Papers updated in last 183 days (Page 18 of 1733 results)
Interval Key-Encapsulation Mechanism
Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key to Bob for some time such that Bob can decapsulate it at any time . Crucially, a corruption of Bob's secret key after time does not reveal .
In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality of previous keys against future corruptions but also confidentiality of future keys against past corruptions. For this, Bob can regularly renew his secret key and inform others about the corresponding public key. IKEM enables Bob to decapsulate keys sent to him over an interval of time extending into the past, in case senders have not obtained his latest public key; forward security only needs to hold with respect to keys encapsulated before this interval. This basic IKEM variant can be instantiated based on standard KEM, which we prove to be optimal in terms of assumptions as well as ciphertext and key sizes.
We also extend this notion of IKEM for settings in which Bob decapsulates (much) later than Alice encapsulates (e.g., in high-latency or segmented networks): if a third user Charlie forwards Alice's ciphertext to Bob and, additionally, knows a recently renewed public key of Bob's, Charlie could re-encrypt the ciphertext for better PCS. We call this extended notion IKEMR. Our first IKEMR construction based on trapdoor permutations has (almost) constant sized ciphertexts in the number of re-encryptions; and our second IKEMR construction based on FS-PKE has constant sized public keys in the interval size.
Finally, to bypass our lower bound on the IKEM(R) secret key size, which must be linear in the interval size, we develop a new Interval RAM primitive with which Bob only stores a constant sized part of his secret key locally, while outsourcing the rest to a (possibly adversarial) server.
For all our constructions, we achieve security against active adversaries. For this, we obtain new insights on Replayable CCA security for KEM-type primitives, which might be of independent interest.
Breaking and Repairing SQIsign2D-East
We present a key recovery attack on SQIsign2D-East that reduces its security level from to . We exploit the fact that each signature leaks a Legendre symbol modulo the secret degree of the private key isogeny. About signatures are enough for these Legendre symbols to fully determine the secret degree, which can then be recovered by exhaustive search over a set of size . Once the degree is known, the private key isogeny itself can be found, again by exhaustive search, in time .
We also present a new version of the protocol which does not leak any such information about the private key and show that our modified protocol is more efficient than the original one. Finally, we give a security analysis as well as a new proof of security.
On the Complexity of Cryptographic Groups and Generic Group Models
Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of some group-based cryptosystems. We stress that, the importance of the length of group encoding, either in a concrete group-based construction or assumption, or in the GGM, has not been studied.
In this work, we initiate a systematic study on the complexity of cryptographic groups and generic group models, varying in different lengths of group encodings, and demonstrate evidences that ``the length matters''. More concretely, we have the following results:
-- We show that there is no black-box/relativizing reduction from the CDH-secure groups (i.e., over such groups, the computational Diffie-Hellman assumption holds) with shorter encodings, to the CDH-secure groups with longer encodings, within the same security parameter. More specifically, given any arbitrary longer CDH-secure group, it is impossible to generically shorten the group encoding and obtain a shorter CDH-secure group within the same group order.
-- We show that there is a strict hierarchy of the GGMs with different lengths of encodings. That is, in the framework of indifferentiability, the shorter GGM is strictly stronger than the longer ones, even in the presence of computationally bounded adversaries.
Traffic-aware Merkle Trees for Shortening Blockchain Transaction Proofs
Merkle trees play a crucial role in blockchain networks in organizing network state. They allow proving a particular value of an entry in the state to a node that maintains only the root of the Merkle trees, a hash-based signature computed over the data in a hierarchical manner. Verification of particular state entries is crucial in reaching a consensus on the execution of a block where state information is required in the processing of its transactions. For instance, a payment transaction should be based on the balance of the two involved accounts. The proof length affects the network communication and is typically logarithmic in the state size. In this paper, we take advantage of typical transaction characteristics for better organizing Merkle trees to improve blockchain network performance. We focus on the common transaction processing where Merkle proofs are jointly provided for multiple accounts. We first provide lower bounds for the communication cost that are based on the distribution of accounts involved in the transactions. We then describe algorithms that consider traffic patterns for significantly reducing it. The algorithms are inspired by various coding methods such as Huffman coding, partition and weight balancing. We also generalize our approach towards the encoding of smart contract transactions that involve an arbitrary number of accounts. Likewise, we rely on real blockchain data to show the savings allowed by our approach. The experimental evaluation is based on transactions from the Ethereum network and demonstrates cost reduction for both payment transactions and smart contract transactions.
TentLogiX: 5-bit Chaos-Driven S-Boxes for Lightweight Cryptographic Systems
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC).
In developing any cryptographic algorithm, the substitution box (S-box) is a fundamental component, providing nonlinear functionality between inputs and outputs. Researchers have TentLogiX diverse S-box designs tailored for various applications, but only a few manage to balance the trade-offs among cost, performance, and security, particularly in the context of resource-constrained IoT devices.
