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Abstract. Almost perfect nonlinear (in brief, APN) functions are (so-
called vectorial) functions F : Fn

2 → Fn
2 playing roles in several domains

of information protection, at the intersection of computer science and
mathematics. Their definition comes from cryptography and is also re-
lated to coding theory. The cryptographic motivation for studying APN
functions is that, when they are used as substitution boxes (S-boxes),
ensuring nonlinearity in block ciphers, they contribute optimally to the
resistance against differential attacks. Their study has been very active
since the 90’s, and has posed interesting and difficult mathematical ques-
tions, that are still unanswered.
Since the introduction of differential attacks, more recent types of crypt-
analyses have been designed, such as integral attacks. No notion about
S-boxes has been identified which would play a similar role with respect
to integral attacks. In this paper, we introduce and study two gener-
alizations of almost perfect nonlinearity, that directly extend classical
characterizations of APN functions, and are also related to the integral
attack. The two resulting notions are significantly different (and behave
differently) from differential uniformity, which is a well-known general-
ization of APNness; they also behave differently from each other, despite
the apparent similarity between their definitions. We study the different
ways to define them, and on the example of Kasami functions, how diffi-
cult they are to achieve. We prove their satisfiability, their monotonicity,
their invariance under classical equivalence relations and we characterize
them by the Walsh transform.
We begin a study of the multiplicative inverse function (used as a sub-
stitution box in the Advanced Encryption Standard and other block
ciphers) from the viewpoint of these two notions. In particular, we find
a simple expression of the sum of the values taken by this function over
affine subspaces of F2n that are not vector subspaces. This formula shows
that, in such case, the sum never vanishes (which is a remarkable prop-
erty of the inverse function).
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1 Introduction

One of the main attacks on block ciphers, in symmetric cryptography, is the dif-
ferential attack [5]. Almost perfect nonlinear (APN) (n, n)-functions F : Fn2 →
Fn2 , introduced in [37, 36], are those (vectorial Boolean) functions which con-
tribute to an optimal resistance, against this attack, of the block ciphers using
F as a substitution box (S-box); see also [34] and [6, 12, 14]. Such S-boxes are
essential for including nonlinearity and ensuring what C. Shannon called confu-
sion. Almost perfect nonlinearity can be characterized in at least three equivalent
ways (the first of which is the original definition):
(i) for every nonzero a ∈ Fn2 , the derivative1 DaF (x) = F (x)+F (x+a) is 2-to-1
(that is, every element of the co-domain has either two pre-images or none by
DaF );
(ii) the restriction of F to any affine plane {x, y, z, x + y + z} of Fn2 (with
x, y, z, x + y + z distinct, that is, with x, y, z distinct) is not an affine func-
tion;
(iii) the sum of the values taken by F (x) when x ranges over any affine plane is
nonzero (that is, F (x) +F (y) +F (z) +F (x+ y+ z) is nonzero for every distinct
x, y, z).
There is also a characterization in terms of coding theory [14] that we shall not
use in this paper.

The notion of APN function is mathematically important since its definition
is very simple and it poses difficult questions, that have remained open for more
than thirty years now, despite an active related research activity in all domains
of discrete mathematics. It is also important cryptographically, of course. For
instance, the choice of the substitution boxes in the most important block cipher
for civil use, the Advanced Encryption Standard (AES) [19], is directly related
to the work of Kaisa Nyberg in [36] about APN functions. Much still needs
to be understood on the structure and the properties of APN functions. For
instance, finding an APN permutation in an even number of variables larger than
6 would be an important theoretical and practical advance, as well as determining
whether APN functions necessarily have non-weak nonlinearity for every n (that
is, whether the nonzero linear combinations of their coordinate functions are
always at reasonably large Hamming distance from all affine Boolean functions
x 7→ a · x + ε, a ∈ Fn2 , ε ∈ F2). This latter question is settled only for n ≤ 6
(see [3] and [2]; see also [13] where a lower bound is found for a subclass). The
nonlinearity is a parameter of vectorial functions related to the resistance against
linear attacks (another very important class of attacks).

A way to progress on a notion is to introduce and study generalizations
making sense from both theoretical and practical points of view. A well-known
generalization of APNness, also related to the differential attack, is differential
uniformity [34, 35], which extends the first of the three definitions of APNness
above: given three positive integers n, m and δ, an (n,m)-function F : Fn2 → Fm2
1 To distinguish this derivative from the classical derivative of a polynomial, we could

specify “discrete derivative”.
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is differentially δ-uniform if, for every a 6= 0 in Fn2 and every b in Fm2 , the
equation DaF (x) = b has at most δ solutions. The value δ = 2 is the smallest
possible, since for every function F , the number of these solutions is even, because
DaF (x) = DaF (x + a) (the situation is different in odd characteristic), and
cannot be always zero. APNness is equivalent to differential 2-uniformity and
the term is reserved for (n, n)-functions.

Other generalizations of APNness have been introduced in the literature.
An (n,m)-function F is called weakly APN in [1] if its nonzero derivatives all
have image set size larger than 2n−2, and it is called partially APN in [8] if,
for some c ∈ Fn2 , the sum of the values F (x) when x ranges over any affine
plane containing c is nonzero. One more generalization, called almost perfect c-
nonlinearity (APcN), was introduced recently in [22], whose definition is similar
to APNness and is related to the c-differential uniformity of vectorial functions,
defined for a function F as the maximal number of solutions (a, b) ∈ F?2n×F2n of
the equation F (x)+cF (x+a) = b. These ad hoc generalizations are not directly
related to efficient attacks and will not play a role in the present paper.

