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Abstract—Private set intersection protocols allow two parties
with private sets of data to compute the intersection between
them without leaking other information about their sets. These
protocols have been studied for almost 20 years, and have
been significantly improved over time, reducing both their
computation and communication costs. However, when more
than two parties want to compute a private set intersection,
these protocols are no longer applicable. While extensions
exist to the multi-party case, these protocols are significantly
less efficient than the two-party case. It remains an open
question to design collusion-resistant multi-party private set
intersection (MPSI) protocols that come close to the efficiency
of two-party protocols. This work is made more difficult by
the immense variety in the proposed schemes and the lack
of systematization. Moreover, each new work only considers
a small subset of previously proposed protocols, leaving out
important developments from older works. Finally, MPSI
protocols rely on many possible constructions and building
blocks that have not been summarized. This work aims to
point protocol designers to gaps in research and promising
directions, pointing out common security flaws and sketching
a frame of reference. To this end, we focus on the semi-honest
model. We conclude that current MPSI protocols are not a one-
size-fits-all solution, and instead there exist many protocols that
each prevail in their own application setting.

Index Terms—Private Set Intersections, Systematization of
Knowledge, Privacy-Enhancing Technologies

1. Introduction

In 2004, Freedman et al. [1] proposed the first custom
protocol for privately computing the intersection between
multiple sets of data. Since then, private set intersection
protocols have received a great deal of attention from the re-
search community. Most notably, many concretely efficient
two-party protocols have been proposed, which currently
perform intersections over sets of 1 million elements in less
than 6 seconds over a 100 MBit/s communication chan-
nel [2]. However, when protocols must scale to an arbitrary
number of parties, performance degrades rapidly [3]. In

this work, we systemize and summarize the current body
of literature on such multi-party private set intersections
(MPSI), and identify opportunities for future work.

More formally, an MPSI protocol solves the problem
where n parties P1, . . . ,Pn with respective private sets
X1, . . . , Xn, want to confidentially compute the intersection
X1 ∩ · · · ∩ Xn. They do so in the presence of at most t
adversaries that may collude with one another. In this work,
as for many previous works [3]–[5], one party P1 learns the
intersection. We refer to this party as the leader, and the
other parties P2, . . . ,Pn as assistants.

Motivating applications. One motivating application of
multi-party private set intersections is that of finding a set of
suitable meeting dates between multiple private calendars.
Here, Xi would be a set of dates at which party Pi is
available. At the end of the protocol, the leader P1 receives
the set of meeting dates at which all parties are available.
Several other applications have been mentioned in previous
works. We highlight several below.

Miyaji & Nishida [6] and Kolesnikov et al. [3] mention
an application where multiple shop owners or digital ser-
vices want to launch a collective promotion campaign. To do
so, these shops must identify their mutual set of customers,
without violating the privacy of the other customers.

Kissner & Song [7], Inbar et al. [8] and Kolesnikov et
al. [3] mention cyber security applications. They consider a
problem between several organizations who want to catch
an intruder in a common network. The idea is that each
organization keeps a list of suspicious IP addresses, and by
computing the intersection, they narrow them down. Since
IP addresses reveal personal information, it is important that
the other IP addresses remain private. Similarly, Ghosh et
al. [9] mention that MPSI can be applied to detect botnets.

Wang et al. [10] discuss an application where an inves-
tigative agency needs to narrow down a list of suspects by
cooperating with multiple other agencies. Since none of the
agencies can share plain data with each other, they engage
in an MPSI protocol to only consider relevant suspects.

Freedman et al. [1] and Li & Wu [11] also mention
that MPSI protocols may be used in online recommendation
services, dating services, medical databases, and data mining



in general. Kissner & Song discuss further applications, in-
cluding detecting fraudulent sales from pharmacies, enforc-
ing no-fly lists privately, combining the results of multiple
surveys, and governments checking if their ill citizens are
actually receiving aid [7]. Finally, Poddar et al. [12] discuss
the application of MPSI for private database join operations.

We note that while PSI protocols are called private set
intersections, this does not necessary imply that no personal
data is being revealed. Instead, such protocols only ensure
that the intersection is computed confidentially. If the input
sets contain data that may never be revealed, the final
intersection can still violate data privacy requirements. In
other words, MPSI protocols do not necessarily alleviate
every service that requires an intersection from possible
privacy violations.

Focus of this paper. This paper restricts itself to proto-
cols that do not require any external parties to collaborate.
Moreover, we focus on protocols in the semi-honest model,
and only mention whether extensions exist to the malicious
model. The reasons are as follows:

A trivial way to tackle the MPSI problem is by se-
lecting some trusted third party, who receives all private
sets, computes the intersection, and sends the result to the
leader. While such a protocol is extremely efficient, the
third party sees all the private input sets. To prevent this,
some works provide a slightly stronger notion of security
assuming that the third party does not collude with any of the
other parties, i.e. t = 1. As long as this assumption holds, the
private information stays confidential, even from this third
party. These protocols are often referred to as server-aided
protocols. Note however, that this non-colluding assumption,
like the trusted third party assumption, severely restricts
the capabilities of an adversary. Moreover, such a protocol
may not be trivially altered to allow for t > 1. It is for
this reason that we consider only MPSI protocols with no
external parties, and that support colluding parties.

When it comes to the security model, we only consider
semi-honest adversaries. Not only is the semi-honest model
often a crucial intermediate step to the malicious model, but
typically the main insight behind a custom protocol does not
change in the malicious model. We see this in the underlying
set encodings used in MPSI protocols, such as polynomial
roots, bitsets, garbled Bloom filters, and oblivious key-value
stores. These encodings shape the protocol more so than the
choice of cryptographic primitives.

State of MPSI. At present, there exist tens of works on
MPSI protocols using a variety of underlying encodings,
cryptographic primitives, and network topologies. However,
many of these works only consider a small amount previous
works in their comparison. Many older receive fewer atten-
tion in recent works as they are considered irrelevant due to
performance comparisons, while this does not consider all
possible points of comparison.

At the moment, the fastest works when the number
of elements grows large are based on oblivious key-value
stores and vector oblivious linear evaluations. However,

these works require several interactions between each pair
of parties and a large bandwidth cost. It remains an open
question to analyze how these protocols behave for different
network conditions. Some alternatives only require assistants
to communicate with the leader and require a lower total
bandwidth. They are typically based on partially homo-
morphic encryption, at the cost of more computation. The
cheapest protocols computation-wise are based on secret
sharing, but they suffer from a large bandwidth cost. No
current works are comparable in performance and practical-
ity when n > 2, compared to the setting with n = 2: there
is still a demand for more efficient protocols with regards to
communication, computation, and the degree of interaction.

Contributions and outline of this paper. The remainder
of this paper is structured as follows. In Section 2, we
formalize the requirements for semi-honest MPSI protocols.
In Section 3, we go over some preliminaries that form the
foundations of these protocols. Then, in Section 4 we pro-
vide three high-level constructions that fit all protocols, and
discuss possible set representations for each of them. After
that, in Section 5, we provide a comprehensive overview
of currently unbroken MPSI protocols based on these set
representations. In Section 6, we highlight the problems in
works that have been broken and analyze common security
issues. Finally, in Section 7 we present a theoretical per-
formance comparison of the most recent MPSI protocols
in each category, and in Sections 8 and 9 we discuss the
results, identify remaining research directions, and conclude
this work. Appendices A and B contain derivations of the
performance aspects of the considered MPSI protocols.

2. Formal problem description

An MPSI protocol π is a multi-party protocol that com-
putes the intersection between private sets X1, . . . , Xn with
overwhelming probability:

X1 ∩ · · · ∩Xn ≈ π(X1, . . . , Xn) . (1)

These sets are all subsets of the universe of possible el-
ements U . Moreover, we establish an upper bound k, so
|Xi| ≤ k for all i = 1, . . . , n. Each set Xi is held by
a party Pi that is semi-honest. In other words, the party
faithfully follows the protocol description, but tries to learn
as much as possible in the process. For the protocols studied
in this work, we consider it sufficient for only the leader P1

to receive the computed intersection. We present the ideal
functionality of such a protocol below.

Definition 1 (MPSI protocol). An MPSI protocol correctly
and privately computes the following ideal functionality:

f(X1, . . . , Xn) = (X1 ∩ · · · ∩Xn,Λ, . . . ,Λ) ,

where Λ is the empty string. The upper bound k may be
provided as auxiliary information.

Remark 1. Some works consider a case where all parties
receive the result. In the semi-honest model it is trivial to



transform a protocol where only the leader learns the result
to one where all parties do: the leader simply forwards its
result to all parties. It is not straightforward to do so in the
malicious model [13].

Note that MPSI protocols typically require the elements
in the input sets to be mapped to some cryptographic object.
For example, the protocol by Kissner & Song [7] maps
elements to some group to be encrypted as Paillier cipher-
texts. As a result, one must select cryptographic parameters
that ensure the group is large enough to contain all distinct
elements from U .
Remark 2. One way to circumvent choosing larger parame-
ters when U is too large is to hash elements of the input sets
onto the cryptographic object, thereby supporting a larger
universe at the risk of collisions. The chance of collisions
is negligible for a sufficiently large cryptographic object.

2.1. Correctness requirements

In (1) and in the remainder of this paper we write ≈ to
denote that this result could be an approximation. In fact,
due to the properties of cryptographic protocols, all schemes
considered in this paper are in some way approximations,
albeit that they can be arbitrarily accurate. For example,
the scheme by Kolesnikov et al. [3] achieves a failure
probability of 2−λ, where λ is a customizable statistical
security parameter. Typically, λ = 40, and in the remainder
of this paper we will consider any probability lower than
2−40 to be negligible:

Definition 2 (Exact MPSI protocol). The probability that
the output of an exact MPSI protocol does not equal the
actual intersection does not exceed 2−40:

Pr [X1 ∩ · · · ∩Xn ̸= π(X1, . . . , Xn)] ≤ 2−40 .