This paper delves into the realm of S-boxes employed in popular LWC algorithms, categorizing them by their input–output bit sizes and elucidating their strengths and limitations. The focus then shifts to a novel 5-bit S-box design, utilizing chaotic mapping theory to introduce a randomized behavior.
Subsequently, the paper proposed TentLogiX a 5-bit S-box, constructed based on compound chaotic system, tent-logistic systems, which has better chaotic performance and wider sequences and explores its security robustness through various cryptanalysis techniques, including bijective analysis, nonlinearity assessment, linearity evaluation, and differential cryptanalysis. The paper concludes by presenting a thorough comparison that underscores the superiority of the TentLogiX 5-bit S-box over its 5-bit counterparts.
Falsifiability, Composability, and Comparability of Game-based Security Models for Key Exchange Protocols
A security proof for a key exchange protocol requires writing down a security definition. Authors typically have a clear idea of the level of security they aim to achieve, e.g., forward secrecy. Defining the model formally additionally requires making choices on games vs. simulation-based models, partnering, on having one or more Test queries and on adopting a style of avoiding trivial attacks: exclusion, penalizing or filtering. We elucidate the consequences, advantages and disadvantages of the different possible model choices. Concretely, we show that a model with multiple Test queries composes tightly with symmetric-key protocols while models with a single Test query require a hybrid argument that loses a factor in the number of sessions. To illustrate the usefulness of models with multiple Test queries, we prove the Naxos protocol security in said model and obtain a tighter bound than adding a hybrid argument on top of a proof in a single Test query model.
Our composition model exposes partnering information to the adversary, circumventing a previous result by Brzuska, Fischlin, Warinschi, and Williams (CCS 2011) showing that the protocol needs to provide public partnering. Moreover, our baseline theorem of key exchange partnering shows that partnering by key equality provides a joint baseline for most known partnering mechanisms, countering previous criticism by Li and Schäge (CCS 2017) that security in models with existential quantification over session identifiers is non-falsifiable.
LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup
Linkable ring signatures are an important cryptographic primitive for anonymized applications, such as e-voting, e-cash and confidential transactions. To eliminate backdoor and overhead in a trusted setup, transparent setup in the discrete logarithm or pairing settings has received considerable attention in practice. Recent advances have improved the proof sizes and verification efficiency of linkable ring signatures with a transparent setup to achieve logarithmic bounds. Omniring (CCS '19) and RingCT 3.0 (FC '20) proposed linkable ring signatures in the discrete logarithm setting with logarithmic proof sizes with respect to the ring size, whereas DualDory (ESORICS '22) achieves logarithmic verifiability in the pairing setting. We make three novel contributions in this paper to improve the efficiency and soundness of logarithmic linkable ring signatures: (1) We identify an attack on DualDory that breaks its linkability. (2) To eliminate such an attack, we present a new linkable ring signature scheme in the pairing setting with logarithmic verifiability. (3) We also improve the verification efficiency of linkable ring signatures in the discrete logarithm setting, by a technique of reducing the number of group exponentiations for verification in Omniring by 50%. Furthermore, our technique is applicable to general inner-product relation proofs, which might be of independent interest. Finally, we empirically evaluate our schemes and compare them with the extant linkable ring signatures in concrete implementation.
Generic Differential Key Recovery Attacks and Beyond
At Asiacrypt 2022, a holistic key guessing strategy was proposed to yield the most efficient key recovery for the rectangle attack. Recently, at Crypto 2023, a new cryptanalysis technique--the differential meet-in-the-middle (MITM) attack--was introduced. Inspired by these two previous works, we present three generic key recovery attacks in this paper. First, we extend the holistic key guessing strategy from the rectangle to the differential attack, proposing the generic classical differential attack (GCDA). Next, we combine the holistic key guessing strategy with the differential MITM attack, resulting in the generalized differential MITM attack (GDMA). Finally, we apply the MITM technique to the rectangle attack, creating the generic rectangle MITM attack (GRMA). In terms of applications, we improve 12/13-round attacks on AES-256. For 12-round AES-256, by using the GDMA, we reduce the time complexity by a factor of ; by employing the GCDA, we reduce both the time and memory complexities by factors of and , respectively. For 13-round AES-256, we present a new differential attack with data and time complexities of and , where the data complexity is times lower than previously published results. These are currently the best attacks on AES-256 using only two related keys. For KATAN-32, we increase the number of rounds covered by the differential attack from 115 to 151 in the single-key setting using the basic differential MITM attack (BDMA) and GDMA. Furthermore, we achieve the first 38-round rectangle attack on SKINNYe-64-256 by using the GRMA.
