.

Algorithm 1 Kyber-CCA2-KEM Key Generation (simplified)
Output: Public key pk, secret key sk

1: Choose uniform seeds ρ, σ, z
2: Rk×k ∋ Â← Sample0(ρ)
3: Rk

q ∋ s, e← Sampleβη
(σ)

4: ŝ← NTT(s)
5: t̂← Â ◦ ŝ+NTT(e)
6: return (pk := (̂t, ρ), sk := (̂s, pk,Hash(pk), z))

Algorithm 2 Kyber-PKE Encryption (simplified)
Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext c

1: Rk×k ∋ Â← Sample0(ρ)
2: Rk

q ∋ r, e1,Rq ∋ e2 ← Sampleβη
(τ)

3: u← NTT−1(Â⊤ ◦NTT(r)) + e1

4: v ← NTT−1(̂t⊤ ◦NTT(r)) + e2 + Encode(m)
5: return c := (u, v)

In these algorithms, and in the rest of this paper, the notation a ◦ b means
pairwise multiplication of polynomials, or vectors of polynomials, in the NTT
domain. For example, if a = (a0, a1) and b = (b0, b1), a ◦ b = (a0b0, a1b1).

Kyber uses a variant of the Fujisaki-Okamoto transform [11] to build an IND-
CCA2 secure KEM scheme. This transform applies an additional re-encryption
of the decrypted message, using the same randomness as used for the encryp-
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tion of the received ciphertext. The decryption is only valid if the re-computed
ciphertext matches the received ciphertext.

Algorithm 3 Kyber-CCA2-KEM Encapsulation (simplified)
Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K

1: Choose uniform m
2: (K̄, τ)← Hash(m ∥ Hash(pk))
3: c← PKE.Enc(pk,m, τ)
4: K ← KDF(K̄ ∥ Hash(c))
5: return (c,K)

Algorithm 4 Kyber-CCA2-KEM Decapsulation (simplified)
Input: Secret key sk = (̂s, pk, h, z), ciphertext c = (u, v)
Output: Shared key K

1: m← Decode(v − NTT−1(̂s⊤ ◦ NTT(u)))
2: (K, τ)← Hash(m ∥ h)
3: c′ ← PKE.Enc(pk,m, τ)
4: if c = c′ then
5: return K := KDF(K ∥ Hash(c))
6: else
7: return K := KDF(z ∥ Hash(c))
8: end if

2.4 Number Theoretic Transform

For lattice-based schemes using polynomial rings, polynomial multiplications
in en-/decryption are the most computationally expensive step. The Number
Theoretic Transform (NTT) is a technique that can achieve efficient computation
for those multiplications.

The NTT is similar to the Discrete Fourier Transform (DFT), but instead of
over the field of complex numbers, it operates over a prime field Zq. It can be
seen as a mapping between the coefficient representation of a polynomial from
Rq (called the normal domain) to the evaluation of the polynomial at the n-th
roots of unity (called the NTT domain). This bijective mapping is typically re-
ferred to as forward transformation. The mapping from the NTT domain to the
normal domain is referred to as backward transformation or inverse NTT. In
the NTT domain, the multiplication of polynomials can be achieved by point-
wise multiplication, which is much cheaper than multiplication in the normal
domain. Typically, one would perform the forward transformation, multiply the
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Fig. 1: 8-coefficient Cooley-Tukey decimation in time NTT

polynomials pointwisely in the NTT domain, and go back using the backward
transformation. For Rq with a 2n-th primitive root of unity ζ, the NTT trans-
formation of an n-degree polynomial f =

∑n−1
i=0 fix

i is defined as:

f̂ = NTT(f) =

n−1∑
i=0

f̂ix
i, where f̂i =

n−1∑
j=0

fjζ
(2i+1)·j .

Similarly,

f = NTT−1(f̂) =

n−1∑
i=0

fix
i, where

fi = n−1
n−1∑
j=0

f̂jζ
−i·(2j+1).