Another kind of attacks has drawn the attention of the cryptographic commu-
nity and provides one of the most efficient cryptanalytic tools for block ciphers:
integral attacks [26, 41], which are generalizations of higher order differential at-
tacks [28, 25] and of the square attack [21]. Given a block cipher, those attacks
are based on the propagation of sums of values, called integrals, through the
encryption algorithm. They exploit the existence of a subset of plaintexts such
that summing (with a possible ponderation by field elements, see [38]) the corre-
sponding ciphertexts results in a value that is predictable in some way (ideally,
independent of the key), after some number of rounds of encryption (for instance,
the sum evaluates to zero in some positions). This yields in some cases a distin-
guisher, which can be turned into a key recovery attack, as for the differential
attack. Integral cryptanalysis applies to some ciphers which are not vulnerable
to the differential and linear cryptanalyses, and the 128-bit AES limited to six
rounds (instead of ten), while it resists these latter attacks, is vulnerable to in-
tegral attacks.
It is well-known that providing arguments that a given cipher is resistant against
integral attacks is difficult, because the sums can a priori be made over any set,
and the behavior of integrals is difficult to analyse. Studying each S-box inde-
pendently of the rest of the algorithm, as done by Nyberg and Knudsen for the
differential attack [36, 37], does not work so well and there is no equivalent to
APNness for such attacks. Of course, we know that even for the regular APN
concept, there is no 100% correspondence between strong S-boxes and strong
ciphers, but the situation with integral attacks is worse.
Integral attacks have been refined in [40] thanks to the so-called division prop-
erty, and in [4] is initiated a theory to describe integral and divisional cryptanaly-
ses in a way similar to linear cryptanalysis and (quasi-)differential cryptanalysis,
where the Linear Approximation Table (correlation matrix) and the Difference
Distribution Table are replaced by an Algebraic Transition Matrix, which has
the nice property that the algebraic transition matrix of a composition of func-
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tions is the product of their corresponding algebraic transition matrices, and
there is a simple similar result for concatenation. In addition to the theoretical
advance that this notion represents and the computational improvements that it
allows (through algorithms computing division properties and efficiently search-
ing for [extended] integral properties), it induces progress in the direction which
interests us in the present paper: highlighting the features of vectorial functions
allowing them to contribute to the resistance of block ciphers using them as an
S-box against integral attacks. But it does not give yet a specific and simple cri-
terion on S-boxes for their contribution to the resistance against these attacks.
Further improvements could lead to such criteria in the future, but it seems
useful already to try helping the designers to make choices between S-boxes, in
order to improve the resistance of block ciphers against integral attacks. Defin-
ing such features seems easier if we restrict ourselves to those attacks where the
set over which are considered the integrals is taken as an affine subspace (and
actually, this is the case in most attacks, see e.g. [24]; often, but not always, see
e.g. [29], this affine space corresponds to fixing some bits in the plaintext). In a
similar way as the existence probability of differentials for a block cipher depends
on the existence of sufficiently non-uniform derivatives for the involved S-boxes,
it seems natural that the condition of the unpredictability of the propagation
of integrals is more difficult to achieve if, for some S-boxes used in the cipher,
there exist affine spaces A over which they sum to zero. This is illustrated for
instance in [40] (where the notion of division property is introduced). Recall that
a division property consists of an affine subspace that after evaluation leads to
a zero sum for the ith bit of the output. It seems clear that if the situation thus
described happens at the level of an S-box, for all bits of the output, the risk
for the designer that an integral attack can be found thanks to a distinguisher
is greater. And actually, [40] considers explicitly the possibility that the sum of
the values taken by an S-box over an affine space of inputs is zero (this sce-
nario is denoted by B in [40, End of Section 2 and Section 3]). Of course, the
non-existence of such affine spaces A of inputs to the S-boxes in a block cipher
(property that we shall call informally sum freedom) does not ensure that no
attack can be found, but the existence of such A of a small enough dimension
seems a feature that would better be avoided, if possible.
Sum freedom with affine spaces of a given (small enough) dimension seems then
an interesting property to be studied for S-boxes: if every other of the crucial
properties is identical between two possible choices of S-boxes, it makes sense
to go (taking also into account implementation criteria) for the S-box that does
not sum to zero for small dimensions (larger than or equal to two) and if it
does so for larger dimensions, then it should be the least possible. Note that for
dimension one, the condition of not summing to zero over affine spaces corre-
sponds for (n, n)-functions to bijectivity, and for dimension two, it corresponds
to APNness.

There is some relation between sum freedom and invariant subspace attacks,
that have been studied in a larger generality in [31]. An invariant subspace is an
affine subspace A whose image (by some permutation F , which can be an S-box,
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or more interestingly, the part of a round that is preceding the addition of the
round key) is a coset of A, so that there exist round keys that are such that the
image after the addition of the key equals A. If this happens, then F sums to
0 over A (indeed, the sum of the elements of any affine space of a dimension at
least 2 equals 0). Hence, sum freedom protects against the existence of invariant
subspaces (and is much more demanding than avoiding invariant subspaces).

There is also some relation between sum freedom and the older notion of
normality proposed by Dobbertin in [20] for Boolean functions and later gener-
alized (e.g. in [33]): given k ≤ n, an n-variable (vectorial) Boolean function F is
called k-normal (resp. k-weakly-normal) if there exists a k-dimensional flat on
which F is constant (resp. affine). Such functions are considered peculiar when
k is large enough (but almost all known bent Boolean functions are n

2 -normal,
see e.g.[12]). It is shown in [10] that almost all2 n-variable Boolean functions
are non-kn-weakly-normal when the sequence kn satisfies kn ≥ c log2 n for some
c > 1 and every n. The notion of kth-order sum-freedom corresponds (for k ≥ 2)
to a strengthening (a considerable one if k is large enough) of the notion of
non-k-weak-normality extended to vectorial functions into: the restriction of F
to any k-dimensional flat has (optimal) algebraic degree k.

In the present paper, we study the notions which generalize in a natural
way the two characterizations (ii) and (iii) above of APNness (replacing “affine
plane” by “k-dimensional affine space”, with k ≥ 2). We call them kth-order-
non-affineness and kth-order-sum-freedom. The latter is related to the integral
attack, according to the observations above, and the former seems interesting
to study as well, at least for comparison with the latter. We shall see that
studying these two notions gives some view on the almost perfect nonlinearity
property itself. We show that each of the two notions is significantly different
from differential uniformity, and that there are big differences between them too
as well.

The paper is organized as follows. After preliminaries in Section 2, we define
the two notions in Section 3, we study the different ways of expressing them,
and we study the APN Kasami functions as an example; we verify the existence
of functions satisfying each notion. We study in Section 4 the properties of the
two notions, which show important differences between them and in some cases
with APNness. After studying in Subsection 4.1 the constraints on the algebraic
degree implied by these notions and in Subsection 4.2 their (non-)monotonicity,
we generalize in Subsection 4.3 the Chabaud-Vaudenay characterization of APN-
ness by the Walsh transform to kth-order-non-affineness and to kth-order-sum-
freedom (both characterizations happen to be more difficult to obtain than for
APNness, and their expressions are more complex). We study in Subsection 4.4
the invariance under the classical equivalences of both notions. In Section 5, we
begin a study, with respect to these two notions, of the multiplicative inverse
function x ∈ F2n 7→ x2

n−2 (which is clearly, since Nyberg’s works and the in-
vention of the AES, the most important infinite class of vectorial functions to
be studied from a cryptographic point of view). We show in particular that this

2 In the sense of probability.
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function sums to nonzero values over all affine subspaces of F2n that are not
linear subspaces, whatever is their dimension.

2 Preliminaries

Given two positive integers n and m, the functions from Fn2 to Fm2 are called
(n,m)-functions. When n and/or m are not specified, these functions are called
vectorial functions. In the particular case of m = 1, they are called n-variable
Boolean functions, or Boolean functions in dimension n. The vector space of
n-variable Boolean functions is denoted by Bn. Every (n,m)-function F ad-
mits a unique algebraic normal form, that is, a representation as a multivariate
polynomial of the form F (x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi =

∑
I⊆{1,...,n} aI x

I ; x =

(x1, . . . , xn) ∈ Fn2 , aI ∈ Fm2 . The degree max{|I|; aI 6= 0} of this multivariate
polynomial is called the algebraic degree of F and denoted by dalg(F ). Any func-
tion F is affine, that is, satisfies F (x) +F (y) +F (z) +F (x+y+ z) = 0 for every
x, y, z ∈ Fn2 if, and only if, its algebraic degree is at most 1. We shall say that a
function is quadratic if it has algebraic degree at most 2 (hence, affine functions
are particular quadratic functions in this terminology, which is nowadays widely
accepted since defining quadratic functions as having algebraic degree exactly 2
would make many statements more complex). Function F has algebraic degree
at most r < n if, and only if, it sums to zero over every affine space of dimension
k > r. An (n,m)-function has algebraic degree n (the maximum) if, and only if,
it sums to a nonzero value over Fn2 .