Perfectly-Secure Multiparty Computation with Linear Communication Complexity over Any Modulus
Consider the task of secure multiparty computation (MPC) among parties with perfect security and guaranteed output delivery, supporting active corruptions. Suppose the arithmetic circuit to be computed is defined over a finite ring , for an arbitrary . It is known that this type of MPC over such ring is possible, with communication that scales as , assuming that scales as . However, for constant-size rings where , the communication is actually due to the need of the so-called ring extensions. In most natural settings, the number of parties is variable but the "datatypes" used for the computation are fixed (e.g. 64-bit integers). In this regime, no protocol with linear communication exists.
In this work we provide an MPC protocol in this setting: perfect security, G.O.D. and active corruptions, that enjoys linear communication , even for constant-size rings . This includes as important particular cases small fields such as , and also the ring . The main difficulty in achieving this result is that widely used techniques such as linear secret-sharing cannot work over constant-size rings, and instead, one must make use of ring extensions that add overhead, while packing ring elements in each extension element in order to amortize this cost. We make use of reverse multiplication-friendly embeddings (RMFEs) for this packing, and adapt recent techniques in network routing (Goyal et al. CRYPTO'22) to ensure this can be efficiently used for non-SIMD circuits. Unfortunately, doing this naively results in a restriction on the minimum width of the circuit, which leads to an extra additive term in communication of . One of our biggest technical contributions lies in designing novel techniques to overcome this limitation by packing elements that are distributed across different layers. To the best of our knowledge, all works that have a notion of packing (e.g. RMFE or packed secret-sharing) group gates across the same layer, and not doing so, as in our work, leads to a unique set of challenges and complications.
Client-Aided Privacy-Preserving Machine Learning
Privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly train ML models on their private data without revealing any information beyond the final trained models. In this work, we study the client-aided two-server setting where two non-colluding servers jointly train an ML model on the data held by a large number of clients. By involving the clients in the training process, we develop efficient protocols for training algorithms including linear regression, logistic regression, and neural networks. In particular, we introduce novel approaches to securely computing inner product, sign check, activation functions (e.g., ReLU, logistic function), and division on secret shared values, leveraging lightweight computation on the client side. We present constructions that are secure against semi-honest clients and further enhance them to achieve security against malicious clients. We believe these new client-aided techniques may be of independent interest.
We implement our protocols and compare them with the two-server PPML protocols presented in SecureML (Mohassel and Zhang, S&P'17) across various settings and ABY2.0 (Patra et al., Usenix Security'21) theoretically. We demonstrate that with the assistance of untrusted clients in the training process, we can significantly improve both the communication and computational efficiency by orders of magnitude. Our protocols compare favorably in all the training algorithms on both LAN and WAN networks.
Zero-Knowledge Proof-of-Identity: Sybil-Resistant, Anonymous Authentication on Permissionless Blockchains and Incentive Compatible, Strictly Dominant Cryptocurrencies
Zero-Knowledge Proof-of-Identity from trusted public certificates (e.g., national identity cards and/or ePassports; eSIM) is introduced here to permissionless blockchains in order to remove the inefficiencies of Sybil-resistant mechanisms such as Proof-of-Work (i.e., high energy and environmental costs) and Proof-of-Stake (i.e., capital hoarding and lower transaction volume). The proposed solution effectively limits the number of mining nodes a single individual would be able to run while keeping membership open to everyone, circumventing the impossibility of full decentralization and the blockchain scalability trilemma when instantiated on a blockchain with a consensus protocol based on the cryptographic random selection of nodes. Resistance to collusion is also considered.
Solving one of the most pressing problems in blockchains, a zk-PoI cryptocurrency is proved to have the following advantageous properties:
- an incentive-compatible protocol for the issuing of cryptocurrency rewards based on a unique Nash equilibrium
- strict domination of mining over all other PoW/PoS cryptocurrencies, thus the zk-PoI cryptocurrency becoming the preferred choice by miners is proved to be a Nash equilibrium and the Evolutionarily Stable Strategy
- PoW/PoS cryptocurrencies are condemned to pay the Price of Crypto-Anarchy, redeemed by the optimal efficiency of zk-PoI as it implements the social optimum
- the circulation of a zk-PoI cryptocurrency Pareto dominates other PoW/PoS cryptocurrencies
- the network effects arising from the social networks inherent to national identity cards and ePassports dominate PoW/PoS cryptocurrencies
- the lower costs of its infrastructure imply the existence of a unique equilibrium where it dominates other forms of payment
Perfectly-Secure MPC with Constant Online Communication Complexity
In this work, we study the communication complexity of perfectly secure MPC protocol with guaranteed output delivery against corruptions. The previously best-known result in this setting is due to Goyal, Liu, and Song (CRYPTO, 2019) which achieves communication per gate, where is the number of parties.
On the other hand, in the honest majority setting, a recent trend in designing efficient MPC protocol is to rely on packed Shamir sharings to speed up the online phase. In particular, the work by Escudero et al. (CCS 2022) gives the first semi-honest protocol that achieves a constant communication overhead per gate across all parties in the online phase while maintaining overall communication per gate. We thus ask the following question: ``Is it possible to construct a perfectly secure MPC protocol with GOD such that the online communication per gate is while maintaining overall communication per gate?''
