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Abstract. In this work, we analyze the so-called Beyond UnForgeability
Features (BUFF) security of the submissions to the current standard-
ization process of additional signatures by NIST. The BUFF notions
formalize security against maliciously generated keys and have various
real-world use cases, where security can be guaranteed despite misuse
potential on a protocol level. Consequently, NIST declared the security
against the BUFF notions as desirable features. Despite NIST’s interest,
only 6 out of 40 schemes consider BUFF security at all, but none give
a detailed analysis. We close this gap by analyzing the schemes based
on codes, isogenies, lattices, and multivariate equations. The results vary
from schemes that achieve neither notion (e.g., Wave) to schemes that
achieve all notions (e.g., Prov). In particular, we dispute certain claims
by Squirrels and Vox regarding their BUFF security. Resulting from
our analysis, we observe that three schemes (Cross, Hawk and Prov)
achieve BUFF security without having the hash of public key and mes-
sage as part of the signature, as BUFF transformed schemes would have.
Hawk and Prov essentially use the lighter PS-3 transform by Pornin and
Stern (ACNS’05). We further point out whether this transform suffices
for the other schemes to achieve the BUFF notions, with both positive
and negative results.
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1 Introduction

Nowadays, digital signature schemes are fundamental cryptographic primitives.
They allow a signer Alice to generate a signature sig of a message msg, using
her private key sk, such that anybody, using Alice’s public key pk, can verify
the validity of the signature. Existential unforgeability under chosen message
attacks (EUF-CMA) has become the standard security notion for digital signature
schemes. EUF-CMA secure schemes come with the guarantee that an adversary,
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seeing several message-signature pairs generated by Alice, cannot generate a new
message-signature pair that is accepted as a signature by Alice.

Unforgeability is essential for digital signature schemes and in most use cases
also sufficient. However, the EUF-CMA security notion only covers scenarios
where Alice’s key pair is honestly generated. Depending on the use case of a
digital signature scheme, other attacks are possible which are not ruled out by
using a signature scheme that is unforgeable. This led to the development of
additional security notions: exclusive ownership, message-bound signatures, and
non-resignability. In the following, we give high-level descriptions of these notions,
covering the gist of each.

The first security notion, exclusive ownership, provides the adversary with
a valid message-signature pair (msg, sig) under a public key pk and asks it to
find a different public key pk under which (msg, sig) remains a valid message-
signature pair. The lack of exclusive ownership allows an adversary to “claim”
signatures as its own by providing pk. The relevance can be seen by the real-
world attack against the Let’s Encrypt protocol, where an adversary can exploit
such claimed signatures to obtain certificates for domains despite not owning
them [1]. The notion comes in two flavors: the one just described, which is called
conservative exclusive ownership (S-CEO), and destructive exclusive ownership
(S-DEO), where the adversary needs to find a different message.

The second security notion, message-bound signatures (MBS), asks the adver-
sary to come up with two messages msg ̸= msg, a signature sig, and a public key
pk, such that both (msg, sig) and (msg, sig) are valid message-signature pairs
under pk. Absence of this property allows adversaries to bypass non-repudiation:
when the adversary is accused of having signed msg, it can claim to have signed
msg instead. At the first glance, it seems that this should already be covered by
standard EUF-CMA—finding msg immediately yields a forged signature. The
difference is that EUF-CMA is limited to honestly generated keys whereas the
notion we describe here is more permissive by letting the adversary output an
arbitrary public key, in particular, not constrained to be the outcome of the key
generation algorithm.

The third security notion, non-resignability (NR), provides the adversary
with a signature sig of an unknown message msg under some public key pk and
asks the adversary for a different public key pk and signature sig, such that sig
verifies correctly under pk for the unknown3 message msg. Jackson et al. [28]
showed that a resignable signature scheme, i.e., one for which the adversary can
find pk and sig as described above, allows for attacks against the “Dynamically
Recreatable Key” (DRKey) protocol [29]. Here, the adversary has to re-sign a
message which contains a—to the adversary unknown—symmetric key.

The additional security properties exclusive ownership, message-bound signa-
tures, and non-resignability were formalized in [16], which also provides a generic
transformation—called the BUFF transform—to achieve them. Furthermore, the
authors of [16] analyzed the signature schemes selected to be standardized by

3 This part is crucial. If the adversary was to know the message msg, it could generate
a new key pair (sk, pk) and sign msg using sk to obtain sig and output (pk, sig).
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NIST: Dilithium [31], Falcon [37], and Sphincs+ [27]. Dilithium was shown
to achieve the notions and while Falcon does not, the authors of Falcon an-
nounced to deploy the BUFF transform in the next update. For Sphincs+ it is
informally argued that it achieves the additional security properties. While the
notions are not a requirement in the ongoing NIST standardization process for
digital signature schemes [33], the call-for-algorithms mentions them as “addi-
tional desirable security properties beyond standard unforgeability”. Despite this,
only six out of 40 submissions mention these security properties at all, but none
give a detailed analysis. Thus, there is a gap with respect to the security achieved
by the signature schemes submitted to the NIST standardization process. A gap
that we (partially) close in this work.

A Note on Non-Resignability. Note that the initial definition of non-resignability
in [16] was identified to be flawed in [21]. The problem lies in the auxiliary
information which allowed for an (arguably artificial) attack. New proposals for
the definition of non-resignability are given in [21] and an updated version of [16].
However, it is unclear which definition will ultimately define non-resignability,
and if the BUFF transform achieves either notion. Given these problems, we
opt for a weaker form of non-resignability (wNR) in which there is no auxiliary
information—thus considering a weaker notion than the one introduced in [21].
Nevertheless, we provide concrete attacks against most schemes. Thus, they are
also vulnerable to any stronger form of non-resignability, in particular, to the
existing ones [16,21].

1.1 Our Contribution

We analyze the submissions to the NIST standardization process for post-quan-
tum signatures [33]. We focus on the submissions that are based on either codes,
isogenies, lattices, or multivariate equations—excluding those for which attacks
against EUF-CMA have been identified. More precisely, we analyze four code-
based schemes (Cross [3], Less [2], Meds [13], Wave [4]), the sole isogeny-
based scheme (SQIsign [11]), five lattice-based schemes (Haetae [12], Hawk [9],
HuFu [39], Raccoon [19], Squirrels [23]), and seven multivariate schemes
(Mayo [6], Prov [26], Qr-Uov [24], Snova [38], Tuov [20], Uov [7], Vox [35]).
The results are summarized in Table 1.

In the following, we describe the main results. First, we remark that MBS
is almost always satisfied and the security can be traced back to the security
of the hash function. In the two cases of Squirrels and Wave, where MBS is
not satisfied, the reason is the scheme-dependent construction of a public key
that allows multiple messages to verify under the same signature. Note that the
specification of Squirrels claims MBS security, which our analysis refutes.

Secondly, we note that all schemes—except for SQIsign, Meds and Less—
satisfy either both S-CEO and S-DEO, or neither. Despite the general separation
by [16], our results indicate that in practice, these two notions often behave
similarly. In fact, both proofs and attacks usually use the same idea for S-CEO
and S-DEO, where for S-DEO, one needs to be slightly more careful in the choices.
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One group among the schemes that satisfy these exclusive ownership notions
achieves them by hashing the public key, together with the message, to generate
a target (resp. challenge), which the signature of the message corresponding
to the given public key solves. In this way, any modification of the public key
uncontrollably changes the target in a random manner. Then, the signature,
which is required to be the same as the given one, cannot solve the new target,
hence rendering the scheme secure. All schemes that do not satisfy exclusive
ownership security are attacked by explicitly constructing new public keys which
are compatible with the target generated independently of the public key, and
the given signature. Differences between S-CEO and S-DEO can arise, when the
message, but not the public key, is used to derive the target. Then it depends on
the inherent properties of the scheme if different public keys can be constructed
for the same (S-CEO) or a new (S-DEO) target value. An exception to the above
rule is Cross, where the security reduces to solving an underdetermined system
of linear equations.

Finally, we consider non-resignability. All schemes that satisfy wNR are also
secure with respect to both exclusive ownership and MBS. However, there are
schemes (SQIsign, Meds and Less), that satify S-DEO but not wNR. Indeed,
we see a relationship to their exclusive ownership security: While fixing a signa-
ture fixes the public key in a certain sense, one can attack non-resignability by
modifying both in a compatible manner, which does not require any knowledge
about the message being signed. For the schemes that satisfy wNR, we see a
similar argument as for exclusive ownership, namely that producing the target
using a hash of the public key and the message, makes the target untraceable,
even if one can control the signature. The exception, again, is Cross, where the
security results from the Merkle tree structure and an underdetermined system
of linear equations. The other schemes that do not satisfy wNR are attacked,
as in the case of exclusive ownership, by explicit constructions. Neither of those
attacks rely on any auxiliary information about the unknown message, which an
adversary is provided in stronger versions of non-resignability.

From our results, we can deduce the following interesting conjecture. Even
though [16] shows that in general the BUFF transform is necessary to achieve
full BUFF security, it turns out that in practice, it is most often sufficient to use
the PS-3 transform as suggested in [36]. That means, instead of using a mere
hash-and-sign paradigm, one needs to hash the message and the public key, and
then sign the hash value. The PS-3 transform is more lightweight than the BUFF
transform as the latter requires to also append the hash value to the signature.
One important caveat in this regard is that it is often not sufficient to hash only
a part of the public key. Important examples where such an approach does not
help to satisfy BUFF security are given by various multivariate schemes, e.g.,
Vox, where this approach is used explicitly to gain BUFF security, but is not
sufficient.

Structure of the Analyses. The analyses presented in this work follow a common
structure, which we explain briefly. To analyze the BUFF security, the relevant
information is the structure of the public key and signature, and the verification
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algorithm. Those are introduced at the beginning of each section, followed by
the analysis of S-CEO, S-DEO, MBS, and wNR. In Section 6 on multivariate
schemes, we give a more detailed general outline and give a generic proof of MBS
and a generic attack on wNR, as the schemes allow such an all-encompassing
formulation. The remaining analyses in the section follow the same structure.

Table 1: Overview of our results. A ✓ indicates that a signature scheme achieves
a security notion, while a ✗ indicates that there is an attack. A ✦ indicates that
we identified an attack that seems not to be relevant in practice. A superscript
† indicates that the result disproves a claim made for the scheme. For Less and
Meds, the results for S-CEO depend on the parameter sets.

