
An Improved Method for Evaluating Secret
Variables and Its Application to WAGE

Weizhe Wang1, Haoyang Wang1, and Deng Tang1(�)

Shanghai Jiao Tong University, Shanghai 200240, China
{SJTUwwz, haoyang.wang}@sjtu.edu.cn,dtang@foxmail.com

Abstract. The cube attack is a powerful cryptanalysis technique against
symmetric ciphers, especially stream ciphers. The adversary aims to re-
cover secret key bits by solving equations that involve the key. To simplify
the equations, a set of plaintexts called a cube is summed up together.
Traditional cube attacks use only linear or quadratic superpolies, and
the size of cube is limited to an experimental range, typically around 40.
However, cube attack based on division property, proposed by Todo et
al. at CRYPTO 2017, overcomes these limitations and enables theoreti-
cal cube attacks on many lightweight stream ciphers. For a given cube I,
they evaluate the set J of secret key bits involved in the superpoly and
require 2|I|+|J| encryptions to recover the superpoly. However, the secret
variables evaluation method proposed by Todo et al. sometimes becomes
unresponsive and fails to solve within a reasonable time. In this paper, we
propose an improvement to Todo’s method by breaking down difficult-
to-solve problems into several smaller sub-problems. Our method retains
the efficiency of Todo’s method while effectively avoiding unresponsive
situations. We apply our method to the WAGE cipher, an NLFSR-based
authenticated encryption algorithm and one of the second round candi-
dates in the NIST LWC competition. Specifically, we successfully mount
cube attacks on 29-round WAGE, as well as on 24-round WAGE with
a sponge constraint. To the best of our knowledge, this is the first cube
attack against the WAGE cipher, which provides a more accurate char-
acterization of the WAGE’s resistance against algebraic attacks.

Keywords: Cube attack · Division property · WAGE · MILP.

1 Introduction

The cube attack, proposed by Dinur and Shamir [6], is an algebraic attack tech-
nique against stream ciphers. Its main idea is to obtain simple equations about
the key by summing a set of plaintexts, called a cube CI , and then solve these
equations to retrieve partial key information. Cube attacks consist of two phases:
the offline phase involves constructing proper cubes and recovering their corre-
sponding superpolies, while the online phase involves encrypting 2|I| plaintexts
under the real key and summing up them to obtain values of the superpolies. Af-
terward, the equations are solved, and a brute-force search attack is performed

2 W. Wang et al.

on the remaining key. It is vital to construct cubes in cube attacks. In tra-
ditional cube attacks, superpolies are often required to be linear or quadratic.
Both properties can only be probabilistically determined through practical tests.
This limits the size of cube to about 40.

Division property is an accurate characterization for the sum property of
certain set, which was proposed by Todo [23]. In [24], Todo et al. combined cube
attacks with division property. The link between division trail and the algebraic
normal form (ANF) of superpoly was established. For a given cube I, they pro-
posed an algorithm to evaluate the set J of secret variables involved in superpoly.
A cube attack is available when the restriction |I|+|J | < n is met, where n is the
length of key. The combination of cube attacks and division property eliminates
the size limitation of the cube and leads to theoretical cube attacks. The capabil-
ity and applicability of cube attacks were greatly enhanced. Subsequently, more
and more improved techniques have been proposed, such as flag technique [26],
three-subset division property without unknown set [10], monomial prediction
technique [12]. These developments have significantly improved the effective-
ness and scope of cube attacks and have made it an important tool for attacking
stream ciphers. In current research, cube attacks based on division property have
primarily targeted simple stream ciphers such as Trivium [4] and Grain-128a [2].
To trace the propagation of division property effectively, original cryptoanalytic
problems are often transformed into mixed-integer linear programming (MILP)
problems and solved using optimizers. Some research [20,13,5] has also been con-
ducted on other ciphers with intricate components. However, as the components
of targeted cipher become complex, the model to be solved also becomes more
complex. Thus, how to handle complex models becomes a crucial aspect in the
research of cube attacks based on division property.

Authenticated Encryption with Associated Data (AEAD) is a type of en-
cryption that provides both confidentiality and authenticity of data. It is com-
monly used to transmit confidential messages over insecure channels. In 2018,
the National Institute of Standards and Technology (NIST) called for algorithms
to be considered for lightweight cryptographic standards with AEAD and op-
tional hashing functionalities. The aim of the competition was to identify and
standardize lightweight cryptographic algorithms suitable for use in constrained
environments, such as Internet of Things devices. A total of 57 candidates were
submitted to NIST, and after selection, 32 submissions were chosen as Round
2 candidates. WAGE [3], submitted by AlTawy et al., was one of the 32 can-
didates. The WAGE permutation is used in the unified sponge-duplex mode to
achieve the authenticated encryption functionality that provides 128-bit security
with at most 264 bits of allowed data per key. In [3], the designers analyzed the
diffusion, algebraic, differential, and linear properties of the WAGE permuta-
tion and provided a clear security claim against differential and linear attacks.
However, the description of WAGE’s resistance to algebraic attacks is relatively
subjective and lacks specific experiments to support it. In [7] , Fei et al. applied
Correlation Power Analysis (CPA) technique to WAGE and recovered the key
up to 12 out of 111 rounds.