In this work, we give an affirmative answer by providing an MPC protocol for computing an arithmetic circuit over a finite field of size at least with communication complexity elements for the online phase, and elements for the preprocessing phase, where is the circuit size and is the circuit depth.
A note on the low order assumption in class groups of imaginary quadratic number fields
In this short note we analyze the low order assumption in the imaginary quadratic number fields. We show how this assumption is broken for Mersenne primes. We also provide a description on how to possible attack this assumption for other class of prime numbers leveraging some new mathematical tool coming from higher (cubic) number fields.
FlashSwift: A Configurable and More Efficient Range Proof With Transparent Setup
Bit-decomposition-based zero-knowledge range proofs in the discrete logarithm (DLOG) setting with a transparent setup, e.g., Bulletproof (IEEE S\&P \textquotesingle 18), Flashproof (ASIACRYPT \textquotesingle 22), and SwiftRange (IEEE S\&P \textquotesingle 24), have garnered widespread popularity across various privacy-enhancing applications. These proofs aim to prove that a committed value falls within the non-negative range without revealing it, where represents the bit length of the range. Despite their prevalence, the current implementations still suffer from suboptimal performance. Some exhibit reduced communication costs at the expense of increased computational costs while others experience the opposite. Presently, users are compelled to utilize these proofs in scenarios demanding stringent requirements for both communication and computation efficiency.
In this paper, we introduce, FlashSwift, a stronger DLOG-based logarithmic-sized alternative. It stands out for its greater shortness and significantly enhanced computational efficiency compared with the cutting-edge logarithmic-sized ones for the most common ranges where . It is developed by integrating the techniques from Flashproof and SwiftRange without using a trusted setup. The substantial efficiency gains stem from our dedicated efforts in overcoming the inherent incompatibility barrier between the two techniques. Specifically, when , our proof achieves the same size as Bulletproof and exhibits 1.1 communication efficiency of SwiftRange. More importantly, compared with the two, it achieves and proving efficiency, and and verification efficiency, respectively. At the time of writing, our proof also creates two new records of the smallest proof sizes, 289 bytes and 417 bytes, for 8-bit and 16-bit ranges among all the bit-decomposition-based ones without requiring trusted setups. Moreover, to the best of our knowledge, it is the first {\em configurable} range proof that is adaptable to various scenarios with different specifications, where the configurability allows to trade off communication efficiency for computational efficiency. In addition, we offer a bonus feature: FlashSwift supports the aggregation of multiple single proofs for efficiency improvement. Finally, we provide comprehensive performance benchmarks against the state-of-the-art ones to demonstrate its practicality.
Secure Transformer Inference Made Non-interactive
Secure transformer inference has emerged as a prominent research topic following the proliferation of ChatGPT. Existing solutions are typically interactive, involving substantial communication load and numerous interaction rounds between the client and the server.
In this paper, we propose NEXUS, the first non-interactive protocol for secure transformer inference. The protocol requires the client to engage in just one round of communication with the server during the whole inference process: submitting an encrypted input and receiving an encrypted result. NEXUS introduces several novel primitives, including SIMD ciphertext compression/decompression, SIMD slot folding, and secure Argmax, which enable it to significantly surpass the state-of-the-art in communication while maintaining comparable runtime. Specifically, it reduces bandwidth consumption by 372.5 compared to BOLT (Oakland~'24) and 53.6 compared to Bumblebee (NDSS~'25). Furthermore, its non-interactive property allows for optimal hardware acceleration, with the GPU version achieving a 42.3 speedup in runtime. This enables NEXUS to run inference on a BERT-based model in just 37.3 seconds, consuming only 164~MB of bandwidth.
Designing Efficient and Flexible NTT Accelerators
The Number Theoretic Transform (NTT) is a powerful mathematical tool with a wide range of applications in various fields, including signal processing, cryptography, and error correction codes. In recent years, there has been a growing interest in efficiently implementing the NTT on hardware platforms for lattice-based cryptography within the context of NIST's Post-Quantum Cryptography (PQC) competition. The implementation of NTT in cryptography stands as a pivotal advancement, revolutionizing various security protocols. By enabling efficient arithmetic operations in polynomial rings, NTT significantly enhances the speed and security of lattice-based cryptographic schemes, contributing to the development of robust homomorphic encryption, key exchange, and digital signature systems.
This article presents a new implementation of the Number Theoretic Transform for FPGA platforms. The focus of the implementation lies in achieving a flexible trade-off between resource usage and computation speed. By strategically adjusting the allocation of BRAM and DSP resources, the NTT computation can be optimized for either high-speed processing or resource conservation. The proposed implementation is specifically designed for polynomial multiplication with a degree of 256, accommodating coefficients of various bit sizes. Furthermore, the constant-geometry (Pease) method was utilized as an alternative to the Cooley-Tukey graph method, resulting in a notable simplification of BRAM addressing procedures. This adaptability renders it suitable for cryptographic algorithms like CRYSTALS-Dilithium and CRYSTALS-Kyber, which use 256-degree polynomials.