The NTT transform and its inverse can be applied efficiently by using a
chaining of log2 n butterflies. It is a divide and conquer technique that splits the
input in half in each step and solves two problems of size n/2. The construction
for an 8-coefficient NTT using the Cooley-Tukey butterfly [7] with decimation
in time is depicted in Figure 1, with the output being in bit-reversed order.
Notice that both NTT and inverse NTT are a linear transform, thus they can be
expressed by matrix multiplications, e.g. [fi]⊤ = M[f̂i]

⊤ for some n× n matrix
M.

Kyber uses an NTT-friendly ring. But in Kyber, only n-th primitive roots of
unity exist, therefore the modulus polynomial xn+1 only factors into polynomials
of degree 2. Hence, the last layer between nearest neighbors of the NTT is skipped
and in NTT domain multiplication is not purely point-wise, but multiplications
of polynomials of degree 1. That is, the Kyber ring is effectively Fq2 [y]/(y

128+1),
where Fq2 is the field Zq[x]/(x

2 − ζ). Also note that in Kyber, polynomials
in the NTT domain are always considered in bit-reversed order (cf. Figure 1).
Therefore, in the following bit-reversal is implicitly expected in the NTT domain
and indices for NTT-coefficients are noted in regular order.
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3 Correlation Power Analysis

In this section, we provide a comprehensive introduction to correlation power
analysis (CPA) provided by Mangard et al. [18] in Section 3.1, and then we apply
the idea to reveal the secret key of Kyber in Section 3.2.

The goal of CPA is to reveal secret keys of cryptographic devices based on a
large number of power traces that have been recorded while the devices encrypt
or decrypt different plaintexts. The probability of success for CPA depends on
the quality and number of traces. Due to the fact that CPA does not require
detailed knowledge about the attacked devices, it is the most popular type of
power analysis attack. Furthermore, they can reveal the secret key even if the
recorded power traces are extremely noisy.

3.1 General Description

We now discuss in detail how such an analysis reveals the secret keys of crypto-
graphic devices in five steps. To reveal one coefficient we need to apply the five
steps, however, step 2 can be applied only once and the power consumption can
be used multiple time for each coefficient that needs to be recovered.
Step 1: Choosing an Intermediate Result of the Executed Algorithm.
The first step of a CPA is to choose an intermediate result of the cryptographic
algorithm that is executed by the device. This intermediate value needs to be a
function f(d, k), where d is a known non-constant data value and k is a small part
of the key. In most attack scenarios, d is either the plaintext or the ciphertext.
Step2: Measuring the Power Consumption. The second step of a CPA is
to measure the power consumption of the device while it encrypts or decrypts
D different data blocks. For each of these encryption or decryption runs, the
attacker needs to know the corresponding data value d that is involved in the
calculation of the intermediate result chosen in Step 1. We denote these known
data values by vector d = (d1, ..., dD)⊤, where di denotes the data value in the
i-th encryption or decryption process.

During each of these runs, the attacker records a power trace. We denote the
power trace that corresponds to data block di by t⊤i = (ti,1, ..., ti,T ), where T
denotes the length of the trace. The attacker measures a trace for each of the D
data blocks, and hence, the traces can be written as matrix T of size D × T .

It is important that the measured traces are correctly aligned. This means
that the power consumption values of each column tj of the matrix T need to
be caused by the same operation. In practice, attackers typically try to measure
only the power consumption that is related to the targeted intermediate result.
If the plaintext is known, the attacker sets the trigger of the oscilloscope to the
sending of the plaintext from the PC to the cryptographic device and records
the power consumption for a short period of time.
Step 3: Calculating Hypothetical Intermediate Values. The next step
of the attack is to calculate a hypothetical intermediate value for every possible
choice of k. We write these possible choices as vector k = (k1, ..., kK), where K
denotes the total number of possible choices of k. In the context of CPA, we
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usually refer to the elements of this vector as key hypotheses. Given the data
vector d and the key hypotheses k, an attacker can easily calculate hypothetical
intermediate values f(d, k) for all D en-/decryption runs and for all K key
hypotheses. This calculation results in a matrix V of size D ×K.

