
Exact Template Attacks with Spectral Computation
1st Meriem MAHAR

Université Paris 8, LAGA, UMR 7539, France
Centre de Recherche sur l’Information Scientifique et Technique (CERIST),

Algiers, Algeria. meriem.mahar@etud.univ-paris8.fr

2nd Maamar OULADJ
CERIST, Algiers, Algeria.
ouladj.maamar@gmail.com

https://orcid.org/0000-0003-0976-312X

3rd Sylvain GUILLEY
Secure-IC S.A.S. Digital Park B,

801 avenue des Champs Blancs, Rennes, France,
École Normale Supérieure (ENS), Paris, France.

https://orcid.org/0000-0002-5044-3534

4th Hacène BELBACHIR
RECITS Laboratory, Mathematics faculty,

USTHB, Algiers, Algeria.
hacenebelbachir@gmail.com

https://orcid.org/0000-0001-8540-3033

5th Farid MOKRANE
Université Paris 8,
LAGA, UMR 7539,

France.
farid.mokrane@univ-paris8.fr

Abstract—The so-called Gaussian template attacks (TA) is one
of the optimal Side-Channel Analyses (SCA) when the measure-
ments are captured with normal noise. In the SCA literature,
several optimizations of its implementation are introduced, such
as coalescence and spectral computation. The coalescence consists
of averaging traces corresponding to the same plaintext value,
thereby coalescing (synonymous: compacting) the dataset. Spec-
tral computation consists of sharing the computational workload
when estimating likelihood across key hypotheses.

State-of-the-art coalescence leverages the Law of Large Num-
bers (LLN) to compute the mean of equivalent traces. This
approach comes with a drawback because the LLN is just
an asymptotic approximation. So it does not lead to an exact
Template Attack, especially for a few number of traces. In this
paper, we introduce a way of calculating the TA exactly and with
the same computational complexity (using the spectral approach),
without using the LLN, regardless of the number of messages.

For the experimental validation of this approach, we use
the ANSSI SCA Database (ASCAD), with different numbers of
messages and different amounts of samples per trace. Recall that
this dataset concerns a software implementation of AES-128 bits,
running on an ATMEGA-8515 microprocessor.

Index Terms—Spectral approach, Template Attack, Multi-
variate analysis, Attack speed-up, Coalescence, Law of Large
Numbers (LLN).

I. INTRODUCTION

Embedded systems are increasingly present in everyday life.
They require data protection by encryption protocols. These
algorithms are a natural target of several analyses and at-
tacks. They can exploit the mathematical weaknesses of these
algorithms. Alternatively, they exploit their implementation
weaknesses, including non-voluntary information leaks such as
side-channels (electricity consumption, electromagnetic radia-
tion, temperature, sound emanations, and time execution [7],
etc.). This latter type of attack is very effective in recovering
the encryption key, compared to the classic case [6].

Instead of carrying an SCA straightforwardly, that is on a
side-channel trace-by-trace basis, one can first average each

class of traces that correspond to the same message (or equiv-
alently to the same sensitive value [11]). The advantage of this
approach is the reduction of the complexity simultaneously in
both the memory space and the computation. This approach
was subsequently formalized and named “coalescence” in the
SCA literature [8]. Then, coalescence has been extended from
Linear Regression-Based Side-Channel Attacks (LRA) [9] to
Correlation Power Analysis (CPA) [8, Chap.6] and Template
Attacks [10].

In this last paper, the authors took advantage of the coa-
lescence to introduce a spectral computation (using Fourier
Transform) to speed up calculation. Namely, they progress
from a quadratic to a quasi-linear complexity.

Nevertheless, they have only approximated the template at-
tack [2] with coalescence, thanks to the law of large numbers.
Indeed, the drawback of coalescence is that it leads to optimal
SCAs asymptotically, but not for a limited amount of traces.

In what follows, we demonstrate, for the first time, that it is
possible to calculate the template attack (TA) exactly (without
approximation), and using the spectral computation, so as not
to lose anything in complexity.

a) Notations: In this paper, random variables are denoted
by a capital letter. A realization of a random variable (e.g. X)
is denoted by the corresponding lower-case letter (e.g., x). A
sample of several observations of X is denoted by (xi)i. It
is sometimes referred to as a vector. The notation (xi)i←↩ X
means the initialization of the set of observations (xi)i from
X .