An improved method for evaluating secret variables 3

In this paper, we conduct a detailed study of the secret variables evluation
method, and explore the security level of WAGE against cube attacks. Compared
to Trivium and Grain-128a, WAGE has a more complex feedback function and a
larger state, making its corresponding MILP model more complex and challeng-
ing to solve. Applying Todo’s method [24] directly to certain rounds of WAGE
can result in unresponsiveness, which impedes the process of cube attacks. Thus,
we propose an improved method to address this issue and successfully construct
some useful cubes, as shown in Table 4. Our implementation is available in
the following Github repository: https://github.com/SJTUwwz/WAGE_cube_
attack.git. In particular, our contributions can be summarized in the following
two aspects:

1. We improve the secret variables evaluation method proposed by Todo et
al. [24]. In our improved method, we use a limit for solving time to judge
whether the MILP problem is difficult to solve or not. If the time of solving
process exceeds the limit, we break down the MILP problem into several
sub-problems explicitly. This improvement effectively avoids the issue of un-
responsiveness, which can enable higher round attacks.

2. Cube attacks are mounted on 29-round WAGE, as well as on 24-round
WAGE with a sponge constraint with time complexity 2124. This is the
first cube attack on the initialization phase of WAGE and it provides a clear
evaluation of the security level of WAGE by cube attacks.

The remainder of this paper is origanized as follows. In Section 2, we pro-
vide a review of the concept of cube attacks, division property, and fully linear
integer inequality characterizations. We then introduce Todo’s secret variables
evaluation method in Section 3.1 and propose our improved method in Section
3.2. Section 4.1 offers a brief description of WAGE. In Section 4.2, we present a
detailed description of cube attacks on the initialization phase of WAGE. Finally,
Section 5 concludes the paper.

2 Preliminaries

In this paper, we will use the following notations. Let F2 be the field with two
elements {0, 1} and Fn

2 be the vector space of n-tuple over F2. We use bold italic
letters to represent bit vectors, 0 and 1 represent bit vectors with all coordinates
being 0 and 1, respectively. We denote u = (u0, u1, . . . , un−1) ∈ Fn

2 an n-bit
vector over F2. The Hamming weight of u is defined as wt(u) = #{0 ≤ i ≤ n−1 :

ui ̸= 0} =
∑n−1

i=0 ui. We use ⊕ (resp.
⊕

) to denote the addition (resp. multiple
sums) in F2 or Fn

2 . Moreover, u ⪰ v represents ui ≥ vi for all i ∈ {0, 1, . . . , n−1}.
Let f : Fn

2 → F2 be a Boolean function in F2[x0, x1, . . . , xn−1]/(x
2
0 − x0, x

2
1 −

x1, . . . , x
2
n−1 − xn−1) whose algebraic normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn

2

aux
u,

where au ∈ F2 and xu = πu(x) =
∏n−1

i=0 xui
i is called a monomial.

https://github.com/SJTUwwz/WAGE_cube_attack.git
https://github.com/SJTUwwz/WAGE_cube_attack.git

4 W. Wang et al.

2.1 Cube Attack

The cube attack [6] was first introduced by Dinur and Shamir at EUROCRYPT
2009, which is the extension of the higher-order differential cryptanalysis [15] and
integral cryptanalysis [14]. Let x = (x0, x1, . . . , xn−1) and v = (v0, v1, . . . , vm−1)
be n secret variables and m public variables, respectively. Then we can represent
the symmetric-key cryptosystem as f(x,v), where f is a function from Fn+m

2 to
F2, x is the secret variable (key), v is the public variable (initialization vector
(IV) or nonce). The main idea of cube attacks is to simplify the polynomial
f(x,v) by computing its higher order differential on public variables v. Let
I = {vi1 , vi2 , . . . , vid} be a subset of public variables. Then function f can be
rewritten as

f(x,v) = tI · pI(x,v)⊕ qI(x,v),

where tI =
∏

v∈I v. As noted in [6], after the summation of the 2d values of f by
assigning all the possible values to d variables in I, the value of pI is computed,
that is ⊕

(vi1 ,vi2 ,...,vid
)∈CI

f(x,v) = pI(x,v).

The public variables in I are called cube variables and the remaining public vari-
ables are called non-cube variables. The set CI that contains all 2d assignments
of cube variables is called a cube. The dimension of CI is d and all the non-cube
variables are set to constants, usually all zeros. The simplified polynomial pI is
called the superpoly of CI in f . In the absence of ambiguity, we would call pI
the superpoly of I in f for convenience.

The cube attack consists of the offline phase and the online phase. In the
offline phase, attackers need to find cubes whose superpoly is useful. Useful
superpolies can be used to directly recover partial information of key or help to
filter out wrong keys. In the online phase, attackers would query the encryption
oracle to get the cube summation under the real key for each cube obtained in
the offline phase. By solving the equations of superpolies, we can recover some
key bits. Finally, a brute-force attack would be applied to recover the whole key.

2.2 Division Property

Division property was first proposed in [23]. Then, the conventional bit-based
division property and the bit-based division property using three subsets were
introduced in [25]. Three-subset division property without unknown subset was
introduced in [10]. In this paper, we will focus on the conventional bit-based
division property. The definition of the conventional bit-based division property
is as follows.

Definition 1 (Bit-Based Division Property). Let X be a multiset whose el-
ements take a value of Fn

2 , and K be a set whose elements take an n-dimensional

An improved method for evaluating secret variables 5

bit vector. When the multiset X has the division property D1n

K , it fulfils the fol-
lowing conditions:⊕

x∈X

πu(x) =

{
unknown, if there are k ∈ K s.t. u ⪰ k,
0, otherwise.

Assume that X is the input set with the division property D1n

K0
. Let Y be the

output set obtained by encrypting r rounds on X. It is difficult to evaluate the
division property of Y, denoted by D1n

Kr
, directly. In [25,28], the propagation rules

of division property on basic operations were given. Based on those rules, D1n

K0

can be computed by iteratively evaluating the propagation on round function.
The concept of division trail was first introduced in [28], which facilitates the ap-
plication of the MILP method to the division property and is defined as follows.