V = [f(di, kj)]D×K

A j-th column of V contains the intermediate results that have been calculated
based on the key hypothesis kj . It is clear that one column of V contains those
intermediate values that have been calculated in the device during the D en-
/decryption runs because k contains all possible choices for k. We refer to the
index of this element as ck. Hence, kck refers to the key of the device. The goal
of CPA is to find out which column of V has been processed during the D en-
/decryption runs. We immediately know kck as soon as we know which column
of V has been processed in the attacked device.
Step 4: Mapping Intermediate Values to Power Consumption Values.
The next step of a CPA is to map the hypothetical intermediate values V to
a matrix H of hypothetical power consumption values. For this purpose, the at-
tacker typically uses models like Hamming-weight model or Hamming-distance
model depending on the scenarios of attack. Using the techniques, the power con-
sumption of the device for each hypothetical intermediate value vi,j is simulated
in order to obtain a hypothetical intermediate value hi,j .

The quality of the simulation strongly depends on the knowledge of the at-
tacker about the analyzed device. The better the simulation of the attacker
matches the actual power consumption characteristics of the device, the more
effective the CPA is. The most commonly used power models to map V to H
are the Hamming-distance and Hamming-weight models.
Step 5: Comparing the Hypothetical Power Consumption Values with
the Power Traces. After having mapped V to H, the final step of a CPA can
be performed. In this step, each column hi of the matrix H is compared with
each column tj of the matrix T. This means that the attacker compares the
hypothetical power consumption values of each key hypothesis with the recorded
traces at every position. The result of this comparison is a matrix R of size
K × T , where each element ri,j contains the result of the comparison between
the columns hi and tj . The comparison is done based on the Pearson correlation
coefficient,

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2

where h̄i and t̄j denote the mean values of the columns hi and tj . It has the
property that the value ri,j is the higher, the better columns hi and tj match.
The key of the attacked device can hence be revealed based on the following
observation.

The power traces correspond to the power consumption of the device while it
executes a cryptographic algorithm using different data inputs. The intermediate
result that has been chosen in step 1 is a part of this algorithm. Hence, the device
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needs to calculate the intermediate value vck during the different executions of
the algorithm. Consequently, also the recorded traces depend on these interme-
diate values at some position. We refer to this position of the power traces as ct,
i.e., the column tct contains the power consumption values that depend on the
intermediate value vck.

The hypothetical power consumption values hck have been simulated by the
attacker based on the values vck. Therefore, the columns hck and tct are strongly
related. In fact, these two columns lead to the highest value in R, i.e., the highest
value of the matrix R is the value rck,ct. An attacker can hence reveal the index
for the correct key ck and the moment of time ct by simply looking for the
highest value in the matrix R. The indices of this value are then the result of
the CPA.

Sometimes, CPA produce high correlation coefficients for many key hypothe-
ses at the time when targeted intermediate result is processed. The high correla-
tion peaks for wrong keys are sometimes referred to as ghost peaks. These peaks
happen because the hypothetical intermediate values are correlated. The height
of these correlations depends on the intermediate result that is attacked.

3.2 Application on CRYSTALS-Kyber

Our attack targets the decryption process of Kyber, i.e. line 1 of Algorithm
4, with the aim of recovering the victim’s secret key ŝ. To decrypt a message
the recipient calculates NTT−1(̂s⊤ ◦ û), where û is the decompressed ciphertext
in the NTT domain and ◦ denotes the pairwise multiplication. The pairwise
multiplication is done in the quotient ring Zq[x]/(x

2 − ζi) as we discussed in
Section 2.4, where ζi are the primitive roots of unity of Zq. In such a ring, the
product of two polynomials a = a0+a1x and b = b0+b1x can be easily computed
as

ab = (a0b0 + a1b1ζi) + (a0b1 + a1b0)x mod q.