If Fn2 is endowed with the structure of the field F2n (which is always pos-
sible since we know that F2n is an n-dimensional vector space over F2), then
every (n, n)-function (and thus, every (n,m)-function where m divides n) can
be uniquely represented by its univariate representation:

F (x) =

2n−1∑
i=0

δix
i ∈ F2n [x]/(x2

n

+ x); δi ∈ F2n (1)

(we call power functions the functions of univariate representation F (x) = xi).
The algebraic degree of function F in (1) equals the largest Hamming weight of
the binary expansion of those exponents i whose coefficients δi are nonzero. The
Hamming weight of the binary expansion of an integer i is called its 2-weight
and is denoted by w2(i). Note that any Boolean function f over F2n is also an
(n, n)-function because its co-domain F2 is a subfield of F2n . For such a function,
we have δ0, δ2n−1 ∈ F2 and δ2i = δ2i for every i ∈ {1, . . . , 2n−2} (where the index
2i is taken modulo 2n−1). Denoting by trn the absolute trace function over F2n :

trn(x) =
∑n−1
i=0 x

2i (which satisfies trn(x2) = trn(x) and is valued in F2), we can

then write the univariate representation of f in the form δ0 + trn(
∑2n−1
i=0 bix

i)
(but there is no more uniqueness of the bi; the representation with uniqueness
is more complex, see e.g. [12])).
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The Walsh transform of a Boolean function f is the function from Fn2 to Z
defined as follows:

Wf (u) =
∑
x∈Fn2

(−1)f(x)+u·x,

where “·” is some inner product in Fn2 . The Walsh transform satisfies the so-called
inverse Walsh transform relation:∑

u∈Fn2

Wf (u)(−1)u·v = 2n(−1)f(v),∀v ∈ Fn2 , (2)

The Walsh transform of an (n,m)-function F takes value Wv·F (u) at input
(u, v) ∈ Fn2 × Fm2 :

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)+u·x,

where “·” denotes, by abuse of notation, two inner products, one in Fn2 and one
in Fm2 .

Two (n,m)-functions F and G are called affine equivalent if there exist two
affine permutations L over Fm2 and L′ over Fn2 such that G = L ◦ F ◦ L′. In the
case of Boolean functions, L is taken equal to identity. More generally, F and
G are called extended-affine (EA) equivalent if there exists an affine function L
from Fn2 to Fm2 such that F and G+L are affine equivalent. Still more generally,
they are called CCZ equivalent if their graphs GF = {(x, F (x)); x ∈ Fn2} and
GG = {(x,G(x)); x ∈ Fn2} are affine equivalent (that is, one is the image of the
other by an affine permutation over Fn+m2 ). Writing the affine automorphism
mapping GF to GG as (x, y) 7→ (L1(x, y), L2(x, y)) where L1 : Fn+m2 → Fn2
and L2 : Fn+m2 → Fm2 are affine functions, then defining F1(x) = L1(x, F (x))
and F2(x) = L2(x, F (x)), we have that F1 is a permutation of Fn2 and G =
F2◦F−11 , see e.g. [12]. A particular case of CCZ equivalence is between any (n, n)-
permutation and its inverse, since the two graphs are the swaps of each other. In
the case of Boolean functions, CCZ equivalence reduces to EA equivalence (see
e.g. [12]).

We shall say that a notion is affine invariant (respectively, EA invariant,
CCZ invariant) if it is preserved by affine equivalence (respectively, EA equiv-
alence, CCZ equivalence). For theoretical and practical reasons, it is important
to determine the most general equivalence preserving each notion introduced.

We have seen in the introduction that an (n,m)-function is called differ-
entially δ-uniform if |{x ∈ Fn2 ;F (x) + F (x + a) = b}| ≤ δ for every nonzero
a ∈ Fn2 and every b ∈ Fm2 . As observed initially by Nyberg, we have δ ≥ 2n−m,
with equality if, and only if, F is bent, that is, the minimum Hamming dis-
tance between the nonzero linear combinations of the coordinate functions of
F and the affine Boolean functions achieves the maximum 2n−1 − 2

n
2−1; such

functions exist if, and only if, n is even and m ≤ n
2 , as proved in [34]. We

shall speak of almost perfect nonlinear function when δ = 2 and m = n. When
m = n − 1 such functions do not exist since they would be bent and we know
that this is not possible unless n = 2. When m ≥ n + 1 we keep the term of
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differential 2-uniformity. Chabaud and Vaudenay have characterized in [17] the
APNness of (n, n)-functions by the Walsh transform: F is APN if, and only if,∑
u∈Fn2

∑
v∈Fn2

W 4
F (u, v) = 3 · 24n − 23n+1 (and this characterization has been

generalized to the characterization of differentially uniform functions in [11] in
diverse ways).

3 Two new generalizations of APNness

In this section, we introduce the two extensions of the notion of APN function
and we detail the equivalent ways to define them; we study an example to see
how difficult they are to satisfy (and to check), and we study their satisfiability.

Definition 1. Let 2 ≤ k ≤ n and m be positive integers. An (n,m)-function F
is called kth-order-non-affine (resp. kth-order-sum-free) if, for every k-dimen-
sional affine subspace (i.e. k-flat) A of Fn2 , the restriction of F to A is not an
affine function (resp. the sum

∑
x∈A F (x) is nonzero).

Clearly, kth-order-sum-freedom implies kth-order-non-affineness, since the sum
of the values taken by an affine function over an affine space of dimension at
least 2 equals 0. We shall see that kth-order-sum-freedom is a strong property
and kth-order-non-affineness is a much weaker one.
By the definition of affineness, F is kth-order-non-affine if, and only if, every
k-dimensional affine space in Fn2 contains an affine plane (a 2-dimensional affine
space) on which F does not sum to 0. Consequently, if a function is kth-order-
non-affine, then it is lth-order-non-affine for every l ≥ k (see more in Subsection
4.2). In particular, every APN function is kth-order-non-affine for every k ≥ 2.
Of course, for every k ≤ l ≤ n, F is kth-order-non-affine (resp. kth-order-sum-
free) if, and only if, its restriction to any l-dimensional affine space of Fn2 is
kth-order-non-affine (resp. kth-order-sum-free).

Note that F is kth-order-sum-free if, and only if, for every (k−1)-dimensional
affine subspace A of Fn2 and every coset a + A 6= A, we have

∑
x∈A F (x) 6=∑

x∈A F (x+ a), that is,
∑
x∈ADaF (x) 6= 0 (note that this does not mean that

DaF is (k−1)th-rder-sum-free, despite the similarity, since a must not belong to
the underlying linear space of A, for ensuring a+A 6= A). Equivalently, for every
(k − 1)-dimensional vector subspace E of Fn2 , the mapping φE : a ∈ Fn2/E →∑
x∈a+A F (x) is injective. There is then a connection between 3rd-order-sum-

freedom and the so-called D-property (saying that the union of the image sets
of all such mappings φE , when E ranges over the set of all affine planes, covers
Fm2 \{0}). D-property is so named in [39] because Dillon was the first to consider
it, by showing that it is satisfied by every APN (n, n)-function (see his result
reported in [12] after Proposition 161).
An (n,m)-function F is third-order-sum-free if and only if, for every a 6= 0, the
system of equations{

x+ y + z + t = 0
DaF (x) +DaF (y) +DaF (z) +DaF (t) = 0
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has no solution (x, y, z, t) with x, y, z, t distinct such that a 6∈ 〈x + y, x + z〉 =
{0, x + y, x + z, x + t} (where we denote by < S > the vector space spanned
by a set S in a vector space). Equivalently, for every nonzero u ∈ Fn2 and every
v ∈ Fm2 , the system {

x+ y = u
DaF (x) +DaF (y) = v

has at most one solution as an unordered pair {x, y} in a linear hyperplane H
such that u ∈ H and a 6∈ H.
This is a convenient characterization when the derivative of F is simple enough.
But when DaF is complex (we shall see the example of Kasami functions below),
it may be better, as we shall see in the next subsection, to state the condition
by means of F rather than its derivative: for every v ∈ Fm2 , the system{

x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = v

(3)

does not have two solutions {x, y, z, t} and {x′, y′, z′, t′} with x, y, z, t distinct in
Fn2 and such that x+ x′ = y + y′ = z + z′ = t+ t′ 6= 0. Note that if F is APN,
then we can without loss of generality assume that v 6= 0. Note also that the
APNness of F is not mandatory, since for APNness we need that (3) is never
satisfied with v = 0 and x, y, z, t distinct while here we can accept one solution.