We say that an MPSI protocol is approximate if the
chosen parameters cause it to suffer from a higher prob-
ability of being wrong than 2−40. We measure the accuracy
of approximate protocols more precisely by determining the
probability ε that a random element x is wrongly claimed to
be included or excluded in the computed intersection. Note
that in some protocols, x can only be falsely included and
never be falsely excluded. We refer to those protocols as
satisfying superset correctness. We refer to protocols that
only false exclude elements of the intersection as satisfying
subset correctness.

2.2. Privacy in the semi-honest model

Since this work considers protocols in the semi-honest
model and since the output of an MPSI protocol is determin-
istic, one can prove that a protocol is privacy-preserving if it
is simulatable [14]. The strongest notion of privacy for semi-
honest MPSI protocols is called size-hiding, which means
that the size of each party’s set stays secret:

Definition 3 (Size-hiding MPSI). For each party Pi in MPSI
protocol π, there exists a simulator Si that generates an

indistinguishable view for all possible combinations of in-
puts. The simulator receives its input Xi and the intersection
X1 ∩ · · · ∩Xn. It must hold that:

{Si(1λ, Xi, X1 ∩ · · · ∩Xn)}X1,...,Xn ⊆U
c≡

{viewπ
i (X1, . . . , Xn, λ)}X1,...,Xn ⊆U . (2)

Note that here we provide the assistants with the intersection
as well, because even though they are not required to output
it, they are allowed to learn this information.

If the size of each party’s set is not private, we have the
following definition:

Definition 4 (Size-revealing MPSI). For each party Pi in
MPSI protocol π, there exists a simulator Si that gener-
ates an indistinguishable view for all possible combinations
of inputs. The simulator receives its input Xi, set sizes
|X1|, . . . , |Xn|, and the intersection X1 ∩ · · · ∩Xn. It must
hold that:

{Si(1λ, Xi, |X1|, . . . , |Xn|, X1 ∩ · · · ∩Xn)}X1,...,Xn ⊆U
c≡

{viewπ
i (X1, . . . , Xn, λ)}X1,...,Xn ⊆U . (3)

Remark 3. Size-revealing MPSI protocols can typically be
turned into size-hiding MPSI protocols by letting users
submit dummy elements in their input sets to always pad
their set to size k. These can either be repetitions of other
elements in the set or random elements which have a negli-
gible probability of appearing in the resulting intersection.

We consider the privacy definitions above in the presence
of 1 < t < n colluding parties. These colluding parties are
still semi-honest but they share their views with one another
to learn as much private information as possible. When we
say that a protocol has a collusion resistance of t, this means
that even t colluding adversaries cannot break the claimed
notion of privacy.

There are protocols that achieve statistical (
s≡) rather

than computational (
c≡) indistinguishability in (2) or (3).

These protocols are information-theoretically secure; they
do not rely on any computational hardness assumptions.
Note that such protocols can only achieve a collusion thresh-
old t < n

2 [15]. In the best case, computationally-secure
protocols can withstand t = n− 1 colluding parties.

2.3. Privacy in the augmented semi-honest model

Some MPSI protocols consider the augmented semi-
honest model, which allows an adversary to choose a differ-
ent input than its actual input immediately before running
the protocol [16]. While this may seem like a stronger form
of security, it is not necessarily compatible with the semi-
honest model. That is, a protocol proven to be secure in
the augmented semi-honest model may not be secure in the
semi-honest model. The reason is that the augmented semi-
honest model empowers simulators to choose a convenient
input for themselves, while a semi-honest simulator must
work for every input. Counter-ituitively, this also implies
that protocols secure in the malicious model are not nec-
essarily secure in the semi-honest model. On the contrary,



protocols in the malicious model are always secure in the
augmented semi-honest model. For this reason, we include
protocols that adopt this model in this work.

Concretely, the benefit of the augmented model to the
design of MPSI protocols is that certain precomputations
can be done before the start of the protocol. For example,
Inbar et al. [8] perform secret sharing ahead of time, after
which parties only have to change their local shares during
the actual protocol execution.

3. Preliminaries

We briefly recall the background for MPSI protocols. In
the remainder of this paper, we work over sets of integers.
Where an ordering is necessary, we use 1, 2, 3, . . . implic-
itly. Table 1 summarizes the symbols in this work.

3.1. Network topologies

The network topology defines the structure of communi-
cation channels between the parties involved in a protocol.

In a star topology, each assistant only shares one bidi-
rectional communication channel with the leader, and none
with other assistants. Such a topology resembles the ideal
world scenario, and thereby provides the minimal number
of communication channels necessary to realize an MPSI
protocol. The drawback of this topology is that if a mali-
cious leader refuses to communicate, no communication is
possible. The number of channels grows as O(n).

In a mesh topology, each party has a bidirectional
communication channel with all other parties. As a result,
each party has the ability to broadcast. Such a topology
has maximum redundancy when malicious parties refuse to
communicate. The number of channels grows as O(n2).

All other topologies sit in between star and mesh topolo-
gies. One topology used in earlier MPSI protocols [7] com-
bines a star and ring structure where each assistant shares
a communication channel with the leader as well as one
other assistant in a circular fashion. We refer to this as a
‘wheel’ topology. Another topology, which is used by Qiu
et al. [17], resembles a binary tree.

3.2. Building blocks for secure MPC

Partially-homomorphic encryption. A partially-
homomorphic encryption (PHE) scheme is a collection of
methods to securely encrypt and decrypt data, which still
allows parties to manipulate the underlying data while it
is encrypted. For example, the Paillier cryptosystem [18]
allows one to encrypt some integers x, y ∈ Zpq, and then
homomorphically combine the two resulting ciphertexts to
compute a ciphertext that encrypts the sum x+y. This makes
the Paillier cryptosystem additively homomorphic. Another
cryptosystem comes in the form of the ElGamal [19]
cryptosystem, which is multiplicatively homomorphic in
its standard form. It works over any cyclic group G in
which the decisional Diffie-Hellman assumption holds. By

encoding values in the exponent, the cryptosystem becomes
additive in some sense. Moreover, by using an elliptic curve
group for G, all operations become significantly faster
than over the integers [20]. MPSI protocols use threshold
versions of homomorphic cryptosystems, which require
t+ 1 parties to work together to decrypt a ciphertext.

Secret sharing. Secret sharing is an information-
theoretically secure method of storing data among multiple
parties, without individual parties being able to access it.
To do so, a secret is split up into multiple shares that
combine to retrieve the original secret. One example is XOR-
sharing, which splits a secret x into shares s1, . . . , sn so that
x = s1 ⊕ · · · ⊕ sn. Other secret sharing schemes allow for
arithmetic operations to be performed over the underlying
secrets by manipulating the shares. For example, a simple
additive secret sharing scheme with x = s1 + · · · + sn
(mod q) allows parties to compute the sum of two shared
secrets, by adding their respective shares. By interacting
with the other parties, it is also possible to privately multiply
additive secret shares [15].

Oblivious transfers. An oblivious transfer (OT) is a two-
party protocol between a sender and a receiver. In its
simplest form, the receiver chooses one of two messages
s0 and s1 to receive using bit b ∈ Z2. The sender sends
message sb as requested. Crucially, the sender may not learn
b and the receiver may not learn the other message s1−b.
Oblivious transfers are computationally cheap to evaluate in
large quantities due to the existence of OT extensions. OT
extensions execute a small amount of full-fledged oblivious
transfers in the opposite direction, after which the received
data can be used to perform future transfers with minimal
computational effort.

Oblivious linear evaluation. An oblivious transfer can be
seen as a protocol that privately computes sb = s0 + (s1 −
s0)b for b ∈ Z2. In other words, it computes a linear function
over b, which is binary. Oblivious linear evaluations (OLEs)
extend oblivious transfers to compute linear functions over
elements from larger groups Zq. More precisely, the sender
holds values u and v, and the receiver learns w = ux+v for
some x of its choosing [21]. In some cases, a receiver might
want to perform a large amount of OLEs with the same
input x. There exist custom protocols for this special case
called vector oblivious linear evaluations (VOLEs), which
are significantly cheaper to evaluate.

Oblivious pseudorandom functions. Another primitive for
evaluating functions obliviously is an oblivious pseudoran-
dom function (OPRF). Such a protocol allows a receiver to
compute a pseudorandom function over an input x of its
choosing, while the sender chooses which key K is used to
compute the output [22]. Importantly, the receiver does not
learn K and the sender does not learn x, nor the output of
the PRF. A multi-point OPRF evaluates multiple OPRFs at
the same time on the same key K for different inputs [22]. It
does so more efficiently than it is to execute multiple single



point OPRFs. The most efficient schemes currently rely on
oblivious transfers.

3.3. Common methods in cryptographic protocols

Finally, we explain three common techniques at the core
of several MPSI protocols.

3.3.1. Secure AND operations. In many MPSI protocols
there is a need to compute an AND operation between
multiple bits x1, . . . , xn. While a simple approach is to
compute the product, the multiplications are expensive to
execute privately. Instead, a typical alternative is to compute
some aggregate based on the input bits that is 0 when all
bits were 0, and random otherwise. Kolesnikov et al. [3],
for example, achieve this using XOR-based secret sharing.
Other works [5], [20] privately compute a randomized sum
r(x1+ · · ·+xn), where r is some random number unknown
to any set of colluding parties. In both cases, the result of
the AND operation is 1 when the aggregate equals 0.

3.3.2. Arithmetic on encrypted polynomials. Many MPSI
protocols (e.g. [1], [4], [7]) rely on arithmetic over private
polynomials. One can do so using any method that privately
performs arithmetic over integers, such as secret sharing
or additively homomorphic encryption. By working over
the coefficients of the polynomial, adding polynomials only
requires one to add the coefficients of the two polynomi-
als in element-wise fashion. Multiplying one private and
one plaintext polynomial can be done using school-book
multiplication [7]. Evaluating the polynomial at a plaintext
value x requires computing the plaintext powers x2, . . . , xd

up to degree d and performing a dot product. Instead of
working over the coefficients, Cheon et al. [23] translate the
polynomials to a point-value representation, which makes
polynomial multiplication computationally cheaper. We dis-
cuss this in more detail in Section 5.1.1.