However, in most of the processors, modular multiplication is still expensive
since it needs divisions by q. Fortunately, we can avoid the divisions by the
Montgomery reduction algorithm summarized in Algorithm 5. By setting R =
216, division by R can be replaced by a simple bit shifting and x mod R can
be done by returning the lower 16 bits of x, which results in an integer between
−R/2 and R/2− 1. The algorithm works because first, t is chosen so that a− tq
is divisible by R. Second, t is in the range [−R/2, R/2− 1], thus a− tq is in the
range [−qR+ q, qR− 1], which guarantees that b is in the correct range.

Let x0 and y0 be two integers in the range [−q+1, q−1], we refer to the result
of Montgomery reduction of x0 × y0 by Algorithm 5 as fqmul(x0, y0). Then the
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Algorithm 5 Montgomery reduction
Input: Integers q,R with gcd(q,R) = 1

Integer q−1 ∈ [−R/2, R/2− 1] such that qq−1 ≡ 1 mod R
Integer a ∈ [−qR/2, qR/2− 1]

Output: Integer b ∈ [−q + 1, q − 1] such that b ≡ aR−1 mod q

1: t← ((a mod R)q−1) mod R
2: b← (a− tq)/R
3: return b

product r0 + r1x = ab2−16 can be computed as follow:

r0 ← fqmul(a1, b1)

r0 ← fqmul(r0, ζi216)
r0 ← fqmul(a0, b0) + r0

r1 ← fqmul(a1, b0)
r1 ← fqmul(a0, b1) + r1.

(1)

The unwanted constant can be dealt within the inverse NTT together when we
divide the coefficient by n, thus no extra multiplications is needed.

Now suppose we want to reveal the coefficients (ŝ2i, ŝ2i+1), notice that they
are point-wisely multiplied by the ciphertext (û2i, û2i+1), then our first chosen
intermediate value is fqmul(ŝ2i+1, û2i+1), i.e. r0 in the first line of equation (1).
The intermediate value meets the requisite described in Section 3.1, and the
total number of possible choices of ŝ2i+1 ∈ [0, q − 1] is q. Following the steps in
Section 3.1, we can get a list of the most possible candidates of ŝ2i+1. There can
be some incorrect candidates with high score in this step, for example, q− ŝ2i+1

can be such a candidate since the Hamming weight of fqmul(q− ŝ2i+1, û2i+1) is
strongly correlated with fqmul(ŝ2i+1, û2i+1).

Now that we have some highly confident candidates for ŝ2i+1, we can then
use it and newly guessed ŝ2i to calculate the hypothetical value of r1. And
we can repeat the same process except that the intermediate values are now
fqmul(ŝ2i, û2i+1) + fqmul(ŝ2i+1, û2i), i.e. r1 in the last line of equation 1. Fol-
lowing the same steps, we can find the candidate with the highest correlation
coefficient, and if it is higher than some threshold, we accept the guess. If not,
we try the next candidate of ŝ2i+1. If there is no candidate with high enough
correlation coefficient, we just return failure. Then we guess the next one with
same process targeting the next intermediate values.

The complexity can be easily calculated, if K is the number of possible keys,
T is the scanned window size, D is the number of power traces, then we need
TK computations of correlation coefficient of length D vectors to recover one
coefficient of the secret key, which is linear to all the parameters. For Kyber512,
we need to repeat the process above 256 times to recover the 512 coefficients in
the NTT domain. The CPA process is identical across different parameter sets
of Kyber, thus it is easy to adapt to Kyber768/1024 without any problem. It
can also be parallelized as long as we know the starting point of each fqmul in
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the power trace, since the length of all power traces is the same, we only need
to evaluate the starting point once and store the result. For Kyber512 on a 16
core computer, our CPA can scan through all coefficients within 5 minutes.