On the {\sf P/poly} Validity of the Agr17 FE Scheme
Functional encryption (FE) is a cutting-edge research topic in cryptography. The Agr17 FE scheme is a major scheme of FE area. This scheme had the novelty of “being applied for the group of general functions (that is, {\sf P/poly} functions) without IO”. It took the BGG+14 ABE scheme as a bottom structure, which was upgraded into a “partially hiding attribute” scheme, and combined with a fully homomorphic encryp-tion (FHE) scheme. However, the Agr17 FE scheme had a strange operation. For noise cancellation of FHE decryption stage, it used bulky “searching noise” rather than elegant “filtering”. It searched total modulus interval, so that the FHE modulus should be polynomially large. In this paper we discuss the {\sf P/poly} validity of the Agr17 FE scheme. First, we obtain the result that the Agr17 FE scheme is {\sf P/poly} invalid. More detailedly, when the Agr17 FE scheme is applied for the group of randomly chosen {\sf P/poly} Boolean functions, FHE modulus at the “searching” stage cannot be polynomially large. Our analysis is based on three restrictions of the BGG+14 ABE scheme: (1) The modulus of the BGG+14 ABE should be adapted to being super-polynomially large, if it is applied for the group of randomly chosen {\sf P/poly} functions. (2) The modulus of the BGG+14 ABE cannot be switched. (3) If the BGG+14 ABE is upgraded into a “partially hiding attribute” scheme, permitted operations about hidden part of the attribute can only be affine operations. Then, to check whether the {\sf P/poly} validity can be obtained by modifying the scheme, we consider two modified versions. The first modified version is controlling the FHE noise by repeatedly applying bootstrapping, and replacing a modular inner product with an arithmetic inner product. The second modified version is replacing the search for the modulus interval with the search for a public noise interval, hoping such noise interval polynomially large and tolerating the modulus which may be super-polynomially large. The first modified version may be {\sf P/poly} valid, but it is weaker. There is no evidence to support the {\sf P/poly} validity of the second modified version. We also present an additional conclusion that there is no evidence to support the {\sf P/poly} validity of the GVW15 PE scheme. Finally, we present our response to an argument that our work is unnecessary, and show that our work is quite valuable for any interpretation.
On the Security of Succinct Interactive Arguments from Vector Commitments
We study the security of a fundamental family of succinct interactive arguments in the standard model, stemming from the works of Kilian (1992) and Ben-Sasson, Chiesa, and Spooner (``BCS'', 2016). These constructions achieve succinctness by combining probabilistic proofs and vector commitments.
Our first result concerns the succinct interactive argument of Kilian, realized with any probabilistically-checkable proof (PCP) and any vector commitment. We establish the tightest known bounds on the security of this protocol. Prior analyses incur large overheads, or assume restrictive properties of the underlying PCP.
Our second result concerns an interactive variant of the BCS succinct non-interactive argument, which here we call IBCS, realized with any public-coin interactive oracle proof (IOP) and any vector commitment. We establish the first security bounds for the IBCS protocol. Prior works rely upon this protocol without proving its security; our result closes this gap.
Finally, we study the capabilities and limitations of succinct arguments based on vector commitments. We show that a generalization of the IBCS protocol, which we call the \emph{Finale protocol}, is secure when realized with any \emph{public-query} IOP (a notion that we introduce) that satisfies a natural ``random continuation sampling'' (RCS) property. We also show a partial converse: if the Finale protocol satisfies the RCS property (which in particular implies its security), then so does the underlying public-query IOP.
Scalable Equi-Join Queries over Encrypted Database
Secure join queries over encrypted databases, the most expressive class of SQL queries, have attracted extensive attention recently. The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join queries on encrypted relational databases without pre-computing all possible joins. However, JXT can merely support join queries over two tables (in encrypted databases) with some high-entropy join attributes.
In this paper, we propose an equi-join query protocol over two tables dubbed JXT+, that allows the join attributes with arbitrary names instead of JXT requiring the identical name for join attributes. JXT+ reduces the query complexity from to as compared to JXT, where and denote the numbers of matching records in two tables respectively. Furthermore, we present JXT++, the \emph{first} equi-join queries across three or more tables over encrypted databases without pre-computation. Specifically, JXT++ supports joins of arbitrary attributes, i.e., all attributes (even low-entropy) can be candidates for join, while JXT requires high-entropy join attributes. In addition, JXT++ can alleviate sub-query leakage on three or more tables, which hides the leakage from the matching records of two-table join.