3.3.3. Binning techniques. If an MPSI protocol does not
scale linearly with the number of elements k, binning tech-
niques can improve the over-all efficiency by splitting the
problem into several small MPSI problems; one for each bin.
There are two kinds of binning techniques: those where a
bin can have at most one element, and those where bins
can have any number of elements, but preferably as small
as possible. One popular technique for assigning a bin at
most one element is that of Cuckoo hashing [24], which
populates a set of m bins by repeatedly inserting an element
into a bin selected by a hash function. If that bin was
occupied, the element is placed into another bin, evicting
the element that was previously there and must now be re-
inserted. A suitable set of parameters makes this process
highly likely to terminate and succeed. If multiple elements
may occupy the same bin, one does not have to consider
eviction. One technique called balanced allocations [25]
distributes k elements over m = k

ln ln k bins by repeatedly
selecting two random bins and assigning the element to the
most empty bin. The number of elements in each bin is then
bounded by O(ln ln k) with overwhelming probability.

TABLE 1. SUMMARY OF THE NOTATION IN THIS WORK

Symbol Description

n Number of parties
t Maximum number of colluding parties

Pi, Xi The ith party and its input set
k Maximum set size
U Universe

S Simulator
viewi View of party Pi
s
≡,

c
≡ Statistical and computational indistinguishability

λ Statistical security parameter

{. . . } Some unordered (multi)set
[. . . ] Some ordered vector
⊎ Multiset sum

X̂,m Set representation of set X and its number of bins
Enc,Dec Encodes or decodes a set in a set representation

⊙ Homomorphism of the set representation

4. Common constructions

All MPSI schemes thus far can be expressed as a series
of membership checks. This is possible because the result
of a set intersection is always a subset of each party’s input.
Since privacy-preserving set intersections may not leak any
of the intermediate computations, not all constructions are
possible. We identify three remaining general constructions
that are used to construct MPSI protocols.

In the first construction, the parties represent their sets so
that they can be combined, and the resulting representation
can be revealed to the leader. In this case, the membership
queries can be done in plain text. In the second construction,
the resulting representation is queried by the leader, because
revealing it would leak information about the input sets.
In the third construction, the leader queries each other set
separately, then combines the outcomes to only reveal that
an element is in the intersection if it was in all input sets.

Since these methods rely on ways of encoding sets into
new, convenient representations, we introduce the following
notation: X̂ ← Enc(X) is a representation of set X by
some encoding Enc. The encoded set can be extracted
using X ← Dec(X̂), but note that this function sometimes
requires knowledge of a compact superset of X . It is always
possible to use the universe U for this purpose, but this
is not efficient when it contains many elements. In the
remainder of this section we present the currently used set
representations for each general construction in the same
order as above.

4.1. Private homomorphic set representations

Private homomorphic set representations are set repre-
sentations that can be homomorphically combined using
some operation ⊙ to compute the set intersection:

X1 ∩ · · · ∩Xn ≈ Dec(Enc(X1)⊙ · · · ⊙ Enc(Xn)) . (4)

Crucially, the resulting representation does not reveal any-
thing about the original inputs. In other words, the result is



computationally indistinguishable from the actual encoding
of the intersection.

Enc(X1)⊙ · · · ⊙ Enc(Xn)
c≡ Enc(X1 ∩ · · · ∩Xn) . (5)

Given such a private homomorphic set representation, one
can design an MPSI protocol given that ⊙ can be efficiently
computed in private. We discuss four such representations.

4.1.1. Bitsets. Bitsets are binary vectors that represent a set
X by indicating for each element of the universe x ∈ U
whether x ∈ X . To do so, there must exist some ordering
over all elements in U . Two bitsets can be homomorphically
combined when their orderings agree. The homomorphism
⊙ is then simply an element-wise AND operation.
Example 1. Given U = {1, 2, 3, 4} with ordering [1, 2, 3, 4]:

{1, 3, 4} Enc−−−−−−→ [1, 0, 1, 1]

∩ {1, 2, 3} Enc−−−−−−→ ∧ [1, 1, 1, 0]

{1, 3} Dec←−−−−−− [1, 0, 1, 0]

There is a clear drawback to using bitsets for MPSI: the
representation requires |U| bits to encode a set, even if it is
empty. On the other hand, bitsets always exactly represent
the original set, even when combined. In other words, the
condition in (5) actually holds under equality.

4.1.2. Hash sets. Another example of private homomorphic
set representations comes in the form of hash sets. Like
a bitset, a hash set is a binary vector. It has m bits,
referred to as bins, initially set to 0, and a hash function
H : U 7→ {1, . . . ,m}. To encode set X , one computes the
index H(x) for each element x ∈ X and sets the bin at
that index to 1. If two hash sets agree on the hash function,
they can also be combined homomorphically using an AND
operation. Decoding is not straightforward since it requires
computing the inverse of a hash function H−1. However,
given a superset S of the elements possibly contained in
the hash set, one can instead check for each element s ∈ S
whether it is in the hash set.
Example 2. For some common H:

{1, 3, 4} Enc−−−−−−→ [1, 1, 1, 0]

∩ {1, 2, 3} Enc−−−−−−→ ∧ [0, 1, 1, 1]

{1, 3} Dec←−−−−−− [0, 1, 1, 0]

Note that the encoded 1s are not in the same position as in
a bitset; the positions are selected by hash function H .

Hash sets can be seen as Bloom filters with only one
hash function; see Section 4.2.1. Note, however, that by
increasing the number of hash functions, the representation
opens up a mechanism for information leakage. Another way
of looking at hash sets is as a bitset with Remark 2 applied
to it. As such, (5) holds under equality.

The hash function H allows hash sets to require only
m bits to represent a set, rather than |U|. However, as a
consequence, they do not exactly represent the original set.

This occurs when H maps multiple elements to the same
bin by H . If one of these elements is encoded in the hash
set, all those other elements will falsely appear to be in the
set. Using (7) with h = 1, such false positives can happen
for each query with probability ε ≈ 1 − e

k
m , where k is

the number of elements encoded in the hash set, assuming
that the output of H is statistically uniform. False negatives
never occur in hash sets.

4.1.3. Sorted multisets. Blanton & Aguiar [26] propose
sorted multisets to combine sets and compute their sorted
intersection. The key idea is to combine multiple sets
X1, . . . , Xn into multiset X1 ⊎ · · · ⊎ Xn, and then isolate
those elements with multiplicity n. By sorting the resulting
multiset, there is a straightforward way of identifying those
elements that appear n times. By also sorting the input sets,
the sorted multiset can be computed without performing
a full sort operation. Instead, sets can be combined using
a simpler merging operation. To achieve this, Enc simply
sorts the set. The homomorphism ⊙ can then be computed
by merging the sets, checking for elements that appear n
times, and removing the other elements. This last step is
dubbed ‘monotonizing’ by Poddar et al. [12]. Note that for
a set to be sorted, a partial ordering must exist within U .

A general way of merging two sorted sets is a bitonic
sorter [27]. Such a circuit merges two sets of total length
k = 2p in p steps. After that, selecting elements that appear
n times can be done by checking equality for all elements
that are n places apart. In currently known protocols [12],
[26] the result then contains the elements of the intersection
as well as 0s. To go back to a sorted set, those 0s can be
removed using a monotonization circuit [12]. If the output
must be revealed but does not have to be a sorted set without
0s, the output can be sorted [26] or shuffled [12] instead.
Example 3. Computing the homomorphism between two
(n = 2) sorted multisets [1, 3, 4] ← Enc({1, 3, 4}) and
[1, 2, 3]← Enc({1, 2, 3}) goes as follows:

[1, 3, 4]⊙ [1, 2, 3] =Mono(Check(Merge([1, 3, 4], [1, 2, 3]))),

=Mono(Check([1, 1, 2, 3, 3, 4])) ,

=Mono([1, 0, 0, 3, 0]) ,

= [1, 3] .

A drawback of this representation is that the homomor-
phism is more complex to compute than the AND operations
required to combine two bitsets or hash sets. However, some
complexity is reduced by sorting the sets in advance. The
benefit of sorted multisets is that they are both compact and
exact: the representation’s size is similar to the original set.

4.1.4. Polynomial roots. The roots of a polynomial form a
multiset, so they can be used to compute intersections. To
encode a set S in the roots of a polynomial in Zq, a mapping
must exist from U to Zq. The polynomial encoding of S is:

Enc(S) = P (x) =
∏
s∈S

(x− s) , (6)



which is a polynomial of degree |S|. Checking membership
of a single element s is possible by evaluating the polyno-
mial and checking if P (s) = 0.

Computing the polynomial that encodes the intersection
of two polynomial set encodings requires computing the
greatest common divisor, after which the roots of the re-
sulting polynomial represent the multiset intersection of the
original roots. The resulting polynomial does not contain
any information other than the roots in the intersection, so
this is a private homomorphic set representation [7].

One problem with applying the previous approach to
MPSI protocols is that the homomorphism requires the
parties to privately compute the greatest common divisor
of two polynomials. Instead, Kissner & Song [7] show
that one can still satisfy (5) when computing X̂1 ⊙ X̂2 as
r1X̂1+r2X̂2 = r gcd(X̂1, X̂2), where r1 and r2 are random
polynomials. To achieve this, we adapt the earlier encoding
function, multiplying by some random polynomial r. This
randomization also helps reduce false positives, which are
now spread uniformly over the range of the coefficients.

In the following example, we demonstrate that addition
of two polynomials indeed retains the common roots, even
when they are not randomized.
Example 4. Consider the following without randomization:

Enc({1, 3, 4})⊙ Enc({1, 2, 3})
= (x− 1)(x− 3)(x− 4) + (x− 1)(x− 2)(x− 3)

= 2(x− 1)(x− 3)2 .