Definition 2 (Division Trail). Consider the propagation of the division prop-
erty {k} = K0 → K1 → K2 → · · · → Kr. For any vector k∗

i in Ki (i ≥ 1), there
must exist an vector k∗

i−1 in Ki−1 such that k∗
i−1 can propagate to k∗

i by division
property propagation rules. Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1×· · ·×Kr,
if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an
r-round division trail.

In [28], the authors described the propagation rules for AND, COPY, and XOR
using MILP models. For detailed information, please refer to [28].

In [24], the authors applied the division property to cube attacks. Instead of
finding zero-sum integral distinguishers, they used the division property to ana-
lyze the ANF coefficients of a Boolean function f . The relation between division
property and ANF coefficient is given in the following lemma and proposition.

Lemma 1. Let f(x) be a boolean function from Fn
2 to F2 and afu ∈ F2(u ∈ Fn

2)
be the ANF coefficients. Let k be an n-dimensional bit vector. Then, assuming
there is no division trail such that k f→ 1, afu is always 0 for u ⪰ k.

Proposition 1. Let f(x,v) be a boolean function from Fn+m
2 to F2, where x

and v denote the secret and public variables, respectively. For a set of indices
I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, let CI be a set of 2|I| values where the
variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values.
Let kI be an m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e.
ki = 1 if i ∈ I and ki = 0 otherwise. Assuming there is no division trail such
that (ej ,kI)

f→ 1, xj is not involved in the superpoly of the cube CI .

Based on Lemma 1 and Proposition 1, attackers can find all related secret vari-
ables J in the superpoly pI(x,v). Then, the superpoly could be recovered with
time complexity 2|I|+|J|. Degree estimation and term enumeration techniques
were introduced in [26]. With these thechniques, the time complexity of recov-
ering the superpoly can be reduced to 2|I| ×

(|J|
≤d

)
, where d is the upper bound

of the degree of the superpoly.

6 W. Wang et al.

2.3 Full Linear Integer Inequality Characterization

To apply MILP to cryptanalytic problems, attackers need to describe the funda-
mental components of ciphers using linear inequalities. This leads to the concept
of full linear integer inequality characterization.

Definition 3 (FLIIC [8]). Let S ⊂ Zn
2 and L be a set of linear integer inequal-

ities:
a0,0x0 + a0,1x1 + · · ·+ a0,n−1xn−1 + b0 ≥ 0

a1,0x0 + a1,1x1 + · · ·+ a1,n−1xn−1 + b1 ≥ 0
...

am−1,0x0 + am−1,1x1 + · · ·+ am−1,n−1xn−1 + bm−1 ≥ 0

,

where ai,j and bi are integers for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1. L is called a full
linear integer inequality characterization (FLIIC, in short) of S if the solution
set of L on Zn

2 is S exactly. We also say L fully characterizes S, and m is called
the cardinality of L, denoted by |L|.

The FLIIC of a complex component like the S-box can be obtained by directly
combining basic operations. However, this method would result in a large number
of inequalities and variables, making the model inefficient to solve. A better
approach is to construct the FLIIC directly based on the given set S. The entire
problem can be solved in two steps. The first step involves generating a sufficient
number of high-quality inequalities. Then, in the second step, redundancies are
removed and a minimal number of inequalities are selected.

In the first step, inequalities can be constructed using the H-representation
method proposed in [21], the logical condition method described in [1], or the
SuperBall method introduced in [16]. In the second step, we encounter a Set
Covering Problem (SCP). In existing research, SCP is typically solved using
either a greedy algorithm or MILP techniques [19]. In [8], the authors established
a complete theoretical system to solve the problem of fully characterizing a given
set with the minimal number of inequalities. They provided an algorithm of
enumerating all plain closures for a given S-box, which supports point sets with
high dimension up to 18 and is the fastest at present.

3 Evaluating Secret Variables in Superpoly

The critical step in cube attacks is constructing useful cubes during the offline
phase. Our objective is to construct cubes that satisfy the condition |I|+|J | < n.
In this section, we begin by presenting the secret variables evaluation method
based on division property, which was initially proposed in [24]. Subsequently, we
introduce our improved secret variables evaluation method and provide a detailed
explanation of why it is an improvement over Todo’s method.

An improved method for evaluating secret variables 7

3.1 Previous Secret Variables Evaluation Method

Based on the insights provided by Lemma 1 and Proposition 1, Todo et al. [24]
introduced a framework that enables the evaluation of secret variables associ-
ated with the superpoly of a given cube. Algorithm 1 is the concrete algorithm
supported by MILP.

Algorithm 1 Evaluate secret variables based on division property
1: procedure DPEval(MILP model M , cube indices I)
2: Let x be n MILP variables of M corresponding to secret variables.
3: Let v be m MILP variables of M corresponding to public variables.
4: M.con← vi = 1 for all i ∈ I
5: M.con← vi = 0 for all i ∈ ({0, 1, . . . ,m− 1} − I)
6: M.con←

∑n−1
i=0 xi = 1

7: J = ∅
8: solve MILP model M
9: while M is solved do

10: pick index j ∈ {0, . . . , n− 1} s.t. xj = 1
11: J = J ∪ {j}
12: M.con← xj = 0
13: solve MILP model M
14: end while
15: return J
16: end procedure

The input model M is the MILP model of target cipher by the context of
division property and the cube is represented as a set I. In line 4-6, the input
division property is contrained to the form (ej ,kI). Line 7-14 is the core idea of
Algorithm 1. When model M is feasible, a satisfying division trail (ej ,kI) can
be found, which means that xj is involved in the superpoly. Then, the index j
is added to the set J , and a new constraint is included to exclude this specific
point. The process is repeated until the model becomes infeasible. Finally, the
set J containing the indices of the secret variables involved in the superpoly is
obtained.