Scheme S-CEO S-DEO MBS wNR Type

Cross [3] ✓ ✓ ✓ ✓

Code
(Sect. 3)

Less [2] ✓ | ✗ ✓ ✓ ✗

Meds [13] ✓ | ✗ ✓ ✓ ✗

Wave [4] ✗ ✗ ✗ ✗

SQIsign [11] ✦ ✓ ✓ ✗ Isogeny (Sect. 4)

Haetae [12] ✓ ✓ ✓ ✓

Lattice
(Sect. 5)

Hawk [9] ✓ ✓ ✓ ✓

HuFu [39] ✗ ✗ ✓ ✗

Raccoon [19] ✓ ✓ ✓ ✓

Squirrels [23] ✗ ✗ ✗† ✗

Mayo [6] ✗ ✗ ✓ ✗

Multivariate
(Sect. 6)

Prov [26] ✓ ✓ ✓ ✓

Qr-Uov [24] ✗ ✗ ✓ ✗

Snova [38] ✗ ✗ ✓ ✗

Tuov [20] ✗ ✗ ✓ ✗

Uov [7] ✗ ✗ ✓ ✗

Vox [35] ✗† ✗† ✓ ✗†

1.2 Related Work

Unforgeability notions can be traced back to [25]. Exclusive ownership originates
from [8,32], which introduces a specialized version under the name Duplicate-
Signature Key Selection. A generalized version was developed in [36] which also
coins the term exclusive ownership. Non-resignability was first mentioned in [28]
though without a formal definition. Eventually, formal definitions of all beyond
unforgeability properties (exclusive ownership, message-bound signatures, and
non-resignability) were developed in [16], which also gives two generic transfor-
mations to achieve them.
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2 Preliminaries

2.1 Notation

For integers m,n with m < n, we write [m] and [m,n] for the sets {1, 2, . . . ,m}
and {m,m+ 1, . . . , n}, respectively. Throughout this work, H will denote a hash
function (optionally with a subscript if multiple hash functions are used) which
is often modeled as a random oracle [5]. For a matrix M , we denote the entries
by mij . Similarly, for a vector xi, its entries are denoted by xi,j . We use ϑ to
denote a generic bound (used for the lattice-based schemes).

2.2 Signature Schemes and Security Notions

A signature scheme Σ consists of three efficient algorithms:

KGen: the key generation gets a security parameter 1λ as input and outputs a
secret key sk along with a public key pk.

Sign: the signing algorithm gets a secret key sk and a message msg as input and
outputs a signature sig.

Verify: the verification algorithm takes as input a public key pk, a message msg,
and a signature sig, and it outputs a bit v.

A signature scheme is correct if, for any key pair (sk, pk) = KGen(1λ), we have
Verify(pk, msg, Sign(sk, msg)) = 1 with overwhelming probability in the security
parameter 1λ.

In this work, we are using the security notions conservative/destructive ex-
clusive ownership and message-bound signatures as formalized in [16], as well
as a weaker form of non-resignability. Below we give the definitions. The corre-
sponding security games S-CEO, S-DEO, MBS, and wNR, are shown in Fig. 1.

For conservative exclusive ownership, the adversary can obtain signatures
for arbitrary messages and is then challenged to find a different public key
that verifies one of the received message-signature pairs. Destructive exclusive
ownership is similar to conservative exclusive ownership. The difference is that
the adversary needs to find not just a different public key but also a different
message that verify using one of the received signatures. The message-bound
signature property guarantees that it is hard to find a signature that verifies two
different messages under the same public key.

Definition 1. A signature scheme Σ = (KGen, Sign, Verify) is said to have
conservative exclusive ownership, destructive exclusive ownership, and message-
bound signatures if for any efficient adversary A, its probability in winning game
S-CEO, S-DEO, and MBS, respectively, is negligible.

Non-resignability provides the adversary with a signature of an unknown
message and asks to find a different public key and (not necessarily different)
signature that verify the unknown message. We consider a slightly weaker form
of non-resignability, which we call weak NR (wNR), which does not grant the
adversary auxiliary information about the message. Note that for the majority
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Game S-CEO/S-DEO

Q ← ∅
(sk, pk)← KGen()

(pk, msg, sig)← A
Sign(sk,·)(pk)

v1 ← Verify(pk, msg, sig)
v2 ← Valid(msg, sig)
return (v1 = 1 ∧ v2 = 1 ∧ pk ̸= pk)

Game wNR

(sk, pk)← KGen()
msg← A0(pk)
sig← Sign(sk, msg)
(sig, pk)← A1(pk, sig)
v← Verify(pk, msg, sig)
return (pk ̸= pk ∧ v = 1)

Game MBS

(msg, msg, sig, pk)← A()
v1 ← Verify(pk, msg, sig)
v2 ← Verify(pk, msg, sig)
return (msg ̸= msg ∧ v1 = 1 ∧ v2 = 1)

Oracle Sign(sk, msg)

sig← Sign(sk, msg)
Q ← Q∪ {(msg, sig)}
return sig

Valid(msg, sig) in S-CEO

if (msg, sig) ∈ Q
return 1

return 0

Valid(msg, sig) in S-DEO

if ∃msg ̸= msg s.t. (msg, sig) ∈ Q
return 1

return 0

Fig. 1: Security games S-CEO, S-DEO, MBS, and wNR, for signature schemes.

of signature schemes we give attacks against wNR which are also valid attacks
against any stronger form of non-resignability, in particular, those including
auxiliary information for the adversary.

Definition 2. A signature scheme Σ = (KGen, Sign, Verify) is said to have non-
resignability if for any efficient adversary (A0,A1), where A0 outputs uniformly
random message, its probability in winning game wNR is negligible.

We say that a signature scheme Σ has full BUFF security, if it satisfies S-CEO,
S-DEO, MBS, and wNR.

2.3 Transformations

There are several generic transformations that turn a signature scheme and a
hash function into a signature scheme that achieves the aforementioned BUFF
notions. For this work, we mainly need two: The BUFF transform [16] (cf. Fig. 3)
and the PS-3 transform [36] (cf. Fig. 2). The former was shown to achieve all
the BUFF notions—based on the assumptions on the used hash function. The
latter was shown to not achieve all notions, due to a property that [16] calls weak
keys, i.e., public keys that verify multiple messages. Both transformations work
by first computing the hash of the public key and message. This hash value is
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KGen∗()

(sk, pk)← KGen()
return (sk, pk)

Sign∗(sk, msg)

h← H(msg, pk)
sig← Sign(sk, h)
return sig

Verify∗(pk, msg, sig)

h← H(msg, pk)
v← Verify(pk, h, sig)
return v = 1

Fig. 2: The signature scheme PS-3[H, Σ] = (KGen∗, Sign∗, Verify∗) constructed
from a hash function H and a signature scheme Σ = (KGen, Sign, Verify).

KGen∗()

(sk, pk)← KGen()
return (sk, pk)

Sign∗(sk, msg)

h← H(msg, pk)
sig← Sign(sk, h)
return (sig, h)

Verify∗(pk, msg, (sig, h))

h← H(msg, pk)
v← Verify(pk, h, sig)
return (v = 1 ∧ h = h)

Fig. 3: The signature scheme Buff[H, Σ] = (KGen∗, Sign∗, Verify∗) constructed
from a hash function H and a signature scheme Σ = (KGen, Sign, Verify).

then signed4 by the signature scheme. The difference is that the BUFF transform
additionally appends this hash value to the signature (which PS-3 does not).

3 Code-based schemes

In this section, we analyze the code-based signature schemes. They rely on two
distinct code-related problems: the more classical syndrome decoding problem
(Cross and Wave), and the fairly new code equivalence problem (Meds and
Less). Although they are based on the same underlying problem, Cross and
Wave are still very different, and while Cross satisfies all BUFF properties, we
show that Wave is vulnerable with respect to each of the notions. Wave fails to
satisfy full BUFF security even after the PS-3 transform. We analyze Cross in
Section 3.1 and Wave in Section 3.4. The two schemes based on code equivalences
(Meds and Less) are very similar. We therefore only present Meds in full detail
(in Section 3.2), as the analysis of Less (in Section 3.3) is almost verbatim the
same. A surprising result of this analysis is that exclusive ownership notions are
satisfied due to the inherent structure of the code equivalence problem. Indeed,
for a given signature, there can essentially only be a single public key that verifies
the message correctly. As this does not suffice to satisfy wNR, we show that using
the PS-3 transform ensures full BUFF security for Meds and Less. Moreover,
we note that PS-3-transformed Meds and Less can be considered to implement
the full BUFF transform.

4 Typically, the signature scheme itself first hashes the message. It is understood that
in this case, the transformed scheme would in fact replace this hash operation, i.e.,
it signs H(msg, pk) instead of H(H(msg, pk)).
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3.1 CROSS

Cross is a code-based signature scheme based on a zero-knowledge identification
protocol, the security of which relies on the NP-complete restricted syndrome
decoding problem. To increase the soundness of the Fiat-Shamir transform, Cross
incorporates Merkle trees into its signature definition. There are two variants
of Cross, R-SDP and R-SDP(G), where the latter restricts the problem to a
subgroup G, to achieve shorter signature sizes. As the analysis regarding BUFF
security is the same for both versions, we will only consider Cross-R-SDP(G).

The protocol uses integers k,m, n, t, w, λ, prime numbers p and z, and an
element g ∈ F∗

p of order z. The cyclic subgroup generated by g is denoted by
E ⊆ F∗

p and G denotes a subgroup of En. Further, a pseudorandom number
generator PRNG is used, which we assume to be ideal throughout our analysis,
i.e., the outputs are random.

Key Pair. The public key consists of a tuple (seedpk, s) for seedpk ∈ {0, 1}λ and
s ∈ Fn−k

p . The secret key is given by seedsk ∈ {0, 1}λ.

Signature. The signature of a message msg consists of

salt||d01||db||MerkleProofs||SeedPath||rsp0||rsp1

for d01, db ∈ {0, 1}λ, MerkleProofs ∈ {0, 1}lm , SeedPath ∈ {0, 1}ls with

lm = 2λ
(

1 + (t− w) log2

(
t

t− w

))
, ls = λ(t− w) log2

(
t

t− w

)
,

rsp0 ∈ (Fn
p × Fm

z )t−w, and rsp1 ∈ ({0, 1}λ)t−w.

Verify. Given a public key pk = (seedpk, s), a message msg, and a signature sig =
(salt||d01||db||MerkleProofs||SeedPath||rsp0||rsp1), the verification algorithm
is shown in Fig. 4.

S-CEO. Given a public key pk = (seedpk, s), a message msg, and a signature
sig such that Verify(pk, msg, sig) = 1, we need to find a different public key
pk = (seedpk, s) such that Verify(pk, msg, sig) = 1. Note that for b[i] = 0, the
values ti are computed as xiH

⊤ − β[i]s, then hashed to cmt0[i].
First, one sees that a change in the ti leads to a change of cmt0[i], consequently

a change in d′
0 and d′

01, hence finally an invalid signature. Here, we use that
changing the values in the Merkle tree results in another root, as long as the
hash function is collision-resistant. Thus, any change of the public key that results
in a change in any of the ti will not be accepted in the verification.