Finally, we implement and compare our proposed schemes with the state-of-the-art JXT. The experimental results demonstrate that both of our schemes are superior to JXT in search and storage costs. In particular, JXT+ (resp., JXT++) brings a saving of 49% (resp., 68%) in server storage cost and achieves a speedup of 51.7 (resp., 54.3 ) in search latency.
Arithmetic Tuples for MPC
Some of the most efficient protocols for Multi-Party Computation (MPC) use a two-phase approach where correlated randomness, in particular Beaver triples, is generated in the offline phase and then used to speed up the online phase. Recently, more complex correlations have been introduced to optimize certain operations even further, such as matrix triples for matrix multiplications. In this paper, our goal is to speed up the evaluation of multivariate polynomials and therewith of whole arithmetic circuits in the online phase. To this end, we introduce a new form of correlated randomness: arithmetic tuples. Arithmetic tuples can be fine tuned in various ways to the constraints of application at hand, in terms of round complexity, bandwidth, and tuple size. We show that for many real-world setups an arithmetic tuples based online phase outperforms state-of-the-art protocols based on Beaver triples.
Analysis on Sliced Garbling via Algebraic Approach
Recent improvements to garbled circuits are mainly focused on reducing their size.
The state-of-the-art construction of Rosulek and Roy~(Crypto~2021) requires bits for garbling AND gates in the free-XOR setting.
This is below the previously proven lower bound in the linear garbling model of Zahur, Rosulek, and Evans~(Eurocrypt~2015).
Recently, Ashur, Hazay, and Satish~(eprint 2024/389) proposed a scheme that requires bits for garbling AND gates.
Precisely they extended the idea of \emph{slicing} introduced by Rosulek and Roy to garble 3-input gates of the form .
By setting , it can be used to garble AND gates with the improved communication costs.
However, in this paper, we observe that the scheme proposed by Ashur, Hazy, and Satish leaks information on the permute bits,
thereby allowing the evaluator to reveal information on the private inputs.
To be precise, we show that in their garbling scheme, the evaluator can compute the bits and ,
where , , and are the private permute bits of the input labels , , and , respectively.
Anamorphic Authenticated Key Exchange: Double Key Distribution under Surveillance
Anamorphic encryptions and anamorphic signatures assume a double key pre-shared between two parties so as to enable the transmission of covert messages. How to securely and efficiently distribute a double key under the dictator's surveillance is a central problem for anamorphic cryptography, especially when the users are forced to surrender their long-term secret keys or even the randomness used in the algorithms to the dictator.
In this paper, we propose Anamorphic Authentication Key Exchange (AM-AKE) to solve the problem. Similar to anamorphic encryption, AM-AKE contains a set of anamorphic algorithms besides the normal algorithms. With the help of the anamorphic algorithms in AM-AKE, the initiator and the responder are able to exchange not only a session key but also a double key. We define robustness and security notions for AM-AKE, and also prove some impossibility results on plain AM-AKE whose anamorphic key generation algorithm only outputs a key-pair. To bypass the impossibility results, we work on two sides.
-- On the one side, for plain AM-AKE, the securities have to be relaxed to resist only passive attacks from the dictator. Under this setting, we propose a generic construction of two-pass plain AM-AKE from a two-pass AKE with partially randomness-recoverable algorithms.
-- On the other side, we consider (non-plain) AM-AKE whose key generation algorithm also outputs an auxiliary trapdoor besides the key-pairs. We ask new properties from AKE: its key generation algorithm has secret extractability and other algorithms have separability. Based on such a two-pass AKE, we propose a generic construction of two-pass (non-plain) AM-AKE. The resulting AM-AKE enjoys not only robustness but also the strong security against any dictator knowing both users' secret keys and even the internal randomness of the AKE algorithms and implementing active attacks.
Finally, we present concrete AM-AKE schemes from the popular SIG+KEM paradigm and three-KEM paradigm for constructing AKE.
It's a Kind of Magic: A Novel Conditional GAN Framework for Efficient Profiling Side-channel Analysis (Extended Version)
Profiling side-channel analysis (SCA) is widely used to evaluate the security of cryptographic implementations under worst-case attack scenarios. This method assumes a strong adversary with a fully controlled device clone, known as a profiling device, with full access to the internal state of the target algorithm, including the mask shares. However, acquiring such a profiling device in the real world is challenging, as secure products enforce strong life cycle protection, particularly on devices that allow the user partial (e.g., debug mode) or full (e.g., test mode) control. This enforcement restricts access to profiling devices, significantly reducing the effectiveness of profiling SCA.
To address this limitation, this paper introduces a novel framework that allows an attacker to create and learn from their own white-box reference design without needing privileged access on the profiling device.
Specifically, the attacker first implements the target algorithm on a different type of device with full control. Since this device is a white box to the attacker, they can access all internal states and mask shares. A novel conditional generative adversarial network (CGAN) framework is then introduced to mimic the feature extraction procedure from the reference device and transfer this experience to extract high-order leakages from the target device. These extracted features then serve as inputs for profiled SCA. Experiments show that our approach significantly enhances the efficacy of black-box profiling SCA, matching or potentially exceeding the results of worst-case security evaluations. Compared with conventional profiling SCA, which has strict requirements on the profiling device, our framework relaxes this threat model and, thus, can be better adapted to real-world attacks.