3.2 An improved Secret Variables Evaluation Method

In addition to Todo’s method, it is evident that a more intuitive approach exists.
This alternative method is to verify (ej ,kI) input division property for all 0 ≤
j ≤ m − 1 individually. The details of this intuitive method are presented in
Algorithm 2.

When comparing Algorithm 1 and Algorithm 2, it is expected that Algorithm
1 will outperform Algorithm 2, since the former’s iteration count is |J | ≤ n while
the latter’s iteration count is n. However, there is another important factor to
consider. That is, the MILP problems that need to be solved during the iteration

8 W. Wang et al.

Algorithm 2 Evaluate each secret variables individually
1: procedure INDEval(MILP model M , cube indices I)
2: Let x be n MILP variables of M corresponding to secret variables.
3: Let v be m MILP variables of M corresponding to public variables.
4: M.con← vi = 1 for all i ∈ I
5: M.con← vi = 0 for all i ∈ ({0, 1, . . . ,m− 1} − I)
6: M.con←

∑n−1
i=0 xi = 1

7: J = ∅
8: for j from 0 to n− 1 do
9: M.con← xj = 1

10: solve MILP model M
11: if M is solved then
12: J = J ∪ {j}
13: end if
14: M.con→ xj = 1 ▷ “→” means removing constraint.
15: end for
16: return J
17: end procedure

process are not the same. More precisely, the constraints on input secret variables
differ between the two methods. Specially, in the i-th iteration, Todo’s method
has constraints

n−1∑
j=0

xj = 1 and xj = 0, ∀j ∈ J,

while the intuitive method has constraints

xi = 1 and xj = 0, ∀j ̸= i, j ∈ {0, 1, . . . , n}.

It is clear that the latter’s constraints are stronger. This difference will also
have an impact on the efficiency of algorithms. In order to compare the effi-
ciency of the two methods, we conducted a series of experiments. The results
indicated that in marjority of cases, Todo’s method required less time than the
intuitive method. Nevertheless, in certain situations, Todo’s method was unable
to produce results within a reasonable timeframe. Upon further investigation,
we discovered that such issue was due to the difficulty in optimizing the MILP
model after eliminating all feasible solutions. Moreover, this problem did not
arise when using intuitive method. By combining the strengths of Todo’s method
and intuitive method, we have developed an improved secret variables evaluation
method, which not only maintains the high efficiency, but also avoids the issue
of unresponsiveness. Algorithm 3 gives the details of our new method.

Compared to Todo’s method, our improved method makes use of the TimeLimit
parameter of Gurobi solver. Lines 2-15 correspond to the first part of procedure.
In this part, Todo’s method is applied directly. If the solver has not stopped
when time is up, the model-solving process is forcibly terminated. Then, the
unsolved set J̄ will be solved by intuitive method one by one. This is the second

An improved method for evaluating secret variables 9

Algorithm 3 An improved secret variables evaluation method
1: procedure NEWEval(MILP model M , cube indices I, limit of time t)
2: Let x be n MILP variables of M corresponding to secret variables.
3: Let v be m MILP variables of M corresponding to public variables.
4: M.TimeLimit← t
5: M.con← vi = 1 for all i ∈ I
6: M.con← vi = 0 for all i ∈ ({0, 1, . . . ,m− 1} − I)
7: M.con←

∑n−1
i=0 xi = 1

8: J = ∅
9: solve MILP model M

10: while M is solved do
11: pick index j ∈ {0, . . . , n− 1} s.t. xj = 1
12: J = J ∪ {j}
13: M.con← xj = 0
14: solve MILP model M
15: end while
16: if M is not solved within t then ▷ The MILP model is difficult to solve.
17: J̄ = {0, 1, . . . , n− 1} − J
18: for all j ∈ J̄ do
19: M.con← xj = 1
20: solve MILP model M
21: if M is solved then
22: J = J ∪ {j}
23: end if
24: M.con→ xj = 1
25: end for
26: end if
27: return J
28: end procedure

10 W. Wang et al.

part of procedure, corresponding to lines 16-26. Since the MILP model in the
intuitive method is simpler, it is hopeful that the problem can be solved within a
reasonable time. Actually, we manually divide the original complex MILP model
into several simpler MILP models and solve them individually in the second part
of the process. A similar idea was used to recover superpoly in [11].

If the MILP model M in the first part can be solved within the time limit, the
second part of Algorithm 3 will not be activated. This ensures that our method
maintains high efficiency, similar to Todo’s method in most cases. In situations
where Todo’s method does not perform well, our method will continue to work
with simpler MILP models. In summary, our new method represents a significant
improvement over Todo’s method.

4 Experiment and Result

We apply our new method to the lightweight authenticated cipher WAGE [3]. In
this section, we will first provide a concise description of WAGE. Subsequently,
we will present the details of our experiments and the corresponding results.

4.1 Description of WAGE

The authenticated cipher WAGE-AE-128 is built upon the WAGE permuta-
tion, which is specifically designed to be lightweight and hardware-friendly. The
WAGE permutation operates on a state size of 259 bits over the finite field F27 .
The design of the WAGE function adopts the structure of the (nonlinear) initial-
ization phase of the WG stream cipher family [18]. The designer of WAGE claims
that the permutation achieves full bit diffusion in 28 rounds. Due to the com-
plex nonlinear feedback function, the algebraic degree in WAGE grow rapidly.
As a result, WAGE exhibits robust resistance against algebraic attacks, such as
integral and cube attacks.