However, we will run into some problems. If the correct coefficient (ŝ2i, ŝ2i+1)
has high score, then it is likely that (q − ŝ2i, q − ŝ2i+1) has high score too,
since the Hamming weight of them are highly correlated. So to prevent it from
getting accepted, we can increase the threshold for acceptance, however, it may
cause the correct ones to get rejected too. Furthermore, in some rare cases,
(q− ŝ2i, q− ŝ2i+1) may have a higher score than the correct one and be accepted,
we call such cases false positive. The way we deal with it is to sample the accepted
guesses and hope the coefficients we sampled are all correct ones. The number
of sampled coefficients will be further discussed in Section 4.

4 Lattice Attack

In this section, we describe how to construct a simpler LWE problem from the
coefficients that have been recovered in the CPA attack, then we do a hardness
analysis that determines the least number of coefficients needed to be recovered
in the CPA.

4.1 Lattice Construction

Now we have some of the coefficients being recovered, the next step is to recover
the unknown coefficients by the lattice attack. Because of the structure of in-
complete NTT in Kyber, we know that coefficients are split into 2k groups of
128 ones. We will focus on one group and notice that the rest of the steps need
to repeat 2k times to derive the full secret key.

Let M = [m0,m2, ...,m254] be the inverse NTT matrix as we mentioned
in Section 2.4. Suppose we have recovered 128 − ℓ coefficients in ŝi, one of the
groups in ŝ, from the polynomial multiplication ŝ ◦ û, i.e., we need to recover
the remaining ℓ coefficients. Let A = {a0, a1, ..., a127−ℓ} be the indices that are
successfully recovered in the CPA step, and B = {b0, b1, ..., bℓ−1} be the indices
that are still unknown, then the inverse NTT NTT−1(̂si) = Mŝi = si mod q
can be split into two halves as followed:

MAŝi,A +MB ŝi,B = si mod q,

where MA := [ma0
, ...,ma127−ℓ

] is a matrix whose columns are those of M whose
indices are in A, ŝi,A = [ŝa0

, ..., ŝa127−ℓ
]⊤, and the similar definition for MB and

ŝi,B .
Notice that si is an extremely short vector since it is the secret key sampled

from βη. By calling the known vector t = MAŝi,A, the known basis A = −MB ,
and an unknown vector s′i = ŝi,B , we now have t = As′i + si mod q, which is
exactly the definition of an LWE problem. Compared to the original module-
LWE problem in Kyber, this problem becomes simpler since the rank of A is
less than the original one.
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4.2 Hardness Analysis
We use the standard technique of Kannan’s embedding to solve the LWE prob-
lem. First we treat the LWE problem as a BDD/uSVP problem and then
apply a lattice reduction algorithm. For example, given the instance above
(A, t = As′i + s mod q), consider the lattice Λ(BBDD) generated by

BBDD =

[
Iℓ A′

0 qIn−ℓ

]
,

where [Iℓ | A′] denotes the reduced row echelon matrix of A⊤, which can be easily
calculated by Gaussian elimination. We can then solve the BDD of Λ(BBDD)
with respect to the target point t which reveals s′ and s.

Alternatively, we can reduce this BDD to uSVP by a technique called Kan-
nan’s embedding [14]. Given the BDD instance above, we consider the following
basis matrix

BKan =

 Il A′
0

0 qIn−ℓ

t⊤ 1

 .

Recall that the lattice Λ(BKan) contains all linear combinations of the vectors
in BKan. The equation t = As′i+ si mod q can be written as t = As′i+ si+ qk,
where k ∈ Zn

q , so there exists a row vector [−s′′⊤ | −k′⊤ | 1] ∈ Zn+1
q such that

the shortest vector in Λ(BKan) is [−s′′⊤ | −k′⊤ | 1] ·BKan = [s⊤i | 1] ∈ Zn+1
q .