Eva: Efficient IVC-Based Authentication of Lossy-Encoded Videos
With the increasing spread of fake videos for misinformation, proving the provenance of an edited video (without revealing the original one) becomes critical. To this end, we introduce Eva, the first cryptographic protocol for authenticating lossy-encoded videos. Compared to previous cryptographic methods for image authentication, Eva supports significantly larger amounts of data that undergo complex transformations during encoding. We achieve this by decomposing repetitive and manageable components from video codecs, which can then be handled using Incrementally Verifiable Computation (IVC). By providing a formal definition and security model for proofs of video authenticity, we demonstrate the security of Eva under well-established cryptographic assumptions.
To make Eva efficient, we construct an IVC based on folding schemes that incorporate lookup arguments, resulting in a linear-time prover whose proofs can be compressed to a constant size. We further improve the performance of Eva through various optimizations, including tailored circuit design and GPU acceleration. The evaluation of our implementation shows that Eva is practical: for a -minute HD ( ) video encoded in H.264 at frames per second, Eva generates a proof in about hours on consumer-grade hardware at a speed of μs per pixel, surpassing previous cryptographic image authentication schemes that support arbitrary editing operations by more than an order of magnitude.
On the Viability of Open-Source Financial Rails: Economic Security of Permissionless Consensus
Bitcoin demonstrated the possibility of a financial ledger that operates without the need for a trusted central authority. However, concerns persist regarding its security and considerable energy consumption. We assess the consensus protocols that underpin Bitcoin’s functionality, questioning whether they can ensure economically meaningful security while maintaining a permissionless design that allows free entry of operators. We answer this affirmatively by constructing a protocol that guarantees economic security and preserves Bitcoin's permissionless design. This protocol's security does not depend on monetary payments to miners or immense electricity consumption, which our analysis suggests are ineffective. Our framework integrates economic theory with distributed systems theory, and highlights the role of the protocol's user community.
Evolving Secret Sharing Made Short
Evolving secret sharing (Komargodski, Naor, and Yogev, TCC’16) generalizes the notion of secret sharing to the setting of evolving access structures, in which the share holders are added to the system in an online manner, and where the dealer does not know neither the access structure nor the maximum number of parties in advance. Here, the main difficulty is to distribute shares to the new players without updating the shares of old players; moreover, one would like to minimize the share size as a function of the number of players.
In this paper, we initiate a systematic study of evolving secret sharing in the computational setting, where the maximum number of parties is polynomial in the security parameter, but the dealer still does not know this value, neither it knows the access structure in advance. Moreover, the privacy guarantee only holds against computationally bounded adversaries corrupting an unauthorized subset of the players.
Our main result is that for many interesting, and practically relevant, evolving access structures (including graphs access structures, DNF and CNF formulas access structures, monotone circuits access structures, and threshold access structures), under standard hardness assumptions, there exist efficient secret sharing schemes with computational privacy and in which the shares are succinct (i.e., much smaller compared to the size of a natural computational representation of the evolving access structure).
An Efficient Hash Function for Imaginary Class Groups
This paper presents a new efficient hash function for imaginary class groups. Many class group based protocols, such as verifiable delay functions, timed commitments and accumulators, rely on the existence of an efficient and secure hash function, but there are not many concrete constructions available in the literature, and existing constructions are too inefficient for practical use cases.
Our novel approach, building on Wesolowski's initial scheme, achieves a 200 fold increase in computation speed, making it exceptionally practical for real-world applications. This optimisation is achieved at the cost of a smaller image of the hash function, but we show that the image is still sufficiently large for the hash function to be secure.
Untangling the Security of Kilian's Protocol: Upper and Lower Bounds
Sigma protocols are elegant cryptographic proofs that have become a cornerstone of modern cryptography. A notable example is Schnorr's protocol, a zero-knowledge proof-of-knowledge of a discrete logarithm. Despite extensive research, the security of Schnorr's protocol in the standard model is not fully understood.
In this paper we study Kilian's protocol, an influential public-coin interactive protocol that, while not a sigma protocol, shares striking similarities with sigma protocols. The first example of a succinct argument, Kilian's protocol is proved secure via rewinding, the same idea used to prove sigma protocols secure. In this paper we show how, similar to Schnorr's protocol, a precise understanding of the security of Kilian's protocol remains elusive. We contribute new insights via upper bounds and lower bounds.
- Upper bounds. We establish the tightest known bounds on the security of Kilian's protocol in the standard model, via strict-time reductions and via expected-time reductions. Prior analyses are strict-time reductions that incur large overheads or assume restrictive properties of the PCP underlying Kilian's protocol.