The WAGE permutation The core components of the WAGE permutation
include two different S-boxes (WGP and SB) defined over F27 , a nonlinear feed-
back, five word-wise XORs, and a pair of 7-bit round constants (rci1, rc

i
0). Fig. 1

presents a high-level overview of the round function of the WAGE permutation.
The state consists of 37 7-bit words and is denoted by Si = (Si

36, . . . ,S
i
0) at the

beginning of i-th round. The round function takes as inputs the current state
Si and the round constant tuple (rci1, rc

i
0), and updates the state in a Galois

NLFSR fashion with the following three steps:

1. Computing linear feedback. The feedback computation is given by

fb = Si
31 ⊕ Si

30 ⊕ Si
26 ⊕ Si

24 ⊕ Si
19 ⊕ Si

13 ⊕ Si
12 ⊕ Si

8 ⊕ Si
6 ⊕ (ω ⊗ Si

0).

where the representation of ω ⊗ x is given by

ω ⊗ (x0, x1, x2, x3, x4, x5, x6)→ (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕ x6, x3, x4, x5).

An improved method for evaluating secret variables 11

Si

36
Si

35
Si

34
Si

33
Si

32
Si

31
Si

30
Si

29
Si

28
Si

27
Si

26
Si

25
Si

24
Si

23
Si

22
Si

21
Si

20
Si

19

WGP SB SB

Si

17
Si

18
Si

16
Si

15
Si

14
Si

13
Si

12
Si

11
Si

10
Si

9
Si

8
Si

7
Si

6
Si

5
Si

4
Si

3
Si

2
Si

1
Si

0

WGP SB SB

⊕

ω

rci
1

rci
0

Figure 2: A block diagram of the wage_stateupdate function

Fig. 1. A block diagram of the WAGE’s round function

2. Updating intermediate words and adding round constants.

Si
5 ← Si

5 ⊕ SB(Si
8),S

i
11 ← Si

11 ⊕ SB(Si
15),S

i
19 ← Si

19 ⊕WGP (Si
18)⊕ rci0

Si
24 ← Si

24⊕SB(Si
27),S

i
30 ← Si

30⊕SB(Si
34),fb← fb⊕WGP (Si

36)⊕ rci1.

3. Shifting the register contents and update the last word.

Si+1
j ← Si

j+1, j ∈ 0, 1, . . . , 35,

Si+1
36 ← fb.

The WGP S-box is a unique Welch-Gong permutation that achieves low
differential uniformity and high nonlinearity [9,17]. The SB S-box is constructed
iteratively using nonlinear transformations and bit permutations. The maximum
algebraic degree of both S-boxes is 6. The hexadecimal representations of the
WGP and SB S-boxes are provided in Table 1 and Table 2, respectively, in a
row-major order. Round constants are generated by an LFSR of length 7 with
feedback polynomial x7 + x + 1. The WAGE permutation contains 111 rounds
in total.

Table 1. WGP’s hexadecimal representation

00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 5 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

12 W. Wang et al.

Table 2. SB’s hexadecimal representation

2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

The authenticated cipher WAGE-AE-128 WAGE operates in the unified
sponge duplex mode to provide authenticated encryption with associated data
functionality. The authenticated cipher WAGE-AE-128 supports key, nonce, and
tag sizes of 128 bits, and processes 64 bits per call of the WAGE permutation. The
259-bit internal state is represented as a string (X,Y), where X and Y denote
the 64-bit rate and 195-bit capacity part of the state, respectively. Specifically,
the rate part contains 9 words, S8,9,15,16,18,27,28,34,35, and the first bit of word
S36. With a sponge constraint, we can only get the value of the rate part.

During the initialization of WAGE-AE-128, the state is first loaded with a
128-bit nonce N = (n0, . . . , n127) and a 128-bit key K = (k0, . . . , k127). The key
K is then divided into two key blocks, K0 = k0, . . . , k63 and K1 = k64, . . . , k127.
The two key blocks are then absorbed into the state with the WAGE permutation
applied each time. The steps of initialization are described as follows:

(X,Y)←WAGE(load(N ,K))

(X,Y)←WAGE(X ⊕Ki,Y), i = 0, 1,

The load function is explicitly given in Table 3. In Table 3, we denote
ki, ki+1, . . . , ki+t as ki−i+t. In this paper, we will focus on the attack of the
WAGE permutation and the initialization phase of WAGE-AE-128. Consequently,
we will not provide a detailed decription of other aspects of WAGE-AE-128.
Readers who are interested can refer to [3] for more information.

4.2 Cube Attacks on WAGE Using MILP

As previously mentioned, the cube attack consists of offline phase and online
phase. The most challenging part of the attack lies in constructing useful cubes.
A cube CI is deemed “useful” when it statisfies the condition |I|+|J | < n, where
|I| is the dimension of cube, |J | is the number of secret variables involved in its
superpoly and n is the length of key. Once a useful cube is obtained, it can be
leveraged to construct an effective cube attack. In this section, we will introduce
how to construct a theoretical cube attack on WAGE based on our new method.
All our experiments were completed on a PC (Intel Core i5-10400 CPU with 6
cores, 16 GB memory, Windows 11). The source code of this work can be found
in https://github.com/SJTUwwz/WAGE_cube_attack.git.

https://github.com/SJTUwwz/WAGE_cube_attack.git

An improved method for evaluating secret variables 13

Table 3. The load(N ,K) procedure of WAGE-AE-128.