Indeed, the roots are 1 and 3. Note that the root 3 appears
twice, which is technically a false positive.

Polynomials are convenient set representations because
they grow linearly with the size of the encoded set k, and
the false positives are spread uniformly randomly over the
space. A drawback is that polynomial multiplications by
default scale quadratically with k.

4.2. Leaky homomorphic set representations

Leaky homomorphic set representations are set represen-
tations that satisfy (1), but for which (5) does not necessarily
hold. In other words, the result of the homomorphism may
leak information about the original sets. As such, these
representations cannot be revealed to any of the parties,
and instead, need to be privately queried to ensure that
the parties only learn the intersection. Consequently, the
representation must support an efficient way to perform
private membership queries.

4.2.1. Bloom filters. A Bloom filter is a hash set with
multiple hash functions H1, . . . ,Hh, see Section 4.1.2. The
benefit of using h > 1 is that the number of bins m can be
lower for the same false positive rate ε. As a consequence
however, computing the intersection between two or more
Bloom filters through an AND operation may leak more in-
formation about the original sets than just their intersection.
In other words, (5) does not hold.

The probability ε that a query falsely returns a positive
result is approximately given by [28]:

ε ≈

(
1−

(
1− 1

m

)hk
)h

≈
(
1− e

−hk
m

)h
. (7)

So the minimal number of bins m for a Bloom filter with
at most k elements and a false positive rate of ε is:

m = −k ln ε

ln2 2
, h = − log2 ε . (8)

The false positive rate after computing ⊙ is bound by the
false positive rate of the original Bloom filters [29]. Instead
of using the approximation (7), one can also use the upper
bound by Goel & Gupta [28] to choose parameters as
described by Vos et al. [20].

The reason that Bloom filter intersections leak informa-
tion is that a bin can be set to 1 even if it does not contribute
to the intersection. The probability of this happening grows
with the number of hash functions h. In the following
example we show a situation where the filter of the actual
intersection does not match the filter computed using ⊙.
Example 5. Consider a Bloom filter with m = 6 and h = 2.
The bins are indexed using 0, . . . ,m − 1. The first hash
function behaves as H1(2) = 2, H1(3) = 1, H1(4) = 1.
The second as H2(2) = 3, H2(3) = 2, H2(4) = 5.

Now, given sets X1 = {2, 3} and X2 = {4}, we have:

Enc(X1 ∩X2) ̸= Enc(X1) ∧ Enc(X2) ,

Enc(∅) ̸= [0, 1, 1, 1, 0, 0] ∧ [0, 1, 0, 0, 0, 1] ,

[0, 0, 0, 0, 0, 0] ̸= [0, 1, 0, 0, 0, 0] .

The benefit of Bloom filters is that they scale linearly
with the size of the set k. However, the drawback is that the
constant factor of O(k) can be large if ε must be small.
For example, if ε ≈ 2−40 then m ≈ 57.7k. In other
words, it takes almost 58 bins to represent each element
with negligible failure rate. A bitset requires |U| bins and
has zero failure rate, so it stands to reason that one would
then better choose a bitset representation if |U| ≤ 57.7k.

4.2.2. Garbled Bloom filters. In a garbled Bloom filter,
the bins selected by the hash functions H1, . . . ,Hh are not
set to 1, but to an XOR-sharing of some value. This makes
a garbled Bloom filter a key-value store (see Section 4.3.3).
The bins in such a filter are bitstrings of length λ. Garbled
Bloom filters were first proposed by Dong et al. [30].

Let bi denote the ith bin of a garbled Bloom filter.
Kolesnikov et al. [3] provide the following algorithm to
encode a set of key-value pairs in such a filter:

1) Initialize all bins bi for i = 1, . . . ,m to ⊥.
2) For each key-value pair (x, y), select indices Ij =

Hj(x) for j = 1, . . . , h. For empty bins (bIj = ⊥),
choose random λ-bit strings so that bI1⊕· · ·⊕bIh = y.

3) Replace empty bins (bi =⊥) with a random λ-bit string.
A simple way of using garbled Bloom filters to encode

sets for performing set intersections is to encode the set
elements as the keys of the filter, and set the values to 0 . . . 0,



or some other well-formed value. The filter representing
the intersection can be computed using an element-wise
XOR operation. Only the bins pertaining to elements in
the intersection then XOR to 0 . . . 0. Garbled Bloom filters
inherit their false negative probability from the false positive
probability Bloom filters. They also incur a chance of false
positives, which occur when randomly chosen bins acciden-
tally XOR to 0 . . . 0. This happens with probability 2−λ.

In the following example we show why these filters leak
information through the homomorphism.

Example 6. Consider a garbled Bloom filter with m = 5
bins, h = 3 hash functions and λ = 3. The hash func-
tions behave like H1(1) = 0, H2(1) = 1, H3(1) = 2,
and H1(4) = 2, H2(4) = 4, H3(4) = 3. Then, the set
intersection between {1, 4} and {1} can be computed like:

{1, 4} Enc−−−−−−→ [010, 011, 001, 010, 011]

∩ {1} Enc−−−−−−→ ⊕ [001, 100, 101, 110, 110]

{1} Dec←−−−−−− [011, 111, 100, 100, 101]

Notice that the party holding the second set can infer
that the other party has 4 in its set with high probability. It
can do so because the sum of the bins pertaining to 4 sum
to the same value in its own garbled Bloom filter as well as
the result: 101⊕ 110⊕ 110 = 101 = 100⊕ 100⊕ 101.

The most significant benefit of garbled Bloom filters
over regular Bloom filters is their ability to be used as
oblivious key-value stores. That is, if the values they encode
are statistically random, then it is unknown which keys are
encoded into them. Moreover, the number of bins m decides
the probability of false negatives rather than false positives.

4.3. Aggregatable membership queries

A third construction for MPSI protocols performs mem-
bership queries on the encoded sets and combines the results
of these queries. As such, no homomorphism is required
over the set representation. Instead, we require an aggrega-
tion method ⊙ for which it holds that:

n∧
i=1

x ∈ Xn = Reveal(Queryx(X̂1)⊙ · · · ⊙ Queryx(X̂n)) ,

(9)
where X̂i ← Enc(Xi) conveniently encodes set Xi.

Essentially, these approaches execute two-party proto-
cols between the leader and the assistants, and combine
the results. Since this high-level construction requires that
the output of the two-party protocols remains private, all
three approaches discussed here output a value linked to
the queried element rather than a Boolean. For example,
MPSI protocols could return a secret share of 0 for each
of the elements in the queried party’s set, and randomness
otherwise. If so, ⊙ is simply the reconstruction operation of
the secret sharing scheme.

4.3.1. Embedding payloads in polynomial roots. In Sec-
tion 4.1.4, we saw that polynomials encoding a set in their
roots can be homomorphically combined. The same encod-
ing can also be used to return aggregatable query results
from a polynomial p(x) by privately computing rp(x)+P ,
where P is the payload and x is the queried element. The
result is P only when evaluated over any of the roots of p
with overwhelming probability, or randomness otherwise.
This method is particularly useful in protocols based on
homomorphic encryption, because it allows the leader to
locally evaluate the assistant’s encrypted polynomial. Con-
sequently, the leader can decide on the payload P . The
leader can generate secret shares of zeroes to embedded as
payloads without communicating with the assistants.

4.3.2. Oblivious programmable PRFs. Proposed by
Kolesnikov et al. [3], an oblivious programmable PRF (OP-
PRF) is an oblivious PRF that contains hardcoded values
in the form of key-value pairs. In other words, given a
secret input x′, if x′ matches one of the key-value pairs
(x, y) so that x = x′, then the output is y. Otherwise,
the output is randomness. The approach in Section 4.3.1
already satisfies a form of this, where the keys are given by
the roots of the polynomial and the values are decided on
by the evaluator of the polynomial. OPPRFs, however, are
more specific: the sender decides on the hardcoded key-
value pairs. Importantly, the receiver is only allowed to
perform a limited number of queries.

Kolesnikov et al. [3] propose three instantiations of
OPPRFs. The first design interpolates a polynomial over
the hardcoded key-value pairs, the second uses a garbled
Bloom filter (see Section 4.2.2), and the third returns a key
generated by a pseudo-random function that can be used to
decrypt one of a set of encryptions if it pertains to one of the
hardcoded keys. The authors also show how to extend the
OPPRFs to be queried multiple times using cuckoo filters.
The polynomial roots approach in Section 4.3.1 requires the
polynomial to be evaluated in private, which is expensive,
while these OPPRFs only rely on symmetric primitives.

4.3.3. Oblivious key-value stores. Garimella et al. [31]
describe a primitive similar to OPPRFs called oblivious key-
value stores (OKVS), which perform the same functionality
but they can be transmitted in plain text. The polynomial-
based OPPRF described above is an example of such an
OKVS. In fact, this is the most compact OKVS possible, as
it takes c polynomial coefficients to hard-code c key-value
pairs. Crucially, the hardcoded values must be randomly dis-
tributed to hide which keys are encoded in the data structure.
While it is compact, a drawback of this polynomial-based
OKVS is that encoding it is computationally expensive.

Garimella et al. [31] propose an OKVS that is signifi-
cantly cheaper to encode based on cuckoo hashing. While it
is not optimally compact, it is approximately 1.5 to 2.5 times
larger than the polynomial-based OKVS [32]. Moreover,
by the way this OKVS is constructed, one can guaran-
tee that encoding succeeds with overwhelming probability
(1−2−40). One of the most significant advantages of OKVSs



over OPPRFs is that they reduce the communication needed
for MPSI protocols in the malicious model.

This primitive originates from the garbled Bloom filters
by Dong et al. [30], after which they were applied to two-
party protocols under the name of ‘PaXoS’ [33]. In parallel,
the field of structured linear functions studies similar data
structures. One example is the frayed ribbon filter [34].