Hence, we have to find pk = (seedpk, s) ̸= (seedpk, s) = pk such that ti = ti
holds for all i with b[i] = 0. Note that we can assume that b has roughly t/2
bits equal to 0 as it is generated with the PRNG. Then the problem corresponds
to solving the system ti = xiH

⊤ − β[i]s of t/2 random equations in the single
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Verify(pk, msg, sig)

(seedpk, s)← pk

(salt, d01, db, MerkleProofs, SeedPath, rsp0, rsp1)← sig

H, MG ← PRNG(seedpk) // H ∈ F(n−k)×k
p , MG ∈ Fm×n

z

β ← PRNG(H(H(msg)||d01||salt)) // β ∈ (F∗
p)t

b← PRNG(db) // b ∈ {0, 1}t with hamming weight w

(seed0, . . . , seedt−1)← RebuildSeedTreeLeaves(SeedPath, b, salt)
j ← 0
for i = 0, . . . , t− 1 do
if b[i] = 1

(cmt1[i], yi)← Fb1(seedi, salt, MG, β[i], i)
else

(cmt0[i], cmt1[i], yi)← Fb0(rsp0[j], rsp1[j], MG, H, β[i], s, salt, i, j)
j ← j + 1

d′
0 ← RecomputeMerkleRoot(cmt0, MerkleProofs, b)

d′
1 ← H(cmt1[i], . . . , cmt1[t− 1]), d′

01 = H(d′
0||d′

1), d′
b = H(y0|| . . . ||yt−1)

if (d01 = d′
01 ∧ db = d′

b)
return 1

return 0

Fb1(seedi, salt, MG, β[i], i)

cmt1[i]← H(seedi||salt||i)
(ui, ξi)← PRNG(seedi)
// ui ∈ Fn

p , ξi ∈ Fm
z

ηi ← ξiMG

ei ← (gηi[1], . . . , gηi[n])
return (cmt1[i], yi = ui + β[i]ei)

Fb0(rsp0[j], rsp1[j], MG, H, β[i], s, salt, i, j)

(yi, δi)← rsp0[j] // (yi, δi) ∈ Fn
p × Fm

z

verify δi ∈ G

σi ← δiMG

vi ← (gσi[1], . . . , gσi[n])
xi ← vi ⋆ yi // component-wise multiplication

ti = xiH
⊤ − β[i]s

cmt0[i] = H(ti||δi||salt||i)
cmt1[i] = rsp1[j]
return (cmt0[i], cmt1[i], yi)

Fig. 4: The verification algorithm of Cross. Note that the PRNG generation
of H,MG, ui and ξi is depicted in a simplified fashion; further observe that
RecomputeMerkleRoot only needs the subset {cmt0[i] | i s.t. b[i] = 0} of com-
mitments. We do not provide definitions for functions that are not relevant for
the BUFF analysis.
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indeterminate s. If we choose seedpk = seedpk, we have H = H and xi = xi,
thus there is no other solution than s. If we choose seedpk ̸= seedpk, we obtain
a different pseudorandom matrix H ̸= H and vector xi ≠ xi and the probability
that the resulting system is solvable is

(
1/pn−k

)t/2. For all parameter sets of
Cross, this is less than 2−20 000. Therefore, Cross fulfills S-CEO security.

S-DEO. Given a public key pk, a message msg, and a signature sig such that
Verify(pk, msg, sig) = 1, we need to find a second public key pk ̸= pk and a
second message msg ̸= msg such that Verify(pk, msg, sig) = 1. Here, the same
argument as in the S-CEO analysis is applicable. Even though the message can
be changed, this brings no advantage to an adversary as it is directly hashed,
so that the value of β cannot be controlled. Thus, the situation is again that s
needs to be chosen such that s = (xiH

⊤ − ti) · β[i]−1 holds for all i with b[i] = 0.
With the same argument as above, this implies that Cross is S-DEO-secure.

MBS. One needs to find a public key pk, two distinct messages msg ̸= msg, and a
signature sig, such that Verify(pk, msg, sig) = 1 and Verify(pk, msg, sig) = 1.
For different messages, but the same signature and public key, only the values
for β differ in the computation of ti for i such that b[i] = 0. This implies ti ̸= ti
and hence the verification fails, as long as the hash function is collision-resistant.
Therefore, MBS security is given.

wNR. Given a public key pk and a signature sig to an unknown message
msg, one has to find another public key pk ̸= pk, and a signature sig such
that Verify(pk, msg, sig) = 1. For unknown messages, the values of β are also
unknown. Thus, even though the public key and signature can be chosen freely,
an attacker cannot know what to set them to, making this problem as hard as a
random search of two hash values, each of size at least 256 bits, depending on
the security level. Hence, the success probability is at most 2−512. We conclude
that Cross is wNR-secure.

3.2 MEDS

Meds is a signature scheme based on the difficulty of finding equivalences of
matrix codes in the rank metric. It is constructed from a zero-knowledge identi-
fication protocol and involves a technique to increase the soundness and thereby
reduce the signature size. The protocol uses integers m,n, s, t, a prime power
q, and the field Fq with q elements. The hash function H maps to {0, . . . , s}t,
its entries are denoted hi. The standard form of a code is the unique generator
matrix in row-reduced echelon form.

Key Pair. The public key consists of matrices G0, . . . , Gs ∈ Fk×nm
q , all in stan-

dard form. For i = 0, . . . , s, let Ci denote the code generated by Gi. The secret
key consists of code equivalence maps πAi,Bi

: C0 → Ci for i = 1, . . . , s, where
Ai and Bi are square matrices of the appropriate sizes. It holds that Gi is the
standard form of AiG0Bi.
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Signature. The signature of a message msg to a public key (G0, . . . , Gs) consists
of (h, πi,hi

), where h = H(G̃0, . . . , G̃t, msg) ∈ {0, 1}t, and πi,hi
: Ghi

→ G̃i are
code equivalences, for i = 1, . . . , t. The matrices G̃i are constructed as ÃiG0B̃i

using random matrices Ãi and B̃i , for i = 1, . . . , t.

Verify. The verification algorithm computes G̃i using πi,hi
Ghi

and checks if
h = H(G̃1, . . . , G̃t, msg) holds.

S-CEO. Let (Gj)j be a public key and msg be a message with signature sig =
(h, πi,hi

). Fix an index i and set j = hi. Then, πi,hi
Gj and G̃i define the same

code. Thus, if (G′
j)j would be another public key accepting the same signature

for the message msg, we find that π−1
i,hi

G̃i and G′
j both define the same code as

Gj . Hence, Gj = G′
j by normalization. Thus, a message-signature pair cannot be

attacked if the following assumption holds: For each j there is an index i such
that hi = j. Conversely, suppose j∗ is an index such that hi ≠ j∗ for all i. Then
we may pick an arbitrary G′

j∗ different from Gj∗ , while setting G′
j = Gj for all

j ̸= j∗. As Gj∗ or G′
j∗ are not used, the verification succeeds. If an index j∗

exists, the new public key is constructed in constant time.
We conclude that a message-signature pair is vulnerable to an S-CEO attack,

if and only if for the corresponding h there is such an index j which is not one
of the components of h. Assuming that h is uniformly random, this translates to
picking uniformly maps {1, . . . , t} → {0, . . . , s− 1} which are non-surjective.

As any such choice depends on a query to a signature oracle, we bound the
number of queries by 264, cf. [33, Section 4.B.2]. We say a parameter set is
vulnerable against an S-CEO attacker if, with less than 264 queries, the proba-
bility of finding a non-surjective mapping exceeds 50%. Conversely, we declare
a parameter set to be secure if, after 264 queries, the probability of finding a
non-surjective map is still negligible.

To compute these probabilities, we define Aℓ as the event that after ℓ queries,
no non-surjective map has been found. It is easy to see that

1−
(

1−
(
s− 1
s

)t
)ℓ

≤ P(Aℓ) ≤ 1−
(

1− s
(
s− 1
s

)t
)ℓ

.

Using standard formulas and approximations for logarithm, we find that for

q ≈ log(2)(
s−1

s

)t ,

the probability of finding non-surjective maps exceeds 1
2 . As can be seen in

Table 2, this shows that all but two parameter sets of Meds are vulnerable to
attacks. For the remaining two parameter sets, we can use the upper bound

P(A2λ) ≤ 2λs

(
s− 1
s

)t

,

which is valid if s
(

s−1
s

)t is sufficiently small. The bounds are given in the final
row of Table 2.

12



Table 2: The third row denotes the number of queries q such that the attack
probability is above 50%. The probability in the final row denotes the chance of
finding a message-signature pair that is vulnerable after 264 queries.

Security Level I I III III V V

s 4 5 4 5 5 6
t 1152 192 608 160 192 112
Lower bound log2(q) 477 61 251 50 61 28
Success probability after 264 queries 2−412 ≈ 1 2−186 ≈ 1 ≈ 1 ≈ 1

S-DEO. Meds satisfies S-DEO as any change in the message yields a change in
the hash h that is part of the signature, unless a collision of the hash is found.

MBS. Meds satisfies MBS security trivially, if the hash function is collision-
resistant, as distinct messages yield distinct hashes, contained in the signature.

wNR. Meds does not satisfy wNR security. Indeed, given a public key (Gi)i

and a signature (h, (πi,hi)) that verify an unknown message msg, we can adapt
the public key and the signature as follows. Pick arbitrary matrices A,B of
the correct size, apply to G1 the transformation πA,B, and update this new
generator matrix G1 as the first component in the public key. For each i such
that hi = 1, modify the function πi,1 to πi,1 ◦π−1

A,B
. The verification will succeed,

as by construction, πi,1 ◦ π−1
A,B

G1 = πi,1G1 = G̃i. Note that h in the signature is
unchanged.

Remark 3. The signature scheme Meds would additionally satisfy wNR, if in
the signing process, h would be redefined as h := H(G̃1, . . . , G̃t, msg, pk), which
corresponds to an application of PS-3. Indeed, as h itself is part of the signature,
this change can be viewed as applying the BUFF transform to Meds, making it
secure against all BUFF notions.

3.3 LESS

Less is, like Meds, a signature scheme that relies on the code-equivalence prob-
lem and is based on a zero-knowledge identification protocol. Due to the strong
similarity with Meds, we do not provide all details. In short, Less does not
satisfy wNR, but satisfies S-DEO and MBS. Like in the analysis of Meds, S-
CEO security depends on the parameter set. The detailed results can be found
in Table 3. Note that the second parameter set requires fewer queries than the
security parameter and after 264 queries, the success probability of an attack is
2−35. While 2100 signature queries are too many, this parameter set seems to
be an edge case which we cannot safely declare to be secure. Adding the public
key in the hash computation makes Less BUFF secure, as this is essentially the
BUFF transform.
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Table 3: The third row denotes the number of queries q such that the attack
probability is above 50%. The probability in the final row denotes the chance of
finding a message-signature pair that is vulnerable after 264 queries.

Security Level I I I III III V V

s 2 4 8 2 3 2 3
t 247 244 198 759 895 1352 907
Lower bound log2(q) 246 100 37 758 523 inf 530
Success probability after 264 queries 2−182 2−35 ≈ 1 2−694 2−457 ≈ 0 2−464

3.4 WAVE

Wave is a code-based signature scheme using the Hamming weight over the
field F3. The security of Wave relies on the syndrome decoding problem and a
scheme-specific problem regarding the indistinguishability of the public key.

The Hamming weight of a vector over F3 is denoted |_|. Wave uses integer
parameters n and k, which are the length and dimension of the codes, and ω, a
target Hamming weight.