S0 S1 S2 S3 S4 S5 S6 S7

k0−6 k14−20 k28−34 k42−48 k56−62 k71−77 k85−91 k99−105

S8 S9 S10 S11 S12 S13 S14 S15

k113−119 n7−13 n21−27 n35−41 n49−55 n64−70 n78−84 n92−98

S16 S17 S18 S19 S20

n120−126 n106−112 k63, k127, n63, n127, 0, 0, 0 k7−13 k21−27

S21 S22 S23 S24 S25 S26 S27 S28

k35−41 k49−55 k64−70 k78−84 k92−98 k106−112 k120−126 n0−6

S29 S30 S31 S32 S33 S34 S35 S36

n14−20 n28−34 n42−48 n56−62 n71−77 n85−91 n99−105 n113−119

Constructing MILP Model The first step of our attck is to construct MILP
model simulating the propagation of division property. Generally, we will con-
struct the MILP model round by round. The round function of WAGE consists
of shift, XOR, ω, addition of round constants and S-box operations. The propa-
gation on the first three operations can be fully characterized by two basic rules:
COPY and XOR [28]. The corresponding constraint of ω operataion is shown
in Algorithm 4. Furthermore, the addition of round constants would not affect
the division property. Therefore, our focus is to find the FLIICs of nonlinear
components, WGP and SB, to construct the characterization of the entire round
function.

Algorithm 4 MILP model for the ω operation in WAGE
1: procedure ω(MILP model M , input variables x, output variables y)
2: M.var ← a1, a2, a3, a4 as binary.
3: M.con← a1 + a2 + a3 + a4 = x6

4: M.con← y0 = a0

5: for i ∈ {4, 5, 6} do
6: M.con← yi = xi−1

7: end for
8: for i ∈ {1, 2, 3} do
9: M.con← yi = xi−1 + ai

10: end for
11: end procedure

Firstly, we calculate the ANFs of WGP and SB using the Möbius transform.
With the Algorithm 2 in [28], we can obtain the division trails of WGP and
SB, which we denote as SWGP and SSB , respectively. Subsequently, we use
SageMath [22] to generate the H-representations and candidate inequalities of
SWGP and SSB . During this process, we obtain 3, 204 candidate inequalities for
SWGP and 400, 781 for SSB . Given the size of the SCP problem, we employ

14 W. Wang et al.

different techniques to compute the minimal FLIIC of each set. Specifically,
we compute the minimal FLIIC of SWGP with MILP techniques and find a
FLIIC with 14 inequalities. For SSB , we use a greedy algorithm and obtain
a FLIIC with 46 inequalities. Based on the existing conditions, we can begin
building the overall model of WAGE. For ease of description, we will use the
notation OP (inputvariable, outputvariable) to represent the specific constraints
that need to be added for a given operation. The details of the process are shown
in Algorithm 5.

In Algorithm 5, A − H,Z1,Z2 are temporary 7-bit variables. Lines 4-35
corresponds to the propagation of division trail through round function. The lines
5-15, 16-33, and 34 correspond to the three steps of the round function: linear
feedback calculation, intermediate state update, and byte shifting, respectively.
Upon this model, we can incorporate additional input constraints and objective
functions to enable functionality such as algebraic degree estimation and secret
variables evaluation.

Constructing Useful Cubes and Key Recovery In cube attacks, it is im-
portant to construct useful cubes with simple superpoly. Usually, superpoly with
lower algebraic degrees tends to be simpler and more likely to satisfy |I|+|J | < n.
A heuristic algorithm of constructing cube with linear superpoly was proposed
in [30]. Moreover, they extended a small cube by adding “steep variable” and
“gentle variable” properly. However, directly applying their method on WAGE
is not practical due to the length of nonce. To address this challenge, we propose
the idea of “steep word variable”. The definition is given as follow.

Definition 4 (Steep Word Variable). Let I = {vi1 ,vi2 , . . . , vil} be a set
containing l × w cube variables, where w is the length of word. Then, a word
t ∈ B is called a steep word variable of I if

ds(I ∪ {t}) = min{ds(I ∪ {v})|v ∈ B},

where B = {v0,v1, . . . , vm−1}\I and ds(I) is the degree of the superpoly of I.

We opt for the word-based version of “steep variable” for several reasons. Firstly,
the nonce length of the WAGE is 128 bits, which leads to an unmanageably large
search space if we include bit-by-bit. Secondly, the WAGE itself is word-based
and searching at the word level is already sufficiently precise. Finally, from an
analysis of division property, when the input division property of an S-box is
1, its output division property will also be 1, which facilitates a longer division
trails.

In this paper, we would use the degree evaluation method based on divi-
sion property to determine the steep word variable. Based on the MILP model
constructed by Algorithm 5, we present Algorithm 6 to estimate the algebraic
degree of superpoly on WAGE.

During the process of constructing cubes, we employ an algorithm similar to
depth-first search. Specifically, in each iteration, we add the steep word variable
to the cube. This process is similar to the first stage of the Algorithm 3 in [30].