5. Proposed protocols

In this section, we provide a comprehensive overview
of collusion-resistant MPSI protocols in the semi-honest
model. We established this body of literature by explor-
ing the references and citations of an initial set of works
on MPSI protocols. In this process, we disregard works
that rely on differential privacy as they do not satisfy the
privacy requirements established in Section 2. We also do
not consider server-aided protocols, which rely on a non-
colluding assumption. Note that we only consider set in-
tersection protocols, so we omit variants such as threshold-
intersections [35] from the overview.

We summarize all protocols that do not have any known
security flaws in Table 2. This table sorts the works by their
high-level construction as discussed in the previous section
and the set representation. Within these categories, the pro-
tocols are sorted chronologically. For each work, we state
their communication and computation complexity, as well as
the number of rounds of interaction. We provide derivations
of these complexities in Appendix A. We also state the
network topologies, the maximum collusion resistance, and
whether there also exists a maliciously-secure version of
the protocol (yes  or no #). We do not consider whether
a protocol is size-hiding, see Remark 3 in Section 2.2. Note
that complexities using Õ-notation omit logarithmic terms.
Remark 4. Note that in the semi-honest model, any protocol
with a mesh topology can be converted to a star topology by
encrypting all messages for the intended receiver and routing
them through the leader at the cost of more interactions.

5.1. Private homomorphic set representations

5.1.1. Using polynomial roots. Kissner & Song [7] propose
an MPSI protocol based on the polynomial roots represen-
tation. After encoding their set in the roots of a polynomial,
each party uses an additively homomorphic cryptosystem
(the Paillier cryptosystem) to encrypt the coefficients and
sends them to t other parties. Each party locally randomizes
the received polynomials, after which the parties sum up the
result in a circular fashion, and finally decrypt. Li & Wu [11]
propose a similar approach, except they use secret sharing.
This lowers the maximum collusion threshold from n−1 to
⌊n−1

2 ⌋, but the computation is significantly cheaper. Patra
et al. [43], [44] show that the malicious version of Li &
Wu’s protocol requires more operations than claimed in the
original paper, and they provide alternatives with a higher
maximum collusion threshold and better efficiency.

After this, Sang et al. [36] discuss several steps in op-
timizing the randomized aggregation operation necessary to

compute the intersection in the semi-honest model. In [37],
they propose a malicious extension of this protocol. The
protocols use degree 1 polynomials when randomizing to
save computations, and provide proof that this is indeed still
resistant against collusion attacks given that the coefficients
are multiplied by a non-singular matrix. In later works, Sang
& Shen [38], [45] describe a second protocol based on
bilinear pairings. However, the pairings are only necessary
in the malicious model. We note that it suffices to use
elliptic curve-based ElGamal in the semi-honest model, for
example. The idea behind this protocol is that it suffices
to randomize each polynomial once using a single scalar
instead of t + 1 times by different parties if we only re-
veal the evaluation of the resulting polynomial. Importantly,
this is only secure for cryptosystems where parties cannot
determine the discrete log of the final decryption. For this
reason, we mark PHE with an asterisk in Table 2.

Instead of eliminating polynomial multiplications, some
other works focus on lowering their computational cost.
Cheon et al. [23], for example, propose a protocol based on
that of Kissner & Song [7] where polynomials are in point-
value representation: instead of encrypting a polynomial
by its coefficients, the parties first evaluate the polynomial
locally on a set of public points, and encrypt the resulting
values. Multiplication of polynomials in this representation
scales linearly with the degree rather than quadratically.
However, one must ensure there are at least as many en-
crypted values as the degree of the resulting polynomial.
Focusing on the two-party setting, Kim et al. [46] propose
several other techniques to perform computationally cheaper
polynomial multiplications and evaluations.

Ghosh & Nilges [9] use the same point-value representa-
tion as above, but they show how to compute the randomized
sum without the need for homomorphic encryption. Instead,
they propose to have every assistant perform a series of
OLEs with the leader. In the setting with two parties P1 and
P2 where only P1 receives the result, the parties compute
rX̂1 + X̂2 using an OLE, where r is chosen by P2. In
the multi-party setting, the authors propose to use an OLE
between each assistant and the leader in both directions,
to achieve a secret sharing of the resulting polynomial. By
clever use of masking and a non-interactive secret sharing
scheme, the authors make sure that the leader must aggregate
all randomized polynomials before being able to reveal the
intersection. Note that recently, Abadi et al. [47] identified
multiple attacks against the version of the protocol that
was claimed to withstand malicious adversaries. The authors
compare the bandwidth cost of their protocol with that by
Kolesnikov et al. [3]. For k = 220 and t = n − 1, the
bandwidth per party is ≈ 1.25 GB for the protocol by Ghosh
& Nilges, and (n− 1) · 467 MB for the previous work.

The latest work in this category comes from Gordon et
al. [13], who propose an MPSI protocol secure in the mali-
cious model. They also propose a version where all parties
receive the result. The protocols use OLEs to compute the



TABLE 2. OVERVIEW OF SEMI-HONEST MPSI PROTOCOLS WITH NO KNOWN ATTACKS, RESISTING MULTIPLE COLLUDERS

Work Technique Communication Computation Security
First author Year Encoding Primitive Topology Leader Assistant Rounds Leader Assistant Collusion Malicious

Private homomorphic set representations

Kissner [7] 2005

Polynomial
roots

PHE Mesh O(nk) O(tk) 3 O(tk2) O(tk2) n− 1  
Sang [36] 2006 PHE Mesh O(nk) O(nk) 3 O(n2k) O(n2k) n− 1 [37]
Li [11] 2007 - Mesh O(ntk2) O(ntk2) 3 O(ntk2) O(ntk2) ⌊n−1

2
⌋  

Sang [38] 2009 PHE* Mesh O(nk) O(nk) 2 O(nk2) O(nk2) n− 1  
Cheon [23] 2012 PHE Mesh O(nk) O(nk) 3 O(nk) O(nk) n− 1  
Ghosh [9] 2019 OLE Star O(nk) O(k) 6 Õ(nk) Õ(k) n− 1  
Gordon [13] 2022 OLE Star Õ(nk + nt) — 5 — — n− 1  

Blanton [26] 2016 Sorted
multiset

- Mesh Õ(tk) Õ(tk) O(log k) Õ(tk) Õ(tk) ⌊n−1
2

⌋  
Poddar [12] 2021 GC Mesh — — — — — n− 1  

Bay [39] 2021 Bitset PHE Star O(tk) O(|U|) 3 O(nk) O(|U|) n− 1 #
Vos [20] 2022

Leaky homomorphic set representations

Inbar [8] 2018 Garbled
Bloom filter

OT Star O(nkh) O(nkh) 3 O(nkh) O(nkh) n− 1 [40]
Kavousi [41] 2021 OT Wheel O(nk) O(kh) 4 O(nk) O(kh) n− 1 #

Bay [5] 2022 Bloom filter PHE Star O(tk) O(k) 3 O(nkh) O(k) n− 1 #
Vos [20] 2022

Aggregatable membership queries

Freedman [1] 2004 Polynomial
payloads

- Mesh O(n2k2) O(n2k2) 4 O(n2k2) O(n2k2) n− 1 #
Hazay [4] 2017 PHE Star O(nk) O(k) 4 Õ(nk) O(k) n− 1  

Kolesnikov [3] 2017 OPPRF OT Mesh O(nk) O(tk) 4 O(n) O(tk) n− 1 [31]
Chandran [42] 2021 OT Star Õ(nk) Õ(k) 8 O(nk) O(k) ⌊n−1

2
⌋ #

Garimella [31] 2021 OKVS OT Star O(nk) O(k) 4 O(k) O(nk) n− 1  
Nevo [32] 2021 OT Mesh O(tk)* O(k) 4 O(nk − tk) O(tk) n− 1  

randomized polynomial sum:

X̂∩ =

(
n∑

i=1

ri

)
X̂1 +

n∑
i=2

(si1 + si)X̂i . (10)

Here, ri and si are random polynomials selected by each
party, and si1 are n− 1 polynomials sampled by the leader.
For each set element, each assistant performs four OLEs
with the leader. For k = 220 and t = n − 1, the mali-
cious protocol by Gordon et al. consistently outperforms
Kolesnikov et al. in the semi-honest model. Care must be
taken to interpret these numbers as the experiments were run
on different hardware (3.60GHz CPUs versus 2.30GHz).

5.1.2. Using sorted multisets. Huang et al. [48] use sorted
multisets to perform a private set intersection between two
parties, and Poddar et al. [12] provide an extension to any
number of parties. Both works use garbled circuits (GC) to
privately compute the intersection between sorted multisets.
While garbled circuits by default offer a way to privately
perform a two-party computation, Poddar et al. use the
method by Wang et al. [49], which first uses an expensive
offline phase to build a garbled circuit that can be used for

secure multi-party computation. Since the MPSI operation
is part of a large compiler pipeline, it is hard to state any
asymptotic complexities for the resulting protocol.

Before the work by Poddar et al., Blanton et al. [26] used
the same representation to compute intersections and other
set and multiset operations using secret sharing. The benefit
of this method is that computation is extremely efficient, but
the protocol does not run in a constant number of rounds
due to the merging operations: it scales logarithmically with
the size of the sets k. For n = 3, t = 1, k = 2048 and with
a 1Gb Ethernet connection, the protocol takes 25 seconds.

5.1.3. Using bitsets. Ruan et al. [50] proposed the first
bitset-based private set intersection protocol. Their protocol
is restricted to two parties, so Bay et al. [39] provide
an extension to the multi-party setting, achieving up to
n − 1 collusion resistance. The protocol uses additively
homomorphic encryption to compute an element-wise AND
operation between all bitsets using the method described
in Section 3.3.1. Vos et al. [20] show how to perform
this operation in a way that is significantly cheaper. By
using ElGamal over an elliptic curve group, operations are
less computationally demanding, and the ciphertext size is



restricted to 64 bytes. Another improvement comes from
reordering the randomization, so that the leader has to
perform fewer plaintext multiplications. Without considering
communication, these optimizations reduce run time from
100 seconds to 3 seconds for k = 212, n = 5 and t = 4.