Key Pair. The public key is a matrix M = M(R) ∈ Fk×(n−k)
3 , where R ∈

F(n−k)×k
3 is a matrix and M(R) is defined row-wise by

row(M, 2i) = col(R, 2i) + col(R, 2i+ 1)
row(M, 2i+ 1) = col(R, 2i)− col(R, 2i+ 1),

for 0 ≤ i < k−1
2 , and if k is odd, then row(M,k − 1) = −col(R, k − 1).

Signature. A signature sig = (salt, s) consists of an element s ∈ Fk
3 and a

random value salt. It defines a valid signature for a message msg and the public
key M = M(R), if and only if

|s|+ |H(msg||salt) +Rs| = ω , (1)

where H is a hash function that maps to Fn−k
3 .

Verify. The verification algorithm checks whether Equation (1) holds.

S-CEO. Given a public key M = M(R), any message msg, and a signature
sig = (salt, s), we pick a matrix R such that Rs = Rs but R ̸= R, for instance
by extending s to a basis and defining R on the other basis vectors randomly.
Then, Equation (1) holds trivially with R. Setting M = M(R) yields the new
public key.
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S-DEO. Given a public key M = M(R), any message msg, and a signature
sig = (salt, s), we randomly pick a new message msg ≠ msg and compute
h := H(msg||salt). We pick a vector t ∈ Fn−k

3 such that |h − t| = ω − |s| −: ωs,
which can be done by choosing a random t′ with hamming weight ωs and setting
t = h− t′. Then we choose R such that Rs = t and set M = M(R). We find that
Equation (1) is satisfied, indeed, |s|+ |h−Rs| = |s|+ |t′| = ω .

MBS. The MBS security of Wave can be attacked as follows. First, we pick
random messages msg ̸= msg, and a random salt. We compute h = H(msg||salt)
and h = H(msg||salt). Then we need to find t ∈ Fn−k

3 , such that

ω′ := |h− t| = |h− t| < ω .

Indeed, if we have found such a t, we define s such that |s| = ω − ω′ and R such
that Rs = t. Then, both messages are verified with the signature sig = (salt, s)
under the public key M = M(R), as Equation (1) is satisfied for both.

A simple but tedious combinatorial construction shows that such a t can be
found in almost all cases.5

wNR. The attack against the S-CEO security of Wave applies to wNR, as no
information about the message is required.

Remark 4. For Wave, we can show that applying the PS-3 transform does
not suffice to achieve full BUFF security. Let us suppose that the value h in
the signature is set to H(msg||pk||salt), and a signature (salt, s) is valid, if
Equation (1) holds with this h. Then, the resulting signature scheme is not MBS
secure. Indeed, we begin by picking a matrix R from which pk is deduced and
for which we know an efficient decoding algorithm G. We set salt randomly.
We pick random messages msg and msg and compute h = H(msg||pk||salt) and
h(msg||pk||salt). As in the attack against MBS security for the original Wave
scheme, we can find t such that ω′ := |h− t| = |h− t|. We set d = ω−ω′ and run
G with target vector t and Hamming weight d to obtain s. Then, sig = (salt, s)
is a valid signature for both msg and msg under the public key pk.

Despite this, the PS-3-transformed version of Wave does satisfy S-CEO,
S-DEO, and wNR.

4 Isogeny-based schemes

In this section, we analyze the BUFF security of SQIsign [11], the sole isogeny-
based signature scheme submitted to the NIST standardization process. We first
give some background and notation that we require for the analysis.

5 A Python script is provided at https://git.uni-regensburg.de/buff/wave_mbs.
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E0 E1

EA E2

φA

φresp

φchall

φcom

Fig. 5: The SQIsign protocol with three phases: commitment φcom, challenge
φchall, and response φresp.

Background and notation. For elliptic curves E,E′ over a finite field Fq, an
isogeny is a non-constant morphism φ : E → E′ such that φ(∞E) =∞E′ for the
respective points at infinity on E resp. E′. A subgroup G of order m uniquely
(up to composition with isomorphisms) determines an isogeny φ : E → E/G,
where the kernel ker(φ) = G and the degree of φ is m. Such a subgroup can be
described by a single point K ∈ E of order m, i.e., G = ⟨K⟩. SQIsign uses a
compressed representation of subgroups: Given a deterministic basis (P,Q) of
the m-torsion subgroup E[m], we can represent a suitable point as K = P + [s]Q
or K = [s]P +Q for an s ∈ Z/mZ. Hence, given s and a decision bit b ∈ {0, 1},
we can compute K = P + [s]Q, where b indicates whether P and Q need to
swapped prior to computing K. All occurring values s and b (with indices) will
be of this form, and we refer to this computation as DecompressP,Q(s, b), where
b can be omitted if no point swap is necessary. Each isogeny φ : E → E′ has
a unique dual isogeny φ̂ : E′ → E such that the composition φ̂ ◦ φ resp. φ ◦ φ̂
is the multiplication-by-m map on E resp. E′. We will only use supersingular
curves E over Fp2 for a large prime p.

4.1 SQIsign

SQIsign applies the Fiat-Shamir transform to an identification protocol based
on isogenies. Following Fig. 5, we define a public starting curve E0, and the
prover computes a secret isogeny φA : E0 → EA, where EA is published. The
prover commits to the codomain E1 of the commitment isogeny φcom : E0 → E1,
followed by the challenger providing a challenge isogeny φchall : E1 → E2. The
prover answers with an isogeny φresp : EA → E2. For the computation and
the zero-knowledge property of φresp we refer to the SQIsign specification [11].
The standard Fiat-Shamir transform turns this protocol into a non-interactive
signature scheme. We note that, due to the exponentially large challenge space,
a single round of the protocol suffices.

Key Pair. For a fixed supersingular curve E0 over Fp2 of known endomorphism
ring, a secret key is an isogeny φA : E0 → EA. The public key is given by EA.

Signature. A signature consists of compressed descriptions of the isogenies φresp
and φchall. For fixed positive integers e, f, g, n with e = nf it is of the form

sig = (b, s(1), . . . , s(n), r, b2, s2, b3, s3),
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Verify(pk, msg, sig)

1 : (b, s(1), . . . , s(n), r, b2, s2, b3, s3)← sig

2 : E(1) ← pk

3 : (P (1), Q(1))← FindBasis2f (E(1))

4 : K(1) ← DecompressP (1),Q(1) (s(1), b)
5 : for j = 1, . . . , n− 1 do

6 : φ(j) : E(j) → E(j+1) = E/⟨K(j)⟩

7 : Q(j+1) ← φ(j)(Q(j))

8 : P (j+1) ← CompleteBasis2f (E(j+1), Q(j+1))

9 : K(j+1) ← DecompressP (j+1),Q(j+1) (s(j+1))

10 : φ(n) : E(n) → E(n+1) = E/⟨K(n)⟩
11 : Q′, E1 = Decompress−

Challenge(E(n+1), b2, s2, b3, s3)
12 : if [r]Q′ = H(msg, E1)
13 : return 1
14 : return 0

Fig. 6: Verification algorithm of SQIsign.

where b, b2, b3 ∈ {0, 1}, s(j), s2 ∈ Z/2fZ, s3 ∈ Z/3gZ, and r ∈ Z/2f 3gZ, following
the notation from [14].

Verify. The verification algorithm, described in Fig. 6, consists of three parts.
The most relevant part for the following discussion is the recomputation of
φresp : EA → E2 through a chain of n isogenies φ(j) of degree 2f . Each isogeny
φ(j) is determined by a kernel generator K(j). We compute these K(j) by de-
terministically sampling a basis (P (j), Q(j)) of E(j)[2f ] through FindBasis if no
point is given resp. CompleteBasis if Q(j) is given, and running Decompress
with input s(j) (and b for j = 1). In particular, for j > 1, only P (j) is sampled,
while we get Q(j) = φ(j−1)(Q(j−1)), such that Q(j) generates the kernel of the
dual isogenies φ̂(j−1). Therefore, we compute φresp through the following chain:

EA = E(1) E(2) E(3) · · · E(n+1) = E2
φ(1) φ(2) φ(3) φ(n)

In the second step, summarized in DecompressChallenge, we recompute the
dual φ̂chall : E2 → E1 of order Dchall = 2f 3g using FindBasis and Decompress
with input (b2, s2, b3, s3). For a deterministically sampled point Q′′ ∈ E2 of order
Dchall that is linearly independent of ker(φ̂chall), it computes Q′ ← φ̂chall(Q′′).
Furthermore, this function verifies that the composition φ̂chall ◦ φresp is cyclic.

The final step verifies that [r]Q′ corresponds to the kernel generator of the
challenge isogeny, i.e. [r]Q′ = H(msg, E1). The function H is defined to first
compute a = H(msg, j(E1)) ∈ Z/DchallZ for a hash function H and the j-invariant
j(E1), and output R1 + [a]S1 with a deterministic basis (R1, S1) of E1[Dchall].

S-CEO. Let sig be a valid signature for pk = EA and msg, i.e., Verify(pk, msg,
sig) = 1. Our aim is to construct a public key pk = EA′ ̸= EA such that
Verify(pk, msg, sig) = 1. This amounts to finding EA′ for which the compression
in sig describes an isogeny ψresp : EA′ → E2 that has the same codomain E2.
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In this case, the second and third step of the verification are the same as when
running Verify(pk, msg, sig).

A naive way to find such a EA′ is to compute random 2e-isogenies ψ′ : E2 →
EA′ and check if (b, s(1), . . . , s(n)) generates an isogeny ψresp : EA′ → E2 mapping
to the correct E2. However, the fact that we know several curves on the path
between EA and E2 from sig allows for an easier S-CEO attack as follows:

1. Find ψ̃(1) : E(2) → EA′ of degree 2f with FindBasis and Decompress(s(1), b)
generating the 2f -isogeny ψ(1) : EA′ → E(2) with the desired codomain.

2. Ensure that the following 2f -isogenies satisfy ψ(j) = φ(j) for j > 1, and
hence ψresp maps to E2.

Explicitly generating EA′ in the first step seems infeasible, hence we resort to
a search approach, going through all 2f suitable isogenies ψ̃. We require that
the deterministic basis (P̃ , Q̃) of EA′ [2f ] and b, s(1) ∈ sig construct a suitable
kernel generator K̃ such that ψ(1) : EA′ → EA′/⟨K̃⟩ = E(2). Since there are
3 · 2f−1 isogenies of degree 2f starting from EA′ and sig determines exactly one
of these, the success probability for this step, given sig, is 1/(3 · 2f−1). Thus, we
can expect to find a suitable curve EA′ with a probability of roughly 50%.

Assuming we found a suitable EA′ , we obtain a basis (P (2), Q̃(2)) of E(2)[2f ],
where Q̃(2) = ψ(1)(Q̃). In contrast, a verification starting from EA obtains the
basis (P (2), Q(2)) with the same sampled point P (2), but Q(2) = φ(1)(Q(1)). Since
the dual isogenies of φ(1) and ψ(1) are not equal, we have Q̃(2) /∈ ⟨Q(2)⟩. For the
second attack step, we require for j > 1 that

⟨P (j) + [s(j)]Q(j)⟩ = ⟨P (j) + [s(j)]Q̃(j)⟩.