An improved method for evaluating secret variables 15

Algorithm 5 MILP model for the R round WAGE permutation
1: procedure WAGEModel(The number of round R, the index of target bit tindex)
2: Prepare empty MILP model M
3: M.var ← S0 = (S0

0 , . . . , S
0
258) as binary ▷ S0 = (S0

0, . . . ,S
0
36)

4: for r = 0 to R− 1 do
5: M.var ← A = (a0, . . . , a6) as binary
6: M.con← ω(S0

0,A)
7: XorExpr = [A]
8: for i ∈ {6, 8, 12, 13, 19, 24, 26, 30, 31} do
9: M.var ← B = (b0, . . . , b6),C = (c0, . . . , c6) as binary

10: M.con← COPY (Sr
i , (B,C))

11: Sr
i = B

12: XorExpr.append(C)
13: end for
14: M.var ← fb = (fb0, . . . , fb6) as binary
15: M.con← XOR(XorExpr,fb)
16: for (i1, i2) ∈ {(5, 8), (11, 15), (24, 27), (30, 34)} do
17: M.var ←D = (d0, . . . , d6),E = (e0, . . . , e6) as binary
18: M.con← COPY (Sr

i2 , (E,F))
19: Sr

i2 = E
20: M.var ← G = (g0, . . . , g6),H = (h0, . . . , h6)
21: M.con← SB(Sr

i1 ,G)
22: M.con← XOR((G,F),H)
23: Sr

i1 = H
24: end for
25: for (Z1,Z2) ∈ {(Sr

18,S
r
19), (fb,S

r
36)} do

26: M.var ←D = (d0, . . . , d6),E = (e0, . . . , e6) as binary
27: M.con← COPY (Z2, (E,F))
28: Z2 = E
29: M.var ← G = (g0, . . . , g6),H = (h0, . . . , h6)
30: M.con←WGP (Z1,G)
31: M.con← XOR((G,F),H)
32: Z1 = H
33: end for
34: Sr+1 = (Sr

1,S
r
2, . . . ,S

r
36,fb)

35: end for
36: for i from 0 to 258 do
37: if i ̸= tindex then
38: M.con← SR

i = 0
39: else
40: M.con← SR

i = 1
41: end if
42: end for
43: end procedure

16 W. Wang et al.

Algorithm 6 MILP model for the R round WAGE permutation
1: procedure WAGEDeg(cube indices I, The number of round R, the index of target

bit tindex)
2: M ←WAGEModel(R, tindex)
3: K ← {0, 1, . . . , 62} ∪ {126, 127} ∪ {133, 134, . . . , 195}
4: N ← {63, 64, . . . , 125} ∪ {128, 129} ∪ {196, 197, . . . , 258}
5: M.con← S0

i = 1 for all i ∈ I
6: M.con← S0

i = 0 for all i ∈ N − I
7: for i ∈ {130, 131, 132} do
8: M.con← S0

i = 0
9: end for

10: Set the objective function M.obj ← max
∑

i∈K S0
i

11: Solve MILP model M
12: return The solution of M
13: end procedure

This method will help us find the “path” of fastest algebraic degree descent.
Unlike the approach in [30], we start from empty set directly. Table 3 indicates
that the nonce words are S9−17 and S28−36, from which we can select cube
variables only. Since WAGE adopts an NLFSR based design, the word at position
0 is mixed at a slower rate slower than others. With a sponge constraint, we
can only get the value of S8,9,15,16,18,27,28,34,35, and the first bit of word S36.
With division property, we successfully demonstrate that WAGE achieves full
bit diffusion in 28 rounds. Besides, we also demonstrate that S8 achieves full
bit diffusion in 23 rounds. Therefore, when constructing cube, we focus output
position on S0 and S8. By applying our method, we successfully construct some
useful cubes at S0 and S8 in 29 rounds and 24 rounds, respectively. The details
of cubes are shown in Table 4.

Table 4. Useful cubes constructed by our method

Position Round Cube
variables Index of involved key bit Deg |J | |I|+ |J |

S0 29 S9−16

7-13,21-27,35-41,49-55,63-70,
78-84,92-98,106-112,120-127 48 65 121S9−15,17

S8 24 S9−16

S9−15,17

To compared our method with Todo’s method, we conducted the same ex-
periments using Todo’s method. We found that Todo’s method resulted in un-
responsiveness when the cube was S9−15,17, the round number was 29 and the
indices of target bit were 0 and 6. A similar situation occurred when the cube was

An improved method for evaluating secret variables 17

S9−16 and the indices of target bit were 2 and 5. This phenomenon demonstrates
the superiority of our method.

From Table 4, we know that each useful cube satisfies |I|+ |J | = 121 < 128.
Moreover, we can compute 7 superpolies simutaneously because their involved
key bits are the same. Therefore, we can obtain 7 superpolies with 2|I|×7×

(|J|
≤d

)
≈

2123.81 requests. With the assumption in [24], it is hopeful that we can recover
7 bits secret information from 7 superpolies. Although there is evidence [29,27]
suggesting that the assumptions would not hold true in certain cases, it is worth
nothing that these cases often occur when the superpoly has low algebraic degree
and relates to few secret variables. However, the superpoly we found has high
algebraic degree and numerous related secret variables, making it highly unlikely
to degenerate into a constant function. Besides, it would be easy to find a non-
cube constant that makes the superpoly a balanced function. Hence, we can use
these useful cubes to implement cube attacks on WAGE.

For the sake of time complexity, when conducting cube attacks on WAGE,
we only need to use one cube from the Table 4. During the offline phase, 7
balanced superpolies are obtained through 2123.81 requests. In the online phase,
we can recover 7 bits secret infromation based on the superpolies and then
perform a exhaustive search on the remaining 121 bits key information. The time
complexity is 2123.81 + 2121 ≈ 2124. In summary, we have successfully mounted
cube attacks on 29-round WAGE, as well as on 24-round WAGE with a sponge
constraint.