Calligraphic letters will denote matrices, so the elements
of a M matrix will be denoted by M [i][j]. In addition, its
uth column is denoted by M [u] and its ith row is denoted by
M T [i].

In this paper, we shall consider that the attacker (the
adversary) targets a single sensitive variable denoted by Z.
The results can be directly extended to the general case, where
several variables are targeted in parallel.

The sensitive variable Z depends on a public variable X
(usually a plaintext or a ciphertext) which lives in Fn

2 and a
secret subkey k∗ which also lives in Fn

2, such that Z = F(X ,k∗)979-8-3503-6806-2/24/$31.00 ©2024 IEEE

where F is a known mapping F : Fn
2 ∗Fn

2 −→ Fm
2 pertaining to

the cryptographic algorithm specification. The lengths n and m
(integer number of bits) depend on the targeted cryptographic
algorithm and device architecture.

Let L denote the random variable’s leakage model. An attack
is carried out with N leakage traces l0, . . . , lN−1. Each (lq←↩
L)1≤q≤N corresponds to the processing of zi = F(xi,k∗), such
that, xi ←↩ X , zi ←↩ Z. Besides, k∗ denotes the real key the
attacker is looking for. As a typical example, Z = Sbox(X ⊕
k∗), where Sbox denotes a substitution box and ⊕ denotes the
bit-wise addition (xor).

The number of samples per trace (leakage time points) is
denoted by D (like in dimensionality).

Let us also consider the Gaussian leakage model, where
L ∼N (M,Σ), such that M denotes the mean and Σ denotes
the covariance matrix. In the sequel, Σ is assumed invertible,
which is usually the case in practice. Elsewhere, a pseudo-
inverse can be used instead. One can also denote the leakage
as L = M+noise, where noise∼N (0,Σ).

In summary, the model can be noted as follows:

X ,k −→ Z −→M(Z) = M −→ L = M+noise. (1)

The adversary should guess the true key by k̂.
b) Contributions: Thanks to this work, we managed to

optimize the Template Attack in terms of success rate without
any loss in the computational complexity. Indeed, we show
that we need to weight the model and the average of the traces
class by the corresponding class’s cardinality (Proposition 1).
In addition, we demonstrate that we can draw profiles from the
spectral approach without having to resort to the coalescence
principle.

c) Outline: The rest of the paper is structured as follows.
Our main result, namely the rewriting of the exact template at-
tack, is given in Sec. II. Its optimal implementation leveraging
a Fourier transform is the topic of Sec. III. The experimental
validation is given in Sec. IV. Eventually, section V concludes
the paper and opens some research perspectives.

II. FORMAL PROOF

From the Equ. (1) and According to the state of the art (more
precisely [1, Theorem 2]), one can use the following formula
for guessing the key during the optimal (exact) template attack:

k̂ = argmin
k

tr
(
(L−Mk)

T
Σ
−1(L−Mk)

)
. (2)

After applying the coalescence principle [10], to improve
the time of the exact calculation of the equation (2), the
guessed key can be carried out by:

k̂ = argmin
k

2n−1

∑
x=0

nx(L̃x− M̃x,k)
T

Σ
−1(L̃x− M̃x,k) . (3)

The equation (3) can be read as a matrix trace over the
plaintext space (or the ciphertext), weighted by nx values.
Recalling that:
• nx is the number of times the message x is involved,

• L̃x is the average trace over over all the traces correspond-
ing to the same message x,

• M̃x,k is leakage model corresponding to the couple (x,k).
It is essential to point out that the attack presented by the last
equation is exactly the same as that of the equation (2), and so
they will succeed with the same number of traces. However,
the attack (3) is more efficient in terms of computation, and
memory space, than (2), as soon as the number of traces N is
greater than the number of plaintexts involved in the leakage
model (e.g., for AES, it is 2n = 256).

This gain applies to both the profiling and the matching
phases. However, we emphasize that profiling requires many
more traces than matching, so most of the gain from using
coalesced data comes from the model-building phase.