All following steps trivially succeed if s(j) = 0 for all j > 1. Furthermore, if
[2k]Q(2) = [2k]Q̃(2) for 0 < k < f , we succeed if s(j) ≡ 0 mod 2k for all j > 1.
Even though the attack can only succeed if the signature values s(j) for j > 1
have a very special shape, it appears infeasible to enumerate all such possibilities,
and compute an explicit success probability.

Instead, we implemented this attack using the AprèsSQI software [14], which
closely follows the NIST submission of SQIsign.6 For reduced parameters that
allow feasible running times, i.e., a 36-bit prime p and f ∈ {7, 8, 9, 10}, our
implementation suggests that the probability of a given (s(1), . . . , s(n)) to be
vulnerable to this attack is below 2−f . If we conjecture that this behavior scales
to the SQIsign parameter sizes featuring f = 75, 97, 145 for NIST-I/III/V, this
means that for each given sig, the S-CEO attack has a search complexity of
O(2f ) and success probability of 2−f . Although we can conjecture that this
attack does not break S-CEO security, we emphasize that better attack avenues
might exist, and our probability estimations can only be viewed as a lower bound.

Remark 5. The probability and effort for a possible attack depend on the size of
f and how φresp is verified. E.g., the SQIsign variant AprèsSQI [14] proposes
6 The implementation is available at https://git.uni-regensburg.de/buff/

sqisign_ceo.
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much larger values of f , which push the success probability below the probability
of breaking EUF-CMA. On the other hand, earlier parameter proposals use
smaller values of f [17,15,18,10], therefore simplifying the described attack.

AprèsSQI further proposes a variant that samples both P (j) and Q(j) deter-
ministically instead of obtaining Q(j) though an isogeny evaluation. Hence, the
second step in the S-CEO attack automatically succeeds, pushing the overall
success probability for a given signature to 50% with search complexity O(2f ).

S-DEO. In contrast to S-CEO, we additionally need to find a message msg ̸= msg
such that Verify(pk, msg, sig) = 1. Thus, we can only repeat the S-CEO attack
above if the challenge curves E2 resp. E′

2 when signing msg with pk resp. msg with
pk are equal, requiring H(msg, E1) = H(msg, E1), and therefore a hash collision
of H modulo Dchall.

If H(msg, E1) ̸= H(msg, E1), i.e. E′
2 ̸= E2, this attack is not available, hence

we can only pick a random public key pk. During verification, after recomputing
ψresp and running DecompressChallenge, we end up at E′

1 ̸= E1, such that
the check [r]Q′ = H(msg, E′

1) only succeeds with negligible probability 1/Dchall.
Therefore SQIsign is S-DEO-secure.

MBS. Assume that we have a valid signature sig for pk and msg, i.e., Verify(pk,
msg, sig) = 1, and a message msg ̸= msg such that Verify(pk, msg, sig) = 1. In
both verification runs, the first and second step that recompute φresp and φ̂chall
are equal. In the last step, both runs compute Q′ ← φ̂chall(Q′′) and verify that
[r]Q′ = H(msg, E1) resp. [r]Q′ = H(msg, E1). However, if verification for msg and
msg succeeds, we have H(msg, j(E1)) = H(msg, j(E1)), yielding a hash collision of
H modulo Dchall. Since this probability is negligible, SQIsign is MBS-secure.

wNR. Given a public key pk and a signature sig for an unknown message msg,
an attacker has to find a public key pk ̸= pk and a signature sig such that
Verify(pk, msg, sig) = 1. To construct pk and sig, we run the first step of
Verify(pk, msg, sig) to obtain the curve E2. We choose a random 2f -isogeny
ψ̂(n) : E2 → Ẽ(n) such that the composition φchall ◦ ψ̂(n) is cyclic. Starting
from j = n − 1 in decreasing order, we then construct random 2f -isogenies
ψ̂(j) : Ẽ(j+1) → Ẽ(j) such that the composition ψ̂ = ψ̂(1) ◦ · · · ◦ ψ̂(n) is cyclic. For
each of the ψ̂(j), we pick a point R ∈ Ẽ(j+1) of order 2f such that R is linearly
independent of ker(ψ̂(j)). Therefore, K(j) = ψ̂(j)(R) generates the kernel of the
dual isogeny ψ(j) of ψ̂(j).

For the signature sig we use ψresp = ψ(n) ◦ · · · ◦ ψ(1) and the public key
pk = EA′ = Ẽ(1). For a valid signature the kernel generator points K(j) have
to be represented in a compressed form. To compute this representation, we
follow the approach of SQIsign. For the deterministic basis (P̃ (1), Q̃(1)) this
allows us to find s̃(1) to get a suitable kernel generator P̃ (1) + [s̃(1)]Q̃(1)) for ψ(1),
potentially swapping P̃ (1) and Q̃(1) by setting b̃ = 1, and b̃ = 0 otherwise. The
following steps proceed analogously, computing s̃(j) through discrete logarithms
without requiring to swap points.
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Since E2 is the codomain of ψ and φ̂chall ◦ψ is cyclic by construction, we can
reuse the values r, b2, s2, b3, s3 for the second and third step of the verification of
sig. Hence, we have constructed a public key pk ̸= pk and signature sig ̸= sig of
the form sig = (̃b, s̃(1), . . . , s̃(n), r, b2, s2, b3, s3) such that Verify(pk, msg, sig) =
1 without requiring knowledge of msg.

Remark 6. For SQIsign, the PS-3 transform suffices to achieve full BUFF
security. In this case, the signer computes the challenge generator through
H(msg, pk, E1), which uses the hash value a = H(msg, pk, j(E1)) ∈ Z/DchallZ as
described above. This means that r ∈ sig, which satisfies [r]Q′ = H(msg, pk, E1)
for a deterministic point Q′, can be viewed as an encoding of the hash value
H(msg, pk, j(E1)), resembling the BUFF transform.

In this case, the problem to solve S-CEO is equivalent to the description
of C-DEO above. For wNR, the PS-3 transform implies that the curve E2
in Verify(pk, msg, sig) is not a valid challenge curve in Verify(pk, msg, sig).
Attacking wNR thus requires to pick pk, sig and hope for [r]Q′ = H(msg, E′

1) to
hold for the chosen r, which has negligible success probability.

5 Lattice-based schemes

The lattice-based schemes we deal with in this section can be divided into two
groups: Raccoon and Haetae, which are closely related to Dilithium; Hawk,
HuFu, and Squirrels, which follow a GPV-like approach. For Raccoon and
Haetae, we give an outline of the analysis from [16] in Section 5.4. The cases
of Hawk (Section 5.1), HuFu (Section 5.2), and Squirrels (Section 5.3) are
quite different, and we do a hands-on analysis. The results turn out to differ
case by case. While Hawk achieves full BUFF security and HuFu only lacks
wNR security, Squirrels is insecure with respect to all notions. We remark
that a PS-3-transformed HuFu would satisfy all BUFF security notions. Finally,
Squirrels is vulnerable even after the PS-3 transform and only the full BUFF
transform could achieve all notions.

5.1 HAWK

Hawk applies a GPV-like approach. It uses module lattices and its security is
based on the One More Approximate Shortest Vector problem [22].

Key Pair. Consider the number field Kn = Q[X]/(Xn+1) and its ring of integers
Rn = Z[X]/(Xn + 1) for m ∈ N and n = 2m. The secret key sk is a matrix

B =
(
f F
g G

)
∈ GL2(Rn) ,

and the public key pk = (q00, q01) ∈ R2
n is computed from

Q = B∗B =
(
q00 q01
q10 q11

)
.
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Verify(pk, msg, sig)

1 : (salt, s1)← sig

2 : (q00, q01)← pk

3 : M ← H(msg||H(pk))
4 : (h0, h1)← H(M ||salt)

5 : s0 ←
⌊

h0

2 −
q01

q00

(
h1

2 − s1

)⌉

6 : h← (h0, h1), s← (s0, s1)
7 : w ← h− 2s

8 : if ∥w∥Q ≤ ϑ

9 : return 1
10 : return 0

Fig. 7: Verification algorithm of Hawk.

The matrix Q induces the norm ∥·∥Q : K2
n → Q, f 7→

√
1
n Tr(f∗Qf). Since

Q = B∗B, this norm fulfills ∥f∥Q = ∥Bf∥ for all f ∈ K2
n.

Signature. Hawk signatures consist of sig = (salt, s1) for s1 ∈ Rn.

Verify. Given a public key pk = (q00, q01), a message msg, and a signature
sig = (salt, s1), the verification algorithm is shown in Fig. 7.

S-CEO. Given a public key pk = (q00, q01), a message msg, and a signature
sig = (salt, s1) such that Verify(pk, msg, sig) = 1, we need to find a public
key pk ̸= pk with Verify(pk, msg, sig) = 1. Assuming H to be a random oracle,
choosing pk ̸= pk implies h1 ̸= h1 and hence w1 ̸= w1. In order for an S-CEO
attacker to be successful, ∥(0, w1)∥Q ≤ ∥(w0, w1)∥Q ≤ ϑ must hold. However,
as w1 is random in Rn, the probability for this is negligible. Indeed, for the
parameters in Hawk, a θ-ball is of size 231·3, while the space of possible values is
(much larger than) 231·256. So a random value will be in a θ-ball with probability
about 2−31·253.

S-DEO. Given a public key pk, a message msg, and a signature sig = (salt, s1)
such that Verify(pk, msg, sig) = 1, we need to find pk ̸= pk and msg ̸= msg with
Verify(pk, msg, sig) = 1. As the message is only used in the computation of h,
the analysis works completely analogously as for S-CEO.

MBS. One needs to find a public key pk, distinct messages msg ̸= msg, and
a signature sig = (salt, s1), s.t. Verify(pk, m, sig) = 1 for m ∈ {msg, msg}.
Assume one can find such pk, msg, msg, and sig. Then, by definition of the
verification, ∥w∥Q, ∥w∥Q ≤ ϑ and hence ∥w−w∥Q ≤ 2ϑ hold. Using the definition
of B and s0 = h0

2 −
q01
q00

(
h1
2 − s1

)
+ ε for ε ∈ [− 1

2 ,
1
2 ) (and the analogue for s0),

we obtain

∥w − w∥Q = ∥B(w − w)∥ =
∥∥∥∥(f(h0 − h0 − 2s0 + 2s0) + F (h1 − h1)

g(h0 − h0 − 2s0 + 2s0) +G(h1 − h1)

)∥∥∥∥
=

∥∥∥∥∥∥
(h1 − h1)

(
q01
q00
f − F

)
+ f(ε+ ε)

(h1 − h1)
(

q01
q00
g −G

)
+ g(ε+ ε)

∥∥∥∥∥∥ .
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The probability for this to be smaller than 2ϑ is negligible as q01
q00
f−F and q01

q00
g−G

are fixed values, while h1 − h1 and ε + ε are random. Hence, the advantage of
any attacker against MBS-security of Hawk is similar to the S-CEO advantage.

wNR. Given a public key pk and a signature sig = (salt, s1) to an unknown
message msg, one has to find pk ̸= pk and a signature sig = (salt, s1) (which
may be the same as the given signature) such that Verify(pk, msg, sig) = 1.
Independent of the choice of the public key pk ≠ pk, the value of h is unknown
(as msg is) and as in the S-CEO analysis w1 ̸= w1 holds. Hence, it is infeasible
to choose s1 in a way such that w = h− 2s is small in the Q-norm. Indeed, s1
must be chosen so that 2s is in the Q-norm ball about h, which amounts to the
same probability as computed in the proof of S-CEO.