5 Conclusion

In this paper, we proposed an improved method for evaluating secret variables
in cube attacks. Our method’s improvement lies in explicitly breaking down
difficult-to-solve problems into sub-problems, which helps to avoid the issue of
unresponsiveness to a certain extent. As an application, we used our improved
method to attack WAGE and successfully mounted two cube attacks on 29-round
WAGE and 24-round WAGE with a sponge constraint. Although this result does
not violate WAGE’s security claims, it provides a clear security level of WAGE
against cube attacks. We also believe that our improved method will facilitate
the implementation of cube attacks on other ciphers.

Acknowledgements We are grateful to Xiutao Feng and Shengyuan Xu for
their valuable suggestions on FLIIC. We also thank the anonymous reviewers for
their helpful comments. The work of Deng Tang was supported in part by the
National Key Research and Development Project 2020YFA0712300 and NSFC
(No. 62272303).

References
1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-

ing for (large) s-boxes to optimize probability of differential characteristics. IACR

18 W. Wang et al.

Trans. Symmetric Cryptol. 2017(4), 99–129 (2017). https://doi.org/10.13154/tosc.
v2017.i4.99-129

2. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011).
https://doi.org/10.1504/IJWMC.2011.044106

3. AlTawy, R., Gong, G., Mandal, K., Rohit, R.: WAGE: an authenticated encryption
with a twist. IACR Trans. Symmetric Cryptol. 2020(S1), 132–159 (2020). https:
//doi.org/10.13154/tosc.v2020.iS1.132-159

4. Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986, pp. 244–266.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_18

5. Derbez, P., Fouque, P.: Increasing precision of division property. IACR Trans. Sym-
metric Cryptol. 2020(4), 173–194 (2020). https://doi.org/10.46586/tosc.v2020.i4.
173-194

6. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_16

7. Fei, Y., Gong, G., Gongye, C., Mandal, K., Rohit, R., Xu, T., Yi, Y., Zidaric, N.:
Correlation power analysis and higher-order masking implementation of WAGE.
In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected Areas in Cryptography
- SAC 2020. LNCS, vol. 12804, pp. 593–614. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-81652-0_23

8. Feng, X., Tian, Y., Wang, Y., Xu, S., Zhang, A.: Full linear integer inequality
characterization of set over Zn

2 . CSTR:32003.36.ChinaXiv.202210.00055.V2 (2023),
http://www.chinaxiv.org/abs/202210.00055

9. Gong, G., Youssef, A.M.: Cryptographic properties of the welch-gong transfor-
mation sequence generators. IEEE Trans. Inf. Theory 48(11), 2837–2846 (2002).
https://doi.org/10.1109/TIT.2002.804043

10. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset - improved cube attacks against triv-
ium and grain-128aead. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_17

11. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery with
nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13090, pp. 392–421. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92062-3_14

12. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

13. Hu, K., Wang, Q., Wang, M.: Finding bit-based division property for ciphers with
complex linear layers. IACR Trans. Symmetric Cryptol. 2020(1), 396–424 (2020).
https://doi.org/10.13154/tosc.v2020.i1.396-424

14. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https:
//doi.org/10.1007/3-540-45661-9_9

15. Lai, X.: Higher order derivatives and differential cryptanalysis. Communications
and Cryptography: Two Sides of One Tapestry pp. 227–233 (1994)

https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.13154/tosc.v2020.iS1.132-159
https://doi.org/10.13154/tosc.v2020.iS1.132-159
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.46586/tosc.v2020.i4.173-194
https://doi.org/10.46586/tosc.v2020.i4.173-194
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-030-81652-0_23
https://doi.org/10.1007/978-3-030-81652-0_23
http://www.chinaxiv.org/abs/202210.00055
https://doi.org/10.1109/TIT.2002.804043
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9

An improved method for evaluating secret variables 19

16. Li, T., Sun, Y.: Superball: A new approach for MILP modelings of boolean func-
tions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022). https://doi.org/
10.46586/tosc.v2022.i3.341-367

17. Mandal, K., Gong, G., Fan, X., Aagaard, M.D.: Optimal parameters for the WG
stream cipher family. Cryptogr. Commun. 6(2), 117–135 (2014). https://doi.org/
10.1007/s12095-013-0091-0

18. Nawaz, Y., Gong, G.: WG: A family of stream ciphers with designed randomness
properties. Inf. Sci. 178(7), 1903–1916 (2008). https://doi.org/10.1016/j.ins.2007.
12.002

19. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In: Coron, J.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 185–215. Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7_7

20. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https:
//doi.org/10.1007/978-3-319-70694-8_5

21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation
and (related-key) differential characteristic search: Application to simon, present,
lblock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_9

22. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.1) (2020), https://www.sagemath.org

23. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

24. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomi-
als based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9_9

25. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5_18

26. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10

27. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: Milp-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Mo-
riai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34618-8_14

28. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

29. Ye, C., Tian, T.: Revisit division property based cube attacks: Key-recovery or
distinguishing attacks? IACR Trans. Symmetric Cryptol. 2019(3), 81–102 (2019).
https://doi.org/10.13154/tosc.v2019.i3.81-102

https://doi.org/10.46586/tosc.v2022.i3.341-367
https://doi.org/10.46586/tosc.v2022.i3.341-367
https://doi.org/10.1007/s12095-013-0091-0
https://doi.org/10.1007/s12095-013-0091-0
https://doi.org/10.1016/j.ins.2007.12.002
https://doi.org/10.1016/j.ins.2007.12.002
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.13154/tosc.v2019.i3.81-102

20 W. Wang et al.

30. Ye, C., Tian, T.: A practical key-recovery attack on 805-round trivium. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 187–213.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_7

https://doi.org/10.1007/978-3-030-92062-3_7

	An Improved Method for Evaluating Secret Variables and Its Application to WAGE