3.1 Example of the Kasami almost bent functions

Of course, the so-called Gold power functions over F2n , equal to Gi(x) = x2
i+1

with i < n/2 and gcd(i, n) = 1, which are the simplest APN (hence, k-th-
order-non-affine for every k ≥ 2 and second-order-sum-free) functions, are not
kth-order-sum-free for k ≥ 3 since they have algebraic degree 2 and sum then to
0 over every k-dimensional affine space with k ≥ 3.
The Kasami functions are the power functions over F2n equal to Ki(x) =

x2
2i−2i+1, with i < n/2 and gcd(i, n) = 1; they have algebraic degree i + 1.

For any n, Ki is APN. It is then kth-order-non-affine for every k ≥ 2. If addi-
tionally, n is odd, Ki also contributes to an optimal resistance against the linear
attack (it is what we call an almost bent function). See more details in [12] and
the references therein. The Kasami function is used as an S-box (with n odd) in
the Misty and Kasumi block ciphers.
For n odd, we have Ki = G3i ◦ G−1i where G−1i is the compositional inverse of
Gi (which is a permutation). Denoting x = Gi(x), y = Gi(y), z = Gi(z), and
t = Gi(t), System (3) writes:{

Gi(x) +Gi(y) +Gi(z) +Gi(t) = 0
G3i(x) +G3i(y) +G3i(z) +G3i(t) = v

,

with x, y, z, t distinct, and denoting x+ y by α and z+ t by β, we have then to
solve the system {

DαGi(x) +DβGi(z) = 0
DαG3i(x) +DβG3i(z) = v

.
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This is equivalent to{
αx2

i

+ α2ix + α2i+1 + βz2
i

+ β2iz + β2i+1 = 0

αx2
3i

+ α23ix + α23i+1 + βz2
3i

+ β23iz + β23i+1 = v
.

Note that since Gi(x) and Gi(y) are distinct as well as Gi(z) and Gi(t), we have
that α, β cannot be zero. The system writes then

α2i+1
((

x
α

)2i
+ x

α + 1
)

+ β2i+1

((
z
β

)2i
+ z

β + 1

)
= 0

α23i+1
((

x
α

)23i
+ x

α + 1
)

+ β23i+1

((
z
β

)23i
+ z

β + 1

)
= v

,

which is equivalent by using the relation
((

x
α

)2i
+ x

α + 1
)

+
((

x
α

)2i
+ x

α + 1
)2i

+((
x
α

)2i
+ x

α + 1
)22i

=
(
x
α

)23i
+ x

α + 1 to:
(
x
α

)2i
+ x

α + 1 =
(
β
α

)2i+1((
z
β

)2i
+ z

β + 1
)

L
((

β
α

)2i+1
((

z
β

)2i
+ z

β + 1
))

+
(
β
α

)23i+1((
z
β

)23i
+ z

β + 1
)

= v

α23i+1
.

(4)

where L(x) = x+ x2
i

+ x2
2i

.
Function F is 3rd-order-sum-free if and only if System (4) does not admit two
different solutions (α, x, β, z) and (α′, x′, β′, z′) in F∗2n × F2n × F∗2n × F2n with
x, x + α, z, z + β distinct and Gi(x) + Gi(x

′) = Gi(x + α) + Gi(x
′ + α′) =

Gi(z) +Gi(z
′) = Gi(z + β) +Gi(z

′ + β′) 6= 0.
Note that, given a solution (α, β, z) to the second equation in System (4), there

exists x satisfying the first equation if and only if
(
β
α

)2i+1
((

z
β

)2i
+ z

β + 1
)

has trace 1 (which is a rather light condition). The difficultly is to handle the
condition Gi(x) +Gi(x

′) = Gi(x + α) +Gi(x
′ + α′) = Gi(z) +Gi(z

′) = Gi(z +
β) +Gi(z

′+β′) 6= 0 when studying the existence of two solutions of the system,
but it is plausible that, for every n and every i < n/2 such that gcd(i, n) = 1, Ki

is not 3rd-order-sum-free, except maybe when n is too small for allowing pairs
of solutions satisfying the conditions.
We leave this general question open. We checked by a computer investigation
that K2(x) = x13 is 3rd-order-sum-free over F25 , but is not over F27 nor over
F29 . Similarly, K3(x) = x57 is not 3rd-order-sum-free over F27 nor over F29 , and
K4(x) = x241 is not 3rd-order-sum-free over F29 .
This example shows that kth-order-sum-freedom is a very strong criterion for
k ≥ 3, much more demanding (but not stronger in a mathematical sense) than
for k = 2, that is, than APNness, which can be proved for the Kasami function
rather easily when n is odd, as shown in [16].
A big difference between kth-order-non-affineness and kth-order-sum-freedom
is then that the former is weaker when k increases (note that for k = n, it
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just means that F is not an affine function) while the latter is more and more
demanding when k increases from 2 to bn/2c (but lth-order-sum-freedom does
not imply kth-order-sum-freedom when k < l). We shall say a little more in
Subsection 4.2.

3.2 Relation of sum freedom with higher-order derivatives

Any k-dimensional affine subspace A of Fn2 has the form a+ < a1, . . . , ak > where
a ∈ Fn2 and a1, . . . , ak are linearly independent in Fn2 over F2, and

∑
x∈A F (x)

equals then the value Da1Da2 . . . DakF (a) of the so-called kth-order (discrete)
derivative Da1Da2 . . . DakF , which is the iteration of the first-order derivative
DaF (x) = F (x)+F (x+a). This is well-known. Hence, F is kth-order-sum-free if,
and only if, every kth-order derivative Da1 . . . DakF with a1, . . . , ak F2-linearly
independent never takes the zero value. This illustrates again the difficulty of
proving that a given (n, n)-function is kth-order sum-free: if we for instance
represent it as a polynomial over F2n , we have to prove that some polynomial
functions (the derivatives Da1 . . . DakF ) do not vanish, which is in general quite
hard. And indeed, for k = 2 already, the proofs by Dobbertin and his co-authors
of the APNness of the known APN polynomial functions are quite difficult, and
we have seen with the Kasami functions that, even when these proofs could be
simplified, checking 3rd-order-sum-freedom may still be quite tough.
Another related method consists of showing that the restriction of F to any k-
dimensional affine space A, viewed as a (k,m)-function through the choice of a
basis of the vector space equal to the direction of A (all such (k,m)-functions are
affine equivalent), has algebraic degree k, exactly, but this method seems hard
to implement, except when k is close to n.