Remark 7. The Hawk specification [9] states that the design facilitates an ap-
plication of the full BUFF transform. This is the case as the Hawk signa-
ture generation already computes M = H(msg||H(pk)), which—in the full BUFF
transform—needs to be appended to the signature. In the given form, Hawk
can be seen to apply the PS-3 transform, which does not in general guarantee
the BUFF properties. However, our analysis shows that in the concrete case of
Hawk, BUFF security is fulfilled for this weaker transform, i.e., an application
of the full BUFF transform is not necessary, which avoids appending the hash
value to a signature. This is especially interesting given the fact that Hawk is
based on Falcon. Falcon does not use the public key to construct the target
value and was proven to be S-CEO, S-DEO and wNR-insecure.

5.2 HuFu

HuFu applies the GPV approach. It uses unstructured lattices and is based on
the short integer solution and learning with errors problems.

Key Pair. Consider a distribution χ over Z, m,n ∈ N, and Q = pq for p, q some
powers of 2. The secret key is a tuple of matrices sk = (S,E,L22, L32, L33) for
(S,E) ← χn×m × χm×m and L22 ∈ Rn×n, L32 ∈ Rm×n, and L33 ∈ Rm×m. The
public key is a pair pk = (seedÂ, B = p · I − (ÂS +E)) for Â ∈ Zm×n

Q generated
using seedÂ.

Signature. The signature sig of a message msg consists of a tuple (salt, s) for
s = Compress(x1, x2), where x1 ∈ Zn and x2 ∈ Zm.

Verify. Given a public key pk = (seedÂ, B), a message msg, and a signature
sig = (salt, s), the verification algorithm is shown in Fig. 8.

S-CEO. Given a public key pk = (seedÂ, B), a message msg and a signature
sig = (salt, s) such that Verify(pk, msg, sig) = 1, we need to find a second
public key pk = (seedÂ, B) such that Verify(pk, msg, sig) = 1. We choose
seedÂ = seedÂ, which expand to the same matrix Â. As (salt, s) is a valid
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Verify(pk, msg, sig)

1 : (salt, s)← sig

2 : (x1, x2)← Decompress(s)
3 : (seedÂ, B)← pk

4 : u← H(msg, salt)

5 : Â← XOF(seedÂ)

6 : x0 ← (u− Âx1 −Bx2) mod Q

7 : if ||(x0, x1, x2)|| ≤ ϑ

8 : return 1
9 : return 0

Fig. 8: Verification algorithm of HuFu. Note that (x0, x1, x2) denotes the vector
obtained from concatenating x0, x1, and x2 and || · || is the l2-norm.

signature, we know that ||(x0, x1, x2)|| ≤ ϑ, where x0 = (u−Âx1−Bx2) mod Q.
Thus, if we find B s.t. x0 = x0, we obtain ||(x0, x1, x2)|| = ||(x0, x1, x2)|| ≤ ϑ,
which shows that S-CEO security is not given. In order to construct such a B,
first note that we can assume that there is at least one i such that x2,i ≠ 0, as
otherwise one can trivially choose B ̸= B with the desired properties. Without
loss of generality, we assume x2,1 ̸= 0. Then we define B ̸= B as follows: b11 =
(b11 + x2,2), b12 = (b12 − x2,1), and bij = bij for all other i, j. It holds that
(Bx2)1 = (Bx2)1. Thus Bx2 = Bx2 as only the first row differs for B and B.
This implies x0 = x0.

S-DEO. Given a public key pk = (seedÂ, B), a message msg, and a signature
sig = (salt, s) s.t. Verify(pk, msg, sig) = 1, we need to find a second public
key pk ̸= pk and a second message msg ≠ msg s.t. Verify(pk, msg, sig) = 1.
We choose again seedÂ = seedÂ, which yield the same matrix Â. Further we
choose msg ̸= msg randomly and compute u and u. If we find B such that
x0 = u− Âx1 −Bx2 = 0 mod Q, we obtain ||(x0, x1, x2)|| ≤ ||(x0, x1, x2)|| ≤ ϑ.
Then, we have Verify(pk, msg, sig) = 1 for pk = (seedÂ, B), which gives an
attack against S-DEO security. A matrix B such that Bx2 = u − Âx1 can be
constructed if gcd(x2,i) = 1.7 As m ≥ 768, the coefficients of x2 ∈ Zm are
coprime with overwhelming probability given by ζ(m)−1 ≈ 1.

MBS. One needs to find a public key pk = (seedÂ, B), two distinct messages
msg ≠ msg, and a signature sig = (salt, s) such that Verify(pk, msg, sig) = 1
and Verify(pk, msg, sig) = 1. Assume, we have found pk, msg, msg, and sig =
(salt, s) with these properties. Then ||(x0, x1, x2)||, ||(x0, x1, x2)|| ≤ ϑ and hence
in particular ||x0||, ||x0|| ≤ ϑ. Observe that this implies ||u− u|| = ||u− (Âx1 −
Bx2) + (Âx1 − Bx2) − u|| = ||x0 − x0|| ≤ ||x0|| + ||x0|| ≤ 2ϑ. As u = H(msg, r)
and u = H(msg, r), the probability to find messages that yield u and u which are
close to each other is negligible (near-collision resistance of the hash function).8

7 If gcd(x2,i) = 1, then ⟨x2⟩ is saturated. Equivalently, Zm/⟨x2⟩ is free, hence x2 is
part of a basis, on which B can be defined according to the requirement.

8 Near-collision resistance is a stronger form of collision resistance, where it is even
hard to find inputs whose hash values are close (with respect to some norm).
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wNR. Given a public key pk = (seedÂ, B) and a signature sig = (salt, s) to
an unknown message msg, one has to find another public key pk ̸= pk, and a
signature sig = (salt, s) such that Verify(pk, msg, sig) = 1. To do this, we can
proceed exactly as we did for S-CEO. Note that for the attack it is not necessary
to know the message and we can choose sig = (salt, s) = (salt, s) = sig.
Remark 8. We showed that HuFu only achieves MBS security. We observe,
however, that by applying the PS-3 transform, i.e., changing the computation
of u = H(msg, salt) to u = H(msg, pk, salt), full BUFF security can be achieved.
This is the case, as the above change prevents an attacker to control x0 by their
choice of pk—any change to pk also changes the value of u and hence h in an
uncontrollable way. Using this, S-DEO, S-CEO, and wNR security can be proven,
while the proof for MBS security given for unmodified HuFu still applies.

5.3 Squirrels
Squirrels incorporates a GPV-like approach. It is based on unstructured lattices
and uses lattices modulo various distinct primes simultaneously. The public key
is composed of a single vector which is used to check if a target is contained
in the lattice modulo each of the primes. r,s Let n and q be positive integers.
The target determinant is denoted by ∆ =

∏
p∈P∆

p, for P∆ a set of primes
in [230, 231]. The hash function H maps to [0, . . . , q − 1]n−1 × {0} viewed as an
element in Zn with last component being 0.

Key Pair. The Squirrels secret key consists of a matrix B ∈ Zn×n, which, by
design, has a Hermite normal form

HNF(B) =
(
In−1 v

T
i

0 ∆

)
.

The resulting vector v := (vi)i=1,...,n−1 is the public key.

Signature. The signature of a message msg for a public key v consists of (salt, s)
where salt is a random string and s = Compress(s′) with s′ ∈ Zn.

Verify. Given a public key pk = v, a message msg, and a signature sig =
(salt, s), the verification algorithm is described in Fig. 9.

In the analysis below, we write c′ := (c1, . . . , cn−1)T for c = (c1, . . . , cn)T

and ⟨·, ·⟩ for the standard inner product. Note that in the search for elements
v ∈ Zn−1 that satisfy a certain algebraic condition modulo ∆, it suffices to give
v mod p for each p ∈ P∆, by making use of the Chinese Remainder Theorem.
We make use of this argument, without explicitly stating it again.

S-CEO. Given a public key pk = v, a message msg and a signature sig =
(salt, s) such that Verify(pk, msg, sig) = 1, we need to find a distinct public
key pk = v such that Verify(pk, msg, sig) = 1. This translates to finding v,
which is in the kernel of ⟨c′, ·⟩ − cn : Fn−1

p → Fp for all p ∈ P∆ . Note that
dimFp

(ker(⟨c′, ·⟩) − cn) = n − 2. Hence, for each p one can find an element vp

such that ⟨c′, vp⟩ − cn = 0 mod p. Then, pk = v is given by the vp.
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Verify(pk, msg, sig)

1 : (salt, s)← sig

2 : h← H(msg||salt)
3 : s′ ← Decompress(s)
4 : c← s′ + h

5 : if cn =
∑n−1

i=1 vi · ci mod p ∀p ∈ P∆

6 : if ∥s′∥2 ≤ ⌊ϑ2⌋
7 : return 1
8 : return 0

Fig. 9: Verification algorithm of Squirrels.

S-DEO. Given a public key pk = v, a message msg, and a signature sig =
(salt, s) such that Verify(pk, msg, sig) = 1, we need to find a second public key
pk = v ̸= v and a second message msg ̸= msg such that Verify(pk, msg, sig) = 1.
For this, we choose a random msg ̸= msg and compute c = s′ + H(msg||salt).
Hence it is left to find v such that ⟨v, c′⟩ − cn = 0 mod p holds for all p ∈ P∆.
For this, the same argument as for the S-CEO attack applies.

MBS. One needs to find a public key pk = v, two distinct messages msg ̸=
msg, and a signature sig = (salt, s) such that Verify(pk, msg, sig) = 1 and
Verify(pk, msg, sig) = 1. For this, we choose s′ such that ∥s′∥2 < ⌊ϑ2⌋ holds
and compute s = Compress(s′). We then set sig = (salt, s) for some randomly
chosen salt. Further we consider two random messages msg ≠ msg and compute
c = s′ + H(msg||salt) and c = s′ + H(msg||salt). Hence it is left to find v such
that ⟨v, c′⟩ − cn = 0 mod p and ⟨v, c′⟩ − cn = 0 mod p holds for all p ∈ P∆.
Consider for p ∈ P∆ the map

f : Fn−1
p → F2

p, x 7→ (⟨x, c′⟩, ⟨x, c′⟩)

and observe that dimFp
(ker(f)) = n− 3. Hence, we can find vp with the desired

properties, which constitutes v.