5.2. Leaky homomorphic set representations

5.2.1. Using garbled Bloom filters. The first protocol based
on garbled Bloom filters was a two-party private set inter-
section by Dong et al. [30]. Inbar et al. [8] provided three
protocols that extend this protocol to the multi-party setting.
The first protocol is in the server-aided model, relying on
a non-colluding third party, while the next two protocols
are collusion-resistant and secure in the semi-honest and
augmented semi-honest model, respectively. The latter two
protocols rely on oblivious transfers so each party only
learns the contents of the garbled Bloom filter bins that
they should learn. The augmented semi-honest model allows
the parties to perform fewer OT extensions while realizing
the same functionality. While OTs are cheap to compute,
the protocols require all pairs of parties to perform them,
causing the communication to scale quadratically with the
number of parties. Recently, Ben-Efraim et al. [40] provided
an extension of this work to the malicious model. They also
show how to reduce the number of OTs by 25% by choosing
other parameters for the garbled Bloom filter. Their results
for t = n− 1 show that regardless of k and n, Kolesnikov
et al. and Ben-Efraim et al. consistently outperform the
work by Inbar et al. Moverover, for n ≥ 10 and k ≥ 216

the malicious protocol by Ben-Efraim et al. consistently
outperforms the semi-honest protocol by Kolesnikov et al.

A protocol by Kavousi et al. [41] uses garbled Bloom
filters differently, extending the two-party work of Chase
& Miao [22], who propose a highly efficient OPRF that
can be queried in multiple points at once using OTs. Bay &
Kayan [51] also propose a multi-party extension, but without
a garbled Bloom filter and therefore require the asisstants to
send the PRF of the hash of each element to the leader. We
argue that this renders the protocol insecure, as the leader
can enumerate the universe U to identify preimages.

5.2.2. Using Bloom filters. Bay et al. [5] propose a
collusion-resistant version of the protocol by Miyaji &
Nishida [6]. Their protocol uses the Paillier cryptosystem
to compute the AND operation between each party’s en-
crypted Bloom filter following the technique described in
Section 3.3.1. Vos et al. [20] provide a similar improve-
ment as described in Section 5.1.3 to significantly reduce
the computation and communication cost of the protocol,
although it does not impact the asymptotic complexities.
These protocols satisfy superset correctness: they only incur
false positives with non-negligible probability. Vos et al.
show that for ε ≥ 0.01%, t = n−1 and n ≥ 3, the protocol
consistently outperforms Kolesnikov et al. [3].

5.3. Aggregatable membership queries

5.3.1. Embedding payloads in polynomial roots. Freed-
man [1] proposed the first MPSI protocol. This secret
sharing-based protocol uses the polynomial set encoding to
embed payloads in shares containing the evaluation of the
polynomial in the elements of the leader’s set. This payload
is a secret share, so when all polynomials contain a root
at this element, the secret can be reconstructed. Hazay &
Venkitasubramaniam propose another protocol using PHE,
which allows the leader to evaluate the polynomials, instead
of the assistants. The leader only inserts payloads of 0. After
randomizing and decrypting (reminiscent to Section 3.3.1),
the leader receives a result of 0 when the element is in the
intersection with overwhelming probability.

5.3.2. Using oblivious programmable PRFs. Kolesnikov
et al. [3] introduce OPPRFs and show how they can be
used to instantiate an MPSI protocol. The first part of the
protocol is expensive, establishing an XOR-sharing of zero
for each element that could be in the intersection. After that,
the parties hardcode those values in their OPPRF for each
element in their set. The leader then queries all assistants’
OPPRFs and reconstructs the secret. Chandran et al. [42]
create three modifications of the protocol by Kolesnikov et
al., removing the expensive construction of secret shares
that XOR to zero, replacing it with Shamir’s secret sharing
scheme. As a consequence, collusion resistance is halved.
In their results, this leads to a 1.2 to 6.2 times speedup over
Kolesnikov et al. in different settings. For n = 15, t = 7,
and k = 220, protocol C took 244.8 seconds to complete
over WAN, while Kolesnikov et al. took 1524.5 seconds.

5.3.3. Using oblivious key-value stores. Garimella et
al. [31] propose OKVSs as a way of reducing the communi-
cation cost required in OPPRF-based protocols. The authors
show how to use VOLEs to optimize previous protocols, and
they instantiate them with oblivious transfers. They show
that in slow networks, this approach leads to faster protocol
executions. Nevo et al. [32] lower both the computational
and communication cost compared to previous protocols.
They do so by cleverly using a set of ‘pivot’ parties that
hold the OKVSs, reducing the overall cost. At the same time
these pivot parties directly decide the protocols resistance to
collusions. For this reason, when t = n − 1, the protocol
converges with that of Garimella et al. [31]. In Table 2
we mark the leader’s communication complexity with an
asterisk: When t ≤ n

2 , the leader’s communication is instead
given by O(nk − tk). Qiu et al. [17] consider the proto-
col by Garimella et al. in a tree-shaped network topology
and provide a maliciously-secure protocol. This lowers the
computational cost while changing the number of rounds
to 2⌊log2(n + 1)⌋. Nevo et al. consistently outperform the
works by Kolesnikov et al., Ben-Efraim et al., and Chandran
et al. in terms of required bandwidth and run time. An
exception is when t = n− 1, the run time is then the same
as that of Kolesnikov et al. The authors report that when



n = 15, t = 7, and k = 220, the protocol takes 3 minutes
to execute and 1416.9 MB of bandwidth.

6. Common pitfalls

In this section, we put forward several common pitfalls
in designing MPSI protocols and analyze the ways that these
vulnerabilities present themselves in these protocols.

6.1. Leakage from set representations

As we established in Section 4, there are two classes of
homomorphic set representations: those that remain private
when revealed and those that leak information about the
inputs. While it is not always obvious how leaky set repre-
sentations expose private data, the leakage is not negligible.
A common mistake is that a Bloom filter representing the
intersection is revealed to some of the parties. This happens
for example in the work by Many et al. [52]. Another work
by Lai et al. [53] even uses Bloom filters in plain text, but
this allows an attacker to brute force all possible elements
encoded within it. In other cases, the protocol involuntarily
leaks information about the Bloom filter or its queries. For
example, the protocols by Debnath et al. [54], [55] leak the
sum of the queried bins, which reveals information about
how many parties have a given element in their sets.

6.2. Unsafe randomness during aggregation

As mentioned in Section 3.3.1, many MPSI protocols
rely on privately computing an AND operation. For bits
x1, . . . , xn, one way is to compute r(x1+· · ·+xn), where r
is some randomness unknown to any set of colluding parties.

One might think that the requirement above is met when
we let the parties compute r1(1 − x1) + · · · + rn(1 − xn),
where ri is some randomness only known to party Pi.
However, whether parties know r now depends on the inputs.
Notice, for example, that when x1 = 0 and x2, . . . , xn = 1,
r = r1, which is known to party P1 and anyone they collude
with. This allows a set of colluding parties to tell if they are
the only parties with an input bit of 1.

A related error was made in the protocol by Wei et
al. [56], which privately computes:

y = (s1x1+r′1(1−x1))+ · · ·+(snxn+r′n(1−xn)) , (11)

where si is a secret share of 0 encoded in the exponent
of a generator, so it holds that s1 + · · · + sn = 0. A
share is privately constructed as follows: si =

∑i−1
j=1 rj −∑n

j=i+1 rj , where r1, . . . , rn is randomness generated by
parties P1, . . . ,Pn, respectively. Importantly, a party does
not know its share until (11) is computed. At first sight,
this seems to solve the earlier issue. However, since party
Pj knows the randomness rj that they contributed, they can
remove their contribution from other parties shares sj′ for
j′ ̸= j. This allows a party to tell that it is the only party
with an input bit of 1.

Another mistake is to only let one party contribute
randomness. Doing so reduces the maximum collusion re-
sistance to 1. This mistake was made in the protocol by
Miyaji & Nishida [6], and was patched by Bay et al. [5].
In this protocol, only the leader P1 randomized the sum. In
other words, the parties compute r1(x1 + · · · + xn). As a
result, the leader can invert this randomization at the end of
the protocol to extract the number of input bits set to 1.

6.3. Adapting to the malicious model

While this paper focuses on the semi-honest model, one
should note that translating protocols from this model to the
malicious model comes with its own set of challenges. For
example, the polynomial set representation as described in
Section 4.1.4 is susceptible to manipulation by malicious
adversaries [47]. While the first two attacks discussed by
Abadi et al. are specific to the protocol of Gordon et al. [9],
the third attack highlights a problem inherent to the point-
value representation. Specifically, it allows an adversary to
omit elements from the intersection by multiplying each
element of the point-value representation by a scalar.

Qiu et al. [17] propose a different type of attack against
the protocol by Garimella et al. [31] for returning the output
of the MPSI to all parties. The attack allows an adversary to
learn information about the elements held by honest parties.
The attack does not affect the security of the OKVS.

7. Analytical evaluation of computational costs

The performance of MPSI protocols is affected by many
parameters, including: its hardness assumptions, the security
parameter, the network topology, collusion threshold t, the
number of interactions, the number of parties n, the number
of elements k, the error probability ε, latency, throughput,
the distribution of computer power over different parties, and
the number of available threads. As a result, any concrete
comparison that makes assumptions about any of these
parameters unfairly puts certain schemes at an advantage
(in fact, almost any scheme can win in a specific setting),
and without established public uses of MPSI protocols, it
remains unclear what realistic sets of parameters look like.

Instead, we study the theoretical computational cost of
MPSI protocols. We consider PHE-based protocols sepa-
rately from protocols based on aggregatable membership
queries, which rely on two-party computations (2PCs). For
brevity, we denote E = ln(ε−1). At the end of this section
we nevertheless try to describe what reasonable parameter
sets might look like, and discuss which protocols suit them.