In what follows, we will demonstrate how to calculate (3)
without using the approximation by the LLN, contrary to the
state of the art.

Proposition 1 (Exact Template Attack – Expression of the
Maximum Likelihood Distinguisher).

k̂ = argmin
k

2n−1

∑
x=0

nxM̃T
x⊕kΣ

−1M̃x⊕k−2
2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k) .

Proof. Let us rewrite (3) by developing the terms:

k̂ = argmin
k

2n−1

∑
x=0

nx(L̃x− M̃x,k)
T

Σ
−1(L̃x− M̃x,k)

= argmin
k

[2n−1

∑
x=0

nxL̃T
x Σ
−1L̃x +

2n−1

∑
x=0

nxM̃T
x⊕kΣ

−1M̃x⊕k

−
2n−1

∑
x=0

nxL̃T
x Σ
−1M̃x⊕k−

2n−1

∑
x=0

nxM̃T
x⊕kΣ

−1M̃x

]
.

Given that the term ∑nx[L̃T
x Σ−1]L̃x is independent of the key

k, then finding k̂ is equivalent to minimizing
2n−1

∑
x=0

nx

[
L̃T

x Σ
−1L̃x+M̃T

x⊕kΣ
−1M̃x⊕k−L̃T

x Σ
−1M̃x⊕k−M̃T

x⊕kΣ
−1L̃x

]
.

Notice that:

2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k) =
2n−1

∑
x=0

(M̃T
x⊕kΣ

−1)(nxL̃x),

So, finally:

k̂ = argmin
k

2n−1

∑
x=0

nxM̃T
x⊕kΣ

−1M̃x⊕k−2
2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k) .

III. SPECTRAL EXPRESSION

Recalling that, for any pair of pseudo-Boolean functions f
and g, we have:
2n−1

∑
x=0

f (x).g(x⊕ k) = (f ⊗g)(k) =WHT (WHT (f)•WHT (g))(k),

where

1) “•” denotes the direct product between two pseudo-
Boolean functions (that is, the term-to-term product),

2) “⊗” denotes the convolution product between two
pseudo-Boolean functions,

3) WHT denotes the Walsh-Hadamard Transform. This
transform is defined as:

WHT (f)(u) = ∑
x
(−1)u·x f (x).

The convolution product can be computed naïvely in O(n2)
complexity, but also efficiently thanks to computing the WHT
by a butterfly algorithm in quasi-linear O(n log2 n) complexity
[4].

Hence, let us note: M (x) .
= M̃T

x Σ−1M̃x; i.e. M (x) is a
scalar (dimension 1×1); Let Lcumul(x)

.
= nxL̃T

x ; i.e. Lcumul(x)
is of dimension (1×D); M̃(x) .

= Σ−1M̃x; that is M̃(x) is of
dimension (D×1).

So,

2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k) =
2n−1

∑
x=0

Lcumul(x)M̃(x⊕ k)

=
D

∑
u=1

Lcumul [u]⊗M̃[u](k)

=
D

∑
u=1

WHT−1[WHT (Lcumul [u])•WHT (M̃)[u]
]
(k) .

Since WHT is a linear mirror function (equal to the inverse
of itself), one has that:
2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k)

=WHT
[D

∑
u=1

WHT (Lcumul [u])•WHT (M̃[u])
]
(k) .

As a result,

k̂ = argmin
k

2n−1

∑
x=0

nxM̃T
x⊕kΣ

−1M̃x⊕k−2
2n−1

∑
x=0

(nxL̃T
x)(Σ

−1M̃x⊕k)

= argmin
k

n(.)⊗M (.)(k)−2
D

∑
u=1

Lcumul [u]⊗M̃[u](k)

= argmin
k

WHT
[
WHT (n)•WHT (M)

−2
D

∑
u=1

WHT (Lcumul [u])•WHT (M̃[u])
]
(k).

From this formula, we can carry out an exact template attack
using the two algorithms Alg. 1 and Alg. 2 presented below.

A. New and exact profiling Algorithm

The exact model learning algorithm is given in Alg. 1.