Remark 9. In the Squirrels specification it is claimed that MBS security is
fulfilled, which the above disproves. While their claim is based on the similarity to
Falcon, the MBS security of Falcon still holds. The subtle differences between
Squirrels and Falcon are thus important, when it comes to BUFF security.

wNR. Given pk = v, and a signature (salt, s) which verifies an unknown message
msg, we can find a new public key pk = v and a new signature (salt, s) that
verifies msg as follows. Let s′ = Decompress(s). We can assume that with large
probability, s′

n is divisible by a prime ϖ which is not in P∆. E.g., if s′
n is

close to uniform, it will be even with about 0.5 probability. In this case, we set
s′

n := ϖ−1s′
n. Further, we set vp := ϖ−1vp for each p and let v ∈ Zn−1 be the

corresponding vector over Z. Choosing s′
i = s′

i for i = 1, . . . , n− 1, and salt =
salt yields a new public key v and signature (salt, s), with s = Compress(s′)
that verifies the unknown message. Indeed, the hash h did not change by the
procedure and for each p ∈ P∆, we have

∑n−1
i=1 vi,pci,p = ϖ−1∑n−1

i=1 vi,pci,p =
ϖ−1cn,p = s′

n = cn,p using that hn = 0. Thereby the verification succeeds.
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Remark 10. Modifying Squirrels to incorporate the PS-3 transform (i.e., re-
placing h ← H(msg||salt) by h ← H(msg||salt, pk)) does not suffice to achieve
full BUFF security. This is the case, as we can still find S-CEO/S-DEO attacks
that are successful with probability greater than 1

231 : As above we can reduce to
the case of a single p ∈ P∆. While the above change to the scheme prevents an
attacker to choose v in the kernel of ⟨c′, ·⟩− cn : Fn−1

p → Fp, the probability that
this holds for a random v is equal to 1

p ≥
1

231 (finding v by randomly hitting an
element from a subset of size pn−2 contained in a set of size pn−1).

5.4 Further Lattice Candidates

The remaining NIST candidates based on lattices are Haetae and Raccoon.
Both use the Fiat-Shamir with aborts framework and are based on the module
versions of the learning with errors and short integer solution problems. Both
schemes are similar to Dilithium and their BUFF analyses are analogous to
the Dilithium analysis in [16]. In short, Haetae signs the hash of public key
and message and appends a hash value generated (among other inputs) from
public key and message to the signature. Thus, Haetae can be considered to
use the BUFF transform, and if we assume the used hash function to be collision-
resistant and ϕ-non-malleable (as defined in [16]), we obtain BUFF security by [16,
Theorem 5.5]. This is also true for Raccoon, which is structurally very similar
to Dilithium and hence can be viewed to implement the BUFF transform.

6 Multivariate schemes

In this section we analyze the signatures that belong to the family of multivariate
(MV) schemes. After introducing the foundations and basic properties, we will
give a short generic BUFF analysis, i.e., present results that hold for (nearly)
all MV schemes under consideration. After this, we turn to the scheme-specific
analyses: Uov, which is the basis of all remaining candidates, is treated in
Section 6.1. This is followed by the analysis of Mayo in Section 6.2. While
Mayo is based on Uov, its polynomials are constructed in a way that makes the
analysis more involved. We present the details to show that despite the complex
structure of the public key, Mayo dose not achieve full BUFF security. Both Uov
and Mayo—and all MV schemes considered in this paper, except Prov—fulfill
MBS as the only BUFF notion. The analysis of Prov, which achieves full BUFF
security, follows in Section 6.3. For the remaining schemes Qr-Uov, Snova,
Tuov, and Vox, the BUFF analyses are similar to the one given for Uov. We
provide a short outline for each scheme in Section 6.4.

Background and notation of MV schemes. The main object in multivariate
cryptography is a multivariate quadratic map P : Fn

q → Fm
q , which consists

of m homogeneous quadratic polynomials (p(1)(x), . . . , p(m)(x)) in n variables
x = (x1, . . . , xn). The coefficients of each of these quadratic polynomials p(k)(x)
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can be stored in a matrix P (k), where the (i, j)-th entry (p(k))i,j represents the
coefficient of the monomial xixj . Thus, p(k)(x) can be evaluated as x⊤P (k)x.

The task of finding a preimage s ∈ Fn
q for a given target vector t ∈ Fm

q

under a given multivariate quadratic map P is hard in general, as it amounts to
solving a system of multivariate quadratic equations, known as theMQ-Problem.
Consequently, a trapdoor needs to be included in the map P, that allows to find
such s ∈ Fm

q with P(s) = t, which constitutes the signature sig. The precise
realization of this trapdoor varies from scheme to scheme.

Generic BUFF analysis of MV schemes. In the following, we provide the
parts of the BUFF analysis that are the same for (nearly) all multivariate schemes
under consideration—namely the MBS proof and wNR attack. The arguments
for these two notions will hence not be repeated in the scheme-specific sections.
Furthermore, we provide a generic result on the BUFF security of the considered
MV schemes using the PS-3 transform.

MBS security for MV schemes. Since the target vector t ∈ Fn
q is computed as

the hash of (at least) the message msg, multivariate schemes naturally satisfy
MBS. It is not possible that a single signature sig = s verifies different messages
msg ̸= msg, because H(msg||·) = P(s) = H(msg||·) would imply a collision of H.

wNR attack against MV schemes. For an wNR attack, one is given a public
key pk, from which we derive the public map P, and a signature sig = s
to an unknown message msg, and has to find pk ̸= pk and sig = s such that
P(s) = H(msg||·) = P(s). Firstly, note that P(s) = t = H(msg||·) can be computed
without knowing msg, as s is a valid signature. Next, we generate a key pair
(sk, pk) with pk ̸= pk and use it to sign the target vector t. This results in a
signature s that fulfills P(s) = t = H(msg||·) = P(s).

Note that this attack is not applicable for Prov, as it hashes the whole
public key alongside the message, which prevents us from being able to compute
the target before choosing the second public key pk. We give a proof for wNR
security of Prov in Section 6.3. For all other schemes under consideration the
above attack works, however, for Vox and Snova some extra care is necessary,
as both schemes hash parts of the public key alongside the message. In Vox
the public key consists of a seed SeedPub and the quadratic map Pub, which is
generated using SeedPub. By modifying the seed for the secret key while keeping
SeedPub the same, we get a new quadratic map Pub ̸= Pub. The new secret
key is known to the adversary and can be used to sign to the same target. In
Snova the public key is of the form (spublic, (P 22

i )i∈[m]). Here, spublic is a seed
used to generate the remaining components of the public map P, which is done
in the signing and verification algorithm. Choosing spublic = spublic and sk ̸= sk
guarantees (P 22

i )i∈[m] ≠ (P 22
i )i∈[m] and yields a key pair (sk, pk) for which we

can apply the above attack.

BUFF security using PS-3 transform. Our analysis reveals that from the family
of multivariate schemes only Prov satisfies full BUFF security. The main design
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feature that contributes to this is the hashing of the public key alongside the
message. As all multivariate schemes considered in this paper verify signatures
by comparing H(msg, ·) to P(s), we can achieve BUFF security for all of them, by
adding the complete9 public key alongside the message into the hash function. To
prove this, the same arguments as for Prov apply—note that in the analysis of
Prov, we use little scheme-specific details except for the size of the domain of P.
This approach is very similar to applying the PS-3 transform, except for the fact
that an application of PS-3 would result in an additional hash computation (see
Fig. 2) that can be avoided by modifying the existing computation of H(msg||·)
instead. In the following we write PS-3, but it is understood that the simpler
modification described above is applied if possible.

Proposition 11. For Σ ∈ {Mayo,Qr-Uov,Snova,Tuov,Uov,Vox} and H
a random oracle, the transformed scheme PS-3[H, Σ] fulfills BUFF security.

6.1 UOV

The unbalanced oil and vinegar (Uov) signature scheme is the oldest candidate
and the foundation of the remaining multivariate schemes, [34,30]. The trapdoor
information in Uov is a secret linear m-dimensional subspace, the so-called
oil space O, which is annihilated by the public key map P, i.e., P(o) = 0 for
all o ∈ O. The dimension of the oil space m needs to equal the number of
quadratic equations and the number of variables n usually satisfies n ≈ 2.5m.
We introduce the algorithms of classic Uov here, instead of the compressed
versions. The analysis holds for all variants similarly, as we argue below.

Key Pair. The public key pk = {Pi}i∈[m] consists of m matrices

Pi =
(
P

(1)
i P

(2)
i

0 P
(3)
i

)
,

where P (1)
i ∈ Fv×v

q , P
(2)
i ∈ Fv×m

q and P (3)
i ∈ Fm×m

q . Here, the matrices P (1)
i and

P
(2)
i are generated randomly from a seed and P

(3)
i is computed via

P
(3)
i = −O⊤P

(1)
i O −O⊤P

(2)
i ,

with a randomly generated oil space O ∈ Fv×m
q .

The secret key sk = (seedsk, O, {P (1)
i , Si}i∈[m]) consists of a seed seedsk, the

oil space O, a part of the public key matrices {P (1)
i }i∈[m], and some auxiliary

matrices {Si}i∈[m] needed for signing, given by Si = (P (1)
i + P

(1)⊤
i )O + P

(2)
i .

Signature. The signature is given by sig = (s, salt), containing a vector s ∈ Fn
q

and a random salt.
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Verify(pk, msg, sig)

P ← Map(pk)
t← Target(pk, msg, sig)
if P(sig) = t

return 1
return 0

Target(pk, msg, sig)

(·, salt)← sig

t← H(msg||salt) // Uov

t← H(H(msg)||salt) // Mayo

t← H2(H1(pk)||msg||salt) // Prov

return t

Map(pk) in Uov

(P (1)
i , P

(2)
i , P

(3)
i )← pk

Pi ←
(

P
(1)
i P

(2)
i

0 P
(3)
i

)
return P

Map(pk) in Prov

(seedpk, (P (3)
i ))← pk

(P (1)
i , P

(2)
i )← E(seedpk)

Pi =
(

P
(1)
i P

(2)
i

0 P
(3)
i

)
return P

Map(pk) in Mayo

(seedpk, {P (3)
i })← pk

{P (1)
i , P

(2)
i } ← E(seedpk)

return P∗

Fig. 10: Verification algorithm of Uov, Mayo, and Prov. Recall that the public
map P consists of m homogeneous quadratic polynomials (p(1)(x), . . . , p(m)(x)),
and can be computed from P1, . . . , Pk using the relation pi(x) = x⊤Pix. For
Mayo the larger map P∗ is used, which can be computed from P as described
in Equation (2). Lastly, note that E(·) is used as an abbreviation for Expand(·).

Verify. Given a public key pk = (P (1)
i , P

(2)
i , P

(3)
i ), a message msg, and a signature

sig = (s, salt), the verification algorithm is shown in Fig. 10.

S-CEO. Given a public key pk, a message msg, and a signature sig = (s, salt)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk ̸=
pk such that for the corresponding public key map P it holds that P(s) =
H(msg||salt). Let p(k)

i,j be the (i, j)-th entry of the public key matrix Pk coming
from pk. We define p(k)

i,j , the coefficients of P k from pk as p(k)
i,j , except for the

following adjustment. We pick an arbitrary i ∈ [v + 1, n − 1] and change p(k)
i,i

and p
(k)
i+1,i+1 s.t. p(k)

i,i s
2
i + p

(k)
i+1,i+1s

2
i+1 = p

(k)
i,i s

2
i + p

(k)
i+1,i+1s

2
i+1. Keeping all other

coefficients, we get P k(s) = Pk(s) for all k, hence verification succeeds for pk.