- Lower bounds. We prove that significantly improving on the bounds that we establish for Kilian's protocol would imply improving the security analysis of Schnorr's protocol beyond the current state-of-the-art (an open problem). This partly explains the difficulties in obtaining tight bounds for Kilian's protocol.
A Note on Gröbner Bases for Anemoi
This paper focuses on algebraic attacks on the family of arithmetization-oriented permutations [Crypto '23]. We consider a slight variation of the naive modeling of the problem associated to the primitive, for which we can very easily obtain a Gröbner basis and prove the degree of the associated ideal. For inputs in when is an odd prime, we recover the same degree as conjectured for alternative polynomial systems used in other recent works [eprint/2024/250,eprint/2024/347]. Our approach can also be adapted to other settings which have not been studied there, i.e., even characteristic fields and inputs in for . Finally, we analyze the construction of the multiplication matrices associated to our Gröbner basis, showing that it can be achieved in a more efficient way than in the generic case.
SLAMP-FSS: Two-Party Multi-Point Function Secret Sharing from Simple Linear Algebra
Multiparty computation (MPC) is an important field of cryptography that deals with protecting the privacy of data, while allowing to do computation on that data. A key part of MPC is the parties involved having correlated randomness that they can use to make the computation or the communication between themselves more efficient, while still preserving the privacy of the data. Examples of these correlations include random oblivious transfer (OT) correlations, oblivious linear-function evaluation (OLE) correlations, multiplication triples (also known as Beaver triples) and one-time truth tables. Multi-point function secret sharing (FSS) has been shown to be a great building block for pseudo-random correlation generators. The main question is how to construct fast and efficient multi-point FSS schemes. Here we propose a natural generalization of the scheme of Boyle et al 2016 using a tree structure, a pseudorandom generator and systems of linear equations.
Our schemes SLAMP-FSS and SLAMPR-FSS are more efficient in the evaluation phase than other previously proposed multi-point FSS schemes while being also more flexible and being similar in other efficiency parameters.
Secure Multi-party Computation (MPC) provides a promising solution for privacy-preserving multi-source data analytics. However, existing MPC-based collaborative analytics systems (MCASs) have unsatisfying performance for scenarios with dynamic databases. Naively running an MCAS on a dynamic database would lead to significant redundant costs and raise performance concerns, due to the substantial duplicate contents between the pre-updating and post-updating databases.
In this paper, we propose , a framework that can work with MCASs to enable efficient queries on dynamic databases that support data insertion, deletion, and update. The core idea of is to materialize previous query results and directly update them via our query result update (QRU) protocol to obtain current query results. We customize several efficient QRU protocols for common SQL operators, including Order-by-Limit, Group-by-Aggregate, Distinct, Join, Select, and Global Aggregate. These protocols are composable to implement a wide range of query functions. In particular, we propose two constant-round protocols to support data insertion and deletion. These protocols can serve as important building blocks of other protocols and are of independent interest. They address the problem of securely inserting/deleting a row into/from an ordered table while keeping the order. Our experiments show that outperforms naive MCASs for minor updates arriving in time, which captures the need of many realistic applications (e.g., insurance services, account data management). For example, for a single query after an insertion, achieves up to improvement over those naive MCASs without our QRU protocols on a dynamic database with rows, which is common in real-life applications.
On Multi-user Security of Lattice-based Signature under Adaptive Corruptions and Key Leakages
We consider the multi-user security under the adaptive corruptions and key leakages ( security) for lattice-based signatures. Although there exists an secure signature based on a number-theoretic assumption, or a leakage-resilient lattice-based signature in the single-user setting, secure lattice-based signature is not known.
We examine the existing lattice-based signature schemes from the viewpoint of security, and find that the security of the Lyubashevsky's signature, which is proven to have the ordinary single-user security only, can be extended to the multi-user security even if we take the adaptive corruptions and the key leakages into account.
Our security proof in the multi-user setting makes use of the feature of the SIS problem so that a SIS instance is set to the public parameter and a reduction algorithm can set a public key with a secret key in order to answer a corruption query. We also show that the entropy of the secret key is kept under the bounded leakage with a high probability and then the leakage resilience of signature holds.
Hadamard Product Arguments and Their Applications
This paper introduces transparent and efficient arguments for Hadamard products between committed vectors from two source groups. For vectors of length , the proofs consist of target group elements and additional elements. The verifier's workload is dominated by multi-exponentiations in the target group and pairings. We prove our security under the standard SXDH assumption. Additionally, we propose an aggregator for Groth16 pairing-based zk-SNARKs and a proof aggregation technique for the general case of the KZG pairing-based polynomial commitment scheme using our Hadamard product arguments. Both applications support logarithmic-sized aggregated proofs without requiring an additional trusted setup, significantly reducing the verifier’s pairing operations to .
- « Previous
- 1
- ...
- 17
- 18