Input: Profiling traces set L and the corresponding messages
X for the model estimation, according to the known
key k∗

Output: The covariance matrix inverse multiplied by the
model matrix M̃= Σ−1M̃

1 for x ∈ Fn
2 do // Initialisation

2 m̃x← 0 // Average trace per class
3 nx← 0 // Number of traces per class

4 for q ∈ {1, . . . ,N} do // Accumulation
5 m̃xq⊕k∗ ← m̃xq⊕k∗ +Lq
6 nxq⊕k∗ ← nxq⊕k∗ +1

7 for x ∈ Fn
2 do // Normalisation

8 m̃x← m̃x/nx

9 M̃← (m̃0, · · · , m̃2n−1)
10 Σ← 1

N LLT− 1
2n M̃M̃T

11 M̃← Σ−1M̃
12 for x ∈ Fn

2 do // the M̃T
x⊕k∗Σ−1M̃x⊕k∗ processing

13 M [x]← M̃T[x] M̃[x]

14 return M̃, M .

Algorithm 1: The new and exact model estimation algo-
rithm.

B. New and exact matching algorithm

Accordingly, the exact matching algorithm, used to extract
the most likely key, is given in Alg. 2.

Input: Matching traces set L, the corresponding messages X
and the model (M̃= Σ−1M̃ et M = M̃Σ−1M̃),
obtained by Alg. 1

Output: The guessed key k̂ provided by the optimal
distinguisher (Proposition 1)

1 for x ∈ Fn
2 do // Initialisation

2 lcumulx← 0 // Average trace per class
3 nx← 0 // Number of traces per class

4 for q ∈ {1, . . . ,N} do // Accumulation
5 lcumulxq

← lcumulxq
+Lq

6 nxq ← nxq +1
// . Matching

7 return k̂ = argmink
(
n⊗M (k)−2∑

D
u=1 LT

cumul [u]⊗M̃[u](k)
)

Algorithm 2: The new and exact spectral computation-based
matching algorithm.

C. Discussion (complexity and comparison)

The body of the algorithm Alg. 1, i.e., lines 1 to 8, operates
on traces of size D. The same remark applies to the body of
Alg. 2, i.e., lines 1 to 6. Consequently, the overall complexity
of these parts of the algorithm involves O(N×D) additions
(the processing of nx scalars is negligible compared to the
processing of traces of D samples, thus we safely ignore
them). The complex part of the Alg. 1, namely the line 10, is
calculated only once. So the overall complexity of this part is
equal to that of the calculation of LLT, which is O(D2×N)

(that of M̃M̃T is O(D2×2n)). This yields an overall total of
O(D2×N) multiplications.

Line 11 is also calculated once. The overall complexity of
this multiplication is equal to O(D2×2n). To efficiently invert
the Σ matrix, one can use Coppersmith Winograd’s optimized
algorithm [5], which has a complexity of O(D2.373).

Then, lines 12 and 13 of the Alg. 1 consist in calculating
M , and have a complexity equal to O(2n×D). The purpose
of computing M̃ at line 11 and M at line 13 is to avoid
calculating them again and again each time an attack is carried
out by the Alg. 2.

Regarding the attack proper, described in Alg. 2, the
bottleneck is the calculation of line 7. The complexity of
n⊗M is O(n2n), which is negligible compared to that of
∑

D
u=1 LT

cumul [u]⊗M̃[u], which is O(Dn2n).
From the above, it has been shown that the complexity of the

new and exact profiling and matching algorithms (Alg. 1 and
Alg. 2) is equal to that of the two old ones (Alg. 3 and Alg. 4)
of [10]). Let us recall that these “old” algorithms boil down
asymptotically to using N/2n instead of nx, for all values of
x, with all the simplifications that are subsequently entailed in
the formulas. As a matter of fact, the added computations have
negligible complexity compared to the old ones, which leads
to a marginal increase in computation time, but an important
increase in terms of success ratio, as we will show in the next
section.

IV. RESULTS AND EXPERIMENTAL VALIDATION

In order to validate the results, we employed raw traces
from the SCA database (ASCAD) of the French National
Agency for Information Systems Security (ANSSI) [3]. The
target of our attacks is a protected software implementation
of AES encryption algorithm (with 128-bit key), running on
an ATMEGA-8515 microprocessor, which has an AVR-8 bit
architecture. The software aims to protect against first-order
SCAs, using a Boolean secret-sharing scheme based on the
table recalculation method, although the first two bytes of the
AES state are unprotected, to enable for comparison (refer
to [3, §2.5.1]).