Remark 1. The work made in [23] about the Kasami Boolean bent functions
fλ(x) = trn(λKi(x)) (where λ is not a cube in F2n) has some similarity with
the kth-order-sum-freedom of the Kasami functions Ki that we studied above
for k = 3; but it is in fact much simpler: it proves that the derivatives of orders
i−1 and i−2 of fλ(x) do not completely vanish under some conditions on n. To
prove this, the author had to calculate Da1Da2 . . . Dakfλ and to prove that for
any such λ, there exists x in F2n such that Da1Da2 . . . Dakfλ(x) 6= 0. For this,
it is enough to show that at least one monomial (that the author could choose)
in the univariate representation of this latter Boolean function has a nonzero
coefficient, while showing kth-order sum-freedom by calculating the kth-order
derivative leads to showing that the value of Da1Da2 . . . DakF (x) is nonzero for
every x ∈ F2n , which needs to take into account all the monomials with their
coefficients, and to make a work with them which seems very hard.

3.3 Existence of kth-order-non-affine functions and of
kth-order-sum-free functions

The existence of kth-order-non-affine (n, n)-functions for every k ≥ 2 is clear
for every n ≥ k, since all APN functions are kth-order-non-affine for every 2 ≤
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k ≤ n. Moreover, given a kth-order-non-affine (n,m)-function F , any (n,m+1)-
function obtained by adding any coordinate function to F is kth-order-non-affine;
we deduce then the existence of kth-order-non-affine (n,m)-functions for every
m ≥ n ≥ k ≥ 2.

We know that differentially 2-uniform (n,m)-functions (that is, second-order-
non-affine (n,m)-functions) do not exist for m < n when n > 2. But for k > 2,
the set of those triples (n,m, k) for which kth-order-non-affine (n,m)-functions
exist is not clear in general. We leave open the determination of this region. Note
that for some particular values of k, the situation is simple. For instance, when
k = n, the existence of such functions is obvious whatever is m, and when n is
even, m ≤ n

2 and k > n
2 , it is too since we know that bent Boolean functions

cannot be affine on an affine space of dimension strictly larger than n
2 , as shown

in a theorem from [9] reported in [12, Theorem 14]; all bent functions are then
kth-order-non-affine.

We shall see that kth-order-sum-freedom has a more complex behavior than
kth-order-non-affineness, and even the question of the existence of functions
satisfying it is not straighforward. We need then to address it first, for avoiding
studying an empty class for k > 2. Let us show that the cube function (which is
APN and then second-order-sum-free) is the first element of an infinite sequence
of kth-order-sum-free (n, n)-functions.

Proposition 1. Let 2 ≤ k ≤ n be integers. Let Pk(x) be the power func-

tion x2
k−1 over F2n . Denoting by Gk the set of bijections from {1, . . . , k} to

{0, . . . , k − 1}, we have:

Da1 . . . DakPk(x) =
∑
σ∈Gk

k∏
i=1

a2
σ(i)

i =
∏

l∈Fk2 ,l 6=0

(
k∑
i=1

liai

)
, (5)

and Pk is kth-order-sum-free.

Proof. We have 2k − 1 =
∑k
i=1 2i−1, hence Pk(x) =

∏k
i=1 Li(x), where Li(x) =

x2
i−1

. It is well-known and easily shown by induction on k that, if L0, . . . , Lk−1
are linear functions, then for every a1, . . . , ak in F2n , Da1 . . . Dak(

∏k−1
i=0 Li)(x) =∑

σ∈Gk
∏k
i=1 Lσ(i)(ai). We have then:

Da1 . . . DakPk(x) =
∑
σ∈Gk

k∏
i=1

a2
σ(i)

i .

Each of the factors of
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
(which are pairwise co-prime mul-

tivariate polynomials in a1, . . . , ak) divides Da1 . . . DakPk(x), since it is easily

seen that
∑
σ∈Gk

∏k
i=1 a

2σ(i)

i = 0 when a1 . . . , ak are not F2-linearly indepen-
dent. The set of multivariate polynomials over F2n is an integral domain and a

unique factorization domain, see e.g. [30]. Hence,
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
divides

Da1 . . . DakPk(x). Since the two polynomials are monic and have the same de-
gree 2k − 1, they are then equal. This proves (5) and completes the proof since



13

this product is nonzero, the ai’s being linearly independent. 2

As in the case of kth-order-non-affineness, given a kth-order-sum-free (n,m)-
function F , any (n,m+ 1)-function obtained by adding any coordinate function
to F is kth-order-sum-free. We deduce then from Proposition 1 the existence
of kth-order-sum-free (n,m)-functions for every m ≥ n ≥ k ≥ 2. Here also, for
m < n, no second-order-sum-free function exists for n > 2, but for k > 2, the
condition on n,m, k such that some (n,m)-functions can be kth-order-sum-free
is not clear (however, when k = n, the existence is obvious whatever is m, and
when k = n− 1, it is easily seen that m needs to be at least 2, since if a Boolean
function f has odd Hamming weight restrictions to the hyperplanes of equations
xn = 0, xn = 1, xn−1 = 0 and xn−1 = 1, it cannot have odd Hamming weight
restrictions to the hyperplanes of equations xn +xn−1 = 0, and xn +xn−1 = 1).

4 Properties of the two notions

Let us go into more details with the properties of the two notions that we briefly
saw after introducing their definition.
We first state explicitly what we observed immediately after Definition 1 and
study the converse:

Proposition 2. For every 2 ≤ k ≤ n and m, if an (n,m)-function is kth-order-
sum-free, then it is kth-order-non-affine.

About the converse of this implication:
- for k = 2, it is of course valid, since the two notions coincide (with APNness),
- for k ≥ 3, the converse of Proposition 2 is not true; there exist indeed, for every
n ≥ k and every m ≥ 1, kth-order-non-affine (n,m)-functions which are not kth-
order-sum-free, because there are non-affine Boolean functions, even quadratic
ones, which sum to zero, that is, which have an even Hamming weight. An
interesting particular case in this regard is when k is a divisor of n and F is
a polynomial function over F2n whose coefficients all belong to F2k (in other

words, F (x2
k

) equals (F (x))2
k

for every x ∈ F2n ; when k = 1, such F is called
an idempotent). Then F maps the subfield F2k (which is a k-dimensional vector
space) into itself, and if it maps F2k onto itself, that is, if it is a permutation of
F2k , then

∑
x∈F

2k
F (x) = 0 and F is then not kth-order-sum-free while F can

be kth-order-non-affine. For instance, an APN power (n, n)-function F cannot
be kth-order-sum-free for k an odd divisor of n (we know from Dobbertin, as
reported in [12], that F is then a permutation of F2k). Of course, if k is even and
such that F is a permutation of F2k (for instance, when F itself is a permutation),
we have the same situation.

4.1 Algebraic degree

Recall that any (n,m)-function has an algebraic degree bounded above by some
integer d < n if, and only if, it sums to zero over every affine space whose
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dimension is strictly larger than d (this is well-known for Boolean functions, see
e.g. [12], and it directly generalizes to (n,m)-functions). We have then, more
generally than we observed above about Gold functions:

Proposition 3. For every 2 ≤ k ≤ n and every m, all kth-order-sum-free
(n,m)-functions have necessarily algebraic degree at least k (and this latter nec-
essary condition is also sufficient if k = n).