S-DEO. Given a public key pk, a message msg, and a signature sig = (s, salt)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk ̸= pk
and a second message msg ̸= msg such that P(s) = h = (hk) = H(msg||salt).
We take some index l ∈ [v + 1, n], with sl ̸= 0. For each k ∈ [m], set pk

i,i =
(hk −

∑
i<j,(i,j)̸=(l,l) p

k
i,jsisj)/(s2

l ). Then we found P with P(s) = h.

Variants. The statements also hold for the compressed variants pkc and pkc+skc.
For these, the public key does not consist of the matrices {Pi}i∈[m], but only of
9 Vox and Snova hash parts of the public key, which is insufficient for BUFF security.
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the submatrices {P (3)
i }i∈[m] and a seed that is used to generate {P (1)

i }i∈[m] and
{P (2)

i }i∈[m]. The results of our analysis only require a change of the P (3)
i , so that

the attacks work for the compressed versions as well.

6.2 MAYO

In Mayo, the public key map P has the same structure as in Uov, but it is
publicly whipped up to a k-fold larger map P∗ : Fkn

q → Fm
q via

P∗(s1, . . . , sk) =
k∑

i=1
EiiP(si) +

k∑
i=1

k∑
j=i+1

EijP ′(si, sj) , (2)

where Eij ∈ Fm×m
q are system parameters and P ′ is the bilinear map associated

to P, i.e., component-wise P ′
l (si, sj) = s⊤

i (Pl + P⊤
l )sj , for each l. The benefit

of this approach is a smaller public key size at the expense of a slightly larger
signature and an additional security assumption: the Multi-Target Whipped MQ
problem [6, Section 5.1].

Key Pair. The secret key is given by a private seed sk = seedsk. It is used to
derive a public seed seedpk and the secret linear oil space O ∈ F(n−o)×o

q . The
public key is given by pk = (seedpk, {P (3)

i }i∈[m]), where

P
(3)
i = −O⊤P

(1)
i O −O⊤P

(2)
i ∈ Fo×o

q .

Hereby, P (1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q are expanded from seedpk.

Signature. The signature is given by sig = (s1, . . . , sk, salt), with si ∈ Fn
q .

Verify. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and a

signature sig = (s1, . . . , sk, salt), the verification is shown in Fig. 10.

S-CEO. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and

a signature sig = (s1, . . . , sk, salt), such that Verify(pk, msg, sig) = 1, we
need to find a second public key pk ̸= pk such that P∗(s1, . . . , sk) = t =
H(H(msg)||salt) holds, where P∗ is derived from pk. The main observation to
tackle this task, is that the map P∗ is linear with respect to the entries of its
corresponding public key matrices Pi.

The strategy is now to generate various p̃ka, where we always use the same
seedpk, but randomly generated ({P (3)

i,a }i∈[m])a for a ∈ {1, 2, . . .}. Denote by P̃a

the quadratic map associated to this public key. Then, we consecutively compute
P̃∗

a(s1, . . . , sk) = xa until we gathered m linearly independent vectors xa. Thus,
we find λa ∈ Fq, such that t =

∑m
a=1 λa · xa. Now we add up the randomly
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generated matrices accordingly and define pk = (seedpk, {P
(3)
i }i∈[m]) , where

P
(3)
i :=

∑m
a=1 λa(P (3)

i )a for all i ∈ [m]. Due to the linearity we have

P∗(s1, . . . , sk) =
m∑

a=1
λaP̃∗

a(s1, . . . , sk) =
m∑

a=1
λaxa = t .

Thus, an attacker is able to find a different public key pk ̸= pk, such that
Verify(pk, msg, sig) = 1 and Mayo is not S-CEO-secure.

S-DEO. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and

a signature sig = (s1, . . . , sk, salt) such that Verify(pk, msg, sig) = 1, we
need to find a second public key pk ̸= pk and message msg ̸= msg such that
P∗(s1, . . . , sk) = t = H(H(msg)||salt). Since the vectors xa we generated in
the S-CEO analysis give a basis for the complete vector space Fm

q , an attacker
can compute t = H(H(msg)||salt) and find λa such that t =

∑
λaxa for some

randomly chosen message msg ̸= msg. Thus, the same attack that was developed
to analyze S-CEO, works here and Mayo is not S-DEO-secure.

6.3 PROV

Key Pair. Let F denote the finite field F28 and δ := o − m. The public key
pk is a pair (seedpk, (P (3)

i )i∈[m]) where P
(3)
i ∈ F(m+δ)×(m+δ) for all i. From

seedpk the matrices (P (1)
i , P

(2)
i )i∈[m] with P (1)

i ∈ F(n−m−δ)×(n−m−δ) and P (2)
i ∈

F(n−m−δ)×(m+δ) for all i, are generated. We denote by Pi the matrix(
P

(1)
i P

(2)
i

0 P
(3)
i

)
.

The secret key is the triple (seedpk, seedsk, H(pk)). From seedsk the matrix
O ∈ F(n−m−δ)×(m+δ) is generated.

Signature. A signature is given by sig = (salt, s) for s ∈ Fn.

Verify. Given a public key pk = (seedpk, (P (3)
i )i∈[m]), a message msg, and a

signature sig = (salt, s), the verification is shown in Fig. 10.

S-CEO. Given a public key pk, a message msg, and a signature sig = (salt, s)
such that Verify(pk, msg, sig) = 1, we need to find a different public key
pk = (seedpk, (P

3
i )i∈[m]) such that (ti)i∈[m] = h and hence (s⊤P is)i∈[m] =

H2(H1(pk)||msg||salt). As both sides of the latter equation depend on pk and the
value on the right is random (assuming H1 and H2 to be random oracles), the
probability to find a suitable pk is 1

|Fm| = 1
28m ≤ 2−368, for all proposed variants.
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S-DEO. Given a public key pk, a message msg, and a signature sig = (salt, s)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk ̸= pk
and a second message msg ̸= msg such that Verify(pk, msg, sig) = 1. This is not
feasible by the same argument that was used for S-CEO security, as changing
the message only influences the hash value h = H2(H1(pk)||msg||salt).

wNR. Given a public key pk and a signature sig to an unknown message msg,
one has to find another public key pk ̸= pk, and a signature sig such that
Verify(pk, msg, sig) = 1. This is not feasible as one would have to find pk such
that (ti)i∈[m] = h, where h = H2(H1(pk)||msg||salt) is unknown as msg is. Note
that we can compute h = (s⊤Pis)i but not msg and hence not h. Thus, the
probability for the equality (ti)i∈[m] = h to hold is 1

28m and therefore less than
2−368 for all variants.

6.4 Further Multivariate Candidates

The remaining NIST signature candidates based on multivariate polynomials are
Qr-Uov, Snova, Tuov and Vox. For all of them, the BUFF analysis follows the
same idea as the one given for Uov in Section 6.1. We provide a short overview
over the main arguments in the following.

The main difference between Qr-Uov and Uov is that the public key ma-
trices P (i)

1 , P
(i)
2 , and P (i)

3 of Qr-Uov are block matrices, where each component
Φf

g ∈ Fl×l
q corresponds to an element g of the quotient ring Fq[x]/(f), with an

irreducible polynomial f ∈ Fq[x] of degree l. The polynomial matrices of the
subalgebra Af := {Φf

g ∈ Fl×l
q | g ∈ Fq[x]/(f)} are defined entry-wise such that

(Φf
g )ij is the coefficient of xi−1 in xj−1 · g. In the S-CEO/S-DEO analysis for

Qr-Uov we cannot modify single entries p(k)
i,j of the matrices P (3)

k that were
used to control the values yk = s⊤Pks in the analysis of Uov. Instead, we can
only alter one coefficient (or more) of the polynomials g =

∑l−1
i=0 aix

i ∈ Af that
are stored in the P (3)

k part of the public key pk. This will change l values in the
corresponding block Φf

g ∈ Fl×l
q of P (3)

i . However, we can still dictate the result
rk = s⊤

l Φ
f
gsl by choosing the coefficients of g accordingly. Here sl denote the l

entries of the vector s ∈ Fn that are multiplied with this block.
Snova differs from Uov in the fact that it works over the non-commutative

ring R = Fl×l
q instead of Fq. Further, Snova computes the target vector as

t = H(seedp||H(msg)||salt) for pk = (seedp, {P 22
i }i∈[m]) with P 22

i ∈ Ro×o, while
for Uov we have t = H(msg||salt). However, for neither of the BUFF security
notions, the adversary has to provide honestly generated keys, hence it can choose
two different public keys pk ̸= pk that have the same seed, which then result
in the same target t. Then, S-CEO and S-DEO insecurity follows by using the
concrete parameters provided in Snova to prove systems of equations solvable.

The Tuov analysis is completely analogous to the Uov analysis, as the
additional affine transformation S : Fm

q → Fm
q has no impact on the analysis.

Vox is a Uov-based scheme that incorporates the quotient ring technique.
Despite their claim to achieve BUFF security, Vox only satisfies MBS. S-CEO
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and S-DEO can be attacked as in Uov. In short the attack proceeds as follows:
One keeps the part SeedPub of the public key pk = (SeedPub,Pub) unchanged.
The Pub part can be changed independently and is chosen as in the attack against
Uov. Note that Vox uses the quotient ring technique, however, the problem of
defining Pub is still the same as in Uov, just over the extension field. The wNR
security can be attacked as described at the beginning of this section.

7 Conclusion

In this work, we analyzed the signature schemes based on codes, isogenies, lattices,
and multivariate polynomials submitted to the additional NIST PQC standard-
ization effort for signatures regarding their BUFF security. Besides the analysis
of the original schemes, we included comments on the BUFF security after a light
transform, the so-called PS-3 transform. In fact, we see that often, the PS-3
transform suffices to ensure BUFF security, despite the fact that the PS-3 trans-
form is not sufficient for generic schemes. This gap between the general statement
and the empirical evidence on practical schemes can be analyzed further.

In the NIST competition, there are even more signature schemes, which we
have not analyzed in this work. An interesting future work is to analyze those.
In particular, this would give a chance to assess the empirical evidence regarding
the relation of BUFF security and the PS-3 transform.

We considered a weaker form of non-resignability (wNR) as the initial defini-
tion turned out to be unachievable—the problem being the auxiliary information.
The majority of our results regarding wNR—attacks against 12 out of 17 signa-
ture schemes—remain relevant regardless of how the auxiliary information issue
gets resolved eventually. The reason is that neither attack relies on any auxiliary
information. On the other hand, our positive results only guarantee security
against non-resignability in this restricted form. Once the matter of defining
non-resignability is completely resolved, our positive results given here should be
re-evaluated. Note, however, that for the 5 positive results, the schemes implicitly
use either the PS-3 or the BUFF transform. Hence, if either the PS-3 or BUFF
transform can be shown to generally satisfy a new definition of NR, the results
would apply to the 5 positive results presented here.
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