Typically, the target variable on our tests is the second byte
of the state, at the output of the SBox in the first round, i.e.,
Z = SBox(x[2]⊕ k[2]).

The algorithms are coded using C language, compiled with
maximal level of optimization (-O3 flag) by GNU GCC
(version 4.8.1)1. The profiling and matching codes are running
on a 32-bit Intel i3 personal computer. The Walsh-Hadamard
Transform is implemented efficiently by the butterfly algo-
rithm.

A. Comparison

To assess the effectiveness of our improved template attacks,
we compared both approaches, namely the old versions (the
Alg. 3 and Alg. 4 from [10]), and our improved ones (the

1The source code is freely available at https://github.com/<anonymous>
/Exact_Template_Attacks_With_Spectral_Computation/tree/master (the cor-
rect URL is hidden owing to the blind review process).

Alg. 1 and Alg. 2), in terms of success rates according to the
number of traces, for different window sizes D (the number of
temporal samples per trace) from 1 to 50. The success rates
obtained by using a training set of 512,000 traces and by
averaging over 10,000 attacks which are represented by the
graphs in Figure 1, zooming on an attack on N < 200 traces
(and in Figure 2 for the same attack on N < 10,000 traces).

From these graphs, we can clearly see the effectiveness
of the proposed improvement, for different values of D.
Obviously, this improvement is clearer for small values of D,
where the convergence of the success rate to 100% is slower.

Of course, for large values of N (number of traces), our
improvement becomes marginal, as the number of traces per
class approaches each other (all ending up being equal to
N/2n). This is shown in Figure 2.

In practice and interestingly, when D = 1 (mono-sample
attack), we notice that the success rate with coalescence
requires a lot of traces to start differing from 0%. On the
other hand, with our exact computations, the success rate in the
mono-sample case is increasing fast to 100%. It is even faster
than the case of exact computation when D > 1. This fact can
be explained by the selection of the (unique) point of attack.
We selected the point where our attack succeeds the best (i.e.,
with the best signal-to-noise ratio). So, adding more points
comes down to adding (relatively) less information. For clarity,
we represented the value of the success rate (after an arbitrary
number of 100 matching traces) for attacks with coalescence
and with our improvement (exact template computation) in
figures 3 and 4. The sample of attack for the graphs in Fig. 2
corresponds to the best sample (at position 350). This sample
has a very higher SNR compared to its neighboring samples,
which makes it very singular. This accounts for the fact the
exact attack at D = 1 exhibits a better success rate than for
D > 1 (until approximately D = 5). From D = 5 on (i.e.,
large dimensionality), we recover the fact that the higher D,
the higher the success rate (since there is no longer a big
discrepancy between the added points, in terms of SNR).
Noting that each trace contains 700 samples.

In order to study and compare the computation time for the
two approaches (coalescence and our improvement), we run
them by varying the window D from 1 to 50, while setting
the number of traces to a given value (200 in our case). The
execution times obtained are given in Table I and plotted in
Figure 5.

https://github.com/<anonymous>/Exact_Template_Attacks_With_Spectral_Computation/tree/master
https://github.com/<anonymous>/Exact_Template_Attacks_With_Spectral_Computation/tree/master

(a) D = 1 (b) D = 2 (c) D = 3

(d) D = 4 (e) D = 5 (f) D = 10

(g) D = 20 (h) D = 30 (i) D = 50

Figure 1. Success rate according to the number of traces (until N = 200), for different values of D, with: (•): coalescence and (•): our improvement

(a) D = 1 (b) D = 2 (c) D = 5

Figure 2. Success rate according to the number of traces (until N = 1000), for different values of D, with: (•): coalescence and (•): our improvement

Table I
COMPUTATION TIME (SECONDS) ACCORDING TO THE TRACES DIMENSIONALITY D.