This makes a difference with kth-order-non-affineness, since all APN functions,
among which are quadratic ones, are kth-order-non-affine for every k ≥ 2.
In fact, an (n,m)-function F is kth-order-sum-free if, and only if, the restriction
of F to any k-dimensional affine space, viewed as a k-variable function through
the choice of a basis of the vector space equal to the direction of this affine space
(i.e. such that the affine space is a coset - a translate - of the linear space), has
algebraic degree k.

Remark. Since the algebraic degree of the indicator 1A of any k-dimensional
affine subspace A of Fn2 equals n−k and the algebraic degree of the product of a
Boolean function and a vectorial function is bounded above by the sum of their
algebraic degrees, F cannot be kth-order-sum-free when n − k + dalg(F ) < n,
since the algebraic degree of 1AF is then smaller than n and

∑
x∈A F (x) =∑

x∈Fn2
1A(x)F (x) equals then 0. This gives again that if F is kth-order-sum-free,

then dalg(F ) ≥ k, as in Proposition 3. It provides additionally that if dalg(F ) =
k, then F is kth-order-sum-free if, and only if, dalg(1AF ) = dalg(1A) + dalg(F ),
for every k-dimensional affine space A. We say then that F has no degree-drop k-
dimensional affine space (see [15] where the case of Boolean functions is studied).
�

4.2 Monotonicity/non-monotonicity

Monotonicity of non-affineness We have seen in Section 3 that if a function
is kth-order-non-affine then it is lth-order-non-affine for every l ≥ k (a slightly
different way of seeing this is by observing that the restriction of every affine
function to every affine subspace of its domain is affine). The notion is then
monotonic. In particular, kth-order-non-affineness for k ≥ 3 is a generalization
(and a weakening) of APNness, as is differential uniformity, but differently.
The monotonicity of the notion is strict. For instance, there are third-order-non-
affine functions which are not APN: given an APN (n, n)-function F and a point

a ∈ Fn2 , let G(x) =

{
F (x) if x 6= a
b if x = a

, where b is chosen so that G is not APN

(it is easy to find b; it is not even clear whether any APN function F and any
points a and b can exist such that G is APN, see [7]). Function G is third-order-
non-affine because, for every 3-dimensional affine space A, there exists an affine
plane included in A \ {a} and since G coincides with F on this affine plane, it is
not affine on it; hence G is not affine on A.
We shall see in Subsection 5.1 that the multiplicative inverse function is also an
example of a 3rd-order-non-affine function that is not APN, when n is even.
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Non-monotonicity of sum freedom Propositions 1 and 3 imply the existence
of functions that are kth-order-sum-free and not lth-order-sum-free for some
l ≥ k. Note also that kth-order-sum-freedom is not decreasing monotonic either
(that is, preserved when we decrease k). For instance, take a non-APN (n, n)-
function of algebraic degree n; then F is nth-order-sum-free and it is not second-
order-sum-free.
We see that the behavior of kth-order-sum-freedom is pretty complex, while it
is better adapted to withstand integral attacks (and in particular, higher order
differential attacks) than kth-order-non-affineness.
However, there is some monotonicity of the notion: if for some n, a function F
is kth-order-sum-free over Fn2 , then for every k ≤ m ≤ n, the restriction of F to
any m-dimensional affine space of Fn2 whose image set is an m-dimensional affine
space of Fn2 is kth-order-sum-free. This implies for instance the monotonicity
with respect to the divisibility partial order over n, of the notion restricted to
polynomial functions with coefficients in a subfield F2m .

4.3 Characterization by the Walsh transform

It is usual, when a notion is studied, to try to characterize it by the Walsh
transform. Many important cryptographic properties of Boolean and vectorial
functions can be translated in terms of the Walsh transform. For instance, when
Chabaud and Vaudenay studied in [17] the notions of almost perfect nonlinearity
and almost bentness, they characterized them by the Walsh transform (and after
that, it took 24 years before a characterization could be found for differentially
uniform functions in [11]). We give now characterizations of the two notions by
the Walsh transform. They are rather complex; this was expected since both are
more complex than APNness, and even a slight increase in the complexity of a
notion implies a more important increase for its characterization.

kth-order-non-affineness Given a k-dimensional affine subspace A (over F2)
of Fn2 , the restriction of F : Fn2 → Fm2 to A is affine if and only if, for every
v ∈ Fm2 , the Boolean function v · F , where “·” is some inner product in Fm2 , is
affine on A. According to the Parseval relation (which, for a k-variable Boolean
function, writes

∑
u∈Fk2

W 2
f (u) = 22k, see e.g. [12]) and to the inverse Walsh

transform relation, this is equivalent to
∑
x∈A(−1)v·F (x)+u·x ∈ {0,±2k} for all

u ∈ Fn2 , where (by an abuse of notation), we also denote by “·” some inner
product in Fn2 . Hence, the restriction of F to A is affine if and only if, for every
u ∈ Fn2 and v ∈ Fm2 , we have:(∑

x∈A
(−1)v·F (x)+u·x

)2(
22k −

(∑
x∈A

(−1)v·F (x)+u·x
)2)

= 0.

Note that this latter expression is always non-negative. Therefore, the restriction
of F to A is affine if and only if:∑

u∈Fn2 ,v∈Fm2

(∑
x∈A

(−1)v·F (x)+u·x
)2(

22k −
(∑
x∈A

(−1)v·F (x)+u·x
)2)

= 0.
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For every v ∈ Fm2 , we have:∑
u∈Fn2

(∑
x∈A

(−1)v·F (x)+u·x
)2

=
∑
x,y∈A

(−1)v·(F (x)+F (y))
∑
u∈Fn2

(−1)u·(x+y) = 2n+k.

Writing A = a+E, where a ∈ Fn2 and E is a k-dimensional vector space, the Pois-
son summation formula (see e.g. [12, Relation (2.41)]) writes

∑
x∈A(−1)v·F (x)+u·x =

±2k−n
∑
w∈u+E⊥(−1)a·wWF (w, v), where E⊥ = {w ∈ Fn2 ;∀x ∈ E,w · x = 0},

and therefore, we have: ∑
u∈Fn2 ,v∈Fm2

(∑
x∈A

(−1)v·F (x)+u·x
)4

=

24k−4n
∑

u∈Fn2 ,v∈Fm2

( ∑
w∈u+E⊥

(−1)a·wWF (w, v)
)4

=

24k−4n
∑

u∈Fn2 ,v∈F
m
2

(T1,T2,T3,T4)∈(E⊥)4

(−1)a·
∑4
i=1 Ti

4∏
i=1

WF (u+ Ti, v).

We deduce:

Proposition 4. For every 2 ≤ k ≤ n and m, any (n,m)-function is kth-order-
non-affine if and only if, for every a ∈ Fn2 and every k-dimensional vector sub-
space E of Fn2 , we have:

2n+m+3k − 24k−4n
∑

u∈Fn2 ,v∈F
m
2

(T1,T2,T3,T4)∈(E⊥)4

(−1)a·
∑4
i=1 Ti

4∏
i=1

WF (u+ Ti, v) > 0.

kth-order-sum-freedom Still taking A = a + E, where E is a k-dimensional
F2-vector subspace of Fn2 , we have

∑
x∈A F (x) 6= 0 if and only if we have:∑

v∈Fm2
(−1)v·(

∑
x∈A F (x)) = 0. Hence, fixing E and letting a range over Fn2 , we

have
∑
x∈a+E F (x) 6= 0 for every a ∈ Fn2 if and only if:

∑
a∈Fn2

∑
v∈Fm2

(−1)v·
∑
x∈a+E F (x)

2

=
∑
a∈Fn2

v,v′∈Fm2

(−1)(v+v
′)·

∑
x∈E F (a+x) (6)

equals 0, that is, according to the inverse Walsh transform formula, and denoting
by U = (ux)x∈E the elements of (Fn2 )E :

∑
a∈Fn2

v,v′∈Fm2

∑
U∈(Fn2 )E

(∏
x∈E

WF (ux, v + v′)(−1)
∑
x∈E(a+x)·ux

)
= (7)
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∑
U∈(Fn2 )E

∑
v,v′∈Fm2

(∏
x∈E

WF (ux, v + v′)

)∑
a∈Fn2

(−1)
∑
x∈E(a+x)·ux

 = 0,

that is: ∑
U∈(Fn2 )E∑
x∈E ux=0

∑
v,v′∈Fm2

(∏
x∈E

WF (ux, v + v′)

)
(−1)

∑
x∈E x·ux = 0, (8)

since
∑
a∈Fn2

(−1)
∑
x∈E(a+x)·ux equals 0 if

∑
x∈E ux 6= 0.