7.1. Efficiency of PHE-based protocols

We instantiate the latest version of each PHE-based
protocol discussed in Section 5 using elliptic curve-based
ElGamal, as used by Vos et al. [20]. Next, we analyze
the computational cost of these protocols by counting the
number of elliptic curve multiplications required to evaluate



TABLE 3. NUMBER OF PRIMITIVE OPERATIONS IN THE WORST CASE

Leader Assistant Total

Elliptic curve multiplications per element

Sang 1.5 + 2n+ 2k 1.5 4n+ 2k + t+ 1
Cheon 4n+ 3 4n+ 3 5n+ 4nt+ 2t+ 2
Hazay 10n− 7 3.5 12n− 6 + 3t
Vos 3 1.04E + 3 1.04(n− 1)E + 3t+ 3

Oblivious transfers

Inbar 2.08(n− 1)Ek 2.08Ek 2.08(n− 1)Ek
Kolesnikov 7(n− 1)k 3.5(n− 1)k 3.5(n+ 1)(n− 1)k
Chandran 8.96(n− 1)k 8.96k 8.96(n− 1)k
Kavousi 588(n− 1) 588 588(n− 1)λ
Garimella — — —
Nevo 3.5tk 3.5k 3.5tk

Oblivious linear evaluations

Ghosh 2(n− 1)k 2k 2(n− 1)k
Gordon (n− 1)k k (n− 1)k

them. Since it is possible for one curve point to precompute
a basepoint table, we distinguish between regular and pre-
computed multiplications: precomputed multiplications are
approximately four times cheaper. We report the results in
Table 3. Note that these equations differ from the asymptotic
complexities, because they do not consider homomorphic
addition, which is negligible compared to multiplications.

Based on this, it depends on the use case which proto-
col is more computationally efficient. For example, if the
assistants have low computational power, the protocol by
Hazay et al. [4] is faster. Sang et al. [38] is also cheap for
an assistant, but scales quadratically with k for the leader.
If there is no difference in computational power and t is
small, Cheon et al. [23] is faster. If t is close to n and ε
can be high, then Vos et al. [20] may be cheaper.

7.2. Efficiency of 2PC-based protocols

In Table 3, we state the number of calls to the sub-
protocols of the 2PC-based protocols from Section 5. Where
possible we analyzed the protocols in the augmented semi-
honest model. We ignore setup operations, such as the
initial OT phase. It is important to note that we expressed
these in terms of the sub-protocols used in the respective
papers. However, one might also instantiate the protocol
by Kolesnikov et al. [3], for example, with a VOLE-based
OPPRF. Also note that Kavousi et al. [41] requires the
parties to take part in a constant number of OTs, regardless
of k. Other parts of the protocol do scale with k.

7.3. Analysis towards potential use cases

Use case Setting n t k ε

(1) Mutual customers Mesh ≤ 5 n− 1 ≤ 220 5%

(2) Common IP addresses Star ≤ 50 n
2

∼ 210 1%

(3) Consensus voting Star ≥ 100 n
10

≤ 28 2−40

We briefly analyze which protocols would be suitable
for three highlighted applications. We present potential pa-
rameters in the table above. Application (1) involves some

companies that want to identify mutual customers for an
ad campaign, (2) involves cyber security organizations that
want to identify suspicious IP addresses for investigation,
and (3) involves a consensus vote between many parties.
The companies in (1) run few multi-threaded servers that are
always online. A good fit seems to be the work by Nevo et
al. [32], which outperforms other 2PC approaches, supports
t = n− 1, and is fast for large sets with few parties. With
n ≤ 50, (2) requires a lowly-interactive protocol in the star
topology like Ghosh, Gordon, Chandran, Vos, Inbar, Hazay,
or Garimella. For ε = 1% and n = 50, Vos only takes 313
multiplications compared to Hazay’s 669. The same applies
to (3), but it does not permit approximations. Depending on
the network, one might choose Ghosh, Gordon, Chandran,
or Hazay, as assistants’ computation does not scale with n.

8. Discussion

Based on Sections 5 and 7 we observe that older works
are still relevant today. Specifically, when instantiating PHE-
based protocols with modern cryptosystems such as elliptic
curve-based ElGamal, their performance becomes competi-
tive with the latest proposals. Moreover, while it may be
convenient to designate one protocol as the state of the
art, this is not possible for MPSI protocols: it is possible
for each protocol to find application settings where they
require fewer calls to sub-protocols or fewer EC operations
than other works. This also begs the question what real-life
application settings look like: what are common parameters
for n, t, and k, and what are the network settings like? Until
then, direct comparisons cannot be considered conclusive.

When looking at how MPSI protocols come to be, the
process sometimes starts with a two-party protocol, which is
extended to a semi-honest protocol, and finally to a version
that is maliciously secure. We see a trend where more
recent works only propose a multi-party maliciously-secure
protocol, skipping the semi-honest model where it might be
explained more plainly and nuances are better understood.

When it comes to technical advances, we identify im-
provements in OKVSs and homomorphic cryptosystems as
the most impactful. OKVSs can be optimized in isolation of
the protocols that use them so they do not require significant
knowledge of cryptography, and more efficient versions
would immediately increase performance of the latest 2PC-
based protocols. So far, we are not aware of any collusion-
resistant MPSI protocols that use lattice-based homomor-
phic encryption, or which use leveled/fully-homomorphic
encryption to outperform PHE-based protocols.

Finally, when comparing PHE-based MPSI protocols to
2PC-based protocols, we note that the first are easier to
analyze for different application settings. This complexity
in analyzing 2PC-based protocols comes from having to
choose cryptographic parameters, which do not correlate in
a straightforward manner with k, for example. Moreover,
multiple sets of cryptographic parameters are suitable for
each instance. At the same time, it is this flexibility that also
allows the user of a protocol to tune between computation



and communication, a feature that is not typical of PHE-
based protocols. Future research could elaborate on how to
choose these parameters, easing the analysis and deployment
of 2PC-based protocols.

9. Conclusion

This work provides a systematization of collusion-
resistant MPSI protocols, focusing on the semi-honest
model. We describe the formal requirements that MPSI
protocols must satisfy, and present high-level constructions
that describe all published MPSI protocols. Next to that,
we provide a comprehensive overview of collusion-resistant
MPSI protocols and broken protocols, as well as an analyt-
ical evaluation of their computational cost. This evaluation
shows that there is no such thing as a single state of the art,
but rather that each protocol outperforms the others depend-
ing on the application setting. We highlight several future
research directions, intending to bring the performance of
MPSI protocols closer to that of two-party PSIs.
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Appendix A.
Derived complexities

Using polynomial roots. The protocol by Kissner & Song
first requires each party to send encrypted polynomials to t
other parties. The leader must also send the final encrypted
polynomial to all n − 1 assistants. The polynomials grow
with a constant factor so the communication complexity
for an assistant is O(tk) bits, and O(nk) for the leader.
Computation-wise, the most expensive part of the protocol is
when each party computes the dot product of t+1 encrypted
polynomials with random polynomials. This takes O(tk2)
cryptographic operations. The protocol takes 3 rounds: en-
cryption, randomization and addition, and decryption.

The most expensive part of the protocol by Li & Wu is
the computation phase. Here, each party sends O(n(k +
1)(k + 2)) secret values to t other parties, which takes
O(ntk2) bits. The computation required is at least equal to
this complexity. Note that in this protocol, all parties receive
the output, so there is no actual notion of a leader. We only
consider the semi-honest case here, which takes 3 rounds.

We derive complexities from the analysis by Sang et
al. [36]. Each party performs O(n2k) computations. The
total communication is O(n2k), which we divide by n to get
the complexity per party. There are 3 rounds of interaction.
The second protocol by Sang & Shen [38] takes O(nk2)
computations in step 2.2 for all parties, and O(nk) commu-
nicated bits in step 2.3. This takes 2 rounds of interaction.

The protocol by Cheon et al. is similar to Kissner &
Song’s, but with the encrypted polynomial multiplications
taking O(k) rather than O(k2). It is designed so that all
parties receive the result, but we change steps 2-4 so only



the leader receives the result. In step 2, assistants send
their randomized polynomials only to the leader, step 3 is
then computed by the leader, and the threshold decryption
continues with only t parties. Then, each party performs
O(nk) computations in step 2 and each party sends its
encrypted polynomial to all others, which takes O(nk) bits.
This takes 3 rounds of online communication: encryption,
randomization in steps 2 & 3, then threshold decryption.

For the protocol by Ghosh et al. we use the complexities
from their paper: the computation complexity for the leader
is O(nk log k) = Õ(nk) and for the assistant it is identical
to the two-party case Õ(k). The communication complexity
is O(nk) for the leader, O(k) for the assistant. The setup
takes 1 interaction, share computation takes 4 given that an
OPA takes 2 interactions, the output takes 1 interaction.

The protocol by Gordon et al. requires one interaction
for the input sharing phase, one interaction for the coin
toss, one interaction for the output aggregation, and one
interaction for the OLE if it is instantiated using an efficient
OT. We copy the leader’s communication complexity from
the paper: Õ(nk+nt). The other complexities are non-trivial
as they depend on the choice of primitives and parameters.

Sorted multisets. There is no concept of a leader in the
protocol by Blanton & Aguiar. We assume the parties pre-
sort their sets, which allows the multiset to be sorted using
a merge operation requiring O(k log k) operations (Sec-
tion 7.1) rather than a full sort. Next, the parties perform
O(k) multiplications and secure equality operations. Since
each multiplication requires at least t parties to commu-
nicate, this requires O(tk) bits for each party. The total
communication and computation complexity for one party is
at least O(k log k+tk). For brevity, we denote this by Õ(tk).
As mentioned in Section 8 of their paper, the protocol runs
in O(log k) rounds due to the merge operation at the start.