The norm of vector [s⊤i | 1] is
√
∥si∥2 + 1 ≈

√
nσs. If this norm is smaller

than the norm of the shortest vector estimated by the Gaussian Heuristic, this
uSVP instance can be solved, and the more gap between the first and second
successive minima, i.e., the bigger λ2(Λ(BKan))/λ1(Λ(BKan)) is, the easier the
uSVP will be. Since the volume of the lattice Λ(BKan) is qn−ℓ, λ2(Λ(BKan))
can be estimated by

λ2(Λ(BKan)) ≈
√

n+ 1

2πe
q(n−ℓ)/(n+1).

To determine the least number of coefficients we must recover in the CPA
step, we do an experiment on solving the SVP randomly generated by script.
The result is shown in Fig. 2, where the blue line is the success rate of finding
[s⊤i | 1] by the BKZ algorithm 1 of block size 50 for 20 randomly generated s, and
the red line is the running time of the algorithm. From the result, the critical
point of guaranteed success is on ℓ = 89, ℓ = 90 for Kyber512, Kyber768/1024,
respectively. This means that in the CPA step, we need at least 128 − 89 = 39
(or 38 for Kyber768/1024) recovered coefficients so that we can have a fully
recovered secret key when using the BKZ algorithm of block size 50 to solve the
reduced SVP problem. Notice that in order to do a full key recovery, the number
of recovered coefficients need to be multiplied by 2k, where k is the module
dimension for each version of Kyber. The reason that Kyber768/1024 is easier
to solve is because η of Kyber768/1024 is smaller than that of Kyber512.
1 We ran the experiment using the BKZ implementation from fpylll in Sage9.2. See

https://github.com/fplll/fpylll

https://github.com/fplll/fpylll
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(a) (b)

Fig. 2: Success rate and running time on randomly generated uSVP in the lattice
BKan for (a) Kyber512 and (b) Kyber768/1024

5 Experiments

We experimented our attacks on simulated power traces of the ARM cortex-M0
processor, then estimate how many traces we need to conduct our attack.

5.1 ELMO

Our simulated traces were generated using the ELMO [10], which emulates the
power consumption of an ARM Cortex M0 processor and produces noise-free
traces. The tool reproduces the 3-stage pipeline of an M0 processor, which means
that the algorithmic noise is taken into account. ELMOs quality has been estab-
lished by comparing leakage detection results between simulated and real traces
from a STM32F0 Discovery Board [20]. For reference, to conduct a successful
key recovery power analysis on the lattice-based signature scheme FALCON, the
required numbers of simulated power traces and real acquisitions are 2000 and
5000 [12].

5.2 Results

Table 2 gives the results of our experiment done on the simulated traces. The
threshold is the minimum correlation coefficient of acceptance that we set as a
parameter in Section 3.2. Recovered rate is the average number of successfully
recovered coefficients, and false positive is the average number of coefficients that
are accepted but turn out to be wrong. The success rate is the possibility of all
39/38 coefficients we randomly sample being the correct ones when we choose
from all coefficients that are accepted by the CPA step, which can be directly
calculated by

(
a−39

b

)
/
(
a
b

)
if a is the recovered rate and b is the false positive.

Therefore, it does not mean the overall success rate of our attack, the overall
success rate will be arbitrarily closed to 1 if we keep sampling the coefficients as
long as we have at least 39/38 correct ones.
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Table 2: Experimental results on different acceptance threshold and trance num-
ber. Left hand side of success rate is for Kyber512 and right is for Kyber768/1024.
Threshold Trace number Recovered rate False positive Success rate

0.63

200 110.5/128 6/128 0.07(0.07)
400 118.75/128 4.25/128 0.18(0.19)
600 124.75/128 3/128 0.32(0.33)
800 124.75/128 1.75/128 0.52(0.54)

0.65

200 98.75/128 4.5/128 0.10(0.11)
400 109/128 4.25/128 0.15(0.16)
600 112/128 2.25/128 0.39(0.40)
800 116.25/128 1.5/128 0.55(0.56)