Let us now write E =< a1, . . . , ak >. Then writing
∑k
i=1 xiai (where x =

(x1, . . . , xk) ∈ Fk2) instead of x ∈ E, Relation (8) becomes:

∑
U∈(Fn2 )

Fk2∑
x∈Fk2

ux=0

∑
v,v′∈Fm2

∏
x∈Fk2

WF (ux, v + v′)

 (−1)
∑
x∈Fk2

(
∑k
i=1 xiai)·ux (9)

= 0.

When a1, . . . , ak are not F2-linearly independent, we have
∑
x∈E F (a + x) =

Da1 . . . DakF (a) = 0 for every a and then the value corresponding to (6) equals

2n+2m and Expression (7) equals (2n)2
k

times more, that is, has value 2(1+2k)n+2m.
The number of k-tuples (a1, . . . , ak) of linearly dependent elements equals 2kn−
(2n − 1)(2n − 2) · · · (2n − 2k−1). Hence, F is kth-order-sum-free if, and only
if, the sum for (a1, . . . , ak) ranging over (Fn2 )k of Expression (9) is equal to

2(1+2k)n+2m
(
2kn − (2n − 1)(2n − 2) · · · (2n − 2k−1)

)
. This sum equals:

∑
U∈(Fn2 )

Fk2∑
x∈Fk2

ux=0

∑
v,v′∈Fm2

∏
x∈Fk2

WF (ux, v + v′)

 ∑
(a1,...,ak)∈(Fn2 )k

(−1)
∑
x∈Fk2

(
∑k
i=1 xiai)·ux =

∑
U∈(Fn2 )

Fk2∑
x∈Fk2

ux=0

∑
v,v′∈Fm2

∏
x∈Fk2

WF (ux, v + v′)

 ∑
(a1,...,ak)∈(Fn2 )k

k∏
i=1

(−1)
ai·(

∑
x∈Fk2

xiux)
=

∑
U∈(Fn2 )

Fk2∑
x∈Fk2

ux=0

∑
v,v′∈Fm2

∏
x∈Fk2

WF (ux, v + v′)

 k∏
i=1

∑
a∈Fn2

(−1)
a·(

∑
x∈Fk2

xiux)

 =

2nk
∑

U∈(Fn2 )
Fk2 ;∀i=1,...,k,∑

x∈Fk2
xiux=

∑
x∈Fk2

ux=0

∑
v,v′∈Fm2

∏
x∈Fk2

WF (ux, v + v′)

 .
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Note that U may be identified with the (k, n)-function x 7→ U(x) = ux and
the condition ∀i = 1, . . . , k;

∑
x∈Fk2

xiux =
∑
x∈Fk2

ux = 0, is that each of its n

coordinate functions is orthogonal to the k-variable constant function 1 and to
all k-variable Boolean functions x1, . . . , xk, that is, belongs to the dual of the
first-order Reed-Muller code RM(1, k), that is, belongs to RM(k − 2, k). The
characterization of kth-order-sum-freedom writes then (using that v+ v′ ranges
2m times over Fm2 ):

Proposition 5. For every 2 ≤ k ≤ n and m, any (n,m)-function is kth-order-
sum-free if and only if:

∑
U∈[RM(k−2,k)]n

∑
v∈Fm2

∏
x∈Fk2

WF (U(x), v)

 =

2n(1+2k−k)+m (2kn − (2n − 1)(2n − 2) · · · (2n − 2k−1)
)
.

Note that for m = n and k = 2, Proposition 5 gives a characterization of
APN (n, n)-functions, and since RM(k−2, k) equals {(0, 0, 0, 0), (1, 1, 1, 1)}, the
condition in this characterization writes:∑

u∈Fn2

∑
v∈Fn2

W 4
F (u, v) = 23n

(
22n − (2n − 1)(2n − 2)

)
= 3 · 24n − 23n+1;

this is exactly the Chabaud-Vaudenay characterization [17].

Remark. Paradoxically (since the properties of kth-order-non-affineness are in
general easier to show than those of kth-order-sum-freedom), it seems difficult
to characterize kth-order-non-affineness by a single formula involving the Walsh
transform, as we did for kth-order-sum-freedom. �

4.4 Invariance under equivalence

In Boolean function theory, when we study a property of (n,m)-functions, an
important point is to determine the groups of permutations σ of Fn2 and τ of Fm2
such that, if F satisfies the property, then τ ◦F ◦σ does too, and more generally
the groups of permutations Σ of Fn2 × Fm2 such that, if F satisfies the property
and if Σ maps the graph of F to the graph of an (n,m)-function G, then G
satisfies the property. We say that the composition by σ (resp. τ , Σ) preserves
the property and this leads to a notion of equivalence between (n,m)-functions
preserving the property. Let us determine the equivalences preserving kth-order-
non-affineness and kth-order-sum-freedom (and being a priori the most general
as such); this will show one more difference between the two introduced notions.
We assume that σ, τ are affine functions since otherwise the affineness of an affine
space A is not preserved when applying σ to A and the affineness/non-affineness
of the restriction of F (resp. the fact that its sum of values equals zero or is
nonzero) is not preserved when composing with τ . Also, we assume that Σ is an
affine function.
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Proposition 6. For every k ≥ 2, every n ≥ k and every m, the property of
being kth-order-non-affine, for an (n,m)-function, is CCZ invariant.

Proof. Let L be an affine automorphism of Fn2 × Fm2 and let F and G be two
(n,m)-functions such that the graph {(x,G(x));x ∈ Fn2} of G equals the image
by L of the graph {(x, F (x));x ∈ Fn2} of F . Let F1 and F2 be defined as recalled
in Section 2: F1(x) = L1(x, F (x)) and F2(x) = L2(x, F (x)), where L = (L1, L2).
Recall that we have G = F2◦F−11 . If F is not kth-order-non-affine, then let A be a
k-dimensional affine subspace of Fn2 over which F is affine. Then F1 is affine over
A. Moreover, the image A′ of A by F1 is a k-dimensional affine subspace of Fn2 ,
and F−11 is affine over A′. Besides, F2 is affine over A. Then G is affine over A′.
Hence CCZ equivalence preserves the fact of not being kth-order-non-affineness.
This completes the proof, by contraposition. 2

Proposition 7. For every k ≥ 3, the property of being kth-order-sum-free for
an (n,m)-function is only EA invariant in general, and for k = 2, it is CCZ
invariant.