Using bitsets. The protocol by Bay et al. requires each
assistant to send their encrypted bitset to the leader, which
takes O(|U|) bits. After that, communication is restricted to
the leader’s k bits, which the leader sends to t assistants for
randomization and decryption, taking O(tk) bits. For each
assistant, computation is dominated by encryption, which
takes O(|U|) operations. The leader’s most expensive step
is in aggregating the bitsets, but it only has to consider the
k elements in its own set, taking O(nk) operations. In total,
the protocol requires 3 rounds of interactions: encryption
and aggregation, randomization, and decryption. The proto-
col by Vos et al. is asymptotically equivalent when using the
composed logic sub-protocol. Otherwise, the leader incurs
a factor |U| in computation and communication.

Using Garbled Bloom filters. For the protocol by Inbar
et al., we use the complexities reported by the original
paper in the semi-honest model. Assuming a two-round OT
protocol, the protocol requires 3 rounds of interaction. For
the protocol by Kavousi et al. we extract the complexities
from Table 2 in the original paper. Assuming a two-round
OT protocol, the protocol requires 4 rounds of interaction.

Using Bloom filters. The protocol by Bay et al. requires
each assistant to send an encrypted Bloom filter to the leader,
which takes O(k). The leader only has to consider its own k
elements, which it sends for randomization and decryption
to t assistants, taking O(tk) bits. Each assistant encrypts
their entire Bloom filter, taking O(k) operations. The leader
must aggregate O(nkh) bins. In total, this protocol requires
3 rounds of interactions, as in Section A. The protocol by
Vos et al. is asymptotically equivalent to this work.

Using polynomial payloads. The work of Freedman et
al. [1] uses the trick from Section 5 to transform the protocol
to the star topology. For a fair comparison, we consider
their scheme without this transformation, requiring private
channels between all parties. The complexities are then
O(n2k2) in each aspect, and the protocol requires 4 rounds.

Using OPPRFs and OKVSs. Nevo et al. [32] provide
detailed complexities for the works of Chandran et al. [42],
Garimella et al. [31], Kolesnikvo et al. [3], and their own.

Appendix B.
Derived operation counts

B.1. Elliptic curve multiplications

We refer to multiplications with precomputations as
PMULs, and to regular ones as MULs. We assume MUL ≈
4PMUL and that the leader always takes part in decryption.
In elliptic curve ElGamal, a homomorphic multiplication
with a plaintext requires two elliptic curve multiplications.

Sang & Shen. We alter the protocol by Sang & Shen [38]
to only let the leader receive the result.

1) n parties encrypt their polynomial: 2k PMULs.
2) The leader multiplies nk coefficients by a scalar, which

takes 2nk MULs.
3) The leader evaluates the polynomial k times, each time

multiplying k coefficients by a scalar, which takes 2k2

MULs in total. Next, t+ 1 parties each decrypt the k
resulting encryptions, which takes k MULs in total.

The leader performs 2
4k + 2nk + 2k2 + k = 1.5k +

2nk + 2k2 MULs. In the worst case, an assistant performs
2
4k+k = 1.5k MULs. The total cost is 2nk+2nk+2k2+
(t+ 1)k = 4nk + 2k2 + tk + k MULs.

Cheon et al. We alter the protocol to only let the leader
receive the result and to make the collusion resistance vari-
able. The polynomials use the point-value representation, so
an encrypted polynomial contains 2k ciphertexts.

This protocol has two phases. The input data conversion:
1) n parties each encrypt their polynomial: 4k PMULs.
2) No MULs.

The online phase is as follows:
1) No computations (polynomials are sent to t+1 parties).
2) t+ 1 parties randomize all polynomials: 4nk MULs.



3) The leader sums all randomized polynomials: which
takes no MULs.

4) t + 1 parties each decrypt the resulting polynomial,
which takes 2k MULs.

Worst-case, the leader performs the same effort as an assis-
tant: 4

4k + 4nk + 2k = 4nk + 3k MULs. The total cost is
4
4nk + 4n(t+ 1)k + 2(t+ 1)k = 5nk + 4ntk + 2tk + 2k.

Hazay & Venkitasubramaniam. The protocol has two
phases. Note that it uses the coefficient representation, so
polynomial multiplication scales quadratically with the de-
gree. The 2PC phase has two steps:

1) n− 1 assistants encrypt k coefficients: 2k PMULs.
2) The leader evaluates n − 1 polynomials k times, and

randomizes (scalars can be multiplied in advance),
which takes (n− 1)k(2k) = 2(n− 1)k2 MULs.

Concluding the intersection goes as follows:
1) t + 1 parties each randomize the summed ciphertext

which takes 2k MULs.
2) The leader adds them up, which takes no MULs.
3) t+ 1 parties each decrypt, which takes k MULs.
4) The leader performs additions and zero-checks, which

takes no MULs.
An assistant performs 0.5k + 3k = 3.5k MULs in the

worst case. The leader performs 2(n−1)k2+2k+k = 2(n−
1)k2+3k MULs. Now consider the balanced allocation opti-
mization. Here, the maximum number of elements in one bin
is at most 5 with overwhelming probability. Now, the leader
receives B = k

log log k bins in the 2PC part, where each set
element is assigned to only one bin. So it evaluates n − 1
polynomials of degree 5 k times. Each homomorphic multi-
plication also costs two EC multiplications. So, the leader’s
total is 10(n−1)k+2k+k = 10nk−7k MULs. This totals
2(n−1)k+10nk−7k+2(t+1)k+(t+1)k = 12nk−6k+3tk.

Vos et al. We go through the protocol step-by-step:
1) n− 1 assistants each perform 2m PMULs.
2) The leader performs 2k MULs.
3) t assistants each perform 2k MULs.
4) The leader performs no MULs.
5) t+ 1 parties each perform k MULs.
6) The leader performs no MULs.

The leader performs 2k + k = 3k MULs. An assistant
performs 2m PMULs and 2k+k = 3k MULs in the worst
case. From (8) we have that m ≈ 2.08k ln(ε−1), so an
assistant performs approximately 1.04k ln(ε−1)+3k MULs.
Together, the parties perform 2

4m(n− 1) + 2k+2tk+ (t+
1)k = 1.04(n− 1)k ln(ε−1) + 3tk + 3k MULs.

B.2. Efficient two-party subprotocols

We use the fact that one OPPRF costs one OPRF [3], and
one OPRF costs approximately 3.5 OTs [57]. Since OLEs
can be instantiated using OT or based on the learning with
errors problem [13], we count OLEs separately.

Inbar et al. In Table 1 of their work, Inbar et al. [8] describe
that the leader performs mn OT extensions in the augmented
semi-honest model, which we reduce to m(n − 1) as the
leader does not interact with itself. From (8) we have that
m ≈ 2.08k ln(ε−1), so the leader performs 2.08(n− 1)Ek
OTs. An assistant performs 2.08Ek OTs. In total, there are
2.08(n−1)Ek OTs (the leader is involved in each of those).

Kolesnikov et al. The protocol first requires each party to
perform k OPPRFs with n − 1 other parties. After that,
the leader performs k additional OPPRFs with the n − 1
assistants. So, the leader performs 2(n − 1)k OPPRFs and
each assistant performs (n − 1)k OPPRFs. In total, there
are n(n− 1)k OPPRFs in the first part, and (n− 1)k in the
second. One OPPRF is 3.5 OTs.

Chandran et al. We derive the number of OTs for the ‘re-
laxed batch OPPRF‘ described in Appendix B of Chandran
et al. [42]. Here, a wPSM between two parties requires two
rounds of β OPPRFs, where the authors select β = 1.28k.
The wPSM protocol is executed between every assistant and
the leader. So, the leader performs 2.56(n − 1)k OPPRFs,
and an assistant 2.56k. In total: 2.56(n− 1)k OPPRFs.

Kavousi et al. In Section 3.3 of their work, Kavousi et
al. [41] explain how to choose parameter w. The authors
propose to set m = k (where k is the number of set
elements). Now, we show that p scales regardless of k:

p =

(
1− 1

k

)k

≈ 1

e
, (12)

which holds as k grows to infinity, but the approximation is
already accurate for small k. As a result, w can be a constant.
The lowest value causing the probability to fall below 2−40

is w = 558. We note that if m is variable, one might choose
a lower w, trading off computation and communication.

Garimella et al. We consider the multi-party MPSI protocol
in Section 7.2 of the work by Garimella et al. [31] in the star
topology. The authors defer an analysis to a full version of
the paper, but at the time of writing this paper is unavailable.

Nevo et al. The OPPRFs are executed in the final step of
the protocol as part of the zeroXOR functionality between
t+1 parties. We consider the leader to be part of this group,
acting as the receiver. Here, t assistants perform k OPPRFs
with the leader. This comes down to tk OPPRFs for the
leader, k for an assistant, and tk in total.

Ghosh & Nilges. The OLEs are performed in the OPA
subprotocol, which are performed between each assistant
and the leader on k elements. Each OPA requires two calls
to an OLE. So, the leader performs 2(n − 1)k OLEs, an
assistant performs 2k OLEs. In total: 2(n− 1)k OLEs.

Gordon et al.. The main cost of this protocol comes from
OLEs. For one-sided output, each assistant only performs
one OLE with the leader per input item. As a result, the
leader performs (n − 1)k OLEs, an assistant performs k
OLEs, and in total (n− 1)k OLEs are performed.



Appendix C.
Meta-Review

C.1. Summary

This is a revised submission of an SoK manuscript
synthesizing the literature on multi-party PSI. The authors
focused on the >2 party setting and semi-honest models,
excluding server-aided approaches.

C.2. Scientific Contributions

• Provides a valuable step forward in an established field
• Independent confirmation of important results with lim-

ited prior Research

C.3. Reasons for Acceptance

1) Presents a very important research field with a great
number of publications.

2) For every presented work, there is sufficient amount of
information included to understand where each work
stands.

3) A number of examples and applications provide appro-
priate points for comparison.

C.4. Noteworthy Concerns

1) Evaluation of existing implementations is limited to
discussion-based analysis.

2) Limited discussion about future work in the area.