1 2 3 4 5 10 20 30 50
Coalescence 26.649 29.658 31.980 35.021 37.158 55.814 75.392 105.150 159.486

Improvement 31.365 33.128 35.801 37.964 39.754 54.016 82.036 106.676 170.333

Figure 3. Success rate after 100 traces for D = 1 in the (legacy) coalescence
approach, as a function of the sample chosen for the attack.

Figure 4. Success rate after 100 traces for D = 1 in our new exact approach,
as a function of the sample chosen for the attack. It shows that the selection
of the sample 350 is definitely singular, as the attack is significantly better at
this sample than at others, even its neighbors.

Figure 5. Computation time according to D with: (•): coalescence and (•):
our improvement

From the above experimental results, we can see that our ap-
proach offers a considerable improvement in terms of success
rate at the expense of a marginal delay in terms of computation
time. This shows the importance of this improvement, as in
general an improvement of say 10% in data (number of traces
complexity is much more valued than an improvement of 10%

in computational complexity).

V. CONCLUSION AND PERSPECTIVES

In this paper, we described a new improvement in template
attacks’ success rate and computational speed. We took ad-
vantage of the properties of the spectral approach and were
inspired by the coalescence principle, while mathematically
demonstrating the optimality of the proposed improvement.

Furthermore, we presented a validation consisting of practi-
cal results obtained in the form of graphs, clearly showing the
improvement in success rate compared with the previous ver-
sion of coalescence-based template attacks. This considerable
gain in success rate comes at the expense of a marginal loss in
computation time, which is explained in terms of complexity.

Besides, the application of the coalescence principle was
introduced in attacks based on linear regression (as early as
the first LRA paper [11]). Recall that it causes accuracy errors,
with template attacks, due to class imbalance. So, it seems that
our improvement of template attacks could be extended to the
linear regression-based one, by taking into account the class
sizes and getting inspiration from the spectral computation [9].
This work is planned as a future improvement, as thus left as
a perspective.

REFERENCES

[1] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and
Olivier Rioul. Optimal side-channel attacks for multivariate leakages and
multiple models. J. Cryptographic Engineering, 7(4):331–341, 2017.

[2] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski, Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 13–28. Springer, 2002.

[3] Prouff Emmanuel, Strullu Remi, Benadjila Ryad, Cagli Eleonora, and
Dumas Cecile. Study of deep learning techniques for side-channel
analysis and introduction to ascad database. CoRR, pages 1–45, 2018.

[4] A. Samad Hedayat and Walter D. Wallis. Hadamard matrices and their
applications. Ann. Statist., 6(6):1184–1238, 11 1978.

[5] Howard Karloff. Proceedings of the Forty-fourth Annual ACM Sympo-
sium on Theory of Computing. ACM, 2012.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO’99, pages 388–397.
Springer-Verlag, 1999.

[7] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor, Advances
in Cryptology - CRYPTO ’96, 16th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer, 1996.

[8] Maamar Ouladj and Sylvain Guilley. Side-Channel Analysis of Embed-
ded Systems. Springer, 2021. ISBN: 978-3-030-77221-5.

[9] Maamar Ouladj, Sylvain Guilley, and Emmanuel Prouff. On the
implementation efficiency of linear regression-based side-channel at-
tacks. In Constructive Side-Channel Analysis and Secure Design - 11th
International Workshop, COSADE 2020, Lugano, Switzerland, October
5-7, 2020, Proceedings (LNCS 12244), pages 147–172, 2020.

[10] Maamar Ouladj, Nadia El Mrabet, Sylvain Guilley, Philippe Guillot,
and Gilles Millérioux. On the power of template attacks in highly
multivariate context. Journal of Cryptographic Engineering - JCEN,
2020.

[11] Werner Schindler. On the optimization of side-channel attacks by
advanced stochastic methods. In Serge Vaudenay, editor, Public Key
Cryptography - PKC 2005, 8th International Workshop on Theory
and Practice in Public Key Cryptography, Les Diablerets, Switzerland,
January 23-26, 2005, Proceedings, volume 3386 of Lecture Notes in
Computer Science, pages 85–103. Springer, 2005.

	Introduction
	Formal proof
	Spectral expression
	New and exact profiling Algorithm
	New and exact matching algorithm
	Discussion (complexity and comparison)

	Results and experimental validation
	Comparison

	Conclusion and perspectives
	References