0.67

200 79.25/128 2.5/128 0.19(0.20)
400 86/128 0.5/128 0.77(0.78)
600 83.75/128 0.25/128 0.88(0.89)
800 86.5/128 0/128 1(1)

0.69

200 58/128 1/128 0.33(0.34)
400 53.25/128 0.25/128 0.82(0.82)
600 49.75/128 0/128 1(1)
800 49.5/128 0/128 1(1)

It can be seen that although adding trace numbers does not help much to
increase the recovered coefficients, it does help to lower the false positive, which
directly affects the success rate. Increasing the threshold of acceptance will also
lower the false positive and recovered rate, but notice that if the recovered rate
drops below 39, our attack may fail. Since the running time of the overall attack
is dominated by CPA, we would argue that the fewer the number of power traces
the better it is, as long as the success rate is higher than 0.05.

5.3 Application to Saber

Saber [9] is a lattice-based key encapsulation mechanism based on the Module
Learning With Rounding problem. Saber is one of the round 3 candidates of the
NIST post-quantum cryptography standardization competition. The polynomial
ring used within Saber is Rq = Zq[x]/(x

n+1) with q = 213 and n = 256 across all
parameter sets. Saber also offers three security levels: Lightsaber with security
level similar to AES-128, Saber with one similar to AES-192 and Firesaber with
one similar to AES-256.

Because Saber was not specifically designed to benefit from NTT-based mul-
tiplication by using an NTT-friendly ring, it uses a combination of Toom-4 and
Karatsuba to implement efficient polynomial arithmetic. However, as shown in
the work by [6], NTTs can be used to obtain efficient polynomial arithmetic
in finite fields modulo a power-of-two. They did this by choosing a a prime
p > nq2/2 such that n|(p − 1), computing the multiplication by the NTT over
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(a) (b)

(c)

Fig. 3: Success rate and running time on randomly generated uSVP for (a)
Lightsaber, (b) Saber and (c) Firesaber

Zp[x], and then reducing the result back to Zq[x]. Since the modulus is much big-
ger in the NTT for Saber, the SCA for pointwise multiplication on Saber needs
to target a smaller portion of the intermdeiate value, which results in smaller
signal-to-noise ratio. In [21], a minimum of 10000 traces was required to mount
a successful attack.

Figure 3 shows our lattice attack when applying to the SCA proposed by [21].
Since the implementation uses 6 layers of NTTs, we divide the coefficients into
512/26 = 8 groups and find the minimum number of coefficients we needed to
recover other one. We can see that it needs 9/8/7 coefficients out of 64 to guar-
antee a successful attack for each parameter sets of Saber, which means a total
of 72/64/56 coefficients are needed. This saves about 86% ∼ 89% of the running
time for the SCA. Another way to see the improvement is the possibility to re-
duce the traces of SCA. Although by doing so, there may be incorrectly recovered
coefficients, by our sampling approach as shown before, we only need portion of
the coefficients correct to recover the whole secret key. We do want to point out
that the improvement heavily depends on the implementation of the incomplete
NTT of choice. That is, the less layers of incomplete NTTs an implementation
chooses, the less coefficients we need to perform the lattice attack.
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6 Conclusion

In this paper, we propose a combined CPA and lattice attack on Kyber. With
200 traces, our attack terminated within 20 minutes on a 16-core computer.
Compared to other SCA targeting NTT in the cryptosystems, our attack achieves
lower runtime in practice. Furthermore, there is potential for decreasing the
number of traces by using lattice reduction if the same measurement is used.

Our future works are to migrate the attacks to real devices and other cryp-
tosystems using the NTT transform multiplication like Saber or NTRU. We can
also investigate the effect of popular countermeasures of CPA like masking and
hiding on our attack.
Acknowledgement. This work was partially supported by JSPS KAKENHI
Grant Number 19K20267, Japan, and JST CREST Grant Number JPMJCR2113,
Japan.
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