Proof. The notion is clearly EA invariant for every k ≥ 2, n ≥ k and m, by
contraposition again, since the fact that a function sums to zero over at least one
k-dimensional affine space is preserved by affine equivalence and by the addition
of affine functions. The notion is CCZ invariant for k = 2 since APNness is,
see for instance [12, Subsection 3.4.1]). For k ≥ 3, it is easy to find examples
of kth-order-sum-free (n, n)-permutations whose compositional inverses are not
kth-order-sum-free. For instance, in F25 , the power function x7 is third-order-
sum-free as we saw with Proposition 1, while its inverse equals x9 (indeed 9×7 =
63 ≡ 1 (mod 31)) and is then not third-order-sum-free, since it is quadratic. 2

5 The case of the multiplicative inverse function

The multiplicative inverse function is the function from the field F2n to itself
whose univariate representation (see Section 2) equals x2

n−2, also denoted by
x−1 since the exponents live in Z/(2n−1)Z, that is, the power function coinciding
with the inverse function x 7→ 1

x over F∗2n and which maps 0 to 0. Its algebraic
degree equals n − 1. It is used (with n even for computational reasons) in the
S-boxes of many of the most important block ciphers such as AES. It contributes
optimally to the resistance of ciphers using it as an S-box when n is odd (it is
APN) and sub-optimally when n is even (it is differentially 4-uniform).

5.1 The kth-order-non-affineness of multiplicative inverse function

For n odd, since the inverse function is APN [36], it is kth-order-non-affine for
every k ≥ 2.
For n even, it is only differentially 4-uniform [36] and we need to study whether
it is third-order-non-affine. Let a, b be any F2-linearly independent elements of
F2n . If x is F2-linearly independent of a, b, then x−1 + (x + a)−1 + (x + b)−1 +
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(x + a + b)−1 = ab(a+b)
x(x+a)(x+b)(x+a+b) does not vanish. If x ∈ F2n is F2-linearly

dependent of a, b, we have that x−1 + (x + a)−1 + (x + b)−1 + (x + a + b)−1 =
1
a + 1

b + 1
a+b = b

a(a+b)

((
a
b

)2
+ a

b + 1
)

equals 0 if, and only if, a ∈ {wb,w2b}
where w is a primitive element of F4. Let A be any 3-dimensional affine space,
then there exist F2-linearly independent elements a, b in the direction of A which
are not such that a ∈ {wb,w2b} (indeed, b being chosen, the set {0, b, wb, w2b}
is a vector space of dimension 2 only) and then the restriction of F to A is not
affine. We deduce that F is third-order-non-affine, that is, kth-order-non-affine
for every k ≥ 3.

5.2 Sums of the values taken by the multiplicative inverse function
over affine spaces not containing 0

In this section, we obtain an explicit expression of the sum of the values of the
multiplicative inverse function taken over affine subspaces of F2n that are not
vector subspaces. This allows us to prove that such sum is always nonzero.
Let Ek be any k-dimensional vector subspace of F2n . It is well-known that the
polynomial LEk(x) =

∏
u∈Ek(x+u) is a linearized polynomial. Let us write then:

LEk(x) =

k∑
i=0

bk,ix
2i , (10)

where bk,k = 1 and bk,0 =
∏
u∈Ek,u6=0 u 6= 0.

Since we are in characteristic 2, the (polynomial) derivative of LEk(x) equals
L′Ek(x) = bk,0, while according to the classical formula on the derivative of a
product, we have: L′Ek(x) =

∑
u∈Ek

∏
v∈Ek,v 6=u(x+v). For x ∈ Ek, this does not

give any information (indeed, it gives bk,0 =
∏
v∈Ek,v 6=x(x+ v)), but for x 6∈ Ek,

this gives bk,0 =
(∑

u∈Ek
1

x+u

)
LEk(x). We have then:

Theorem 1. For every 0 ≤ k ≤ n, let Ek be any k-dimensional F2-subspace of
F2n and let F (x) = x2

n−2 = x−1 be the multiplicative inverse function over F2n .
We have:

∀x 6∈ Ek,
∑
u∈Ek

F (x+ u) =
∑
u∈Ek

1

x+ u
=

∏
u∈Ek,u6=0 u∏
u∈Ek(x+ u)

=
bk,0

LEk(x)
6= 0, (11)

where LEk(x) =
∏
u∈Ek(x+ u) and bk,0 is its coefficient of x.

Remark. For every 0 ≤ k ≤ n, the restriction of the multiplicative inverse
function to any k-dimensional affine subspace of F2n that is not a vector space
has then maximal algebraic degree k, when viewed as a (k, n)-function. This
property seems rare among all permutations over Fn2 . Summing the values taken
over affine spaces is probably a good way of distinguishing the multiplicative
inverse function from random (n, n)-functions or permutations. This may allow
to guess that a secret S-box used in a block cipher is equivalent to the inverse
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function. And if we know that an S-box used in a cipher is the multiplicative
inverse function, it may allow to build a distinguisher. �

Remark. In [27] is shown that the only affine spaces that are mapped by the
inverse function to affine spaces are the multiplicative cosets of the subfields of
F2n (0 included). The result of [27, Theorem 1], stating that the affine spaces
that are not vector spaces cannot be mapped by the inverse function to affine
spaces, is a direct consequence of Theorem 1 in the present paper. Indeed, the
sum of the values in an affine space of dimension at least 2 equals 0. �

5.3 Sums of the values taken by the multiplicative inverse function
over linear subspaces

The case of subspaces containing 0 (that is, linear subspaces) is much more
complex. Computer investigations made for 6 ≤ n ≤ 12 show that the inverse
function is not kth-order sum-free, whatever is k ∈ {3, . . . , n− 3} (but we could
see that for n = 5, it is 3rd-order-sum-free). Proving this for every n will prob-
ably need much work (we could not find a general result allowing to prove this;
only partial results could be found).

Conclusion

We have introduced and studied two natural generalizations of almost perfect
nonlinearity (APN), called kth-order-non-affineness and kth-order-sum-freedom.
These notions are related to the resistance of block ciphers to integral attacks,
and in weaker ways, to invariant subspace attacks and to Dobbertin’s notion
of normality. While, at the smallest possible order 2, these two generalizations
both coincide with APNness, they behave for larger orders quite differently from
each other (in particular, the latter is much stronger than the former) and from
APNness. We have seen that their study poses interesting questions. We have
stated the following open problems:
- Determine for k > 2, the set of those triples (n,m, k) for which kth-order-non-
affine (n,m)-functions exist. Determine these functions.
- Determine for k > 2, the set of those triples (n,m, k) for which kth-order-sum-
free (n,m)-functions exist. Determine these functions.
- Characterize the kth-order-non-affineness of vectorial functions by a single for-
mula involving their Walsh transform.
- Prove that the Kasami APN functions are not 3rd-order-sum-free for n ≥ 6.
- Study the kth-order-non-affineness and kth-order-sum-freedom. of the known
infinite classes of APN functions.
- Prove that the multiplicative inverse function is not kth-order-sum-free for
k ∈ {3, . . . , n− 3} (n ≥ 6).
The (partial) study of the behavior of the multiplicative inverse function over
F2n with respect to kth-order-sum-freedom, led to an interesting property of this
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particular but cryptographically important infinite class of functions: it sums to
non-zero values over all affine subspaces of teir domain that are not linear sub-
spaces. This property distinguishes it from random functions.
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paper, and to Stjepan Picek for his kind help with computations.
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